1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LiveRangeEdit class represents changes done to a virtual register when it 10 // is spilled or split. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/LiveRangeEdit.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/CodeGen/CalcSpillWeights.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "regalloc" 26 27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 30 31 void LiveRangeEdit::Delegate::anchor() { } 32 33 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg, 34 bool createSubRanges) { 35 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 36 if (VRM) 37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 38 39 LiveInterval &LI = LIS.createEmptyInterval(VReg); 40 if (Parent && !Parent->isSpillable()) 41 LI.markNotSpillable(); 42 if (createSubRanges) { 43 // Create empty subranges if the OldReg's interval has them. Do not create 44 // the main range here---it will be constructed later after the subranges 45 // have been finalized. 46 LiveInterval &OldLI = LIS.getInterval(OldReg); 47 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 48 for (LiveInterval::SubRange &S : OldLI.subranges()) 49 LI.createSubRange(Alloc, S.LaneMask); 50 } 51 return LI; 52 } 53 54 Register LiveRangeEdit::createFrom(Register OldReg) { 55 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 56 if (VRM) { 57 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 58 } 59 // FIXME: Getting the interval here actually computes it. 60 // In theory, this may not be what we want, but in practice 61 // the createEmptyIntervalFrom API is used when this is not 62 // the case. Generally speaking we just want to annotate the 63 // LiveInterval when it gets created but we cannot do that at 64 // the moment. 65 if (Parent && !Parent->isSpillable()) 66 LIS.getInterval(VReg).markNotSpillable(); 67 return VReg; 68 } 69 70 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 71 const MachineInstr *DefMI, 72 AAResults *aa) { 73 assert(DefMI && "Missing instruction"); 74 ScannedRemattable = true; 75 if (!TII.isTriviallyReMaterializable(*DefMI, aa)) 76 return false; 77 Remattable.insert(VNI); 78 return true; 79 } 80 81 void LiveRangeEdit::scanRemattable(AAResults *aa) { 82 for (VNInfo *VNI : getParent().valnos) { 83 if (VNI->isUnused()) 84 continue; 85 unsigned Original = VRM->getOriginal(getReg()); 86 LiveInterval &OrigLI = LIS.getInterval(Original); 87 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 88 if (!OrigVNI) 89 continue; 90 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 91 if (!DefMI) 92 continue; 93 checkRematerializable(OrigVNI, DefMI, aa); 94 } 95 ScannedRemattable = true; 96 } 97 98 bool LiveRangeEdit::anyRematerializable(AAResults *aa) { 99 if (!ScannedRemattable) 100 scanRemattable(aa); 101 return !Remattable.empty(); 102 } 103 104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 105 /// OrigIdx are also available with the same value at UseIdx. 106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 107 SlotIndex OrigIdx, 108 SlotIndex UseIdx) const { 109 OrigIdx = OrigIdx.getRegSlot(true); 110 UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true)); 111 for (const MachineOperand &MO : OrigMI->operands()) { 112 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 113 continue; 114 115 // We can't remat physreg uses, unless it is a constant or target wants 116 // to ignore this use. 117 if (Register::isPhysicalRegister(MO.getReg())) { 118 if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO)) 119 continue; 120 return false; 121 } 122 123 LiveInterval &li = LIS.getInterval(MO.getReg()); 124 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 125 if (!OVNI) 126 continue; 127 128 // Don't allow rematerialization immediately after the original def. 129 // It would be incorrect if OrigMI redefines the register. 130 // See PR14098. 131 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 132 return false; 133 134 if (OVNI != li.getVNInfoAt(UseIdx)) 135 return false; 136 137 // Check that subrange is live at UseIdx. 138 if (MO.getSubReg()) { 139 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 140 LaneBitmask LM = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 141 for (LiveInterval::SubRange &SR : li.subranges()) { 142 if ((SR.LaneMask & LM).none()) 143 continue; 144 if (!SR.liveAt(UseIdx)) 145 return false; 146 // Early exit if all used lanes are checked. No need to continue. 147 LM &= ~SR.LaneMask; 148 if (LM.none()) 149 break; 150 } 151 } 152 } 153 return true; 154 } 155 156 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 157 SlotIndex UseIdx, bool cheapAsAMove) { 158 assert(ScannedRemattable && "Call anyRematerializable first"); 159 160 // Use scanRemattable info. 161 if (!Remattable.count(OrigVNI)) 162 return false; 163 164 // No defining instruction provided. 165 SlotIndex DefIdx; 166 assert(RM.OrigMI && "No defining instruction for remattable value"); 167 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 168 169 // If only cheap remats were requested, bail out early. 170 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) 171 return false; 172 173 // Verify that all used registers are available with the same values. 174 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 175 return false; 176 177 return true; 178 } 179 180 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 181 MachineBasicBlock::iterator MI, 182 unsigned DestReg, 183 const Remat &RM, 184 const TargetRegisterInfo &tri, 185 bool Late) { 186 assert(RM.OrigMI && "Invalid remat"); 187 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); 188 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 189 // to false anyway in case the isDead flag of RM.OrigMI's dest register 190 // is true. 191 (*--MI).getOperand(0).setIsDead(false); 192 Rematted.insert(RM.ParentVNI); 193 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 194 } 195 196 void LiveRangeEdit::eraseVirtReg(Register Reg) { 197 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 198 LIS.removeInterval(Reg); 199 } 200 201 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 202 SmallVectorImpl<MachineInstr*> &Dead) { 203 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 204 205 // Check that there is a single def and a single use. 206 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) { 207 MachineInstr *MI = MO.getParent(); 208 if (MO.isDef()) { 209 if (DefMI && DefMI != MI) 210 return false; 211 if (!MI->canFoldAsLoad()) 212 return false; 213 DefMI = MI; 214 } else if (!MO.isUndef()) { 215 if (UseMI && UseMI != MI) 216 return false; 217 // FIXME: Targets don't know how to fold subreg uses. 218 if (MO.getSubReg()) 219 return false; 220 UseMI = MI; 221 } 222 } 223 if (!DefMI || !UseMI) 224 return false; 225 226 // Since we're moving the DefMI load, make sure we're not extending any live 227 // ranges. 228 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 229 LIS.getInstructionIndex(*UseMI))) 230 return false; 231 232 // We also need to make sure it is safe to move the load. 233 // Assume there are stores between DefMI and UseMI. 234 bool SawStore = true; 235 if (!DefMI->isSafeToMove(nullptr, SawStore)) 236 return false; 237 238 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI 239 << " into single use: " << *UseMI); 240 241 SmallVector<unsigned, 8> Ops; 242 if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second) 243 return false; 244 245 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); 246 if (!FoldMI) 247 return false; 248 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); 249 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 250 // Update the call site info. 251 if (UseMI->shouldUpdateCallSiteInfo()) 252 UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI); 253 UseMI->eraseFromParent(); 254 DefMI->addRegisterDead(LI->reg(), nullptr); 255 Dead.push_back(DefMI); 256 ++NumDCEFoldedLoads; 257 return true; 258 } 259 260 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 261 const MachineOperand &MO) const { 262 const MachineInstr &MI = *MO.getParent(); 263 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 264 if (LI.Query(Idx).isKill()) 265 return true; 266 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 267 unsigned SubReg = MO.getSubReg(); 268 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 269 for (const LiveInterval::SubRange &S : LI.subranges()) { 270 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) 271 return true; 272 } 273 return false; 274 } 275 276 /// Find all live intervals that need to shrink, then remove the instruction. 277 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, 278 AAResults *AA) { 279 assert(MI->allDefsAreDead() && "Def isn't really dead"); 280 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 281 282 // Never delete a bundled instruction. 283 if (MI->isBundled()) { 284 return; 285 } 286 // Never delete inline asm. 287 if (MI->isInlineAsm()) { 288 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 289 return; 290 } 291 292 // Use the same criteria as DeadMachineInstructionElim. 293 bool SawStore = false; 294 if (!MI->isSafeToMove(nullptr, SawStore)) { 295 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 296 return; 297 } 298 299 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 300 301 // Collect virtual registers to be erased after MI is gone. 302 SmallVector<unsigned, 8> RegsToErase; 303 bool ReadsPhysRegs = false; 304 bool isOrigDef = false; 305 unsigned Dest; 306 // Only optimize rematerialize case when the instruction has one def, since 307 // otherwise we could leave some dead defs in the code. This case is 308 // extremely rare. 309 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && 310 MI->getDesc().getNumDefs() == 1) { 311 Dest = MI->getOperand(0).getReg(); 312 unsigned Original = VRM->getOriginal(Dest); 313 LiveInterval &OrigLI = LIS.getInterval(Original); 314 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 315 // The original live-range may have been shrunk to 316 // an empty live-range. It happens when it is dead, but 317 // we still keep it around to be able to rematerialize 318 // other values that depend on it. 319 if (OrigVNI) 320 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 321 } 322 323 bool HasLiveVRegUses = false; 324 325 // Check for live intervals that may shrink 326 for (const MachineOperand &MO : MI->operands()) { 327 if (!MO.isReg()) 328 continue; 329 Register Reg = MO.getReg(); 330 if (!Register::isVirtualRegister(Reg)) { 331 // Check if MI reads any unreserved physregs. 332 if (Reg && MO.readsReg() && !MRI.isReserved(Reg)) 333 ReadsPhysRegs = true; 334 else if (MO.isDef()) 335 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 336 continue; 337 } 338 LiveInterval &LI = LIS.getInterval(Reg); 339 340 // Shrink read registers, unless it is likely to be expensive and 341 // unlikely to change anything. We typically don't want to shrink the 342 // PIC base register that has lots of uses everywhere. 343 // Always shrink COPY uses that probably come from live range splitting. 344 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MO.isDef())) || 345 (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO)))) 346 ToShrink.insert(&LI); 347 else if (MO.readsReg()) 348 HasLiveVRegUses = true; 349 350 // Remove defined value. 351 if (MO.isDef()) { 352 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 353 TheDelegate->LRE_WillShrinkVirtReg(LI.reg()); 354 LIS.removeVRegDefAt(LI, Idx); 355 if (LI.empty()) 356 RegsToErase.push_back(Reg); 357 } 358 } 359 360 // Currently, we don't support DCE of physreg live ranges. If MI reads 361 // any unreserved physregs, don't erase the instruction, but turn it into 362 // a KILL instead. This way, the physreg live ranges don't end up 363 // dangling. 364 // FIXME: It would be better to have something like shrinkToUses() for 365 // physregs. That could potentially enable more DCE and it would free up 366 // the physreg. It would not happen often, though. 367 if (ReadsPhysRegs) { 368 MI->setDesc(TII.get(TargetOpcode::KILL)); 369 // Remove all operands that aren't physregs. 370 for (unsigned i = MI->getNumOperands(); i; --i) { 371 const MachineOperand &MO = MI->getOperand(i-1); 372 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) 373 continue; 374 MI->RemoveOperand(i-1); 375 } 376 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 377 } else { 378 // If the dest of MI is an original reg and MI is reMaterializable, 379 // don't delete the inst. Replace the dest with a new reg, and keep 380 // the inst for remat of other siblings. The inst is saved in 381 // LiveRangeEdit::DeadRemats and will be deleted after all the 382 // allocations of the func are done. 383 // However, immediately delete instructions which have unshrunk virtual 384 // register uses. That may provoke RA to split an interval at the KILL 385 // and later result in an invalid live segment end. 386 if (isOrigDef && DeadRemats && !HasLiveVRegUses && 387 TII.isTriviallyReMaterializable(*MI, AA)) { 388 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false); 389 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); 390 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 391 pop_back(); 392 DeadRemats->insert(MI); 393 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 394 MI->substituteRegister(Dest, NewLI.reg(), 0, TRI); 395 MI->getOperand(0).setIsDead(true); 396 } else { 397 if (TheDelegate) 398 TheDelegate->LRE_WillEraseInstruction(MI); 399 LIS.RemoveMachineInstrFromMaps(*MI); 400 MI->eraseFromParent(); 401 ++NumDCEDeleted; 402 } 403 } 404 405 // Erase any virtregs that are now empty and unused. There may be <undef> 406 // uses around. Keep the empty live range in that case. 407 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 408 Register Reg = RegsToErase[i]; 409 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 410 ToShrink.remove(&LIS.getInterval(Reg)); 411 eraseVirtReg(Reg); 412 } 413 } 414 } 415 416 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 417 ArrayRef<Register> RegsBeingSpilled, 418 AAResults *AA) { 419 ToShrinkSet ToShrink; 420 421 for (;;) { 422 // Erase all dead defs. 423 while (!Dead.empty()) 424 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA); 425 426 if (ToShrink.empty()) 427 break; 428 429 // Shrink just one live interval. Then delete new dead defs. 430 LiveInterval *LI = ToShrink.pop_back_val(); 431 if (foldAsLoad(LI, Dead)) 432 continue; 433 unsigned VReg = LI->reg(); 434 if (TheDelegate) 435 TheDelegate->LRE_WillShrinkVirtReg(VReg); 436 if (!LIS.shrinkToUses(LI, &Dead)) 437 continue; 438 439 // Don't create new intervals for a register being spilled. 440 // The new intervals would have to be spilled anyway so its not worth it. 441 // Also they currently aren't spilled so creating them and not spilling 442 // them results in incorrect code. 443 if (llvm::is_contained(RegsBeingSpilled, VReg)) 444 continue; 445 446 // LI may have been separated, create new intervals. 447 LI->RenumberValues(); 448 SmallVector<LiveInterval*, 8> SplitLIs; 449 LIS.splitSeparateComponents(*LI, SplitLIs); 450 if (!SplitLIs.empty()) 451 ++NumFracRanges; 452 453 Register Original = VRM ? VRM->getOriginal(VReg) : Register(); 454 for (const LiveInterval *SplitLI : SplitLIs) { 455 // If LI is an original interval that hasn't been split yet, make the new 456 // intervals their own originals instead of referring to LI. The original 457 // interval must contain all the split products, and LI doesn't. 458 if (Original != VReg && Original != 0) 459 VRM->setIsSplitFromReg(SplitLI->reg(), Original); 460 if (TheDelegate) 461 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg); 462 } 463 } 464 } 465 466 // Keep track of new virtual registers created via 467 // MachineRegisterInfo::createVirtualRegister. 468 void 469 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) { 470 if (VRM) 471 VRM->grow(); 472 473 NewRegs.push_back(VReg); 474 } 475 476 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 477 VirtRegAuxInfo &VRAI) { 478 for (unsigned I = 0, Size = size(); I < Size; ++I) { 479 LiveInterval &LI = LIS.getInterval(get(I)); 480 if (MRI.recomputeRegClass(LI.reg())) 481 LLVM_DEBUG({ 482 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 483 dbgs() << "Inflated " << printReg(LI.reg()) << " to " 484 << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n'; 485 }); 486 VRAI.calculateSpillWeightAndHint(LI); 487 } 488 } 489