1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/RegisterPressure.h" 38 #include "llvm/CodeGen/ScheduleDAG.h" 39 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 40 #include "llvm/CodeGen/ScheduleDAGMutation.h" 41 #include "llvm/CodeGen/ScheduleDFS.h" 42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetFrameLowering.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSchedule.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/Config/llvm-config.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/GraphWriter.h" 60 #include "llvm/Support/MachineValueType.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <limits> 67 #include <memory> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "machine-scheduler" 76 77 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 78 79 namespace llvm { 80 81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 82 cl::desc("Force top-down list scheduling")); 83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 84 cl::desc("Force bottom-up list scheduling")); 85 cl::opt<bool> 86 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 87 cl::desc("Print critical path length to stdout")); 88 89 cl::opt<bool> VerifyScheduling( 90 "verify-misched", cl::Hidden, 91 cl::desc("Verify machine instrs before and after machine scheduling")); 92 93 #ifndef NDEBUG 94 cl::opt<bool> ViewMISchedDAGs( 95 "view-misched-dags", cl::Hidden, 96 cl::desc("Pop up a window to show MISched dags after they are processed")); 97 #else 98 const bool ViewMISchedDAGs = false; 99 #endif // NDEBUG 100 101 } // end namespace llvm 102 103 #ifndef NDEBUG 104 /// In some situations a few uninteresting nodes depend on nearly all other 105 /// nodes in the graph, provide a cutoff to hide them. 106 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 107 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 108 109 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 110 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 111 112 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 113 cl::desc("Only schedule this function")); 114 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 115 cl::desc("Only schedule this MBB#")); 116 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 117 cl::desc("Print schedule DAGs")); 118 #else 119 static const bool PrintDAGs = false; 120 #endif // NDEBUG 121 122 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 123 /// size of the ready lists. 124 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 125 cl::desc("Limit ready list to N instructions"), cl::init(256)); 126 127 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 128 cl::desc("Enable register pressure scheduling."), cl::init(true)); 129 130 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 131 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 132 133 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 134 cl::desc("Enable memop clustering."), 135 cl::init(true)); 136 static cl::opt<bool> 137 ForceFastCluster("force-fast-cluster", cl::Hidden, 138 cl::desc("Switch to fast cluster algorithm with the lost " 139 "of some fusion opportunities"), 140 cl::init(false)); 141 static cl::opt<unsigned> 142 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 143 cl::desc("The threshold for fast cluster"), 144 cl::init(1000)); 145 146 // DAG subtrees must have at least this many nodes. 147 static const unsigned MinSubtreeSize = 8; 148 149 // Pin the vtables to this file. 150 void MachineSchedStrategy::anchor() {} 151 152 void ScheduleDAGMutation::anchor() {} 153 154 //===----------------------------------------------------------------------===// 155 // Machine Instruction Scheduling Pass and Registry 156 //===----------------------------------------------------------------------===// 157 158 MachineSchedContext::MachineSchedContext() { 159 RegClassInfo = new RegisterClassInfo(); 160 } 161 162 MachineSchedContext::~MachineSchedContext() { 163 delete RegClassInfo; 164 } 165 166 namespace { 167 168 /// Base class for a machine scheduler class that can run at any point. 169 class MachineSchedulerBase : public MachineSchedContext, 170 public MachineFunctionPass { 171 public: 172 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 173 174 void print(raw_ostream &O, const Module* = nullptr) const override; 175 176 protected: 177 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 178 }; 179 180 /// MachineScheduler runs after coalescing and before register allocation. 181 class MachineScheduler : public MachineSchedulerBase { 182 public: 183 MachineScheduler(); 184 185 void getAnalysisUsage(AnalysisUsage &AU) const override; 186 187 bool runOnMachineFunction(MachineFunction&) override; 188 189 static char ID; // Class identification, replacement for typeinfo 190 191 protected: 192 ScheduleDAGInstrs *createMachineScheduler(); 193 }; 194 195 /// PostMachineScheduler runs after shortly before code emission. 196 class PostMachineScheduler : public MachineSchedulerBase { 197 public: 198 PostMachineScheduler(); 199 200 void getAnalysisUsage(AnalysisUsage &AU) const override; 201 202 bool runOnMachineFunction(MachineFunction&) override; 203 204 static char ID; // Class identification, replacement for typeinfo 205 206 protected: 207 ScheduleDAGInstrs *createPostMachineScheduler(); 208 }; 209 210 } // end anonymous namespace 211 212 char MachineScheduler::ID = 0; 213 214 char &llvm::MachineSchedulerID = MachineScheduler::ID; 215 216 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 217 "Machine Instruction Scheduler", false, false) 218 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 219 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 220 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 221 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 222 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 223 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 224 "Machine Instruction Scheduler", false, false) 225 226 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 227 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 228 } 229 230 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 231 AU.setPreservesCFG(); 232 AU.addRequired<MachineDominatorTree>(); 233 AU.addRequired<MachineLoopInfo>(); 234 AU.addRequired<AAResultsWrapperPass>(); 235 AU.addRequired<TargetPassConfig>(); 236 AU.addRequired<SlotIndexes>(); 237 AU.addPreserved<SlotIndexes>(); 238 AU.addRequired<LiveIntervals>(); 239 AU.addPreserved<LiveIntervals>(); 240 MachineFunctionPass::getAnalysisUsage(AU); 241 } 242 243 char PostMachineScheduler::ID = 0; 244 245 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 246 247 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 248 "PostRA Machine Instruction Scheduler", false, false) 249 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 250 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 251 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 252 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 253 "PostRA Machine Instruction Scheduler", false, false) 254 255 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 256 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 257 } 258 259 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 260 AU.setPreservesCFG(); 261 AU.addRequired<MachineDominatorTree>(); 262 AU.addRequired<MachineLoopInfo>(); 263 AU.addRequired<AAResultsWrapperPass>(); 264 AU.addRequired<TargetPassConfig>(); 265 MachineFunctionPass::getAnalysisUsage(AU); 266 } 267 268 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 269 MachineSchedRegistry::Registry; 270 271 /// A dummy default scheduler factory indicates whether the scheduler 272 /// is overridden on the command line. 273 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 274 return nullptr; 275 } 276 277 /// MachineSchedOpt allows command line selection of the scheduler. 278 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 279 RegisterPassParser<MachineSchedRegistry>> 280 MachineSchedOpt("misched", 281 cl::init(&useDefaultMachineSched), cl::Hidden, 282 cl::desc("Machine instruction scheduler to use")); 283 284 static MachineSchedRegistry 285 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 286 useDefaultMachineSched); 287 288 static cl::opt<bool> EnableMachineSched( 289 "enable-misched", 290 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 291 cl::Hidden); 292 293 static cl::opt<bool> EnablePostRAMachineSched( 294 "enable-post-misched", 295 cl::desc("Enable the post-ra machine instruction scheduling pass."), 296 cl::init(true), cl::Hidden); 297 298 /// Decrement this iterator until reaching the top or a non-debug instr. 299 static MachineBasicBlock::const_iterator 300 priorNonDebug(MachineBasicBlock::const_iterator I, 301 MachineBasicBlock::const_iterator Beg) { 302 assert(I != Beg && "reached the top of the region, cannot decrement"); 303 while (--I != Beg) { 304 if (!I->isDebugOrPseudoInstr()) 305 break; 306 } 307 return I; 308 } 309 310 /// Non-const version. 311 static MachineBasicBlock::iterator 312 priorNonDebug(MachineBasicBlock::iterator I, 313 MachineBasicBlock::const_iterator Beg) { 314 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 315 .getNonConstIterator(); 316 } 317 318 /// If this iterator is a debug value, increment until reaching the End or a 319 /// non-debug instruction. 320 static MachineBasicBlock::const_iterator 321 nextIfDebug(MachineBasicBlock::const_iterator I, 322 MachineBasicBlock::const_iterator End) { 323 for(; I != End; ++I) { 324 if (!I->isDebugOrPseudoInstr()) 325 break; 326 } 327 return I; 328 } 329 330 /// Non-const version. 331 static MachineBasicBlock::iterator 332 nextIfDebug(MachineBasicBlock::iterator I, 333 MachineBasicBlock::const_iterator End) { 334 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 335 .getNonConstIterator(); 336 } 337 338 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 339 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 340 // Select the scheduler, or set the default. 341 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 342 if (Ctor != useDefaultMachineSched) 343 return Ctor(this); 344 345 // Get the default scheduler set by the target for this function. 346 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 347 if (Scheduler) 348 return Scheduler; 349 350 // Default to GenericScheduler. 351 return createGenericSchedLive(this); 352 } 353 354 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 355 /// the caller. We don't have a command line option to override the postRA 356 /// scheduler. The Target must configure it. 357 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 358 // Get the postRA scheduler set by the target for this function. 359 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 360 if (Scheduler) 361 return Scheduler; 362 363 // Default to GenericScheduler. 364 return createGenericSchedPostRA(this); 365 } 366 367 /// Top-level MachineScheduler pass driver. 368 /// 369 /// Visit blocks in function order. Divide each block into scheduling regions 370 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 371 /// consistent with the DAG builder, which traverses the interior of the 372 /// scheduling regions bottom-up. 373 /// 374 /// This design avoids exposing scheduling boundaries to the DAG builder, 375 /// simplifying the DAG builder's support for "special" target instructions. 376 /// At the same time the design allows target schedulers to operate across 377 /// scheduling boundaries, for example to bundle the boundary instructions 378 /// without reordering them. This creates complexity, because the target 379 /// scheduler must update the RegionBegin and RegionEnd positions cached by 380 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 381 /// design would be to split blocks at scheduling boundaries, but LLVM has a 382 /// general bias against block splitting purely for implementation simplicity. 383 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 384 if (skipFunction(mf.getFunction())) 385 return false; 386 387 if (EnableMachineSched.getNumOccurrences()) { 388 if (!EnableMachineSched) 389 return false; 390 } else if (!mf.getSubtarget().enableMachineScheduler()) 391 return false; 392 393 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 394 395 // Initialize the context of the pass. 396 MF = &mf; 397 MLI = &getAnalysis<MachineLoopInfo>(); 398 MDT = &getAnalysis<MachineDominatorTree>(); 399 PassConfig = &getAnalysis<TargetPassConfig>(); 400 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 401 402 LIS = &getAnalysis<LiveIntervals>(); 403 404 if (VerifyScheduling) { 405 LLVM_DEBUG(LIS->dump()); 406 MF->verify(this, "Before machine scheduling."); 407 } 408 RegClassInfo->runOnMachineFunction(*MF); 409 410 // Instantiate the selected scheduler for this target, function, and 411 // optimization level. 412 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 413 scheduleRegions(*Scheduler, false); 414 415 LLVM_DEBUG(LIS->dump()); 416 if (VerifyScheduling) 417 MF->verify(this, "After machine scheduling."); 418 return true; 419 } 420 421 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 422 if (skipFunction(mf.getFunction())) 423 return false; 424 425 if (EnablePostRAMachineSched.getNumOccurrences()) { 426 if (!EnablePostRAMachineSched) 427 return false; 428 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 429 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 430 return false; 431 } 432 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 433 434 // Initialize the context of the pass. 435 MF = &mf; 436 MLI = &getAnalysis<MachineLoopInfo>(); 437 PassConfig = &getAnalysis<TargetPassConfig>(); 438 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 439 440 if (VerifyScheduling) 441 MF->verify(this, "Before post machine scheduling."); 442 443 // Instantiate the selected scheduler for this target, function, and 444 // optimization level. 445 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 446 scheduleRegions(*Scheduler, true); 447 448 if (VerifyScheduling) 449 MF->verify(this, "After post machine scheduling."); 450 return true; 451 } 452 453 /// Return true of the given instruction should not be included in a scheduling 454 /// region. 455 /// 456 /// MachineScheduler does not currently support scheduling across calls. To 457 /// handle calls, the DAG builder needs to be modified to create register 458 /// anti/output dependencies on the registers clobbered by the call's regmask 459 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 460 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 461 /// the boundary, but there would be no benefit to postRA scheduling across 462 /// calls this late anyway. 463 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 464 MachineBasicBlock *MBB, 465 MachineFunction *MF, 466 const TargetInstrInfo *TII) { 467 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 468 } 469 470 /// A region of an MBB for scheduling. 471 namespace { 472 struct SchedRegion { 473 /// RegionBegin is the first instruction in the scheduling region, and 474 /// RegionEnd is either MBB->end() or the scheduling boundary after the 475 /// last instruction in the scheduling region. These iterators cannot refer 476 /// to instructions outside of the identified scheduling region because 477 /// those may be reordered before scheduling this region. 478 MachineBasicBlock::iterator RegionBegin; 479 MachineBasicBlock::iterator RegionEnd; 480 unsigned NumRegionInstrs; 481 482 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 483 unsigned N) : 484 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 485 }; 486 } // end anonymous namespace 487 488 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 489 490 static void 491 getSchedRegions(MachineBasicBlock *MBB, 492 MBBRegionsVector &Regions, 493 bool RegionsTopDown) { 494 MachineFunction *MF = MBB->getParent(); 495 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 496 497 MachineBasicBlock::iterator I = nullptr; 498 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 499 RegionEnd != MBB->begin(); RegionEnd = I) { 500 501 // Avoid decrementing RegionEnd for blocks with no terminator. 502 if (RegionEnd != MBB->end() || 503 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 504 --RegionEnd; 505 } 506 507 // The next region starts above the previous region. Look backward in the 508 // instruction stream until we find the nearest boundary. 509 unsigned NumRegionInstrs = 0; 510 I = RegionEnd; 511 for (;I != MBB->begin(); --I) { 512 MachineInstr &MI = *std::prev(I); 513 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 514 break; 515 if (!MI.isDebugOrPseudoInstr()) { 516 // MBB::size() uses instr_iterator to count. Here we need a bundle to 517 // count as a single instruction. 518 ++NumRegionInstrs; 519 } 520 } 521 522 // It's possible we found a scheduling region that only has debug 523 // instructions. Don't bother scheduling these. 524 if (NumRegionInstrs != 0) 525 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 526 } 527 528 if (RegionsTopDown) 529 std::reverse(Regions.begin(), Regions.end()); 530 } 531 532 /// Main driver for both MachineScheduler and PostMachineScheduler. 533 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 534 bool FixKillFlags) { 535 // Visit all machine basic blocks. 536 // 537 // TODO: Visit blocks in global postorder or postorder within the bottom-up 538 // loop tree. Then we can optionally compute global RegPressure. 539 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 540 MBB != MBBEnd; ++MBB) { 541 542 Scheduler.startBlock(&*MBB); 543 544 #ifndef NDEBUG 545 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 546 continue; 547 if (SchedOnlyBlock.getNumOccurrences() 548 && (int)SchedOnlyBlock != MBB->getNumber()) 549 continue; 550 #endif 551 552 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 553 // points to the scheduling boundary at the bottom of the region. The DAG 554 // does not include RegionEnd, but the region does (i.e. the next 555 // RegionEnd is above the previous RegionBegin). If the current block has 556 // no terminator then RegionEnd == MBB->end() for the bottom region. 557 // 558 // All the regions of MBB are first found and stored in MBBRegions, which 559 // will be processed (MBB) top-down if initialized with true. 560 // 561 // The Scheduler may insert instructions during either schedule() or 562 // exitRegion(), even for empty regions. So the local iterators 'I' and 563 // 'RegionEnd' are invalid across these calls. Instructions must not be 564 // added to other regions than the current one without updating MBBRegions. 565 566 MBBRegionsVector MBBRegions; 567 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 568 for (const SchedRegion &R : MBBRegions) { 569 MachineBasicBlock::iterator I = R.RegionBegin; 570 MachineBasicBlock::iterator RegionEnd = R.RegionEnd; 571 unsigned NumRegionInstrs = R.NumRegionInstrs; 572 573 // Notify the scheduler of the region, even if we may skip scheduling 574 // it. Perhaps it still needs to be bundled. 575 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 576 577 // Skip empty scheduling regions (0 or 1 schedulable instructions). 578 if (I == RegionEnd || I == std::prev(RegionEnd)) { 579 // Close the current region. Bundle the terminator if needed. 580 // This invalidates 'RegionEnd' and 'I'. 581 Scheduler.exitRegion(); 582 continue; 583 } 584 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 585 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 586 << " " << MBB->getName() << "\n From: " << *I 587 << " To: "; 588 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 589 else dbgs() << "End\n"; 590 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 591 if (DumpCriticalPathLength) { 592 errs() << MF->getName(); 593 errs() << ":%bb. " << MBB->getNumber(); 594 errs() << " " << MBB->getName() << " \n"; 595 } 596 597 // Schedule a region: possibly reorder instructions. 598 // This invalidates the original region iterators. 599 Scheduler.schedule(); 600 601 // Close the current region. 602 Scheduler.exitRegion(); 603 } 604 Scheduler.finishBlock(); 605 // FIXME: Ideally, no further passes should rely on kill flags. However, 606 // thumb2 size reduction is currently an exception, so the PostMIScheduler 607 // needs to do this. 608 if (FixKillFlags) 609 Scheduler.fixupKills(*MBB); 610 } 611 Scheduler.finalizeSchedule(); 612 } 613 614 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 615 // unimplemented 616 } 617 618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 619 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 620 dbgs() << "Queue " << Name << ": "; 621 for (const SUnit *SU : Queue) 622 dbgs() << SU->NodeNum << " "; 623 dbgs() << "\n"; 624 } 625 #endif 626 627 //===----------------------------------------------------------------------===// 628 // ScheduleDAGMI - Basic machine instruction scheduling. This is 629 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 630 // virtual registers. 631 // ===----------------------------------------------------------------------===/ 632 633 // Provide a vtable anchor. 634 ScheduleDAGMI::~ScheduleDAGMI() = default; 635 636 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 637 /// NumPredsLeft reaches zero, release the successor node. 638 /// 639 /// FIXME: Adjust SuccSU height based on MinLatency. 640 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 641 SUnit *SuccSU = SuccEdge->getSUnit(); 642 643 if (SuccEdge->isWeak()) { 644 --SuccSU->WeakPredsLeft; 645 if (SuccEdge->isCluster()) 646 NextClusterSucc = SuccSU; 647 return; 648 } 649 #ifndef NDEBUG 650 if (SuccSU->NumPredsLeft == 0) { 651 dbgs() << "*** Scheduling failed! ***\n"; 652 dumpNode(*SuccSU); 653 dbgs() << " has been released too many times!\n"; 654 llvm_unreachable(nullptr); 655 } 656 #endif 657 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 658 // CurrCycle may have advanced since then. 659 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 660 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 661 662 --SuccSU->NumPredsLeft; 663 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 664 SchedImpl->releaseTopNode(SuccSU); 665 } 666 667 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 668 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 669 for (SDep &Succ : SU->Succs) 670 releaseSucc(SU, &Succ); 671 } 672 673 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 674 /// NumSuccsLeft reaches zero, release the predecessor node. 675 /// 676 /// FIXME: Adjust PredSU height based on MinLatency. 677 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 678 SUnit *PredSU = PredEdge->getSUnit(); 679 680 if (PredEdge->isWeak()) { 681 --PredSU->WeakSuccsLeft; 682 if (PredEdge->isCluster()) 683 NextClusterPred = PredSU; 684 return; 685 } 686 #ifndef NDEBUG 687 if (PredSU->NumSuccsLeft == 0) { 688 dbgs() << "*** Scheduling failed! ***\n"; 689 dumpNode(*PredSU); 690 dbgs() << " has been released too many times!\n"; 691 llvm_unreachable(nullptr); 692 } 693 #endif 694 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 695 // CurrCycle may have advanced since then. 696 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 697 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 698 699 --PredSU->NumSuccsLeft; 700 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 701 SchedImpl->releaseBottomNode(PredSU); 702 } 703 704 /// releasePredecessors - Call releasePred on each of SU's predecessors. 705 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 706 for (SDep &Pred : SU->Preds) 707 releasePred(SU, &Pred); 708 } 709 710 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 711 ScheduleDAGInstrs::startBlock(bb); 712 SchedImpl->enterMBB(bb); 713 } 714 715 void ScheduleDAGMI::finishBlock() { 716 SchedImpl->leaveMBB(); 717 ScheduleDAGInstrs::finishBlock(); 718 } 719 720 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 721 /// crossing a scheduling boundary. [begin, end) includes all instructions in 722 /// the region, including the boundary itself and single-instruction regions 723 /// that don't get scheduled. 724 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 725 MachineBasicBlock::iterator begin, 726 MachineBasicBlock::iterator end, 727 unsigned regioninstrs) 728 { 729 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 730 731 SchedImpl->initPolicy(begin, end, regioninstrs); 732 } 733 734 /// This is normally called from the main scheduler loop but may also be invoked 735 /// by the scheduling strategy to perform additional code motion. 736 void ScheduleDAGMI::moveInstruction( 737 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 738 // Advance RegionBegin if the first instruction moves down. 739 if (&*RegionBegin == MI) 740 ++RegionBegin; 741 742 // Update the instruction stream. 743 BB->splice(InsertPos, BB, MI); 744 745 // Update LiveIntervals 746 if (LIS) 747 LIS->handleMove(*MI, /*UpdateFlags=*/true); 748 749 // Recede RegionBegin if an instruction moves above the first. 750 if (RegionBegin == InsertPos) 751 RegionBegin = MI; 752 } 753 754 bool ScheduleDAGMI::checkSchedLimit() { 755 #ifndef NDEBUG 756 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 757 CurrentTop = CurrentBottom; 758 return false; 759 } 760 ++NumInstrsScheduled; 761 #endif 762 return true; 763 } 764 765 /// Per-region scheduling driver, called back from 766 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 767 /// does not consider liveness or register pressure. It is useful for PostRA 768 /// scheduling and potentially other custom schedulers. 769 void ScheduleDAGMI::schedule() { 770 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 771 LLVM_DEBUG(SchedImpl->dumpPolicy()); 772 773 // Build the DAG. 774 buildSchedGraph(AA); 775 776 postprocessDAG(); 777 778 SmallVector<SUnit*, 8> TopRoots, BotRoots; 779 findRootsAndBiasEdges(TopRoots, BotRoots); 780 781 LLVM_DEBUG(dump()); 782 if (PrintDAGs) dump(); 783 if (ViewMISchedDAGs) viewGraph(); 784 785 // Initialize the strategy before modifying the DAG. 786 // This may initialize a DFSResult to be used for queue priority. 787 SchedImpl->initialize(this); 788 789 // Initialize ready queues now that the DAG and priority data are finalized. 790 initQueues(TopRoots, BotRoots); 791 792 bool IsTopNode = false; 793 while (true) { 794 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 795 SUnit *SU = SchedImpl->pickNode(IsTopNode); 796 if (!SU) break; 797 798 assert(!SU->isScheduled && "Node already scheduled"); 799 if (!checkSchedLimit()) 800 break; 801 802 MachineInstr *MI = SU->getInstr(); 803 if (IsTopNode) { 804 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 805 if (&*CurrentTop == MI) 806 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 807 else 808 moveInstruction(MI, CurrentTop); 809 } else { 810 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 811 MachineBasicBlock::iterator priorII = 812 priorNonDebug(CurrentBottom, CurrentTop); 813 if (&*priorII == MI) 814 CurrentBottom = priorII; 815 else { 816 if (&*CurrentTop == MI) 817 CurrentTop = nextIfDebug(++CurrentTop, priorII); 818 moveInstruction(MI, CurrentBottom); 819 CurrentBottom = MI; 820 } 821 } 822 // Notify the scheduling strategy before updating the DAG. 823 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 824 // runs, it can then use the accurate ReadyCycle time to determine whether 825 // newly released nodes can move to the readyQ. 826 SchedImpl->schedNode(SU, IsTopNode); 827 828 updateQueues(SU, IsTopNode); 829 } 830 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 831 832 placeDebugValues(); 833 834 LLVM_DEBUG({ 835 dbgs() << "*** Final schedule for " 836 << printMBBReference(*begin()->getParent()) << " ***\n"; 837 dumpSchedule(); 838 dbgs() << '\n'; 839 }); 840 } 841 842 /// Apply each ScheduleDAGMutation step in order. 843 void ScheduleDAGMI::postprocessDAG() { 844 for (auto &m : Mutations) 845 m->apply(this); 846 } 847 848 void ScheduleDAGMI:: 849 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 850 SmallVectorImpl<SUnit*> &BotRoots) { 851 for (SUnit &SU : SUnits) { 852 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 853 854 // Order predecessors so DFSResult follows the critical path. 855 SU.biasCriticalPath(); 856 857 // A SUnit is ready to top schedule if it has no predecessors. 858 if (!SU.NumPredsLeft) 859 TopRoots.push_back(&SU); 860 // A SUnit is ready to bottom schedule if it has no successors. 861 if (!SU.NumSuccsLeft) 862 BotRoots.push_back(&SU); 863 } 864 ExitSU.biasCriticalPath(); 865 } 866 867 /// Identify DAG roots and setup scheduler queues. 868 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 869 ArrayRef<SUnit*> BotRoots) { 870 NextClusterSucc = nullptr; 871 NextClusterPred = nullptr; 872 873 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 874 // 875 // Nodes with unreleased weak edges can still be roots. 876 // Release top roots in forward order. 877 for (SUnit *SU : TopRoots) 878 SchedImpl->releaseTopNode(SU); 879 880 // Release bottom roots in reverse order so the higher priority nodes appear 881 // first. This is more natural and slightly more efficient. 882 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 883 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 884 SchedImpl->releaseBottomNode(*I); 885 } 886 887 releaseSuccessors(&EntrySU); 888 releasePredecessors(&ExitSU); 889 890 SchedImpl->registerRoots(); 891 892 // Advance past initial DebugValues. 893 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 894 CurrentBottom = RegionEnd; 895 } 896 897 /// Update scheduler queues after scheduling an instruction. 898 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 899 // Release dependent instructions for scheduling. 900 if (IsTopNode) 901 releaseSuccessors(SU); 902 else 903 releasePredecessors(SU); 904 905 SU->isScheduled = true; 906 } 907 908 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 909 void ScheduleDAGMI::placeDebugValues() { 910 // If first instruction was a DBG_VALUE then put it back. 911 if (FirstDbgValue) { 912 BB->splice(RegionBegin, BB, FirstDbgValue); 913 RegionBegin = FirstDbgValue; 914 } 915 916 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 917 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 918 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 919 MachineInstr *DbgValue = P.first; 920 MachineBasicBlock::iterator OrigPrevMI = P.second; 921 if (&*RegionBegin == DbgValue) 922 ++RegionBegin; 923 BB->splice(++OrigPrevMI, BB, DbgValue); 924 if (OrigPrevMI == std::prev(RegionEnd)) 925 RegionEnd = DbgValue; 926 } 927 DbgValues.clear(); 928 FirstDbgValue = nullptr; 929 } 930 931 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 932 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 933 for (MachineInstr &MI : *this) { 934 if (SUnit *SU = getSUnit(&MI)) 935 dumpNode(*SU); 936 else 937 dbgs() << "Missing SUnit\n"; 938 } 939 } 940 #endif 941 942 //===----------------------------------------------------------------------===// 943 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 944 // preservation. 945 //===----------------------------------------------------------------------===// 946 947 ScheduleDAGMILive::~ScheduleDAGMILive() { 948 delete DFSResult; 949 } 950 951 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 952 const MachineInstr &MI = *SU.getInstr(); 953 for (const MachineOperand &MO : MI.operands()) { 954 if (!MO.isReg()) 955 continue; 956 if (!MO.readsReg()) 957 continue; 958 if (TrackLaneMasks && !MO.isUse()) 959 continue; 960 961 Register Reg = MO.getReg(); 962 if (!Register::isVirtualRegister(Reg)) 963 continue; 964 965 // Ignore re-defs. 966 if (TrackLaneMasks) { 967 bool FoundDef = false; 968 for (const MachineOperand &MO2 : MI.operands()) { 969 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 970 FoundDef = true; 971 break; 972 } 973 } 974 if (FoundDef) 975 continue; 976 } 977 978 // Record this local VReg use. 979 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 980 for (; UI != VRegUses.end(); ++UI) { 981 if (UI->SU == &SU) 982 break; 983 } 984 if (UI == VRegUses.end()) 985 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 986 } 987 } 988 989 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 990 /// crossing a scheduling boundary. [begin, end) includes all instructions in 991 /// the region, including the boundary itself and single-instruction regions 992 /// that don't get scheduled. 993 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 994 MachineBasicBlock::iterator begin, 995 MachineBasicBlock::iterator end, 996 unsigned regioninstrs) 997 { 998 // ScheduleDAGMI initializes SchedImpl's per-region policy. 999 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 1000 1001 // For convenience remember the end of the liveness region. 1002 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1003 1004 SUPressureDiffs.clear(); 1005 1006 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1007 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1008 1009 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1010 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1011 } 1012 1013 // Setup the register pressure trackers for the top scheduled and bottom 1014 // scheduled regions. 1015 void ScheduleDAGMILive::initRegPressure() { 1016 VRegUses.clear(); 1017 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1018 for (SUnit &SU : SUnits) 1019 collectVRegUses(SU); 1020 1021 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1022 ShouldTrackLaneMasks, false); 1023 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1024 ShouldTrackLaneMasks, false); 1025 1026 // Close the RPTracker to finalize live ins. 1027 RPTracker.closeRegion(); 1028 1029 LLVM_DEBUG(RPTracker.dump()); 1030 1031 // Initialize the live ins and live outs. 1032 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1033 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1034 1035 // Close one end of the tracker so we can call 1036 // getMaxUpward/DownwardPressureDelta before advancing across any 1037 // instructions. This converts currently live regs into live ins/outs. 1038 TopRPTracker.closeTop(); 1039 BotRPTracker.closeBottom(); 1040 1041 BotRPTracker.initLiveThru(RPTracker); 1042 if (!BotRPTracker.getLiveThru().empty()) { 1043 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1044 LLVM_DEBUG(dbgs() << "Live Thru: "; 1045 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1046 }; 1047 1048 // For each live out vreg reduce the pressure change associated with other 1049 // uses of the same vreg below the live-out reaching def. 1050 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1051 1052 // Account for liveness generated by the region boundary. 1053 if (LiveRegionEnd != RegionEnd) { 1054 SmallVector<RegisterMaskPair, 8> LiveUses; 1055 BotRPTracker.recede(&LiveUses); 1056 updatePressureDiffs(LiveUses); 1057 } 1058 1059 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1060 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1061 dbgs() << "Bottom Pressure:\n"; 1062 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1063 1064 assert((BotRPTracker.getPos() == RegionEnd || 1065 (RegionEnd->isDebugInstr() && 1066 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1067 "Can't find the region bottom"); 1068 1069 // Cache the list of excess pressure sets in this region. This will also track 1070 // the max pressure in the scheduled code for these sets. 1071 RegionCriticalPSets.clear(); 1072 const std::vector<unsigned> &RegionPressure = 1073 RPTracker.getPressure().MaxSetPressure; 1074 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1075 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1076 if (RegionPressure[i] > Limit) { 1077 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1078 << " Actual " << RegionPressure[i] << "\n"); 1079 RegionCriticalPSets.push_back(PressureChange(i)); 1080 } 1081 } 1082 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1083 for (const PressureChange &RCPS 1084 : RegionCriticalPSets) dbgs() 1085 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1086 dbgs() << "\n"); 1087 } 1088 1089 void ScheduleDAGMILive:: 1090 updateScheduledPressure(const SUnit *SU, 1091 const std::vector<unsigned> &NewMaxPressure) { 1092 const PressureDiff &PDiff = getPressureDiff(SU); 1093 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1094 for (const PressureChange &PC : PDiff) { 1095 if (!PC.isValid()) 1096 break; 1097 unsigned ID = PC.getPSet(); 1098 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1099 ++CritIdx; 1100 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1101 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1102 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1103 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1104 } 1105 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1106 if (NewMaxPressure[ID] >= Limit - 2) { 1107 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1108 << NewMaxPressure[ID] 1109 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1110 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1111 << " livethru)\n"); 1112 } 1113 } 1114 } 1115 1116 /// Update the PressureDiff array for liveness after scheduling this 1117 /// instruction. 1118 void ScheduleDAGMILive::updatePressureDiffs( 1119 ArrayRef<RegisterMaskPair> LiveUses) { 1120 for (const RegisterMaskPair &P : LiveUses) { 1121 Register Reg = P.RegUnit; 1122 /// FIXME: Currently assuming single-use physregs. 1123 if (!Register::isVirtualRegister(Reg)) 1124 continue; 1125 1126 if (ShouldTrackLaneMasks) { 1127 // If the register has just become live then other uses won't change 1128 // this fact anymore => decrement pressure. 1129 // If the register has just become dead then other uses make it come 1130 // back to life => increment pressure. 1131 bool Decrement = P.LaneMask.any(); 1132 1133 for (const VReg2SUnit &V2SU 1134 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1135 SUnit &SU = *V2SU.SU; 1136 if (SU.isScheduled || &SU == &ExitSU) 1137 continue; 1138 1139 PressureDiff &PDiff = getPressureDiff(&SU); 1140 PDiff.addPressureChange(Reg, Decrement, &MRI); 1141 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1142 << printReg(Reg, TRI) << ':' 1143 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1144 dbgs() << " to "; PDiff.dump(*TRI);); 1145 } 1146 } else { 1147 assert(P.LaneMask.any()); 1148 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1149 // This may be called before CurrentBottom has been initialized. However, 1150 // BotRPTracker must have a valid position. We want the value live into the 1151 // instruction or live out of the block, so ask for the previous 1152 // instruction's live-out. 1153 const LiveInterval &LI = LIS->getInterval(Reg); 1154 VNInfo *VNI; 1155 MachineBasicBlock::const_iterator I = 1156 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1157 if (I == BB->end()) 1158 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1159 else { 1160 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1161 VNI = LRQ.valueIn(); 1162 } 1163 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1164 assert(VNI && "No live value at use."); 1165 for (const VReg2SUnit &V2SU 1166 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1167 SUnit *SU = V2SU.SU; 1168 // If this use comes before the reaching def, it cannot be a last use, 1169 // so decrease its pressure change. 1170 if (!SU->isScheduled && SU != &ExitSU) { 1171 LiveQueryResult LRQ = 1172 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1173 if (LRQ.valueIn() == VNI) { 1174 PressureDiff &PDiff = getPressureDiff(SU); 1175 PDiff.addPressureChange(Reg, true, &MRI); 1176 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1177 << *SU->getInstr(); 1178 dbgs() << " to "; PDiff.dump(*TRI);); 1179 } 1180 } 1181 } 1182 } 1183 } 1184 } 1185 1186 void ScheduleDAGMILive::dump() const { 1187 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1188 if (EntrySU.getInstr() != nullptr) 1189 dumpNodeAll(EntrySU); 1190 for (const SUnit &SU : SUnits) { 1191 dumpNodeAll(SU); 1192 if (ShouldTrackPressure) { 1193 dbgs() << " Pressure Diff : "; 1194 getPressureDiff(&SU).dump(*TRI); 1195 } 1196 dbgs() << " Single Issue : "; 1197 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1198 SchedModel.mustEndGroup(SU.getInstr())) 1199 dbgs() << "true;"; 1200 else 1201 dbgs() << "false;"; 1202 dbgs() << '\n'; 1203 } 1204 if (ExitSU.getInstr() != nullptr) 1205 dumpNodeAll(ExitSU); 1206 #endif 1207 } 1208 1209 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1210 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1211 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1212 /// 1213 /// This is a skeletal driver, with all the functionality pushed into helpers, 1214 /// so that it can be easily extended by experimental schedulers. Generally, 1215 /// implementing MachineSchedStrategy should be sufficient to implement a new 1216 /// scheduling algorithm. However, if a scheduler further subclasses 1217 /// ScheduleDAGMILive then it will want to override this virtual method in order 1218 /// to update any specialized state. 1219 void ScheduleDAGMILive::schedule() { 1220 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1221 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1222 buildDAGWithRegPressure(); 1223 1224 postprocessDAG(); 1225 1226 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1227 findRootsAndBiasEdges(TopRoots, BotRoots); 1228 1229 // Initialize the strategy before modifying the DAG. 1230 // This may initialize a DFSResult to be used for queue priority. 1231 SchedImpl->initialize(this); 1232 1233 LLVM_DEBUG(dump()); 1234 if (PrintDAGs) dump(); 1235 if (ViewMISchedDAGs) viewGraph(); 1236 1237 // Initialize ready queues now that the DAG and priority data are finalized. 1238 initQueues(TopRoots, BotRoots); 1239 1240 bool IsTopNode = false; 1241 while (true) { 1242 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1243 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1244 if (!SU) break; 1245 1246 assert(!SU->isScheduled && "Node already scheduled"); 1247 if (!checkSchedLimit()) 1248 break; 1249 1250 scheduleMI(SU, IsTopNode); 1251 1252 if (DFSResult) { 1253 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1254 if (!ScheduledTrees.test(SubtreeID)) { 1255 ScheduledTrees.set(SubtreeID); 1256 DFSResult->scheduleTree(SubtreeID); 1257 SchedImpl->scheduleTree(SubtreeID); 1258 } 1259 } 1260 1261 // Notify the scheduling strategy after updating the DAG. 1262 SchedImpl->schedNode(SU, IsTopNode); 1263 1264 updateQueues(SU, IsTopNode); 1265 } 1266 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1267 1268 placeDebugValues(); 1269 1270 LLVM_DEBUG({ 1271 dbgs() << "*** Final schedule for " 1272 << printMBBReference(*begin()->getParent()) << " ***\n"; 1273 dumpSchedule(); 1274 dbgs() << '\n'; 1275 }); 1276 } 1277 1278 /// Build the DAG and setup three register pressure trackers. 1279 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1280 if (!ShouldTrackPressure) { 1281 RPTracker.reset(); 1282 RegionCriticalPSets.clear(); 1283 buildSchedGraph(AA); 1284 return; 1285 } 1286 1287 // Initialize the register pressure tracker used by buildSchedGraph. 1288 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1289 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1290 1291 // Account for liveness generate by the region boundary. 1292 if (LiveRegionEnd != RegionEnd) 1293 RPTracker.recede(); 1294 1295 // Build the DAG, and compute current register pressure. 1296 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1297 1298 // Initialize top/bottom trackers after computing region pressure. 1299 initRegPressure(); 1300 } 1301 1302 void ScheduleDAGMILive::computeDFSResult() { 1303 if (!DFSResult) 1304 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1305 DFSResult->clear(); 1306 ScheduledTrees.clear(); 1307 DFSResult->resize(SUnits.size()); 1308 DFSResult->compute(SUnits); 1309 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1310 } 1311 1312 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1313 /// only provides the critical path for single block loops. To handle loops that 1314 /// span blocks, we could use the vreg path latencies provided by 1315 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1316 /// available for use in the scheduler. 1317 /// 1318 /// The cyclic path estimation identifies a def-use pair that crosses the back 1319 /// edge and considers the depth and height of the nodes. For example, consider 1320 /// the following instruction sequence where each instruction has unit latency 1321 /// and defines an eponymous virtual register: 1322 /// 1323 /// a->b(a,c)->c(b)->d(c)->exit 1324 /// 1325 /// The cyclic critical path is a two cycles: b->c->b 1326 /// The acyclic critical path is four cycles: a->b->c->d->exit 1327 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1328 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1329 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1330 /// LiveInDepth = depth(b) = len(a->b) = 1 1331 /// 1332 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1333 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1334 /// CyclicCriticalPath = min(2, 2) = 2 1335 /// 1336 /// This could be relevant to PostRA scheduling, but is currently implemented 1337 /// assuming LiveIntervals. 1338 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1339 // This only applies to single block loop. 1340 if (!BB->isSuccessor(BB)) 1341 return 0; 1342 1343 unsigned MaxCyclicLatency = 0; 1344 // Visit each live out vreg def to find def/use pairs that cross iterations. 1345 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1346 Register Reg = P.RegUnit; 1347 if (!Register::isVirtualRegister(Reg)) 1348 continue; 1349 const LiveInterval &LI = LIS->getInterval(Reg); 1350 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1351 if (!DefVNI) 1352 continue; 1353 1354 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1355 const SUnit *DefSU = getSUnit(DefMI); 1356 if (!DefSU) 1357 continue; 1358 1359 unsigned LiveOutHeight = DefSU->getHeight(); 1360 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1361 // Visit all local users of the vreg def. 1362 for (const VReg2SUnit &V2SU 1363 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1364 SUnit *SU = V2SU.SU; 1365 if (SU == &ExitSU) 1366 continue; 1367 1368 // Only consider uses of the phi. 1369 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1370 if (!LRQ.valueIn()->isPHIDef()) 1371 continue; 1372 1373 // Assume that a path spanning two iterations is a cycle, which could 1374 // overestimate in strange cases. This allows cyclic latency to be 1375 // estimated as the minimum slack of the vreg's depth or height. 1376 unsigned CyclicLatency = 0; 1377 if (LiveOutDepth > SU->getDepth()) 1378 CyclicLatency = LiveOutDepth - SU->getDepth(); 1379 1380 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1381 if (LiveInHeight > LiveOutHeight) { 1382 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1383 CyclicLatency = LiveInHeight - LiveOutHeight; 1384 } else 1385 CyclicLatency = 0; 1386 1387 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1388 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1389 if (CyclicLatency > MaxCyclicLatency) 1390 MaxCyclicLatency = CyclicLatency; 1391 } 1392 } 1393 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1394 return MaxCyclicLatency; 1395 } 1396 1397 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1398 /// the Top RP tracker in case the region beginning has changed. 1399 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1400 ArrayRef<SUnit*> BotRoots) { 1401 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1402 if (ShouldTrackPressure) { 1403 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1404 TopRPTracker.setPos(CurrentTop); 1405 } 1406 } 1407 1408 /// Move an instruction and update register pressure. 1409 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1410 // Move the instruction to its new location in the instruction stream. 1411 MachineInstr *MI = SU->getInstr(); 1412 1413 if (IsTopNode) { 1414 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1415 if (&*CurrentTop == MI) 1416 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1417 else { 1418 moveInstruction(MI, CurrentTop); 1419 TopRPTracker.setPos(MI); 1420 } 1421 1422 if (ShouldTrackPressure) { 1423 // Update top scheduled pressure. 1424 RegisterOperands RegOpers; 1425 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1426 if (ShouldTrackLaneMasks) { 1427 // Adjust liveness and add missing dead+read-undef flags. 1428 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1429 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1430 } else { 1431 // Adjust for missing dead-def flags. 1432 RegOpers.detectDeadDefs(*MI, *LIS); 1433 } 1434 1435 TopRPTracker.advance(RegOpers); 1436 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1437 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1438 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1439 1440 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1441 } 1442 } else { 1443 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1444 MachineBasicBlock::iterator priorII = 1445 priorNonDebug(CurrentBottom, CurrentTop); 1446 if (&*priorII == MI) 1447 CurrentBottom = priorII; 1448 else { 1449 if (&*CurrentTop == MI) { 1450 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1451 TopRPTracker.setPos(CurrentTop); 1452 } 1453 moveInstruction(MI, CurrentBottom); 1454 CurrentBottom = MI; 1455 BotRPTracker.setPos(CurrentBottom); 1456 } 1457 if (ShouldTrackPressure) { 1458 RegisterOperands RegOpers; 1459 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1460 if (ShouldTrackLaneMasks) { 1461 // Adjust liveness and add missing dead+read-undef flags. 1462 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1463 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1464 } else { 1465 // Adjust for missing dead-def flags. 1466 RegOpers.detectDeadDefs(*MI, *LIS); 1467 } 1468 1469 if (BotRPTracker.getPos() != CurrentBottom) 1470 BotRPTracker.recedeSkipDebugValues(); 1471 SmallVector<RegisterMaskPair, 8> LiveUses; 1472 BotRPTracker.recede(RegOpers, &LiveUses); 1473 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1474 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1475 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1476 1477 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1478 updatePressureDiffs(LiveUses); 1479 } 1480 } 1481 } 1482 1483 //===----------------------------------------------------------------------===// 1484 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1485 //===----------------------------------------------------------------------===// 1486 1487 namespace { 1488 1489 /// Post-process the DAG to create cluster edges between neighboring 1490 /// loads or between neighboring stores. 1491 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1492 struct MemOpInfo { 1493 SUnit *SU; 1494 SmallVector<const MachineOperand *, 4> BaseOps; 1495 int64_t Offset; 1496 unsigned Width; 1497 1498 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1499 int64_t Offset, unsigned Width) 1500 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), 1501 Width(Width) {} 1502 1503 static bool Compare(const MachineOperand *const &A, 1504 const MachineOperand *const &B) { 1505 if (A->getType() != B->getType()) 1506 return A->getType() < B->getType(); 1507 if (A->isReg()) 1508 return A->getReg() < B->getReg(); 1509 if (A->isFI()) { 1510 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1511 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1512 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1513 TargetFrameLowering::StackGrowsDown; 1514 return StackGrowsDown ? A->getIndex() > B->getIndex() 1515 : A->getIndex() < B->getIndex(); 1516 } 1517 1518 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1519 "index bases."); 1520 } 1521 1522 bool operator<(const MemOpInfo &RHS) const { 1523 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1524 // comparison instead when it's available. 1525 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1526 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1527 Compare)) 1528 return true; 1529 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1530 BaseOps.begin(), BaseOps.end(), Compare)) 1531 return false; 1532 if (Offset != RHS.Offset) 1533 return Offset < RHS.Offset; 1534 return SU->NodeNum < RHS.SU->NodeNum; 1535 } 1536 }; 1537 1538 const TargetInstrInfo *TII; 1539 const TargetRegisterInfo *TRI; 1540 bool IsLoad; 1541 1542 public: 1543 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1544 const TargetRegisterInfo *tri, bool IsLoad) 1545 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1546 1547 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1548 1549 protected: 1550 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1551 ScheduleDAGInstrs *DAG); 1552 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1553 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1554 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1555 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1556 }; 1557 1558 class StoreClusterMutation : public BaseMemOpClusterMutation { 1559 public: 1560 StoreClusterMutation(const TargetInstrInfo *tii, 1561 const TargetRegisterInfo *tri) 1562 : BaseMemOpClusterMutation(tii, tri, false) {} 1563 }; 1564 1565 class LoadClusterMutation : public BaseMemOpClusterMutation { 1566 public: 1567 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1568 : BaseMemOpClusterMutation(tii, tri, true) {} 1569 }; 1570 1571 } // end anonymous namespace 1572 1573 namespace llvm { 1574 1575 std::unique_ptr<ScheduleDAGMutation> 1576 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1577 const TargetRegisterInfo *TRI) { 1578 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1579 : nullptr; 1580 } 1581 1582 std::unique_ptr<ScheduleDAGMutation> 1583 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1584 const TargetRegisterInfo *TRI) { 1585 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1586 : nullptr; 1587 } 1588 1589 } // end namespace llvm 1590 1591 // Sorting all the loads/stores first, then for each load/store, checking the 1592 // following load/store one by one, until reach the first non-dependent one and 1593 // call target hook to see if they can cluster. 1594 // If FastCluster is enabled, we assume that, all the loads/stores have been 1595 // preprocessed and now, they didn't have dependencies on each other. 1596 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1597 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1598 ScheduleDAGInstrs *DAG) { 1599 // Keep track of the current cluster length and bytes for each SUnit. 1600 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1601 1602 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1603 // cluster mem ops collected within `MemOpRecords` array. 1604 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1605 // Decision to cluster mem ops is taken based on target dependent logic 1606 auto MemOpa = MemOpRecords[Idx]; 1607 1608 // Seek for the next load/store to do the cluster. 1609 unsigned NextIdx = Idx + 1; 1610 for (; NextIdx < End; ++NextIdx) 1611 // Skip if MemOpb has been clustered already or has dependency with 1612 // MemOpa. 1613 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1614 (FastCluster || 1615 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1616 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1617 break; 1618 if (NextIdx == End) 1619 continue; 1620 1621 auto MemOpb = MemOpRecords[NextIdx]; 1622 unsigned ClusterLength = 2; 1623 unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width; 1624 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1625 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1626 CurrentClusterBytes = 1627 SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width; 1628 } 1629 1630 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, 1631 CurrentClusterBytes)) 1632 continue; 1633 1634 SUnit *SUa = MemOpa.SU; 1635 SUnit *SUb = MemOpb.SU; 1636 if (SUa->NodeNum > SUb->NodeNum) 1637 std::swap(SUa, SUb); 1638 1639 // FIXME: Is this check really required? 1640 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1641 continue; 1642 1643 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1644 << SUb->NodeNum << ")\n"); 1645 ++NumClustered; 1646 1647 if (IsLoad) { 1648 // Copy successor edges from SUa to SUb. Interleaving computation 1649 // dependent on SUa can prevent load combining due to register reuse. 1650 // Predecessor edges do not need to be copied from SUb to SUa since 1651 // nearby loads should have effectively the same inputs. 1652 for (const SDep &Succ : SUa->Succs) { 1653 if (Succ.getSUnit() == SUb) 1654 continue; 1655 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1656 << ")\n"); 1657 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1658 } 1659 } else { 1660 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1661 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1662 // do not need to be copied from SUa to SUb since no one will depend 1663 // on stores. 1664 // Notice that, we don't need to care about the memory dependency as 1665 // we won't try to cluster them if they have any memory dependency. 1666 for (const SDep &Pred : SUb->Preds) { 1667 if (Pred.getSUnit() == SUa) 1668 continue; 1669 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1670 << ")\n"); 1671 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1672 } 1673 } 1674 1675 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1676 CurrentClusterBytes}; 1677 1678 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1679 << ", Curr cluster bytes: " << CurrentClusterBytes 1680 << "\n"); 1681 } 1682 } 1683 1684 void BaseMemOpClusterMutation::collectMemOpRecords( 1685 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1686 for (auto &SU : SUnits) { 1687 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1688 (!IsLoad && !SU.getInstr()->mayStore())) 1689 continue; 1690 1691 const MachineInstr &MI = *SU.getInstr(); 1692 SmallVector<const MachineOperand *, 4> BaseOps; 1693 int64_t Offset; 1694 bool OffsetIsScalable; 1695 unsigned Width; 1696 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1697 OffsetIsScalable, Width, TRI)) { 1698 MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width)); 1699 1700 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1701 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1702 << ", Width: " << Width << "\n"); 1703 } 1704 #ifndef NDEBUG 1705 for (auto *Op : BaseOps) 1706 assert(Op); 1707 #endif 1708 } 1709 } 1710 1711 bool BaseMemOpClusterMutation::groupMemOps( 1712 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1713 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1714 bool FastCluster = 1715 ForceFastCluster || 1716 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1717 1718 for (const auto &MemOp : MemOps) { 1719 unsigned ChainPredID = DAG->SUnits.size(); 1720 if (FastCluster) { 1721 for (const SDep &Pred : MemOp.SU->Preds) { 1722 // We only want to cluster the mem ops that have the same ctrl(non-data) 1723 // pred so that they didn't have ctrl dependency for each other. But for 1724 // store instrs, we can still cluster them if the pred is load instr. 1725 if ((Pred.isCtrl() && 1726 (IsLoad || 1727 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1728 !Pred.isArtificial()) { 1729 ChainPredID = Pred.getSUnit()->NodeNum; 1730 break; 1731 } 1732 } 1733 } else 1734 ChainPredID = 0; 1735 1736 Groups[ChainPredID].push_back(MemOp); 1737 } 1738 return FastCluster; 1739 } 1740 1741 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 1742 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1743 // Collect all the clusterable loads/stores 1744 SmallVector<MemOpInfo, 32> MemOpRecords; 1745 collectMemOpRecords(DAG->SUnits, MemOpRecords); 1746 1747 if (MemOpRecords.size() < 2) 1748 return; 1749 1750 // Put the loads/stores without dependency into the same group with some 1751 // heuristic if the DAG is too complex to avoid compiling time blow up. 1752 // Notice that, some fusion pair could be lost with this. 1753 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 1754 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 1755 1756 for (auto &Group : Groups) { 1757 // Sorting the loads/stores, so that, we can stop the cluster as early as 1758 // possible. 1759 llvm::sort(Group.second); 1760 1761 // Trying to cluster all the neighboring loads/stores. 1762 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 1763 } 1764 } 1765 1766 //===----------------------------------------------------------------------===// 1767 // CopyConstrain - DAG post-processing to encourage copy elimination. 1768 //===----------------------------------------------------------------------===// 1769 1770 namespace { 1771 1772 /// Post-process the DAG to create weak edges from all uses of a copy to 1773 /// the one use that defines the copy's source vreg, most likely an induction 1774 /// variable increment. 1775 class CopyConstrain : public ScheduleDAGMutation { 1776 // Transient state. 1777 SlotIndex RegionBeginIdx; 1778 1779 // RegionEndIdx is the slot index of the last non-debug instruction in the 1780 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1781 SlotIndex RegionEndIdx; 1782 1783 public: 1784 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1785 1786 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1787 1788 protected: 1789 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1790 }; 1791 1792 } // end anonymous namespace 1793 1794 namespace llvm { 1795 1796 std::unique_ptr<ScheduleDAGMutation> 1797 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1798 const TargetRegisterInfo *TRI) { 1799 return std::make_unique<CopyConstrain>(TII, TRI); 1800 } 1801 1802 } // end namespace llvm 1803 1804 /// constrainLocalCopy handles two possibilities: 1805 /// 1) Local src: 1806 /// I0: = dst 1807 /// I1: src = ... 1808 /// I2: = dst 1809 /// I3: dst = src (copy) 1810 /// (create pred->succ edges I0->I1, I2->I1) 1811 /// 1812 /// 2) Local copy: 1813 /// I0: dst = src (copy) 1814 /// I1: = dst 1815 /// I2: src = ... 1816 /// I3: = dst 1817 /// (create pred->succ edges I1->I2, I3->I2) 1818 /// 1819 /// Although the MachineScheduler is currently constrained to single blocks, 1820 /// this algorithm should handle extended blocks. An EBB is a set of 1821 /// contiguously numbered blocks such that the previous block in the EBB is 1822 /// always the single predecessor. 1823 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1824 LiveIntervals *LIS = DAG->getLIS(); 1825 MachineInstr *Copy = CopySU->getInstr(); 1826 1827 // Check for pure vreg copies. 1828 const MachineOperand &SrcOp = Copy->getOperand(1); 1829 Register SrcReg = SrcOp.getReg(); 1830 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1831 return; 1832 1833 const MachineOperand &DstOp = Copy->getOperand(0); 1834 Register DstReg = DstOp.getReg(); 1835 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1836 return; 1837 1838 // Check if either the dest or source is local. If it's live across a back 1839 // edge, it's not local. Note that if both vregs are live across the back 1840 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1841 // If both the copy's source and dest are local live intervals, then we 1842 // should treat the dest as the global for the purpose of adding 1843 // constraints. This adds edges from source's other uses to the copy. 1844 unsigned LocalReg = SrcReg; 1845 unsigned GlobalReg = DstReg; 1846 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1847 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1848 LocalReg = DstReg; 1849 GlobalReg = SrcReg; 1850 LocalLI = &LIS->getInterval(LocalReg); 1851 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1852 return; 1853 } 1854 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1855 1856 // Find the global segment after the start of the local LI. 1857 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1858 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1859 // local live range. We could create edges from other global uses to the local 1860 // start, but the coalescer should have already eliminated these cases, so 1861 // don't bother dealing with it. 1862 if (GlobalSegment == GlobalLI->end()) 1863 return; 1864 1865 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1866 // returned the next global segment. But if GlobalSegment overlaps with 1867 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1868 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1869 if (GlobalSegment->contains(LocalLI->beginIndex())) 1870 ++GlobalSegment; 1871 1872 if (GlobalSegment == GlobalLI->end()) 1873 return; 1874 1875 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1876 if (GlobalSegment != GlobalLI->begin()) { 1877 // Two address defs have no hole. 1878 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1879 GlobalSegment->start)) { 1880 return; 1881 } 1882 // If the prior global segment may be defined by the same two-address 1883 // instruction that also defines LocalLI, then can't make a hole here. 1884 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1885 LocalLI->beginIndex())) { 1886 return; 1887 } 1888 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1889 // it would be a disconnected component in the live range. 1890 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1891 "Disconnected LRG within the scheduling region."); 1892 } 1893 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1894 if (!GlobalDef) 1895 return; 1896 1897 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1898 if (!GlobalSU) 1899 return; 1900 1901 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1902 // constraining the uses of the last local def to precede GlobalDef. 1903 SmallVector<SUnit*,8> LocalUses; 1904 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1905 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1906 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1907 for (const SDep &Succ : LastLocalSU->Succs) { 1908 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1909 continue; 1910 if (Succ.getSUnit() == GlobalSU) 1911 continue; 1912 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1913 return; 1914 LocalUses.push_back(Succ.getSUnit()); 1915 } 1916 // Open the top of the GlobalLI hole by constraining any earlier global uses 1917 // to precede the start of LocalLI. 1918 SmallVector<SUnit*,8> GlobalUses; 1919 MachineInstr *FirstLocalDef = 1920 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1921 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1922 for (const SDep &Pred : GlobalSU->Preds) { 1923 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1924 continue; 1925 if (Pred.getSUnit() == FirstLocalSU) 1926 continue; 1927 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1928 return; 1929 GlobalUses.push_back(Pred.getSUnit()); 1930 } 1931 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1932 // Add the weak edges. 1933 for (SUnit *LU : LocalUses) { 1934 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" 1935 << GlobalSU->NodeNum << ")\n"); 1936 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); 1937 } 1938 for (SUnit *GU : GlobalUses) { 1939 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" 1940 << FirstLocalSU->NodeNum << ")\n"); 1941 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); 1942 } 1943 } 1944 1945 /// Callback from DAG postProcessing to create weak edges to encourage 1946 /// copy elimination. 1947 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1948 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1949 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1950 1951 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1952 if (FirstPos == DAG->end()) 1953 return; 1954 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1955 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1956 *priorNonDebug(DAG->end(), DAG->begin())); 1957 1958 for (SUnit &SU : DAG->SUnits) { 1959 if (!SU.getInstr()->isCopy()) 1960 continue; 1961 1962 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1963 } 1964 } 1965 1966 //===----------------------------------------------------------------------===// 1967 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1968 // and possibly other custom schedulers. 1969 //===----------------------------------------------------------------------===// 1970 1971 static const unsigned InvalidCycle = ~0U; 1972 1973 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1974 1975 /// Given a Count of resource usage and a Latency value, return true if a 1976 /// SchedBoundary becomes resource limited. 1977 /// If we are checking after scheduling a node, we should return true when 1978 /// we just reach the resource limit. 1979 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1980 unsigned Latency, bool AfterSchedNode) { 1981 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1982 if (AfterSchedNode) 1983 return ResCntFactor >= (int)LFactor; 1984 else 1985 return ResCntFactor > (int)LFactor; 1986 } 1987 1988 void SchedBoundary::reset() { 1989 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1990 // Destroying and reconstructing it is very expensive though. So keep 1991 // invalid, placeholder HazardRecs. 1992 if (HazardRec && HazardRec->isEnabled()) { 1993 delete HazardRec; 1994 HazardRec = nullptr; 1995 } 1996 Available.clear(); 1997 Pending.clear(); 1998 CheckPending = false; 1999 CurrCycle = 0; 2000 CurrMOps = 0; 2001 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2002 ExpectedLatency = 0; 2003 DependentLatency = 0; 2004 RetiredMOps = 0; 2005 MaxExecutedResCount = 0; 2006 ZoneCritResIdx = 0; 2007 IsResourceLimited = false; 2008 ReservedCycles.clear(); 2009 ReservedCyclesIndex.clear(); 2010 ResourceGroupSubUnitMasks.clear(); 2011 #ifndef NDEBUG 2012 // Track the maximum number of stall cycles that could arise either from the 2013 // latency of a DAG edge or the number of cycles that a processor resource is 2014 // reserved (SchedBoundary::ReservedCycles). 2015 MaxObservedStall = 0; 2016 #endif 2017 // Reserve a zero-count for invalid CritResIdx. 2018 ExecutedResCounts.resize(1); 2019 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2020 } 2021 2022 void SchedRemainder:: 2023 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2024 reset(); 2025 if (!SchedModel->hasInstrSchedModel()) 2026 return; 2027 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2028 for (SUnit &SU : DAG->SUnits) { 2029 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2030 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2031 * SchedModel->getMicroOpFactor(); 2032 for (TargetSchedModel::ProcResIter 2033 PI = SchedModel->getWriteProcResBegin(SC), 2034 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2035 unsigned PIdx = PI->ProcResourceIdx; 2036 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2037 RemainingCounts[PIdx] += (Factor * PI->Cycles); 2038 } 2039 } 2040 } 2041 2042 void SchedBoundary:: 2043 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2044 reset(); 2045 DAG = dag; 2046 SchedModel = smodel; 2047 Rem = rem; 2048 if (SchedModel->hasInstrSchedModel()) { 2049 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2050 ReservedCyclesIndex.resize(ResourceCount); 2051 ExecutedResCounts.resize(ResourceCount); 2052 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); 2053 unsigned NumUnits = 0; 2054 2055 for (unsigned i = 0; i < ResourceCount; ++i) { 2056 ReservedCyclesIndex[i] = NumUnits; 2057 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2058 if (isUnbufferedGroup(i)) { 2059 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; 2060 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; 2061 U != UE; ++U) 2062 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); 2063 } 2064 } 2065 2066 ReservedCycles.resize(NumUnits, InvalidCycle); 2067 } 2068 } 2069 2070 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2071 /// these "soft stalls" differently than the hard stall cycles based on CPU 2072 /// resources and computed by checkHazard(). A fully in-order model 2073 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2074 /// available for scheduling until they are ready. However, a weaker in-order 2075 /// model may use this for heuristics. For example, if a processor has in-order 2076 /// behavior when reading certain resources, this may come into play. 2077 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2078 if (!SU->isUnbuffered) 2079 return 0; 2080 2081 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2082 if (ReadyCycle > CurrCycle) 2083 return ReadyCycle - CurrCycle; 2084 return 0; 2085 } 2086 2087 /// Compute the next cycle at which the given processor resource unit 2088 /// can be scheduled. 2089 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2090 unsigned Cycles) { 2091 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2092 // If this resource has never been used, always return cycle zero. 2093 if (NextUnreserved == InvalidCycle) 2094 return 0; 2095 // For bottom-up scheduling add the cycles needed for the current operation. 2096 if (!isTop()) 2097 NextUnreserved += Cycles; 2098 return NextUnreserved; 2099 } 2100 2101 /// Compute the next cycle at which the given processor resource can be 2102 /// scheduled. Returns the next cycle and the index of the processor resource 2103 /// instance in the reserved cycles vector. 2104 std::pair<unsigned, unsigned> 2105 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, 2106 unsigned Cycles) { 2107 2108 unsigned MinNextUnreserved = InvalidCycle; 2109 unsigned InstanceIdx = 0; 2110 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2111 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2112 assert(NumberOfInstances > 0 && 2113 "Cannot have zero instances of a ProcResource"); 2114 2115 if (isUnbufferedGroup(PIdx)) { 2116 // If any subunits are used by the instruction, report that the resource 2117 // group is available at 0, effectively removing the group record from 2118 // hazarding and basing the hazarding decisions on the subunit records. 2119 // Otherwise, choose the first available instance from among the subunits. 2120 // Specifications which assign cycles to both the subunits and the group or 2121 // which use an unbuffered group with buffered subunits will appear to 2122 // schedule strangely. In the first case, the additional cycles for the 2123 // group will be ignored. In the second, the group will be ignored 2124 // entirely. 2125 for (const MCWriteProcResEntry &PE : 2126 make_range(SchedModel->getWriteProcResBegin(SC), 2127 SchedModel->getWriteProcResEnd(SC))) 2128 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) 2129 return std::make_pair(0u, StartIndex); 2130 2131 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; 2132 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { 2133 unsigned NextUnreserved, NextInstanceIdx; 2134 std::tie(NextUnreserved, NextInstanceIdx) = 2135 getNextResourceCycle(SC, SubUnits[I], Cycles); 2136 if (MinNextUnreserved > NextUnreserved) { 2137 InstanceIdx = NextInstanceIdx; 2138 MinNextUnreserved = NextUnreserved; 2139 } 2140 } 2141 return std::make_pair(MinNextUnreserved, InstanceIdx); 2142 } 2143 2144 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2145 ++I) { 2146 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 2147 if (MinNextUnreserved > NextUnreserved) { 2148 InstanceIdx = I; 2149 MinNextUnreserved = NextUnreserved; 2150 } 2151 } 2152 return std::make_pair(MinNextUnreserved, InstanceIdx); 2153 } 2154 2155 /// Does this SU have a hazard within the current instruction group. 2156 /// 2157 /// The scheduler supports two modes of hazard recognition. The first is the 2158 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2159 /// supports highly complicated in-order reservation tables 2160 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2161 /// 2162 /// The second is a streamlined mechanism that checks for hazards based on 2163 /// simple counters that the scheduler itself maintains. It explicitly checks 2164 /// for instruction dispatch limitations, including the number of micro-ops that 2165 /// can dispatch per cycle. 2166 /// 2167 /// TODO: Also check whether the SU must start a new group. 2168 bool SchedBoundary::checkHazard(SUnit *SU) { 2169 if (HazardRec->isEnabled() 2170 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2171 return true; 2172 } 2173 2174 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2175 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2176 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2177 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2178 return true; 2179 } 2180 2181 if (CurrMOps > 0 && 2182 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2183 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2184 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2185 << (isTop() ? "begin" : "end") << " group\n"); 2186 return true; 2187 } 2188 2189 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2190 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2191 for (const MCWriteProcResEntry &PE : 2192 make_range(SchedModel->getWriteProcResBegin(SC), 2193 SchedModel->getWriteProcResEnd(SC))) { 2194 unsigned ResIdx = PE.ProcResourceIdx; 2195 unsigned Cycles = PE.Cycles; 2196 unsigned NRCycle, InstanceIdx; 2197 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles); 2198 if (NRCycle > CurrCycle) { 2199 #ifndef NDEBUG 2200 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2201 #endif 2202 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2203 << SchedModel->getResourceName(ResIdx) 2204 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2205 << "=" << NRCycle << "c\n"); 2206 return true; 2207 } 2208 } 2209 } 2210 return false; 2211 } 2212 2213 // Find the unscheduled node in ReadySUs with the highest latency. 2214 unsigned SchedBoundary:: 2215 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2216 SUnit *LateSU = nullptr; 2217 unsigned RemLatency = 0; 2218 for (SUnit *SU : ReadySUs) { 2219 unsigned L = getUnscheduledLatency(SU); 2220 if (L > RemLatency) { 2221 RemLatency = L; 2222 LateSU = SU; 2223 } 2224 } 2225 if (LateSU) { 2226 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2227 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2228 } 2229 return RemLatency; 2230 } 2231 2232 // Count resources in this zone and the remaining unscheduled 2233 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2234 // resource index, or zero if the zone is issue limited. 2235 unsigned SchedBoundary:: 2236 getOtherResourceCount(unsigned &OtherCritIdx) { 2237 OtherCritIdx = 0; 2238 if (!SchedModel->hasInstrSchedModel()) 2239 return 0; 2240 2241 unsigned OtherCritCount = Rem->RemIssueCount 2242 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2243 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2244 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2245 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2246 PIdx != PEnd; ++PIdx) { 2247 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2248 if (OtherCount > OtherCritCount) { 2249 OtherCritCount = OtherCount; 2250 OtherCritIdx = PIdx; 2251 } 2252 } 2253 if (OtherCritIdx) { 2254 LLVM_DEBUG( 2255 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2256 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2257 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2258 } 2259 return OtherCritCount; 2260 } 2261 2262 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2263 unsigned Idx) { 2264 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2265 2266 #ifndef NDEBUG 2267 // ReadyCycle was been bumped up to the CurrCycle when this node was 2268 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2269 // scheduling, so may now be greater than ReadyCycle. 2270 if (ReadyCycle > CurrCycle) 2271 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2272 #endif 2273 2274 if (ReadyCycle < MinReadyCycle) 2275 MinReadyCycle = ReadyCycle; 2276 2277 // Check for interlocks first. For the purpose of other heuristics, an 2278 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2279 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2280 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2281 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2282 2283 if (!HazardDetected) { 2284 Available.push(SU); 2285 2286 if (InPQueue) 2287 Pending.remove(Pending.begin() + Idx); 2288 return; 2289 } 2290 2291 if (!InPQueue) 2292 Pending.push(SU); 2293 } 2294 2295 /// Move the boundary of scheduled code by one cycle. 2296 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2297 if (SchedModel->getMicroOpBufferSize() == 0) { 2298 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2299 "MinReadyCycle uninitialized"); 2300 if (MinReadyCycle > NextCycle) 2301 NextCycle = MinReadyCycle; 2302 } 2303 // Update the current micro-ops, which will issue in the next cycle. 2304 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2305 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2306 2307 // Decrement DependentLatency based on the next cycle. 2308 if ((NextCycle - CurrCycle) > DependentLatency) 2309 DependentLatency = 0; 2310 else 2311 DependentLatency -= (NextCycle - CurrCycle); 2312 2313 if (!HazardRec->isEnabled()) { 2314 // Bypass HazardRec virtual calls. 2315 CurrCycle = NextCycle; 2316 } else { 2317 // Bypass getHazardType calls in case of long latency. 2318 for (; CurrCycle != NextCycle; ++CurrCycle) { 2319 if (isTop()) 2320 HazardRec->AdvanceCycle(); 2321 else 2322 HazardRec->RecedeCycle(); 2323 } 2324 } 2325 CheckPending = true; 2326 IsResourceLimited = 2327 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2328 getScheduledLatency(), true); 2329 2330 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2331 << '\n'); 2332 } 2333 2334 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2335 ExecutedResCounts[PIdx] += Count; 2336 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2337 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2338 } 2339 2340 /// Add the given processor resource to this scheduled zone. 2341 /// 2342 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2343 /// during which this resource is consumed. 2344 /// 2345 /// \return the next cycle at which the instruction may execute without 2346 /// oversubscribing resources. 2347 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, 2348 unsigned Cycles, unsigned NextCycle) { 2349 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2350 unsigned Count = Factor * Cycles; 2351 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2352 << Cycles << "x" << Factor << "u\n"); 2353 2354 // Update Executed resources counts. 2355 incExecutedResources(PIdx, Count); 2356 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2357 Rem->RemainingCounts[PIdx] -= Count; 2358 2359 // Check if this resource exceeds the current critical resource. If so, it 2360 // becomes the critical resource. 2361 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2362 ZoneCritResIdx = PIdx; 2363 LLVM_DEBUG(dbgs() << " *** Critical resource " 2364 << SchedModel->getResourceName(PIdx) << ": " 2365 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2366 << "c\n"); 2367 } 2368 // For reserved resources, record the highest cycle using the resource. 2369 unsigned NextAvailable, InstanceIdx; 2370 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles); 2371 if (NextAvailable > CurrCycle) { 2372 LLVM_DEBUG(dbgs() << " Resource conflict: " 2373 << SchedModel->getResourceName(PIdx) 2374 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2375 << " reserved until @" << NextAvailable << "\n"); 2376 } 2377 return NextAvailable; 2378 } 2379 2380 /// Move the boundary of scheduled code by one SUnit. 2381 void SchedBoundary::bumpNode(SUnit *SU) { 2382 // Update the reservation table. 2383 if (HazardRec->isEnabled()) { 2384 if (!isTop() && SU->isCall) { 2385 // Calls are scheduled with their preceding instructions. For bottom-up 2386 // scheduling, clear the pipeline state before emitting. 2387 HazardRec->Reset(); 2388 } 2389 HazardRec->EmitInstruction(SU); 2390 // Scheduling an instruction may have made pending instructions available. 2391 CheckPending = true; 2392 } 2393 // checkHazard should prevent scheduling multiple instructions per cycle that 2394 // exceed the issue width. 2395 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2396 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2397 assert( 2398 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2399 "Cannot schedule this instruction's MicroOps in the current cycle."); 2400 2401 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2402 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2403 2404 unsigned NextCycle = CurrCycle; 2405 switch (SchedModel->getMicroOpBufferSize()) { 2406 case 0: 2407 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2408 break; 2409 case 1: 2410 if (ReadyCycle > NextCycle) { 2411 NextCycle = ReadyCycle; 2412 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2413 } 2414 break; 2415 default: 2416 // We don't currently model the OOO reorder buffer, so consider all 2417 // scheduled MOps to be "retired". We do loosely model in-order resource 2418 // latency. If this instruction uses an in-order resource, account for any 2419 // likely stall cycles. 2420 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2421 NextCycle = ReadyCycle; 2422 break; 2423 } 2424 RetiredMOps += IncMOps; 2425 2426 // Update resource counts and critical resource. 2427 if (SchedModel->hasInstrSchedModel()) { 2428 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2429 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2430 Rem->RemIssueCount -= DecRemIssue; 2431 if (ZoneCritResIdx) { 2432 // Scale scheduled micro-ops for comparing with the critical resource. 2433 unsigned ScaledMOps = 2434 RetiredMOps * SchedModel->getMicroOpFactor(); 2435 2436 // If scaled micro-ops are now more than the previous critical resource by 2437 // a full cycle, then micro-ops issue becomes critical. 2438 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2439 >= (int)SchedModel->getLatencyFactor()) { 2440 ZoneCritResIdx = 0; 2441 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2442 << ScaledMOps / SchedModel->getLatencyFactor() 2443 << "c\n"); 2444 } 2445 } 2446 for (TargetSchedModel::ProcResIter 2447 PI = SchedModel->getWriteProcResBegin(SC), 2448 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2449 unsigned RCycle = 2450 countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle); 2451 if (RCycle > NextCycle) 2452 NextCycle = RCycle; 2453 } 2454 if (SU->hasReservedResource) { 2455 // For reserved resources, record the highest cycle using the resource. 2456 // For top-down scheduling, this is the cycle in which we schedule this 2457 // instruction plus the number of cycles the operations reserves the 2458 // resource. For bottom-up is it simply the instruction's cycle. 2459 for (TargetSchedModel::ProcResIter 2460 PI = SchedModel->getWriteProcResBegin(SC), 2461 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2462 unsigned PIdx = PI->ProcResourceIdx; 2463 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2464 unsigned ReservedUntil, InstanceIdx; 2465 std::tie(ReservedUntil, InstanceIdx) = 2466 getNextResourceCycle(SC, PIdx, 0); 2467 if (isTop()) { 2468 ReservedCycles[InstanceIdx] = 2469 std::max(ReservedUntil, NextCycle + PI->Cycles); 2470 } else 2471 ReservedCycles[InstanceIdx] = NextCycle; 2472 } 2473 } 2474 } 2475 } 2476 // Update ExpectedLatency and DependentLatency. 2477 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2478 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2479 if (SU->getDepth() > TopLatency) { 2480 TopLatency = SU->getDepth(); 2481 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2482 << SU->NodeNum << ") " << TopLatency << "c\n"); 2483 } 2484 if (SU->getHeight() > BotLatency) { 2485 BotLatency = SU->getHeight(); 2486 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2487 << SU->NodeNum << ") " << BotLatency << "c\n"); 2488 } 2489 // If we stall for any reason, bump the cycle. 2490 if (NextCycle > CurrCycle) 2491 bumpCycle(NextCycle); 2492 else 2493 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2494 // resource limited. If a stall occurred, bumpCycle does this. 2495 IsResourceLimited = 2496 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2497 getScheduledLatency(), true); 2498 2499 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2500 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2501 // one cycle. Since we commonly reach the max MOps here, opportunistically 2502 // bump the cycle to avoid uselessly checking everything in the readyQ. 2503 CurrMOps += IncMOps; 2504 2505 // Bump the cycle count for issue group constraints. 2506 // This must be done after NextCycle has been adjust for all other stalls. 2507 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2508 // currCycle to X. 2509 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2510 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2511 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2512 << " group\n"); 2513 bumpCycle(++NextCycle); 2514 } 2515 2516 while (CurrMOps >= SchedModel->getIssueWidth()) { 2517 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2518 << CurrCycle << '\n'); 2519 bumpCycle(++NextCycle); 2520 } 2521 LLVM_DEBUG(dumpScheduledState()); 2522 } 2523 2524 /// Release pending ready nodes in to the available queue. This makes them 2525 /// visible to heuristics. 2526 void SchedBoundary::releasePending() { 2527 // If the available queue is empty, it is safe to reset MinReadyCycle. 2528 if (Available.empty()) 2529 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2530 2531 // Check to see if any of the pending instructions are ready to issue. If 2532 // so, add them to the available queue. 2533 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2534 SUnit *SU = *(Pending.begin() + I); 2535 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2536 2537 if (ReadyCycle < MinReadyCycle) 2538 MinReadyCycle = ReadyCycle; 2539 2540 if (Available.size() >= ReadyListLimit) 2541 break; 2542 2543 releaseNode(SU, ReadyCycle, true, I); 2544 if (E != Pending.size()) { 2545 --I; 2546 --E; 2547 } 2548 } 2549 CheckPending = false; 2550 } 2551 2552 /// Remove SU from the ready set for this boundary. 2553 void SchedBoundary::removeReady(SUnit *SU) { 2554 if (Available.isInQueue(SU)) 2555 Available.remove(Available.find(SU)); 2556 else { 2557 assert(Pending.isInQueue(SU) && "bad ready count"); 2558 Pending.remove(Pending.find(SU)); 2559 } 2560 } 2561 2562 /// If this queue only has one ready candidate, return it. As a side effect, 2563 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2564 /// one node is ready. If multiple instructions are ready, return NULL. 2565 SUnit *SchedBoundary::pickOnlyChoice() { 2566 if (CheckPending) 2567 releasePending(); 2568 2569 // Defer any ready instrs that now have a hazard. 2570 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2571 if (checkHazard(*I)) { 2572 Pending.push(*I); 2573 I = Available.remove(I); 2574 continue; 2575 } 2576 ++I; 2577 } 2578 for (unsigned i = 0; Available.empty(); ++i) { 2579 // FIXME: Re-enable assert once PR20057 is resolved. 2580 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2581 // "permanent hazard"); 2582 (void)i; 2583 bumpCycle(CurrCycle + 1); 2584 releasePending(); 2585 } 2586 2587 LLVM_DEBUG(Pending.dump()); 2588 LLVM_DEBUG(Available.dump()); 2589 2590 if (Available.size() == 1) 2591 return *Available.begin(); 2592 return nullptr; 2593 } 2594 2595 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2596 // This is useful information to dump after bumpNode. 2597 // Note that the Queue contents are more useful before pickNodeFromQueue. 2598 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2599 unsigned ResFactor; 2600 unsigned ResCount; 2601 if (ZoneCritResIdx) { 2602 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2603 ResCount = getResourceCount(ZoneCritResIdx); 2604 } else { 2605 ResFactor = SchedModel->getMicroOpFactor(); 2606 ResCount = RetiredMOps * ResFactor; 2607 } 2608 unsigned LFactor = SchedModel->getLatencyFactor(); 2609 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2610 << " Retired: " << RetiredMOps; 2611 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2612 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2613 << ResCount / ResFactor << " " 2614 << SchedModel->getResourceName(ZoneCritResIdx) 2615 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2616 << (IsResourceLimited ? " - Resource" : " - Latency") 2617 << " limited.\n"; 2618 } 2619 #endif 2620 2621 //===----------------------------------------------------------------------===// 2622 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2623 //===----------------------------------------------------------------------===// 2624 2625 void GenericSchedulerBase::SchedCandidate:: 2626 initResourceDelta(const ScheduleDAGMI *DAG, 2627 const TargetSchedModel *SchedModel) { 2628 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2629 return; 2630 2631 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2632 for (TargetSchedModel::ProcResIter 2633 PI = SchedModel->getWriteProcResBegin(SC), 2634 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2635 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2636 ResDelta.CritResources += PI->Cycles; 2637 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2638 ResDelta.DemandedResources += PI->Cycles; 2639 } 2640 } 2641 2642 /// Compute remaining latency. We need this both to determine whether the 2643 /// overall schedule has become latency-limited and whether the instructions 2644 /// outside this zone are resource or latency limited. 2645 /// 2646 /// The "dependent" latency is updated incrementally during scheduling as the 2647 /// max height/depth of scheduled nodes minus the cycles since it was 2648 /// scheduled: 2649 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2650 /// 2651 /// The "independent" latency is the max ready queue depth: 2652 /// ILat = max N.depth for N in Available|Pending 2653 /// 2654 /// RemainingLatency is the greater of independent and dependent latency. 2655 /// 2656 /// These computations are expensive, especially in DAGs with many edges, so 2657 /// only do them if necessary. 2658 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2659 unsigned RemLatency = CurrZone.getDependentLatency(); 2660 RemLatency = std::max(RemLatency, 2661 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2662 RemLatency = std::max(RemLatency, 2663 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2664 return RemLatency; 2665 } 2666 2667 /// Returns true if the current cycle plus remaning latency is greater than 2668 /// the critical path in the scheduling region. 2669 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2670 SchedBoundary &CurrZone, 2671 bool ComputeRemLatency, 2672 unsigned &RemLatency) const { 2673 // The current cycle is already greater than the critical path, so we are 2674 // already latency limited and don't need to compute the remaining latency. 2675 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2676 return true; 2677 2678 // If we haven't scheduled anything yet, then we aren't latency limited. 2679 if (CurrZone.getCurrCycle() == 0) 2680 return false; 2681 2682 if (ComputeRemLatency) 2683 RemLatency = computeRemLatency(CurrZone); 2684 2685 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2686 } 2687 2688 /// Set the CandPolicy given a scheduling zone given the current resources and 2689 /// latencies inside and outside the zone. 2690 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2691 SchedBoundary &CurrZone, 2692 SchedBoundary *OtherZone) { 2693 // Apply preemptive heuristics based on the total latency and resources 2694 // inside and outside this zone. Potential stalls should be considered before 2695 // following this policy. 2696 2697 // Compute the critical resource outside the zone. 2698 unsigned OtherCritIdx = 0; 2699 unsigned OtherCount = 2700 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2701 2702 bool OtherResLimited = false; 2703 unsigned RemLatency = 0; 2704 bool RemLatencyComputed = false; 2705 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2706 RemLatency = computeRemLatency(CurrZone); 2707 RemLatencyComputed = true; 2708 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2709 OtherCount, RemLatency, false); 2710 } 2711 2712 // Schedule aggressively for latency in PostRA mode. We don't check for 2713 // acyclic latency during PostRA, and highly out-of-order processors will 2714 // skip PostRA scheduling. 2715 if (!OtherResLimited && 2716 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2717 RemLatency))) { 2718 Policy.ReduceLatency |= true; 2719 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2720 << " RemainingLatency " << RemLatency << " + " 2721 << CurrZone.getCurrCycle() << "c > CritPath " 2722 << Rem.CriticalPath << "\n"); 2723 } 2724 // If the same resource is limiting inside and outside the zone, do nothing. 2725 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2726 return; 2727 2728 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2729 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2730 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2731 } if (OtherResLimited) dbgs() 2732 << " RemainingLimit: " 2733 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2734 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2735 << " Latency limited both directions.\n"); 2736 2737 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2738 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2739 2740 if (OtherResLimited) 2741 Policy.DemandResIdx = OtherCritIdx; 2742 } 2743 2744 #ifndef NDEBUG 2745 const char *GenericSchedulerBase::getReasonStr( 2746 GenericSchedulerBase::CandReason Reason) { 2747 switch (Reason) { 2748 case NoCand: return "NOCAND "; 2749 case Only1: return "ONLY1 "; 2750 case PhysReg: return "PHYS-REG "; 2751 case RegExcess: return "REG-EXCESS"; 2752 case RegCritical: return "REG-CRIT "; 2753 case Stall: return "STALL "; 2754 case Cluster: return "CLUSTER "; 2755 case Weak: return "WEAK "; 2756 case RegMax: return "REG-MAX "; 2757 case ResourceReduce: return "RES-REDUCE"; 2758 case ResourceDemand: return "RES-DEMAND"; 2759 case TopDepthReduce: return "TOP-DEPTH "; 2760 case TopPathReduce: return "TOP-PATH "; 2761 case BotHeightReduce:return "BOT-HEIGHT"; 2762 case BotPathReduce: return "BOT-PATH "; 2763 case NextDefUse: return "DEF-USE "; 2764 case NodeOrder: return "ORDER "; 2765 }; 2766 llvm_unreachable("Unknown reason!"); 2767 } 2768 2769 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2770 PressureChange P; 2771 unsigned ResIdx = 0; 2772 unsigned Latency = 0; 2773 switch (Cand.Reason) { 2774 default: 2775 break; 2776 case RegExcess: 2777 P = Cand.RPDelta.Excess; 2778 break; 2779 case RegCritical: 2780 P = Cand.RPDelta.CriticalMax; 2781 break; 2782 case RegMax: 2783 P = Cand.RPDelta.CurrentMax; 2784 break; 2785 case ResourceReduce: 2786 ResIdx = Cand.Policy.ReduceResIdx; 2787 break; 2788 case ResourceDemand: 2789 ResIdx = Cand.Policy.DemandResIdx; 2790 break; 2791 case TopDepthReduce: 2792 Latency = Cand.SU->getDepth(); 2793 break; 2794 case TopPathReduce: 2795 Latency = Cand.SU->getHeight(); 2796 break; 2797 case BotHeightReduce: 2798 Latency = Cand.SU->getHeight(); 2799 break; 2800 case BotPathReduce: 2801 Latency = Cand.SU->getDepth(); 2802 break; 2803 } 2804 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2805 if (P.isValid()) 2806 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2807 << ":" << P.getUnitInc() << " "; 2808 else 2809 dbgs() << " "; 2810 if (ResIdx) 2811 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2812 else 2813 dbgs() << " "; 2814 if (Latency) 2815 dbgs() << " " << Latency << " cycles "; 2816 else 2817 dbgs() << " "; 2818 dbgs() << '\n'; 2819 } 2820 #endif 2821 2822 namespace llvm { 2823 /// Return true if this heuristic determines order. 2824 /// TODO: Consider refactor return type of these functions as integer or enum, 2825 /// as we may need to differentiate whether TryCand is better than Cand. 2826 bool tryLess(int TryVal, int CandVal, 2827 GenericSchedulerBase::SchedCandidate &TryCand, 2828 GenericSchedulerBase::SchedCandidate &Cand, 2829 GenericSchedulerBase::CandReason Reason) { 2830 if (TryVal < CandVal) { 2831 TryCand.Reason = Reason; 2832 return true; 2833 } 2834 if (TryVal > CandVal) { 2835 if (Cand.Reason > Reason) 2836 Cand.Reason = Reason; 2837 return true; 2838 } 2839 return false; 2840 } 2841 2842 bool tryGreater(int TryVal, int CandVal, 2843 GenericSchedulerBase::SchedCandidate &TryCand, 2844 GenericSchedulerBase::SchedCandidate &Cand, 2845 GenericSchedulerBase::CandReason Reason) { 2846 if (TryVal > CandVal) { 2847 TryCand.Reason = Reason; 2848 return true; 2849 } 2850 if (TryVal < CandVal) { 2851 if (Cand.Reason > Reason) 2852 Cand.Reason = Reason; 2853 return true; 2854 } 2855 return false; 2856 } 2857 2858 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2859 GenericSchedulerBase::SchedCandidate &Cand, 2860 SchedBoundary &Zone) { 2861 if (Zone.isTop()) { 2862 // Prefer the candidate with the lesser depth, but only if one of them has 2863 // depth greater than the total latency scheduled so far, otherwise either 2864 // of them could be scheduled now with no stall. 2865 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 2866 Zone.getScheduledLatency()) { 2867 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2868 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2869 return true; 2870 } 2871 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2872 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2873 return true; 2874 } else { 2875 // Prefer the candidate with the lesser height, but only if one of them has 2876 // height greater than the total latency scheduled so far, otherwise either 2877 // of them could be scheduled now with no stall. 2878 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 2879 Zone.getScheduledLatency()) { 2880 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2881 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2882 return true; 2883 } 2884 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2885 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2886 return true; 2887 } 2888 return false; 2889 } 2890 } // end namespace llvm 2891 2892 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2893 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2894 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2895 } 2896 2897 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2898 tracePick(Cand.Reason, Cand.AtTop); 2899 } 2900 2901 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2902 assert(dag->hasVRegLiveness() && 2903 "(PreRA)GenericScheduler needs vreg liveness"); 2904 DAG = static_cast<ScheduleDAGMILive*>(dag); 2905 SchedModel = DAG->getSchedModel(); 2906 TRI = DAG->TRI; 2907 2908 if (RegionPolicy.ComputeDFSResult) 2909 DAG->computeDFSResult(); 2910 2911 Rem.init(DAG, SchedModel); 2912 Top.init(DAG, SchedModel, &Rem); 2913 Bot.init(DAG, SchedModel, &Rem); 2914 2915 // Initialize resource counts. 2916 2917 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2918 // are disabled, then these HazardRecs will be disabled. 2919 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2920 if (!Top.HazardRec) { 2921 Top.HazardRec = 2922 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2923 Itin, DAG); 2924 } 2925 if (!Bot.HazardRec) { 2926 Bot.HazardRec = 2927 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2928 Itin, DAG); 2929 } 2930 TopCand.SU = nullptr; 2931 BotCand.SU = nullptr; 2932 } 2933 2934 /// Initialize the per-region scheduling policy. 2935 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2936 MachineBasicBlock::iterator End, 2937 unsigned NumRegionInstrs) { 2938 const MachineFunction &MF = *Begin->getMF(); 2939 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2940 2941 // Avoid setting up the register pressure tracker for small regions to save 2942 // compile time. As a rough heuristic, only track pressure when the number of 2943 // schedulable instructions exceeds half the integer register file. 2944 RegionPolicy.ShouldTrackPressure = true; 2945 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2946 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2947 if (TLI->isTypeLegal(LegalIntVT)) { 2948 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2949 TLI->getRegClassFor(LegalIntVT)); 2950 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2951 } 2952 } 2953 2954 // For generic targets, we default to bottom-up, because it's simpler and more 2955 // compile-time optimizations have been implemented in that direction. 2956 RegionPolicy.OnlyBottomUp = true; 2957 2958 // Allow the subtarget to override default policy. 2959 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2960 2961 // After subtarget overrides, apply command line options. 2962 if (!EnableRegPressure) { 2963 RegionPolicy.ShouldTrackPressure = false; 2964 RegionPolicy.ShouldTrackLaneMasks = false; 2965 } 2966 2967 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2968 // e.g. -misched-bottomup=false allows scheduling in both directions. 2969 assert((!ForceTopDown || !ForceBottomUp) && 2970 "-misched-topdown incompatible with -misched-bottomup"); 2971 if (ForceBottomUp.getNumOccurrences() > 0) { 2972 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2973 if (RegionPolicy.OnlyBottomUp) 2974 RegionPolicy.OnlyTopDown = false; 2975 } 2976 if (ForceTopDown.getNumOccurrences() > 0) { 2977 RegionPolicy.OnlyTopDown = ForceTopDown; 2978 if (RegionPolicy.OnlyTopDown) 2979 RegionPolicy.OnlyBottomUp = false; 2980 } 2981 } 2982 2983 void GenericScheduler::dumpPolicy() const { 2984 // Cannot completely remove virtual function even in release mode. 2985 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2986 dbgs() << "GenericScheduler RegionPolicy: " 2987 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2988 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2989 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2990 << "\n"; 2991 #endif 2992 } 2993 2994 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2995 /// critical path by more cycles than it takes to drain the instruction buffer. 2996 /// We estimate an upper bounds on in-flight instructions as: 2997 /// 2998 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2999 /// InFlightIterations = AcyclicPath / CyclesPerIteration 3000 /// InFlightResources = InFlightIterations * LoopResources 3001 /// 3002 /// TODO: Check execution resources in addition to IssueCount. 3003 void GenericScheduler::checkAcyclicLatency() { 3004 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 3005 return; 3006 3007 // Scaled number of cycles per loop iteration. 3008 unsigned IterCount = 3009 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 3010 Rem.RemIssueCount); 3011 // Scaled acyclic critical path. 3012 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 3013 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 3014 unsigned InFlightCount = 3015 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 3016 unsigned BufferLimit = 3017 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 3018 3019 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 3020 3021 LLVM_DEBUG( 3022 dbgs() << "IssueCycles=" 3023 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 3024 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 3025 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 3026 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 3027 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 3028 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 3029 } 3030 3031 void GenericScheduler::registerRoots() { 3032 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3033 3034 // Some roots may not feed into ExitSU. Check all of them in case. 3035 for (const SUnit *SU : Bot.Available) { 3036 if (SU->getDepth() > Rem.CriticalPath) 3037 Rem.CriticalPath = SU->getDepth(); 3038 } 3039 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 3040 if (DumpCriticalPathLength) { 3041 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 3042 } 3043 3044 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3045 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3046 checkAcyclicLatency(); 3047 } 3048 } 3049 3050 namespace llvm { 3051 bool tryPressure(const PressureChange &TryP, 3052 const PressureChange &CandP, 3053 GenericSchedulerBase::SchedCandidate &TryCand, 3054 GenericSchedulerBase::SchedCandidate &Cand, 3055 GenericSchedulerBase::CandReason Reason, 3056 const TargetRegisterInfo *TRI, 3057 const MachineFunction &MF) { 3058 // If one candidate decreases and the other increases, go with it. 3059 // Invalid candidates have UnitInc==0. 3060 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3061 Reason)) { 3062 return true; 3063 } 3064 // Do not compare the magnitude of pressure changes between top and bottom 3065 // boundary. 3066 if (Cand.AtTop != TryCand.AtTop) 3067 return false; 3068 3069 // If both candidates affect the same set in the same boundary, go with the 3070 // smallest increase. 3071 unsigned TryPSet = TryP.getPSetOrMax(); 3072 unsigned CandPSet = CandP.getPSetOrMax(); 3073 if (TryPSet == CandPSet) { 3074 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3075 Reason); 3076 } 3077 3078 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3079 std::numeric_limits<int>::max(); 3080 3081 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3082 std::numeric_limits<int>::max(); 3083 3084 // If the candidates are decreasing pressure, reverse priority. 3085 if (TryP.getUnitInc() < 0) 3086 std::swap(TryRank, CandRank); 3087 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3088 } 3089 3090 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3091 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3092 } 3093 3094 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3095 /// their physreg def/use. 3096 /// 3097 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3098 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3099 /// with the operation that produces or consumes the physreg. We'll do this when 3100 /// regalloc has support for parallel copies. 3101 int biasPhysReg(const SUnit *SU, bool isTop) { 3102 const MachineInstr *MI = SU->getInstr(); 3103 3104 if (MI->isCopy()) { 3105 unsigned ScheduledOper = isTop ? 1 : 0; 3106 unsigned UnscheduledOper = isTop ? 0 : 1; 3107 // If we have already scheduled the physreg produce/consumer, immediately 3108 // schedule the copy. 3109 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 3110 return 1; 3111 // If the physreg is at the boundary, defer it. Otherwise schedule it 3112 // immediately to free the dependent. We can hoist the copy later. 3113 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3114 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 3115 return AtBoundary ? -1 : 1; 3116 } 3117 3118 if (MI->isMoveImmediate()) { 3119 // If we have a move immediate and all successors have been assigned, bias 3120 // towards scheduling this later. Make sure all register defs are to 3121 // physical registers. 3122 bool DoBias = true; 3123 for (const MachineOperand &Op : MI->defs()) { 3124 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 3125 DoBias = false; 3126 break; 3127 } 3128 } 3129 3130 if (DoBias) 3131 return isTop ? -1 : 1; 3132 } 3133 3134 return 0; 3135 } 3136 } // end namespace llvm 3137 3138 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3139 bool AtTop, 3140 const RegPressureTracker &RPTracker, 3141 RegPressureTracker &TempTracker) { 3142 Cand.SU = SU; 3143 Cand.AtTop = AtTop; 3144 if (DAG->isTrackingPressure()) { 3145 if (AtTop) { 3146 TempTracker.getMaxDownwardPressureDelta( 3147 Cand.SU->getInstr(), 3148 Cand.RPDelta, 3149 DAG->getRegionCriticalPSets(), 3150 DAG->getRegPressure().MaxSetPressure); 3151 } else { 3152 if (VerifyScheduling) { 3153 TempTracker.getMaxUpwardPressureDelta( 3154 Cand.SU->getInstr(), 3155 &DAG->getPressureDiff(Cand.SU), 3156 Cand.RPDelta, 3157 DAG->getRegionCriticalPSets(), 3158 DAG->getRegPressure().MaxSetPressure); 3159 } else { 3160 RPTracker.getUpwardPressureDelta( 3161 Cand.SU->getInstr(), 3162 DAG->getPressureDiff(Cand.SU), 3163 Cand.RPDelta, 3164 DAG->getRegionCriticalPSets(), 3165 DAG->getRegPressure().MaxSetPressure); 3166 } 3167 } 3168 } 3169 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3170 << " Try SU(" << Cand.SU->NodeNum << ") " 3171 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3172 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3173 } 3174 3175 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3176 /// hierarchical. This may be more efficient than a graduated cost model because 3177 /// we don't need to evaluate all aspects of the model for each node in the 3178 /// queue. But it's really done to make the heuristics easier to debug and 3179 /// statistically analyze. 3180 /// 3181 /// \param Cand provides the policy and current best candidate. 3182 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3183 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3184 /// if Cand is from a different zone than TryCand. 3185 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3186 bool GenericScheduler::tryCandidate(SchedCandidate &Cand, 3187 SchedCandidate &TryCand, 3188 SchedBoundary *Zone) const { 3189 // Initialize the candidate if needed. 3190 if (!Cand.isValid()) { 3191 TryCand.Reason = NodeOrder; 3192 return true; 3193 } 3194 3195 // Bias PhysReg Defs and copies to their uses and defined respectively. 3196 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3197 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3198 return TryCand.Reason != NoCand; 3199 3200 // Avoid exceeding the target's limit. 3201 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3202 Cand.RPDelta.Excess, 3203 TryCand, Cand, RegExcess, TRI, 3204 DAG->MF)) 3205 return TryCand.Reason != NoCand; 3206 3207 // Avoid increasing the max critical pressure in the scheduled region. 3208 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3209 Cand.RPDelta.CriticalMax, 3210 TryCand, Cand, RegCritical, TRI, 3211 DAG->MF)) 3212 return TryCand.Reason != NoCand; 3213 3214 // We only compare a subset of features when comparing nodes between 3215 // Top and Bottom boundary. Some properties are simply incomparable, in many 3216 // other instances we should only override the other boundary if something 3217 // is a clear good pick on one boundary. Skip heuristics that are more 3218 // "tie-breaking" in nature. 3219 bool SameBoundary = Zone != nullptr; 3220 if (SameBoundary) { 3221 // For loops that are acyclic path limited, aggressively schedule for 3222 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3223 // heuristics to take precedence. 3224 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3225 tryLatency(TryCand, Cand, *Zone)) 3226 return TryCand.Reason != NoCand; 3227 3228 // Prioritize instructions that read unbuffered resources by stall cycles. 3229 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3230 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3231 return TryCand.Reason != NoCand; 3232 } 3233 3234 // Keep clustered nodes together to encourage downstream peephole 3235 // optimizations which may reduce resource requirements. 3236 // 3237 // This is a best effort to set things up for a post-RA pass. Optimizations 3238 // like generating loads of multiple registers should ideally be done within 3239 // the scheduler pass by combining the loads during DAG postprocessing. 3240 const SUnit *CandNextClusterSU = 3241 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3242 const SUnit *TryCandNextClusterSU = 3243 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3244 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3245 Cand.SU == CandNextClusterSU, 3246 TryCand, Cand, Cluster)) 3247 return TryCand.Reason != NoCand; 3248 3249 if (SameBoundary) { 3250 // Weak edges are for clustering and other constraints. 3251 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3252 getWeakLeft(Cand.SU, Cand.AtTop), 3253 TryCand, Cand, Weak)) 3254 return TryCand.Reason != NoCand; 3255 } 3256 3257 // Avoid increasing the max pressure of the entire region. 3258 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3259 Cand.RPDelta.CurrentMax, 3260 TryCand, Cand, RegMax, TRI, 3261 DAG->MF)) 3262 return TryCand.Reason != NoCand; 3263 3264 if (SameBoundary) { 3265 // Avoid critical resource consumption and balance the schedule. 3266 TryCand.initResourceDelta(DAG, SchedModel); 3267 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3268 TryCand, Cand, ResourceReduce)) 3269 return TryCand.Reason != NoCand; 3270 if (tryGreater(TryCand.ResDelta.DemandedResources, 3271 Cand.ResDelta.DemandedResources, 3272 TryCand, Cand, ResourceDemand)) 3273 return TryCand.Reason != NoCand; 3274 3275 // Avoid serializing long latency dependence chains. 3276 // For acyclic path limited loops, latency was already checked above. 3277 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3278 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3279 return TryCand.Reason != NoCand; 3280 3281 // Fall through to original instruction order. 3282 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3283 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3284 TryCand.Reason = NodeOrder; 3285 return true; 3286 } 3287 } 3288 3289 return false; 3290 } 3291 3292 /// Pick the best candidate from the queue. 3293 /// 3294 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3295 /// DAG building. To adjust for the current scheduling location we need to 3296 /// maintain the number of vreg uses remaining to be top-scheduled. 3297 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3298 const CandPolicy &ZonePolicy, 3299 const RegPressureTracker &RPTracker, 3300 SchedCandidate &Cand) { 3301 // getMaxPressureDelta temporarily modifies the tracker. 3302 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3303 3304 ReadyQueue &Q = Zone.Available; 3305 for (SUnit *SU : Q) { 3306 3307 SchedCandidate TryCand(ZonePolicy); 3308 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3309 // Pass SchedBoundary only when comparing nodes from the same boundary. 3310 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3311 if (tryCandidate(Cand, TryCand, ZoneArg)) { 3312 // Initialize resource delta if needed in case future heuristics query it. 3313 if (TryCand.ResDelta == SchedResourceDelta()) 3314 TryCand.initResourceDelta(DAG, SchedModel); 3315 Cand.setBest(TryCand); 3316 LLVM_DEBUG(traceCandidate(Cand)); 3317 } 3318 } 3319 } 3320 3321 /// Pick the best candidate node from either the top or bottom queue. 3322 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3323 // Schedule as far as possible in the direction of no choice. This is most 3324 // efficient, but also provides the best heuristics for CriticalPSets. 3325 if (SUnit *SU = Bot.pickOnlyChoice()) { 3326 IsTopNode = false; 3327 tracePick(Only1, false); 3328 return SU; 3329 } 3330 if (SUnit *SU = Top.pickOnlyChoice()) { 3331 IsTopNode = true; 3332 tracePick(Only1, true); 3333 return SU; 3334 } 3335 // Set the bottom-up policy based on the state of the current bottom zone and 3336 // the instructions outside the zone, including the top zone. 3337 CandPolicy BotPolicy; 3338 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3339 // Set the top-down policy based on the state of the current top zone and 3340 // the instructions outside the zone, including the bottom zone. 3341 CandPolicy TopPolicy; 3342 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3343 3344 // See if BotCand is still valid (because we previously scheduled from Top). 3345 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3346 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3347 BotCand.Policy != BotPolicy) { 3348 BotCand.reset(CandPolicy()); 3349 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3350 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3351 } else { 3352 LLVM_DEBUG(traceCandidate(BotCand)); 3353 #ifndef NDEBUG 3354 if (VerifyScheduling) { 3355 SchedCandidate TCand; 3356 TCand.reset(CandPolicy()); 3357 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3358 assert(TCand.SU == BotCand.SU && 3359 "Last pick result should correspond to re-picking right now"); 3360 } 3361 #endif 3362 } 3363 3364 // Check if the top Q has a better candidate. 3365 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3366 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3367 TopCand.Policy != TopPolicy) { 3368 TopCand.reset(CandPolicy()); 3369 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3370 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3371 } else { 3372 LLVM_DEBUG(traceCandidate(TopCand)); 3373 #ifndef NDEBUG 3374 if (VerifyScheduling) { 3375 SchedCandidate TCand; 3376 TCand.reset(CandPolicy()); 3377 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3378 assert(TCand.SU == TopCand.SU && 3379 "Last pick result should correspond to re-picking right now"); 3380 } 3381 #endif 3382 } 3383 3384 // Pick best from BotCand and TopCand. 3385 assert(BotCand.isValid()); 3386 assert(TopCand.isValid()); 3387 SchedCandidate Cand = BotCand; 3388 TopCand.Reason = NoCand; 3389 if (tryCandidate(Cand, TopCand, nullptr)) { 3390 Cand.setBest(TopCand); 3391 LLVM_DEBUG(traceCandidate(Cand)); 3392 } 3393 3394 IsTopNode = Cand.AtTop; 3395 tracePick(Cand); 3396 return Cand.SU; 3397 } 3398 3399 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3400 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3401 if (DAG->top() == DAG->bottom()) { 3402 assert(Top.Available.empty() && Top.Pending.empty() && 3403 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3404 return nullptr; 3405 } 3406 SUnit *SU; 3407 do { 3408 if (RegionPolicy.OnlyTopDown) { 3409 SU = Top.pickOnlyChoice(); 3410 if (!SU) { 3411 CandPolicy NoPolicy; 3412 TopCand.reset(NoPolicy); 3413 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3414 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3415 tracePick(TopCand); 3416 SU = TopCand.SU; 3417 } 3418 IsTopNode = true; 3419 } else if (RegionPolicy.OnlyBottomUp) { 3420 SU = Bot.pickOnlyChoice(); 3421 if (!SU) { 3422 CandPolicy NoPolicy; 3423 BotCand.reset(NoPolicy); 3424 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3425 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3426 tracePick(BotCand); 3427 SU = BotCand.SU; 3428 } 3429 IsTopNode = false; 3430 } else { 3431 SU = pickNodeBidirectional(IsTopNode); 3432 } 3433 } while (SU->isScheduled); 3434 3435 if (SU->isTopReady()) 3436 Top.removeReady(SU); 3437 if (SU->isBottomReady()) 3438 Bot.removeReady(SU); 3439 3440 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3441 << *SU->getInstr()); 3442 return SU; 3443 } 3444 3445 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3446 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3447 if (!isTop) 3448 ++InsertPos; 3449 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3450 3451 // Find already scheduled copies with a single physreg dependence and move 3452 // them just above the scheduled instruction. 3453 for (SDep &Dep : Deps) { 3454 if (Dep.getKind() != SDep::Data || 3455 !Register::isPhysicalRegister(Dep.getReg())) 3456 continue; 3457 SUnit *DepSU = Dep.getSUnit(); 3458 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3459 continue; 3460 MachineInstr *Copy = DepSU->getInstr(); 3461 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3462 continue; 3463 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3464 DAG->dumpNode(*Dep.getSUnit())); 3465 DAG->moveInstruction(Copy, InsertPos); 3466 } 3467 } 3468 3469 /// Update the scheduler's state after scheduling a node. This is the same node 3470 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3471 /// update it's state based on the current cycle before MachineSchedStrategy 3472 /// does. 3473 /// 3474 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3475 /// them here. See comments in biasPhysReg. 3476 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3477 if (IsTopNode) { 3478 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3479 Top.bumpNode(SU); 3480 if (SU->hasPhysRegUses) 3481 reschedulePhysReg(SU, true); 3482 } else { 3483 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3484 Bot.bumpNode(SU); 3485 if (SU->hasPhysRegDefs) 3486 reschedulePhysReg(SU, false); 3487 } 3488 } 3489 3490 /// Create the standard converging machine scheduler. This will be used as the 3491 /// default scheduler if the target does not set a default. 3492 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3493 ScheduleDAGMILive *DAG = 3494 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3495 // Register DAG post-processors. 3496 // 3497 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3498 // data and pass it to later mutations. Have a single mutation that gathers 3499 // the interesting nodes in one pass. 3500 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3501 return DAG; 3502 } 3503 3504 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3505 return createGenericSchedLive(C); 3506 } 3507 3508 static MachineSchedRegistry 3509 GenericSchedRegistry("converge", "Standard converging scheduler.", 3510 createConvergingSched); 3511 3512 //===----------------------------------------------------------------------===// 3513 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3514 //===----------------------------------------------------------------------===// 3515 3516 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3517 DAG = Dag; 3518 SchedModel = DAG->getSchedModel(); 3519 TRI = DAG->TRI; 3520 3521 Rem.init(DAG, SchedModel); 3522 Top.init(DAG, SchedModel, &Rem); 3523 BotRoots.clear(); 3524 3525 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3526 // or are disabled, then these HazardRecs will be disabled. 3527 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3528 if (!Top.HazardRec) { 3529 Top.HazardRec = 3530 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3531 Itin, DAG); 3532 } 3533 } 3534 3535 void PostGenericScheduler::registerRoots() { 3536 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3537 3538 // Some roots may not feed into ExitSU. Check all of them in case. 3539 for (const SUnit *SU : BotRoots) { 3540 if (SU->getDepth() > Rem.CriticalPath) 3541 Rem.CriticalPath = SU->getDepth(); 3542 } 3543 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3544 if (DumpCriticalPathLength) { 3545 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3546 } 3547 } 3548 3549 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3550 /// 3551 /// \param Cand provides the policy and current best candidate. 3552 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3553 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3554 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3555 SchedCandidate &TryCand) { 3556 // Initialize the candidate if needed. 3557 if (!Cand.isValid()) { 3558 TryCand.Reason = NodeOrder; 3559 return true; 3560 } 3561 3562 // Prioritize instructions that read unbuffered resources by stall cycles. 3563 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3564 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3565 return TryCand.Reason != NoCand; 3566 3567 // Keep clustered nodes together. 3568 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3569 Cand.SU == DAG->getNextClusterSucc(), 3570 TryCand, Cand, Cluster)) 3571 return TryCand.Reason != NoCand; 3572 3573 // Avoid critical resource consumption and balance the schedule. 3574 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3575 TryCand, Cand, ResourceReduce)) 3576 return TryCand.Reason != NoCand; 3577 if (tryGreater(TryCand.ResDelta.DemandedResources, 3578 Cand.ResDelta.DemandedResources, 3579 TryCand, Cand, ResourceDemand)) 3580 return TryCand.Reason != NoCand; 3581 3582 // Avoid serializing long latency dependence chains. 3583 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3584 return TryCand.Reason != NoCand; 3585 } 3586 3587 // Fall through to original instruction order. 3588 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 3589 TryCand.Reason = NodeOrder; 3590 return true; 3591 } 3592 3593 return false; 3594 } 3595 3596 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3597 ReadyQueue &Q = Top.Available; 3598 for (SUnit *SU : Q) { 3599 SchedCandidate TryCand(Cand.Policy); 3600 TryCand.SU = SU; 3601 TryCand.AtTop = true; 3602 TryCand.initResourceDelta(DAG, SchedModel); 3603 if (tryCandidate(Cand, TryCand)) { 3604 Cand.setBest(TryCand); 3605 LLVM_DEBUG(traceCandidate(Cand)); 3606 } 3607 } 3608 } 3609 3610 /// Pick the next node to schedule. 3611 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3612 if (DAG->top() == DAG->bottom()) { 3613 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3614 return nullptr; 3615 } 3616 SUnit *SU; 3617 do { 3618 SU = Top.pickOnlyChoice(); 3619 if (SU) { 3620 tracePick(Only1, true); 3621 } else { 3622 CandPolicy NoPolicy; 3623 SchedCandidate TopCand(NoPolicy); 3624 // Set the top-down policy based on the state of the current top zone and 3625 // the instructions outside the zone, including the bottom zone. 3626 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3627 pickNodeFromQueue(TopCand); 3628 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3629 tracePick(TopCand); 3630 SU = TopCand.SU; 3631 } 3632 } while (SU->isScheduled); 3633 3634 IsTopNode = true; 3635 Top.removeReady(SU); 3636 3637 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3638 << *SU->getInstr()); 3639 return SU; 3640 } 3641 3642 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3643 /// scheduled/remaining flags in the DAG nodes. 3644 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3645 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3646 Top.bumpNode(SU); 3647 } 3648 3649 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3650 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3651 /*RemoveKillFlags=*/true); 3652 } 3653 3654 //===----------------------------------------------------------------------===// 3655 // ILP Scheduler. Currently for experimental analysis of heuristics. 3656 //===----------------------------------------------------------------------===// 3657 3658 namespace { 3659 3660 /// Order nodes by the ILP metric. 3661 struct ILPOrder { 3662 const SchedDFSResult *DFSResult = nullptr; 3663 const BitVector *ScheduledTrees = nullptr; 3664 bool MaximizeILP; 3665 3666 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3667 3668 /// Apply a less-than relation on node priority. 3669 /// 3670 /// (Return true if A comes after B in the Q.) 3671 bool operator()(const SUnit *A, const SUnit *B) const { 3672 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3673 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3674 if (SchedTreeA != SchedTreeB) { 3675 // Unscheduled trees have lower priority. 3676 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3677 return ScheduledTrees->test(SchedTreeB); 3678 3679 // Trees with shallower connections have have lower priority. 3680 if (DFSResult->getSubtreeLevel(SchedTreeA) 3681 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3682 return DFSResult->getSubtreeLevel(SchedTreeA) 3683 < DFSResult->getSubtreeLevel(SchedTreeB); 3684 } 3685 } 3686 if (MaximizeILP) 3687 return DFSResult->getILP(A) < DFSResult->getILP(B); 3688 else 3689 return DFSResult->getILP(A) > DFSResult->getILP(B); 3690 } 3691 }; 3692 3693 /// Schedule based on the ILP metric. 3694 class ILPScheduler : public MachineSchedStrategy { 3695 ScheduleDAGMILive *DAG = nullptr; 3696 ILPOrder Cmp; 3697 3698 std::vector<SUnit*> ReadyQ; 3699 3700 public: 3701 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3702 3703 void initialize(ScheduleDAGMI *dag) override { 3704 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3705 DAG = static_cast<ScheduleDAGMILive*>(dag); 3706 DAG->computeDFSResult(); 3707 Cmp.DFSResult = DAG->getDFSResult(); 3708 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3709 ReadyQ.clear(); 3710 } 3711 3712 void registerRoots() override { 3713 // Restore the heap in ReadyQ with the updated DFS results. 3714 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3715 } 3716 3717 /// Implement MachineSchedStrategy interface. 3718 /// ----------------------------------------- 3719 3720 /// Callback to select the highest priority node from the ready Q. 3721 SUnit *pickNode(bool &IsTopNode) override { 3722 if (ReadyQ.empty()) return nullptr; 3723 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3724 SUnit *SU = ReadyQ.back(); 3725 ReadyQ.pop_back(); 3726 IsTopNode = false; 3727 LLVM_DEBUG(dbgs() << "Pick node " 3728 << "SU(" << SU->NodeNum << ") " 3729 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3730 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3731 << " @" 3732 << DAG->getDFSResult()->getSubtreeLevel( 3733 DAG->getDFSResult()->getSubtreeID(SU)) 3734 << '\n' 3735 << "Scheduling " << *SU->getInstr()); 3736 return SU; 3737 } 3738 3739 /// Scheduler callback to notify that a new subtree is scheduled. 3740 void scheduleTree(unsigned SubtreeID) override { 3741 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3742 } 3743 3744 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3745 /// DFSResults, and resort the priority Q. 3746 void schedNode(SUnit *SU, bool IsTopNode) override { 3747 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3748 } 3749 3750 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3751 3752 void releaseBottomNode(SUnit *SU) override { 3753 ReadyQ.push_back(SU); 3754 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3755 } 3756 }; 3757 3758 } // end anonymous namespace 3759 3760 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3761 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3762 } 3763 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3764 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3765 } 3766 3767 static MachineSchedRegistry ILPMaxRegistry( 3768 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3769 static MachineSchedRegistry ILPMinRegistry( 3770 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3771 3772 //===----------------------------------------------------------------------===// 3773 // Machine Instruction Shuffler for Correctness Testing 3774 //===----------------------------------------------------------------------===// 3775 3776 #ifndef NDEBUG 3777 namespace { 3778 3779 /// Apply a less-than relation on the node order, which corresponds to the 3780 /// instruction order prior to scheduling. IsReverse implements greater-than. 3781 template<bool IsReverse> 3782 struct SUnitOrder { 3783 bool operator()(SUnit *A, SUnit *B) const { 3784 if (IsReverse) 3785 return A->NodeNum > B->NodeNum; 3786 else 3787 return A->NodeNum < B->NodeNum; 3788 } 3789 }; 3790 3791 /// Reorder instructions as much as possible. 3792 class InstructionShuffler : public MachineSchedStrategy { 3793 bool IsAlternating; 3794 bool IsTopDown; 3795 3796 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3797 // gives nodes with a higher number higher priority causing the latest 3798 // instructions to be scheduled first. 3799 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3800 TopQ; 3801 3802 // When scheduling bottom-up, use greater-than as the queue priority. 3803 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3804 BottomQ; 3805 3806 public: 3807 InstructionShuffler(bool alternate, bool topdown) 3808 : IsAlternating(alternate), IsTopDown(topdown) {} 3809 3810 void initialize(ScheduleDAGMI*) override { 3811 TopQ.clear(); 3812 BottomQ.clear(); 3813 } 3814 3815 /// Implement MachineSchedStrategy interface. 3816 /// ----------------------------------------- 3817 3818 SUnit *pickNode(bool &IsTopNode) override { 3819 SUnit *SU; 3820 if (IsTopDown) { 3821 do { 3822 if (TopQ.empty()) return nullptr; 3823 SU = TopQ.top(); 3824 TopQ.pop(); 3825 } while (SU->isScheduled); 3826 IsTopNode = true; 3827 } else { 3828 do { 3829 if (BottomQ.empty()) return nullptr; 3830 SU = BottomQ.top(); 3831 BottomQ.pop(); 3832 } while (SU->isScheduled); 3833 IsTopNode = false; 3834 } 3835 if (IsAlternating) 3836 IsTopDown = !IsTopDown; 3837 return SU; 3838 } 3839 3840 void schedNode(SUnit *SU, bool IsTopNode) override {} 3841 3842 void releaseTopNode(SUnit *SU) override { 3843 TopQ.push(SU); 3844 } 3845 void releaseBottomNode(SUnit *SU) override { 3846 BottomQ.push(SU); 3847 } 3848 }; 3849 3850 } // end anonymous namespace 3851 3852 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3853 bool Alternate = !ForceTopDown && !ForceBottomUp; 3854 bool TopDown = !ForceBottomUp; 3855 assert((TopDown || !ForceTopDown) && 3856 "-misched-topdown incompatible with -misched-bottomup"); 3857 return new ScheduleDAGMILive( 3858 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3859 } 3860 3861 static MachineSchedRegistry ShufflerRegistry( 3862 "shuffle", "Shuffle machine instructions alternating directions", 3863 createInstructionShuffler); 3864 #endif // !NDEBUG 3865 3866 //===----------------------------------------------------------------------===// 3867 // GraphWriter support for ScheduleDAGMILive. 3868 //===----------------------------------------------------------------------===// 3869 3870 #ifndef NDEBUG 3871 namespace llvm { 3872 3873 template<> struct GraphTraits< 3874 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3875 3876 template<> 3877 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3878 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3879 3880 static std::string getGraphName(const ScheduleDAG *G) { 3881 return std::string(G->MF.getName()); 3882 } 3883 3884 static bool renderGraphFromBottomUp() { 3885 return true; 3886 } 3887 3888 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 3889 if (ViewMISchedCutoff == 0) 3890 return false; 3891 return (Node->Preds.size() > ViewMISchedCutoff 3892 || Node->Succs.size() > ViewMISchedCutoff); 3893 } 3894 3895 /// If you want to override the dot attributes printed for a particular 3896 /// edge, override this method. 3897 static std::string getEdgeAttributes(const SUnit *Node, 3898 SUnitIterator EI, 3899 const ScheduleDAG *Graph) { 3900 if (EI.isArtificialDep()) 3901 return "color=cyan,style=dashed"; 3902 if (EI.isCtrlDep()) 3903 return "color=blue,style=dashed"; 3904 return ""; 3905 } 3906 3907 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3908 std::string Str; 3909 raw_string_ostream SS(Str); 3910 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3911 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3912 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3913 SS << "SU:" << SU->NodeNum; 3914 if (DFS) 3915 SS << " I:" << DFS->getNumInstrs(SU); 3916 return SS.str(); 3917 } 3918 3919 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3920 return G->getGraphNodeLabel(SU); 3921 } 3922 3923 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3924 std::string Str("shape=Mrecord"); 3925 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3926 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3927 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3928 if (DFS) { 3929 Str += ",style=filled,fillcolor=\"#"; 3930 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3931 Str += '"'; 3932 } 3933 return Str; 3934 } 3935 }; 3936 3937 } // end namespace llvm 3938 #endif // NDEBUG 3939 3940 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3941 /// rendered using 'dot'. 3942 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3943 #ifndef NDEBUG 3944 ViewGraph(this, Name, false, Title); 3945 #else 3946 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3947 << "systems with Graphviz or gv!\n"; 3948 #endif // NDEBUG 3949 } 3950 3951 /// Out-of-line implementation with no arguments is handy for gdb. 3952 void ScheduleDAGMI::viewGraph() { 3953 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3954 } 3955