1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocCommon.h" 32 #include "llvm/CodeGen/RegAllocRegistry.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <tuple> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "regalloc" 51 52 STATISTIC(NumStores, "Number of stores added"); 53 STATISTIC(NumLoads , "Number of loads added"); 54 STATISTIC(NumCoalesced, "Number of copies coalesced"); 55 56 // FIXME: Remove this switch when all testcases are fixed! 57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 58 cl::Hidden); 59 60 static RegisterRegAlloc 61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 62 63 namespace { 64 65 class RegAllocFast : public MachineFunctionPass { 66 public: 67 static char ID; 68 69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 70 bool ClearVirtRegs_ = true) : 71 MachineFunctionPass(ID), 72 ShouldAllocateClass(F), 73 StackSlotForVirtReg(-1), 74 ClearVirtRegs(ClearVirtRegs_) { 75 } 76 77 private: 78 MachineFrameInfo *MFI; 79 MachineRegisterInfo *MRI; 80 const TargetRegisterInfo *TRI; 81 const TargetInstrInfo *TII; 82 RegisterClassInfo RegClassInfo; 83 const RegClassFilterFunc ShouldAllocateClass; 84 85 /// Basic block currently being allocated. 86 MachineBasicBlock *MBB; 87 88 /// Maps virtual regs to the frame index where these values are spilled. 89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 90 91 bool ClearVirtRegs; 92 93 /// Everything we know about a live virtual register. 94 struct LiveReg { 95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 96 Register VirtReg; ///< Virtual register number. 97 MCPhysReg PhysReg = 0; ///< Currently held here. 98 bool LiveOut = false; ///< Register is possibly live out. 99 bool Reloaded = false; ///< Register was reloaded. 100 bool Error = false; ///< Could not allocate. 101 102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 103 104 unsigned getSparseSetIndex() const { 105 return Register::virtReg2Index(VirtReg); 106 } 107 }; 108 109 using LiveRegMap = SparseSet<LiveReg>; 110 /// This map contains entries for each virtual register that is currently 111 /// available in a physical register. 112 LiveRegMap LiveVirtRegs; 113 114 /// Stores assigned virtual registers present in the bundle MI. 115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 116 117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 118 /// List of DBG_VALUE that we encountered without the vreg being assigned 119 /// because they were placed after the last use of the vreg. 120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 121 122 /// Has a bit set for every virtual register for which it was determined 123 /// that it is alive across blocks. 124 BitVector MayLiveAcrossBlocks; 125 126 /// State of a register unit. 127 enum RegUnitState { 128 /// A free register is not currently in use and can be allocated 129 /// immediately without checking aliases. 130 regFree, 131 132 /// A pre-assigned register has been assigned before register allocation 133 /// (e.g., setting up a call parameter). 134 regPreAssigned, 135 136 /// Used temporarily in reloadAtBegin() to mark register units that are 137 /// live-in to the basic block. 138 regLiveIn, 139 140 /// A register state may also be a virtual register number, indication 141 /// that the physical register is currently allocated to a virtual 142 /// register. In that case, LiveVirtRegs contains the inverse mapping. 143 }; 144 145 /// Maps each physical register to a RegUnitState enum or virtual register. 146 std::vector<unsigned> RegUnitStates; 147 148 SmallVector<MachineInstr *, 32> Coalesced; 149 150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 151 /// Set of register units that are used in the current instruction, and so 152 /// cannot be allocated. 153 RegUnitSet UsedInInstr; 154 RegUnitSet PhysRegUses; 155 SmallVector<uint16_t, 8> DefOperandIndexes; 156 // Register masks attached to the current instruction. 157 SmallVector<const uint32_t *> RegMasks; 158 159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 160 bool isPhysRegFree(MCPhysReg PhysReg) const; 161 162 /// Mark a physreg as used in this instruction. 163 void markRegUsedInInstr(MCPhysReg PhysReg) { 164 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 165 UsedInInstr.insert(*Units); 166 } 167 168 // Check if physreg is clobbered by instruction's regmask(s). 169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 171 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 172 }); 173 } 174 175 /// Check if a physreg or any of its aliases are used in this instruction. 176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 178 return true; 179 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 180 if (UsedInInstr.count(*Units)) 181 return true; 182 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 183 return true; 184 } 185 return false; 186 } 187 188 /// Mark physical register as being used in a register use operand. 189 /// This is only used by the special livethrough handling code. 190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 192 PhysRegUses.insert(*Units); 193 } 194 195 /// Remove mark of physical register being used in the instruction. 196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 197 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 198 UsedInInstr.erase(*Units); 199 } 200 201 enum : unsigned { 202 spillClean = 50, 203 spillDirty = 100, 204 spillPrefBonus = 20, 205 spillImpossible = ~0u 206 }; 207 208 public: 209 StringRef getPassName() const override { return "Fast Register Allocator"; } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.setPreservesCFG(); 213 MachineFunctionPass::getAnalysisUsage(AU); 214 } 215 216 MachineFunctionProperties getRequiredProperties() const override { 217 return MachineFunctionProperties().set( 218 MachineFunctionProperties::Property::NoPHIs); 219 } 220 221 MachineFunctionProperties getSetProperties() const override { 222 if (ClearVirtRegs) { 223 return MachineFunctionProperties().set( 224 MachineFunctionProperties::Property::NoVRegs); 225 } 226 227 return MachineFunctionProperties(); 228 } 229 230 MachineFunctionProperties getClearedProperties() const override { 231 return MachineFunctionProperties().set( 232 MachineFunctionProperties::Property::IsSSA); 233 } 234 235 private: 236 bool runOnMachineFunction(MachineFunction &MF) override; 237 238 void allocateBasicBlock(MachineBasicBlock &MBB); 239 240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 241 Register Reg) const; 242 243 void allocateInstruction(MachineInstr &MI); 244 void handleDebugValue(MachineInstr &MI); 245 void handleBundle(MachineInstr &MI); 246 247 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 248 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 249 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 250 void freePhysReg(MCPhysReg PhysReg); 251 252 unsigned calcSpillCost(MCPhysReg PhysReg) const; 253 254 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 255 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 256 } 257 258 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 260 } 261 262 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 263 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 264 bool LookAtPhysRegUses = false); 265 void allocVirtRegUndef(MachineOperand &MO); 266 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 267 MCPhysReg Reg); 268 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 269 Register VirtReg); 270 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 271 bool LookAtPhysRegUses = false); 272 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 273 274 MachineBasicBlock::iterator 275 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 276 SmallSet<Register, 2> &PrologLiveIns) const; 277 278 void reloadAtBegin(MachineBasicBlock &MBB); 279 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 280 281 Register traceCopies(Register VirtReg) const; 282 Register traceCopyChain(Register Reg) const; 283 284 int getStackSpaceFor(Register VirtReg); 285 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 286 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 287 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 288 MCPhysReg PhysReg); 289 290 bool mayLiveOut(Register VirtReg); 291 bool mayLiveIn(Register VirtReg); 292 293 void dumpState() const; 294 }; 295 296 } // end anonymous namespace 297 298 char RegAllocFast::ID = 0; 299 300 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 301 false) 302 303 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 304 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 305 RegUnitStates[*UI] = NewState; 306 } 307 308 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 309 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 310 if (RegUnitStates[*UI] != regFree) 311 return false; 312 } 313 return true; 314 } 315 316 /// This allocates space for the specified virtual register to be held on the 317 /// stack. 318 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 319 // Find the location Reg would belong... 320 int SS = StackSlotForVirtReg[VirtReg]; 321 // Already has space allocated? 322 if (SS != -1) 323 return SS; 324 325 // Allocate a new stack object for this spill location... 326 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 327 unsigned Size = TRI->getSpillSize(RC); 328 Align Alignment = TRI->getSpillAlign(RC); 329 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 330 331 // Assign the slot. 332 StackSlotForVirtReg[VirtReg] = FrameIdx; 333 return FrameIdx; 334 } 335 336 static bool dominates(MachineBasicBlock &MBB, 337 MachineBasicBlock::const_iterator A, 338 MachineBasicBlock::const_iterator B) { 339 auto MBBEnd = MBB.end(); 340 if (B == MBBEnd) 341 return true; 342 343 MachineBasicBlock::const_iterator I = MBB.begin(); 344 for (; &*I != A && &*I != B; ++I) 345 ; 346 347 return &*I == A; 348 } 349 350 /// Returns false if \p VirtReg is known to not live out of the current block. 351 bool RegAllocFast::mayLiveOut(Register VirtReg) { 352 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 353 // Cannot be live-out if there are no successors. 354 return !MBB->succ_empty(); 355 } 356 357 const MachineInstr *SelfLoopDef = nullptr; 358 359 // If this block loops back to itself, it is necessary to check whether the 360 // use comes after the def. 361 if (MBB->isSuccessor(MBB)) { 362 // Find the first def in the self loop MBB. 363 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 364 if (DefInst.getParent() != MBB) { 365 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 366 return true; 367 } else { 368 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef)) 369 SelfLoopDef = &DefInst; 370 } 371 } 372 if (!SelfLoopDef) { 373 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 374 return true; 375 } 376 } 377 378 // See if the first \p Limit uses of the register are all in the current 379 // block. 380 static const unsigned Limit = 8; 381 unsigned C = 0; 382 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 383 if (UseInst.getParent() != MBB || ++C >= Limit) { 384 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 385 // Cannot be live-out if there are no successors. 386 return !MBB->succ_empty(); 387 } 388 389 if (SelfLoopDef) { 390 // Try to handle some simple cases to avoid spilling and reloading every 391 // value inside a self looping block. 392 if (SelfLoopDef == &UseInst || 393 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 394 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 395 return true; 396 } 397 } 398 } 399 400 return false; 401 } 402 403 /// Returns false if \p VirtReg is known to not be live into the current block. 404 bool RegAllocFast::mayLiveIn(Register VirtReg) { 405 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 406 return !MBB->pred_empty(); 407 408 // See if the first \p Limit def of the register are all in the current block. 409 static const unsigned Limit = 8; 410 unsigned C = 0; 411 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 412 if (DefInst.getParent() != MBB || ++C >= Limit) { 413 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 414 return !MBB->pred_empty(); 415 } 416 } 417 418 return false; 419 } 420 421 /// Insert spill instruction for \p AssignedReg before \p Before. Update 422 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 423 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 424 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 425 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 426 << " in " << printReg(AssignedReg, TRI)); 427 int FI = getStackSpaceFor(VirtReg); 428 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 429 430 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 431 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 432 ++NumStores; 433 434 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 435 436 // When we spill a virtual register, we will have spill instructions behind 437 // every definition of it, meaning we can switch all the DBG_VALUEs over 438 // to just reference the stack slot. 439 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 440 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 441 SpilledOperandsMap; 442 for (MachineOperand *MO : LRIDbgOperands) 443 SpilledOperandsMap[MO->getParent()].push_back(MO); 444 for (auto MISpilledOperands : SpilledOperandsMap) { 445 MachineInstr &DBG = *MISpilledOperands.first; 446 // We don't have enough support for tracking operands of DBG_VALUE_LISTs. 447 if (DBG.isDebugValueList()) 448 continue; 449 MachineInstr *NewDV = buildDbgValueForSpill( 450 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 451 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 452 (void)NewDV; 453 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 454 455 if (LiveOut) { 456 // We need to insert a DBG_VALUE at the end of the block if the spill slot 457 // is live out, but there is another use of the value after the 458 // spill. This will allow LiveDebugValues to see the correct live out 459 // value to propagate to the successors. 460 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 461 MBB->insert(FirstTerm, ClonedDV); 462 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 463 } 464 465 // Rewrite unassigned dbg_values to use the stack slot. 466 // TODO We can potentially do this for list debug values as well if we know 467 // how the dbg_values are getting unassigned. 468 if (DBG.isNonListDebugValue()) { 469 MachineOperand &MO = DBG.getDebugOperand(0); 470 if (MO.isReg() && MO.getReg() == 0) { 471 updateDbgValueForSpill(DBG, FI, 0); 472 } 473 } 474 } 475 // Now this register is spilled there is should not be any DBG_VALUE 476 // pointing to this register because they are all pointing to spilled value 477 // now. 478 LRIDbgOperands.clear(); 479 } 480 481 /// Insert reload instruction for \p PhysReg before \p Before. 482 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 483 MCPhysReg PhysReg) { 484 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 485 << printReg(PhysReg, TRI) << '\n'); 486 int FI = getStackSpaceFor(VirtReg); 487 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 488 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 489 ++NumLoads; 490 } 491 492 /// Get basic block begin insertion point. 493 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 494 /// instructions marking the begin of a basic block. This means we must insert 495 /// new instructions after such labels... 496 MachineBasicBlock::iterator 497 RegAllocFast::getMBBBeginInsertionPoint( 498 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 499 MachineBasicBlock::iterator I = MBB.begin(); 500 while (I != MBB.end()) { 501 if (I->isLabel()) { 502 ++I; 503 continue; 504 } 505 506 // Most reloads should be inserted after prolog instructions. 507 if (!TII->isBasicBlockPrologue(*I)) 508 break; 509 510 // However if a prolog instruction reads a register that needs to be 511 // reloaded, the reload should be inserted before the prolog. 512 for (MachineOperand &MO : I->operands()) { 513 if (MO.isReg()) 514 PrologLiveIns.insert(MO.getReg()); 515 } 516 517 ++I; 518 } 519 520 return I; 521 } 522 523 /// Reload all currently assigned virtual registers. 524 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 525 if (LiveVirtRegs.empty()) 526 return; 527 528 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 529 MCPhysReg Reg = P.PhysReg; 530 // Set state to live-in. This possibly overrides mappings to virtual 531 // registers but we don't care anymore at this point. 532 setPhysRegState(Reg, regLiveIn); 533 } 534 535 536 SmallSet<Register, 2> PrologLiveIns; 537 538 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 539 // of spilling here is deterministic, if arbitrary. 540 MachineBasicBlock::iterator InsertBefore 541 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 542 for (const LiveReg &LR : LiveVirtRegs) { 543 MCPhysReg PhysReg = LR.PhysReg; 544 if (PhysReg == 0) 545 continue; 546 547 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 548 if (RegUnitStates[FirstUnit] == regLiveIn) 549 continue; 550 551 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 552 "no reload in start block. Missing vreg def?"); 553 554 if (PrologLiveIns.count(PhysReg)) { 555 // FIXME: Theoretically this should use an insert point skipping labels 556 // but I'm not sure how labels should interact with prolog instruction 557 // that need reloads. 558 reload(MBB.begin(), LR.VirtReg, PhysReg); 559 } else 560 reload(InsertBefore, LR.VirtReg, PhysReg); 561 } 562 LiveVirtRegs.clear(); 563 } 564 565 /// Handle the direct use of a physical register. Check that the register is 566 /// not used by a virtreg. Kill the physreg, marking it free. This may add 567 /// implicit kills to MO->getParent() and invalidate MO. 568 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 569 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 570 bool displacedAny = displacePhysReg(MI, Reg); 571 setPhysRegState(Reg, regPreAssigned); 572 markRegUsedInInstr(Reg); 573 return displacedAny; 574 } 575 576 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 577 bool displacedAny = displacePhysReg(MI, Reg); 578 setPhysRegState(Reg, regPreAssigned); 579 return displacedAny; 580 } 581 582 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 583 /// similar to defineVirtReg except the physreg is reserved instead of 584 /// allocated. 585 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 586 bool displacedAny = false; 587 588 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 589 unsigned Unit = *UI; 590 switch (unsigned VirtReg = RegUnitStates[Unit]) { 591 default: { 592 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 593 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 594 MachineBasicBlock::iterator ReloadBefore = 595 std::next((MachineBasicBlock::iterator)MI.getIterator()); 596 reload(ReloadBefore, VirtReg, LRI->PhysReg); 597 598 setPhysRegState(LRI->PhysReg, regFree); 599 LRI->PhysReg = 0; 600 LRI->Reloaded = true; 601 displacedAny = true; 602 break; 603 } 604 case regPreAssigned: 605 RegUnitStates[Unit] = regFree; 606 displacedAny = true; 607 break; 608 case regFree: 609 break; 610 } 611 } 612 return displacedAny; 613 } 614 615 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 616 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 617 618 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 619 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 620 case regFree: 621 LLVM_DEBUG(dbgs() << '\n'); 622 return; 623 case regPreAssigned: 624 LLVM_DEBUG(dbgs() << '\n'); 625 setPhysRegState(PhysReg, regFree); 626 return; 627 default: { 628 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 629 assert(LRI != LiveVirtRegs.end()); 630 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 631 setPhysRegState(LRI->PhysReg, regFree); 632 LRI->PhysReg = 0; 633 } 634 return; 635 } 636 } 637 638 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 639 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 640 /// disabled - it can be allocated directly. 641 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 642 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 643 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 644 switch (unsigned VirtReg = RegUnitStates[*UI]) { 645 case regFree: 646 break; 647 case regPreAssigned: 648 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 649 << printReg(PhysReg, TRI) << '\n'); 650 return spillImpossible; 651 default: { 652 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 653 findLiveVirtReg(VirtReg)->LiveOut; 654 return SureSpill ? spillClean : spillDirty; 655 } 656 } 657 } 658 return 0; 659 } 660 661 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 662 Register VirtReg, MCPhysReg Reg) { 663 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 664 if (UDBGValIter == DanglingDbgValues.end()) 665 return; 666 667 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 668 for (MachineInstr *DbgValue : Dangling) { 669 assert(DbgValue->isDebugValue()); 670 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 671 continue; 672 673 // Test whether the physreg survives from the definition to the DBG_VALUE. 674 MCPhysReg SetToReg = Reg; 675 unsigned Limit = 20; 676 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 677 E = DbgValue->getIterator(); I != E; ++I) { 678 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 679 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 680 << '\n'); 681 SetToReg = 0; 682 break; 683 } 684 } 685 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 686 MO.setReg(SetToReg); 687 if (SetToReg != 0) 688 MO.setIsRenamable(); 689 } 690 } 691 Dangling.clear(); 692 } 693 694 /// This method updates local state so that we know that PhysReg is the 695 /// proper container for VirtReg now. The physical register must not be used 696 /// for anything else when this is called. 697 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 698 MCPhysReg PhysReg) { 699 Register VirtReg = LR.VirtReg; 700 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 701 << printReg(PhysReg, TRI) << '\n'); 702 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 703 assert(PhysReg != 0 && "Trying to assign no register"); 704 LR.PhysReg = PhysReg; 705 setPhysRegState(PhysReg, VirtReg); 706 707 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 708 } 709 710 static bool isCoalescable(const MachineInstr &MI) { 711 return MI.isFullCopy(); 712 } 713 714 Register RegAllocFast::traceCopyChain(Register Reg) const { 715 static const unsigned ChainLengthLimit = 3; 716 unsigned C = 0; 717 do { 718 if (Reg.isPhysical()) 719 return Reg; 720 assert(Reg.isVirtual()); 721 722 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 723 if (!VRegDef || !isCoalescable(*VRegDef)) 724 return 0; 725 Reg = VRegDef->getOperand(1).getReg(); 726 } while (++C <= ChainLengthLimit); 727 return 0; 728 } 729 730 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 731 /// chain of copies to check whether we reach a physical register we can 732 /// coalesce with. 733 Register RegAllocFast::traceCopies(Register VirtReg) const { 734 static const unsigned DefLimit = 3; 735 unsigned C = 0; 736 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 737 if (isCoalescable(MI)) { 738 Register Reg = MI.getOperand(1).getReg(); 739 Reg = traceCopyChain(Reg); 740 if (Reg.isValid()) 741 return Reg; 742 } 743 744 if (++C >= DefLimit) 745 break; 746 } 747 return Register(); 748 } 749 750 /// Allocates a physical register for VirtReg. 751 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 752 Register Hint0, bool LookAtPhysRegUses) { 753 const Register VirtReg = LR.VirtReg; 754 assert(LR.PhysReg == 0); 755 756 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 757 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 758 << " in class " << TRI->getRegClassName(&RC) 759 << " with hint " << printReg(Hint0, TRI) << '\n'); 760 761 // Take hint when possible. 762 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 763 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 764 // Take hint if the register is currently free. 765 if (isPhysRegFree(Hint0)) { 766 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 767 << '\n'); 768 assignVirtToPhysReg(MI, LR, Hint0); 769 return; 770 } else { 771 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 772 << " occupied\n"); 773 } 774 } else { 775 Hint0 = Register(); 776 } 777 778 779 // Try other hint. 780 Register Hint1 = traceCopies(VirtReg); 781 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 782 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 783 // Take hint if the register is currently free. 784 if (isPhysRegFree(Hint1)) { 785 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 786 << '\n'); 787 assignVirtToPhysReg(MI, LR, Hint1); 788 return; 789 } else { 790 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 791 << " occupied\n"); 792 } 793 } else { 794 Hint1 = Register(); 795 } 796 797 MCPhysReg BestReg = 0; 798 unsigned BestCost = spillImpossible; 799 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 800 for (MCPhysReg PhysReg : AllocationOrder) { 801 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 802 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 803 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 804 continue; 805 } 806 807 unsigned Cost = calcSpillCost(PhysReg); 808 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 809 // Immediate take a register with cost 0. 810 if (Cost == 0) { 811 assignVirtToPhysReg(MI, LR, PhysReg); 812 return; 813 } 814 815 if (PhysReg == Hint0 || PhysReg == Hint1) 816 Cost -= spillPrefBonus; 817 818 if (Cost < BestCost) { 819 BestReg = PhysReg; 820 BestCost = Cost; 821 } 822 } 823 824 if (!BestReg) { 825 // Nothing we can do: Report an error and keep going with an invalid 826 // allocation. 827 if (MI.isInlineAsm()) 828 MI.emitError("inline assembly requires more registers than available"); 829 else 830 MI.emitError("ran out of registers during register allocation"); 831 832 LR.Error = true; 833 LR.PhysReg = 0; 834 return; 835 } 836 837 displacePhysReg(MI, BestReg); 838 assignVirtToPhysReg(MI, LR, BestReg); 839 } 840 841 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 842 assert(MO.isUndef() && "expected undef use"); 843 Register VirtReg = MO.getReg(); 844 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 845 846 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 847 MCPhysReg PhysReg; 848 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 849 PhysReg = LRI->PhysReg; 850 } else { 851 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 852 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 853 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 854 PhysReg = AllocationOrder[0]; 855 } 856 857 unsigned SubRegIdx = MO.getSubReg(); 858 if (SubRegIdx != 0) { 859 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 860 MO.setSubReg(0); 861 } 862 MO.setReg(PhysReg); 863 MO.setIsRenamable(true); 864 } 865 866 /// Variation of defineVirtReg() with special handling for livethrough regs 867 /// (tied or earlyclobber) that may interfere with preassigned uses. 868 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 869 Register VirtReg) { 870 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 871 if (LRI != LiveVirtRegs.end()) { 872 MCPhysReg PrevReg = LRI->PhysReg; 873 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 874 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 875 << " (tied/earlyclobber resolution)\n"); 876 freePhysReg(PrevReg); 877 LRI->PhysReg = 0; 878 allocVirtReg(MI, *LRI, 0, true); 879 MachineBasicBlock::iterator InsertBefore = 880 std::next((MachineBasicBlock::iterator)MI.getIterator()); 881 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 882 << printReg(PrevReg, TRI) << '\n'); 883 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 884 TII->get(TargetOpcode::COPY), PrevReg) 885 .addReg(LRI->PhysReg, llvm::RegState::Kill); 886 } 887 MachineOperand &MO = MI.getOperand(OpNum); 888 if (MO.getSubReg() && !MO.isUndef()) { 889 LRI->LastUse = &MI; 890 } 891 } 892 return defineVirtReg(MI, OpNum, VirtReg, true); 893 } 894 895 /// Allocates a register for VirtReg definition. Typically the register is 896 /// already assigned from a use of the virtreg, however we still need to 897 /// perform an allocation if: 898 /// - It is a dead definition without any uses. 899 /// - The value is live out and all uses are in different basic blocks. 900 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 901 Register VirtReg, bool LookAtPhysRegUses) { 902 assert(VirtReg.isVirtual() && "Not a virtual register"); 903 MachineOperand &MO = MI.getOperand(OpNum); 904 LiveRegMap::iterator LRI; 905 bool New; 906 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 907 if (New) { 908 if (!MO.isDead()) { 909 if (mayLiveOut(VirtReg)) { 910 LRI->LiveOut = true; 911 } else { 912 // It is a dead def without the dead flag; add the flag now. 913 MO.setIsDead(true); 914 } 915 } 916 } 917 if (LRI->PhysReg == 0) 918 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 919 else { 920 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 921 "TODO: preassign mismatch"); 922 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 923 << " use existing assignment to " 924 << printReg(LRI->PhysReg, TRI) << '\n'); 925 } 926 927 MCPhysReg PhysReg = LRI->PhysReg; 928 assert(PhysReg != 0 && "Register not assigned"); 929 if (LRI->Reloaded || LRI->LiveOut) { 930 if (!MI.isImplicitDef()) { 931 MachineBasicBlock::iterator SpillBefore = 932 std::next((MachineBasicBlock::iterator)MI.getIterator()); 933 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 934 << LRI->Reloaded << '\n'); 935 bool Kill = LRI->LastUse == nullptr; 936 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 937 LRI->LastUse = nullptr; 938 } 939 LRI->LiveOut = false; 940 LRI->Reloaded = false; 941 } 942 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 943 BundleVirtRegsMap[VirtReg] = PhysReg; 944 } 945 markRegUsedInInstr(PhysReg); 946 setPhysReg(MI, MO, PhysReg); 947 } 948 949 /// Allocates a register for a VirtReg use. 950 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 951 Register VirtReg) { 952 assert(VirtReg.isVirtual() && "Not a virtual register"); 953 MachineOperand &MO = MI.getOperand(OpNum); 954 LiveRegMap::iterator LRI; 955 bool New; 956 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 957 if (New) { 958 MachineOperand &MO = MI.getOperand(OpNum); 959 if (!MO.isKill()) { 960 if (mayLiveOut(VirtReg)) { 961 LRI->LiveOut = true; 962 } else { 963 // It is a last (killing) use without the kill flag; add the flag now. 964 MO.setIsKill(true); 965 } 966 } 967 } else { 968 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 969 } 970 971 // If necessary allocate a register. 972 if (LRI->PhysReg == 0) { 973 assert(!MO.isTied() && "tied op should be allocated"); 974 Register Hint; 975 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 976 Hint = MI.getOperand(0).getReg(); 977 assert(Hint.isPhysical() && 978 "Copy destination should already be assigned"); 979 } 980 allocVirtReg(MI, *LRI, Hint, false); 981 if (LRI->Error) { 982 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 983 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 984 setPhysReg(MI, MO, *AllocationOrder.begin()); 985 return; 986 } 987 } 988 989 LRI->LastUse = &MI; 990 991 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 992 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 993 } 994 markRegUsedInInstr(LRI->PhysReg); 995 setPhysReg(MI, MO, LRI->PhysReg); 996 } 997 998 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 999 /// may invalidate any operand pointers. Return true if the operand kills its 1000 /// register. 1001 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 1002 MCPhysReg PhysReg) { 1003 if (!MO.getSubReg()) { 1004 MO.setReg(PhysReg); 1005 MO.setIsRenamable(true); 1006 return; 1007 } 1008 1009 // Handle subregister index. 1010 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1011 MO.setIsRenamable(true); 1012 // Note: We leave the subreg number around a little longer in case of defs. 1013 // This is so that the register freeing logic in allocateInstruction can still 1014 // recognize this as subregister defs. The code there will clear the number. 1015 if (!MO.isDef()) 1016 MO.setSubReg(0); 1017 1018 // A kill flag implies killing the full register. Add corresponding super 1019 // register kill. 1020 if (MO.isKill()) { 1021 MI.addRegisterKilled(PhysReg, TRI, true); 1022 return; 1023 } 1024 1025 // A <def,read-undef> of a sub-register requires an implicit def of the full 1026 // register. 1027 if (MO.isDef() && MO.isUndef()) { 1028 if (MO.isDead()) 1029 MI.addRegisterDead(PhysReg, TRI, true); 1030 else 1031 MI.addRegisterDefined(PhysReg, TRI); 1032 } 1033 } 1034 1035 #ifndef NDEBUG 1036 1037 void RegAllocFast::dumpState() const { 1038 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1039 ++Unit) { 1040 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1041 case regFree: 1042 break; 1043 case regPreAssigned: 1044 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1045 break; 1046 case regLiveIn: 1047 llvm_unreachable("Should not have regLiveIn in map"); 1048 default: { 1049 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1050 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1051 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1052 if (I->LiveOut || I->Reloaded) { 1053 dbgs() << '['; 1054 if (I->LiveOut) dbgs() << 'O'; 1055 if (I->Reloaded) dbgs() << 'R'; 1056 dbgs() << ']'; 1057 } 1058 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1059 break; 1060 } 1061 } 1062 } 1063 dbgs() << '\n'; 1064 // Check that LiveVirtRegs is the inverse. 1065 for (const LiveReg &LR : LiveVirtRegs) { 1066 Register VirtReg = LR.VirtReg; 1067 assert(VirtReg.isVirtual() && "Bad map key"); 1068 MCPhysReg PhysReg = LR.PhysReg; 1069 if (PhysReg != 0) { 1070 assert(Register::isPhysicalRegister(PhysReg) && 1071 "mapped to physreg"); 1072 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1073 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1074 } 1075 } 1076 } 1077 } 1078 #endif 1079 1080 /// Count number of defs consumed from each register class by \p Reg 1081 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1082 Register Reg) const { 1083 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1084 1085 if (Reg.isVirtual()) { 1086 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1087 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1088 RCIdx != RCIdxEnd; ++RCIdx) { 1089 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1090 // FIXME: Consider aliasing sub/super registers. 1091 if (OpRC->hasSubClassEq(IdxRC)) 1092 ++RegClassDefCounts[RCIdx]; 1093 } 1094 1095 return; 1096 } 1097 1098 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1099 RCIdx != RCIdxEnd; ++RCIdx) { 1100 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1101 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1102 if (IdxRC->contains(*Alias)) { 1103 ++RegClassDefCounts[RCIdx]; 1104 break; 1105 } 1106 } 1107 } 1108 } 1109 1110 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1111 // The basic algorithm here is: 1112 // 1. Mark registers of def operands as free 1113 // 2. Allocate registers to use operands and place reload instructions for 1114 // registers displaced by the allocation. 1115 // 1116 // However we need to handle some corner cases: 1117 // - pre-assigned defs and uses need to be handled before the other def/use 1118 // operands are processed to avoid the allocation heuristics clashing with 1119 // the pre-assignment. 1120 // - The "free def operands" step has to come last instead of first for tied 1121 // operands and early-clobbers. 1122 1123 UsedInInstr.clear(); 1124 RegMasks.clear(); 1125 BundleVirtRegsMap.clear(); 1126 1127 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) { 1128 assert(MO.isTied()); 1129 unsigned TiedIdx = MI.findTiedOperandIdx(Idx); 1130 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1131 return TiedMO.isUndef(); 1132 }; 1133 // Scan for special cases; Apply pre-assigned register defs to state. 1134 bool HasPhysRegUse = false; 1135 bool HasRegMask = false; 1136 bool HasVRegDef = false; 1137 bool HasDef = false; 1138 bool HasEarlyClobber = false; 1139 bool NeedToAssignLiveThroughs = false; 1140 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1141 MachineOperand &MO = MI.getOperand(I); 1142 if (MO.isReg()) { 1143 Register Reg = MO.getReg(); 1144 if (Reg.isVirtual()) { 1145 if (MO.isDef()) { 1146 HasDef = true; 1147 HasVRegDef = true; 1148 if (MO.isEarlyClobber()) { 1149 HasEarlyClobber = true; 1150 NeedToAssignLiveThroughs = true; 1151 } 1152 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || 1153 (MO.getSubReg() != 0 && !MO.isUndef())) 1154 NeedToAssignLiveThroughs = true; 1155 } 1156 } else if (Reg.isPhysical()) { 1157 if (!MRI->isReserved(Reg)) { 1158 if (MO.isDef()) { 1159 HasDef = true; 1160 bool displacedAny = definePhysReg(MI, Reg); 1161 if (MO.isEarlyClobber()) 1162 HasEarlyClobber = true; 1163 if (!displacedAny) 1164 MO.setIsDead(true); 1165 } 1166 if (MO.readsReg()) 1167 HasPhysRegUse = true; 1168 } 1169 } 1170 } else if (MO.isRegMask()) { 1171 HasRegMask = true; 1172 RegMasks.push_back(MO.getRegMask()); 1173 } 1174 } 1175 1176 // Allocate virtreg defs. 1177 if (HasDef) { 1178 if (HasVRegDef) { 1179 // Special handling for early clobbers, tied operands or subregister defs: 1180 // Compared to "normal" defs these: 1181 // - Must not use a register that is pre-assigned for a use operand. 1182 // - In order to solve tricky inline assembly constraints we change the 1183 // heuristic to figure out a good operand order before doing 1184 // assignments. 1185 if (NeedToAssignLiveThroughs) { 1186 DefOperandIndexes.clear(); 1187 PhysRegUses.clear(); 1188 1189 // Track number of defs which may consume a register from the class. 1190 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1191 assert(RegClassDefCounts[0] == 0); 1192 1193 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1194 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1195 const MachineOperand &MO = MI.getOperand(I); 1196 if (!MO.isReg()) 1197 continue; 1198 Register Reg = MO.getReg(); 1199 if (MO.readsReg()) { 1200 if (Reg.isPhysical()) { 1201 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1202 << '\n'); 1203 markPhysRegUsedInInstr(Reg); 1204 } 1205 } 1206 1207 if (MO.isDef()) { 1208 if (Reg.isVirtual()) 1209 DefOperandIndexes.push_back(I); 1210 1211 addRegClassDefCounts(RegClassDefCounts, Reg); 1212 } 1213 } 1214 1215 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1216 const MachineOperand &MO0 = MI.getOperand(I0); 1217 const MachineOperand &MO1 = MI.getOperand(I1); 1218 Register Reg0 = MO0.getReg(); 1219 Register Reg1 = MO1.getReg(); 1220 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1221 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1222 1223 // Identify regclass that are easy to use up completely just in this 1224 // instruction. 1225 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1226 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1227 1228 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1229 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1230 if (SmallClass0 > SmallClass1) 1231 return true; 1232 if (SmallClass0 < SmallClass1) 1233 return false; 1234 1235 // Allocate early clobbers and livethrough operands first. 1236 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1237 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1238 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1239 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1240 if (Livethrough0 > Livethrough1) 1241 return true; 1242 if (Livethrough0 < Livethrough1) 1243 return false; 1244 1245 // Tie-break rule: operand index. 1246 return I0 < I1; 1247 }); 1248 1249 for (uint16_t OpIdx : DefOperandIndexes) { 1250 MachineOperand &MO = MI.getOperand(OpIdx); 1251 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1252 unsigned Reg = MO.getReg(); 1253 if (MO.isEarlyClobber() || 1254 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) || 1255 (MO.getSubReg() && !MO.isUndef())) { 1256 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1257 } else { 1258 defineVirtReg(MI, OpIdx, Reg); 1259 } 1260 } 1261 } else { 1262 // Assign virtual register defs. 1263 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1264 MachineOperand &MO = MI.getOperand(I); 1265 if (!MO.isReg() || !MO.isDef()) 1266 continue; 1267 Register Reg = MO.getReg(); 1268 if (Reg.isVirtual()) 1269 defineVirtReg(MI, I, Reg); 1270 } 1271 } 1272 } 1273 1274 // Free registers occupied by defs. 1275 // Iterate operands in reverse order, so we see the implicit super register 1276 // defs first (we added them earlier in case of <def,read-undef>). 1277 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) { 1278 MachineOperand &MO = MI.getOperand(I); 1279 if (!MO.isReg() || !MO.isDef()) 1280 continue; 1281 1282 // subreg defs don't free the full register. We left the subreg number 1283 // around as a marker in setPhysReg() to recognize this case here. 1284 if (MO.getSubReg() != 0) { 1285 MO.setSubReg(0); 1286 continue; 1287 } 1288 1289 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1290 "tied def assigned to clobbered register"); 1291 1292 // Do not free tied operands and early clobbers. 1293 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber()) 1294 continue; 1295 Register Reg = MO.getReg(); 1296 if (!Reg) 1297 continue; 1298 assert(Reg.isPhysical()); 1299 if (MRI->isReserved(Reg)) 1300 continue; 1301 freePhysReg(Reg); 1302 unmarkRegUsedInInstr(Reg); 1303 } 1304 } 1305 1306 // Displace clobbered registers. 1307 if (HasRegMask) { 1308 assert(!RegMasks.empty() && "expected RegMask"); 1309 // MRI bookkeeping. 1310 for (const auto *RM : RegMasks) 1311 MRI->addPhysRegsUsedFromRegMask(RM); 1312 1313 // Displace clobbered registers. 1314 for (const LiveReg &LR : LiveVirtRegs) { 1315 MCPhysReg PhysReg = LR.PhysReg; 1316 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1317 displacePhysReg(MI, PhysReg); 1318 } 1319 } 1320 1321 // Apply pre-assigned register uses to state. 1322 if (HasPhysRegUse) { 1323 for (MachineOperand &MO : MI.operands()) { 1324 if (!MO.isReg() || !MO.readsReg()) 1325 continue; 1326 Register Reg = MO.getReg(); 1327 if (!Reg.isPhysical()) 1328 continue; 1329 if (MRI->isReserved(Reg)) 1330 continue; 1331 bool displacedAny = usePhysReg(MI, Reg); 1332 if (!displacedAny && !MRI->isReserved(Reg)) 1333 MO.setIsKill(true); 1334 } 1335 } 1336 1337 // Allocate virtreg uses and insert reloads as necessary. 1338 bool HasUndefUse = false; 1339 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1340 MachineOperand &MO = MI.getOperand(I); 1341 if (!MO.isReg() || !MO.isUse()) 1342 continue; 1343 Register Reg = MO.getReg(); 1344 if (!Reg.isVirtual()) 1345 continue; 1346 1347 if (MO.isUndef()) { 1348 HasUndefUse = true; 1349 continue; 1350 } 1351 1352 1353 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1354 // the def block (removing the vreg uses). 1355 mayLiveIn(Reg); 1356 1357 1358 assert(!MO.isInternalRead() && "Bundles not supported"); 1359 assert(MO.readsReg() && "reading use"); 1360 useVirtReg(MI, I, Reg); 1361 } 1362 1363 // Allocate undef operands. This is a separate step because in a situation 1364 // like ` = OP undef %X, %X` both operands need the same register assign 1365 // so we should perform the normal assignment first. 1366 if (HasUndefUse) { 1367 for (MachineOperand &MO : MI.uses()) { 1368 if (!MO.isReg() || !MO.isUse()) 1369 continue; 1370 Register Reg = MO.getReg(); 1371 if (!Reg.isVirtual()) 1372 continue; 1373 1374 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1375 allocVirtRegUndef(MO); 1376 } 1377 } 1378 1379 // Free early clobbers. 1380 if (HasEarlyClobber) { 1381 for (MachineOperand &MO : llvm::reverse(MI.operands())) { 1382 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1383 continue; 1384 // subreg defs don't free the full register. We left the subreg number 1385 // around as a marker in setPhysReg() to recognize this case here. 1386 if (MO.getSubReg() != 0) { 1387 MO.setSubReg(0); 1388 continue; 1389 } 1390 1391 Register Reg = MO.getReg(); 1392 if (!Reg) 1393 continue; 1394 assert(Reg.isPhysical() && "should have register assigned"); 1395 1396 // We sometimes get odd situations like: 1397 // early-clobber %x0 = INSTRUCTION %x0 1398 // which is semantically questionable as the early-clobber should 1399 // apply before the use. But in practice we consider the use to 1400 // happen before the early clobber now. Don't free the early clobber 1401 // register in this case. 1402 if (MI.readsRegister(Reg, TRI)) 1403 continue; 1404 1405 freePhysReg(Reg); 1406 } 1407 } 1408 1409 LLVM_DEBUG(dbgs() << "<< " << MI); 1410 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1411 MI.getNumOperands() == 2) { 1412 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1413 Coalesced.push_back(&MI); 1414 } 1415 } 1416 1417 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1418 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1419 // mostly constants and frame indices. 1420 for (Register Reg : MI.getUsedDebugRegs()) { 1421 if (!Register::isVirtualRegister(Reg)) 1422 continue; 1423 1424 // Already spilled to a stackslot? 1425 int SS = StackSlotForVirtReg[Reg]; 1426 if (SS != -1) { 1427 // Modify DBG_VALUE now that the value is in a spill slot. 1428 updateDbgValueForSpill(MI, SS, Reg); 1429 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1430 continue; 1431 } 1432 1433 // See if this virtual register has already been allocated to a physical 1434 // register or spilled to a stack slot. 1435 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1436 SmallVector<MachineOperand *> DbgOps; 1437 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1438 DbgOps.push_back(&Op); 1439 1440 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1441 // Update every use of Reg within MI. 1442 for (auto &RegMO : DbgOps) 1443 setPhysReg(MI, *RegMO, LRI->PhysReg); 1444 } else { 1445 DanglingDbgValues[Reg].push_back(&MI); 1446 } 1447 1448 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1449 // that future spills of Reg will have DBG_VALUEs. 1450 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1451 } 1452 } 1453 1454 void RegAllocFast::handleBundle(MachineInstr &MI) { 1455 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1456 ++BundledMI; 1457 while (BundledMI->isBundledWithPred()) { 1458 for (MachineOperand &MO : BundledMI->operands()) { 1459 if (!MO.isReg()) 1460 continue; 1461 1462 Register Reg = MO.getReg(); 1463 if (!Reg.isVirtual()) 1464 continue; 1465 1466 DenseMap<Register, MCPhysReg>::iterator DI; 1467 DI = BundleVirtRegsMap.find(Reg); 1468 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1469 1470 setPhysReg(MI, MO, DI->second); 1471 } 1472 1473 ++BundledMI; 1474 } 1475 } 1476 1477 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1478 this->MBB = &MBB; 1479 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1480 1481 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1482 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1483 1484 for (const auto &LiveReg : MBB.liveouts()) 1485 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1486 1487 Coalesced.clear(); 1488 1489 // Traverse block in reverse order allocating instructions one by one. 1490 for (MachineInstr &MI : reverse(MBB)) { 1491 LLVM_DEBUG( 1492 dbgs() << "\n>> " << MI << "Regs:"; 1493 dumpState() 1494 ); 1495 1496 // Special handling for debug values. Note that they are not allowed to 1497 // affect codegen of the other instructions in any way. 1498 if (MI.isDebugValue()) { 1499 handleDebugValue(MI); 1500 continue; 1501 } 1502 1503 allocateInstruction(MI); 1504 1505 // Once BUNDLE header is assigned registers, same assignments need to be 1506 // done for bundled MIs. 1507 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1508 handleBundle(MI); 1509 } 1510 } 1511 1512 LLVM_DEBUG( 1513 dbgs() << "Begin Regs:"; 1514 dumpState() 1515 ); 1516 1517 // Spill all physical registers holding virtual registers now. 1518 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1519 reloadAtBegin(MBB); 1520 1521 // Erase all the coalesced copies. We are delaying it until now because 1522 // LiveVirtRegs might refer to the instrs. 1523 for (MachineInstr *MI : Coalesced) 1524 MBB.erase(MI); 1525 NumCoalesced += Coalesced.size(); 1526 1527 for (auto &UDBGPair : DanglingDbgValues) { 1528 for (MachineInstr *DbgValue : UDBGPair.second) { 1529 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1530 // Nothing to do if the vreg was spilled in the meantime. 1531 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1532 continue; 1533 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1534 << '\n'); 1535 DbgValue->setDebugValueUndef(); 1536 } 1537 } 1538 DanglingDbgValues.clear(); 1539 1540 LLVM_DEBUG(MBB.dump()); 1541 } 1542 1543 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1544 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1545 << "********** Function: " << MF.getName() << '\n'); 1546 MRI = &MF.getRegInfo(); 1547 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1548 TRI = STI.getRegisterInfo(); 1549 TII = STI.getInstrInfo(); 1550 MFI = &MF.getFrameInfo(); 1551 MRI->freezeReservedRegs(MF); 1552 RegClassInfo.runOnMachineFunction(MF); 1553 unsigned NumRegUnits = TRI->getNumRegUnits(); 1554 UsedInInstr.clear(); 1555 UsedInInstr.setUniverse(NumRegUnits); 1556 PhysRegUses.clear(); 1557 PhysRegUses.setUniverse(NumRegUnits); 1558 1559 // initialize the virtual->physical register map to have a 'null' 1560 // mapping for all virtual registers 1561 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1562 StackSlotForVirtReg.resize(NumVirtRegs); 1563 LiveVirtRegs.setUniverse(NumVirtRegs); 1564 MayLiveAcrossBlocks.clear(); 1565 MayLiveAcrossBlocks.resize(NumVirtRegs); 1566 1567 // Loop over all of the basic blocks, eliminating virtual register references 1568 for (MachineBasicBlock &MBB : MF) 1569 allocateBasicBlock(MBB); 1570 1571 if (ClearVirtRegs) { 1572 // All machine operands and other references to virtual registers have been 1573 // replaced. Remove the virtual registers. 1574 MRI->clearVirtRegs(); 1575 } 1576 1577 StackSlotForVirtReg.clear(); 1578 LiveDbgValueMap.clear(); 1579 return true; 1580 } 1581 1582 FunctionPass *llvm::createFastRegisterAllocator() { 1583 return new RegAllocFast(); 1584 } 1585 1586 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor, 1587 bool ClearVirtRegs) { 1588 return new RegAllocFast(Ftor, ClearVirtRegs); 1589 } 1590