1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/MCRegisterInfo.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <memory> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "livedebugvars" 68 69 static cl::opt<bool> 70 EnableLDV("live-debug-variables", cl::init(true), 71 cl::desc("Enable the live debug variables pass"), cl::Hidden); 72 73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 75 76 char LiveDebugVariables::ID = 0; 77 78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 79 "Debug Variable Analysis", false, false) 80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 83 "Debug Variable Analysis", false, false) 84 85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequiredTransitive<LiveIntervals>(); 88 AU.setPreservesAll(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 94 } 95 96 enum : unsigned { UndefLocNo = ~0U }; 97 98 namespace { 99 /// Describes a debug variable value by location number and expression along 100 /// with some flags about the original usage of the location. 101 class DbgVariableValue { 102 public: 103 DbgVariableValue(unsigned LocNo, bool WasIndirect, 104 const DIExpression &Expression) 105 : LocNo(LocNo), WasIndirect(WasIndirect), Expression(&Expression) { 106 assert(getLocNo() == LocNo && "location truncation"); 107 } 108 109 DbgVariableValue() : LocNo(0), WasIndirect(0) {} 110 111 const DIExpression *getExpression() const { return Expression; } 112 unsigned getLocNo() const { 113 // Fix up the undef location number, which gets truncated. 114 return LocNo == INT_MAX ? UndefLocNo : LocNo; 115 } 116 bool getWasIndirect() const { return WasIndirect; } 117 bool isUndef() const { return getLocNo() == UndefLocNo; } 118 119 DbgVariableValue changeLocNo(unsigned NewLocNo) const { 120 return DbgVariableValue(NewLocNo, WasIndirect, *Expression); 121 } 122 123 friend inline bool operator==(const DbgVariableValue &LHS, 124 const DbgVariableValue &RHS) { 125 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect && 126 LHS.Expression == RHS.Expression; 127 } 128 129 friend inline bool operator!=(const DbgVariableValue &LHS, 130 const DbgVariableValue &RHS) { 131 return !(LHS == RHS); 132 } 133 134 private: 135 unsigned LocNo : 31; 136 unsigned WasIndirect : 1; 137 const DIExpression *Expression = nullptr; 138 }; 139 } // namespace 140 141 /// Map of where a user value is live to that value. 142 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 143 144 /// Map of stack slot offsets for spilled locations. 145 /// Non-spilled locations are not added to the map. 146 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 147 148 namespace { 149 150 class LDVImpl; 151 152 /// A user value is a part of a debug info user variable. 153 /// 154 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 155 /// holds part of a user variable. The part is identified by a byte offset. 156 /// 157 /// UserValues are grouped into equivalence classes for easier searching. Two 158 /// user values are related if they are held by the same virtual register. The 159 /// equivalence class is the transitive closure of that relation. 160 class UserValue { 161 const DILocalVariable *Variable; ///< The debug info variable we are part of. 162 /// The part of the variable we describe. 163 const Optional<DIExpression::FragmentInfo> Fragment; 164 DebugLoc dl; ///< The debug location for the variable. This is 165 ///< used by dwarf writer to find lexical scope. 166 UserValue *leader; ///< Equivalence class leader. 167 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 168 169 /// Numbered locations referenced by locmap. 170 SmallVector<MachineOperand, 4> locations; 171 172 /// Map of slot indices where this value is live. 173 LocMap locInts; 174 175 /// Set of interval start indexes that have been trimmed to the 176 /// lexical scope. 177 SmallSet<SlotIndex, 2> trimmedDefs; 178 179 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 180 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 181 SlotIndex StopIdx, DbgVariableValue DbgValue, 182 bool Spilled, unsigned SpillOffset, LiveIntervals &LIS, 183 const TargetInstrInfo &TII, 184 const TargetRegisterInfo &TRI); 185 186 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 187 /// is live. Returns true if any changes were made. 188 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 189 LiveIntervals &LIS); 190 191 public: 192 /// Create a new UserValue. 193 UserValue(const DILocalVariable *var, 194 Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, 195 LocMap::Allocator &alloc) 196 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), 197 locInts(alloc) {} 198 199 /// Get the leader of this value's equivalence class. 200 UserValue *getLeader() { 201 UserValue *l = leader; 202 while (l != l->leader) 203 l = l->leader; 204 return leader = l; 205 } 206 207 /// Return the next UserValue in the equivalence class. 208 UserValue *getNext() const { return next; } 209 210 /// Merge equivalence classes. 211 static UserValue *merge(UserValue *L1, UserValue *L2) { 212 L2 = L2->getLeader(); 213 if (!L1) 214 return L2; 215 L1 = L1->getLeader(); 216 if (L1 == L2) 217 return L1; 218 // Splice L2 before L1's members. 219 UserValue *End = L2; 220 while (End->next) { 221 End->leader = L1; 222 End = End->next; 223 } 224 End->leader = L1; 225 End->next = L1->next; 226 L1->next = L2; 227 return L1; 228 } 229 230 /// Return the location number that matches Loc. 231 /// 232 /// For undef values we always return location number UndefLocNo without 233 /// inserting anything in locations. Since locations is a vector and the 234 /// location number is the position in the vector and UndefLocNo is ~0, 235 /// we would need a very big vector to put the value at the right position. 236 unsigned getLocationNo(const MachineOperand &LocMO) { 237 if (LocMO.isReg()) { 238 if (LocMO.getReg() == 0) 239 return UndefLocNo; 240 // For register locations we dont care about use/def and other flags. 241 for (unsigned i = 0, e = locations.size(); i != e; ++i) 242 if (locations[i].isReg() && 243 locations[i].getReg() == LocMO.getReg() && 244 locations[i].getSubReg() == LocMO.getSubReg()) 245 return i; 246 } else 247 for (unsigned i = 0, e = locations.size(); i != e; ++i) 248 if (LocMO.isIdenticalTo(locations[i])) 249 return i; 250 locations.push_back(LocMO); 251 // We are storing a MachineOperand outside a MachineInstr. 252 locations.back().clearParent(); 253 // Don't store def operands. 254 if (locations.back().isReg()) { 255 if (locations.back().isDef()) 256 locations.back().setIsDead(false); 257 locations.back().setIsUse(); 258 } 259 return locations.size() - 1; 260 } 261 262 /// Remove (recycle) a location number. If \p LocNo still is used by the 263 /// locInts nothing is done. 264 void removeLocationIfUnused(unsigned LocNo) { 265 // Bail out if LocNo still is used. 266 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 267 DbgVariableValue DbgValue = I.value(); 268 if (DbgValue.getLocNo() == LocNo) 269 return; 270 } 271 // Remove the entry in the locations vector, and adjust all references to 272 // location numbers above the removed entry. 273 locations.erase(locations.begin() + LocNo); 274 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 275 DbgVariableValue DbgValue = I.value(); 276 if (!DbgValue.isUndef() && DbgValue.getLocNo() > LocNo) 277 I.setValueUnchecked(DbgValue.changeLocNo(DbgValue.getLocNo() - 1)); 278 } 279 } 280 281 /// Ensure that all virtual register locations are mapped. 282 void mapVirtRegs(LDVImpl *LDV); 283 284 /// Add a definition point to this user value. 285 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect, 286 const DIExpression &Expr) { 287 DbgVariableValue DbgValue(getLocationNo(LocMO), IsIndirect, Expr); 288 // Add a singular (Idx,Idx) -> value mapping. 289 LocMap::iterator I = locInts.find(Idx); 290 if (!I.valid() || I.start() != Idx) 291 I.insert(Idx, Idx.getNextSlot(), DbgValue); 292 else 293 // A later DBG_VALUE at the same SlotIndex overrides the old location. 294 I.setValue(DbgValue); 295 } 296 297 /// Extend the current definition as far as possible down. 298 /// 299 /// Stop when meeting an existing def or when leaving the live 300 /// range of VNI. End points where VNI is no longer live are added to Kills. 301 /// 302 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 303 /// data-flow analysis to propagate them beyond basic block boundaries. 304 /// 305 /// \param Idx Starting point for the definition. 306 /// \param DbgValue value to propagate. 307 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 308 /// \param VNI When LR is not null, this is the value to restrict to. 309 /// \param [out] Kills Append end points of VNI's live range to Kills. 310 /// \param LIS Live intervals analysis. 311 void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR, 312 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 313 LiveIntervals &LIS); 314 315 /// The value in LI may be copies to other registers. Determine if 316 /// any of the copies are available at the kill points, and add defs if 317 /// possible. 318 /// 319 /// \param LI Scan for copies of the value in LI->reg. 320 /// \param DbgValue Location number of LI->reg, and DIExpression. 321 /// \param Kills Points where the range of DbgValue could be extended. 322 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 323 void addDefsFromCopies( 324 LiveInterval *LI, DbgVariableValue DbgValue, 325 const SmallVectorImpl<SlotIndex> &Kills, 326 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 327 MachineRegisterInfo &MRI, LiveIntervals &LIS); 328 329 /// Compute the live intervals of all locations after collecting all their 330 /// def points. 331 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 332 LiveIntervals &LIS, LexicalScopes &LS); 333 334 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 335 /// live. Returns true if any changes were made. 336 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 337 LiveIntervals &LIS); 338 339 /// Rewrite virtual register locations according to the provided virtual 340 /// register map. Record the stack slot offsets for the locations that 341 /// were spilled. 342 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 343 const TargetInstrInfo &TII, 344 const TargetRegisterInfo &TRI, 345 SpillOffsetMap &SpillOffsets); 346 347 /// Recreate DBG_VALUE instruction from data structures. 348 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 349 const TargetInstrInfo &TII, 350 const TargetRegisterInfo &TRI, 351 const SpillOffsetMap &SpillOffsets); 352 353 /// Return DebugLoc of this UserValue. 354 DebugLoc getDebugLoc() { return dl;} 355 356 void print(raw_ostream &, const TargetRegisterInfo *); 357 }; 358 359 /// A user label is a part of a debug info user label. 360 class UserLabel { 361 const DILabel *Label; ///< The debug info label we are part of. 362 DebugLoc dl; ///< The debug location for the label. This is 363 ///< used by dwarf writer to find lexical scope. 364 SlotIndex loc; ///< Slot used by the debug label. 365 366 /// Insert a DBG_LABEL into MBB at Idx. 367 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 368 LiveIntervals &LIS, const TargetInstrInfo &TII); 369 370 public: 371 /// Create a new UserLabel. 372 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 373 : Label(label), dl(std::move(L)), loc(Idx) {} 374 375 /// Does this UserLabel match the parameters? 376 bool matches(const DILabel *L, const DILocation *IA, 377 const SlotIndex Index) const { 378 return Label == L && dl->getInlinedAt() == IA && loc == Index; 379 } 380 381 /// Recreate DBG_LABEL instruction from data structures. 382 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII); 383 384 /// Return DebugLoc of this UserLabel. 385 DebugLoc getDebugLoc() { return dl; } 386 387 void print(raw_ostream &, const TargetRegisterInfo *); 388 }; 389 390 /// Implementation of the LiveDebugVariables pass. 391 class LDVImpl { 392 LiveDebugVariables &pass; 393 LocMap::Allocator allocator; 394 MachineFunction *MF = nullptr; 395 LiveIntervals *LIS; 396 const TargetRegisterInfo *TRI; 397 398 using StashedInstrRef = 399 std::tuple<unsigned, unsigned, const DILocalVariable *, 400 const DIExpression *, DebugLoc>; 401 std::map<SlotIndex, std::vector<StashedInstrRef>> StashedInstrReferences; 402 403 /// Whether emitDebugValues is called. 404 bool EmitDone = false; 405 406 /// Whether the machine function is modified during the pass. 407 bool ModifiedMF = false; 408 409 /// All allocated UserValue instances. 410 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 411 412 /// All allocated UserLabel instances. 413 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 414 415 /// Map virtual register to eq class leader. 416 using VRMap = DenseMap<unsigned, UserValue *>; 417 VRMap virtRegToEqClass; 418 419 /// Map to find existing UserValue instances. 420 using UVMap = DenseMap<DebugVariable, UserValue *>; 421 UVMap userVarMap; 422 423 /// Find or create a UserValue. 424 UserValue *getUserValue(const DILocalVariable *Var, 425 Optional<DIExpression::FragmentInfo> Fragment, 426 const DebugLoc &DL); 427 428 /// Find the EC leader for VirtReg or null. 429 UserValue *lookupVirtReg(Register VirtReg); 430 431 /// Add DBG_VALUE instruction to our maps. 432 /// 433 /// \param MI DBG_VALUE instruction 434 /// \param Idx Last valid SLotIndex before instruction. 435 /// 436 /// \returns True if the DBG_VALUE instruction should be deleted. 437 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 438 439 /// Track a DBG_INSTR_REF. This needs to be removed from the MachineFunction 440 /// during regalloc -- but there's no need to maintain live ranges, as we 441 /// refer to a value rather than a location. 442 /// 443 /// \param MI DBG_INSTR_REF instruction 444 /// \param Idx Last valid SlotIndex before instruction 445 /// 446 /// \returns True if the DBG_VALUE instruction should be deleted. 447 bool handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx); 448 449 /// Add DBG_LABEL instruction to UserLabel. 450 /// 451 /// \param MI DBG_LABEL instruction 452 /// \param Idx Last valid SlotIndex before instruction. 453 /// 454 /// \returns True if the DBG_LABEL instruction should be deleted. 455 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 456 457 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 458 /// for each instruction. 459 /// 460 /// \param mf MachineFunction to be scanned. 461 /// 462 /// \returns True if any debug values were found. 463 bool collectDebugValues(MachineFunction &mf); 464 465 /// Compute the live intervals of all user values after collecting all 466 /// their def points. 467 void computeIntervals(); 468 469 public: 470 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 471 472 bool runOnMachineFunction(MachineFunction &mf); 473 474 /// Release all memory. 475 void clear() { 476 MF = nullptr; 477 StashedInstrReferences.clear(); 478 userValues.clear(); 479 userLabels.clear(); 480 virtRegToEqClass.clear(); 481 userVarMap.clear(); 482 // Make sure we call emitDebugValues if the machine function was modified. 483 assert((!ModifiedMF || EmitDone) && 484 "Dbg values are not emitted in LDV"); 485 EmitDone = false; 486 ModifiedMF = false; 487 } 488 489 /// Map virtual register to an equivalence class. 490 void mapVirtReg(Register VirtReg, UserValue *EC); 491 492 /// Replace all references to OldReg with NewRegs. 493 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); 494 495 /// Recreate DBG_VALUE instruction from data structures. 496 void emitDebugValues(VirtRegMap *VRM); 497 498 void print(raw_ostream&); 499 }; 500 501 } // end anonymous namespace 502 503 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 504 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 505 const LLVMContext &Ctx) { 506 if (!DL) 507 return; 508 509 auto *Scope = cast<DIScope>(DL.getScope()); 510 // Omit the directory, because it's likely to be long and uninteresting. 511 CommentOS << Scope->getFilename(); 512 CommentOS << ':' << DL.getLine(); 513 if (DL.getCol() != 0) 514 CommentOS << ':' << DL.getCol(); 515 516 DebugLoc InlinedAtDL = DL.getInlinedAt(); 517 if (!InlinedAtDL) 518 return; 519 520 CommentOS << " @[ "; 521 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 522 CommentOS << " ]"; 523 } 524 525 static void printExtendedName(raw_ostream &OS, const DINode *Node, 526 const DILocation *DL) { 527 const LLVMContext &Ctx = Node->getContext(); 528 StringRef Res; 529 unsigned Line = 0; 530 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 531 Res = V->getName(); 532 Line = V->getLine(); 533 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 534 Res = L->getName(); 535 Line = L->getLine(); 536 } 537 538 if (!Res.empty()) 539 OS << Res << "," << Line; 540 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 541 if (InlinedAt) { 542 if (DebugLoc InlinedAtDL = InlinedAt) { 543 OS << " @["; 544 printDebugLoc(InlinedAtDL, OS, Ctx); 545 OS << "]"; 546 } 547 } 548 } 549 550 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 551 OS << "!\""; 552 printExtendedName(OS, Variable, dl); 553 554 OS << "\"\t"; 555 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 556 OS << " [" << I.start() << ';' << I.stop() << "):"; 557 if (I.value().isUndef()) 558 OS << "undef"; 559 else { 560 OS << I.value().getLocNo(); 561 if (I.value().getWasIndirect()) 562 OS << " ind"; 563 } 564 } 565 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 566 OS << " Loc" << i << '='; 567 locations[i].print(OS, TRI); 568 } 569 OS << '\n'; 570 } 571 572 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 573 OS << "!\""; 574 printExtendedName(OS, Label, dl); 575 576 OS << "\"\t"; 577 OS << loc; 578 OS << '\n'; 579 } 580 581 void LDVImpl::print(raw_ostream &OS) { 582 OS << "********** DEBUG VARIABLES **********\n"; 583 for (auto &userValue : userValues) 584 userValue->print(OS, TRI); 585 OS << "********** DEBUG LABELS **********\n"; 586 for (auto &userLabel : userLabels) 587 userLabel->print(OS, TRI); 588 } 589 #endif 590 591 void UserValue::mapVirtRegs(LDVImpl *LDV) { 592 for (unsigned i = 0, e = locations.size(); i != e; ++i) 593 if (locations[i].isReg() && 594 Register::isVirtualRegister(locations[i].getReg())) 595 LDV->mapVirtReg(locations[i].getReg(), this); 596 } 597 598 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 599 Optional<DIExpression::FragmentInfo> Fragment, 600 const DebugLoc &DL) { 601 // FIXME: Handle partially overlapping fragments. See 602 // https://reviews.llvm.org/D70121#1849741. 603 DebugVariable ID(Var, Fragment, DL->getInlinedAt()); 604 UserValue *&UV = userVarMap[ID]; 605 if (!UV) { 606 userValues.push_back( 607 std::make_unique<UserValue>(Var, Fragment, DL, allocator)); 608 UV = userValues.back().get(); 609 } 610 return UV; 611 } 612 613 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { 614 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 615 UserValue *&Leader = virtRegToEqClass[VirtReg]; 616 Leader = UserValue::merge(Leader, EC); 617 } 618 619 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { 620 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 621 return UV->getLeader(); 622 return nullptr; 623 } 624 625 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 626 // DBG_VALUE loc, offset, variable 627 if (MI.getNumOperands() != 4 || 628 !(MI.getDebugOffset().isReg() || MI.getDebugOffset().isImm()) || 629 !MI.getDebugVariableOp().isMetadata()) { 630 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 631 return false; 632 } 633 634 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 635 // register that hasn't been defined yet. If we do not remove those here, then 636 // the re-insertion of the DBG_VALUE instruction after register allocation 637 // will be incorrect. 638 // TODO: If earlier passes are corrected to generate sane debug information 639 // (and if the machine verifier is improved to catch this), then these checks 640 // could be removed or replaced by asserts. 641 bool Discard = false; 642 if (MI.getDebugOperand(0).isReg() && 643 Register::isVirtualRegister(MI.getDebugOperand(0).getReg())) { 644 const Register Reg = MI.getDebugOperand(0).getReg(); 645 if (!LIS->hasInterval(Reg)) { 646 // The DBG_VALUE is described by a virtual register that does not have a 647 // live interval. Discard the DBG_VALUE. 648 Discard = true; 649 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 650 << " " << MI); 651 } else { 652 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 653 // is defined dead at Idx (where Idx is the slot index for the instruction 654 // preceding the DBG_VALUE). 655 const LiveInterval &LI = LIS->getInterval(Reg); 656 LiveQueryResult LRQ = LI.Query(Idx); 657 if (!LRQ.valueOutOrDead()) { 658 // We have found a DBG_VALUE with the value in a virtual register that 659 // is not live. Discard the DBG_VALUE. 660 Discard = true; 661 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 662 << " " << MI); 663 } 664 } 665 } 666 667 // Get or create the UserValue for (variable,offset) here. 668 bool IsIndirect = MI.isDebugOffsetImm(); 669 if (IsIndirect) 670 assert(MI.getDebugOffset().getImm() == 0 && 671 "DBG_VALUE with nonzero offset"); 672 const DILocalVariable *Var = MI.getDebugVariable(); 673 const DIExpression *Expr = MI.getDebugExpression(); 674 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); 675 if (!Discard) 676 UV->addDef(Idx, MI.getDebugOperand(0), IsIndirect, *Expr); 677 else { 678 MachineOperand MO = MachineOperand::CreateReg(0U, false); 679 MO.setIsDebug(); 680 UV->addDef(Idx, MO, false, *Expr); 681 } 682 return true; 683 } 684 685 bool LDVImpl::handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx) { 686 assert(MI.isDebugRef()); 687 unsigned InstrNum = MI.getOperand(0).getImm(); 688 unsigned OperandNum = MI.getOperand(1).getImm(); 689 auto *Var = MI.getDebugVariable(); 690 auto *Expr = MI.getDebugExpression(); 691 auto &DL = MI.getDebugLoc(); 692 StashedInstrRef Stashed = 693 std::make_tuple(InstrNum, OperandNum, Var, Expr, DL); 694 StashedInstrReferences[Idx].push_back(Stashed); 695 return true; 696 } 697 698 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 699 // DBG_LABEL label 700 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 701 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 702 return false; 703 } 704 705 // Get or create the UserLabel for label here. 706 const DILabel *Label = MI.getDebugLabel(); 707 const DebugLoc &DL = MI.getDebugLoc(); 708 bool Found = false; 709 for (auto const &L : userLabels) { 710 if (L->matches(Label, DL->getInlinedAt(), Idx)) { 711 Found = true; 712 break; 713 } 714 } 715 if (!Found) 716 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 717 718 return true; 719 } 720 721 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 722 bool Changed = false; 723 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 724 ++MFI) { 725 MachineBasicBlock *MBB = &*MFI; 726 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 727 MBBI != MBBE;) { 728 // Use the first debug instruction in the sequence to get a SlotIndex 729 // for following consecutive debug instructions. 730 if (!MBBI->isDebugInstr()) { 731 ++MBBI; 732 continue; 733 } 734 // Debug instructions has no slot index. Use the previous 735 // non-debug instruction's SlotIndex as its SlotIndex. 736 SlotIndex Idx = 737 MBBI == MBB->begin() 738 ? LIS->getMBBStartIdx(MBB) 739 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 740 // Handle consecutive debug instructions with the same slot index. 741 do { 742 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 743 // kinds of debug instructions. 744 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 745 (MBBI->isDebugRef() && handleDebugInstrRef(*MBBI, Idx)) || 746 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 747 MBBI = MBB->erase(MBBI); 748 Changed = true; 749 } else 750 ++MBBI; 751 } while (MBBI != MBBE && MBBI->isDebugInstr()); 752 } 753 } 754 return Changed; 755 } 756 757 void UserValue::extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR, 758 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 759 LiveIntervals &LIS) { 760 SlotIndex Start = Idx; 761 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 762 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 763 LocMap::iterator I = locInts.find(Start); 764 765 // Limit to VNI's live range. 766 bool ToEnd = true; 767 if (LR && VNI) { 768 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 769 if (!Segment || Segment->valno != VNI) { 770 if (Kills) 771 Kills->push_back(Start); 772 return; 773 } 774 if (Segment->end < Stop) { 775 Stop = Segment->end; 776 ToEnd = false; 777 } 778 } 779 780 // There could already be a short def at Start. 781 if (I.valid() && I.start() <= Start) { 782 // Stop when meeting a different location or an already extended interval. 783 Start = Start.getNextSlot(); 784 if (I.value() != DbgValue || I.stop() != Start) 785 return; 786 // This is a one-slot placeholder. Just skip it. 787 ++I; 788 } 789 790 // Limited by the next def. 791 if (I.valid() && I.start() < Stop) 792 Stop = I.start(); 793 // Limited by VNI's live range. 794 else if (!ToEnd && Kills) 795 Kills->push_back(Stop); 796 797 if (Start < Stop) 798 I.insert(Start, Stop, DbgValue); 799 } 800 801 void UserValue::addDefsFromCopies( 802 LiveInterval *LI, DbgVariableValue DbgValue, 803 const SmallVectorImpl<SlotIndex> &Kills, 804 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 805 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 806 if (Kills.empty()) 807 return; 808 // Don't track copies from physregs, there are too many uses. 809 if (!Register::isVirtualRegister(LI->reg())) 810 return; 811 812 // Collect all the (vreg, valno) pairs that are copies of LI. 813 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 814 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { 815 MachineInstr *MI = MO.getParent(); 816 // Copies of the full value. 817 if (MO.getSubReg() || !MI->isCopy()) 818 continue; 819 Register DstReg = MI->getOperand(0).getReg(); 820 821 // Don't follow copies to physregs. These are usually setting up call 822 // arguments, and the argument registers are always call clobbered. We are 823 // better off in the source register which could be a callee-saved register, 824 // or it could be spilled. 825 if (!Register::isVirtualRegister(DstReg)) 826 continue; 827 828 // Is the value extended to reach this copy? If not, another def may be 829 // blocking it, or we are looking at a wrong value of LI. 830 SlotIndex Idx = LIS.getInstructionIndex(*MI); 831 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 832 if (!I.valid() || I.value() != DbgValue) 833 continue; 834 835 if (!LIS.hasInterval(DstReg)) 836 continue; 837 LiveInterval *DstLI = &LIS.getInterval(DstReg); 838 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 839 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 840 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 841 } 842 843 if (CopyValues.empty()) 844 return; 845 846 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 847 << '\n'); 848 849 // Try to add defs of the copied values for each kill point. 850 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 851 SlotIndex Idx = Kills[i]; 852 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 853 LiveInterval *DstLI = CopyValues[j].first; 854 const VNInfo *DstVNI = CopyValues[j].second; 855 if (DstLI->getVNInfoAt(Idx) != DstVNI) 856 continue; 857 // Check that there isn't already a def at Idx 858 LocMap::iterator I = locInts.find(Idx); 859 if (I.valid() && I.start() <= Idx) 860 continue; 861 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 862 << DstVNI->id << " in " << *DstLI << '\n'); 863 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 864 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 865 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 866 DbgVariableValue NewValue = DbgValue.changeLocNo(LocNo); 867 I.insert(Idx, Idx.getNextSlot(), NewValue); 868 NewDefs.push_back(std::make_pair(Idx, NewValue)); 869 break; 870 } 871 } 872 } 873 874 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 875 const TargetRegisterInfo &TRI, 876 LiveIntervals &LIS, LexicalScopes &LS) { 877 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 878 879 // Collect all defs to be extended (Skipping undefs). 880 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 881 if (!I.value().isUndef()) 882 Defs.push_back(std::make_pair(I.start(), I.value())); 883 884 // Extend all defs, and possibly add new ones along the way. 885 for (unsigned i = 0; i != Defs.size(); ++i) { 886 SlotIndex Idx = Defs[i].first; 887 DbgVariableValue DbgValue = Defs[i].second; 888 const MachineOperand &LocMO = locations[DbgValue.getLocNo()]; 889 890 if (!LocMO.isReg()) { 891 extendDef(Idx, DbgValue, nullptr, nullptr, nullptr, LIS); 892 continue; 893 } 894 895 // Register locations are constrained to where the register value is live. 896 if (Register::isVirtualRegister(LocMO.getReg())) { 897 LiveInterval *LI = nullptr; 898 const VNInfo *VNI = nullptr; 899 if (LIS.hasInterval(LocMO.getReg())) { 900 LI = &LIS.getInterval(LocMO.getReg()); 901 VNI = LI->getVNInfoAt(Idx); 902 } 903 SmallVector<SlotIndex, 16> Kills; 904 extendDef(Idx, DbgValue, LI, VNI, &Kills, LIS); 905 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 906 // if the original location for example is %vreg0:sub_hi, and we find a 907 // full register copy in addDefsFromCopies (at the moment it only handles 908 // full register copies), then we must add the sub1 sub-register index to 909 // the new location. However, that is only possible if the new virtual 910 // register is of the same regclass (or if there is an equivalent 911 // sub-register in that regclass). For now, simply skip handling copies if 912 // a sub-register is involved. 913 if (LI && !LocMO.getSubReg()) 914 addDefsFromCopies(LI, DbgValue, Kills, Defs, MRI, LIS); 915 continue; 916 } 917 918 // For physregs, we only mark the start slot idx. DwarfDebug will see it 919 // as if the DBG_VALUE is valid up until the end of the basic block, or 920 // the next def of the physical register. So we do not need to extend the 921 // range. It might actually happen that the DBG_VALUE is the last use of 922 // the physical register (e.g. if this is an unused input argument to a 923 // function). 924 } 925 926 // The computed intervals may extend beyond the range of the debug 927 // location's lexical scope. In this case, splitting of an interval 928 // can result in an interval outside of the scope being created, 929 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 930 // this, trim the intervals to the lexical scope. 931 932 LexicalScope *Scope = LS.findLexicalScope(dl); 933 if (!Scope) 934 return; 935 936 SlotIndex PrevEnd; 937 LocMap::iterator I = locInts.begin(); 938 939 // Iterate over the lexical scope ranges. Each time round the loop 940 // we check the intervals for overlap with the end of the previous 941 // range and the start of the next. The first range is handled as 942 // a special case where there is no PrevEnd. 943 for (const InsnRange &Range : Scope->getRanges()) { 944 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 945 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 946 947 // Variable locations at the first instruction of a block should be 948 // based on the block's SlotIndex, not the first instruction's index. 949 if (Range.first == Range.first->getParent()->begin()) 950 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 951 952 // At the start of each iteration I has been advanced so that 953 // I.stop() >= PrevEnd. Check for overlap. 954 if (PrevEnd && I.start() < PrevEnd) { 955 SlotIndex IStop = I.stop(); 956 DbgVariableValue DbgValue = I.value(); 957 958 // Stop overlaps previous end - trim the end of the interval to 959 // the scope range. 960 I.setStopUnchecked(PrevEnd); 961 ++I; 962 963 // If the interval also overlaps the start of the "next" (i.e. 964 // current) range create a new interval for the remainder (which 965 // may be further trimmed). 966 if (RStart < IStop) 967 I.insert(RStart, IStop, DbgValue); 968 } 969 970 // Advance I so that I.stop() >= RStart, and check for overlap. 971 I.advanceTo(RStart); 972 if (!I.valid()) 973 return; 974 975 if (I.start() < RStart) { 976 // Interval start overlaps range - trim to the scope range. 977 I.setStartUnchecked(RStart); 978 // Remember that this interval was trimmed. 979 trimmedDefs.insert(RStart); 980 } 981 982 // The end of a lexical scope range is the last instruction in the 983 // range. To convert to an interval we need the index of the 984 // instruction after it. 985 REnd = REnd.getNextIndex(); 986 987 // Advance I to first interval outside current range. 988 I.advanceTo(REnd); 989 if (!I.valid()) 990 return; 991 992 PrevEnd = REnd; 993 } 994 995 // Check for overlap with end of final range. 996 if (PrevEnd && I.start() < PrevEnd) 997 I.setStopUnchecked(PrevEnd); 998 } 999 1000 void LDVImpl::computeIntervals() { 1001 LexicalScopes LS; 1002 LS.initialize(*MF); 1003 1004 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1005 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 1006 userValues[i]->mapVirtRegs(this); 1007 } 1008 } 1009 1010 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 1011 clear(); 1012 MF = &mf; 1013 LIS = &pass.getAnalysis<LiveIntervals>(); 1014 TRI = mf.getSubtarget().getRegisterInfo(); 1015 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 1016 << mf.getName() << " **********\n"); 1017 1018 bool Changed = collectDebugValues(mf); 1019 computeIntervals(); 1020 LLVM_DEBUG(print(dbgs())); 1021 ModifiedMF = Changed; 1022 return Changed; 1023 } 1024 1025 static void removeDebugInstrs(MachineFunction &mf) { 1026 for (MachineBasicBlock &MBB : mf) { 1027 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 1028 if (!MBBI->isDebugInstr()) { 1029 ++MBBI; 1030 continue; 1031 } 1032 MBBI = MBB.erase(MBBI); 1033 } 1034 } 1035 } 1036 1037 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1038 if (!EnableLDV) 1039 return false; 1040 if (!mf.getFunction().getSubprogram()) { 1041 removeDebugInstrs(mf); 1042 return false; 1043 } 1044 if (!pImpl) 1045 pImpl = new LDVImpl(this); 1046 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 1047 } 1048 1049 void LiveDebugVariables::releaseMemory() { 1050 if (pImpl) 1051 static_cast<LDVImpl*>(pImpl)->clear(); 1052 } 1053 1054 LiveDebugVariables::~LiveDebugVariables() { 1055 if (pImpl) 1056 delete static_cast<LDVImpl*>(pImpl); 1057 } 1058 1059 //===----------------------------------------------------------------------===// 1060 // Live Range Splitting 1061 //===----------------------------------------------------------------------===// 1062 1063 bool 1064 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 1065 LiveIntervals& LIS) { 1066 LLVM_DEBUG({ 1067 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1068 print(dbgs(), nullptr); 1069 }); 1070 bool DidChange = false; 1071 LocMap::iterator LocMapI; 1072 LocMapI.setMap(locInts); 1073 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1074 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1075 if (LI->empty()) 1076 continue; 1077 1078 // Don't allocate the new LocNo until it is needed. 1079 unsigned NewLocNo = UndefLocNo; 1080 1081 // Iterate over the overlaps between locInts and LI. 1082 LocMapI.find(LI->beginIndex()); 1083 if (!LocMapI.valid()) 1084 continue; 1085 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1086 LiveInterval::iterator LIE = LI->end(); 1087 while (LocMapI.valid() && LII != LIE) { 1088 // At this point, we know that LocMapI.stop() > LII->start. 1089 LII = LI->advanceTo(LII, LocMapI.start()); 1090 if (LII == LIE) 1091 break; 1092 1093 // Now LII->end > LocMapI.start(). Do we have an overlap? 1094 if (LocMapI.value().getLocNo() == OldLocNo && 1095 LII->start < LocMapI.stop()) { 1096 // Overlapping correct location. Allocate NewLocNo now. 1097 if (NewLocNo == UndefLocNo) { 1098 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); 1099 MO.setSubReg(locations[OldLocNo].getSubReg()); 1100 NewLocNo = getLocationNo(MO); 1101 DidChange = true; 1102 } 1103 1104 SlotIndex LStart = LocMapI.start(); 1105 SlotIndex LStop = LocMapI.stop(); 1106 DbgVariableValue OldDbgValue = LocMapI.value(); 1107 1108 // Trim LocMapI down to the LII overlap. 1109 if (LStart < LII->start) 1110 LocMapI.setStartUnchecked(LII->start); 1111 if (LStop > LII->end) 1112 LocMapI.setStopUnchecked(LII->end); 1113 1114 // Change the value in the overlap. This may trigger coalescing. 1115 LocMapI.setValue(OldDbgValue.changeLocNo(NewLocNo)); 1116 1117 // Re-insert any removed OldDbgValue ranges. 1118 if (LStart < LocMapI.start()) { 1119 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1120 ++LocMapI; 1121 assert(LocMapI.valid() && "Unexpected coalescing"); 1122 } 1123 if (LStop > LocMapI.stop()) { 1124 ++LocMapI; 1125 LocMapI.insert(LII->end, LStop, OldDbgValue); 1126 --LocMapI; 1127 } 1128 } 1129 1130 // Advance to the next overlap. 1131 if (LII->end < LocMapI.stop()) { 1132 if (++LII == LIE) 1133 break; 1134 LocMapI.advanceTo(LII->start); 1135 } else { 1136 ++LocMapI; 1137 if (!LocMapI.valid()) 1138 break; 1139 LII = LI->advanceTo(LII, LocMapI.start()); 1140 } 1141 } 1142 } 1143 1144 // Finally, remove OldLocNo unless it is still used by some interval in the 1145 // locInts map. One case when OldLocNo still is in use is when the register 1146 // has been spilled. In such situations the spilled register is kept as a 1147 // location until rewriteLocations is called (VirtRegMap is mapping the old 1148 // register to the spill slot). So for a while we can have locations that map 1149 // to virtual registers that have been removed from both the MachineFunction 1150 // and from LiveIntervals. 1151 // 1152 // We may also just be using the location for a value with a different 1153 // expression. 1154 removeLocationIfUnused(OldLocNo); 1155 1156 LLVM_DEBUG({ 1157 dbgs() << "Split result: \t"; 1158 print(dbgs(), nullptr); 1159 }); 1160 return DidChange; 1161 } 1162 1163 bool 1164 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 1165 LiveIntervals &LIS) { 1166 bool DidChange = false; 1167 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1168 // safely erase unused locations. 1169 for (unsigned i = locations.size(); i ; --i) { 1170 unsigned LocNo = i-1; 1171 const MachineOperand *Loc = &locations[LocNo]; 1172 if (!Loc->isReg() || Loc->getReg() != OldReg) 1173 continue; 1174 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1175 } 1176 return DidChange; 1177 } 1178 1179 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1180 bool DidChange = false; 1181 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1182 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1183 1184 if (!DidChange) 1185 return; 1186 1187 // Map all of the new virtual registers. 1188 UserValue *UV = lookupVirtReg(OldReg); 1189 for (unsigned i = 0; i != NewRegs.size(); ++i) 1190 mapVirtReg(NewRegs[i], UV); 1191 } 1192 1193 void LiveDebugVariables:: 1194 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { 1195 if (pImpl) 1196 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1197 } 1198 1199 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1200 const TargetInstrInfo &TII, 1201 const TargetRegisterInfo &TRI, 1202 SpillOffsetMap &SpillOffsets) { 1203 // Build a set of new locations with new numbers so we can coalesce our 1204 // IntervalMap if two vreg intervals collapse to the same physical location. 1205 // Use MapVector instead of SetVector because MapVector::insert returns the 1206 // position of the previously or newly inserted element. The boolean value 1207 // tracks if the location was produced by a spill. 1208 // FIXME: This will be problematic if we ever support direct and indirect 1209 // frame index locations, i.e. expressing both variables in memory and 1210 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1211 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1212 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1213 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1214 bool Spilled = false; 1215 unsigned SpillOffset = 0; 1216 MachineOperand Loc = locations[I]; 1217 // Only virtual registers are rewritten. 1218 if (Loc.isReg() && Loc.getReg() && 1219 Register::isVirtualRegister(Loc.getReg())) { 1220 Register VirtReg = Loc.getReg(); 1221 if (VRM.isAssignedReg(VirtReg) && 1222 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1223 // This can create a %noreg operand in rare cases when the sub-register 1224 // index is no longer available. That means the user value is in a 1225 // non-existent sub-register, and %noreg is exactly what we want. 1226 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1227 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1228 // Retrieve the stack slot offset. 1229 unsigned SpillSize; 1230 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1231 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1232 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1233 SpillOffset, MF); 1234 1235 // FIXME: Invalidate the location if the offset couldn't be calculated. 1236 (void)Success; 1237 1238 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1239 Spilled = true; 1240 } else { 1241 Loc.setReg(0); 1242 Loc.setSubReg(0); 1243 } 1244 } 1245 1246 // Insert this location if it doesn't already exist and record a mapping 1247 // from the old number to the new number. 1248 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1249 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1250 LocNoMap[I] = NewLocNo; 1251 } 1252 1253 // Rewrite the locations and record the stack slot offsets for spills. 1254 locations.clear(); 1255 SpillOffsets.clear(); 1256 for (auto &Pair : NewLocations) { 1257 bool Spilled; 1258 unsigned SpillOffset; 1259 std::tie(Spilled, SpillOffset) = Pair.second; 1260 locations.push_back(Pair.first); 1261 if (Spilled) { 1262 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1263 SpillOffsets[NewLocNo] = SpillOffset; 1264 } 1265 } 1266 1267 // Update the interval map, but only coalesce left, since intervals to the 1268 // right use the old location numbers. This should merge two contiguous 1269 // DBG_VALUE intervals with different vregs that were allocated to the same 1270 // physical register. 1271 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1272 DbgVariableValue DbgValue = I.value(); 1273 // Undef values don't exist in locations (and thus not in LocNoMap either) 1274 // so skip over them. See getLocationNo(). 1275 if (DbgValue.isUndef()) 1276 continue; 1277 unsigned NewLocNo = LocNoMap[DbgValue.getLocNo()]; 1278 I.setValueUnchecked(DbgValue.changeLocNo(NewLocNo)); 1279 I.setStart(I.start()); 1280 } 1281 } 1282 1283 /// Find an iterator for inserting a DBG_VALUE instruction. 1284 static MachineBasicBlock::iterator 1285 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1286 LiveIntervals &LIS) { 1287 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1288 Idx = Idx.getBaseIndex(); 1289 1290 // Try to find an insert location by going backwards from Idx. 1291 MachineInstr *MI; 1292 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1293 // We've reached the beginning of MBB. 1294 if (Idx == Start) { 1295 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1296 return I; 1297 } 1298 Idx = Idx.getPrevIndex(); 1299 } 1300 1301 // Don't insert anything after the first terminator, though. 1302 return MI->isTerminator() ? MBB->getFirstTerminator() : 1303 std::next(MachineBasicBlock::iterator(MI)); 1304 } 1305 1306 /// Find an iterator for inserting the next DBG_VALUE instruction 1307 /// (or end if no more insert locations found). 1308 static MachineBasicBlock::iterator 1309 findNextInsertLocation(MachineBasicBlock *MBB, 1310 MachineBasicBlock::iterator I, 1311 SlotIndex StopIdx, MachineOperand &LocMO, 1312 LiveIntervals &LIS, 1313 const TargetRegisterInfo &TRI) { 1314 if (!LocMO.isReg()) 1315 return MBB->instr_end(); 1316 Register Reg = LocMO.getReg(); 1317 1318 // Find the next instruction in the MBB that define the register Reg. 1319 while (I != MBB->end() && !I->isTerminator()) { 1320 if (!LIS.isNotInMIMap(*I) && 1321 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1322 break; 1323 if (I->definesRegister(Reg, &TRI)) 1324 // The insert location is directly after the instruction/bundle. 1325 return std::next(I); 1326 ++I; 1327 } 1328 return MBB->end(); 1329 } 1330 1331 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1332 SlotIndex StopIdx, DbgVariableValue DbgValue, 1333 bool Spilled, unsigned SpillOffset, 1334 LiveIntervals &LIS, const TargetInstrInfo &TII, 1335 const TargetRegisterInfo &TRI) { 1336 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1337 // Only search within the current MBB. 1338 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1339 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1340 // Undef values don't exist in locations so create new "noreg" register MOs 1341 // for them. See getLocationNo(). 1342 MachineOperand MO = 1343 !DbgValue.isUndef() 1344 ? locations[DbgValue.getLocNo()] 1345 : MachineOperand::CreateReg( 1346 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1347 /* isKill */ false, /* isDead */ false, 1348 /* isUndef */ false, /* isEarlyClobber */ false, 1349 /* SubReg */ 0, /* isDebug */ true); 1350 1351 ++NumInsertedDebugValues; 1352 1353 assert(cast<DILocalVariable>(Variable) 1354 ->isValidLocationForIntrinsic(getDebugLoc()) && 1355 "Expected inlined-at fields to agree"); 1356 1357 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1358 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1359 // that the original virtual register was a pointer. Also, add the stack slot 1360 // offset for the spilled register to the expression. 1361 const DIExpression *Expr = DbgValue.getExpression(); 1362 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1363 bool IsIndirect = DbgValue.getWasIndirect(); 1364 if (Spilled) { 1365 if (IsIndirect) 1366 DIExprFlags |= DIExpression::DerefAfter; 1367 Expr = 1368 DIExpression::prepend(Expr, DIExprFlags, SpillOffset); 1369 IsIndirect = true; 1370 } 1371 1372 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1373 1374 do { 1375 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1376 IsIndirect, MO, Variable, Expr); 1377 1378 // Continue and insert DBG_VALUES after every redefinition of register 1379 // associated with the debug value within the range 1380 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1381 } while (I != MBB->end()); 1382 } 1383 1384 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1385 LiveIntervals &LIS, 1386 const TargetInstrInfo &TII) { 1387 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1388 ++NumInsertedDebugLabels; 1389 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1390 .addMetadata(Label); 1391 } 1392 1393 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1394 const TargetInstrInfo &TII, 1395 const TargetRegisterInfo &TRI, 1396 const SpillOffsetMap &SpillOffsets) { 1397 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1398 1399 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1400 SlotIndex Start = I.start(); 1401 SlotIndex Stop = I.stop(); 1402 DbgVariableValue DbgValue = I.value(); 1403 auto SpillIt = !DbgValue.isUndef() ? SpillOffsets.find(DbgValue.getLocNo()) 1404 : SpillOffsets.end(); 1405 bool Spilled = SpillIt != SpillOffsets.end(); 1406 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1407 1408 // If the interval start was trimmed to the lexical scope insert the 1409 // DBG_VALUE at the previous index (otherwise it appears after the 1410 // first instruction in the range). 1411 if (trimmedDefs.count(Start)) 1412 Start = Start.getPrevIndex(); 1413 1414 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop 1415 << "):" << DbgValue.getLocNo()); 1416 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1417 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1418 1419 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1420 insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS, 1421 TII, TRI); 1422 // This interval may span multiple basic blocks. 1423 // Insert a DBG_VALUE into each one. 1424 while (Stop > MBBEnd) { 1425 // Move to the next block. 1426 Start = MBBEnd; 1427 if (++MBB == MFEnd) 1428 break; 1429 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1430 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1431 insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS, 1432 TII, TRI); 1433 } 1434 LLVM_DEBUG(dbgs() << '\n'); 1435 if (MBB == MFEnd) 1436 break; 1437 1438 ++I; 1439 } 1440 } 1441 1442 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) { 1443 LLVM_DEBUG(dbgs() << "\t" << loc); 1444 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1445 1446 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1447 insertDebugLabel(&*MBB, loc, LIS, TII); 1448 1449 LLVM_DEBUG(dbgs() << '\n'); 1450 } 1451 1452 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1453 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1454 if (!MF) 1455 return; 1456 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1457 SpillOffsetMap SpillOffsets; 1458 for (auto &userValue : userValues) { 1459 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1460 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1461 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets); 1462 } 1463 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1464 for (auto &userLabel : userLabels) { 1465 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1466 userLabel->emitDebugLabel(*LIS, *TII); 1467 } 1468 1469 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); 1470 1471 // Re-insert any DBG_INSTR_REFs back in the position they were. Ordering 1472 // is preserved by vector. 1473 auto Slots = LIS->getSlotIndexes(); 1474 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF); 1475 for (auto &P : StashedInstrReferences) { 1476 const SlotIndex &Idx = P.first; 1477 auto *MBB = Slots->getMBBFromIndex(Idx); 1478 MachineBasicBlock::iterator insertPos = findInsertLocation(MBB, Idx, *LIS); 1479 for (auto &Stashed : P.second) { 1480 auto MIB = BuildMI(*MF, std::get<4>(Stashed), RefII); 1481 MIB.addImm(std::get<0>(Stashed)); 1482 MIB.addImm(std::get<1>(Stashed)); 1483 MIB.addMetadata(std::get<2>(Stashed)); 1484 MIB.addMetadata(std::get<3>(Stashed)); 1485 MachineInstr *New = MIB; 1486 MBB->insert(insertPos, New); 1487 } 1488 } 1489 1490 EmitDone = true; 1491 } 1492 1493 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1494 if (pImpl) 1495 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1496 } 1497 1498 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1499 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1500 if (pImpl) 1501 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1502 } 1503 #endif 1504