1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 Register &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 return Slots2Values.lookup(Slot); 373 } 374 375 namespace { 376 377 /// A wrapper struct around the 'MachineOperand' struct that includes a source 378 /// range and other attributes. 379 struct ParsedMachineOperand { 380 MachineOperand Operand; 381 StringRef::iterator Begin; 382 StringRef::iterator End; 383 Optional<unsigned> TiedDefIdx; 384 385 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 386 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 387 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 388 if (TiedDefIdx) 389 assert(Operand.isReg() && Operand.isUse() && 390 "Only used register operands can be tied"); 391 } 392 }; 393 394 class MIParser { 395 MachineFunction &MF; 396 SMDiagnostic &Error; 397 StringRef Source, CurrentSource; 398 MIToken Token; 399 PerFunctionMIParsingState &PFS; 400 /// Maps from slot numbers to function's unnamed basic blocks. 401 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 402 403 public: 404 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 405 StringRef Source); 406 407 /// \p SkipChar gives the number of characters to skip before looking 408 /// for the next token. 409 void lex(unsigned SkipChar = 0); 410 411 /// Report an error at the current location with the given message. 412 /// 413 /// This function always return true. 414 bool error(const Twine &Msg); 415 416 /// Report an error at the given location with the given message. 417 /// 418 /// This function always return true. 419 bool error(StringRef::iterator Loc, const Twine &Msg); 420 421 bool 422 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 423 bool parseBasicBlocks(); 424 bool parse(MachineInstr *&MI); 425 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 426 bool parseStandaloneNamedRegister(Register &Reg); 427 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 428 bool parseStandaloneRegister(Register &Reg); 429 bool parseStandaloneStackObject(int &FI); 430 bool parseStandaloneMDNode(MDNode *&Node); 431 432 bool 433 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 434 bool parseBasicBlock(MachineBasicBlock &MBB, 435 MachineBasicBlock *&AddFalthroughFrom); 436 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 437 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 438 439 bool parseNamedRegister(Register &Reg); 440 bool parseVirtualRegister(VRegInfo *&Info); 441 bool parseNamedVirtualRegister(VRegInfo *&Info); 442 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 443 bool parseRegisterFlag(unsigned &Flags); 444 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 445 bool parseSubRegisterIndex(unsigned &SubReg); 446 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 447 bool parseRegisterOperand(MachineOperand &Dest, 448 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 449 bool parseImmediateOperand(MachineOperand &Dest); 450 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 451 const Constant *&C); 452 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 453 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 454 bool parseTypedImmediateOperand(MachineOperand &Dest); 455 bool parseFPImmediateOperand(MachineOperand &Dest); 456 bool parseMBBReference(MachineBasicBlock *&MBB); 457 bool parseMBBOperand(MachineOperand &Dest); 458 bool parseStackFrameIndex(int &FI); 459 bool parseStackObjectOperand(MachineOperand &Dest); 460 bool parseFixedStackFrameIndex(int &FI); 461 bool parseFixedStackObjectOperand(MachineOperand &Dest); 462 bool parseGlobalValue(GlobalValue *&GV); 463 bool parseGlobalAddressOperand(MachineOperand &Dest); 464 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 465 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 466 bool parseJumpTableIndexOperand(MachineOperand &Dest); 467 bool parseExternalSymbolOperand(MachineOperand &Dest); 468 bool parseMCSymbolOperand(MachineOperand &Dest); 469 bool parseMDNode(MDNode *&Node); 470 bool parseDIExpression(MDNode *&Expr); 471 bool parseDILocation(MDNode *&Expr); 472 bool parseMetadataOperand(MachineOperand &Dest); 473 bool parseCFIOffset(int &Offset); 474 bool parseCFIRegister(Register &Reg); 475 bool parseCFIEscapeValues(std::string& Values); 476 bool parseCFIOperand(MachineOperand &Dest); 477 bool parseIRBlock(BasicBlock *&BB, const Function &F); 478 bool parseBlockAddressOperand(MachineOperand &Dest); 479 bool parseIntrinsicOperand(MachineOperand &Dest); 480 bool parsePredicateOperand(MachineOperand &Dest); 481 bool parseShuffleMaskOperand(MachineOperand &Dest); 482 bool parseTargetIndexOperand(MachineOperand &Dest); 483 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 484 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 485 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 486 MachineOperand &Dest, 487 Optional<unsigned> &TiedDefIdx); 488 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 489 const unsigned OpIdx, 490 MachineOperand &Dest, 491 Optional<unsigned> &TiedDefIdx); 492 bool parseOffset(int64_t &Offset); 493 bool parseAlignment(unsigned &Alignment); 494 bool parseAddrspace(unsigned &Addrspace); 495 bool parseSectionID(Optional<MBBSectionID> &SID); 496 bool parseOperandsOffset(MachineOperand &Op); 497 bool parseIRValue(const Value *&V); 498 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 499 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 500 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 501 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 502 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 503 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 504 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 505 bool parseHeapAllocMarker(MDNode *&Node); 506 507 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 508 MachineOperand &Dest, const MIRFormatter &MF); 509 510 private: 511 /// Convert the integer literal in the current token into an unsigned integer. 512 /// 513 /// Return true if an error occurred. 514 bool getUnsigned(unsigned &Result); 515 516 /// Convert the integer literal in the current token into an uint64. 517 /// 518 /// Return true if an error occurred. 519 bool getUint64(uint64_t &Result); 520 521 /// Convert the hexadecimal literal in the current token into an unsigned 522 /// APInt with a minimum bitwidth required to represent the value. 523 /// 524 /// Return true if the literal does not represent an integer value. 525 bool getHexUint(APInt &Result); 526 527 /// If the current token is of the given kind, consume it and return false. 528 /// Otherwise report an error and return true. 529 bool expectAndConsume(MIToken::TokenKind TokenKind); 530 531 /// If the current token is of the given kind, consume it and return true. 532 /// Otherwise return false. 533 bool consumeIfPresent(MIToken::TokenKind TokenKind); 534 535 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 536 537 bool assignRegisterTies(MachineInstr &MI, 538 ArrayRef<ParsedMachineOperand> Operands); 539 540 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 541 const MCInstrDesc &MCID); 542 543 const BasicBlock *getIRBlock(unsigned Slot); 544 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 545 546 /// Get or create an MCSymbol for a given name. 547 MCSymbol *getOrCreateMCSymbol(StringRef Name); 548 549 /// parseStringConstant 550 /// ::= StringConstant 551 bool parseStringConstant(std::string &Result); 552 }; 553 554 } // end anonymous namespace 555 556 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 557 StringRef Source) 558 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 559 {} 560 561 void MIParser::lex(unsigned SkipChar) { 562 CurrentSource = lexMIToken( 563 CurrentSource.slice(SkipChar, StringRef::npos), Token, 564 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 565 } 566 567 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 568 569 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 570 const SourceMgr &SM = *PFS.SM; 571 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 572 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 573 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 574 // Create an ordinary diagnostic when the source manager's buffer is the 575 // source string. 576 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 577 return true; 578 } 579 // Create a diagnostic for a YAML string literal. 580 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 581 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 582 Source, None, None); 583 return true; 584 } 585 586 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 587 ErrorCallbackType; 588 589 static const char *toString(MIToken::TokenKind TokenKind) { 590 switch (TokenKind) { 591 case MIToken::comma: 592 return "','"; 593 case MIToken::equal: 594 return "'='"; 595 case MIToken::colon: 596 return "':'"; 597 case MIToken::lparen: 598 return "'('"; 599 case MIToken::rparen: 600 return "')'"; 601 default: 602 return "<unknown token>"; 603 } 604 } 605 606 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 607 if (Token.isNot(TokenKind)) 608 return error(Twine("expected ") + toString(TokenKind)); 609 lex(); 610 return false; 611 } 612 613 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 614 if (Token.isNot(TokenKind)) 615 return false; 616 lex(); 617 return true; 618 } 619 620 // Parse Machine Basic Block Section ID. 621 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) { 622 assert(Token.is(MIToken::kw_bbsections)); 623 lex(); 624 if (Token.is(MIToken::IntegerLiteral)) { 625 unsigned Value = 0; 626 if (getUnsigned(Value)) 627 return error("Unknown Section ID"); 628 SID = MBBSectionID{Value}; 629 } else { 630 const StringRef &S = Token.stringValue(); 631 if (S == "Exception") 632 SID = MBBSectionID::ExceptionSectionID; 633 else if (S == "Cold") 634 SID = MBBSectionID::ColdSectionID; 635 else 636 return error("Unknown Section ID"); 637 } 638 lex(); 639 return false; 640 } 641 642 bool MIParser::parseBasicBlockDefinition( 643 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 644 assert(Token.is(MIToken::MachineBasicBlockLabel)); 645 unsigned ID = 0; 646 if (getUnsigned(ID)) 647 return true; 648 auto Loc = Token.location(); 649 auto Name = Token.stringValue(); 650 lex(); 651 bool HasAddressTaken = false; 652 bool IsLandingPad = false; 653 bool IsEHFuncletEntry = false; 654 Optional<MBBSectionID> SectionID; 655 unsigned Alignment = 0; 656 BasicBlock *BB = nullptr; 657 if (consumeIfPresent(MIToken::lparen)) { 658 do { 659 // TODO: Report an error when multiple same attributes are specified. 660 switch (Token.kind()) { 661 case MIToken::kw_address_taken: 662 HasAddressTaken = true; 663 lex(); 664 break; 665 case MIToken::kw_landing_pad: 666 IsLandingPad = true; 667 lex(); 668 break; 669 case MIToken::kw_ehfunclet_entry: 670 IsEHFuncletEntry = true; 671 lex(); 672 break; 673 case MIToken::kw_align: 674 if (parseAlignment(Alignment)) 675 return true; 676 break; 677 case MIToken::IRBlock: 678 // TODO: Report an error when both name and ir block are specified. 679 if (parseIRBlock(BB, MF.getFunction())) 680 return true; 681 lex(); 682 break; 683 case MIToken::kw_bbsections: 684 if (parseSectionID(SectionID)) 685 return true; 686 break; 687 default: 688 break; 689 } 690 } while (consumeIfPresent(MIToken::comma)); 691 if (expectAndConsume(MIToken::rparen)) 692 return true; 693 } 694 if (expectAndConsume(MIToken::colon)) 695 return true; 696 697 if (!Name.empty()) { 698 BB = dyn_cast_or_null<BasicBlock>( 699 MF.getFunction().getValueSymbolTable()->lookup(Name)); 700 if (!BB) 701 return error(Loc, Twine("basic block '") + Name + 702 "' is not defined in the function '" + 703 MF.getName() + "'"); 704 } 705 auto *MBB = MF.CreateMachineBasicBlock(BB); 706 MF.insert(MF.end(), MBB); 707 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 708 if (!WasInserted) 709 return error(Loc, Twine("redefinition of machine basic block with id #") + 710 Twine(ID)); 711 if (Alignment) 712 MBB->setAlignment(Align(Alignment)); 713 if (HasAddressTaken) 714 MBB->setHasAddressTaken(); 715 MBB->setIsEHPad(IsLandingPad); 716 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 717 if (SectionID.hasValue()) { 718 MBB->setSectionID(SectionID.getValue()); 719 MF.setBBSectionsType(BasicBlockSection::List); 720 } 721 return false; 722 } 723 724 bool MIParser::parseBasicBlockDefinitions( 725 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 726 lex(); 727 // Skip until the first machine basic block. 728 while (Token.is(MIToken::Newline)) 729 lex(); 730 if (Token.isErrorOrEOF()) 731 return Token.isError(); 732 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 733 return error("expected a basic block definition before instructions"); 734 unsigned BraceDepth = 0; 735 do { 736 if (parseBasicBlockDefinition(MBBSlots)) 737 return true; 738 bool IsAfterNewline = false; 739 // Skip until the next machine basic block. 740 while (true) { 741 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 742 Token.isErrorOrEOF()) 743 break; 744 else if (Token.is(MIToken::MachineBasicBlockLabel)) 745 return error("basic block definition should be located at the start of " 746 "the line"); 747 else if (consumeIfPresent(MIToken::Newline)) { 748 IsAfterNewline = true; 749 continue; 750 } 751 IsAfterNewline = false; 752 if (Token.is(MIToken::lbrace)) 753 ++BraceDepth; 754 if (Token.is(MIToken::rbrace)) { 755 if (!BraceDepth) 756 return error("extraneous closing brace ('}')"); 757 --BraceDepth; 758 } 759 lex(); 760 } 761 // Verify that we closed all of the '{' at the end of a file or a block. 762 if (!Token.isError() && BraceDepth) 763 return error("expected '}'"); // FIXME: Report a note that shows '{'. 764 } while (!Token.isErrorOrEOF()); 765 return Token.isError(); 766 } 767 768 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 769 assert(Token.is(MIToken::kw_liveins)); 770 lex(); 771 if (expectAndConsume(MIToken::colon)) 772 return true; 773 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 774 return false; 775 do { 776 if (Token.isNot(MIToken::NamedRegister)) 777 return error("expected a named register"); 778 Register Reg; 779 if (parseNamedRegister(Reg)) 780 return true; 781 lex(); 782 LaneBitmask Mask = LaneBitmask::getAll(); 783 if (consumeIfPresent(MIToken::colon)) { 784 // Parse lane mask. 785 if (Token.isNot(MIToken::IntegerLiteral) && 786 Token.isNot(MIToken::HexLiteral)) 787 return error("expected a lane mask"); 788 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 789 "Use correct get-function for lane mask"); 790 LaneBitmask::Type V; 791 if (getUint64(V)) 792 return error("invalid lane mask value"); 793 Mask = LaneBitmask(V); 794 lex(); 795 } 796 MBB.addLiveIn(Reg, Mask); 797 } while (consumeIfPresent(MIToken::comma)); 798 return false; 799 } 800 801 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 802 assert(Token.is(MIToken::kw_successors)); 803 lex(); 804 if (expectAndConsume(MIToken::colon)) 805 return true; 806 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 807 return false; 808 do { 809 if (Token.isNot(MIToken::MachineBasicBlock)) 810 return error("expected a machine basic block reference"); 811 MachineBasicBlock *SuccMBB = nullptr; 812 if (parseMBBReference(SuccMBB)) 813 return true; 814 lex(); 815 unsigned Weight = 0; 816 if (consumeIfPresent(MIToken::lparen)) { 817 if (Token.isNot(MIToken::IntegerLiteral) && 818 Token.isNot(MIToken::HexLiteral)) 819 return error("expected an integer literal after '('"); 820 if (getUnsigned(Weight)) 821 return true; 822 lex(); 823 if (expectAndConsume(MIToken::rparen)) 824 return true; 825 } 826 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 827 } while (consumeIfPresent(MIToken::comma)); 828 MBB.normalizeSuccProbs(); 829 return false; 830 } 831 832 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 833 MachineBasicBlock *&AddFalthroughFrom) { 834 // Skip the definition. 835 assert(Token.is(MIToken::MachineBasicBlockLabel)); 836 lex(); 837 if (consumeIfPresent(MIToken::lparen)) { 838 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 839 lex(); 840 consumeIfPresent(MIToken::rparen); 841 } 842 consumeIfPresent(MIToken::colon); 843 844 // Parse the liveins and successors. 845 // N.B: Multiple lists of successors and liveins are allowed and they're 846 // merged into one. 847 // Example: 848 // liveins: %edi 849 // liveins: %esi 850 // 851 // is equivalent to 852 // liveins: %edi, %esi 853 bool ExplicitSuccessors = false; 854 while (true) { 855 if (Token.is(MIToken::kw_successors)) { 856 if (parseBasicBlockSuccessors(MBB)) 857 return true; 858 ExplicitSuccessors = true; 859 } else if (Token.is(MIToken::kw_liveins)) { 860 if (parseBasicBlockLiveins(MBB)) 861 return true; 862 } else if (consumeIfPresent(MIToken::Newline)) { 863 continue; 864 } else 865 break; 866 if (!Token.isNewlineOrEOF()) 867 return error("expected line break at the end of a list"); 868 lex(); 869 } 870 871 // Parse the instructions. 872 bool IsInBundle = false; 873 MachineInstr *PrevMI = nullptr; 874 while (!Token.is(MIToken::MachineBasicBlockLabel) && 875 !Token.is(MIToken::Eof)) { 876 if (consumeIfPresent(MIToken::Newline)) 877 continue; 878 if (consumeIfPresent(MIToken::rbrace)) { 879 // The first parsing pass should verify that all closing '}' have an 880 // opening '{'. 881 assert(IsInBundle); 882 IsInBundle = false; 883 continue; 884 } 885 MachineInstr *MI = nullptr; 886 if (parse(MI)) 887 return true; 888 MBB.insert(MBB.end(), MI); 889 if (IsInBundle) { 890 PrevMI->setFlag(MachineInstr::BundledSucc); 891 MI->setFlag(MachineInstr::BundledPred); 892 } 893 PrevMI = MI; 894 if (Token.is(MIToken::lbrace)) { 895 if (IsInBundle) 896 return error("nested instruction bundles are not allowed"); 897 lex(); 898 // This instruction is the start of the bundle. 899 MI->setFlag(MachineInstr::BundledSucc); 900 IsInBundle = true; 901 if (!Token.is(MIToken::Newline)) 902 // The next instruction can be on the same line. 903 continue; 904 } 905 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 906 lex(); 907 } 908 909 // Construct successor list by searching for basic block machine operands. 910 if (!ExplicitSuccessors) { 911 SmallVector<MachineBasicBlock*,4> Successors; 912 bool IsFallthrough; 913 guessSuccessors(MBB, Successors, IsFallthrough); 914 for (MachineBasicBlock *Succ : Successors) 915 MBB.addSuccessor(Succ); 916 917 if (IsFallthrough) { 918 AddFalthroughFrom = &MBB; 919 } else { 920 MBB.normalizeSuccProbs(); 921 } 922 } 923 924 return false; 925 } 926 927 bool MIParser::parseBasicBlocks() { 928 lex(); 929 // Skip until the first machine basic block. 930 while (Token.is(MIToken::Newline)) 931 lex(); 932 if (Token.isErrorOrEOF()) 933 return Token.isError(); 934 // The first parsing pass should have verified that this token is a MBB label 935 // in the 'parseBasicBlockDefinitions' method. 936 assert(Token.is(MIToken::MachineBasicBlockLabel)); 937 MachineBasicBlock *AddFalthroughFrom = nullptr; 938 do { 939 MachineBasicBlock *MBB = nullptr; 940 if (parseMBBReference(MBB)) 941 return true; 942 if (AddFalthroughFrom) { 943 if (!AddFalthroughFrom->isSuccessor(MBB)) 944 AddFalthroughFrom->addSuccessor(MBB); 945 AddFalthroughFrom->normalizeSuccProbs(); 946 AddFalthroughFrom = nullptr; 947 } 948 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 949 return true; 950 // The method 'parseBasicBlock' should parse the whole block until the next 951 // block or the end of file. 952 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 953 } while (Token.isNot(MIToken::Eof)); 954 return false; 955 } 956 957 bool MIParser::parse(MachineInstr *&MI) { 958 // Parse any register operands before '=' 959 MachineOperand MO = MachineOperand::CreateImm(0); 960 SmallVector<ParsedMachineOperand, 8> Operands; 961 while (Token.isRegister() || Token.isRegisterFlag()) { 962 auto Loc = Token.location(); 963 Optional<unsigned> TiedDefIdx; 964 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 965 return true; 966 Operands.push_back( 967 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 968 if (Token.isNot(MIToken::comma)) 969 break; 970 lex(); 971 } 972 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 973 return true; 974 975 unsigned OpCode, Flags = 0; 976 if (Token.isError() || parseInstruction(OpCode, Flags)) 977 return true; 978 979 // Parse the remaining machine operands. 980 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 981 Token.isNot(MIToken::kw_post_instr_symbol) && 982 Token.isNot(MIToken::kw_heap_alloc_marker) && 983 Token.isNot(MIToken::kw_debug_location) && 984 Token.isNot(MIToken::kw_debug_instr_number) && 985 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 986 auto Loc = Token.location(); 987 Optional<unsigned> TiedDefIdx; 988 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 989 return true; 990 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 991 MO.setIsDebug(); 992 Operands.push_back( 993 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 994 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 995 Token.is(MIToken::lbrace)) 996 break; 997 if (Token.isNot(MIToken::comma)) 998 return error("expected ',' before the next machine operand"); 999 lex(); 1000 } 1001 1002 MCSymbol *PreInstrSymbol = nullptr; 1003 if (Token.is(MIToken::kw_pre_instr_symbol)) 1004 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1005 return true; 1006 MCSymbol *PostInstrSymbol = nullptr; 1007 if (Token.is(MIToken::kw_post_instr_symbol)) 1008 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1009 return true; 1010 MDNode *HeapAllocMarker = nullptr; 1011 if (Token.is(MIToken::kw_heap_alloc_marker)) 1012 if (parseHeapAllocMarker(HeapAllocMarker)) 1013 return true; 1014 1015 unsigned InstrNum = 0; 1016 if (Token.is(MIToken::kw_debug_instr_number)) { 1017 lex(); 1018 if (Token.isNot(MIToken::IntegerLiteral)) 1019 return error("expected an integer literal after 'debug-instr-number'"); 1020 if (getUnsigned(InstrNum)) 1021 return true; 1022 lex(); 1023 // Lex past trailing comma if present. 1024 if (Token.is(MIToken::comma)) 1025 lex(); 1026 } 1027 1028 DebugLoc DebugLocation; 1029 if (Token.is(MIToken::kw_debug_location)) { 1030 lex(); 1031 MDNode *Node = nullptr; 1032 if (Token.is(MIToken::exclaim)) { 1033 if (parseMDNode(Node)) 1034 return true; 1035 } else if (Token.is(MIToken::md_dilocation)) { 1036 if (parseDILocation(Node)) 1037 return true; 1038 } else 1039 return error("expected a metadata node after 'debug-location'"); 1040 if (!isa<DILocation>(Node)) 1041 return error("referenced metadata is not a DILocation"); 1042 DebugLocation = DebugLoc(Node); 1043 } 1044 1045 // Parse the machine memory operands. 1046 SmallVector<MachineMemOperand *, 2> MemOperands; 1047 if (Token.is(MIToken::coloncolon)) { 1048 lex(); 1049 while (!Token.isNewlineOrEOF()) { 1050 MachineMemOperand *MemOp = nullptr; 1051 if (parseMachineMemoryOperand(MemOp)) 1052 return true; 1053 MemOperands.push_back(MemOp); 1054 if (Token.isNewlineOrEOF()) 1055 break; 1056 if (Token.isNot(MIToken::comma)) 1057 return error("expected ',' before the next machine memory operand"); 1058 lex(); 1059 } 1060 } 1061 1062 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1063 if (!MCID.isVariadic()) { 1064 // FIXME: Move the implicit operand verification to the machine verifier. 1065 if (verifyImplicitOperands(Operands, MCID)) 1066 return true; 1067 } 1068 1069 // TODO: Check for extraneous machine operands. 1070 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1071 MI->setFlags(Flags); 1072 for (const auto &Operand : Operands) 1073 MI->addOperand(MF, Operand.Operand); 1074 if (assignRegisterTies(*MI, Operands)) 1075 return true; 1076 if (PreInstrSymbol) 1077 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1078 if (PostInstrSymbol) 1079 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1080 if (HeapAllocMarker) 1081 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1082 if (!MemOperands.empty()) 1083 MI->setMemRefs(MF, MemOperands); 1084 if (InstrNum) 1085 MI->setDebugInstrNum(InstrNum); 1086 return false; 1087 } 1088 1089 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1090 lex(); 1091 if (Token.isNot(MIToken::MachineBasicBlock)) 1092 return error("expected a machine basic block reference"); 1093 if (parseMBBReference(MBB)) 1094 return true; 1095 lex(); 1096 if (Token.isNot(MIToken::Eof)) 1097 return error( 1098 "expected end of string after the machine basic block reference"); 1099 return false; 1100 } 1101 1102 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1103 lex(); 1104 if (Token.isNot(MIToken::NamedRegister)) 1105 return error("expected a named register"); 1106 if (parseNamedRegister(Reg)) 1107 return true; 1108 lex(); 1109 if (Token.isNot(MIToken::Eof)) 1110 return error("expected end of string after the register reference"); 1111 return false; 1112 } 1113 1114 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1115 lex(); 1116 if (Token.isNot(MIToken::VirtualRegister)) 1117 return error("expected a virtual register"); 1118 if (parseVirtualRegister(Info)) 1119 return true; 1120 lex(); 1121 if (Token.isNot(MIToken::Eof)) 1122 return error("expected end of string after the register reference"); 1123 return false; 1124 } 1125 1126 bool MIParser::parseStandaloneRegister(Register &Reg) { 1127 lex(); 1128 if (Token.isNot(MIToken::NamedRegister) && 1129 Token.isNot(MIToken::VirtualRegister)) 1130 return error("expected either a named or virtual register"); 1131 1132 VRegInfo *Info; 1133 if (parseRegister(Reg, Info)) 1134 return true; 1135 1136 lex(); 1137 if (Token.isNot(MIToken::Eof)) 1138 return error("expected end of string after the register reference"); 1139 return false; 1140 } 1141 1142 bool MIParser::parseStandaloneStackObject(int &FI) { 1143 lex(); 1144 if (Token.isNot(MIToken::StackObject)) 1145 return error("expected a stack object"); 1146 if (parseStackFrameIndex(FI)) 1147 return true; 1148 if (Token.isNot(MIToken::Eof)) 1149 return error("expected end of string after the stack object reference"); 1150 return false; 1151 } 1152 1153 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1154 lex(); 1155 if (Token.is(MIToken::exclaim)) { 1156 if (parseMDNode(Node)) 1157 return true; 1158 } else if (Token.is(MIToken::md_diexpr)) { 1159 if (parseDIExpression(Node)) 1160 return true; 1161 } else if (Token.is(MIToken::md_dilocation)) { 1162 if (parseDILocation(Node)) 1163 return true; 1164 } else 1165 return error("expected a metadata node"); 1166 if (Token.isNot(MIToken::Eof)) 1167 return error("expected end of string after the metadata node"); 1168 return false; 1169 } 1170 1171 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1172 assert(MO.isImplicit()); 1173 return MO.isDef() ? "implicit-def" : "implicit"; 1174 } 1175 1176 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1177 Register Reg) { 1178 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1179 return StringRef(TRI->getName(Reg)).lower(); 1180 } 1181 1182 /// Return true if the parsed machine operands contain a given machine operand. 1183 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1184 ArrayRef<ParsedMachineOperand> Operands) { 1185 for (const auto &I : Operands) { 1186 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1187 return true; 1188 } 1189 return false; 1190 } 1191 1192 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1193 const MCInstrDesc &MCID) { 1194 if (MCID.isCall()) 1195 // We can't verify call instructions as they can contain arbitrary implicit 1196 // register and register mask operands. 1197 return false; 1198 1199 // Gather all the expected implicit operands. 1200 SmallVector<MachineOperand, 4> ImplicitOperands; 1201 if (MCID.ImplicitDefs) 1202 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1203 ImplicitOperands.push_back( 1204 MachineOperand::CreateReg(*ImpDefs, true, true)); 1205 if (MCID.ImplicitUses) 1206 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1207 ImplicitOperands.push_back( 1208 MachineOperand::CreateReg(*ImpUses, false, true)); 1209 1210 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1211 assert(TRI && "Expected target register info"); 1212 for (const auto &I : ImplicitOperands) { 1213 if (isImplicitOperandIn(I, Operands)) 1214 continue; 1215 return error(Operands.empty() ? Token.location() : Operands.back().End, 1216 Twine("missing implicit register operand '") + 1217 printImplicitRegisterFlag(I) + " $" + 1218 getRegisterName(TRI, I.getReg()) + "'"); 1219 } 1220 return false; 1221 } 1222 1223 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1224 // Allow frame and fast math flags for OPCODE 1225 while (Token.is(MIToken::kw_frame_setup) || 1226 Token.is(MIToken::kw_frame_destroy) || 1227 Token.is(MIToken::kw_nnan) || 1228 Token.is(MIToken::kw_ninf) || 1229 Token.is(MIToken::kw_nsz) || 1230 Token.is(MIToken::kw_arcp) || 1231 Token.is(MIToken::kw_contract) || 1232 Token.is(MIToken::kw_afn) || 1233 Token.is(MIToken::kw_reassoc) || 1234 Token.is(MIToken::kw_nuw) || 1235 Token.is(MIToken::kw_nsw) || 1236 Token.is(MIToken::kw_exact) || 1237 Token.is(MIToken::kw_nofpexcept)) { 1238 // Mine frame and fast math flags 1239 if (Token.is(MIToken::kw_frame_setup)) 1240 Flags |= MachineInstr::FrameSetup; 1241 if (Token.is(MIToken::kw_frame_destroy)) 1242 Flags |= MachineInstr::FrameDestroy; 1243 if (Token.is(MIToken::kw_nnan)) 1244 Flags |= MachineInstr::FmNoNans; 1245 if (Token.is(MIToken::kw_ninf)) 1246 Flags |= MachineInstr::FmNoInfs; 1247 if (Token.is(MIToken::kw_nsz)) 1248 Flags |= MachineInstr::FmNsz; 1249 if (Token.is(MIToken::kw_arcp)) 1250 Flags |= MachineInstr::FmArcp; 1251 if (Token.is(MIToken::kw_contract)) 1252 Flags |= MachineInstr::FmContract; 1253 if (Token.is(MIToken::kw_afn)) 1254 Flags |= MachineInstr::FmAfn; 1255 if (Token.is(MIToken::kw_reassoc)) 1256 Flags |= MachineInstr::FmReassoc; 1257 if (Token.is(MIToken::kw_nuw)) 1258 Flags |= MachineInstr::NoUWrap; 1259 if (Token.is(MIToken::kw_nsw)) 1260 Flags |= MachineInstr::NoSWrap; 1261 if (Token.is(MIToken::kw_exact)) 1262 Flags |= MachineInstr::IsExact; 1263 if (Token.is(MIToken::kw_nofpexcept)) 1264 Flags |= MachineInstr::NoFPExcept; 1265 1266 lex(); 1267 } 1268 if (Token.isNot(MIToken::Identifier)) 1269 return error("expected a machine instruction"); 1270 StringRef InstrName = Token.stringValue(); 1271 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1272 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1273 lex(); 1274 return false; 1275 } 1276 1277 bool MIParser::parseNamedRegister(Register &Reg) { 1278 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1279 StringRef Name = Token.stringValue(); 1280 if (PFS.Target.getRegisterByName(Name, Reg)) 1281 return error(Twine("unknown register name '") + Name + "'"); 1282 return false; 1283 } 1284 1285 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1286 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1287 StringRef Name = Token.stringValue(); 1288 // TODO: Check that the VReg name is not the same as a physical register name. 1289 // If it is, then print a warning (when warnings are implemented). 1290 Info = &PFS.getVRegInfoNamed(Name); 1291 return false; 1292 } 1293 1294 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1295 if (Token.is(MIToken::NamedVirtualRegister)) 1296 return parseNamedVirtualRegister(Info); 1297 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1298 unsigned ID; 1299 if (getUnsigned(ID)) 1300 return true; 1301 Info = &PFS.getVRegInfo(ID); 1302 return false; 1303 } 1304 1305 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1306 switch (Token.kind()) { 1307 case MIToken::underscore: 1308 Reg = 0; 1309 return false; 1310 case MIToken::NamedRegister: 1311 return parseNamedRegister(Reg); 1312 case MIToken::NamedVirtualRegister: 1313 case MIToken::VirtualRegister: 1314 if (parseVirtualRegister(Info)) 1315 return true; 1316 Reg = Info->VReg; 1317 return false; 1318 // TODO: Parse other register kinds. 1319 default: 1320 llvm_unreachable("The current token should be a register"); 1321 } 1322 } 1323 1324 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1325 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1326 return error("expected '_', register class, or register bank name"); 1327 StringRef::iterator Loc = Token.location(); 1328 StringRef Name = Token.stringValue(); 1329 1330 // Was it a register class? 1331 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1332 if (RC) { 1333 lex(); 1334 1335 switch (RegInfo.Kind) { 1336 case VRegInfo::UNKNOWN: 1337 case VRegInfo::NORMAL: 1338 RegInfo.Kind = VRegInfo::NORMAL; 1339 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1340 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1341 return error(Loc, Twine("conflicting register classes, previously: ") + 1342 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1343 } 1344 RegInfo.D.RC = RC; 1345 RegInfo.Explicit = true; 1346 return false; 1347 1348 case VRegInfo::GENERIC: 1349 case VRegInfo::REGBANK: 1350 return error(Loc, "register class specification on generic register"); 1351 } 1352 llvm_unreachable("Unexpected register kind"); 1353 } 1354 1355 // Should be a register bank or a generic register. 1356 const RegisterBank *RegBank = nullptr; 1357 if (Name != "_") { 1358 RegBank = PFS.Target.getRegBank(Name); 1359 if (!RegBank) 1360 return error(Loc, "expected '_', register class, or register bank name"); 1361 } 1362 1363 lex(); 1364 1365 switch (RegInfo.Kind) { 1366 case VRegInfo::UNKNOWN: 1367 case VRegInfo::GENERIC: 1368 case VRegInfo::REGBANK: 1369 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1370 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1371 return error(Loc, "conflicting generic register banks"); 1372 RegInfo.D.RegBank = RegBank; 1373 RegInfo.Explicit = true; 1374 return false; 1375 1376 case VRegInfo::NORMAL: 1377 return error(Loc, "register bank specification on normal register"); 1378 } 1379 llvm_unreachable("Unexpected register kind"); 1380 } 1381 1382 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1383 const unsigned OldFlags = Flags; 1384 switch (Token.kind()) { 1385 case MIToken::kw_implicit: 1386 Flags |= RegState::Implicit; 1387 break; 1388 case MIToken::kw_implicit_define: 1389 Flags |= RegState::ImplicitDefine; 1390 break; 1391 case MIToken::kw_def: 1392 Flags |= RegState::Define; 1393 break; 1394 case MIToken::kw_dead: 1395 Flags |= RegState::Dead; 1396 break; 1397 case MIToken::kw_killed: 1398 Flags |= RegState::Kill; 1399 break; 1400 case MIToken::kw_undef: 1401 Flags |= RegState::Undef; 1402 break; 1403 case MIToken::kw_internal: 1404 Flags |= RegState::InternalRead; 1405 break; 1406 case MIToken::kw_early_clobber: 1407 Flags |= RegState::EarlyClobber; 1408 break; 1409 case MIToken::kw_debug_use: 1410 Flags |= RegState::Debug; 1411 break; 1412 case MIToken::kw_renamable: 1413 Flags |= RegState::Renamable; 1414 break; 1415 default: 1416 llvm_unreachable("The current token should be a register flag"); 1417 } 1418 if (OldFlags == Flags) 1419 // We know that the same flag is specified more than once when the flags 1420 // weren't modified. 1421 return error("duplicate '" + Token.stringValue() + "' register flag"); 1422 lex(); 1423 return false; 1424 } 1425 1426 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1427 assert(Token.is(MIToken::dot)); 1428 lex(); 1429 if (Token.isNot(MIToken::Identifier)) 1430 return error("expected a subregister index after '.'"); 1431 auto Name = Token.stringValue(); 1432 SubReg = PFS.Target.getSubRegIndex(Name); 1433 if (!SubReg) 1434 return error(Twine("use of unknown subregister index '") + Name + "'"); 1435 lex(); 1436 return false; 1437 } 1438 1439 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1440 if (!consumeIfPresent(MIToken::kw_tied_def)) 1441 return true; 1442 if (Token.isNot(MIToken::IntegerLiteral)) 1443 return error("expected an integer literal after 'tied-def'"); 1444 if (getUnsigned(TiedDefIdx)) 1445 return true; 1446 lex(); 1447 if (expectAndConsume(MIToken::rparen)) 1448 return true; 1449 return false; 1450 } 1451 1452 bool MIParser::assignRegisterTies(MachineInstr &MI, 1453 ArrayRef<ParsedMachineOperand> Operands) { 1454 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1455 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1456 if (!Operands[I].TiedDefIdx) 1457 continue; 1458 // The parser ensures that this operand is a register use, so we just have 1459 // to check the tied-def operand. 1460 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1461 if (DefIdx >= E) 1462 return error(Operands[I].Begin, 1463 Twine("use of invalid tied-def operand index '" + 1464 Twine(DefIdx) + "'; instruction has only ") + 1465 Twine(E) + " operands"); 1466 const auto &DefOperand = Operands[DefIdx].Operand; 1467 if (!DefOperand.isReg() || !DefOperand.isDef()) 1468 // FIXME: add note with the def operand. 1469 return error(Operands[I].Begin, 1470 Twine("use of invalid tied-def operand index '") + 1471 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1472 " isn't a defined register"); 1473 // Check that the tied-def operand wasn't tied elsewhere. 1474 for (const auto &TiedPair : TiedRegisterPairs) { 1475 if (TiedPair.first == DefIdx) 1476 return error(Operands[I].Begin, 1477 Twine("the tied-def operand #") + Twine(DefIdx) + 1478 " is already tied with another register operand"); 1479 } 1480 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1481 } 1482 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1483 // indices must be less than tied max. 1484 for (const auto &TiedPair : TiedRegisterPairs) 1485 MI.tieOperands(TiedPair.first, TiedPair.second); 1486 return false; 1487 } 1488 1489 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1490 Optional<unsigned> &TiedDefIdx, 1491 bool IsDef) { 1492 unsigned Flags = IsDef ? RegState::Define : 0; 1493 while (Token.isRegisterFlag()) { 1494 if (parseRegisterFlag(Flags)) 1495 return true; 1496 } 1497 if (!Token.isRegister()) 1498 return error("expected a register after register flags"); 1499 Register Reg; 1500 VRegInfo *RegInfo; 1501 if (parseRegister(Reg, RegInfo)) 1502 return true; 1503 lex(); 1504 unsigned SubReg = 0; 1505 if (Token.is(MIToken::dot)) { 1506 if (parseSubRegisterIndex(SubReg)) 1507 return true; 1508 if (!Register::isVirtualRegister(Reg)) 1509 return error("subregister index expects a virtual register"); 1510 } 1511 if (Token.is(MIToken::colon)) { 1512 if (!Register::isVirtualRegister(Reg)) 1513 return error("register class specification expects a virtual register"); 1514 lex(); 1515 if (parseRegisterClassOrBank(*RegInfo)) 1516 return true; 1517 } 1518 MachineRegisterInfo &MRI = MF.getRegInfo(); 1519 if ((Flags & RegState::Define) == 0) { 1520 if (consumeIfPresent(MIToken::lparen)) { 1521 unsigned Idx; 1522 if (!parseRegisterTiedDefIndex(Idx)) 1523 TiedDefIdx = Idx; 1524 else { 1525 // Try a redundant low-level type. 1526 LLT Ty; 1527 if (parseLowLevelType(Token.location(), Ty)) 1528 return error("expected tied-def or low-level type after '('"); 1529 1530 if (expectAndConsume(MIToken::rparen)) 1531 return true; 1532 1533 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1534 return error("inconsistent type for generic virtual register"); 1535 1536 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1537 MRI.setType(Reg, Ty); 1538 } 1539 } 1540 } else if (consumeIfPresent(MIToken::lparen)) { 1541 // Virtual registers may have a tpe with GlobalISel. 1542 if (!Register::isVirtualRegister(Reg)) 1543 return error("unexpected type on physical register"); 1544 1545 LLT Ty; 1546 if (parseLowLevelType(Token.location(), Ty)) 1547 return true; 1548 1549 if (expectAndConsume(MIToken::rparen)) 1550 return true; 1551 1552 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1553 return error("inconsistent type for generic virtual register"); 1554 1555 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1556 MRI.setType(Reg, Ty); 1557 } else if (Register::isVirtualRegister(Reg)) { 1558 // Generic virtual registers must have a type. 1559 // If we end up here this means the type hasn't been specified and 1560 // this is bad! 1561 if (RegInfo->Kind == VRegInfo::GENERIC || 1562 RegInfo->Kind == VRegInfo::REGBANK) 1563 return error("generic virtual registers must have a type"); 1564 } 1565 Dest = MachineOperand::CreateReg( 1566 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1567 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1568 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1569 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1570 1571 return false; 1572 } 1573 1574 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1575 assert(Token.is(MIToken::IntegerLiteral)); 1576 const APSInt &Int = Token.integerValue(); 1577 if (Int.getMinSignedBits() > 64) 1578 return error("integer literal is too large to be an immediate operand"); 1579 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1580 lex(); 1581 return false; 1582 } 1583 1584 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1585 const unsigned OpIdx, 1586 MachineOperand &Dest, 1587 const MIRFormatter &MF) { 1588 assert(Token.is(MIToken::dot)); 1589 auto Loc = Token.location(); // record start position 1590 size_t Len = 1; // for "." 1591 lex(); 1592 1593 // Handle the case that mnemonic starts with number. 1594 if (Token.is(MIToken::IntegerLiteral)) { 1595 Len += Token.range().size(); 1596 lex(); 1597 } 1598 1599 StringRef Src; 1600 if (Token.is(MIToken::comma)) 1601 Src = StringRef(Loc, Len); 1602 else { 1603 assert(Token.is(MIToken::Identifier)); 1604 Src = StringRef(Loc, Len + Token.stringValue().size()); 1605 } 1606 int64_t Val; 1607 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1608 [this](StringRef::iterator Loc, const Twine &Msg) 1609 -> bool { return error(Loc, Msg); })) 1610 return true; 1611 1612 Dest = MachineOperand::CreateImm(Val); 1613 if (!Token.is(MIToken::comma)) 1614 lex(); 1615 return false; 1616 } 1617 1618 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1619 PerFunctionMIParsingState &PFS, const Constant *&C, 1620 ErrorCallbackType ErrCB) { 1621 auto Source = StringValue.str(); // The source has to be null terminated. 1622 SMDiagnostic Err; 1623 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1624 &PFS.IRSlots); 1625 if (!C) 1626 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1627 return false; 1628 } 1629 1630 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1631 const Constant *&C) { 1632 return ::parseIRConstant( 1633 Loc, StringValue, PFS, C, 1634 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1635 return error(Loc, Msg); 1636 }); 1637 } 1638 1639 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1640 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1641 return true; 1642 lex(); 1643 return false; 1644 } 1645 1646 // See LLT implemntation for bit size limits. 1647 static bool verifyScalarSize(uint64_t Size) { 1648 return Size != 0 && isUInt<16>(Size); 1649 } 1650 1651 static bool verifyVectorElementCount(uint64_t NumElts) { 1652 return NumElts != 0 && isUInt<16>(NumElts); 1653 } 1654 1655 static bool verifyAddrSpace(uint64_t AddrSpace) { 1656 return isUInt<24>(AddrSpace); 1657 } 1658 1659 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1660 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1661 StringRef SizeStr = Token.range().drop_front(); 1662 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1663 return error("expected integers after 's'/'p' type character"); 1664 } 1665 1666 if (Token.range().front() == 's') { 1667 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1668 if (!verifyScalarSize(ScalarSize)) 1669 return error("invalid size for scalar type"); 1670 1671 Ty = LLT::scalar(ScalarSize); 1672 lex(); 1673 return false; 1674 } else if (Token.range().front() == 'p') { 1675 const DataLayout &DL = MF.getDataLayout(); 1676 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1677 if (!verifyAddrSpace(AS)) 1678 return error("invalid address space number"); 1679 1680 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1681 lex(); 1682 return false; 1683 } 1684 1685 // Now we're looking for a vector. 1686 if (Token.isNot(MIToken::less)) 1687 return error(Loc, 1688 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1689 lex(); 1690 1691 if (Token.isNot(MIToken::IntegerLiteral)) 1692 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1693 uint64_t NumElements = Token.integerValue().getZExtValue(); 1694 if (!verifyVectorElementCount(NumElements)) 1695 return error("invalid number of vector elements"); 1696 1697 lex(); 1698 1699 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1700 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1701 lex(); 1702 1703 if (Token.range().front() != 's' && Token.range().front() != 'p') 1704 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1705 StringRef SizeStr = Token.range().drop_front(); 1706 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1707 return error("expected integers after 's'/'p' type character"); 1708 1709 if (Token.range().front() == 's') { 1710 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1711 if (!verifyScalarSize(ScalarSize)) 1712 return error("invalid size for scalar type"); 1713 Ty = LLT::scalar(ScalarSize); 1714 } else if (Token.range().front() == 'p') { 1715 const DataLayout &DL = MF.getDataLayout(); 1716 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1717 if (!verifyAddrSpace(AS)) 1718 return error("invalid address space number"); 1719 1720 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1721 } else 1722 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1723 lex(); 1724 1725 if (Token.isNot(MIToken::greater)) 1726 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1727 lex(); 1728 1729 Ty = LLT::vector(NumElements, Ty); 1730 return false; 1731 } 1732 1733 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1734 assert(Token.is(MIToken::Identifier)); 1735 StringRef TypeStr = Token.range(); 1736 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1737 TypeStr.front() != 'p') 1738 return error( 1739 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1740 StringRef SizeStr = Token.range().drop_front(); 1741 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1742 return error("expected integers after 'i'/'s'/'p' type character"); 1743 1744 auto Loc = Token.location(); 1745 lex(); 1746 if (Token.isNot(MIToken::IntegerLiteral)) { 1747 if (Token.isNot(MIToken::Identifier) || 1748 !(Token.range() == "true" || Token.range() == "false")) 1749 return error("expected an integer literal"); 1750 } 1751 const Constant *C = nullptr; 1752 if (parseIRConstant(Loc, C)) 1753 return true; 1754 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1755 return false; 1756 } 1757 1758 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1759 auto Loc = Token.location(); 1760 lex(); 1761 if (Token.isNot(MIToken::FloatingPointLiteral) && 1762 Token.isNot(MIToken::HexLiteral)) 1763 return error("expected a floating point literal"); 1764 const Constant *C = nullptr; 1765 if (parseIRConstant(Loc, C)) 1766 return true; 1767 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1768 return false; 1769 } 1770 1771 static bool getHexUint(const MIToken &Token, APInt &Result) { 1772 assert(Token.is(MIToken::HexLiteral)); 1773 StringRef S = Token.range(); 1774 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1775 // This could be a floating point literal with a special prefix. 1776 if (!isxdigit(S[2])) 1777 return true; 1778 StringRef V = S.substr(2); 1779 APInt A(V.size()*4, V, 16); 1780 1781 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1782 // sure it isn't the case before constructing result. 1783 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1784 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1785 return false; 1786 } 1787 1788 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1789 ErrorCallbackType ErrCB) { 1790 if (Token.hasIntegerValue()) { 1791 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1792 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1793 if (Val64 == Limit) 1794 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1795 Result = Val64; 1796 return false; 1797 } 1798 if (Token.is(MIToken::HexLiteral)) { 1799 APInt A; 1800 if (getHexUint(Token, A)) 1801 return true; 1802 if (A.getBitWidth() > 32) 1803 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1804 Result = A.getZExtValue(); 1805 return false; 1806 } 1807 return true; 1808 } 1809 1810 bool MIParser::getUnsigned(unsigned &Result) { 1811 return ::getUnsigned( 1812 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1813 return error(Loc, Msg); 1814 }); 1815 } 1816 1817 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1818 assert(Token.is(MIToken::MachineBasicBlock) || 1819 Token.is(MIToken::MachineBasicBlockLabel)); 1820 unsigned Number; 1821 if (getUnsigned(Number)) 1822 return true; 1823 auto MBBInfo = PFS.MBBSlots.find(Number); 1824 if (MBBInfo == PFS.MBBSlots.end()) 1825 return error(Twine("use of undefined machine basic block #") + 1826 Twine(Number)); 1827 MBB = MBBInfo->second; 1828 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1829 // we drop the <irname> from the bb.<id>.<irname> format. 1830 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1831 return error(Twine("the name of machine basic block #") + Twine(Number) + 1832 " isn't '" + Token.stringValue() + "'"); 1833 return false; 1834 } 1835 1836 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1837 MachineBasicBlock *MBB; 1838 if (parseMBBReference(MBB)) 1839 return true; 1840 Dest = MachineOperand::CreateMBB(MBB); 1841 lex(); 1842 return false; 1843 } 1844 1845 bool MIParser::parseStackFrameIndex(int &FI) { 1846 assert(Token.is(MIToken::StackObject)); 1847 unsigned ID; 1848 if (getUnsigned(ID)) 1849 return true; 1850 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1851 if (ObjectInfo == PFS.StackObjectSlots.end()) 1852 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1853 "'"); 1854 StringRef Name; 1855 if (const auto *Alloca = 1856 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1857 Name = Alloca->getName(); 1858 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1859 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1860 "' isn't '" + Token.stringValue() + "'"); 1861 lex(); 1862 FI = ObjectInfo->second; 1863 return false; 1864 } 1865 1866 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1867 int FI; 1868 if (parseStackFrameIndex(FI)) 1869 return true; 1870 Dest = MachineOperand::CreateFI(FI); 1871 return false; 1872 } 1873 1874 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1875 assert(Token.is(MIToken::FixedStackObject)); 1876 unsigned ID; 1877 if (getUnsigned(ID)) 1878 return true; 1879 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1880 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1881 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1882 Twine(ID) + "'"); 1883 lex(); 1884 FI = ObjectInfo->second; 1885 return false; 1886 } 1887 1888 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1889 int FI; 1890 if (parseFixedStackFrameIndex(FI)) 1891 return true; 1892 Dest = MachineOperand::CreateFI(FI); 1893 return false; 1894 } 1895 1896 static bool parseGlobalValue(const MIToken &Token, 1897 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 1898 ErrorCallbackType ErrCB) { 1899 switch (Token.kind()) { 1900 case MIToken::NamedGlobalValue: { 1901 const Module *M = PFS.MF.getFunction().getParent(); 1902 GV = M->getNamedValue(Token.stringValue()); 1903 if (!GV) 1904 return ErrCB(Token.location(), Twine("use of undefined global value '") + 1905 Token.range() + "'"); 1906 break; 1907 } 1908 case MIToken::GlobalValue: { 1909 unsigned GVIdx; 1910 if (getUnsigned(Token, GVIdx, ErrCB)) 1911 return true; 1912 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1913 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 1914 Twine(GVIdx) + "'"); 1915 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1916 break; 1917 } 1918 default: 1919 llvm_unreachable("The current token should be a global value"); 1920 } 1921 return false; 1922 } 1923 1924 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1925 return ::parseGlobalValue( 1926 Token, PFS, GV, 1927 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1928 return error(Loc, Msg); 1929 }); 1930 } 1931 1932 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1933 GlobalValue *GV = nullptr; 1934 if (parseGlobalValue(GV)) 1935 return true; 1936 lex(); 1937 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1938 if (parseOperandsOffset(Dest)) 1939 return true; 1940 return false; 1941 } 1942 1943 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1944 assert(Token.is(MIToken::ConstantPoolItem)); 1945 unsigned ID; 1946 if (getUnsigned(ID)) 1947 return true; 1948 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1949 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1950 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1951 lex(); 1952 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1953 if (parseOperandsOffset(Dest)) 1954 return true; 1955 return false; 1956 } 1957 1958 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1959 assert(Token.is(MIToken::JumpTableIndex)); 1960 unsigned ID; 1961 if (getUnsigned(ID)) 1962 return true; 1963 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1964 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1965 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1966 lex(); 1967 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1968 return false; 1969 } 1970 1971 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1972 assert(Token.is(MIToken::ExternalSymbol)); 1973 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1974 lex(); 1975 Dest = MachineOperand::CreateES(Symbol); 1976 if (parseOperandsOffset(Dest)) 1977 return true; 1978 return false; 1979 } 1980 1981 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1982 assert(Token.is(MIToken::MCSymbol)); 1983 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1984 lex(); 1985 Dest = MachineOperand::CreateMCSymbol(Symbol); 1986 if (parseOperandsOffset(Dest)) 1987 return true; 1988 return false; 1989 } 1990 1991 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1992 assert(Token.is(MIToken::SubRegisterIndex)); 1993 StringRef Name = Token.stringValue(); 1994 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1995 if (SubRegIndex == 0) 1996 return error(Twine("unknown subregister index '") + Name + "'"); 1997 lex(); 1998 Dest = MachineOperand::CreateImm(SubRegIndex); 1999 return false; 2000 } 2001 2002 bool MIParser::parseMDNode(MDNode *&Node) { 2003 assert(Token.is(MIToken::exclaim)); 2004 2005 auto Loc = Token.location(); 2006 lex(); 2007 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2008 return error("expected metadata id after '!'"); 2009 unsigned ID; 2010 if (getUnsigned(ID)) 2011 return true; 2012 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2013 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 2014 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2015 lex(); 2016 Node = NodeInfo->second.get(); 2017 return false; 2018 } 2019 2020 bool MIParser::parseDIExpression(MDNode *&Expr) { 2021 assert(Token.is(MIToken::md_diexpr)); 2022 lex(); 2023 2024 // FIXME: Share this parsing with the IL parser. 2025 SmallVector<uint64_t, 8> Elements; 2026 2027 if (expectAndConsume(MIToken::lparen)) 2028 return true; 2029 2030 if (Token.isNot(MIToken::rparen)) { 2031 do { 2032 if (Token.is(MIToken::Identifier)) { 2033 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2034 lex(); 2035 Elements.push_back(Op); 2036 continue; 2037 } 2038 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2039 lex(); 2040 Elements.push_back(Enc); 2041 continue; 2042 } 2043 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2044 } 2045 2046 if (Token.isNot(MIToken::IntegerLiteral) || 2047 Token.integerValue().isSigned()) 2048 return error("expected unsigned integer"); 2049 2050 auto &U = Token.integerValue(); 2051 if (U.ugt(UINT64_MAX)) 2052 return error("element too large, limit is " + Twine(UINT64_MAX)); 2053 Elements.push_back(U.getZExtValue()); 2054 lex(); 2055 2056 } while (consumeIfPresent(MIToken::comma)); 2057 } 2058 2059 if (expectAndConsume(MIToken::rparen)) 2060 return true; 2061 2062 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2063 return false; 2064 } 2065 2066 bool MIParser::parseDILocation(MDNode *&Loc) { 2067 assert(Token.is(MIToken::md_dilocation)); 2068 lex(); 2069 2070 bool HaveLine = false; 2071 unsigned Line = 0; 2072 unsigned Column = 0; 2073 MDNode *Scope = nullptr; 2074 MDNode *InlinedAt = nullptr; 2075 bool ImplicitCode = false; 2076 2077 if (expectAndConsume(MIToken::lparen)) 2078 return true; 2079 2080 if (Token.isNot(MIToken::rparen)) { 2081 do { 2082 if (Token.is(MIToken::Identifier)) { 2083 if (Token.stringValue() == "line") { 2084 lex(); 2085 if (expectAndConsume(MIToken::colon)) 2086 return true; 2087 if (Token.isNot(MIToken::IntegerLiteral) || 2088 Token.integerValue().isSigned()) 2089 return error("expected unsigned integer"); 2090 Line = Token.integerValue().getZExtValue(); 2091 HaveLine = true; 2092 lex(); 2093 continue; 2094 } 2095 if (Token.stringValue() == "column") { 2096 lex(); 2097 if (expectAndConsume(MIToken::colon)) 2098 return true; 2099 if (Token.isNot(MIToken::IntegerLiteral) || 2100 Token.integerValue().isSigned()) 2101 return error("expected unsigned integer"); 2102 Column = Token.integerValue().getZExtValue(); 2103 lex(); 2104 continue; 2105 } 2106 if (Token.stringValue() == "scope") { 2107 lex(); 2108 if (expectAndConsume(MIToken::colon)) 2109 return true; 2110 if (parseMDNode(Scope)) 2111 return error("expected metadata node"); 2112 if (!isa<DIScope>(Scope)) 2113 return error("expected DIScope node"); 2114 continue; 2115 } 2116 if (Token.stringValue() == "inlinedAt") { 2117 lex(); 2118 if (expectAndConsume(MIToken::colon)) 2119 return true; 2120 if (Token.is(MIToken::exclaim)) { 2121 if (parseMDNode(InlinedAt)) 2122 return true; 2123 } else if (Token.is(MIToken::md_dilocation)) { 2124 if (parseDILocation(InlinedAt)) 2125 return true; 2126 } else 2127 return error("expected metadata node"); 2128 if (!isa<DILocation>(InlinedAt)) 2129 return error("expected DILocation node"); 2130 continue; 2131 } 2132 if (Token.stringValue() == "isImplicitCode") { 2133 lex(); 2134 if (expectAndConsume(MIToken::colon)) 2135 return true; 2136 if (!Token.is(MIToken::Identifier)) 2137 return error("expected true/false"); 2138 // As far as I can see, we don't have any existing need for parsing 2139 // true/false in MIR yet. Do it ad-hoc until there's something else 2140 // that needs it. 2141 if (Token.stringValue() == "true") 2142 ImplicitCode = true; 2143 else if (Token.stringValue() == "false") 2144 ImplicitCode = false; 2145 else 2146 return error("expected true/false"); 2147 lex(); 2148 continue; 2149 } 2150 } 2151 return error(Twine("invalid DILocation argument '") + 2152 Token.stringValue() + "'"); 2153 } while (consumeIfPresent(MIToken::comma)); 2154 } 2155 2156 if (expectAndConsume(MIToken::rparen)) 2157 return true; 2158 2159 if (!HaveLine) 2160 return error("DILocation requires line number"); 2161 if (!Scope) 2162 return error("DILocation requires a scope"); 2163 2164 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2165 InlinedAt, ImplicitCode); 2166 return false; 2167 } 2168 2169 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2170 MDNode *Node = nullptr; 2171 if (Token.is(MIToken::exclaim)) { 2172 if (parseMDNode(Node)) 2173 return true; 2174 } else if (Token.is(MIToken::md_diexpr)) { 2175 if (parseDIExpression(Node)) 2176 return true; 2177 } 2178 Dest = MachineOperand::CreateMetadata(Node); 2179 return false; 2180 } 2181 2182 bool MIParser::parseCFIOffset(int &Offset) { 2183 if (Token.isNot(MIToken::IntegerLiteral)) 2184 return error("expected a cfi offset"); 2185 if (Token.integerValue().getMinSignedBits() > 32) 2186 return error("expected a 32 bit integer (the cfi offset is too large)"); 2187 Offset = (int)Token.integerValue().getExtValue(); 2188 lex(); 2189 return false; 2190 } 2191 2192 bool MIParser::parseCFIRegister(Register &Reg) { 2193 if (Token.isNot(MIToken::NamedRegister)) 2194 return error("expected a cfi register"); 2195 Register LLVMReg; 2196 if (parseNamedRegister(LLVMReg)) 2197 return true; 2198 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2199 assert(TRI && "Expected target register info"); 2200 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2201 if (DwarfReg < 0) 2202 return error("invalid DWARF register"); 2203 Reg = (unsigned)DwarfReg; 2204 lex(); 2205 return false; 2206 } 2207 2208 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2209 do { 2210 if (Token.isNot(MIToken::HexLiteral)) 2211 return error("expected a hexadecimal literal"); 2212 unsigned Value; 2213 if (getUnsigned(Value)) 2214 return true; 2215 if (Value > UINT8_MAX) 2216 return error("expected a 8-bit integer (too large)"); 2217 Values.push_back(static_cast<uint8_t>(Value)); 2218 lex(); 2219 } while (consumeIfPresent(MIToken::comma)); 2220 return false; 2221 } 2222 2223 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2224 auto Kind = Token.kind(); 2225 lex(); 2226 int Offset; 2227 Register Reg; 2228 unsigned CFIIndex; 2229 switch (Kind) { 2230 case MIToken::kw_cfi_same_value: 2231 if (parseCFIRegister(Reg)) 2232 return true; 2233 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2234 break; 2235 case MIToken::kw_cfi_offset: 2236 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2237 parseCFIOffset(Offset)) 2238 return true; 2239 CFIIndex = 2240 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2241 break; 2242 case MIToken::kw_cfi_rel_offset: 2243 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2244 parseCFIOffset(Offset)) 2245 return true; 2246 CFIIndex = MF.addFrameInst( 2247 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2248 break; 2249 case MIToken::kw_cfi_def_cfa_register: 2250 if (parseCFIRegister(Reg)) 2251 return true; 2252 CFIIndex = 2253 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2254 break; 2255 case MIToken::kw_cfi_def_cfa_offset: 2256 if (parseCFIOffset(Offset)) 2257 return true; 2258 CFIIndex = 2259 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2260 break; 2261 case MIToken::kw_cfi_adjust_cfa_offset: 2262 if (parseCFIOffset(Offset)) 2263 return true; 2264 CFIIndex = MF.addFrameInst( 2265 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2266 break; 2267 case MIToken::kw_cfi_def_cfa: 2268 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2269 parseCFIOffset(Offset)) 2270 return true; 2271 CFIIndex = 2272 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2273 break; 2274 case MIToken::kw_cfi_remember_state: 2275 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2276 break; 2277 case MIToken::kw_cfi_restore: 2278 if (parseCFIRegister(Reg)) 2279 return true; 2280 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2281 break; 2282 case MIToken::kw_cfi_restore_state: 2283 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2284 break; 2285 case MIToken::kw_cfi_undefined: 2286 if (parseCFIRegister(Reg)) 2287 return true; 2288 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2289 break; 2290 case MIToken::kw_cfi_register: { 2291 Register Reg2; 2292 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2293 parseCFIRegister(Reg2)) 2294 return true; 2295 2296 CFIIndex = 2297 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2298 break; 2299 } 2300 case MIToken::kw_cfi_window_save: 2301 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2302 break; 2303 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2304 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2305 break; 2306 case MIToken::kw_cfi_escape: { 2307 std::string Values; 2308 if (parseCFIEscapeValues(Values)) 2309 return true; 2310 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2311 break; 2312 } 2313 default: 2314 // TODO: Parse the other CFI operands. 2315 llvm_unreachable("The current token should be a cfi operand"); 2316 } 2317 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2318 return false; 2319 } 2320 2321 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2322 switch (Token.kind()) { 2323 case MIToken::NamedIRBlock: { 2324 BB = dyn_cast_or_null<BasicBlock>( 2325 F.getValueSymbolTable()->lookup(Token.stringValue())); 2326 if (!BB) 2327 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2328 break; 2329 } 2330 case MIToken::IRBlock: { 2331 unsigned SlotNumber = 0; 2332 if (getUnsigned(SlotNumber)) 2333 return true; 2334 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2335 if (!BB) 2336 return error(Twine("use of undefined IR block '%ir-block.") + 2337 Twine(SlotNumber) + "'"); 2338 break; 2339 } 2340 default: 2341 llvm_unreachable("The current token should be an IR block reference"); 2342 } 2343 return false; 2344 } 2345 2346 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2347 assert(Token.is(MIToken::kw_blockaddress)); 2348 lex(); 2349 if (expectAndConsume(MIToken::lparen)) 2350 return true; 2351 if (Token.isNot(MIToken::GlobalValue) && 2352 Token.isNot(MIToken::NamedGlobalValue)) 2353 return error("expected a global value"); 2354 GlobalValue *GV = nullptr; 2355 if (parseGlobalValue(GV)) 2356 return true; 2357 auto *F = dyn_cast<Function>(GV); 2358 if (!F) 2359 return error("expected an IR function reference"); 2360 lex(); 2361 if (expectAndConsume(MIToken::comma)) 2362 return true; 2363 BasicBlock *BB = nullptr; 2364 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2365 return error("expected an IR block reference"); 2366 if (parseIRBlock(BB, *F)) 2367 return true; 2368 lex(); 2369 if (expectAndConsume(MIToken::rparen)) 2370 return true; 2371 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2372 if (parseOperandsOffset(Dest)) 2373 return true; 2374 return false; 2375 } 2376 2377 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2378 assert(Token.is(MIToken::kw_intrinsic)); 2379 lex(); 2380 if (expectAndConsume(MIToken::lparen)) 2381 return error("expected syntax intrinsic(@llvm.whatever)"); 2382 2383 if (Token.isNot(MIToken::NamedGlobalValue)) 2384 return error("expected syntax intrinsic(@llvm.whatever)"); 2385 2386 std::string Name = std::string(Token.stringValue()); 2387 lex(); 2388 2389 if (expectAndConsume(MIToken::rparen)) 2390 return error("expected ')' to terminate intrinsic name"); 2391 2392 // Find out what intrinsic we're dealing with, first try the global namespace 2393 // and then the target's private intrinsics if that fails. 2394 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2395 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2396 if (ID == Intrinsic::not_intrinsic && TII) 2397 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2398 2399 if (ID == Intrinsic::not_intrinsic) 2400 return error("unknown intrinsic name"); 2401 Dest = MachineOperand::CreateIntrinsicID(ID); 2402 2403 return false; 2404 } 2405 2406 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2407 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2408 bool IsFloat = Token.is(MIToken::kw_floatpred); 2409 lex(); 2410 2411 if (expectAndConsume(MIToken::lparen)) 2412 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2413 2414 if (Token.isNot(MIToken::Identifier)) 2415 return error("whatever"); 2416 2417 CmpInst::Predicate Pred; 2418 if (IsFloat) { 2419 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2420 .Case("false", CmpInst::FCMP_FALSE) 2421 .Case("oeq", CmpInst::FCMP_OEQ) 2422 .Case("ogt", CmpInst::FCMP_OGT) 2423 .Case("oge", CmpInst::FCMP_OGE) 2424 .Case("olt", CmpInst::FCMP_OLT) 2425 .Case("ole", CmpInst::FCMP_OLE) 2426 .Case("one", CmpInst::FCMP_ONE) 2427 .Case("ord", CmpInst::FCMP_ORD) 2428 .Case("uno", CmpInst::FCMP_UNO) 2429 .Case("ueq", CmpInst::FCMP_UEQ) 2430 .Case("ugt", CmpInst::FCMP_UGT) 2431 .Case("uge", CmpInst::FCMP_UGE) 2432 .Case("ult", CmpInst::FCMP_ULT) 2433 .Case("ule", CmpInst::FCMP_ULE) 2434 .Case("une", CmpInst::FCMP_UNE) 2435 .Case("true", CmpInst::FCMP_TRUE) 2436 .Default(CmpInst::BAD_FCMP_PREDICATE); 2437 if (!CmpInst::isFPPredicate(Pred)) 2438 return error("invalid floating-point predicate"); 2439 } else { 2440 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2441 .Case("eq", CmpInst::ICMP_EQ) 2442 .Case("ne", CmpInst::ICMP_NE) 2443 .Case("sgt", CmpInst::ICMP_SGT) 2444 .Case("sge", CmpInst::ICMP_SGE) 2445 .Case("slt", CmpInst::ICMP_SLT) 2446 .Case("sle", CmpInst::ICMP_SLE) 2447 .Case("ugt", CmpInst::ICMP_UGT) 2448 .Case("uge", CmpInst::ICMP_UGE) 2449 .Case("ult", CmpInst::ICMP_ULT) 2450 .Case("ule", CmpInst::ICMP_ULE) 2451 .Default(CmpInst::BAD_ICMP_PREDICATE); 2452 if (!CmpInst::isIntPredicate(Pred)) 2453 return error("invalid integer predicate"); 2454 } 2455 2456 lex(); 2457 Dest = MachineOperand::CreatePredicate(Pred); 2458 if (expectAndConsume(MIToken::rparen)) 2459 return error("predicate should be terminated by ')'."); 2460 2461 return false; 2462 } 2463 2464 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2465 assert(Token.is(MIToken::kw_shufflemask)); 2466 2467 lex(); 2468 if (expectAndConsume(MIToken::lparen)) 2469 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2470 2471 SmallVector<int, 32> ShufMask; 2472 do { 2473 if (Token.is(MIToken::kw_undef)) { 2474 ShufMask.push_back(-1); 2475 } else if (Token.is(MIToken::IntegerLiteral)) { 2476 const APSInt &Int = Token.integerValue(); 2477 ShufMask.push_back(Int.getExtValue()); 2478 } else 2479 return error("expected integer constant"); 2480 2481 lex(); 2482 } while (consumeIfPresent(MIToken::comma)); 2483 2484 if (expectAndConsume(MIToken::rparen)) 2485 return error("shufflemask should be terminated by ')'."); 2486 2487 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2488 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2489 return false; 2490 } 2491 2492 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2493 assert(Token.is(MIToken::kw_target_index)); 2494 lex(); 2495 if (expectAndConsume(MIToken::lparen)) 2496 return true; 2497 if (Token.isNot(MIToken::Identifier)) 2498 return error("expected the name of the target index"); 2499 int Index = 0; 2500 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2501 return error("use of undefined target index '" + Token.stringValue() + "'"); 2502 lex(); 2503 if (expectAndConsume(MIToken::rparen)) 2504 return true; 2505 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2506 if (parseOperandsOffset(Dest)) 2507 return true; 2508 return false; 2509 } 2510 2511 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2512 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2513 lex(); 2514 if (expectAndConsume(MIToken::lparen)) 2515 return true; 2516 2517 uint32_t *Mask = MF.allocateRegMask(); 2518 while (true) { 2519 if (Token.isNot(MIToken::NamedRegister)) 2520 return error("expected a named register"); 2521 Register Reg; 2522 if (parseNamedRegister(Reg)) 2523 return true; 2524 lex(); 2525 Mask[Reg / 32] |= 1U << (Reg % 32); 2526 // TODO: Report an error if the same register is used more than once. 2527 if (Token.isNot(MIToken::comma)) 2528 break; 2529 lex(); 2530 } 2531 2532 if (expectAndConsume(MIToken::rparen)) 2533 return true; 2534 Dest = MachineOperand::CreateRegMask(Mask); 2535 return false; 2536 } 2537 2538 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2539 assert(Token.is(MIToken::kw_liveout)); 2540 uint32_t *Mask = MF.allocateRegMask(); 2541 lex(); 2542 if (expectAndConsume(MIToken::lparen)) 2543 return true; 2544 while (true) { 2545 if (Token.isNot(MIToken::NamedRegister)) 2546 return error("expected a named register"); 2547 Register Reg; 2548 if (parseNamedRegister(Reg)) 2549 return true; 2550 lex(); 2551 Mask[Reg / 32] |= 1U << (Reg % 32); 2552 // TODO: Report an error if the same register is used more than once. 2553 if (Token.isNot(MIToken::comma)) 2554 break; 2555 lex(); 2556 } 2557 if (expectAndConsume(MIToken::rparen)) 2558 return true; 2559 Dest = MachineOperand::CreateRegLiveOut(Mask); 2560 return false; 2561 } 2562 2563 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2564 MachineOperand &Dest, 2565 Optional<unsigned> &TiedDefIdx) { 2566 switch (Token.kind()) { 2567 case MIToken::kw_implicit: 2568 case MIToken::kw_implicit_define: 2569 case MIToken::kw_def: 2570 case MIToken::kw_dead: 2571 case MIToken::kw_killed: 2572 case MIToken::kw_undef: 2573 case MIToken::kw_internal: 2574 case MIToken::kw_early_clobber: 2575 case MIToken::kw_debug_use: 2576 case MIToken::kw_renamable: 2577 case MIToken::underscore: 2578 case MIToken::NamedRegister: 2579 case MIToken::VirtualRegister: 2580 case MIToken::NamedVirtualRegister: 2581 return parseRegisterOperand(Dest, TiedDefIdx); 2582 case MIToken::IntegerLiteral: 2583 return parseImmediateOperand(Dest); 2584 case MIToken::kw_half: 2585 case MIToken::kw_float: 2586 case MIToken::kw_double: 2587 case MIToken::kw_x86_fp80: 2588 case MIToken::kw_fp128: 2589 case MIToken::kw_ppc_fp128: 2590 return parseFPImmediateOperand(Dest); 2591 case MIToken::MachineBasicBlock: 2592 return parseMBBOperand(Dest); 2593 case MIToken::StackObject: 2594 return parseStackObjectOperand(Dest); 2595 case MIToken::FixedStackObject: 2596 return parseFixedStackObjectOperand(Dest); 2597 case MIToken::GlobalValue: 2598 case MIToken::NamedGlobalValue: 2599 return parseGlobalAddressOperand(Dest); 2600 case MIToken::ConstantPoolItem: 2601 return parseConstantPoolIndexOperand(Dest); 2602 case MIToken::JumpTableIndex: 2603 return parseJumpTableIndexOperand(Dest); 2604 case MIToken::ExternalSymbol: 2605 return parseExternalSymbolOperand(Dest); 2606 case MIToken::MCSymbol: 2607 return parseMCSymbolOperand(Dest); 2608 case MIToken::SubRegisterIndex: 2609 return parseSubRegisterIndexOperand(Dest); 2610 case MIToken::md_diexpr: 2611 case MIToken::exclaim: 2612 return parseMetadataOperand(Dest); 2613 case MIToken::kw_cfi_same_value: 2614 case MIToken::kw_cfi_offset: 2615 case MIToken::kw_cfi_rel_offset: 2616 case MIToken::kw_cfi_def_cfa_register: 2617 case MIToken::kw_cfi_def_cfa_offset: 2618 case MIToken::kw_cfi_adjust_cfa_offset: 2619 case MIToken::kw_cfi_escape: 2620 case MIToken::kw_cfi_def_cfa: 2621 case MIToken::kw_cfi_register: 2622 case MIToken::kw_cfi_remember_state: 2623 case MIToken::kw_cfi_restore: 2624 case MIToken::kw_cfi_restore_state: 2625 case MIToken::kw_cfi_undefined: 2626 case MIToken::kw_cfi_window_save: 2627 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2628 return parseCFIOperand(Dest); 2629 case MIToken::kw_blockaddress: 2630 return parseBlockAddressOperand(Dest); 2631 case MIToken::kw_intrinsic: 2632 return parseIntrinsicOperand(Dest); 2633 case MIToken::kw_target_index: 2634 return parseTargetIndexOperand(Dest); 2635 case MIToken::kw_liveout: 2636 return parseLiveoutRegisterMaskOperand(Dest); 2637 case MIToken::kw_floatpred: 2638 case MIToken::kw_intpred: 2639 return parsePredicateOperand(Dest); 2640 case MIToken::kw_shufflemask: 2641 return parseShuffleMaskOperand(Dest); 2642 case MIToken::Error: 2643 return true; 2644 case MIToken::Identifier: 2645 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2646 Dest = MachineOperand::CreateRegMask(RegMask); 2647 lex(); 2648 break; 2649 } else if (Token.stringValue() == "CustomRegMask") { 2650 return parseCustomRegisterMaskOperand(Dest); 2651 } else 2652 return parseTypedImmediateOperand(Dest); 2653 case MIToken::dot: { 2654 const auto *TII = MF.getSubtarget().getInstrInfo(); 2655 if (const auto *Formatter = TII->getMIRFormatter()) { 2656 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2657 } 2658 LLVM_FALLTHROUGH; 2659 } 2660 default: 2661 // FIXME: Parse the MCSymbol machine operand. 2662 return error("expected a machine operand"); 2663 } 2664 return false; 2665 } 2666 2667 bool MIParser::parseMachineOperandAndTargetFlags( 2668 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2669 Optional<unsigned> &TiedDefIdx) { 2670 unsigned TF = 0; 2671 bool HasTargetFlags = false; 2672 if (Token.is(MIToken::kw_target_flags)) { 2673 HasTargetFlags = true; 2674 lex(); 2675 if (expectAndConsume(MIToken::lparen)) 2676 return true; 2677 if (Token.isNot(MIToken::Identifier)) 2678 return error("expected the name of the target flag"); 2679 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2680 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2681 return error("use of undefined target flag '" + Token.stringValue() + 2682 "'"); 2683 } 2684 lex(); 2685 while (Token.is(MIToken::comma)) { 2686 lex(); 2687 if (Token.isNot(MIToken::Identifier)) 2688 return error("expected the name of the target flag"); 2689 unsigned BitFlag = 0; 2690 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2691 return error("use of undefined target flag '" + Token.stringValue() + 2692 "'"); 2693 // TODO: Report an error when using a duplicate bit target flag. 2694 TF |= BitFlag; 2695 lex(); 2696 } 2697 if (expectAndConsume(MIToken::rparen)) 2698 return true; 2699 } 2700 auto Loc = Token.location(); 2701 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2702 return true; 2703 if (!HasTargetFlags) 2704 return false; 2705 if (Dest.isReg()) 2706 return error(Loc, "register operands can't have target flags"); 2707 Dest.setTargetFlags(TF); 2708 return false; 2709 } 2710 2711 bool MIParser::parseOffset(int64_t &Offset) { 2712 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2713 return false; 2714 StringRef Sign = Token.range(); 2715 bool IsNegative = Token.is(MIToken::minus); 2716 lex(); 2717 if (Token.isNot(MIToken::IntegerLiteral)) 2718 return error("expected an integer literal after '" + Sign + "'"); 2719 if (Token.integerValue().getMinSignedBits() > 64) 2720 return error("expected 64-bit integer (too large)"); 2721 Offset = Token.integerValue().getExtValue(); 2722 if (IsNegative) 2723 Offset = -Offset; 2724 lex(); 2725 return false; 2726 } 2727 2728 bool MIParser::parseAlignment(unsigned &Alignment) { 2729 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); 2730 lex(); 2731 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2732 return error("expected an integer literal after 'align'"); 2733 if (getUnsigned(Alignment)) 2734 return true; 2735 lex(); 2736 2737 if (!isPowerOf2_32(Alignment)) 2738 return error("expected a power-of-2 literal after 'align'"); 2739 2740 return false; 2741 } 2742 2743 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2744 assert(Token.is(MIToken::kw_addrspace)); 2745 lex(); 2746 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2747 return error("expected an integer literal after 'addrspace'"); 2748 if (getUnsigned(Addrspace)) 2749 return true; 2750 lex(); 2751 return false; 2752 } 2753 2754 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2755 int64_t Offset = 0; 2756 if (parseOffset(Offset)) 2757 return true; 2758 Op.setOffset(Offset); 2759 return false; 2760 } 2761 2762 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2763 const Value *&V, ErrorCallbackType ErrCB) { 2764 switch (Token.kind()) { 2765 case MIToken::NamedIRValue: { 2766 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2767 break; 2768 } 2769 case MIToken::IRValue: { 2770 unsigned SlotNumber = 0; 2771 if (getUnsigned(Token, SlotNumber, ErrCB)) 2772 return true; 2773 V = PFS.getIRValue(SlotNumber); 2774 break; 2775 } 2776 case MIToken::NamedGlobalValue: 2777 case MIToken::GlobalValue: { 2778 GlobalValue *GV = nullptr; 2779 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2780 return true; 2781 V = GV; 2782 break; 2783 } 2784 case MIToken::QuotedIRValue: { 2785 const Constant *C = nullptr; 2786 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2787 return true; 2788 V = C; 2789 break; 2790 } 2791 default: 2792 llvm_unreachable("The current token should be an IR block reference"); 2793 } 2794 if (!V) 2795 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2796 return false; 2797 } 2798 2799 bool MIParser::parseIRValue(const Value *&V) { 2800 return ::parseIRValue( 2801 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2802 return error(Loc, Msg); 2803 }); 2804 } 2805 2806 bool MIParser::getUint64(uint64_t &Result) { 2807 if (Token.hasIntegerValue()) { 2808 if (Token.integerValue().getActiveBits() > 64) 2809 return error("expected 64-bit integer (too large)"); 2810 Result = Token.integerValue().getZExtValue(); 2811 return false; 2812 } 2813 if (Token.is(MIToken::HexLiteral)) { 2814 APInt A; 2815 if (getHexUint(A)) 2816 return true; 2817 if (A.getBitWidth() > 64) 2818 return error("expected 64-bit integer (too large)"); 2819 Result = A.getZExtValue(); 2820 return false; 2821 } 2822 return true; 2823 } 2824 2825 bool MIParser::getHexUint(APInt &Result) { 2826 return ::getHexUint(Token, Result); 2827 } 2828 2829 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2830 const auto OldFlags = Flags; 2831 switch (Token.kind()) { 2832 case MIToken::kw_volatile: 2833 Flags |= MachineMemOperand::MOVolatile; 2834 break; 2835 case MIToken::kw_non_temporal: 2836 Flags |= MachineMemOperand::MONonTemporal; 2837 break; 2838 case MIToken::kw_dereferenceable: 2839 Flags |= MachineMemOperand::MODereferenceable; 2840 break; 2841 case MIToken::kw_invariant: 2842 Flags |= MachineMemOperand::MOInvariant; 2843 break; 2844 case MIToken::StringConstant: { 2845 MachineMemOperand::Flags TF; 2846 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2847 return error("use of undefined target MMO flag '" + Token.stringValue() + 2848 "'"); 2849 Flags |= TF; 2850 break; 2851 } 2852 default: 2853 llvm_unreachable("The current token should be a memory operand flag"); 2854 } 2855 if (OldFlags == Flags) 2856 // We know that the same flag is specified more than once when the flags 2857 // weren't modified. 2858 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2859 lex(); 2860 return false; 2861 } 2862 2863 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2864 switch (Token.kind()) { 2865 case MIToken::kw_stack: 2866 PSV = MF.getPSVManager().getStack(); 2867 break; 2868 case MIToken::kw_got: 2869 PSV = MF.getPSVManager().getGOT(); 2870 break; 2871 case MIToken::kw_jump_table: 2872 PSV = MF.getPSVManager().getJumpTable(); 2873 break; 2874 case MIToken::kw_constant_pool: 2875 PSV = MF.getPSVManager().getConstantPool(); 2876 break; 2877 case MIToken::FixedStackObject: { 2878 int FI; 2879 if (parseFixedStackFrameIndex(FI)) 2880 return true; 2881 PSV = MF.getPSVManager().getFixedStack(FI); 2882 // The token was already consumed, so use return here instead of break. 2883 return false; 2884 } 2885 case MIToken::StackObject: { 2886 int FI; 2887 if (parseStackFrameIndex(FI)) 2888 return true; 2889 PSV = MF.getPSVManager().getFixedStack(FI); 2890 // The token was already consumed, so use return here instead of break. 2891 return false; 2892 } 2893 case MIToken::kw_call_entry: 2894 lex(); 2895 switch (Token.kind()) { 2896 case MIToken::GlobalValue: 2897 case MIToken::NamedGlobalValue: { 2898 GlobalValue *GV = nullptr; 2899 if (parseGlobalValue(GV)) 2900 return true; 2901 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2902 break; 2903 } 2904 case MIToken::ExternalSymbol: 2905 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2906 MF.createExternalSymbolName(Token.stringValue())); 2907 break; 2908 default: 2909 return error( 2910 "expected a global value or an external symbol after 'call-entry'"); 2911 } 2912 break; 2913 case MIToken::kw_custom: { 2914 lex(); 2915 const auto *TII = MF.getSubtarget().getInstrInfo(); 2916 if (const auto *Formatter = TII->getMIRFormatter()) { 2917 if (Formatter->parseCustomPseudoSourceValue( 2918 Token.stringValue(), MF, PFS, PSV, 2919 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2920 return error(Loc, Msg); 2921 })) 2922 return true; 2923 } else 2924 return error("unable to parse target custom pseudo source value"); 2925 break; 2926 } 2927 default: 2928 llvm_unreachable("The current token should be pseudo source value"); 2929 } 2930 lex(); 2931 return false; 2932 } 2933 2934 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2935 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2936 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2937 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2938 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 2939 const PseudoSourceValue *PSV = nullptr; 2940 if (parseMemoryPseudoSourceValue(PSV)) 2941 return true; 2942 int64_t Offset = 0; 2943 if (parseOffset(Offset)) 2944 return true; 2945 Dest = MachinePointerInfo(PSV, Offset); 2946 return false; 2947 } 2948 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2949 Token.isNot(MIToken::GlobalValue) && 2950 Token.isNot(MIToken::NamedGlobalValue) && 2951 Token.isNot(MIToken::QuotedIRValue)) 2952 return error("expected an IR value reference"); 2953 const Value *V = nullptr; 2954 if (parseIRValue(V)) 2955 return true; 2956 if (!V->getType()->isPointerTy()) 2957 return error("expected a pointer IR value"); 2958 lex(); 2959 int64_t Offset = 0; 2960 if (parseOffset(Offset)) 2961 return true; 2962 Dest = MachinePointerInfo(V, Offset); 2963 return false; 2964 } 2965 2966 bool MIParser::parseOptionalScope(LLVMContext &Context, 2967 SyncScope::ID &SSID) { 2968 SSID = SyncScope::System; 2969 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2970 lex(); 2971 if (expectAndConsume(MIToken::lparen)) 2972 return error("expected '(' in syncscope"); 2973 2974 std::string SSN; 2975 if (parseStringConstant(SSN)) 2976 return true; 2977 2978 SSID = Context.getOrInsertSyncScopeID(SSN); 2979 if (expectAndConsume(MIToken::rparen)) 2980 return error("expected ')' in syncscope"); 2981 } 2982 2983 return false; 2984 } 2985 2986 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2987 Order = AtomicOrdering::NotAtomic; 2988 if (Token.isNot(MIToken::Identifier)) 2989 return false; 2990 2991 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2992 .Case("unordered", AtomicOrdering::Unordered) 2993 .Case("monotonic", AtomicOrdering::Monotonic) 2994 .Case("acquire", AtomicOrdering::Acquire) 2995 .Case("release", AtomicOrdering::Release) 2996 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2997 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2998 .Default(AtomicOrdering::NotAtomic); 2999 3000 if (Order != AtomicOrdering::NotAtomic) { 3001 lex(); 3002 return false; 3003 } 3004 3005 return error("expected an atomic scope, ordering or a size specification"); 3006 } 3007 3008 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3009 if (expectAndConsume(MIToken::lparen)) 3010 return true; 3011 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3012 while (Token.isMemoryOperandFlag()) { 3013 if (parseMemoryOperandFlag(Flags)) 3014 return true; 3015 } 3016 if (Token.isNot(MIToken::Identifier) || 3017 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3018 return error("expected 'load' or 'store' memory operation"); 3019 if (Token.stringValue() == "load") 3020 Flags |= MachineMemOperand::MOLoad; 3021 else 3022 Flags |= MachineMemOperand::MOStore; 3023 lex(); 3024 3025 // Optional 'store' for operands that both load and store. 3026 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3027 Flags |= MachineMemOperand::MOStore; 3028 lex(); 3029 } 3030 3031 // Optional synchronization scope. 3032 SyncScope::ID SSID; 3033 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3034 return true; 3035 3036 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3037 AtomicOrdering Order, FailureOrder; 3038 if (parseOptionalAtomicOrdering(Order)) 3039 return true; 3040 3041 if (parseOptionalAtomicOrdering(FailureOrder)) 3042 return true; 3043 3044 if (Token.isNot(MIToken::IntegerLiteral) && 3045 Token.isNot(MIToken::kw_unknown_size)) 3046 return error("expected the size integer literal or 'unknown-size' after " 3047 "memory operation"); 3048 uint64_t Size; 3049 if (Token.is(MIToken::IntegerLiteral)) { 3050 if (getUint64(Size)) 3051 return true; 3052 } else if (Token.is(MIToken::kw_unknown_size)) { 3053 Size = MemoryLocation::UnknownSize; 3054 } 3055 lex(); 3056 3057 MachinePointerInfo Ptr = MachinePointerInfo(); 3058 if (Token.is(MIToken::Identifier)) { 3059 const char *Word = 3060 ((Flags & MachineMemOperand::MOLoad) && 3061 (Flags & MachineMemOperand::MOStore)) 3062 ? "on" 3063 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3064 if (Token.stringValue() != Word) 3065 return error(Twine("expected '") + Word + "'"); 3066 lex(); 3067 3068 if (parseMachinePointerInfo(Ptr)) 3069 return true; 3070 } 3071 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 3072 AAMDNodes AAInfo; 3073 MDNode *Range = nullptr; 3074 while (consumeIfPresent(MIToken::comma)) { 3075 switch (Token.kind()) { 3076 case MIToken::kw_align: 3077 // align is printed if it is different than size. 3078 if (parseAlignment(BaseAlignment)) 3079 return true; 3080 break; 3081 case MIToken::kw_basealign: 3082 // basealign is printed if it is different than align. 3083 if (parseAlignment(BaseAlignment)) 3084 return true; 3085 break; 3086 case MIToken::kw_addrspace: 3087 if (parseAddrspace(Ptr.AddrSpace)) 3088 return true; 3089 break; 3090 case MIToken::md_tbaa: 3091 lex(); 3092 if (parseMDNode(AAInfo.TBAA)) 3093 return true; 3094 break; 3095 case MIToken::md_alias_scope: 3096 lex(); 3097 if (parseMDNode(AAInfo.Scope)) 3098 return true; 3099 break; 3100 case MIToken::md_noalias: 3101 lex(); 3102 if (parseMDNode(AAInfo.NoAlias)) 3103 return true; 3104 break; 3105 case MIToken::md_range: 3106 lex(); 3107 if (parseMDNode(Range)) 3108 return true; 3109 break; 3110 // TODO: Report an error on duplicate metadata nodes. 3111 default: 3112 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3113 "'!noalias' or '!range'"); 3114 } 3115 } 3116 if (expectAndConsume(MIToken::rparen)) 3117 return true; 3118 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, Align(BaseAlignment), AAInfo, 3119 Range, SSID, Order, FailureOrder); 3120 return false; 3121 } 3122 3123 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3124 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3125 Token.is(MIToken::kw_post_instr_symbol)) && 3126 "Invalid token for a pre- post-instruction symbol!"); 3127 lex(); 3128 if (Token.isNot(MIToken::MCSymbol)) 3129 return error("expected a symbol after 'pre-instr-symbol'"); 3130 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3131 lex(); 3132 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3133 Token.is(MIToken::lbrace)) 3134 return false; 3135 if (Token.isNot(MIToken::comma)) 3136 return error("expected ',' before the next machine operand"); 3137 lex(); 3138 return false; 3139 } 3140 3141 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3142 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3143 "Invalid token for a heap alloc marker!"); 3144 lex(); 3145 parseMDNode(Node); 3146 if (!Node) 3147 return error("expected a MDNode after 'heap-alloc-marker'"); 3148 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3149 Token.is(MIToken::lbrace)) 3150 return false; 3151 if (Token.isNot(MIToken::comma)) 3152 return error("expected ',' before the next machine operand"); 3153 lex(); 3154 return false; 3155 } 3156 3157 static void initSlots2BasicBlocks( 3158 const Function &F, 3159 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3160 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3161 MST.incorporateFunction(F); 3162 for (auto &BB : F) { 3163 if (BB.hasName()) 3164 continue; 3165 int Slot = MST.getLocalSlot(&BB); 3166 if (Slot == -1) 3167 continue; 3168 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3169 } 3170 } 3171 3172 static const BasicBlock *getIRBlockFromSlot( 3173 unsigned Slot, 3174 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3175 return Slots2BasicBlocks.lookup(Slot); 3176 } 3177 3178 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3179 if (Slots2BasicBlocks.empty()) 3180 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3181 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3182 } 3183 3184 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3185 if (&F == &MF.getFunction()) 3186 return getIRBlock(Slot); 3187 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3188 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3189 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3190 } 3191 3192 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3193 // FIXME: Currently we can't recognize temporary or local symbols and call all 3194 // of the appropriate forms to create them. However, this handles basic cases 3195 // well as most of the special aspects are recognized by a prefix on their 3196 // name, and the input names should already be unique. For test cases, keeping 3197 // the symbol name out of the symbol table isn't terribly important. 3198 return MF.getContext().getOrCreateSymbol(Name); 3199 } 3200 3201 bool MIParser::parseStringConstant(std::string &Result) { 3202 if (Token.isNot(MIToken::StringConstant)) 3203 return error("expected string constant"); 3204 Result = std::string(Token.stringValue()); 3205 lex(); 3206 return false; 3207 } 3208 3209 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3210 StringRef Src, 3211 SMDiagnostic &Error) { 3212 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3213 } 3214 3215 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3216 StringRef Src, SMDiagnostic &Error) { 3217 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3218 } 3219 3220 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3221 MachineBasicBlock *&MBB, StringRef Src, 3222 SMDiagnostic &Error) { 3223 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3224 } 3225 3226 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3227 Register &Reg, StringRef Src, 3228 SMDiagnostic &Error) { 3229 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3230 } 3231 3232 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3233 Register &Reg, StringRef Src, 3234 SMDiagnostic &Error) { 3235 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3236 } 3237 3238 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3239 VRegInfo *&Info, StringRef Src, 3240 SMDiagnostic &Error) { 3241 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3242 } 3243 3244 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3245 int &FI, StringRef Src, 3246 SMDiagnostic &Error) { 3247 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3248 } 3249 3250 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3251 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3252 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3253 } 3254 3255 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3256 PerFunctionMIParsingState &PFS, const Value *&V, 3257 ErrorCallbackType ErrorCallback) { 3258 MIToken Token; 3259 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3260 ErrorCallback(Loc, Msg); 3261 }); 3262 V = nullptr; 3263 3264 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3265 } 3266