1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SetVector.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/iterator_range.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/CycleAnalysis.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/CodeGen/DFAPacketizer.h" 52 #include "llvm/CodeGen/LiveIntervals.h" 53 #include "llvm/CodeGen/MachineBasicBlock.h" 54 #include "llvm/CodeGen/MachineDominators.h" 55 #include "llvm/CodeGen/MachineFunction.h" 56 #include "llvm/CodeGen/MachineFunctionPass.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineLoopInfo.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/ModuloSchedule.h" 64 #include "llvm/CodeGen/Register.h" 65 #include "llvm/CodeGen/RegisterClassInfo.h" 66 #include "llvm/CodeGen/RegisterPressure.h" 67 #include "llvm/CodeGen/ScheduleDAG.h" 68 #include "llvm/CodeGen/ScheduleDAGMutation.h" 69 #include "llvm/CodeGen/TargetInstrInfo.h" 70 #include "llvm/CodeGen/TargetOpcodes.h" 71 #include "llvm/CodeGen/TargetPassConfig.h" 72 #include "llvm/CodeGen/TargetRegisterInfo.h" 73 #include "llvm/CodeGen/TargetSubtargetInfo.h" 74 #include "llvm/Config/llvm-config.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/MC/LaneBitmask.h" 78 #include "llvm/MC/MCInstrDesc.h" 79 #include "llvm/MC/MCInstrItineraries.h" 80 #include "llvm/MC/MCRegisterInfo.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <algorithm> 88 #include <cassert> 89 #include <climits> 90 #include <cstdint> 91 #include <deque> 92 #include <functional> 93 #include <iomanip> 94 #include <iterator> 95 #include <map> 96 #include <memory> 97 #include <sstream> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "pipeliner" 105 106 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 107 STATISTIC(NumPipelined, "Number of loops software pipelined"); 108 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 109 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 110 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 111 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 112 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 113 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 114 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 115 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 116 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 117 118 /// A command line option to turn software pipelining on or off. 119 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 120 cl::desc("Enable Software Pipelining")); 121 122 /// A command line option to enable SWP at -Os. 123 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 124 cl::desc("Enable SWP at Os."), cl::Hidden, 125 cl::init(false)); 126 127 /// A command line argument to limit minimum initial interval for pipelining. 128 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 129 cl::desc("Size limit for the MII."), 130 cl::Hidden, cl::init(27)); 131 132 /// A command line argument to force pipeliner to use specified initial 133 /// interval. 134 static cl::opt<int> SwpForceII("pipeliner-force-ii", 135 cl::desc("Force pipeliner to use specified II."), 136 cl::Hidden, cl::init(-1)); 137 138 /// A command line argument to limit the number of stages in the pipeline. 139 static cl::opt<int> 140 SwpMaxStages("pipeliner-max-stages", 141 cl::desc("Maximum stages allowed in the generated scheduled."), 142 cl::Hidden, cl::init(3)); 143 144 /// A command line option to disable the pruning of chain dependences due to 145 /// an unrelated Phi. 146 static cl::opt<bool> 147 SwpPruneDeps("pipeliner-prune-deps", 148 cl::desc("Prune dependences between unrelated Phi nodes."), 149 cl::Hidden, cl::init(true)); 150 151 /// A command line option to disable the pruning of loop carried order 152 /// dependences. 153 static cl::opt<bool> 154 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 155 cl::desc("Prune loop carried order dependences."), 156 cl::Hidden, cl::init(true)); 157 158 #ifndef NDEBUG 159 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 160 #endif 161 162 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 163 cl::ReallyHidden, 164 cl::desc("Ignore RecMII")); 165 166 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 167 cl::init(false)); 168 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 169 cl::init(false)); 170 171 static cl::opt<bool> EmitTestAnnotations( 172 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 173 cl::desc("Instead of emitting the pipelined code, annotate instructions " 174 "with the generated schedule for feeding into the " 175 "-modulo-schedule-test pass")); 176 177 static cl::opt<bool> ExperimentalCodeGen( 178 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 179 cl::desc( 180 "Use the experimental peeling code generator for software pipelining")); 181 182 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", 183 cl::desc("Range to search for II"), 184 cl::Hidden, cl::init(10)); 185 186 static cl::opt<bool> 187 LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), 188 cl::desc("Limit register pressure of scheduled loop")); 189 190 static cl::opt<int> 191 RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, 192 cl::init(5), 193 cl::desc("Margin representing the unused percentage of " 194 "the register pressure limit")); 195 196 static cl::opt<bool> 197 MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false), 198 cl::desc("Use the MVE code generator for software pipelining")); 199 200 namespace llvm { 201 202 // A command line option to enable the CopyToPhi DAG mutation. 203 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 204 cl::init(true), 205 cl::desc("Enable CopyToPhi DAG Mutation")); 206 207 /// A command line argument to force pipeliner to use specified issue 208 /// width. 209 cl::opt<int> SwpForceIssueWidth( 210 "pipeliner-force-issue-width", 211 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 212 cl::init(-1)); 213 214 /// A command line argument to set the window scheduling option. 215 cl::opt<WindowSchedulingFlag> WindowSchedulingOption( 216 "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On), 217 cl::desc("Set how to use window scheduling algorithm."), 218 cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off", 219 "Turn off window algorithm."), 220 clEnumValN(WindowSchedulingFlag::WS_On, "on", 221 "Use window algorithm after SMS algorithm fails."), 222 clEnumValN(WindowSchedulingFlag::WS_Force, "force", 223 "Use window algorithm instead of SMS algorithm."))); 224 225 } // end namespace llvm 226 227 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 228 char MachinePipeliner::ID = 0; 229 #ifndef NDEBUG 230 int MachinePipeliner::NumTries = 0; 231 #endif 232 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 233 234 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 235 "Modulo Software Pipelining", false, false) 236 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 237 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 238 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 239 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 240 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 241 "Modulo Software Pipelining", false, false) 242 243 /// The "main" function for implementing Swing Modulo Scheduling. 244 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 245 if (skipFunction(mf.getFunction())) 246 return false; 247 248 if (!EnableSWP) 249 return false; 250 251 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 252 !EnableSWPOptSize.getPosition()) 253 return false; 254 255 if (!mf.getSubtarget().enableMachinePipeliner()) 256 return false; 257 258 // Cannot pipeline loops without instruction itineraries if we are using 259 // DFA for the pipeliner. 260 if (mf.getSubtarget().useDFAforSMS() && 261 (!mf.getSubtarget().getInstrItineraryData() || 262 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 263 return false; 264 265 MF = &mf; 266 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 267 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 268 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 269 TII = MF->getSubtarget().getInstrInfo(); 270 RegClassInfo.runOnMachineFunction(*MF); 271 272 for (const auto &L : *MLI) 273 scheduleLoop(*L); 274 275 return false; 276 } 277 278 /// Attempt to perform the SMS algorithm on the specified loop. This function is 279 /// the main entry point for the algorithm. The function identifies candidate 280 /// loops, calculates the minimum initiation interval, and attempts to schedule 281 /// the loop. 282 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 283 bool Changed = false; 284 for (const auto &InnerLoop : L) 285 Changed |= scheduleLoop(*InnerLoop); 286 287 #ifndef NDEBUG 288 // Stop trying after reaching the limit (if any). 289 int Limit = SwpLoopLimit; 290 if (Limit >= 0) { 291 if (NumTries >= SwpLoopLimit) 292 return Changed; 293 NumTries++; 294 } 295 #endif 296 297 setPragmaPipelineOptions(L); 298 if (!canPipelineLoop(L)) { 299 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 300 ORE->emit([&]() { 301 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 302 L.getStartLoc(), L.getHeader()) 303 << "Failed to pipeline loop"; 304 }); 305 306 LI.LoopPipelinerInfo.reset(); 307 return Changed; 308 } 309 310 ++NumTrytoPipeline; 311 if (useSwingModuloScheduler()) 312 Changed = swingModuloScheduler(L); 313 314 if (useWindowScheduler(Changed)) 315 Changed = runWindowScheduler(L); 316 317 LI.LoopPipelinerInfo.reset(); 318 return Changed; 319 } 320 321 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 322 // Reset the pragma for the next loop in iteration. 323 disabledByPragma = false; 324 II_setByPragma = 0; 325 326 MachineBasicBlock *LBLK = L.getTopBlock(); 327 328 if (LBLK == nullptr) 329 return; 330 331 const BasicBlock *BBLK = LBLK->getBasicBlock(); 332 if (BBLK == nullptr) 333 return; 334 335 const Instruction *TI = BBLK->getTerminator(); 336 if (TI == nullptr) 337 return; 338 339 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 340 if (LoopID == nullptr) 341 return; 342 343 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 344 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 345 346 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 347 MDNode *MD = dyn_cast<MDNode>(MDO); 348 349 if (MD == nullptr) 350 continue; 351 352 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 353 354 if (S == nullptr) 355 continue; 356 357 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 358 assert(MD->getNumOperands() == 2 && 359 "Pipeline initiation interval hint metadata should have two operands."); 360 II_setByPragma = 361 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 362 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 363 } else if (S->getString() == "llvm.loop.pipeline.disable") { 364 disabledByPragma = true; 365 } 366 } 367 } 368 369 /// Return true if the loop can be software pipelined. The algorithm is 370 /// restricted to loops with a single basic block. Make sure that the 371 /// branch in the loop can be analyzed. 372 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 373 if (L.getNumBlocks() != 1) { 374 ORE->emit([&]() { 375 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 376 L.getStartLoc(), L.getHeader()) 377 << "Not a single basic block: " 378 << ore::NV("NumBlocks", L.getNumBlocks()); 379 }); 380 return false; 381 } 382 383 if (disabledByPragma) { 384 ORE->emit([&]() { 385 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 386 L.getStartLoc(), L.getHeader()) 387 << "Disabled by Pragma."; 388 }); 389 return false; 390 } 391 392 // Check if the branch can't be understood because we can't do pipelining 393 // if that's the case. 394 LI.TBB = nullptr; 395 LI.FBB = nullptr; 396 LI.BrCond.clear(); 397 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 398 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 399 NumFailBranch++; 400 ORE->emit([&]() { 401 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 402 L.getStartLoc(), L.getHeader()) 403 << "The branch can't be understood"; 404 }); 405 return false; 406 } 407 408 LI.LoopInductionVar = nullptr; 409 LI.LoopCompare = nullptr; 410 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 411 if (!LI.LoopPipelinerInfo) { 412 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 413 NumFailLoop++; 414 ORE->emit([&]() { 415 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 416 L.getStartLoc(), L.getHeader()) 417 << "The loop structure is not supported"; 418 }); 419 return false; 420 } 421 422 if (!L.getLoopPreheader()) { 423 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 424 NumFailPreheader++; 425 ORE->emit([&]() { 426 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 427 L.getStartLoc(), L.getHeader()) 428 << "No loop preheader found"; 429 }); 430 return false; 431 } 432 433 // Remove any subregisters from inputs to phi nodes. 434 preprocessPhiNodes(*L.getHeader()); 435 return true; 436 } 437 438 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 439 MachineRegisterInfo &MRI = MF->getRegInfo(); 440 SlotIndexes &Slots = 441 *getAnalysis<LiveIntervalsWrapperPass>().getLIS().getSlotIndexes(); 442 443 for (MachineInstr &PI : B.phis()) { 444 MachineOperand &DefOp = PI.getOperand(0); 445 assert(DefOp.getSubReg() == 0); 446 auto *RC = MRI.getRegClass(DefOp.getReg()); 447 448 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 449 MachineOperand &RegOp = PI.getOperand(i); 450 if (RegOp.getSubReg() == 0) 451 continue; 452 453 // If the operand uses a subregister, replace it with a new register 454 // without subregisters, and generate a copy to the new register. 455 Register NewReg = MRI.createVirtualRegister(RC); 456 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 457 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 458 const DebugLoc &DL = PredB.findDebugLoc(At); 459 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 460 .addReg(RegOp.getReg(), getRegState(RegOp), 461 RegOp.getSubReg()); 462 Slots.insertMachineInstrInMaps(*Copy); 463 RegOp.setReg(NewReg); 464 RegOp.setSubReg(0); 465 } 466 } 467 } 468 469 /// The SMS algorithm consists of the following main steps: 470 /// 1. Computation and analysis of the dependence graph. 471 /// 2. Ordering of the nodes (instructions). 472 /// 3. Attempt to Schedule the loop. 473 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 474 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 475 476 SwingSchedulerDAG SMS( 477 *this, L, getAnalysis<LiveIntervalsWrapperPass>().getLIS(), RegClassInfo, 478 II_setByPragma, LI.LoopPipelinerInfo.get()); 479 480 MachineBasicBlock *MBB = L.getHeader(); 481 // The kernel should not include any terminator instructions. These 482 // will be added back later. 483 SMS.startBlock(MBB); 484 485 // Compute the number of 'real' instructions in the basic block by 486 // ignoring terminators. 487 unsigned size = MBB->size(); 488 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 489 E = MBB->instr_end(); 490 I != E; ++I, --size) 491 ; 492 493 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 494 SMS.schedule(); 495 SMS.exitRegion(); 496 497 SMS.finishBlock(); 498 return SMS.hasNewSchedule(); 499 } 500 501 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 502 AU.addRequired<AAResultsWrapperPass>(); 503 AU.addPreserved<AAResultsWrapperPass>(); 504 AU.addRequired<MachineLoopInfoWrapperPass>(); 505 AU.addRequired<MachineDominatorTreeWrapperPass>(); 506 AU.addRequired<LiveIntervalsWrapperPass>(); 507 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 508 AU.addRequired<TargetPassConfig>(); 509 MachineFunctionPass::getAnalysisUsage(AU); 510 } 511 512 bool MachinePipeliner::runWindowScheduler(MachineLoop &L) { 513 MachineSchedContext Context; 514 Context.MF = MF; 515 Context.MLI = MLI; 516 Context.MDT = MDT; 517 Context.PassConfig = &getAnalysis<TargetPassConfig>(); 518 Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 519 Context.LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 520 Context.RegClassInfo->runOnMachineFunction(*MF); 521 WindowScheduler WS(&Context, L); 522 return WS.run(); 523 } 524 525 bool MachinePipeliner::useSwingModuloScheduler() { 526 // SwingModuloScheduler does not work when WindowScheduler is forced. 527 return WindowSchedulingOption != WindowSchedulingFlag::WS_Force; 528 } 529 530 bool MachinePipeliner::useWindowScheduler(bool Changed) { 531 // WindowScheduler does not work for following cases: 532 // 1. when it is off. 533 // 2. when SwingModuloScheduler is successfully scheduled. 534 // 3. when pragma II is enabled. 535 if (II_setByPragma) { 536 LLVM_DEBUG(dbgs() << "Window scheduling is disabled when " 537 "llvm.loop.pipeline.initiationinterval is set.\n"); 538 return false; 539 } 540 541 return WindowSchedulingOption == WindowSchedulingFlag::WS_Force || 542 (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed); 543 } 544 545 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 546 if (SwpForceII > 0) 547 MII = SwpForceII; 548 else if (II_setByPragma > 0) 549 MII = II_setByPragma; 550 else 551 MII = std::max(ResMII, RecMII); 552 } 553 554 void SwingSchedulerDAG::setMAX_II() { 555 if (SwpForceII > 0) 556 MAX_II = SwpForceII; 557 else if (II_setByPragma > 0) 558 MAX_II = II_setByPragma; 559 else 560 MAX_II = MII + SwpIISearchRange; 561 } 562 563 /// We override the schedule function in ScheduleDAGInstrs to implement the 564 /// scheduling part of the Swing Modulo Scheduling algorithm. 565 void SwingSchedulerDAG::schedule() { 566 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 567 buildSchedGraph(AA); 568 addLoopCarriedDependences(AA); 569 updatePhiDependences(); 570 Topo.InitDAGTopologicalSorting(); 571 changeDependences(); 572 postProcessDAG(); 573 LLVM_DEBUG(dump()); 574 575 NodeSetType NodeSets; 576 findCircuits(NodeSets); 577 NodeSetType Circuits = NodeSets; 578 579 // Calculate the MII. 580 unsigned ResMII = calculateResMII(); 581 unsigned RecMII = calculateRecMII(NodeSets); 582 583 fuseRecs(NodeSets); 584 585 // This flag is used for testing and can cause correctness problems. 586 if (SwpIgnoreRecMII) 587 RecMII = 0; 588 589 setMII(ResMII, RecMII); 590 setMAX_II(); 591 592 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 593 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 594 595 // Can't schedule a loop without a valid MII. 596 if (MII == 0) { 597 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 598 NumFailZeroMII++; 599 Pass.ORE->emit([&]() { 600 return MachineOptimizationRemarkAnalysis( 601 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 602 << "Invalid Minimal Initiation Interval: 0"; 603 }); 604 return; 605 } 606 607 // Don't pipeline large loops. 608 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 609 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 610 << ", we don't pipeline large loops\n"); 611 NumFailLargeMaxMII++; 612 Pass.ORE->emit([&]() { 613 return MachineOptimizationRemarkAnalysis( 614 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 615 << "Minimal Initiation Interval too large: " 616 << ore::NV("MII", (int)MII) << " > " 617 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 618 << "Refer to -pipeliner-max-mii."; 619 }); 620 return; 621 } 622 623 computeNodeFunctions(NodeSets); 624 625 registerPressureFilter(NodeSets); 626 627 colocateNodeSets(NodeSets); 628 629 checkNodeSets(NodeSets); 630 631 LLVM_DEBUG({ 632 for (auto &I : NodeSets) { 633 dbgs() << " Rec NodeSet "; 634 I.dump(); 635 } 636 }); 637 638 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 639 640 groupRemainingNodes(NodeSets); 641 642 removeDuplicateNodes(NodeSets); 643 644 LLVM_DEBUG({ 645 for (auto &I : NodeSets) { 646 dbgs() << " NodeSet "; 647 I.dump(); 648 } 649 }); 650 651 computeNodeOrder(NodeSets); 652 653 // check for node order issues 654 checkValidNodeOrder(Circuits); 655 656 SMSchedule Schedule(Pass.MF, this); 657 Scheduled = schedulePipeline(Schedule); 658 659 if (!Scheduled){ 660 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 661 NumFailNoSchedule++; 662 Pass.ORE->emit([&]() { 663 return MachineOptimizationRemarkAnalysis( 664 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 665 << "Unable to find schedule"; 666 }); 667 return; 668 } 669 670 unsigned numStages = Schedule.getMaxStageCount(); 671 // No need to generate pipeline if there are no overlapped iterations. 672 if (numStages == 0) { 673 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 674 NumFailZeroStage++; 675 Pass.ORE->emit([&]() { 676 return MachineOptimizationRemarkAnalysis( 677 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 678 << "No need to pipeline - no overlapped iterations in schedule."; 679 }); 680 return; 681 } 682 // Check that the maximum stage count is less than user-defined limit. 683 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 684 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 685 << " : too many stages, abort\n"); 686 NumFailLargeMaxStage++; 687 Pass.ORE->emit([&]() { 688 return MachineOptimizationRemarkAnalysis( 689 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 690 << "Too many stages in schedule: " 691 << ore::NV("numStages", (int)numStages) << " > " 692 << ore::NV("SwpMaxStages", SwpMaxStages) 693 << ". Refer to -pipeliner-max-stages."; 694 }); 695 return; 696 } 697 698 Pass.ORE->emit([&]() { 699 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 700 Loop.getHeader()) 701 << "Pipelined succesfully!"; 702 }); 703 704 // Generate the schedule as a ModuloSchedule. 705 DenseMap<MachineInstr *, int> Cycles, Stages; 706 std::vector<MachineInstr *> OrderedInsts; 707 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 708 ++Cycle) { 709 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 710 OrderedInsts.push_back(SU->getInstr()); 711 Cycles[SU->getInstr()] = Cycle; 712 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 713 } 714 } 715 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 716 for (auto &KV : NewMIs) { 717 Cycles[KV.first] = Cycles[KV.second]; 718 Stages[KV.first] = Stages[KV.second]; 719 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 720 } 721 722 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 723 std::move(Stages)); 724 if (EmitTestAnnotations) { 725 assert(NewInstrChanges.empty() && 726 "Cannot serialize a schedule with InstrChanges!"); 727 ModuloScheduleTestAnnotater MSTI(MF, MS); 728 MSTI.annotate(); 729 return; 730 } 731 // The experimental code generator can't work if there are InstChanges. 732 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 733 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 734 MSE.expand(); 735 } else if (MVECodeGen && NewInstrChanges.empty() && 736 LoopPipelinerInfo->isMVEExpanderSupported() && 737 ModuloScheduleExpanderMVE::canApply(Loop)) { 738 ModuloScheduleExpanderMVE MSE(MF, MS, LIS); 739 MSE.expand(); 740 } else { 741 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 742 MSE.expand(); 743 MSE.cleanup(); 744 } 745 ++NumPipelined; 746 } 747 748 /// Clean up after the software pipeliner runs. 749 void SwingSchedulerDAG::finishBlock() { 750 for (auto &KV : NewMIs) 751 MF.deleteMachineInstr(KV.second); 752 NewMIs.clear(); 753 754 // Call the superclass. 755 ScheduleDAGInstrs::finishBlock(); 756 } 757 758 /// Return the register values for the operands of a Phi instruction. 759 /// This function assume the instruction is a Phi. 760 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 761 unsigned &InitVal, unsigned &LoopVal) { 762 assert(Phi.isPHI() && "Expecting a Phi."); 763 764 InitVal = 0; 765 LoopVal = 0; 766 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 767 if (Phi.getOperand(i + 1).getMBB() != Loop) 768 InitVal = Phi.getOperand(i).getReg(); 769 else 770 LoopVal = Phi.getOperand(i).getReg(); 771 772 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 773 } 774 775 /// Return the Phi register value that comes the loop block. 776 static unsigned getLoopPhiReg(const MachineInstr &Phi, 777 const MachineBasicBlock *LoopBB) { 778 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 779 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 780 return Phi.getOperand(i).getReg(); 781 return 0; 782 } 783 784 /// Return true if SUb can be reached from SUa following the chain edges. 785 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 786 SmallPtrSet<SUnit *, 8> Visited; 787 SmallVector<SUnit *, 8> Worklist; 788 Worklist.push_back(SUa); 789 while (!Worklist.empty()) { 790 const SUnit *SU = Worklist.pop_back_val(); 791 for (const auto &SI : SU->Succs) { 792 SUnit *SuccSU = SI.getSUnit(); 793 if (SI.getKind() == SDep::Order) { 794 if (Visited.count(SuccSU)) 795 continue; 796 if (SuccSU == SUb) 797 return true; 798 Worklist.push_back(SuccSU); 799 Visited.insert(SuccSU); 800 } 801 } 802 } 803 return false; 804 } 805 806 /// Return true if the instruction causes a chain between memory 807 /// references before and after it. 808 static bool isDependenceBarrier(MachineInstr &MI) { 809 return MI.isCall() || MI.mayRaiseFPException() || 810 MI.hasUnmodeledSideEffects() || 811 (MI.hasOrderedMemoryRef() && 812 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 813 } 814 815 /// Return the underlying objects for the memory references of an instruction. 816 /// This function calls the code in ValueTracking, but first checks that the 817 /// instruction has a memory operand. 818 static void getUnderlyingObjects(const MachineInstr *MI, 819 SmallVectorImpl<const Value *> &Objs) { 820 if (!MI->hasOneMemOperand()) 821 return; 822 MachineMemOperand *MM = *MI->memoperands_begin(); 823 if (!MM->getValue()) 824 return; 825 getUnderlyingObjects(MM->getValue(), Objs); 826 for (const Value *V : Objs) { 827 if (!isIdentifiedObject(V)) { 828 Objs.clear(); 829 return; 830 } 831 } 832 } 833 834 /// Add a chain edge between a load and store if the store can be an 835 /// alias of the load on a subsequent iteration, i.e., a loop carried 836 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 837 /// but that code doesn't create loop carried dependences. 838 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 839 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 840 Value *UnknownValue = 841 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 842 for (auto &SU : SUnits) { 843 MachineInstr &MI = *SU.getInstr(); 844 if (isDependenceBarrier(MI)) 845 PendingLoads.clear(); 846 else if (MI.mayLoad()) { 847 SmallVector<const Value *, 4> Objs; 848 ::getUnderlyingObjects(&MI, Objs); 849 if (Objs.empty()) 850 Objs.push_back(UnknownValue); 851 for (const auto *V : Objs) { 852 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 853 SUs.push_back(&SU); 854 } 855 } else if (MI.mayStore()) { 856 SmallVector<const Value *, 4> Objs; 857 ::getUnderlyingObjects(&MI, Objs); 858 if (Objs.empty()) 859 Objs.push_back(UnknownValue); 860 for (const auto *V : Objs) { 861 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 862 PendingLoads.find(V); 863 if (I == PendingLoads.end()) 864 continue; 865 for (auto *Load : I->second) { 866 if (isSuccOrder(Load, &SU)) 867 continue; 868 MachineInstr &LdMI = *Load->getInstr(); 869 // First, perform the cheaper check that compares the base register. 870 // If they are the same and the load offset is less than the store 871 // offset, then mark the dependence as loop carried potentially. 872 const MachineOperand *BaseOp1, *BaseOp2; 873 int64_t Offset1, Offset2; 874 bool Offset1IsScalable, Offset2IsScalable; 875 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 876 Offset1IsScalable, TRI) && 877 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 878 Offset2IsScalable, TRI)) { 879 if (BaseOp1->isIdenticalTo(*BaseOp2) && 880 Offset1IsScalable == Offset2IsScalable && 881 (int)Offset1 < (int)Offset2) { 882 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 883 "What happened to the chain edge?"); 884 SDep Dep(Load, SDep::Barrier); 885 Dep.setLatency(1); 886 SU.addPred(Dep); 887 continue; 888 } 889 } 890 // Second, the more expensive check that uses alias analysis on the 891 // base registers. If they alias, and the load offset is less than 892 // the store offset, the mark the dependence as loop carried. 893 if (!AA) { 894 SDep Dep(Load, SDep::Barrier); 895 Dep.setLatency(1); 896 SU.addPred(Dep); 897 continue; 898 } 899 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 900 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 901 if (!MMO1->getValue() || !MMO2->getValue()) { 902 SDep Dep(Load, SDep::Barrier); 903 Dep.setLatency(1); 904 SU.addPred(Dep); 905 continue; 906 } 907 if (MMO1->getValue() == MMO2->getValue() && 908 MMO1->getOffset() <= MMO2->getOffset()) { 909 SDep Dep(Load, SDep::Barrier); 910 Dep.setLatency(1); 911 SU.addPred(Dep); 912 continue; 913 } 914 if (!AA->isNoAlias( 915 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 916 MemoryLocation::getAfter(MMO2->getValue(), 917 MMO2->getAAInfo()))) { 918 SDep Dep(Load, SDep::Barrier); 919 Dep.setLatency(1); 920 SU.addPred(Dep); 921 } 922 } 923 } 924 } 925 } 926 } 927 928 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 929 /// processes dependences for PHIs. This function adds true dependences 930 /// from a PHI to a use, and a loop carried dependence from the use to the 931 /// PHI. The loop carried dependence is represented as an anti dependence 932 /// edge. This function also removes chain dependences between unrelated 933 /// PHIs. 934 void SwingSchedulerDAG::updatePhiDependences() { 935 SmallVector<SDep, 4> RemoveDeps; 936 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 937 938 // Iterate over each DAG node. 939 for (SUnit &I : SUnits) { 940 RemoveDeps.clear(); 941 // Set to true if the instruction has an operand defined by a Phi. 942 unsigned HasPhiUse = 0; 943 unsigned HasPhiDef = 0; 944 MachineInstr *MI = I.getInstr(); 945 // Iterate over each operand, and we process the definitions. 946 for (const MachineOperand &MO : MI->operands()) { 947 if (!MO.isReg()) 948 continue; 949 Register Reg = MO.getReg(); 950 if (MO.isDef()) { 951 // If the register is used by a Phi, then create an anti dependence. 952 for (MachineRegisterInfo::use_instr_iterator 953 UI = MRI.use_instr_begin(Reg), 954 UE = MRI.use_instr_end(); 955 UI != UE; ++UI) { 956 MachineInstr *UseMI = &*UI; 957 SUnit *SU = getSUnit(UseMI); 958 if (SU != nullptr && UseMI->isPHI()) { 959 if (!MI->isPHI()) { 960 SDep Dep(SU, SDep::Anti, Reg); 961 Dep.setLatency(1); 962 I.addPred(Dep); 963 } else { 964 HasPhiDef = Reg; 965 // Add a chain edge to a dependent Phi that isn't an existing 966 // predecessor. 967 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 968 I.addPred(SDep(SU, SDep::Barrier)); 969 } 970 } 971 } 972 } else if (MO.isUse()) { 973 // If the register is defined by a Phi, then create a true dependence. 974 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 975 if (DefMI == nullptr) 976 continue; 977 SUnit *SU = getSUnit(DefMI); 978 if (SU != nullptr && DefMI->isPHI()) { 979 if (!MI->isPHI()) { 980 SDep Dep(SU, SDep::Data, Reg); 981 Dep.setLatency(0); 982 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, 983 &SchedModel); 984 I.addPred(Dep); 985 } else { 986 HasPhiUse = Reg; 987 // Add a chain edge to a dependent Phi that isn't an existing 988 // predecessor. 989 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 990 I.addPred(SDep(SU, SDep::Barrier)); 991 } 992 } 993 } 994 } 995 // Remove order dependences from an unrelated Phi. 996 if (!SwpPruneDeps) 997 continue; 998 for (auto &PI : I.Preds) { 999 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1000 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1001 if (I.getInstr()->isPHI()) { 1002 if (PMI->getOperand(0).getReg() == HasPhiUse) 1003 continue; 1004 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1005 continue; 1006 } 1007 RemoveDeps.push_back(PI); 1008 } 1009 } 1010 for (const SDep &D : RemoveDeps) 1011 I.removePred(D); 1012 } 1013 } 1014 1015 /// Iterate over each DAG node and see if we can change any dependences 1016 /// in order to reduce the recurrence MII. 1017 void SwingSchedulerDAG::changeDependences() { 1018 // See if an instruction can use a value from the previous iteration. 1019 // If so, we update the base and offset of the instruction and change 1020 // the dependences. 1021 for (SUnit &I : SUnits) { 1022 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1023 int64_t NewOffset = 0; 1024 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1025 NewOffset)) 1026 continue; 1027 1028 // Get the MI and SUnit for the instruction that defines the original base. 1029 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1030 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1031 if (!DefMI) 1032 continue; 1033 SUnit *DefSU = getSUnit(DefMI); 1034 if (!DefSU) 1035 continue; 1036 // Get the MI and SUnit for the instruction that defins the new base. 1037 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1038 if (!LastMI) 1039 continue; 1040 SUnit *LastSU = getSUnit(LastMI); 1041 if (!LastSU) 1042 continue; 1043 1044 if (Topo.IsReachable(&I, LastSU)) 1045 continue; 1046 1047 // Remove the dependence. The value now depends on a prior iteration. 1048 SmallVector<SDep, 4> Deps; 1049 for (const SDep &P : I.Preds) 1050 if (P.getSUnit() == DefSU) 1051 Deps.push_back(P); 1052 for (const SDep &D : Deps) { 1053 Topo.RemovePred(&I, D.getSUnit()); 1054 I.removePred(D); 1055 } 1056 // Remove the chain dependence between the instructions. 1057 Deps.clear(); 1058 for (auto &P : LastSU->Preds) 1059 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1060 Deps.push_back(P); 1061 for (const SDep &D : Deps) { 1062 Topo.RemovePred(LastSU, D.getSUnit()); 1063 LastSU->removePred(D); 1064 } 1065 1066 // Add a dependence between the new instruction and the instruction 1067 // that defines the new base. 1068 SDep Dep(&I, SDep::Anti, NewBase); 1069 Topo.AddPred(LastSU, &I); 1070 LastSU->addPred(Dep); 1071 1072 // Remember the base and offset information so that we can update the 1073 // instruction during code generation. 1074 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1075 } 1076 } 1077 1078 /// Create an instruction stream that represents a single iteration and stage of 1079 /// each instruction. This function differs from SMSchedule::finalizeSchedule in 1080 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this 1081 /// function is an approximation of SMSchedule::finalizeSchedule with all 1082 /// non-const operations removed. 1083 static void computeScheduledInsts(const SwingSchedulerDAG *SSD, 1084 SMSchedule &Schedule, 1085 std::vector<MachineInstr *> &OrderedInsts, 1086 DenseMap<MachineInstr *, unsigned> &Stages) { 1087 DenseMap<int, std::deque<SUnit *>> Instrs; 1088 1089 // Move all instructions to the first stage from the later stages. 1090 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1091 ++Cycle) { 1092 for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); 1093 Stage <= LastStage; ++Stage) { 1094 for (SUnit *SU : llvm::reverse(Schedule.getInstructions( 1095 Cycle + Stage * Schedule.getInitiationInterval()))) { 1096 Instrs[Cycle].push_front(SU); 1097 } 1098 } 1099 } 1100 1101 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1102 ++Cycle) { 1103 std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; 1104 CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); 1105 for (SUnit *SU : CycleInstrs) { 1106 MachineInstr *MI = SU->getInstr(); 1107 OrderedInsts.push_back(MI); 1108 Stages[MI] = Schedule.stageScheduled(SU); 1109 } 1110 } 1111 } 1112 1113 namespace { 1114 1115 // FuncUnitSorter - Comparison operator used to sort instructions by 1116 // the number of functional unit choices. 1117 struct FuncUnitSorter { 1118 const InstrItineraryData *InstrItins; 1119 const MCSubtargetInfo *STI; 1120 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 1121 1122 FuncUnitSorter(const TargetSubtargetInfo &TSI) 1123 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 1124 1125 // Compute the number of functional unit alternatives needed 1126 // at each stage, and take the minimum value. We prioritize the 1127 // instructions by the least number of choices first. 1128 unsigned minFuncUnits(const MachineInstr *Inst, 1129 InstrStage::FuncUnits &F) const { 1130 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1131 unsigned min = UINT_MAX; 1132 if (InstrItins && !InstrItins->isEmpty()) { 1133 for (const InstrStage &IS : 1134 make_range(InstrItins->beginStage(SchedClass), 1135 InstrItins->endStage(SchedClass))) { 1136 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1137 unsigned numAlternatives = llvm::popcount(funcUnits); 1138 if (numAlternatives < min) { 1139 min = numAlternatives; 1140 F = funcUnits; 1141 } 1142 } 1143 return min; 1144 } 1145 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1146 const MCSchedClassDesc *SCDesc = 1147 STI->getSchedModel().getSchedClassDesc(SchedClass); 1148 if (!SCDesc->isValid()) 1149 // No valid Schedule Class Desc for schedClass, should be 1150 // Pseudo/PostRAPseudo 1151 return min; 1152 1153 for (const MCWriteProcResEntry &PRE : 1154 make_range(STI->getWriteProcResBegin(SCDesc), 1155 STI->getWriteProcResEnd(SCDesc))) { 1156 if (!PRE.ReleaseAtCycle) 1157 continue; 1158 const MCProcResourceDesc *ProcResource = 1159 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1160 unsigned NumUnits = ProcResource->NumUnits; 1161 if (NumUnits < min) { 1162 min = NumUnits; 1163 F = PRE.ProcResourceIdx; 1164 } 1165 } 1166 return min; 1167 } 1168 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1169 } 1170 1171 // Compute the critical resources needed by the instruction. This 1172 // function records the functional units needed by instructions that 1173 // must use only one functional unit. We use this as a tie breaker 1174 // for computing the resource MII. The instrutions that require 1175 // the same, highly used, functional unit have high priority. 1176 void calcCriticalResources(MachineInstr &MI) { 1177 unsigned SchedClass = MI.getDesc().getSchedClass(); 1178 if (InstrItins && !InstrItins->isEmpty()) { 1179 for (const InstrStage &IS : 1180 make_range(InstrItins->beginStage(SchedClass), 1181 InstrItins->endStage(SchedClass))) { 1182 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1183 if (llvm::popcount(FuncUnits) == 1) 1184 Resources[FuncUnits]++; 1185 } 1186 return; 1187 } 1188 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1189 const MCSchedClassDesc *SCDesc = 1190 STI->getSchedModel().getSchedClassDesc(SchedClass); 1191 if (!SCDesc->isValid()) 1192 // No valid Schedule Class Desc for schedClass, should be 1193 // Pseudo/PostRAPseudo 1194 return; 1195 1196 for (const MCWriteProcResEntry &PRE : 1197 make_range(STI->getWriteProcResBegin(SCDesc), 1198 STI->getWriteProcResEnd(SCDesc))) { 1199 if (!PRE.ReleaseAtCycle) 1200 continue; 1201 Resources[PRE.ProcResourceIdx]++; 1202 } 1203 return; 1204 } 1205 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1206 } 1207 1208 /// Return true if IS1 has less priority than IS2. 1209 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1210 InstrStage::FuncUnits F1 = 0, F2 = 0; 1211 unsigned MFUs1 = minFuncUnits(IS1, F1); 1212 unsigned MFUs2 = minFuncUnits(IS2, F2); 1213 if (MFUs1 == MFUs2) 1214 return Resources.lookup(F1) < Resources.lookup(F2); 1215 return MFUs1 > MFUs2; 1216 } 1217 }; 1218 1219 /// Calculate the maximum register pressure of the scheduled instructions stream 1220 class HighRegisterPressureDetector { 1221 MachineBasicBlock *OrigMBB; 1222 const MachineFunction &MF; 1223 const MachineRegisterInfo &MRI; 1224 const TargetRegisterInfo *TRI; 1225 1226 const unsigned PSetNum; 1227 1228 // Indexed by PSet ID 1229 // InitSetPressure takes into account the register pressure of live-in 1230 // registers. It's not depend on how the loop is scheduled, so it's enough to 1231 // calculate them once at the beginning. 1232 std::vector<unsigned> InitSetPressure; 1233 1234 // Indexed by PSet ID 1235 // Upper limit for each register pressure set 1236 std::vector<unsigned> PressureSetLimit; 1237 1238 DenseMap<MachineInstr *, RegisterOperands> ROMap; 1239 1240 using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; 1241 1242 public: 1243 using OrderedInstsTy = std::vector<MachineInstr *>; 1244 using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; 1245 1246 private: 1247 static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { 1248 if (Pressures.size() == 0) { 1249 dbgs() << "[]"; 1250 } else { 1251 char Prefix = '['; 1252 for (unsigned P : Pressures) { 1253 dbgs() << Prefix << P; 1254 Prefix = ' '; 1255 } 1256 dbgs() << ']'; 1257 } 1258 } 1259 1260 void dumpPSet(Register Reg) const { 1261 dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; 1262 for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); 1263 ++PSetIter) { 1264 dbgs() << *PSetIter << ' '; 1265 } 1266 dbgs() << '\n'; 1267 } 1268 1269 void increaseRegisterPressure(std::vector<unsigned> &Pressure, 1270 Register Reg) const { 1271 auto PSetIter = MRI.getPressureSets(Reg); 1272 unsigned Weight = PSetIter.getWeight(); 1273 for (; PSetIter.isValid(); ++PSetIter) 1274 Pressure[*PSetIter] += Weight; 1275 } 1276 1277 void decreaseRegisterPressure(std::vector<unsigned> &Pressure, 1278 Register Reg) const { 1279 auto PSetIter = MRI.getPressureSets(Reg); 1280 unsigned Weight = PSetIter.getWeight(); 1281 for (; PSetIter.isValid(); ++PSetIter) { 1282 auto &P = Pressure[*PSetIter]; 1283 assert(P >= Weight && 1284 "register pressure must be greater than or equal weight"); 1285 P -= Weight; 1286 } 1287 } 1288 1289 // Return true if Reg is fixed one, for example, stack pointer 1290 bool isFixedRegister(Register Reg) const { 1291 return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg()); 1292 } 1293 1294 bool isDefinedInThisLoop(Register Reg) const { 1295 return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; 1296 } 1297 1298 // Search for live-in variables. They are factored into the register pressure 1299 // from the begining. Live-in variables used by every iteration should be 1300 // considered as alive throughout the loop. For example, the variable `c` in 1301 // following code. \code 1302 // int c = ...; 1303 // for (int i = 0; i < n; i++) 1304 // a[i] += b[i] + c; 1305 // \endcode 1306 void computeLiveIn() { 1307 DenseSet<Register> Used; 1308 for (auto &MI : *OrigMBB) { 1309 if (MI.isDebugInstr()) 1310 continue; 1311 for (auto &Use : ROMap[&MI].Uses) { 1312 auto Reg = Use.RegUnit; 1313 // Ignore the variable that appears only on one side of phi instruction 1314 // because it's used only at the first iteration. 1315 if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) 1316 continue; 1317 if (isFixedRegister(Reg)) 1318 continue; 1319 if (isDefinedInThisLoop(Reg)) 1320 continue; 1321 Used.insert(Reg); 1322 } 1323 } 1324 1325 for (auto LiveIn : Used) 1326 increaseRegisterPressure(InitSetPressure, LiveIn); 1327 } 1328 1329 // Calculate the upper limit of each pressure set 1330 void computePressureSetLimit(const RegisterClassInfo &RCI) { 1331 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1332 PressureSetLimit[PSet] = TRI->getRegPressureSetLimit(MF, PSet); 1333 1334 // We assume fixed registers, such as stack pointer, are already in use. 1335 // Therefore subtracting the weight of the fixed registers from the limit of 1336 // each pressure set in advance. 1337 SmallDenseSet<Register, 8> FixedRegs; 1338 for (const TargetRegisterClass *TRC : TRI->regclasses()) { 1339 for (const MCPhysReg Reg : *TRC) 1340 if (isFixedRegister(Reg)) 1341 FixedRegs.insert(Reg); 1342 } 1343 1344 LLVM_DEBUG({ 1345 for (auto Reg : FixedRegs) { 1346 dbgs() << printReg(Reg, TRI, 0, &MRI) << ": ["; 1347 const int *Sets = TRI->getRegUnitPressureSets(Reg); 1348 for (; *Sets != -1; Sets++) { 1349 dbgs() << TRI->getRegPressureSetName(*Sets) << ", "; 1350 } 1351 dbgs() << "]\n"; 1352 } 1353 }); 1354 1355 for (auto Reg : FixedRegs) { 1356 LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI) 1357 << "\n"); 1358 auto PSetIter = MRI.getPressureSets(Reg); 1359 unsigned Weight = PSetIter.getWeight(); 1360 for (; PSetIter.isValid(); ++PSetIter) { 1361 unsigned &Limit = PressureSetLimit[*PSetIter]; 1362 assert(Limit >= Weight && 1363 "register pressure limit must be greater than or equal weight"); 1364 Limit -= Weight; 1365 LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit 1366 << " (decreased by " << Weight << ")\n"); 1367 } 1368 } 1369 } 1370 1371 // There are two patterns of last-use. 1372 // - by an instruction of the current iteration 1373 // - by a phi instruction of the next iteration (loop carried value) 1374 // 1375 // Furthermore, following two groups of instructions are executed 1376 // simultaneously 1377 // - next iteration's phi instructions in i-th stage 1378 // - current iteration's instructions in i+1-th stage 1379 // 1380 // This function calculates the last-use of each register while taking into 1381 // account the above two patterns. 1382 Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, 1383 Instr2StageTy &Stages) const { 1384 // We treat virtual registers that are defined and used in this loop. 1385 // Following virtual register will be ignored 1386 // - live-in one 1387 // - defined but not used in the loop (potentially live-out) 1388 DenseSet<Register> TargetRegs; 1389 const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { 1390 if (isDefinedInThisLoop(Reg)) 1391 TargetRegs.insert(Reg); 1392 }; 1393 for (MachineInstr *MI : OrderedInsts) { 1394 if (MI->isPHI()) { 1395 Register Reg = getLoopPhiReg(*MI, OrigMBB); 1396 UpdateTargetRegs(Reg); 1397 } else { 1398 for (auto &Use : ROMap.find(MI)->getSecond().Uses) 1399 UpdateTargetRegs(Use.RegUnit); 1400 } 1401 } 1402 1403 const auto InstrScore = [&Stages](MachineInstr *MI) { 1404 return Stages[MI] + MI->isPHI(); 1405 }; 1406 1407 DenseMap<Register, MachineInstr *> LastUseMI; 1408 for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { 1409 for (auto &Use : ROMap.find(MI)->getSecond().Uses) { 1410 auto Reg = Use.RegUnit; 1411 if (!TargetRegs.contains(Reg)) 1412 continue; 1413 auto Ite = LastUseMI.find(Reg); 1414 if (Ite == LastUseMI.end()) { 1415 LastUseMI[Reg] = MI; 1416 } else { 1417 MachineInstr *Orig = Ite->second; 1418 MachineInstr *New = MI; 1419 if (InstrScore(Orig) < InstrScore(New)) 1420 LastUseMI[Reg] = New; 1421 } 1422 } 1423 } 1424 1425 Instr2LastUsesTy LastUses; 1426 for (auto &Entry : LastUseMI) 1427 LastUses[Entry.second].insert(Entry.first); 1428 return LastUses; 1429 } 1430 1431 // Compute the maximum register pressure of the kernel. We'll simulate #Stage 1432 // iterations and check the register pressure at the point where all stages 1433 // overlapping. 1434 // 1435 // An example of unrolled loop where #Stage is 4.. 1436 // Iter i+0 i+1 i+2 i+3 1437 // ------------------------ 1438 // Stage 0 1439 // Stage 1 0 1440 // Stage 2 1 0 1441 // Stage 3 2 1 0 <- All stages overlap 1442 // 1443 std::vector<unsigned> 1444 computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, 1445 Instr2StageTy &Stages, 1446 const unsigned StageCount) const { 1447 using RegSetTy = SmallDenseSet<Register, 16>; 1448 1449 // Indexed by #Iter. To treat "local" variables of each stage separately, we 1450 // manage the liveness of the registers independently by iterations. 1451 SmallVector<RegSetTy> LiveRegSets(StageCount); 1452 1453 auto CurSetPressure = InitSetPressure; 1454 auto MaxSetPressure = InitSetPressure; 1455 auto LastUses = computeLastUses(OrderedInsts, Stages); 1456 1457 LLVM_DEBUG({ 1458 dbgs() << "Ordered instructions:\n"; 1459 for (MachineInstr *MI : OrderedInsts) { 1460 dbgs() << "Stage " << Stages[MI] << ": "; 1461 MI->dump(); 1462 } 1463 }); 1464 1465 const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, 1466 Register Reg) { 1467 if (!Reg.isValid() || isFixedRegister(Reg)) 1468 return; 1469 1470 bool Inserted = RegSet.insert(Reg).second; 1471 if (!Inserted) 1472 return; 1473 1474 LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1475 increaseRegisterPressure(CurSetPressure, Reg); 1476 LLVM_DEBUG(dumpPSet(Reg)); 1477 }; 1478 1479 const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, 1480 Register Reg) { 1481 if (!Reg.isValid() || isFixedRegister(Reg)) 1482 return; 1483 1484 // live-in register 1485 if (!RegSet.contains(Reg)) 1486 return; 1487 1488 LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1489 RegSet.erase(Reg); 1490 decreaseRegisterPressure(CurSetPressure, Reg); 1491 LLVM_DEBUG(dumpPSet(Reg)); 1492 }; 1493 1494 for (unsigned I = 0; I < StageCount; I++) { 1495 for (MachineInstr *MI : OrderedInsts) { 1496 const auto Stage = Stages[MI]; 1497 if (I < Stage) 1498 continue; 1499 1500 const unsigned Iter = I - Stage; 1501 1502 for (auto &Def : ROMap.find(MI)->getSecond().Defs) 1503 InsertReg(LiveRegSets[Iter], Def.RegUnit); 1504 1505 for (auto LastUse : LastUses[MI]) { 1506 if (MI->isPHI()) { 1507 if (Iter != 0) 1508 EraseReg(LiveRegSets[Iter - 1], LastUse); 1509 } else { 1510 EraseReg(LiveRegSets[Iter], LastUse); 1511 } 1512 } 1513 1514 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1515 MaxSetPressure[PSet] = 1516 std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); 1517 1518 LLVM_DEBUG({ 1519 dbgs() << "CurSetPressure="; 1520 dumpRegisterPressures(CurSetPressure); 1521 dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; 1522 MI->dump(); 1523 }); 1524 } 1525 } 1526 1527 return MaxSetPressure; 1528 } 1529 1530 public: 1531 HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, 1532 const MachineFunction &MF) 1533 : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), 1534 TRI(MF.getSubtarget().getRegisterInfo()), 1535 PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), 1536 PressureSetLimit(PSetNum, 0) {} 1537 1538 // Used to calculate register pressure, which is independent of loop 1539 // scheduling. 1540 void init(const RegisterClassInfo &RCI) { 1541 for (MachineInstr &MI : *OrigMBB) { 1542 if (MI.isDebugInstr()) 1543 continue; 1544 ROMap[&MI].collect(MI, *TRI, MRI, false, true); 1545 } 1546 1547 computeLiveIn(); 1548 computePressureSetLimit(RCI); 1549 } 1550 1551 // Calculate the maximum register pressures of the loop and check if they 1552 // exceed the limit 1553 bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, 1554 const unsigned MaxStage) const { 1555 assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && 1556 "the percentage of the margin must be between 0 to 100"); 1557 1558 OrderedInstsTy OrderedInsts; 1559 Instr2StageTy Stages; 1560 computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); 1561 const auto MaxSetPressure = 1562 computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); 1563 1564 LLVM_DEBUG({ 1565 dbgs() << "Dump MaxSetPressure:\n"; 1566 for (unsigned I = 0; I < MaxSetPressure.size(); I++) { 1567 dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); 1568 } 1569 dbgs() << '\n'; 1570 }); 1571 1572 for (unsigned PSet = 0; PSet < PSetNum; PSet++) { 1573 unsigned Limit = PressureSetLimit[PSet]; 1574 unsigned Margin = Limit * RegPressureMargin / 100; 1575 LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit 1576 << " Margin=" << Margin << "\n"); 1577 if (Limit < MaxSetPressure[PSet] + Margin) { 1578 LLVM_DEBUG( 1579 dbgs() 1580 << "Rejected the schedule because of too high register pressure\n"); 1581 return true; 1582 } 1583 } 1584 return false; 1585 } 1586 }; 1587 1588 } // end anonymous namespace 1589 1590 /// Calculate the resource constrained minimum initiation interval for the 1591 /// specified loop. We use the DFA to model the resources needed for 1592 /// each instruction, and we ignore dependences. A different DFA is created 1593 /// for each cycle that is required. When adding a new instruction, we attempt 1594 /// to add it to each existing DFA, until a legal space is found. If the 1595 /// instruction cannot be reserved in an existing DFA, we create a new one. 1596 unsigned SwingSchedulerDAG::calculateResMII() { 1597 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1598 ResourceManager RM(&MF.getSubtarget(), this); 1599 return RM.calculateResMII(); 1600 } 1601 1602 /// Calculate the recurrence-constrainted minimum initiation interval. 1603 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1604 /// for each circuit. The II needs to satisfy the inequality 1605 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1606 /// II that satisfies the inequality, and the RecMII is the maximum 1607 /// of those values. 1608 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1609 unsigned RecMII = 0; 1610 1611 for (NodeSet &Nodes : NodeSets) { 1612 if (Nodes.empty()) 1613 continue; 1614 1615 unsigned Delay = Nodes.getLatency(); 1616 unsigned Distance = 1; 1617 1618 // ii = ceil(delay / distance) 1619 unsigned CurMII = (Delay + Distance - 1) / Distance; 1620 Nodes.setRecMII(CurMII); 1621 if (CurMII > RecMII) 1622 RecMII = CurMII; 1623 } 1624 1625 return RecMII; 1626 } 1627 1628 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1629 /// but we do this to find the circuits, and then change them back. 1630 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1631 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1632 for (SUnit &SU : SUnits) { 1633 for (SDep &Pred : SU.Preds) 1634 if (Pred.getKind() == SDep::Anti) 1635 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1636 } 1637 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1638 // Remove this anti dependency and add one in the reverse direction. 1639 SUnit *SU = P.first; 1640 SDep &D = P.second; 1641 SUnit *TargetSU = D.getSUnit(); 1642 unsigned Reg = D.getReg(); 1643 unsigned Lat = D.getLatency(); 1644 SU->removePred(D); 1645 SDep Dep(SU, SDep::Anti, Reg); 1646 Dep.setLatency(Lat); 1647 TargetSU->addPred(Dep); 1648 } 1649 } 1650 1651 /// Create the adjacency structure of the nodes in the graph. 1652 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1653 SwingSchedulerDAG *DAG) { 1654 BitVector Added(SUnits.size()); 1655 DenseMap<int, int> OutputDeps; 1656 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1657 Added.reset(); 1658 // Add any successor to the adjacency matrix and exclude duplicates. 1659 for (auto &SI : SUnits[i].Succs) { 1660 // Only create a back-edge on the first and last nodes of a dependence 1661 // chain. This records any chains and adds them later. 1662 if (SI.getKind() == SDep::Output) { 1663 int N = SI.getSUnit()->NodeNum; 1664 int BackEdge = i; 1665 auto Dep = OutputDeps.find(BackEdge); 1666 if (Dep != OutputDeps.end()) { 1667 BackEdge = Dep->second; 1668 OutputDeps.erase(Dep); 1669 } 1670 OutputDeps[N] = BackEdge; 1671 } 1672 // Do not process a boundary node, an artificial node. 1673 // A back-edge is processed only if it goes to a Phi. 1674 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1675 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1676 continue; 1677 int N = SI.getSUnit()->NodeNum; 1678 if (!Added.test(N)) { 1679 AdjK[i].push_back(N); 1680 Added.set(N); 1681 } 1682 } 1683 // A chain edge between a store and a load is treated as a back-edge in the 1684 // adjacency matrix. 1685 for (auto &PI : SUnits[i].Preds) { 1686 if (!SUnits[i].getInstr()->mayStore() || 1687 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1688 continue; 1689 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1690 int N = PI.getSUnit()->NodeNum; 1691 if (!Added.test(N)) { 1692 AdjK[i].push_back(N); 1693 Added.set(N); 1694 } 1695 } 1696 } 1697 } 1698 // Add back-edges in the adjacency matrix for the output dependences. 1699 for (auto &OD : OutputDeps) 1700 if (!Added.test(OD.second)) { 1701 AdjK[OD.first].push_back(OD.second); 1702 Added.set(OD.second); 1703 } 1704 } 1705 1706 /// Identify an elementary circuit in the dependence graph starting at the 1707 /// specified node. 1708 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1709 bool HasBackedge) { 1710 SUnit *SV = &SUnits[V]; 1711 bool F = false; 1712 Stack.insert(SV); 1713 Blocked.set(V); 1714 1715 for (auto W : AdjK[V]) { 1716 if (NumPaths > MaxPaths) 1717 break; 1718 if (W < S) 1719 continue; 1720 if (W == S) { 1721 if (!HasBackedge) 1722 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1723 F = true; 1724 ++NumPaths; 1725 break; 1726 } else if (!Blocked.test(W)) { 1727 if (circuit(W, S, NodeSets, 1728 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1729 F = true; 1730 } 1731 } 1732 1733 if (F) 1734 unblock(V); 1735 else { 1736 for (auto W : AdjK[V]) { 1737 if (W < S) 1738 continue; 1739 B[W].insert(SV); 1740 } 1741 } 1742 Stack.pop_back(); 1743 return F; 1744 } 1745 1746 /// Unblock a node in the circuit finding algorithm. 1747 void SwingSchedulerDAG::Circuits::unblock(int U) { 1748 Blocked.reset(U); 1749 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1750 while (!BU.empty()) { 1751 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1752 assert(SI != BU.end() && "Invalid B set."); 1753 SUnit *W = *SI; 1754 BU.erase(W); 1755 if (Blocked.test(W->NodeNum)) 1756 unblock(W->NodeNum); 1757 } 1758 } 1759 1760 /// Identify all the elementary circuits in the dependence graph using 1761 /// Johnson's circuit algorithm. 1762 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1763 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1764 // but we do this to find the circuits, and then change them back. 1765 swapAntiDependences(SUnits); 1766 1767 Circuits Cir(SUnits, Topo); 1768 // Create the adjacency structure. 1769 Cir.createAdjacencyStructure(this); 1770 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1771 Cir.reset(); 1772 Cir.circuit(i, i, NodeSets); 1773 } 1774 1775 // Change the dependences back so that we've created a DAG again. 1776 swapAntiDependences(SUnits); 1777 } 1778 1779 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1780 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1781 // additional copies that are needed across iterations. An artificial dependence 1782 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1783 1784 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1785 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1786 // PHI-------True-Dep------> USEOfPhi 1787 1788 // The mutation creates 1789 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1790 1791 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1792 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1793 // late to avoid additional copies across iterations. The possible scheduling 1794 // order would be 1795 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1796 1797 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1798 for (SUnit &SU : DAG->SUnits) { 1799 // Find the COPY/REG_SEQUENCE instruction. 1800 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1801 continue; 1802 1803 // Record the loop carried PHIs. 1804 SmallVector<SUnit *, 4> PHISUs; 1805 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1806 SmallVector<SUnit *, 4> SrcSUs; 1807 1808 for (auto &Dep : SU.Preds) { 1809 SUnit *TmpSU = Dep.getSUnit(); 1810 MachineInstr *TmpMI = TmpSU->getInstr(); 1811 SDep::Kind DepKind = Dep.getKind(); 1812 // Save the loop carried PHI. 1813 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1814 PHISUs.push_back(TmpSU); 1815 // Save the source of COPY/REG_SEQUENCE. 1816 // If the source has no pre-decessors, we will end up creating cycles. 1817 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1818 SrcSUs.push_back(TmpSU); 1819 } 1820 1821 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1822 continue; 1823 1824 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1825 // SUnit to the container. 1826 SmallVector<SUnit *, 8> UseSUs; 1827 // Do not use iterator based loop here as we are updating the container. 1828 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1829 for (auto &Dep : PHISUs[Index]->Succs) { 1830 if (Dep.getKind() != SDep::Data) 1831 continue; 1832 1833 SUnit *TmpSU = Dep.getSUnit(); 1834 MachineInstr *TmpMI = TmpSU->getInstr(); 1835 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1836 PHISUs.push_back(TmpSU); 1837 continue; 1838 } 1839 UseSUs.push_back(TmpSU); 1840 } 1841 } 1842 1843 if (UseSUs.size() == 0) 1844 continue; 1845 1846 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1847 // Add the artificial dependencies if it does not form a cycle. 1848 for (auto *I : UseSUs) { 1849 for (auto *Src : SrcSUs) { 1850 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1851 Src->addPred(SDep(I, SDep::Artificial)); 1852 SDAG->Topo.AddPred(Src, I); 1853 } 1854 } 1855 } 1856 } 1857 } 1858 1859 /// Return true for DAG nodes that we ignore when computing the cost functions. 1860 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1861 /// in the calculation of the ASAP, ALAP, etc functions. 1862 static bool ignoreDependence(const SDep &D, bool isPred) { 1863 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1864 return true; 1865 return D.getKind() == SDep::Anti && isPred; 1866 } 1867 1868 /// Compute several functions need to order the nodes for scheduling. 1869 /// ASAP - Earliest time to schedule a node. 1870 /// ALAP - Latest time to schedule a node. 1871 /// MOV - Mobility function, difference between ALAP and ASAP. 1872 /// D - Depth of each node. 1873 /// H - Height of each node. 1874 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1875 ScheduleInfo.resize(SUnits.size()); 1876 1877 LLVM_DEBUG({ 1878 for (int I : Topo) { 1879 const SUnit &SU = SUnits[I]; 1880 dumpNode(SU); 1881 } 1882 }); 1883 1884 int maxASAP = 0; 1885 // Compute ASAP and ZeroLatencyDepth. 1886 for (int I : Topo) { 1887 int asap = 0; 1888 int zeroLatencyDepth = 0; 1889 SUnit *SU = &SUnits[I]; 1890 for (const SDep &P : SU->Preds) { 1891 SUnit *pred = P.getSUnit(); 1892 if (P.getLatency() == 0) 1893 zeroLatencyDepth = 1894 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1895 if (ignoreDependence(P, true)) 1896 continue; 1897 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1898 getDistance(pred, SU, P) * MII)); 1899 } 1900 maxASAP = std::max(maxASAP, asap); 1901 ScheduleInfo[I].ASAP = asap; 1902 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1903 } 1904 1905 // Compute ALAP, ZeroLatencyHeight, and MOV. 1906 for (int I : llvm::reverse(Topo)) { 1907 int alap = maxASAP; 1908 int zeroLatencyHeight = 0; 1909 SUnit *SU = &SUnits[I]; 1910 for (const SDep &S : SU->Succs) { 1911 SUnit *succ = S.getSUnit(); 1912 if (succ->isBoundaryNode()) 1913 continue; 1914 if (S.getLatency() == 0) 1915 zeroLatencyHeight = 1916 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1917 if (ignoreDependence(S, true)) 1918 continue; 1919 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1920 getDistance(SU, succ, S) * MII)); 1921 } 1922 1923 ScheduleInfo[I].ALAP = alap; 1924 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1925 } 1926 1927 // After computing the node functions, compute the summary for each node set. 1928 for (NodeSet &I : NodeSets) 1929 I.computeNodeSetInfo(this); 1930 1931 LLVM_DEBUG({ 1932 for (unsigned i = 0; i < SUnits.size(); i++) { 1933 dbgs() << "\tNode " << i << ":\n"; 1934 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1935 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1936 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1937 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1938 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1939 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1940 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1941 } 1942 }); 1943 } 1944 1945 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1946 /// as the predecessors of the elements of NodeOrder that are not also in 1947 /// NodeOrder. 1948 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1949 SmallSetVector<SUnit *, 8> &Preds, 1950 const NodeSet *S = nullptr) { 1951 Preds.clear(); 1952 for (const SUnit *SU : NodeOrder) { 1953 for (const SDep &Pred : SU->Preds) { 1954 if (S && S->count(Pred.getSUnit()) == 0) 1955 continue; 1956 if (ignoreDependence(Pred, true)) 1957 continue; 1958 if (NodeOrder.count(Pred.getSUnit()) == 0) 1959 Preds.insert(Pred.getSUnit()); 1960 } 1961 // Back-edges are predecessors with an anti-dependence. 1962 for (const SDep &Succ : SU->Succs) { 1963 if (Succ.getKind() != SDep::Anti) 1964 continue; 1965 if (S && S->count(Succ.getSUnit()) == 0) 1966 continue; 1967 if (NodeOrder.count(Succ.getSUnit()) == 0) 1968 Preds.insert(Succ.getSUnit()); 1969 } 1970 } 1971 return !Preds.empty(); 1972 } 1973 1974 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1975 /// as the successors of the elements of NodeOrder that are not also in 1976 /// NodeOrder. 1977 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1978 SmallSetVector<SUnit *, 8> &Succs, 1979 const NodeSet *S = nullptr) { 1980 Succs.clear(); 1981 for (const SUnit *SU : NodeOrder) { 1982 for (const SDep &Succ : SU->Succs) { 1983 if (S && S->count(Succ.getSUnit()) == 0) 1984 continue; 1985 if (ignoreDependence(Succ, false)) 1986 continue; 1987 if (NodeOrder.count(Succ.getSUnit()) == 0) 1988 Succs.insert(Succ.getSUnit()); 1989 } 1990 for (const SDep &Pred : SU->Preds) { 1991 if (Pred.getKind() != SDep::Anti) 1992 continue; 1993 if (S && S->count(Pred.getSUnit()) == 0) 1994 continue; 1995 if (NodeOrder.count(Pred.getSUnit()) == 0) 1996 Succs.insert(Pred.getSUnit()); 1997 } 1998 } 1999 return !Succs.empty(); 2000 } 2001 2002 /// Return true if there is a path from the specified node to any of the nodes 2003 /// in DestNodes. Keep track and return the nodes in any path. 2004 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 2005 SetVector<SUnit *> &DestNodes, 2006 SetVector<SUnit *> &Exclude, 2007 SmallPtrSet<SUnit *, 8> &Visited) { 2008 if (Cur->isBoundaryNode()) 2009 return false; 2010 if (Exclude.contains(Cur)) 2011 return false; 2012 if (DestNodes.contains(Cur)) 2013 return true; 2014 if (!Visited.insert(Cur).second) 2015 return Path.contains(Cur); 2016 bool FoundPath = false; 2017 for (auto &SI : Cur->Succs) 2018 if (!ignoreDependence(SI, false)) 2019 FoundPath |= 2020 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 2021 for (auto &PI : Cur->Preds) 2022 if (PI.getKind() == SDep::Anti) 2023 FoundPath |= 2024 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 2025 if (FoundPath) 2026 Path.insert(Cur); 2027 return FoundPath; 2028 } 2029 2030 /// Compute the live-out registers for the instructions in a node-set. 2031 /// The live-out registers are those that are defined in the node-set, 2032 /// but not used. Except for use operands of Phis. 2033 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 2034 NodeSet &NS) { 2035 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2036 MachineRegisterInfo &MRI = MF.getRegInfo(); 2037 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 2038 SmallSet<unsigned, 4> Uses; 2039 for (SUnit *SU : NS) { 2040 const MachineInstr *MI = SU->getInstr(); 2041 if (MI->isPHI()) 2042 continue; 2043 for (const MachineOperand &MO : MI->all_uses()) { 2044 Register Reg = MO.getReg(); 2045 if (Reg.isVirtual()) 2046 Uses.insert(Reg); 2047 else if (MRI.isAllocatable(Reg)) 2048 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2049 Uses.insert(Unit); 2050 } 2051 } 2052 for (SUnit *SU : NS) 2053 for (const MachineOperand &MO : SU->getInstr()->all_defs()) 2054 if (!MO.isDead()) { 2055 Register Reg = MO.getReg(); 2056 if (Reg.isVirtual()) { 2057 if (!Uses.count(Reg)) 2058 LiveOutRegs.push_back(RegisterMaskPair(Reg, 2059 LaneBitmask::getNone())); 2060 } else if (MRI.isAllocatable(Reg)) { 2061 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2062 if (!Uses.count(Unit)) 2063 LiveOutRegs.push_back( 2064 RegisterMaskPair(Unit, LaneBitmask::getNone())); 2065 } 2066 } 2067 RPTracker.addLiveRegs(LiveOutRegs); 2068 } 2069 2070 /// A heuristic to filter nodes in recurrent node-sets if the register 2071 /// pressure of a set is too high. 2072 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 2073 for (auto &NS : NodeSets) { 2074 // Skip small node-sets since they won't cause register pressure problems. 2075 if (NS.size() <= 2) 2076 continue; 2077 IntervalPressure RecRegPressure; 2078 RegPressureTracker RecRPTracker(RecRegPressure); 2079 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 2080 computeLiveOuts(MF, RecRPTracker, NS); 2081 RecRPTracker.closeBottom(); 2082 2083 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 2084 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 2085 return A->NodeNum > B->NodeNum; 2086 }); 2087 2088 for (auto &SU : SUnits) { 2089 // Since we're computing the register pressure for a subset of the 2090 // instructions in a block, we need to set the tracker for each 2091 // instruction in the node-set. The tracker is set to the instruction 2092 // just after the one we're interested in. 2093 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 2094 RecRPTracker.setPos(std::next(CurInstI)); 2095 2096 RegPressureDelta RPDelta; 2097 ArrayRef<PressureChange> CriticalPSets; 2098 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 2099 CriticalPSets, 2100 RecRegPressure.MaxSetPressure); 2101 if (RPDelta.Excess.isValid()) { 2102 LLVM_DEBUG( 2103 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 2104 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 2105 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 2106 NS.setExceedPressure(SU); 2107 break; 2108 } 2109 RecRPTracker.recede(); 2110 } 2111 } 2112 } 2113 2114 /// A heuristic to colocate node sets that have the same set of 2115 /// successors. 2116 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2117 unsigned Colocate = 0; 2118 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2119 NodeSet &N1 = NodeSets[i]; 2120 SmallSetVector<SUnit *, 8> S1; 2121 if (N1.empty() || !succ_L(N1, S1)) 2122 continue; 2123 for (int j = i + 1; j < e; ++j) { 2124 NodeSet &N2 = NodeSets[j]; 2125 if (N1.compareRecMII(N2) != 0) 2126 continue; 2127 SmallSetVector<SUnit *, 8> S2; 2128 if (N2.empty() || !succ_L(N2, S2)) 2129 continue; 2130 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 2131 N1.setColocate(++Colocate); 2132 N2.setColocate(Colocate); 2133 break; 2134 } 2135 } 2136 } 2137 } 2138 2139 /// Check if the existing node-sets are profitable. If not, then ignore the 2140 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2141 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2142 /// then it's best to try to schedule all instructions together instead of 2143 /// starting with the recurrent node-sets. 2144 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2145 // Look for loops with a large MII. 2146 if (MII < 17) 2147 return; 2148 // Check if the node-set contains only a simple add recurrence. 2149 for (auto &NS : NodeSets) { 2150 if (NS.getRecMII() > 2) 2151 return; 2152 if (NS.getMaxDepth() > MII) 2153 return; 2154 } 2155 NodeSets.clear(); 2156 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2157 } 2158 2159 /// Add the nodes that do not belong to a recurrence set into groups 2160 /// based upon connected components. 2161 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2162 SetVector<SUnit *> NodesAdded; 2163 SmallPtrSet<SUnit *, 8> Visited; 2164 // Add the nodes that are on a path between the previous node sets and 2165 // the current node set. 2166 for (NodeSet &I : NodeSets) { 2167 SmallSetVector<SUnit *, 8> N; 2168 // Add the nodes from the current node set to the previous node set. 2169 if (succ_L(I, N)) { 2170 SetVector<SUnit *> Path; 2171 for (SUnit *NI : N) { 2172 Visited.clear(); 2173 computePath(NI, Path, NodesAdded, I, Visited); 2174 } 2175 if (!Path.empty()) 2176 I.insert(Path.begin(), Path.end()); 2177 } 2178 // Add the nodes from the previous node set to the current node set. 2179 N.clear(); 2180 if (succ_L(NodesAdded, N)) { 2181 SetVector<SUnit *> Path; 2182 for (SUnit *NI : N) { 2183 Visited.clear(); 2184 computePath(NI, Path, I, NodesAdded, Visited); 2185 } 2186 if (!Path.empty()) 2187 I.insert(Path.begin(), Path.end()); 2188 } 2189 NodesAdded.insert(I.begin(), I.end()); 2190 } 2191 2192 // Create a new node set with the connected nodes of any successor of a node 2193 // in a recurrent set. 2194 NodeSet NewSet; 2195 SmallSetVector<SUnit *, 8> N; 2196 if (succ_L(NodesAdded, N)) 2197 for (SUnit *I : N) 2198 addConnectedNodes(I, NewSet, NodesAdded); 2199 if (!NewSet.empty()) 2200 NodeSets.push_back(NewSet); 2201 2202 // Create a new node set with the connected nodes of any predecessor of a node 2203 // in a recurrent set. 2204 NewSet.clear(); 2205 if (pred_L(NodesAdded, N)) 2206 for (SUnit *I : N) 2207 addConnectedNodes(I, NewSet, NodesAdded); 2208 if (!NewSet.empty()) 2209 NodeSets.push_back(NewSet); 2210 2211 // Create new nodes sets with the connected nodes any remaining node that 2212 // has no predecessor. 2213 for (SUnit &SU : SUnits) { 2214 if (NodesAdded.count(&SU) == 0) { 2215 NewSet.clear(); 2216 addConnectedNodes(&SU, NewSet, NodesAdded); 2217 if (!NewSet.empty()) 2218 NodeSets.push_back(NewSet); 2219 } 2220 } 2221 } 2222 2223 /// Add the node to the set, and add all of its connected nodes to the set. 2224 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2225 SetVector<SUnit *> &NodesAdded) { 2226 NewSet.insert(SU); 2227 NodesAdded.insert(SU); 2228 for (auto &SI : SU->Succs) { 2229 SUnit *Successor = SI.getSUnit(); 2230 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 2231 NodesAdded.count(Successor) == 0) 2232 addConnectedNodes(Successor, NewSet, NodesAdded); 2233 } 2234 for (auto &PI : SU->Preds) { 2235 SUnit *Predecessor = PI.getSUnit(); 2236 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2237 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2238 } 2239 } 2240 2241 /// Return true if Set1 contains elements in Set2. The elements in common 2242 /// are returned in a different container. 2243 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2244 SmallSetVector<SUnit *, 8> &Result) { 2245 Result.clear(); 2246 for (SUnit *SU : Set1) { 2247 if (Set2.count(SU) != 0) 2248 Result.insert(SU); 2249 } 2250 return !Result.empty(); 2251 } 2252 2253 /// Merge the recurrence node sets that have the same initial node. 2254 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2255 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2256 ++I) { 2257 NodeSet &NI = *I; 2258 for (NodeSetType::iterator J = I + 1; J != E;) { 2259 NodeSet &NJ = *J; 2260 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2261 if (NJ.compareRecMII(NI) > 0) 2262 NI.setRecMII(NJ.getRecMII()); 2263 for (SUnit *SU : *J) 2264 I->insert(SU); 2265 NodeSets.erase(J); 2266 E = NodeSets.end(); 2267 } else { 2268 ++J; 2269 } 2270 } 2271 } 2272 } 2273 2274 /// Remove nodes that have been scheduled in previous NodeSets. 2275 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2276 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2277 ++I) 2278 for (NodeSetType::iterator J = I + 1; J != E;) { 2279 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2280 2281 if (J->empty()) { 2282 NodeSets.erase(J); 2283 E = NodeSets.end(); 2284 } else { 2285 ++J; 2286 } 2287 } 2288 } 2289 2290 /// Compute an ordered list of the dependence graph nodes, which 2291 /// indicates the order that the nodes will be scheduled. This is a 2292 /// two-level algorithm. First, a partial order is created, which 2293 /// consists of a list of sets ordered from highest to lowest priority. 2294 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2295 SmallSetVector<SUnit *, 8> R; 2296 NodeOrder.clear(); 2297 2298 for (auto &Nodes : NodeSets) { 2299 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2300 OrderKind Order; 2301 SmallSetVector<SUnit *, 8> N; 2302 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2303 R.insert(N.begin(), N.end()); 2304 Order = BottomUp; 2305 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2306 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2307 R.insert(N.begin(), N.end()); 2308 Order = TopDown; 2309 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2310 } else if (isIntersect(N, Nodes, R)) { 2311 // If some of the successors are in the existing node-set, then use the 2312 // top-down ordering. 2313 Order = TopDown; 2314 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2315 } else if (NodeSets.size() == 1) { 2316 for (const auto &N : Nodes) 2317 if (N->Succs.size() == 0) 2318 R.insert(N); 2319 Order = BottomUp; 2320 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2321 } else { 2322 // Find the node with the highest ASAP. 2323 SUnit *maxASAP = nullptr; 2324 for (SUnit *SU : Nodes) { 2325 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2326 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2327 maxASAP = SU; 2328 } 2329 R.insert(maxASAP); 2330 Order = BottomUp; 2331 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2332 } 2333 2334 while (!R.empty()) { 2335 if (Order == TopDown) { 2336 // Choose the node with the maximum height. If more than one, choose 2337 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2338 // choose the node with the lowest MOV. 2339 while (!R.empty()) { 2340 SUnit *maxHeight = nullptr; 2341 for (SUnit *I : R) { 2342 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2343 maxHeight = I; 2344 else if (getHeight(I) == getHeight(maxHeight) && 2345 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2346 maxHeight = I; 2347 else if (getHeight(I) == getHeight(maxHeight) && 2348 getZeroLatencyHeight(I) == 2349 getZeroLatencyHeight(maxHeight) && 2350 getMOV(I) < getMOV(maxHeight)) 2351 maxHeight = I; 2352 } 2353 NodeOrder.insert(maxHeight); 2354 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2355 R.remove(maxHeight); 2356 for (const auto &I : maxHeight->Succs) { 2357 if (Nodes.count(I.getSUnit()) == 0) 2358 continue; 2359 if (NodeOrder.contains(I.getSUnit())) 2360 continue; 2361 if (ignoreDependence(I, false)) 2362 continue; 2363 R.insert(I.getSUnit()); 2364 } 2365 // Back-edges are predecessors with an anti-dependence. 2366 for (const auto &I : maxHeight->Preds) { 2367 if (I.getKind() != SDep::Anti) 2368 continue; 2369 if (Nodes.count(I.getSUnit()) == 0) 2370 continue; 2371 if (NodeOrder.contains(I.getSUnit())) 2372 continue; 2373 R.insert(I.getSUnit()); 2374 } 2375 } 2376 Order = BottomUp; 2377 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2378 SmallSetVector<SUnit *, 8> N; 2379 if (pred_L(NodeOrder, N, &Nodes)) 2380 R.insert(N.begin(), N.end()); 2381 } else { 2382 // Choose the node with the maximum depth. If more than one, choose 2383 // the node with the maximum ZeroLatencyDepth. If still more than one, 2384 // choose the node with the lowest MOV. 2385 while (!R.empty()) { 2386 SUnit *maxDepth = nullptr; 2387 for (SUnit *I : R) { 2388 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2389 maxDepth = I; 2390 else if (getDepth(I) == getDepth(maxDepth) && 2391 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2392 maxDepth = I; 2393 else if (getDepth(I) == getDepth(maxDepth) && 2394 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2395 getMOV(I) < getMOV(maxDepth)) 2396 maxDepth = I; 2397 } 2398 NodeOrder.insert(maxDepth); 2399 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2400 R.remove(maxDepth); 2401 if (Nodes.isExceedSU(maxDepth)) { 2402 Order = TopDown; 2403 R.clear(); 2404 R.insert(Nodes.getNode(0)); 2405 break; 2406 } 2407 for (const auto &I : maxDepth->Preds) { 2408 if (Nodes.count(I.getSUnit()) == 0) 2409 continue; 2410 if (NodeOrder.contains(I.getSUnit())) 2411 continue; 2412 R.insert(I.getSUnit()); 2413 } 2414 // Back-edges are predecessors with an anti-dependence. 2415 for (const auto &I : maxDepth->Succs) { 2416 if (I.getKind() != SDep::Anti) 2417 continue; 2418 if (Nodes.count(I.getSUnit()) == 0) 2419 continue; 2420 if (NodeOrder.contains(I.getSUnit())) 2421 continue; 2422 R.insert(I.getSUnit()); 2423 } 2424 } 2425 Order = TopDown; 2426 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2427 SmallSetVector<SUnit *, 8> N; 2428 if (succ_L(NodeOrder, N, &Nodes)) 2429 R.insert(N.begin(), N.end()); 2430 } 2431 } 2432 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2433 } 2434 2435 LLVM_DEBUG({ 2436 dbgs() << "Node order: "; 2437 for (SUnit *I : NodeOrder) 2438 dbgs() << " " << I->NodeNum << " "; 2439 dbgs() << "\n"; 2440 }); 2441 } 2442 2443 /// Process the nodes in the computed order and create the pipelined schedule 2444 /// of the instructions, if possible. Return true if a schedule is found. 2445 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2446 2447 if (NodeOrder.empty()){ 2448 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2449 return false; 2450 } 2451 2452 bool scheduleFound = false; 2453 std::unique_ptr<HighRegisterPressureDetector> HRPDetector; 2454 if (LimitRegPressure) { 2455 HRPDetector = 2456 std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); 2457 HRPDetector->init(RegClassInfo); 2458 } 2459 // Keep increasing II until a valid schedule is found. 2460 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2461 Schedule.reset(); 2462 Schedule.setInitiationInterval(II); 2463 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2464 2465 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2466 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2467 do { 2468 SUnit *SU = *NI; 2469 2470 // Compute the schedule time for the instruction, which is based 2471 // upon the scheduled time for any predecessors/successors. 2472 int EarlyStart = INT_MIN; 2473 int LateStart = INT_MAX; 2474 Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this); 2475 LLVM_DEBUG({ 2476 dbgs() << "\n"; 2477 dbgs() << "Inst (" << SU->NodeNum << ") "; 2478 SU->getInstr()->dump(); 2479 dbgs() << "\n"; 2480 }); 2481 LLVM_DEBUG( 2482 dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart)); 2483 2484 if (EarlyStart > LateStart) 2485 scheduleFound = false; 2486 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) 2487 scheduleFound = 2488 Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II); 2489 else if (EarlyStart == INT_MIN && LateStart != INT_MAX) 2490 scheduleFound = 2491 Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II); 2492 else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2493 LateStart = std::min(LateStart, EarlyStart + (int)II - 1); 2494 // When scheduling a Phi it is better to start at the late cycle and 2495 // go backwards. The default order may insert the Phi too far away 2496 // from its first dependence. 2497 // Also, do backward search when all scheduled predecessors are 2498 // loop-carried output/order dependencies. Empirically, there are also 2499 // cases where scheduling becomes possible with backward search. 2500 if (SU->getInstr()->isPHI() || 2501 Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this)) 2502 scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II); 2503 else 2504 scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II); 2505 } else { 2506 int FirstCycle = Schedule.getFirstCycle(); 2507 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2508 FirstCycle + getASAP(SU) + II - 1, II); 2509 } 2510 2511 // Even if we find a schedule, make sure the schedule doesn't exceed the 2512 // allowable number of stages. We keep trying if this happens. 2513 if (scheduleFound) 2514 if (SwpMaxStages > -1 && 2515 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2516 scheduleFound = false; 2517 2518 LLVM_DEBUG({ 2519 if (!scheduleFound) 2520 dbgs() << "\tCan't schedule\n"; 2521 }); 2522 } while (++NI != NE && scheduleFound); 2523 2524 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2525 if (scheduleFound) 2526 scheduleFound = 2527 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2528 2529 // If a schedule is found, check if it is a valid schedule too. 2530 if (scheduleFound) 2531 scheduleFound = Schedule.isValidSchedule(this); 2532 2533 // If a schedule was found and the option is enabled, check if the schedule 2534 // might generate additional register spills/fills. 2535 if (scheduleFound && LimitRegPressure) 2536 scheduleFound = 2537 !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); 2538 } 2539 2540 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2541 << " (II=" << Schedule.getInitiationInterval() 2542 << ")\n"); 2543 2544 if (scheduleFound) { 2545 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2546 if (!scheduleFound) 2547 LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2548 } 2549 2550 if (scheduleFound) { 2551 Schedule.finalizeSchedule(this); 2552 Pass.ORE->emit([&]() { 2553 return MachineOptimizationRemarkAnalysis( 2554 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2555 << "Schedule found with Initiation Interval: " 2556 << ore::NV("II", Schedule.getInitiationInterval()) 2557 << ", MaxStageCount: " 2558 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2559 }); 2560 } else 2561 Schedule.reset(); 2562 2563 return scheduleFound && Schedule.getMaxStageCount() > 0; 2564 } 2565 2566 /// Return true if we can compute the amount the instruction changes 2567 /// during each iteration. Set Delta to the amount of the change. 2568 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2569 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2570 const MachineOperand *BaseOp; 2571 int64_t Offset; 2572 bool OffsetIsScalable; 2573 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2574 return false; 2575 2576 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2577 if (OffsetIsScalable) 2578 return false; 2579 2580 if (!BaseOp->isReg()) 2581 return false; 2582 2583 Register BaseReg = BaseOp->getReg(); 2584 2585 MachineRegisterInfo &MRI = MF.getRegInfo(); 2586 // Check if there is a Phi. If so, get the definition in the loop. 2587 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2588 if (BaseDef && BaseDef->isPHI()) { 2589 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2590 BaseDef = MRI.getVRegDef(BaseReg); 2591 } 2592 if (!BaseDef) 2593 return false; 2594 2595 int D = 0; 2596 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2597 return false; 2598 2599 Delta = D; 2600 return true; 2601 } 2602 2603 /// Check if we can change the instruction to use an offset value from the 2604 /// previous iteration. If so, return true and set the base and offset values 2605 /// so that we can rewrite the load, if necessary. 2606 /// v1 = Phi(v0, v3) 2607 /// v2 = load v1, 0 2608 /// v3 = post_store v1, 4, x 2609 /// This function enables the load to be rewritten as v2 = load v3, 4. 2610 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2611 unsigned &BasePos, 2612 unsigned &OffsetPos, 2613 unsigned &NewBase, 2614 int64_t &Offset) { 2615 // Get the load instruction. 2616 if (TII->isPostIncrement(*MI)) 2617 return false; 2618 unsigned BasePosLd, OffsetPosLd; 2619 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2620 return false; 2621 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2622 2623 // Look for the Phi instruction. 2624 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2625 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2626 if (!Phi || !Phi->isPHI()) 2627 return false; 2628 // Get the register defined in the loop block. 2629 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2630 if (!PrevReg) 2631 return false; 2632 2633 // Check for the post-increment load/store instruction. 2634 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2635 if (!PrevDef || PrevDef == MI) 2636 return false; 2637 2638 if (!TII->isPostIncrement(*PrevDef)) 2639 return false; 2640 2641 unsigned BasePos1 = 0, OffsetPos1 = 0; 2642 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2643 return false; 2644 2645 // Make sure that the instructions do not access the same memory location in 2646 // the next iteration. 2647 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2648 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2649 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2650 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2651 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2652 MF.deleteMachineInstr(NewMI); 2653 if (!Disjoint) 2654 return false; 2655 2656 // Set the return value once we determine that we return true. 2657 BasePos = BasePosLd; 2658 OffsetPos = OffsetPosLd; 2659 NewBase = PrevReg; 2660 Offset = StoreOffset; 2661 return true; 2662 } 2663 2664 /// Apply changes to the instruction if needed. The changes are need 2665 /// to improve the scheduling and depend up on the final schedule. 2666 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2667 SMSchedule &Schedule) { 2668 SUnit *SU = getSUnit(MI); 2669 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2670 InstrChanges.find(SU); 2671 if (It != InstrChanges.end()) { 2672 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2673 unsigned BasePos, OffsetPos; 2674 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2675 return; 2676 Register BaseReg = MI->getOperand(BasePos).getReg(); 2677 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2678 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2679 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2680 int BaseStageNum = Schedule.stageScheduled(SU); 2681 int BaseCycleNum = Schedule.cycleScheduled(SU); 2682 if (BaseStageNum < DefStageNum) { 2683 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2684 int OffsetDiff = DefStageNum - BaseStageNum; 2685 if (DefCycleNum < BaseCycleNum) { 2686 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2687 if (OffsetDiff > 0) 2688 --OffsetDiff; 2689 } 2690 int64_t NewOffset = 2691 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2692 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2693 SU->setInstr(NewMI); 2694 MISUnitMap[NewMI] = SU; 2695 NewMIs[MI] = NewMI; 2696 } 2697 } 2698 } 2699 2700 /// Return the instruction in the loop that defines the register. 2701 /// If the definition is a Phi, then follow the Phi operand to 2702 /// the instruction in the loop. 2703 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2704 SmallPtrSet<MachineInstr *, 8> Visited; 2705 MachineInstr *Def = MRI.getVRegDef(Reg); 2706 while (Def->isPHI()) { 2707 if (!Visited.insert(Def).second) 2708 break; 2709 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2710 if (Def->getOperand(i + 1).getMBB() == BB) { 2711 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2712 break; 2713 } 2714 } 2715 return Def; 2716 } 2717 2718 /// Return true for an order or output dependence that is loop carried 2719 /// potentially. A dependence is loop carried if the destination defines a value 2720 /// that may be used or defined by the source in a subsequent iteration. 2721 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2722 bool isSucc) { 2723 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2724 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2725 return false; 2726 2727 if (!SwpPruneLoopCarried) 2728 return true; 2729 2730 if (Dep.getKind() == SDep::Output) 2731 return true; 2732 2733 MachineInstr *SI = Source->getInstr(); 2734 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2735 if (!isSucc) 2736 std::swap(SI, DI); 2737 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2738 2739 // Assume ordered loads and stores may have a loop carried dependence. 2740 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2741 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2742 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2743 return true; 2744 2745 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 2746 return false; 2747 2748 // The conservative assumption is that a dependence between memory operations 2749 // may be loop carried. The following code checks when it can be proved that 2750 // there is no loop carried dependence. 2751 unsigned DeltaS, DeltaD; 2752 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2753 return true; 2754 2755 const MachineOperand *BaseOpS, *BaseOpD; 2756 int64_t OffsetS, OffsetD; 2757 bool OffsetSIsScalable, OffsetDIsScalable; 2758 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2759 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2760 TRI) || 2761 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2762 TRI)) 2763 return true; 2764 2765 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2766 "Expected offsets to be byte offsets"); 2767 2768 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2769 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2770 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2771 return true; 2772 2773 unsigned InitValS = 0; 2774 unsigned LoopValS = 0; 2775 unsigned InitValD = 0; 2776 unsigned LoopValD = 0; 2777 getPhiRegs(*DefS, BB, InitValS, LoopValS); 2778 getPhiRegs(*DefD, BB, InitValD, LoopValD); 2779 MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2780 MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2781 2782 if (!InitDefS->isIdenticalTo(*InitDefD)) 2783 return true; 2784 2785 // Check that the base register is incremented by a constant value for each 2786 // iteration. 2787 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 2788 int D = 0; 2789 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 2790 return true; 2791 2792 LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); 2793 LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); 2794 2795 // This is the main test, which checks the offset values and the loop 2796 // increment value to determine if the accesses may be loop carried. 2797 if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) 2798 return true; 2799 2800 if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || 2801 DeltaD < AccessSizeD.getValue()) 2802 return true; 2803 2804 return (OffsetS + (int64_t)AccessSizeS.getValue() < 2805 OffsetD + (int64_t)AccessSizeD.getValue()); 2806 } 2807 2808 void SwingSchedulerDAG::postProcessDAG() { 2809 for (auto &M : Mutations) 2810 M->apply(this); 2811 } 2812 2813 /// Try to schedule the node at the specified StartCycle and continue 2814 /// until the node is schedule or the EndCycle is reached. This function 2815 /// returns true if the node is scheduled. This routine may search either 2816 /// forward or backward for a place to insert the instruction based upon 2817 /// the relative values of StartCycle and EndCycle. 2818 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2819 bool forward = true; 2820 LLVM_DEBUG({ 2821 dbgs() << "Trying to insert node between " << StartCycle << " and " 2822 << EndCycle << " II: " << II << "\n"; 2823 }); 2824 if (StartCycle > EndCycle) 2825 forward = false; 2826 2827 // The terminating condition depends on the direction. 2828 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2829 for (int curCycle = StartCycle; curCycle != termCycle; 2830 forward ? ++curCycle : --curCycle) { 2831 2832 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2833 ProcItinResources.canReserveResources(*SU, curCycle)) { 2834 LLVM_DEBUG({ 2835 dbgs() << "\tinsert at cycle " << curCycle << " "; 2836 SU->getInstr()->dump(); 2837 }); 2838 2839 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2840 ProcItinResources.reserveResources(*SU, curCycle); 2841 ScheduledInstrs[curCycle].push_back(SU); 2842 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2843 if (curCycle > LastCycle) 2844 LastCycle = curCycle; 2845 if (curCycle < FirstCycle) 2846 FirstCycle = curCycle; 2847 return true; 2848 } 2849 LLVM_DEBUG({ 2850 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2851 SU->getInstr()->dump(); 2852 }); 2853 } 2854 return false; 2855 } 2856 2857 // Return the cycle of the earliest scheduled instruction in the chain. 2858 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2859 SmallPtrSet<SUnit *, 8> Visited; 2860 SmallVector<SDep, 8> Worklist; 2861 Worklist.push_back(Dep); 2862 int EarlyCycle = INT_MAX; 2863 while (!Worklist.empty()) { 2864 const SDep &Cur = Worklist.pop_back_val(); 2865 SUnit *PrevSU = Cur.getSUnit(); 2866 if (Visited.count(PrevSU)) 2867 continue; 2868 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2869 if (it == InstrToCycle.end()) 2870 continue; 2871 EarlyCycle = std::min(EarlyCycle, it->second); 2872 for (const auto &PI : PrevSU->Preds) 2873 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2874 Worklist.push_back(PI); 2875 Visited.insert(PrevSU); 2876 } 2877 return EarlyCycle; 2878 } 2879 2880 // Return the cycle of the latest scheduled instruction in the chain. 2881 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2882 SmallPtrSet<SUnit *, 8> Visited; 2883 SmallVector<SDep, 8> Worklist; 2884 Worklist.push_back(Dep); 2885 int LateCycle = INT_MIN; 2886 while (!Worklist.empty()) { 2887 const SDep &Cur = Worklist.pop_back_val(); 2888 SUnit *SuccSU = Cur.getSUnit(); 2889 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2890 continue; 2891 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2892 if (it == InstrToCycle.end()) 2893 continue; 2894 LateCycle = std::max(LateCycle, it->second); 2895 for (const auto &SI : SuccSU->Succs) 2896 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2897 Worklist.push_back(SI); 2898 Visited.insert(SuccSU); 2899 } 2900 return LateCycle; 2901 } 2902 2903 /// If an instruction has a use that spans multiple iterations, then 2904 /// return true. These instructions are characterized by having a back-ege 2905 /// to a Phi, which contains a reference to another Phi. 2906 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2907 for (auto &P : SU->Preds) 2908 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2909 for (auto &S : P.getSUnit()->Succs) 2910 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2911 return P.getSUnit(); 2912 return nullptr; 2913 } 2914 2915 /// Compute the scheduling start slot for the instruction. The start slot 2916 /// depends on any predecessor or successor nodes scheduled already. 2917 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2918 int II, SwingSchedulerDAG *DAG) { 2919 // Iterate over each instruction that has been scheduled already. The start 2920 // slot computation depends on whether the previously scheduled instruction 2921 // is a predecessor or successor of the specified instruction. 2922 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2923 2924 // Iterate over each instruction in the current cycle. 2925 for (SUnit *I : getInstructions(cycle)) { 2926 // Because we're processing a DAG for the dependences, we recognize 2927 // the back-edge in recurrences by anti dependences. 2928 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2929 const SDep &Dep = SU->Preds[i]; 2930 if (Dep.getSUnit() == I) { 2931 if (!DAG->isBackedge(SU, Dep)) { 2932 int EarlyStart = cycle + Dep.getLatency() - 2933 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2934 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2935 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2936 int End = earliestCycleInChain(Dep) + (II - 1); 2937 *MinLateStart = std::min(*MinLateStart, End); 2938 } 2939 } else { 2940 int LateStart = cycle - Dep.getLatency() + 2941 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2942 *MinLateStart = std::min(*MinLateStart, LateStart); 2943 } 2944 } 2945 // For instruction that requires multiple iterations, make sure that 2946 // the dependent instruction is not scheduled past the definition. 2947 SUnit *BE = multipleIterations(I, DAG); 2948 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2949 !SU->isPred(I)) 2950 *MinLateStart = std::min(*MinLateStart, cycle); 2951 } 2952 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2953 if (SU->Succs[i].getSUnit() == I) { 2954 const SDep &Dep = SU->Succs[i]; 2955 if (!DAG->isBackedge(SU, Dep)) { 2956 int LateStart = cycle - Dep.getLatency() + 2957 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2958 *MinLateStart = std::min(*MinLateStart, LateStart); 2959 if (DAG->isLoopCarriedDep(SU, Dep)) { 2960 int Start = latestCycleInChain(Dep) + 1 - II; 2961 *MaxEarlyStart = std::max(*MaxEarlyStart, Start); 2962 } 2963 } else { 2964 int EarlyStart = cycle + Dep.getLatency() - 2965 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2966 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2967 } 2968 } 2969 } 2970 } 2971 } 2972 } 2973 2974 /// Order the instructions within a cycle so that the definitions occur 2975 /// before the uses. Returns true if the instruction is added to the start 2976 /// of the list, or false if added to the end. 2977 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, 2978 std::deque<SUnit *> &Insts) const { 2979 MachineInstr *MI = SU->getInstr(); 2980 bool OrderBeforeUse = false; 2981 bool OrderAfterDef = false; 2982 bool OrderBeforeDef = false; 2983 unsigned MoveDef = 0; 2984 unsigned MoveUse = 0; 2985 int StageInst1 = stageScheduled(SU); 2986 2987 unsigned Pos = 0; 2988 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2989 ++I, ++Pos) { 2990 for (MachineOperand &MO : MI->operands()) { 2991 if (!MO.isReg() || !MO.getReg().isVirtual()) 2992 continue; 2993 2994 Register Reg = MO.getReg(); 2995 unsigned BasePos, OffsetPos; 2996 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2997 if (MI->getOperand(BasePos).getReg() == Reg) 2998 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2999 Reg = NewReg; 3000 bool Reads, Writes; 3001 std::tie(Reads, Writes) = 3002 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3003 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3004 OrderBeforeUse = true; 3005 if (MoveUse == 0) 3006 MoveUse = Pos; 3007 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3008 // Add the instruction after the scheduled instruction. 3009 OrderAfterDef = true; 3010 MoveDef = Pos; 3011 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3012 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3013 OrderBeforeUse = true; 3014 if (MoveUse == 0) 3015 MoveUse = Pos; 3016 } else { 3017 OrderAfterDef = true; 3018 MoveDef = Pos; 3019 } 3020 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3021 OrderBeforeUse = true; 3022 if (MoveUse == 0) 3023 MoveUse = Pos; 3024 if (MoveUse != 0) { 3025 OrderAfterDef = true; 3026 MoveDef = Pos - 1; 3027 } 3028 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3029 // Add the instruction before the scheduled instruction. 3030 OrderBeforeUse = true; 3031 if (MoveUse == 0) 3032 MoveUse = Pos; 3033 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3034 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3035 if (MoveUse == 0) { 3036 OrderBeforeDef = true; 3037 MoveUse = Pos; 3038 } 3039 } 3040 } 3041 // Check for order dependences between instructions. Make sure the source 3042 // is ordered before the destination. 3043 for (auto &S : SU->Succs) { 3044 if (S.getSUnit() != *I) 3045 continue; 3046 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3047 OrderBeforeUse = true; 3048 if (Pos < MoveUse) 3049 MoveUse = Pos; 3050 } 3051 // We did not handle HW dependences in previous for loop, 3052 // and we normally set Latency = 0 for Anti deps, 3053 // so may have nodes in same cycle with Anti denpendent on HW regs. 3054 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 3055 OrderBeforeUse = true; 3056 if ((MoveUse == 0) || (Pos < MoveUse)) 3057 MoveUse = Pos; 3058 } 3059 } 3060 for (auto &P : SU->Preds) { 3061 if (P.getSUnit() != *I) 3062 continue; 3063 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3064 OrderAfterDef = true; 3065 MoveDef = Pos; 3066 } 3067 } 3068 } 3069 3070 // A circular dependence. 3071 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3072 OrderBeforeUse = false; 3073 3074 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3075 // to a loop-carried dependence. 3076 if (OrderBeforeDef) 3077 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3078 3079 // The uncommon case when the instruction order needs to be updated because 3080 // there is both a use and def. 3081 if (OrderBeforeUse && OrderAfterDef) { 3082 SUnit *UseSU = Insts.at(MoveUse); 3083 SUnit *DefSU = Insts.at(MoveDef); 3084 if (MoveUse > MoveDef) { 3085 Insts.erase(Insts.begin() + MoveUse); 3086 Insts.erase(Insts.begin() + MoveDef); 3087 } else { 3088 Insts.erase(Insts.begin() + MoveDef); 3089 Insts.erase(Insts.begin() + MoveUse); 3090 } 3091 orderDependence(SSD, UseSU, Insts); 3092 orderDependence(SSD, SU, Insts); 3093 orderDependence(SSD, DefSU, Insts); 3094 return; 3095 } 3096 // Put the new instruction first if there is a use in the list. Otherwise, 3097 // put it at the end of the list. 3098 if (OrderBeforeUse) 3099 Insts.push_front(SU); 3100 else 3101 Insts.push_back(SU); 3102 } 3103 3104 /// Return true if the scheduled Phi has a loop carried operand. 3105 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, 3106 MachineInstr &Phi) const { 3107 if (!Phi.isPHI()) 3108 return false; 3109 assert(Phi.isPHI() && "Expecting a Phi."); 3110 SUnit *DefSU = SSD->getSUnit(&Phi); 3111 unsigned DefCycle = cycleScheduled(DefSU); 3112 int DefStage = stageScheduled(DefSU); 3113 3114 unsigned InitVal = 0; 3115 unsigned LoopVal = 0; 3116 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3117 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3118 if (!UseSU) 3119 return true; 3120 if (UseSU->getInstr()->isPHI()) 3121 return true; 3122 unsigned LoopCycle = cycleScheduled(UseSU); 3123 int LoopStage = stageScheduled(UseSU); 3124 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3125 } 3126 3127 /// Return true if the instruction is a definition that is loop carried 3128 /// and defines the use on the next iteration. 3129 /// v1 = phi(v2, v3) 3130 /// (Def) v3 = op v1 3131 /// (MO) = v1 3132 /// If MO appears before Def, then v1 and v3 may get assigned to the same 3133 /// register. 3134 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, 3135 MachineInstr *Def, 3136 MachineOperand &MO) const { 3137 if (!MO.isReg()) 3138 return false; 3139 if (Def->isPHI()) 3140 return false; 3141 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3142 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3143 return false; 3144 if (!isLoopCarried(SSD, *Phi)) 3145 return false; 3146 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3147 for (MachineOperand &DMO : Def->all_defs()) { 3148 if (DMO.getReg() == LoopReg) 3149 return true; 3150 } 3151 return false; 3152 } 3153 3154 /// Return true if all scheduled predecessors are loop-carried output/order 3155 /// dependencies. 3156 bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds( 3157 SUnit *SU, SwingSchedulerDAG *DAG) const { 3158 for (const SDep &Pred : SU->Preds) 3159 if (InstrToCycle.count(Pred.getSUnit()) && !DAG->isBackedge(SU, Pred)) 3160 return false; 3161 for (const SDep &Succ : SU->Succs) 3162 if (InstrToCycle.count(Succ.getSUnit()) && DAG->isBackedge(SU, Succ)) 3163 return false; 3164 return true; 3165 } 3166 3167 /// Determine transitive dependences of unpipelineable instructions 3168 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 3169 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3170 SmallSet<SUnit *, 8> DoNotPipeline; 3171 SmallVector<SUnit *, 8> Worklist; 3172 3173 for (auto &SU : SSD->SUnits) 3174 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 3175 Worklist.push_back(&SU); 3176 3177 while (!Worklist.empty()) { 3178 auto SU = Worklist.pop_back_val(); 3179 if (DoNotPipeline.count(SU)) 3180 continue; 3181 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 3182 DoNotPipeline.insert(SU); 3183 for (auto &Dep : SU->Preds) 3184 Worklist.push_back(Dep.getSUnit()); 3185 if (SU->getInstr()->isPHI()) 3186 for (auto &Dep : SU->Succs) 3187 if (Dep.getKind() == SDep::Anti) 3188 Worklist.push_back(Dep.getSUnit()); 3189 } 3190 return DoNotPipeline; 3191 } 3192 3193 // Determine all instructions upon which any unpipelineable instruction depends 3194 // and ensure that they are in stage 0. If unable to do so, return false. 3195 bool SMSchedule::normalizeNonPipelinedInstructions( 3196 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3197 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 3198 3199 int NewLastCycle = INT_MIN; 3200 for (SUnit &SU : SSD->SUnits) { 3201 if (!SU.isInstr()) 3202 continue; 3203 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 3204 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 3205 continue; 3206 } 3207 3208 // Put the non-pipelined instruction as early as possible in the schedule 3209 int NewCycle = getFirstCycle(); 3210 for (auto &Dep : SU.Preds) 3211 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 3212 3213 int OldCycle = InstrToCycle[&SU]; 3214 if (OldCycle != NewCycle) { 3215 InstrToCycle[&SU] = NewCycle; 3216 auto &OldS = getInstructions(OldCycle); 3217 llvm::erase(OldS, &SU); 3218 getInstructions(NewCycle).emplace_back(&SU); 3219 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 3220 << ") is not pipelined; moving from cycle " << OldCycle 3221 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 3222 } 3223 NewLastCycle = std::max(NewLastCycle, NewCycle); 3224 } 3225 LastCycle = NewLastCycle; 3226 return true; 3227 } 3228 3229 // Check if the generated schedule is valid. This function checks if 3230 // an instruction that uses a physical register is scheduled in a 3231 // different stage than the definition. The pipeliner does not handle 3232 // physical register values that may cross a basic block boundary. 3233 // Furthermore, if a physical def/use pair is assigned to the same 3234 // cycle, orderDependence does not guarantee def/use ordering, so that 3235 // case should be considered invalid. (The test checks for both 3236 // earlier and same-cycle use to be more robust.) 3237 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3238 for (SUnit &SU : SSD->SUnits) { 3239 if (!SU.hasPhysRegDefs) 3240 continue; 3241 int StageDef = stageScheduled(&SU); 3242 int CycleDef = InstrToCycle[&SU]; 3243 assert(StageDef != -1 && "Instruction should have been scheduled."); 3244 for (auto &SI : SU.Succs) 3245 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 3246 if (Register::isPhysicalRegister(SI.getReg())) { 3247 if (stageScheduled(SI.getSUnit()) != StageDef) 3248 return false; 3249 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 3250 return false; 3251 } 3252 } 3253 return true; 3254 } 3255 3256 /// A property of the node order in swing-modulo-scheduling is 3257 /// that for nodes outside circuits the following holds: 3258 /// none of them is scheduled after both a successor and a 3259 /// predecessor. 3260 /// The method below checks whether the property is met. 3261 /// If not, debug information is printed and statistics information updated. 3262 /// Note that we do not use an assert statement. 3263 /// The reason is that although an invalid node oder may prevent 3264 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3265 /// it does not lead to the generation of incorrect code. 3266 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3267 3268 // a sorted vector that maps each SUnit to its index in the NodeOrder 3269 typedef std::pair<SUnit *, unsigned> UnitIndex; 3270 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3271 3272 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3273 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3274 3275 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3276 return std::get<0>(i1) < std::get<0>(i2); 3277 }; 3278 3279 // sort, so that we can perform a binary search 3280 llvm::sort(Indices, CompareKey); 3281 3282 bool Valid = true; 3283 (void)Valid; 3284 // for each SUnit in the NodeOrder, check whether 3285 // it appears after both a successor and a predecessor 3286 // of the SUnit. If this is the case, and the SUnit 3287 // is not part of circuit, then the NodeOrder is not 3288 // valid. 3289 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3290 SUnit *SU = NodeOrder[i]; 3291 unsigned Index = i; 3292 3293 bool PredBefore = false; 3294 bool SuccBefore = false; 3295 3296 SUnit *Succ; 3297 SUnit *Pred; 3298 (void)Succ; 3299 (void)Pred; 3300 3301 for (SDep &PredEdge : SU->Preds) { 3302 SUnit *PredSU = PredEdge.getSUnit(); 3303 unsigned PredIndex = std::get<1>( 3304 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 3305 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3306 PredBefore = true; 3307 Pred = PredSU; 3308 break; 3309 } 3310 } 3311 3312 for (SDep &SuccEdge : SU->Succs) { 3313 SUnit *SuccSU = SuccEdge.getSUnit(); 3314 // Do not process a boundary node, it was not included in NodeOrder, 3315 // hence not in Indices either, call to std::lower_bound() below will 3316 // return Indices.end(). 3317 if (SuccSU->isBoundaryNode()) 3318 continue; 3319 unsigned SuccIndex = std::get<1>( 3320 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 3321 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3322 SuccBefore = true; 3323 Succ = SuccSU; 3324 break; 3325 } 3326 } 3327 3328 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3329 // instructions in circuits are allowed to be scheduled 3330 // after both a successor and predecessor. 3331 bool InCircuit = llvm::any_of( 3332 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3333 if (InCircuit) 3334 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3335 else { 3336 Valid = false; 3337 NumNodeOrderIssues++; 3338 LLVM_DEBUG(dbgs() << "Predecessor ";); 3339 } 3340 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3341 << " are scheduled before node " << SU->NodeNum 3342 << "\n";); 3343 } 3344 } 3345 3346 LLVM_DEBUG({ 3347 if (!Valid) 3348 dbgs() << "Invalid node order found!\n"; 3349 }); 3350 } 3351 3352 /// Attempt to fix the degenerate cases when the instruction serialization 3353 /// causes the register lifetimes to overlap. For example, 3354 /// p' = store_pi(p, b) 3355 /// = load p, offset 3356 /// In this case p and p' overlap, which means that two registers are needed. 3357 /// Instead, this function changes the load to use p' and updates the offset. 3358 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3359 unsigned OverlapReg = 0; 3360 unsigned NewBaseReg = 0; 3361 for (SUnit *SU : Instrs) { 3362 MachineInstr *MI = SU->getInstr(); 3363 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3364 const MachineOperand &MO = MI->getOperand(i); 3365 // Look for an instruction that uses p. The instruction occurs in the 3366 // same cycle but occurs later in the serialized order. 3367 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3368 // Check that the instruction appears in the InstrChanges structure, 3369 // which contains instructions that can have the offset updated. 3370 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3371 InstrChanges.find(SU); 3372 if (It != InstrChanges.end()) { 3373 unsigned BasePos, OffsetPos; 3374 // Update the base register and adjust the offset. 3375 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3376 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3377 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3378 int64_t NewOffset = 3379 MI->getOperand(OffsetPos).getImm() - It->second.second; 3380 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3381 SU->setInstr(NewMI); 3382 MISUnitMap[NewMI] = SU; 3383 NewMIs[MI] = NewMI; 3384 } 3385 } 3386 OverlapReg = 0; 3387 NewBaseReg = 0; 3388 break; 3389 } 3390 // Look for an instruction of the form p' = op(p), which uses and defines 3391 // two virtual registers that get allocated to the same physical register. 3392 unsigned TiedUseIdx = 0; 3393 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3394 // OverlapReg is p in the example above. 3395 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3396 // NewBaseReg is p' in the example above. 3397 NewBaseReg = MI->getOperand(i).getReg(); 3398 break; 3399 } 3400 } 3401 } 3402 } 3403 3404 std::deque<SUnit *> 3405 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, 3406 const std::deque<SUnit *> &Instrs) const { 3407 std::deque<SUnit *> NewOrderPhi; 3408 for (SUnit *SU : Instrs) { 3409 if (SU->getInstr()->isPHI()) 3410 NewOrderPhi.push_back(SU); 3411 } 3412 std::deque<SUnit *> NewOrderI; 3413 for (SUnit *SU : Instrs) { 3414 if (!SU->getInstr()->isPHI()) 3415 orderDependence(SSD, SU, NewOrderI); 3416 } 3417 llvm::append_range(NewOrderPhi, NewOrderI); 3418 return NewOrderPhi; 3419 } 3420 3421 /// After the schedule has been formed, call this function to combine 3422 /// the instructions from the different stages/cycles. That is, this 3423 /// function creates a schedule that represents a single iteration. 3424 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3425 // Move all instructions to the first stage from later stages. 3426 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3427 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3428 ++stage) { 3429 std::deque<SUnit *> &cycleInstrs = 3430 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3431 for (SUnit *SU : llvm::reverse(cycleInstrs)) 3432 ScheduledInstrs[cycle].push_front(SU); 3433 } 3434 } 3435 3436 // Erase all the elements in the later stages. Only one iteration should 3437 // remain in the scheduled list, and it contains all the instructions. 3438 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3439 ScheduledInstrs.erase(cycle); 3440 3441 // Change the registers in instruction as specified in the InstrChanges 3442 // map. We need to use the new registers to create the correct order. 3443 for (const SUnit &SU : SSD->SUnits) 3444 SSD->applyInstrChange(SU.getInstr(), *this); 3445 3446 // Reorder the instructions in each cycle to fix and improve the 3447 // generated code. 3448 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3449 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3450 cycleInstrs = reorderInstructions(SSD, cycleInstrs); 3451 SSD->fixupRegisterOverlaps(cycleInstrs); 3452 } 3453 3454 LLVM_DEBUG(dump();); 3455 } 3456 3457 void NodeSet::print(raw_ostream &os) const { 3458 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3459 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3460 for (const auto &I : Nodes) 3461 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3462 os << "\n"; 3463 } 3464 3465 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3466 /// Print the schedule information to the given output. 3467 void SMSchedule::print(raw_ostream &os) const { 3468 // Iterate over each cycle. 3469 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3470 // Iterate over each instruction in the cycle. 3471 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3472 for (SUnit *CI : cycleInstrs->second) { 3473 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3474 os << "(" << CI->NodeNum << ") "; 3475 CI->getInstr()->print(os); 3476 os << "\n"; 3477 } 3478 } 3479 } 3480 3481 /// Utility function used for debugging to print the schedule. 3482 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3483 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3484 3485 void ResourceManager::dumpMRT() const { 3486 LLVM_DEBUG({ 3487 if (UseDFA) 3488 return; 3489 std::stringstream SS; 3490 SS << "MRT:\n"; 3491 SS << std::setw(4) << "Slot"; 3492 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3493 SS << std::setw(3) << I; 3494 SS << std::setw(7) << "#Mops" 3495 << "\n"; 3496 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3497 SS << std::setw(4) << Slot; 3498 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3499 SS << std::setw(3) << MRT[Slot][I]; 3500 SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 3501 } 3502 dbgs() << SS.str(); 3503 }); 3504 } 3505 #endif 3506 3507 void ResourceManager::initProcResourceVectors( 3508 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3509 unsigned ProcResourceID = 0; 3510 3511 // We currently limit the resource kinds to 64 and below so that we can use 3512 // uint64_t for Masks 3513 assert(SM.getNumProcResourceKinds() < 64 && 3514 "Too many kinds of resources, unsupported"); 3515 // Create a unique bitmask for every processor resource unit. 3516 // Skip resource at index 0, since it always references 'InvalidUnit'. 3517 Masks.resize(SM.getNumProcResourceKinds()); 3518 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3519 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3520 if (Desc.SubUnitsIdxBegin) 3521 continue; 3522 Masks[I] = 1ULL << ProcResourceID; 3523 ProcResourceID++; 3524 } 3525 // Create a unique bitmask for every processor resource group. 3526 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3527 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3528 if (!Desc.SubUnitsIdxBegin) 3529 continue; 3530 Masks[I] = 1ULL << ProcResourceID; 3531 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3532 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3533 ProcResourceID++; 3534 } 3535 LLVM_DEBUG({ 3536 if (SwpShowResMask) { 3537 dbgs() << "ProcResourceDesc:\n"; 3538 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3539 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3540 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3541 ProcResource->Name, I, Masks[I], 3542 ProcResource->NumUnits); 3543 } 3544 dbgs() << " -----------------\n"; 3545 } 3546 }); 3547 } 3548 3549 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 3550 LLVM_DEBUG({ 3551 if (SwpDebugResource) 3552 dbgs() << "canReserveResources:\n"; 3553 }); 3554 if (UseDFA) 3555 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3556 ->canReserveResources(&SU.getInstr()->getDesc()); 3557 3558 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3559 if (!SCDesc->isValid()) { 3560 LLVM_DEBUG({ 3561 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3562 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3563 }); 3564 return true; 3565 } 3566 3567 reserveResources(SCDesc, Cycle); 3568 bool Result = !isOverbooked(); 3569 unreserveResources(SCDesc, Cycle); 3570 3571 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); 3572 return Result; 3573 } 3574 3575 void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 3576 LLVM_DEBUG({ 3577 if (SwpDebugResource) 3578 dbgs() << "reserveResources:\n"; 3579 }); 3580 if (UseDFA) 3581 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3582 ->reserveResources(&SU.getInstr()->getDesc()); 3583 3584 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3585 if (!SCDesc->isValid()) { 3586 LLVM_DEBUG({ 3587 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3588 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3589 }); 3590 return; 3591 } 3592 3593 reserveResources(SCDesc, Cycle); 3594 3595 LLVM_DEBUG({ 3596 if (SwpDebugResource) { 3597 dumpMRT(); 3598 dbgs() << "reserveResources: done!\n\n"; 3599 } 3600 }); 3601 } 3602 3603 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3604 int Cycle) { 3605 assert(!UseDFA); 3606 for (const MCWriteProcResEntry &PRE : make_range( 3607 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3608 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3609 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3610 3611 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3612 ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3613 } 3614 3615 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3616 int Cycle) { 3617 assert(!UseDFA); 3618 for (const MCWriteProcResEntry &PRE : make_range( 3619 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3620 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3621 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3622 3623 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3624 --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3625 } 3626 3627 bool ResourceManager::isOverbooked() const { 3628 assert(!UseDFA); 3629 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3630 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3631 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3632 if (MRT[Slot][I] > Desc->NumUnits) 3633 return true; 3634 } 3635 if (NumScheduledMops[Slot] > IssueWidth) 3636 return true; 3637 } 3638 return false; 3639 } 3640 3641 int ResourceManager::calculateResMIIDFA() const { 3642 assert(UseDFA); 3643 3644 // Sort the instructions by the number of available choices for scheduling, 3645 // least to most. Use the number of critical resources as the tie breaker. 3646 FuncUnitSorter FUS = FuncUnitSorter(*ST); 3647 for (SUnit &SU : DAG->SUnits) 3648 FUS.calcCriticalResources(*SU.getInstr()); 3649 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3650 FuncUnitOrder(FUS); 3651 3652 for (SUnit &SU : DAG->SUnits) 3653 FuncUnitOrder.push(SU.getInstr()); 3654 3655 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3656 Resources.push_back( 3657 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3658 3659 while (!FuncUnitOrder.empty()) { 3660 MachineInstr *MI = FuncUnitOrder.top(); 3661 FuncUnitOrder.pop(); 3662 if (TII->isZeroCost(MI->getOpcode())) 3663 continue; 3664 3665 // Attempt to reserve the instruction in an existing DFA. At least one 3666 // DFA is needed for each cycle. 3667 unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3668 unsigned ReservedCycles = 0; 3669 auto *RI = Resources.begin(); 3670 auto *RE = Resources.end(); 3671 LLVM_DEBUG({ 3672 dbgs() << "Trying to reserve resource for " << NumCycles 3673 << " cycles for \n"; 3674 MI->dump(); 3675 }); 3676 for (unsigned C = 0; C < NumCycles; ++C) 3677 while (RI != RE) { 3678 if ((*RI)->canReserveResources(*MI)) { 3679 (*RI)->reserveResources(*MI); 3680 ++ReservedCycles; 3681 break; 3682 } 3683 RI++; 3684 } 3685 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3686 << ", NumCycles:" << NumCycles << "\n"); 3687 // Add new DFAs, if needed, to reserve resources. 3688 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3689 LLVM_DEBUG(if (SwpDebugResource) dbgs() 3690 << "NewResource created to reserve resources" 3691 << "\n"); 3692 auto *NewResource = TII->CreateTargetScheduleState(*ST); 3693 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3694 NewResource->reserveResources(*MI); 3695 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3696 } 3697 } 3698 3699 int Resmii = Resources.size(); 3700 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3701 return Resmii; 3702 } 3703 3704 int ResourceManager::calculateResMII() const { 3705 if (UseDFA) 3706 return calculateResMIIDFA(); 3707 3708 // Count each resource consumption and divide it by the number of units. 3709 // ResMII is the max value among them. 3710 3711 int NumMops = 0; 3712 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3713 for (SUnit &SU : DAG->SUnits) { 3714 if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3715 continue; 3716 3717 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3718 if (!SCDesc->isValid()) 3719 continue; 3720 3721 LLVM_DEBUG({ 3722 if (SwpDebugResource) { 3723 DAG->dumpNode(SU); 3724 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3725 << " WriteProcRes: "; 3726 } 3727 }); 3728 NumMops += SCDesc->NumMicroOps; 3729 for (const MCWriteProcResEntry &PRE : 3730 make_range(STI->getWriteProcResBegin(SCDesc), 3731 STI->getWriteProcResEnd(SCDesc))) { 3732 LLVM_DEBUG({ 3733 if (SwpDebugResource) { 3734 const MCProcResourceDesc *Desc = 3735 SM.getProcResource(PRE.ProcResourceIdx); 3736 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 3737 } 3738 }); 3739 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 3740 } 3741 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3742 } 3743 3744 int Result = (NumMops + IssueWidth - 1) / IssueWidth; 3745 LLVM_DEBUG({ 3746 if (SwpDebugResource) 3747 dbgs() << "#Mops: " << NumMops << ", " 3748 << "IssueWidth: " << IssueWidth << ", " 3749 << "Cycles: " << Result << "\n"; 3750 }); 3751 3752 LLVM_DEBUG({ 3753 if (SwpDebugResource) { 3754 std::stringstream SS; 3755 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3756 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3757 << "\n"; 3758 dbgs() << SS.str(); 3759 } 3760 }); 3761 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3762 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3763 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3764 LLVM_DEBUG({ 3765 if (SwpDebugResource) { 3766 std::stringstream SS; 3767 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3768 << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3769 << std::setw(10) << Cycles << "\n"; 3770 dbgs() << SS.str(); 3771 } 3772 }); 3773 if (Cycles > Result) 3774 Result = Cycles; 3775 } 3776 return Result; 3777 } 3778 3779 void ResourceManager::init(int II) { 3780 InitiationInterval = II; 3781 DFAResources.clear(); 3782 DFAResources.resize(II); 3783 for (auto &I : DFAResources) 3784 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3785 MRT.clear(); 3786 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3787 NumScheduledMops.clear(); 3788 NumScheduledMops.resize(II); 3789 } 3790