1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 12 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 13 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/LowLevelTypeUtils.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterBankInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/DivisionByConstantInfo.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cmath> 36 #include <optional> 37 #include <tuple> 38 39 #define DEBUG_TYPE "gi-combiner" 40 41 using namespace llvm; 42 using namespace MIPatternMatch; 43 44 // Option to allow testing of the combiner while no targets know about indexed 45 // addressing. 46 static cl::opt<bool> 47 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 48 cl::desc("Force all indexed operations to be " 49 "legal for the GlobalISel combiner")); 50 51 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 52 MachineIRBuilder &B, bool IsPreLegalize, 53 GISelKnownBits *KB, MachineDominatorTree *MDT, 54 const LegalizerInfo *LI) 55 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 56 MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI), 57 RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 58 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 59 (void)this->KB; 60 } 61 62 const TargetLowering &CombinerHelper::getTargetLowering() const { 63 return *Builder.getMF().getSubtarget().getTargetLowering(); 64 } 65 66 /// \returns The little endian in-memory byte position of byte \p I in a 67 /// \p ByteWidth bytes wide type. 68 /// 69 /// E.g. Given a 4-byte type x, x[0] -> byte 0 70 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 71 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 72 return I; 73 } 74 75 /// Determines the LogBase2 value for a non-null input value using the 76 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 77 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 78 auto &MRI = *MIB.getMRI(); 79 LLT Ty = MRI.getType(V); 80 auto Ctlz = MIB.buildCTLZ(Ty, V); 81 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 82 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 83 } 84 85 /// \returns The big endian in-memory byte position of byte \p I in a 86 /// \p ByteWidth bytes wide type. 87 /// 88 /// E.g. Given a 4-byte type x, x[0] -> byte 3 89 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 90 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 91 return ByteWidth - I - 1; 92 } 93 94 /// Given a map from byte offsets in memory to indices in a load/store, 95 /// determine if that map corresponds to a little or big endian byte pattern. 96 /// 97 /// \param MemOffset2Idx maps memory offsets to address offsets. 98 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 99 /// 100 /// \returns true if the map corresponds to a big endian byte pattern, false if 101 /// it corresponds to a little endian byte pattern, and std::nullopt otherwise. 102 /// 103 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 104 /// are as follows: 105 /// 106 /// AddrOffset Little endian Big endian 107 /// 0 0 3 108 /// 1 1 2 109 /// 2 2 1 110 /// 3 3 0 111 static std::optional<bool> 112 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 113 int64_t LowestIdx) { 114 // Need at least two byte positions to decide on endianness. 115 unsigned Width = MemOffset2Idx.size(); 116 if (Width < 2) 117 return std::nullopt; 118 bool BigEndian = true, LittleEndian = true; 119 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 120 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 121 if (MemOffsetAndIdx == MemOffset2Idx.end()) 122 return std::nullopt; 123 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 124 assert(Idx >= 0 && "Expected non-negative byte offset?"); 125 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 126 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 127 if (!BigEndian && !LittleEndian) 128 return std::nullopt; 129 } 130 131 assert((BigEndian != LittleEndian) && 132 "Pattern cannot be both big and little endian!"); 133 return BigEndian; 134 } 135 136 bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; } 137 138 bool CombinerHelper::isLegal(const LegalityQuery &Query) const { 139 assert(LI && "Must have LegalizerInfo to query isLegal!"); 140 return LI->getAction(Query).Action == LegalizeActions::Legal; 141 } 142 143 bool CombinerHelper::isLegalOrBeforeLegalizer( 144 const LegalityQuery &Query) const { 145 return isPreLegalize() || isLegal(Query); 146 } 147 148 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { 149 if (!Ty.isVector()) 150 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); 151 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. 152 if (isPreLegalize()) 153 return true; 154 LLT EltTy = Ty.getElementType(); 155 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && 156 isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); 157 } 158 159 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 160 Register ToReg) const { 161 Observer.changingAllUsesOfReg(MRI, FromReg); 162 163 if (MRI.constrainRegAttrs(ToReg, FromReg)) 164 MRI.replaceRegWith(FromReg, ToReg); 165 else 166 Builder.buildCopy(ToReg, FromReg); 167 168 Observer.finishedChangingAllUsesOfReg(); 169 } 170 171 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 172 MachineOperand &FromRegOp, 173 Register ToReg) const { 174 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 175 Observer.changingInstr(*FromRegOp.getParent()); 176 177 FromRegOp.setReg(ToReg); 178 179 Observer.changedInstr(*FromRegOp.getParent()); 180 } 181 182 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 183 unsigned ToOpcode) const { 184 Observer.changingInstr(FromMI); 185 186 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 187 188 Observer.changedInstr(FromMI); 189 } 190 191 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 192 return RBI->getRegBank(Reg, MRI, *TRI); 193 } 194 195 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 196 if (RegBank) 197 MRI.setRegBank(Reg, *RegBank); 198 } 199 200 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 201 if (matchCombineCopy(MI)) { 202 applyCombineCopy(MI); 203 return true; 204 } 205 return false; 206 } 207 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 208 if (MI.getOpcode() != TargetOpcode::COPY) 209 return false; 210 Register DstReg = MI.getOperand(0).getReg(); 211 Register SrcReg = MI.getOperand(1).getReg(); 212 return canReplaceReg(DstReg, SrcReg, MRI); 213 } 214 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 215 Register DstReg = MI.getOperand(0).getReg(); 216 Register SrcReg = MI.getOperand(1).getReg(); 217 MI.eraseFromParent(); 218 replaceRegWith(MRI, DstReg, SrcReg); 219 } 220 221 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 222 bool IsUndef = false; 223 SmallVector<Register, 4> Ops; 224 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 225 applyCombineConcatVectors(MI, IsUndef, Ops); 226 return true; 227 } 228 return false; 229 } 230 231 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 232 SmallVectorImpl<Register> &Ops) { 233 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 234 "Invalid instruction"); 235 IsUndef = true; 236 MachineInstr *Undef = nullptr; 237 238 // Walk over all the operands of concat vectors and check if they are 239 // build_vector themselves or undef. 240 // Then collect their operands in Ops. 241 for (const MachineOperand &MO : MI.uses()) { 242 Register Reg = MO.getReg(); 243 MachineInstr *Def = MRI.getVRegDef(Reg); 244 assert(Def && "Operand not defined"); 245 switch (Def->getOpcode()) { 246 case TargetOpcode::G_BUILD_VECTOR: 247 IsUndef = false; 248 // Remember the operands of the build_vector to fold 249 // them into the yet-to-build flattened concat vectors. 250 for (const MachineOperand &BuildVecMO : Def->uses()) 251 Ops.push_back(BuildVecMO.getReg()); 252 break; 253 case TargetOpcode::G_IMPLICIT_DEF: { 254 LLT OpType = MRI.getType(Reg); 255 // Keep one undef value for all the undef operands. 256 if (!Undef) { 257 Builder.setInsertPt(*MI.getParent(), MI); 258 Undef = Builder.buildUndef(OpType.getScalarType()); 259 } 260 assert(MRI.getType(Undef->getOperand(0).getReg()) == 261 OpType.getScalarType() && 262 "All undefs should have the same type"); 263 // Break the undef vector in as many scalar elements as needed 264 // for the flattening. 265 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 266 EltIdx != EltEnd; ++EltIdx) 267 Ops.push_back(Undef->getOperand(0).getReg()); 268 break; 269 } 270 default: 271 return false; 272 } 273 } 274 return true; 275 } 276 void CombinerHelper::applyCombineConcatVectors( 277 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 278 // We determined that the concat_vectors can be flatten. 279 // Generate the flattened build_vector. 280 Register DstReg = MI.getOperand(0).getReg(); 281 Builder.setInsertPt(*MI.getParent(), MI); 282 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 283 284 // Note: IsUndef is sort of redundant. We could have determine it by 285 // checking that at all Ops are undef. Alternatively, we could have 286 // generate a build_vector of undefs and rely on another combine to 287 // clean that up. For now, given we already gather this information 288 // in tryCombineConcatVectors, just save compile time and issue the 289 // right thing. 290 if (IsUndef) 291 Builder.buildUndef(NewDstReg); 292 else 293 Builder.buildBuildVector(NewDstReg, Ops); 294 MI.eraseFromParent(); 295 replaceRegWith(MRI, DstReg, NewDstReg); 296 } 297 298 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 299 SmallVector<Register, 4> Ops; 300 if (matchCombineShuffleVector(MI, Ops)) { 301 applyCombineShuffleVector(MI, Ops); 302 return true; 303 } 304 return false; 305 } 306 307 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 308 SmallVectorImpl<Register> &Ops) { 309 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 310 "Invalid instruction kind"); 311 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 312 Register Src1 = MI.getOperand(1).getReg(); 313 LLT SrcType = MRI.getType(Src1); 314 // As bizarre as it may look, shuffle vector can actually produce 315 // scalar! This is because at the IR level a <1 x ty> shuffle 316 // vector is perfectly valid. 317 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 318 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 319 320 // If the resulting vector is smaller than the size of the source 321 // vectors being concatenated, we won't be able to replace the 322 // shuffle vector into a concat_vectors. 323 // 324 // Note: We may still be able to produce a concat_vectors fed by 325 // extract_vector_elt and so on. It is less clear that would 326 // be better though, so don't bother for now. 327 // 328 // If the destination is a scalar, the size of the sources doesn't 329 // matter. we will lower the shuffle to a plain copy. This will 330 // work only if the source and destination have the same size. But 331 // that's covered by the next condition. 332 // 333 // TODO: If the size between the source and destination don't match 334 // we could still emit an extract vector element in that case. 335 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 336 return false; 337 338 // Check that the shuffle mask can be broken evenly between the 339 // different sources. 340 if (DstNumElts % SrcNumElts != 0) 341 return false; 342 343 // Mask length is a multiple of the source vector length. 344 // Check if the shuffle is some kind of concatenation of the input 345 // vectors. 346 unsigned NumConcat = DstNumElts / SrcNumElts; 347 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 348 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 349 for (unsigned i = 0; i != DstNumElts; ++i) { 350 int Idx = Mask[i]; 351 // Undef value. 352 if (Idx < 0) 353 continue; 354 // Ensure the indices in each SrcType sized piece are sequential and that 355 // the same source is used for the whole piece. 356 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 357 (ConcatSrcs[i / SrcNumElts] >= 0 && 358 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 359 return false; 360 // Remember which source this index came from. 361 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 362 } 363 364 // The shuffle is concatenating multiple vectors together. 365 // Collect the different operands for that. 366 Register UndefReg; 367 Register Src2 = MI.getOperand(2).getReg(); 368 for (auto Src : ConcatSrcs) { 369 if (Src < 0) { 370 if (!UndefReg) { 371 Builder.setInsertPt(*MI.getParent(), MI); 372 UndefReg = Builder.buildUndef(SrcType).getReg(0); 373 } 374 Ops.push_back(UndefReg); 375 } else if (Src == 0) 376 Ops.push_back(Src1); 377 else 378 Ops.push_back(Src2); 379 } 380 return true; 381 } 382 383 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 384 const ArrayRef<Register> Ops) { 385 Register DstReg = MI.getOperand(0).getReg(); 386 Builder.setInsertPt(*MI.getParent(), MI); 387 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 388 389 if (Ops.size() == 1) 390 Builder.buildCopy(NewDstReg, Ops[0]); 391 else 392 Builder.buildMergeLikeInstr(NewDstReg, Ops); 393 394 MI.eraseFromParent(); 395 replaceRegWith(MRI, DstReg, NewDstReg); 396 } 397 398 namespace { 399 400 /// Select a preference between two uses. CurrentUse is the current preference 401 /// while *ForCandidate is attributes of the candidate under consideration. 402 PreferredTuple ChoosePreferredUse(MachineInstr &LoadMI, 403 PreferredTuple &CurrentUse, 404 const LLT TyForCandidate, 405 unsigned OpcodeForCandidate, 406 MachineInstr *MIForCandidate) { 407 if (!CurrentUse.Ty.isValid()) { 408 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 409 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 410 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 411 return CurrentUse; 412 } 413 414 // We permit the extend to hoist through basic blocks but this is only 415 // sensible if the target has extending loads. If you end up lowering back 416 // into a load and extend during the legalizer then the end result is 417 // hoisting the extend up to the load. 418 419 // Prefer defined extensions to undefined extensions as these are more 420 // likely to reduce the number of instructions. 421 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 422 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 423 return CurrentUse; 424 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 425 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 426 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 427 428 // Prefer sign extensions to zero extensions as sign-extensions tend to be 429 // more expensive. Don't do this if the load is already a zero-extend load 430 // though, otherwise we'll rewrite a zero-extend load into a sign-extend 431 // later. 432 if (!isa<GZExtLoad>(LoadMI) && CurrentUse.Ty == TyForCandidate) { 433 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 434 OpcodeForCandidate == TargetOpcode::G_ZEXT) 435 return CurrentUse; 436 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 437 OpcodeForCandidate == TargetOpcode::G_SEXT) 438 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 439 } 440 441 // This is potentially target specific. We've chosen the largest type 442 // because G_TRUNC is usually free. One potential catch with this is that 443 // some targets have a reduced number of larger registers than smaller 444 // registers and this choice potentially increases the live-range for the 445 // larger value. 446 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 447 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 448 } 449 return CurrentUse; 450 } 451 452 /// Find a suitable place to insert some instructions and insert them. This 453 /// function accounts for special cases like inserting before a PHI node. 454 /// The current strategy for inserting before PHI's is to duplicate the 455 /// instructions for each predecessor. However, while that's ok for G_TRUNC 456 /// on most targets since it generally requires no code, other targets/cases may 457 /// want to try harder to find a dominating block. 458 static void InsertInsnsWithoutSideEffectsBeforeUse( 459 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 460 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 461 MachineOperand &UseMO)> 462 Inserter) { 463 MachineInstr &UseMI = *UseMO.getParent(); 464 465 MachineBasicBlock *InsertBB = UseMI.getParent(); 466 467 // If the use is a PHI then we want the predecessor block instead. 468 if (UseMI.isPHI()) { 469 MachineOperand *PredBB = std::next(&UseMO); 470 InsertBB = PredBB->getMBB(); 471 } 472 473 // If the block is the same block as the def then we want to insert just after 474 // the def instead of at the start of the block. 475 if (InsertBB == DefMI.getParent()) { 476 MachineBasicBlock::iterator InsertPt = &DefMI; 477 Inserter(InsertBB, std::next(InsertPt), UseMO); 478 return; 479 } 480 481 // Otherwise we want the start of the BB 482 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 483 } 484 } // end anonymous namespace 485 486 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 487 PreferredTuple Preferred; 488 if (matchCombineExtendingLoads(MI, Preferred)) { 489 applyCombineExtendingLoads(MI, Preferred); 490 return true; 491 } 492 return false; 493 } 494 495 static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) { 496 unsigned CandidateLoadOpc; 497 switch (ExtOpc) { 498 case TargetOpcode::G_ANYEXT: 499 CandidateLoadOpc = TargetOpcode::G_LOAD; 500 break; 501 case TargetOpcode::G_SEXT: 502 CandidateLoadOpc = TargetOpcode::G_SEXTLOAD; 503 break; 504 case TargetOpcode::G_ZEXT: 505 CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD; 506 break; 507 default: 508 llvm_unreachable("Unexpected extend opc"); 509 } 510 return CandidateLoadOpc; 511 } 512 513 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 514 PreferredTuple &Preferred) { 515 // We match the loads and follow the uses to the extend instead of matching 516 // the extends and following the def to the load. This is because the load 517 // must remain in the same position for correctness (unless we also add code 518 // to find a safe place to sink it) whereas the extend is freely movable. 519 // It also prevents us from duplicating the load for the volatile case or just 520 // for performance. 521 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 522 if (!LoadMI) 523 return false; 524 525 Register LoadReg = LoadMI->getDstReg(); 526 527 LLT LoadValueTy = MRI.getType(LoadReg); 528 if (!LoadValueTy.isScalar()) 529 return false; 530 531 // Most architectures are going to legalize <s8 loads into at least a 1 byte 532 // load, and the MMOs can only describe memory accesses in multiples of bytes. 533 // If we try to perform extload combining on those, we can end up with 534 // %a(s8) = extload %ptr (load 1 byte from %ptr) 535 // ... which is an illegal extload instruction. 536 if (LoadValueTy.getSizeInBits() < 8) 537 return false; 538 539 // For non power-of-2 types, they will very likely be legalized into multiple 540 // loads. Don't bother trying to match them into extending loads. 541 if (!llvm::has_single_bit<uint32_t>(LoadValueTy.getSizeInBits())) 542 return false; 543 544 // Find the preferred type aside from the any-extends (unless it's the only 545 // one) and non-extending ops. We'll emit an extending load to that type and 546 // and emit a variant of (extend (trunc X)) for the others according to the 547 // relative type sizes. At the same time, pick an extend to use based on the 548 // extend involved in the chosen type. 549 unsigned PreferredOpcode = 550 isa<GLoad>(&MI) 551 ? TargetOpcode::G_ANYEXT 552 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 553 Preferred = {LLT(), PreferredOpcode, nullptr}; 554 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 555 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 556 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 557 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 558 const auto &MMO = LoadMI->getMMO(); 559 // For atomics, only form anyextending loads. 560 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 561 continue; 562 // Check for legality. 563 if (!isPreLegalize()) { 564 LegalityQuery::MemDesc MMDesc(MMO); 565 unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode()); 566 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 567 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 568 if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}}) 569 .Action != LegalizeActions::Legal) 570 continue; 571 } 572 Preferred = ChoosePreferredUse(MI, Preferred, 573 MRI.getType(UseMI.getOperand(0).getReg()), 574 UseMI.getOpcode(), &UseMI); 575 } 576 } 577 578 // There were no extends 579 if (!Preferred.MI) 580 return false; 581 // It should be impossible to chose an extend without selecting a different 582 // type since by definition the result of an extend is larger. 583 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 584 585 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 586 return true; 587 } 588 589 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 590 PreferredTuple &Preferred) { 591 // Rewrite the load to the chosen extending load. 592 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 593 594 // Inserter to insert a truncate back to the original type at a given point 595 // with some basic CSE to limit truncate duplication to one per BB. 596 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 597 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 598 MachineBasicBlock::iterator InsertBefore, 599 MachineOperand &UseMO) { 600 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 601 if (PreviouslyEmitted) { 602 Observer.changingInstr(*UseMO.getParent()); 603 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 604 Observer.changedInstr(*UseMO.getParent()); 605 return; 606 } 607 608 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 609 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 610 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 611 EmittedInsns[InsertIntoBB] = NewMI; 612 replaceRegOpWith(MRI, UseMO, NewDstReg); 613 }; 614 615 Observer.changingInstr(MI); 616 unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode); 617 MI.setDesc(Builder.getTII().get(LoadOpc)); 618 619 // Rewrite all the uses to fix up the types. 620 auto &LoadValue = MI.getOperand(0); 621 SmallVector<MachineOperand *, 4> Uses; 622 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 623 Uses.push_back(&UseMO); 624 625 for (auto *UseMO : Uses) { 626 MachineInstr *UseMI = UseMO->getParent(); 627 628 // If the extend is compatible with the preferred extend then we should fix 629 // up the type and extend so that it uses the preferred use. 630 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 631 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 632 Register UseDstReg = UseMI->getOperand(0).getReg(); 633 MachineOperand &UseSrcMO = UseMI->getOperand(1); 634 const LLT UseDstTy = MRI.getType(UseDstReg); 635 if (UseDstReg != ChosenDstReg) { 636 if (Preferred.Ty == UseDstTy) { 637 // If the use has the same type as the preferred use, then merge 638 // the vregs and erase the extend. For example: 639 // %1:_(s8) = G_LOAD ... 640 // %2:_(s32) = G_SEXT %1(s8) 641 // %3:_(s32) = G_ANYEXT %1(s8) 642 // ... = ... %3(s32) 643 // rewrites to: 644 // %2:_(s32) = G_SEXTLOAD ... 645 // ... = ... %2(s32) 646 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 647 Observer.erasingInstr(*UseMO->getParent()); 648 UseMO->getParent()->eraseFromParent(); 649 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 650 // If the preferred size is smaller, then keep the extend but extend 651 // from the result of the extending load. For example: 652 // %1:_(s8) = G_LOAD ... 653 // %2:_(s32) = G_SEXT %1(s8) 654 // %3:_(s64) = G_ANYEXT %1(s8) 655 // ... = ... %3(s64) 656 /// rewrites to: 657 // %2:_(s32) = G_SEXTLOAD ... 658 // %3:_(s64) = G_ANYEXT %2:_(s32) 659 // ... = ... %3(s64) 660 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 661 } else { 662 // If the preferred size is large, then insert a truncate. For 663 // example: 664 // %1:_(s8) = G_LOAD ... 665 // %2:_(s64) = G_SEXT %1(s8) 666 // %3:_(s32) = G_ZEXT %1(s8) 667 // ... = ... %3(s32) 668 /// rewrites to: 669 // %2:_(s64) = G_SEXTLOAD ... 670 // %4:_(s8) = G_TRUNC %2:_(s32) 671 // %3:_(s64) = G_ZEXT %2:_(s8) 672 // ... = ... %3(s64) 673 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 674 InsertTruncAt); 675 } 676 continue; 677 } 678 // The use is (one of) the uses of the preferred use we chose earlier. 679 // We're going to update the load to def this value later so just erase 680 // the old extend. 681 Observer.erasingInstr(*UseMO->getParent()); 682 UseMO->getParent()->eraseFromParent(); 683 continue; 684 } 685 686 // The use isn't an extend. Truncate back to the type we originally loaded. 687 // This is free on many targets. 688 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 689 } 690 691 MI.getOperand(0).setReg(ChosenDstReg); 692 Observer.changedInstr(MI); 693 } 694 695 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 696 BuildFnTy &MatchInfo) { 697 assert(MI.getOpcode() == TargetOpcode::G_AND); 698 699 // If we have the following code: 700 // %mask = G_CONSTANT 255 701 // %ld = G_LOAD %ptr, (load s16) 702 // %and = G_AND %ld, %mask 703 // 704 // Try to fold it into 705 // %ld = G_ZEXTLOAD %ptr, (load s8) 706 707 Register Dst = MI.getOperand(0).getReg(); 708 if (MRI.getType(Dst).isVector()) 709 return false; 710 711 auto MaybeMask = 712 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 713 if (!MaybeMask) 714 return false; 715 716 APInt MaskVal = MaybeMask->Value; 717 718 if (!MaskVal.isMask()) 719 return false; 720 721 Register SrcReg = MI.getOperand(1).getReg(); 722 // Don't use getOpcodeDef() here since intermediate instructions may have 723 // multiple users. 724 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg)); 725 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg())) 726 return false; 727 728 Register LoadReg = LoadMI->getDstReg(); 729 LLT RegTy = MRI.getType(LoadReg); 730 Register PtrReg = LoadMI->getPointerReg(); 731 unsigned RegSize = RegTy.getSizeInBits(); 732 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 733 unsigned MaskSizeBits = MaskVal.countr_one(); 734 735 // The mask may not be larger than the in-memory type, as it might cover sign 736 // extended bits 737 if (MaskSizeBits > LoadSizeBits) 738 return false; 739 740 // If the mask covers the whole destination register, there's nothing to 741 // extend 742 if (MaskSizeBits >= RegSize) 743 return false; 744 745 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 746 // at least byte loads. Avoid creating such loads here 747 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 748 return false; 749 750 const MachineMemOperand &MMO = LoadMI->getMMO(); 751 LegalityQuery::MemDesc MemDesc(MMO); 752 753 // Don't modify the memory access size if this is atomic/volatile, but we can 754 // still adjust the opcode to indicate the high bit behavior. 755 if (LoadMI->isSimple()) 756 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 757 else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize) 758 return false; 759 760 // TODO: Could check if it's legal with the reduced or original memory size. 761 if (!isLegalOrBeforeLegalizer( 762 {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}})) 763 return false; 764 765 MatchInfo = [=](MachineIRBuilder &B) { 766 B.setInstrAndDebugLoc(*LoadMI); 767 auto &MF = B.getMF(); 768 auto PtrInfo = MMO.getPointerInfo(); 769 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy); 770 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 771 LoadMI->eraseFromParent(); 772 }; 773 return true; 774 } 775 776 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 777 const MachineInstr &UseMI) { 778 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 779 "shouldn't consider debug uses"); 780 assert(DefMI.getParent() == UseMI.getParent()); 781 if (&DefMI == &UseMI) 782 return true; 783 const MachineBasicBlock &MBB = *DefMI.getParent(); 784 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 785 return &MI == &DefMI || &MI == &UseMI; 786 }); 787 if (DefOrUse == MBB.end()) 788 llvm_unreachable("Block must contain both DefMI and UseMI!"); 789 return &*DefOrUse == &DefMI; 790 } 791 792 bool CombinerHelper::dominates(const MachineInstr &DefMI, 793 const MachineInstr &UseMI) { 794 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 795 "shouldn't consider debug uses"); 796 if (MDT) 797 return MDT->dominates(&DefMI, &UseMI); 798 else if (DefMI.getParent() != UseMI.getParent()) 799 return false; 800 801 return isPredecessor(DefMI, UseMI); 802 } 803 804 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 805 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 806 Register SrcReg = MI.getOperand(1).getReg(); 807 Register LoadUser = SrcReg; 808 809 if (MRI.getType(SrcReg).isVector()) 810 return false; 811 812 Register TruncSrc; 813 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 814 LoadUser = TruncSrc; 815 816 uint64_t SizeInBits = MI.getOperand(2).getImm(); 817 // If the source is a G_SEXTLOAD from the same bit width, then we don't 818 // need any extend at all, just a truncate. 819 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 820 // If truncating more than the original extended value, abort. 821 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 822 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 823 return false; 824 if (LoadSizeBits == SizeInBits) 825 return true; 826 } 827 return false; 828 } 829 830 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 831 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 832 Builder.setInstrAndDebugLoc(MI); 833 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 834 MI.eraseFromParent(); 835 } 836 837 bool CombinerHelper::matchSextInRegOfLoad( 838 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 839 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 840 841 Register DstReg = MI.getOperand(0).getReg(); 842 LLT RegTy = MRI.getType(DstReg); 843 844 // Only supports scalars for now. 845 if (RegTy.isVector()) 846 return false; 847 848 Register SrcReg = MI.getOperand(1).getReg(); 849 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 850 if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg)) 851 return false; 852 853 uint64_t MemBits = LoadDef->getMemSizeInBits(); 854 855 // If the sign extend extends from a narrower width than the load's width, 856 // then we can narrow the load width when we combine to a G_SEXTLOAD. 857 // Avoid widening the load at all. 858 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits); 859 860 // Don't generate G_SEXTLOADs with a < 1 byte width. 861 if (NewSizeBits < 8) 862 return false; 863 // Don't bother creating a non-power-2 sextload, it will likely be broken up 864 // anyway for most targets. 865 if (!isPowerOf2_32(NewSizeBits)) 866 return false; 867 868 const MachineMemOperand &MMO = LoadDef->getMMO(); 869 LegalityQuery::MemDesc MMDesc(MMO); 870 871 // Don't modify the memory access size if this is atomic/volatile, but we can 872 // still adjust the opcode to indicate the high bit behavior. 873 if (LoadDef->isSimple()) 874 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 875 else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits()) 876 return false; 877 878 // TODO: Could check if it's legal with the reduced or original memory size. 879 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 880 {MRI.getType(LoadDef->getDstReg()), 881 MRI.getType(LoadDef->getPointerReg())}, 882 {MMDesc}})) 883 return false; 884 885 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 886 return true; 887 } 888 889 void CombinerHelper::applySextInRegOfLoad( 890 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 891 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 892 Register LoadReg; 893 unsigned ScalarSizeBits; 894 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 895 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 896 897 // If we have the following: 898 // %ld = G_LOAD %ptr, (load 2) 899 // %ext = G_SEXT_INREG %ld, 8 900 // ==> 901 // %ld = G_SEXTLOAD %ptr (load 1) 902 903 auto &MMO = LoadDef->getMMO(); 904 Builder.setInstrAndDebugLoc(*LoadDef); 905 auto &MF = Builder.getMF(); 906 auto PtrInfo = MMO.getPointerInfo(); 907 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 908 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 909 LoadDef->getPointerReg(), *NewMMO); 910 MI.eraseFromParent(); 911 } 912 913 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 914 Register &Base, Register &Offset) { 915 auto &MF = *MI.getParent()->getParent(); 916 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 917 918 #ifndef NDEBUG 919 unsigned Opcode = MI.getOpcode(); 920 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 921 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 922 #endif 923 924 Base = MI.getOperand(1).getReg(); 925 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 926 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 927 return false; 928 929 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 930 // FIXME: The following use traversal needs a bail out for patholigical cases. 931 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 932 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 933 continue; 934 935 Offset = Use.getOperand(2).getReg(); 936 if (!ForceLegalIndexing && 937 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 938 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 939 << Use); 940 continue; 941 } 942 943 // Make sure the offset calculation is before the potentially indexed op. 944 // FIXME: we really care about dependency here. The offset calculation might 945 // be movable. 946 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 947 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 948 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 949 << Use); 950 continue; 951 } 952 953 // FIXME: check whether all uses of Base are load/store with foldable 954 // addressing modes. If so, using the normal addr-modes is better than 955 // forming an indexed one. 956 957 bool MemOpDominatesAddrUses = true; 958 for (auto &PtrAddUse : 959 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 960 if (!dominates(MI, PtrAddUse)) { 961 MemOpDominatesAddrUses = false; 962 break; 963 } 964 } 965 966 if (!MemOpDominatesAddrUses) { 967 LLVM_DEBUG( 968 dbgs() << " Ignoring candidate as memop does not dominate uses: " 969 << Use); 970 continue; 971 } 972 973 LLVM_DEBUG(dbgs() << " Found match: " << Use); 974 Addr = Use.getOperand(0).getReg(); 975 return true; 976 } 977 978 return false; 979 } 980 981 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 982 Register &Base, Register &Offset) { 983 auto &MF = *MI.getParent()->getParent(); 984 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 985 986 #ifndef NDEBUG 987 unsigned Opcode = MI.getOpcode(); 988 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 989 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 990 #endif 991 992 Addr = MI.getOperand(1).getReg(); 993 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 994 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 995 return false; 996 997 Base = AddrDef->getOperand(1).getReg(); 998 Offset = AddrDef->getOperand(2).getReg(); 999 1000 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 1001 1002 if (!ForceLegalIndexing && 1003 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 1004 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 1005 return false; 1006 } 1007 1008 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 1009 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 1010 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 1011 return false; 1012 } 1013 1014 if (MI.getOpcode() == TargetOpcode::G_STORE) { 1015 // Would require a copy. 1016 if (Base == MI.getOperand(0).getReg()) { 1017 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 1018 return false; 1019 } 1020 1021 // We're expecting one use of Addr in MI, but it could also be the 1022 // value stored, which isn't actually dominated by the instruction. 1023 if (MI.getOperand(0).getReg() == Addr) { 1024 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 1025 return false; 1026 } 1027 } 1028 1029 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 1030 // That might allow us to end base's liveness here by adjusting the constant. 1031 1032 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 1033 if (!dominates(MI, UseMI)) { 1034 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 1035 return false; 1036 } 1037 } 1038 1039 return true; 1040 } 1041 1042 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 1043 IndexedLoadStoreMatchInfo MatchInfo; 1044 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 1045 applyCombineIndexedLoadStore(MI, MatchInfo); 1046 return true; 1047 } 1048 return false; 1049 } 1050 1051 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1052 unsigned Opcode = MI.getOpcode(); 1053 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 1054 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 1055 return false; 1056 1057 // For now, no targets actually support these opcodes so don't waste time 1058 // running these unless we're forced to for testing. 1059 if (!ForceLegalIndexing) 1060 return false; 1061 1062 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1063 MatchInfo.Offset); 1064 if (!MatchInfo.IsPre && 1065 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1066 MatchInfo.Offset)) 1067 return false; 1068 1069 return true; 1070 } 1071 1072 void CombinerHelper::applyCombineIndexedLoadStore( 1073 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1074 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1075 MachineIRBuilder MIRBuilder(MI); 1076 unsigned Opcode = MI.getOpcode(); 1077 bool IsStore = Opcode == TargetOpcode::G_STORE; 1078 unsigned NewOpcode; 1079 switch (Opcode) { 1080 case TargetOpcode::G_LOAD: 1081 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1082 break; 1083 case TargetOpcode::G_SEXTLOAD: 1084 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1085 break; 1086 case TargetOpcode::G_ZEXTLOAD: 1087 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1088 break; 1089 case TargetOpcode::G_STORE: 1090 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1091 break; 1092 default: 1093 llvm_unreachable("Unknown load/store opcode"); 1094 } 1095 1096 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1097 if (IsStore) { 1098 MIB.addDef(MatchInfo.Addr); 1099 MIB.addUse(MI.getOperand(0).getReg()); 1100 } else { 1101 MIB.addDef(MI.getOperand(0).getReg()); 1102 MIB.addDef(MatchInfo.Addr); 1103 } 1104 1105 MIB.addUse(MatchInfo.Base); 1106 MIB.addUse(MatchInfo.Offset); 1107 MIB.addImm(MatchInfo.IsPre); 1108 MI.eraseFromParent(); 1109 AddrDef.eraseFromParent(); 1110 1111 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1112 } 1113 1114 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1115 MachineInstr *&OtherMI) { 1116 unsigned Opcode = MI.getOpcode(); 1117 bool IsDiv, IsSigned; 1118 1119 switch (Opcode) { 1120 default: 1121 llvm_unreachable("Unexpected opcode!"); 1122 case TargetOpcode::G_SDIV: 1123 case TargetOpcode::G_UDIV: { 1124 IsDiv = true; 1125 IsSigned = Opcode == TargetOpcode::G_SDIV; 1126 break; 1127 } 1128 case TargetOpcode::G_SREM: 1129 case TargetOpcode::G_UREM: { 1130 IsDiv = false; 1131 IsSigned = Opcode == TargetOpcode::G_SREM; 1132 break; 1133 } 1134 } 1135 1136 Register Src1 = MI.getOperand(1).getReg(); 1137 unsigned DivOpcode, RemOpcode, DivremOpcode; 1138 if (IsSigned) { 1139 DivOpcode = TargetOpcode::G_SDIV; 1140 RemOpcode = TargetOpcode::G_SREM; 1141 DivremOpcode = TargetOpcode::G_SDIVREM; 1142 } else { 1143 DivOpcode = TargetOpcode::G_UDIV; 1144 RemOpcode = TargetOpcode::G_UREM; 1145 DivremOpcode = TargetOpcode::G_UDIVREM; 1146 } 1147 1148 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1149 return false; 1150 1151 // Combine: 1152 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1153 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1154 // into: 1155 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1156 1157 // Combine: 1158 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1159 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1160 // into: 1161 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1162 1163 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1164 if (MI.getParent() == UseMI.getParent() && 1165 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1166 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1167 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) && 1168 matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) { 1169 OtherMI = &UseMI; 1170 return true; 1171 } 1172 } 1173 1174 return false; 1175 } 1176 1177 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1178 MachineInstr *&OtherMI) { 1179 unsigned Opcode = MI.getOpcode(); 1180 assert(OtherMI && "OtherMI shouldn't be empty."); 1181 1182 Register DestDivReg, DestRemReg; 1183 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1184 DestDivReg = MI.getOperand(0).getReg(); 1185 DestRemReg = OtherMI->getOperand(0).getReg(); 1186 } else { 1187 DestDivReg = OtherMI->getOperand(0).getReg(); 1188 DestRemReg = MI.getOperand(0).getReg(); 1189 } 1190 1191 bool IsSigned = 1192 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1193 1194 // Check which instruction is first in the block so we don't break def-use 1195 // deps by "moving" the instruction incorrectly. Also keep track of which 1196 // instruction is first so we pick it's operands, avoiding use-before-def 1197 // bugs. 1198 MachineInstr *FirstInst; 1199 if (dominates(MI, *OtherMI)) { 1200 Builder.setInstrAndDebugLoc(MI); 1201 FirstInst = &MI; 1202 } else { 1203 Builder.setInstrAndDebugLoc(*OtherMI); 1204 FirstInst = OtherMI; 1205 } 1206 1207 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1208 : TargetOpcode::G_UDIVREM, 1209 {DestDivReg, DestRemReg}, 1210 { FirstInst->getOperand(1), FirstInst->getOperand(2) }); 1211 MI.eraseFromParent(); 1212 OtherMI->eraseFromParent(); 1213 } 1214 1215 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1216 MachineInstr *&BrCond) { 1217 assert(MI.getOpcode() == TargetOpcode::G_BR); 1218 1219 // Try to match the following: 1220 // bb1: 1221 // G_BRCOND %c1, %bb2 1222 // G_BR %bb3 1223 // bb2: 1224 // ... 1225 // bb3: 1226 1227 // The above pattern does not have a fall through to the successor bb2, always 1228 // resulting in a branch no matter which path is taken. Here we try to find 1229 // and replace that pattern with conditional branch to bb3 and otherwise 1230 // fallthrough to bb2. This is generally better for branch predictors. 1231 1232 MachineBasicBlock *MBB = MI.getParent(); 1233 MachineBasicBlock::iterator BrIt(MI); 1234 if (BrIt == MBB->begin()) 1235 return false; 1236 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1237 1238 BrCond = &*std::prev(BrIt); 1239 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1240 return false; 1241 1242 // Check that the next block is the conditional branch target. Also make sure 1243 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1244 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1245 return BrCondTarget != MI.getOperand(0).getMBB() && 1246 MBB->isLayoutSuccessor(BrCondTarget); 1247 } 1248 1249 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1250 MachineInstr *&BrCond) { 1251 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1252 Builder.setInstrAndDebugLoc(*BrCond); 1253 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1254 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1255 // this to i1 only since we might not know for sure what kind of 1256 // compare generated the condition value. 1257 auto True = Builder.buildConstant( 1258 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1259 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1260 1261 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1262 Observer.changingInstr(MI); 1263 MI.getOperand(0).setMBB(FallthroughBB); 1264 Observer.changedInstr(MI); 1265 1266 // Change the conditional branch to use the inverted condition and 1267 // new target block. 1268 Observer.changingInstr(*BrCond); 1269 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1270 BrCond->getOperand(1).setMBB(BrTarget); 1271 Observer.changedInstr(*BrCond); 1272 } 1273 1274 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1275 if (Ty.isVector()) 1276 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1277 Ty.getNumElements()); 1278 return IntegerType::get(C, Ty.getSizeInBits()); 1279 } 1280 1281 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1282 MachineIRBuilder HelperBuilder(MI); 1283 GISelObserverWrapper DummyObserver; 1284 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1285 return Helper.lowerMemcpyInline(MI) == 1286 LegalizerHelper::LegalizeResult::Legalized; 1287 } 1288 1289 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1290 MachineIRBuilder HelperBuilder(MI); 1291 GISelObserverWrapper DummyObserver; 1292 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1293 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1294 LegalizerHelper::LegalizeResult::Legalized; 1295 } 1296 1297 static APFloat constantFoldFpUnary(const MachineInstr &MI, 1298 const MachineRegisterInfo &MRI, 1299 const APFloat &Val) { 1300 APFloat Result(Val); 1301 switch (MI.getOpcode()) { 1302 default: 1303 llvm_unreachable("Unexpected opcode!"); 1304 case TargetOpcode::G_FNEG: { 1305 Result.changeSign(); 1306 return Result; 1307 } 1308 case TargetOpcode::G_FABS: { 1309 Result.clearSign(); 1310 return Result; 1311 } 1312 case TargetOpcode::G_FPTRUNC: { 1313 bool Unused; 1314 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1315 Result.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, 1316 &Unused); 1317 return Result; 1318 } 1319 case TargetOpcode::G_FSQRT: { 1320 bool Unused; 1321 Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1322 &Unused); 1323 Result = APFloat(sqrt(Result.convertToDouble())); 1324 break; 1325 } 1326 case TargetOpcode::G_FLOG2: { 1327 bool Unused; 1328 Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1329 &Unused); 1330 Result = APFloat(log2(Result.convertToDouble())); 1331 break; 1332 } 1333 } 1334 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1335 // `buildFConstant` will assert on size mismatch. Only `G_FSQRT`, and 1336 // `G_FLOG2` reach here. 1337 bool Unused; 1338 Result.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &Unused); 1339 return Result; 1340 } 1341 1342 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1343 const ConstantFP *Cst) { 1344 Builder.setInstrAndDebugLoc(MI); 1345 APFloat Folded = constantFoldFpUnary(MI, MRI, Cst->getValue()); 1346 const ConstantFP *NewCst = ConstantFP::get(Builder.getContext(), Folded); 1347 Builder.buildFConstant(MI.getOperand(0), *NewCst); 1348 MI.eraseFromParent(); 1349 } 1350 1351 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1352 PtrAddChain &MatchInfo) { 1353 // We're trying to match the following pattern: 1354 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1355 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1356 // --> 1357 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1358 1359 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1360 return false; 1361 1362 Register Add2 = MI.getOperand(1).getReg(); 1363 Register Imm1 = MI.getOperand(2).getReg(); 1364 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1365 if (!MaybeImmVal) 1366 return false; 1367 1368 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1369 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1370 return false; 1371 1372 Register Base = Add2Def->getOperand(1).getReg(); 1373 Register Imm2 = Add2Def->getOperand(2).getReg(); 1374 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1375 if (!MaybeImm2Val) 1376 return false; 1377 1378 // Check if the new combined immediate forms an illegal addressing mode. 1379 // Do not combine if it was legal before but would get illegal. 1380 // To do so, we need to find a load/store user of the pointer to get 1381 // the access type. 1382 Type *AccessTy = nullptr; 1383 auto &MF = *MI.getMF(); 1384 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1385 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1386 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1387 MF.getFunction().getContext()); 1388 break; 1389 } 1390 } 1391 TargetLoweringBase::AddrMode AMNew; 1392 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1393 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1394 if (AccessTy) { 1395 AMNew.HasBaseReg = true; 1396 TargetLoweringBase::AddrMode AMOld; 1397 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1398 AMOld.HasBaseReg = true; 1399 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1400 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1401 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1402 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1403 return false; 1404 } 1405 1406 // Pass the combined immediate to the apply function. 1407 MatchInfo.Imm = AMNew.BaseOffs; 1408 MatchInfo.Base = Base; 1409 MatchInfo.Bank = getRegBank(Imm2); 1410 return true; 1411 } 1412 1413 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1414 PtrAddChain &MatchInfo) { 1415 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1416 MachineIRBuilder MIB(MI); 1417 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1418 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1419 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1420 Observer.changingInstr(MI); 1421 MI.getOperand(1).setReg(MatchInfo.Base); 1422 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1423 Observer.changedInstr(MI); 1424 } 1425 1426 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1427 RegisterImmPair &MatchInfo) { 1428 // We're trying to match the following pattern with any of 1429 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1430 // %t1 = SHIFT %base, G_CONSTANT imm1 1431 // %root = SHIFT %t1, G_CONSTANT imm2 1432 // --> 1433 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1434 1435 unsigned Opcode = MI.getOpcode(); 1436 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1437 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1438 Opcode == TargetOpcode::G_USHLSAT) && 1439 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1440 1441 Register Shl2 = MI.getOperand(1).getReg(); 1442 Register Imm1 = MI.getOperand(2).getReg(); 1443 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1444 if (!MaybeImmVal) 1445 return false; 1446 1447 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1448 if (Shl2Def->getOpcode() != Opcode) 1449 return false; 1450 1451 Register Base = Shl2Def->getOperand(1).getReg(); 1452 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1453 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1454 if (!MaybeImm2Val) 1455 return false; 1456 1457 // Pass the combined immediate to the apply function. 1458 MatchInfo.Imm = 1459 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1460 MatchInfo.Reg = Base; 1461 1462 // There is no simple replacement for a saturating unsigned left shift that 1463 // exceeds the scalar size. 1464 if (Opcode == TargetOpcode::G_USHLSAT && 1465 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1466 return false; 1467 1468 return true; 1469 } 1470 1471 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1472 RegisterImmPair &MatchInfo) { 1473 unsigned Opcode = MI.getOpcode(); 1474 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1475 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1476 Opcode == TargetOpcode::G_USHLSAT) && 1477 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1478 1479 Builder.setInstrAndDebugLoc(MI); 1480 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1481 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1482 auto Imm = MatchInfo.Imm; 1483 1484 if (Imm >= ScalarSizeInBits) { 1485 // Any logical shift that exceeds scalar size will produce zero. 1486 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1487 Builder.buildConstant(MI.getOperand(0), 0); 1488 MI.eraseFromParent(); 1489 return; 1490 } 1491 // Arithmetic shift and saturating signed left shift have no effect beyond 1492 // scalar size. 1493 Imm = ScalarSizeInBits - 1; 1494 } 1495 1496 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1497 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1498 Observer.changingInstr(MI); 1499 MI.getOperand(1).setReg(MatchInfo.Reg); 1500 MI.getOperand(2).setReg(NewImm); 1501 Observer.changedInstr(MI); 1502 } 1503 1504 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1505 ShiftOfShiftedLogic &MatchInfo) { 1506 // We're trying to match the following pattern with any of 1507 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1508 // with any of G_AND/G_OR/G_XOR logic instructions. 1509 // %t1 = SHIFT %X, G_CONSTANT C0 1510 // %t2 = LOGIC %t1, %Y 1511 // %root = SHIFT %t2, G_CONSTANT C1 1512 // --> 1513 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1514 // %t4 = SHIFT %Y, G_CONSTANT C1 1515 // %root = LOGIC %t3, %t4 1516 unsigned ShiftOpcode = MI.getOpcode(); 1517 assert((ShiftOpcode == TargetOpcode::G_SHL || 1518 ShiftOpcode == TargetOpcode::G_ASHR || 1519 ShiftOpcode == TargetOpcode::G_LSHR || 1520 ShiftOpcode == TargetOpcode::G_USHLSAT || 1521 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1522 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1523 1524 // Match a one-use bitwise logic op. 1525 Register LogicDest = MI.getOperand(1).getReg(); 1526 if (!MRI.hasOneNonDBGUse(LogicDest)) 1527 return false; 1528 1529 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1530 unsigned LogicOpcode = LogicMI->getOpcode(); 1531 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1532 LogicOpcode != TargetOpcode::G_XOR) 1533 return false; 1534 1535 // Find a matching one-use shift by constant. 1536 const Register C1 = MI.getOperand(2).getReg(); 1537 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1538 if (!MaybeImmVal) 1539 return false; 1540 1541 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1542 1543 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1544 // Shift should match previous one and should be a one-use. 1545 if (MI->getOpcode() != ShiftOpcode || 1546 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1547 return false; 1548 1549 // Must be a constant. 1550 auto MaybeImmVal = 1551 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1552 if (!MaybeImmVal) 1553 return false; 1554 1555 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1556 return true; 1557 }; 1558 1559 // Logic ops are commutative, so check each operand for a match. 1560 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1561 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1562 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1563 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1564 uint64_t C0Val; 1565 1566 if (matchFirstShift(LogicMIOp1, C0Val)) { 1567 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1568 MatchInfo.Shift2 = LogicMIOp1; 1569 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1570 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1571 MatchInfo.Shift2 = LogicMIOp2; 1572 } else 1573 return false; 1574 1575 MatchInfo.ValSum = C0Val + C1Val; 1576 1577 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1578 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1579 return false; 1580 1581 MatchInfo.Logic = LogicMI; 1582 return true; 1583 } 1584 1585 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1586 ShiftOfShiftedLogic &MatchInfo) { 1587 unsigned Opcode = MI.getOpcode(); 1588 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1589 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1590 Opcode == TargetOpcode::G_SSHLSAT) && 1591 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1592 1593 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1594 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1595 Builder.setInstrAndDebugLoc(MI); 1596 1597 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1598 1599 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1600 Register Shift1 = 1601 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1602 1603 // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same 1604 // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when 1605 // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we 1606 // remove old shift1. And it will cause crash later. So erase it earlier to 1607 // avoid the crash. 1608 MatchInfo.Shift2->eraseFromParent(); 1609 1610 Register Shift2Const = MI.getOperand(2).getReg(); 1611 Register Shift2 = Builder 1612 .buildInstr(Opcode, {DestType}, 1613 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1614 .getReg(0); 1615 1616 Register Dest = MI.getOperand(0).getReg(); 1617 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1618 1619 // This was one use so it's safe to remove it. 1620 MatchInfo.Logic->eraseFromParent(); 1621 1622 MI.eraseFromParent(); 1623 } 1624 1625 bool CombinerHelper::matchCommuteShift(MachineInstr &MI, BuildFnTy &MatchInfo) { 1626 assert(MI.getOpcode() == TargetOpcode::G_SHL && "Expected G_SHL"); 1627 // Combine (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1628 // Combine (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1629 auto &Shl = cast<GenericMachineInstr>(MI); 1630 Register DstReg = Shl.getReg(0); 1631 Register SrcReg = Shl.getReg(1); 1632 Register ShiftReg = Shl.getReg(2); 1633 Register X, C1; 1634 1635 if (!getTargetLowering().isDesirableToCommuteWithShift(MI, !isPreLegalize())) 1636 return false; 1637 1638 if (!mi_match(SrcReg, MRI, 1639 m_OneNonDBGUse(m_any_of(m_GAdd(m_Reg(X), m_Reg(C1)), 1640 m_GOr(m_Reg(X), m_Reg(C1)))))) 1641 return false; 1642 1643 APInt C1Val, C2Val; 1644 if (!mi_match(C1, MRI, m_ICstOrSplat(C1Val)) || 1645 !mi_match(ShiftReg, MRI, m_ICstOrSplat(C2Val))) 1646 return false; 1647 1648 auto *SrcDef = MRI.getVRegDef(SrcReg); 1649 assert((SrcDef->getOpcode() == TargetOpcode::G_ADD || 1650 SrcDef->getOpcode() == TargetOpcode::G_OR) && "Unexpected op"); 1651 LLT SrcTy = MRI.getType(SrcReg); 1652 MatchInfo = [=](MachineIRBuilder &B) { 1653 auto S1 = B.buildShl(SrcTy, X, ShiftReg); 1654 auto S2 = B.buildShl(SrcTy, C1, ShiftReg); 1655 B.buildInstr(SrcDef->getOpcode(), {DstReg}, {S1, S2}); 1656 }; 1657 return true; 1658 } 1659 1660 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1661 unsigned &ShiftVal) { 1662 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1663 auto MaybeImmVal = 1664 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1665 if (!MaybeImmVal) 1666 return false; 1667 1668 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1669 return (static_cast<int32_t>(ShiftVal) != -1); 1670 } 1671 1672 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1673 unsigned &ShiftVal) { 1674 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1675 MachineIRBuilder MIB(MI); 1676 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1677 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1678 Observer.changingInstr(MI); 1679 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1680 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1681 Observer.changedInstr(MI); 1682 } 1683 1684 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1685 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1686 RegisterImmPair &MatchData) { 1687 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1688 1689 Register LHS = MI.getOperand(1).getReg(); 1690 1691 Register ExtSrc; 1692 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1693 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1694 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1695 return false; 1696 1697 Register RHS = MI.getOperand(2).getReg(); 1698 MachineInstr *MIShiftAmt = MRI.getVRegDef(RHS); 1699 auto MaybeShiftAmtVal = isConstantOrConstantSplatVector(*MIShiftAmt, MRI); 1700 if (!MaybeShiftAmtVal) 1701 return false; 1702 1703 if (LI) { 1704 LLT SrcTy = MRI.getType(ExtSrc); 1705 1706 // We only really care about the legality with the shifted value. We can 1707 // pick any type the constant shift amount, so ask the target what to 1708 // use. Otherwise we would have to guess and hope it is reported as legal. 1709 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1710 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1711 return false; 1712 } 1713 1714 int64_t ShiftAmt = MaybeShiftAmtVal->getSExtValue(); 1715 MatchData.Reg = ExtSrc; 1716 MatchData.Imm = ShiftAmt; 1717 1718 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countl_one(); 1719 unsigned SrcTySize = MRI.getType(ExtSrc).getScalarSizeInBits(); 1720 return MinLeadingZeros >= ShiftAmt && ShiftAmt < SrcTySize; 1721 } 1722 1723 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1724 const RegisterImmPair &MatchData) { 1725 Register ExtSrcReg = MatchData.Reg; 1726 int64_t ShiftAmtVal = MatchData.Imm; 1727 1728 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1729 Builder.setInstrAndDebugLoc(MI); 1730 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1731 auto NarrowShift = 1732 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1733 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1734 MI.eraseFromParent(); 1735 } 1736 1737 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1738 Register &MatchInfo) { 1739 GMerge &Merge = cast<GMerge>(MI); 1740 SmallVector<Register, 16> MergedValues; 1741 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1742 MergedValues.emplace_back(Merge.getSourceReg(I)); 1743 1744 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1745 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1746 return false; 1747 1748 for (unsigned I = 0; I < MergedValues.size(); ++I) 1749 if (MergedValues[I] != Unmerge->getReg(I)) 1750 return false; 1751 1752 MatchInfo = Unmerge->getSourceReg(); 1753 return true; 1754 } 1755 1756 static Register peekThroughBitcast(Register Reg, 1757 const MachineRegisterInfo &MRI) { 1758 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1759 ; 1760 1761 return Reg; 1762 } 1763 1764 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1765 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1766 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1767 "Expected an unmerge"); 1768 auto &Unmerge = cast<GUnmerge>(MI); 1769 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1770 1771 auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI); 1772 if (!SrcInstr) 1773 return false; 1774 1775 // Check the source type of the merge. 1776 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1777 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1778 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1779 if (SrcMergeTy != Dst0Ty && !SameSize) 1780 return false; 1781 // They are the same now (modulo a bitcast). 1782 // We can collect all the src registers. 1783 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1784 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1785 return true; 1786 } 1787 1788 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1789 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1790 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1791 "Expected an unmerge"); 1792 assert((MI.getNumOperands() - 1 == Operands.size()) && 1793 "Not enough operands to replace all defs"); 1794 unsigned NumElems = MI.getNumOperands() - 1; 1795 1796 LLT SrcTy = MRI.getType(Operands[0]); 1797 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1798 bool CanReuseInputDirectly = DstTy == SrcTy; 1799 Builder.setInstrAndDebugLoc(MI); 1800 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1801 Register DstReg = MI.getOperand(Idx).getReg(); 1802 Register SrcReg = Operands[Idx]; 1803 1804 // This combine may run after RegBankSelect, so we need to be aware of 1805 // register banks. 1806 const auto &DstCB = MRI.getRegClassOrRegBank(DstReg); 1807 if (!DstCB.isNull() && DstCB != MRI.getRegClassOrRegBank(SrcReg)) { 1808 SrcReg = Builder.buildCopy(MRI.getType(SrcReg), SrcReg).getReg(0); 1809 MRI.setRegClassOrRegBank(SrcReg, DstCB); 1810 } 1811 1812 if (CanReuseInputDirectly) 1813 replaceRegWith(MRI, DstReg, SrcReg); 1814 else 1815 Builder.buildCast(DstReg, SrcReg); 1816 } 1817 MI.eraseFromParent(); 1818 } 1819 1820 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1821 SmallVectorImpl<APInt> &Csts) { 1822 unsigned SrcIdx = MI.getNumOperands() - 1; 1823 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1824 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1825 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1826 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1827 return false; 1828 // Break down the big constant in smaller ones. 1829 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1830 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1831 ? CstVal.getCImm()->getValue() 1832 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1833 1834 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1835 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1836 // Unmerge a constant. 1837 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1838 Csts.emplace_back(Val.trunc(ShiftAmt)); 1839 Val = Val.lshr(ShiftAmt); 1840 } 1841 1842 return true; 1843 } 1844 1845 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1846 SmallVectorImpl<APInt> &Csts) { 1847 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1848 "Expected an unmerge"); 1849 assert((MI.getNumOperands() - 1 == Csts.size()) && 1850 "Not enough operands to replace all defs"); 1851 unsigned NumElems = MI.getNumOperands() - 1; 1852 Builder.setInstrAndDebugLoc(MI); 1853 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1854 Register DstReg = MI.getOperand(Idx).getReg(); 1855 Builder.buildConstant(DstReg, Csts[Idx]); 1856 } 1857 1858 MI.eraseFromParent(); 1859 } 1860 1861 bool CombinerHelper::matchCombineUnmergeUndef( 1862 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 1863 unsigned SrcIdx = MI.getNumOperands() - 1; 1864 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1865 MatchInfo = [&MI](MachineIRBuilder &B) { 1866 unsigned NumElems = MI.getNumOperands() - 1; 1867 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1868 Register DstReg = MI.getOperand(Idx).getReg(); 1869 B.buildUndef(DstReg); 1870 } 1871 }; 1872 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); 1873 } 1874 1875 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1876 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1877 "Expected an unmerge"); 1878 // Check that all the lanes are dead except the first one. 1879 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1880 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1881 return false; 1882 } 1883 return true; 1884 } 1885 1886 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1887 Builder.setInstrAndDebugLoc(MI); 1888 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1889 // Truncating a vector is going to truncate every single lane, 1890 // whereas we want the full lowbits. 1891 // Do the operation on a scalar instead. 1892 LLT SrcTy = MRI.getType(SrcReg); 1893 if (SrcTy.isVector()) 1894 SrcReg = 1895 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1896 1897 Register Dst0Reg = MI.getOperand(0).getReg(); 1898 LLT Dst0Ty = MRI.getType(Dst0Reg); 1899 if (Dst0Ty.isVector()) { 1900 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1901 Builder.buildCast(Dst0Reg, MIB); 1902 } else 1903 Builder.buildTrunc(Dst0Reg, SrcReg); 1904 MI.eraseFromParent(); 1905 } 1906 1907 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1908 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1909 "Expected an unmerge"); 1910 Register Dst0Reg = MI.getOperand(0).getReg(); 1911 LLT Dst0Ty = MRI.getType(Dst0Reg); 1912 // G_ZEXT on vector applies to each lane, so it will 1913 // affect all destinations. Therefore we won't be able 1914 // to simplify the unmerge to just the first definition. 1915 if (Dst0Ty.isVector()) 1916 return false; 1917 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1918 LLT SrcTy = MRI.getType(SrcReg); 1919 if (SrcTy.isVector()) 1920 return false; 1921 1922 Register ZExtSrcReg; 1923 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1924 return false; 1925 1926 // Finally we can replace the first definition with 1927 // a zext of the source if the definition is big enough to hold 1928 // all of ZExtSrc bits. 1929 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1930 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1931 } 1932 1933 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1934 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1935 "Expected an unmerge"); 1936 1937 Register Dst0Reg = MI.getOperand(0).getReg(); 1938 1939 MachineInstr *ZExtInstr = 1940 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1941 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1942 "Expecting a G_ZEXT"); 1943 1944 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1945 LLT Dst0Ty = MRI.getType(Dst0Reg); 1946 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1947 1948 Builder.setInstrAndDebugLoc(MI); 1949 1950 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1951 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1952 } else { 1953 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1954 "ZExt src doesn't fit in destination"); 1955 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1956 } 1957 1958 Register ZeroReg; 1959 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1960 if (!ZeroReg) 1961 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1962 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1963 } 1964 MI.eraseFromParent(); 1965 } 1966 1967 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1968 unsigned TargetShiftSize, 1969 unsigned &ShiftVal) { 1970 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1971 MI.getOpcode() == TargetOpcode::G_LSHR || 1972 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1973 1974 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1975 if (Ty.isVector()) // TODO: 1976 return false; 1977 1978 // Don't narrow further than the requested size. 1979 unsigned Size = Ty.getSizeInBits(); 1980 if (Size <= TargetShiftSize) 1981 return false; 1982 1983 auto MaybeImmVal = 1984 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1985 if (!MaybeImmVal) 1986 return false; 1987 1988 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1989 return ShiftVal >= Size / 2 && ShiftVal < Size; 1990 } 1991 1992 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1993 const unsigned &ShiftVal) { 1994 Register DstReg = MI.getOperand(0).getReg(); 1995 Register SrcReg = MI.getOperand(1).getReg(); 1996 LLT Ty = MRI.getType(SrcReg); 1997 unsigned Size = Ty.getSizeInBits(); 1998 unsigned HalfSize = Size / 2; 1999 assert(ShiftVal >= HalfSize); 2000 2001 LLT HalfTy = LLT::scalar(HalfSize); 2002 2003 Builder.setInstr(MI); 2004 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2005 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2006 2007 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2008 Register Narrowed = Unmerge.getReg(1); 2009 2010 // dst = G_LSHR s64:x, C for C >= 32 2011 // => 2012 // lo, hi = G_UNMERGE_VALUES x 2013 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2014 2015 if (NarrowShiftAmt != 0) { 2016 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2017 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2018 } 2019 2020 auto Zero = Builder.buildConstant(HalfTy, 0); 2021 Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero}); 2022 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2023 Register Narrowed = Unmerge.getReg(0); 2024 // dst = G_SHL s64:x, C for C >= 32 2025 // => 2026 // lo, hi = G_UNMERGE_VALUES x 2027 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2028 if (NarrowShiftAmt != 0) { 2029 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2030 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2031 } 2032 2033 auto Zero = Builder.buildConstant(HalfTy, 0); 2034 Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed}); 2035 } else { 2036 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2037 auto Hi = Builder.buildAShr( 2038 HalfTy, Unmerge.getReg(1), 2039 Builder.buildConstant(HalfTy, HalfSize - 1)); 2040 2041 if (ShiftVal == HalfSize) { 2042 // (G_ASHR i64:x, 32) -> 2043 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2044 Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi}); 2045 } else if (ShiftVal == Size - 1) { 2046 // Don't need a second shift. 2047 // (G_ASHR i64:x, 63) -> 2048 // %narrowed = (G_ASHR hi_32(x), 31) 2049 // G_MERGE_VALUES %narrowed, %narrowed 2050 Builder.buildMergeLikeInstr(DstReg, {Hi, Hi}); 2051 } else { 2052 auto Lo = Builder.buildAShr( 2053 HalfTy, Unmerge.getReg(1), 2054 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2055 2056 // (G_ASHR i64:x, C) ->, for C >= 32 2057 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2058 Builder.buildMergeLikeInstr(DstReg, {Lo, Hi}); 2059 } 2060 } 2061 2062 MI.eraseFromParent(); 2063 } 2064 2065 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2066 unsigned TargetShiftAmount) { 2067 unsigned ShiftAmt; 2068 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2069 applyCombineShiftToUnmerge(MI, ShiftAmt); 2070 return true; 2071 } 2072 2073 return false; 2074 } 2075 2076 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2077 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2078 Register DstReg = MI.getOperand(0).getReg(); 2079 LLT DstTy = MRI.getType(DstReg); 2080 Register SrcReg = MI.getOperand(1).getReg(); 2081 return mi_match(SrcReg, MRI, 2082 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2083 } 2084 2085 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2086 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2087 Register DstReg = MI.getOperand(0).getReg(); 2088 Builder.setInstr(MI); 2089 Builder.buildCopy(DstReg, Reg); 2090 MI.eraseFromParent(); 2091 } 2092 2093 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2094 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2095 Register DstReg = MI.getOperand(0).getReg(); 2096 Builder.setInstr(MI); 2097 Builder.buildZExtOrTrunc(DstReg, Reg); 2098 MI.eraseFromParent(); 2099 } 2100 2101 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2102 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2103 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2104 Register LHS = MI.getOperand(1).getReg(); 2105 Register RHS = MI.getOperand(2).getReg(); 2106 LLT IntTy = MRI.getType(LHS); 2107 2108 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2109 // instruction. 2110 PtrReg.second = false; 2111 for (Register SrcReg : {LHS, RHS}) { 2112 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2113 // Don't handle cases where the integer is implicitly converted to the 2114 // pointer width. 2115 LLT PtrTy = MRI.getType(PtrReg.first); 2116 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2117 return true; 2118 } 2119 2120 PtrReg.second = true; 2121 } 2122 2123 return false; 2124 } 2125 2126 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2127 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2128 Register Dst = MI.getOperand(0).getReg(); 2129 Register LHS = MI.getOperand(1).getReg(); 2130 Register RHS = MI.getOperand(2).getReg(); 2131 2132 const bool DoCommute = PtrReg.second; 2133 if (DoCommute) 2134 std::swap(LHS, RHS); 2135 LHS = PtrReg.first; 2136 2137 LLT PtrTy = MRI.getType(LHS); 2138 2139 Builder.setInstrAndDebugLoc(MI); 2140 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2141 Builder.buildPtrToInt(Dst, PtrAdd); 2142 MI.eraseFromParent(); 2143 } 2144 2145 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2146 APInt &NewCst) { 2147 auto &PtrAdd = cast<GPtrAdd>(MI); 2148 Register LHS = PtrAdd.getBaseReg(); 2149 Register RHS = PtrAdd.getOffsetReg(); 2150 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2151 2152 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { 2153 APInt Cst; 2154 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2155 auto DstTy = MRI.getType(PtrAdd.getReg(0)); 2156 // G_INTTOPTR uses zero-extension 2157 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); 2158 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); 2159 return true; 2160 } 2161 } 2162 2163 return false; 2164 } 2165 2166 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2167 APInt &NewCst) { 2168 auto &PtrAdd = cast<GPtrAdd>(MI); 2169 Register Dst = PtrAdd.getReg(0); 2170 2171 Builder.setInstrAndDebugLoc(MI); 2172 Builder.buildConstant(Dst, NewCst); 2173 PtrAdd.eraseFromParent(); 2174 } 2175 2176 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2177 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2178 Register DstReg = MI.getOperand(0).getReg(); 2179 Register SrcReg = MI.getOperand(1).getReg(); 2180 LLT DstTy = MRI.getType(DstReg); 2181 return mi_match(SrcReg, MRI, 2182 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2183 } 2184 2185 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2186 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2187 Register DstReg = MI.getOperand(0).getReg(); 2188 Register SrcReg = MI.getOperand(1).getReg(); 2189 LLT DstTy = MRI.getType(DstReg); 2190 if (mi_match(SrcReg, MRI, 2191 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2192 unsigned DstSize = DstTy.getScalarSizeInBits(); 2193 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2194 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2195 } 2196 return false; 2197 } 2198 2199 bool CombinerHelper::matchCombineExtOfExt( 2200 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2201 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2202 MI.getOpcode() == TargetOpcode::G_SEXT || 2203 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2204 "Expected a G_[ASZ]EXT"); 2205 Register SrcReg = MI.getOperand(1).getReg(); 2206 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2207 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2208 unsigned Opc = MI.getOpcode(); 2209 unsigned SrcOpc = SrcMI->getOpcode(); 2210 if (Opc == SrcOpc || 2211 (Opc == TargetOpcode::G_ANYEXT && 2212 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2213 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2214 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2215 return true; 2216 } 2217 return false; 2218 } 2219 2220 void CombinerHelper::applyCombineExtOfExt( 2221 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2222 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2223 MI.getOpcode() == TargetOpcode::G_SEXT || 2224 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2225 "Expected a G_[ASZ]EXT"); 2226 2227 Register Reg = std::get<0>(MatchInfo); 2228 unsigned SrcExtOp = std::get<1>(MatchInfo); 2229 2230 // Combine exts with the same opcode. 2231 if (MI.getOpcode() == SrcExtOp) { 2232 Observer.changingInstr(MI); 2233 MI.getOperand(1).setReg(Reg); 2234 Observer.changedInstr(MI); 2235 return; 2236 } 2237 2238 // Combine: 2239 // - anyext([sz]ext x) to [sz]ext x 2240 // - sext(zext x) to zext x 2241 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2242 (MI.getOpcode() == TargetOpcode::G_SEXT && 2243 SrcExtOp == TargetOpcode::G_ZEXT)) { 2244 Register DstReg = MI.getOperand(0).getReg(); 2245 Builder.setInstrAndDebugLoc(MI); 2246 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2247 MI.eraseFromParent(); 2248 } 2249 } 2250 2251 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2252 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2253 Register DstReg = MI.getOperand(0).getReg(); 2254 Register SrcReg = MI.getOperand(1).getReg(); 2255 LLT DstTy = MRI.getType(DstReg); 2256 2257 Builder.setInstrAndDebugLoc(MI); 2258 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2259 MI.getFlags()); 2260 MI.eraseFromParent(); 2261 } 2262 2263 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2264 BuildFnTy &MatchInfo) { 2265 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2266 Register Src = MI.getOperand(1).getReg(); 2267 Register NegSrc; 2268 2269 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2270 return false; 2271 2272 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2273 Observer.changingInstr(MI); 2274 MI.getOperand(1).setReg(NegSrc); 2275 Observer.changedInstr(MI); 2276 }; 2277 return true; 2278 } 2279 2280 bool CombinerHelper::matchCombineTruncOfExt( 2281 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2282 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2283 Register SrcReg = MI.getOperand(1).getReg(); 2284 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2285 unsigned SrcOpc = SrcMI->getOpcode(); 2286 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2287 SrcOpc == TargetOpcode::G_ZEXT) { 2288 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2289 return true; 2290 } 2291 return false; 2292 } 2293 2294 void CombinerHelper::applyCombineTruncOfExt( 2295 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2296 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2297 Register SrcReg = MatchInfo.first; 2298 unsigned SrcExtOp = MatchInfo.second; 2299 Register DstReg = MI.getOperand(0).getReg(); 2300 LLT SrcTy = MRI.getType(SrcReg); 2301 LLT DstTy = MRI.getType(DstReg); 2302 if (SrcTy == DstTy) { 2303 MI.eraseFromParent(); 2304 replaceRegWith(MRI, DstReg, SrcReg); 2305 return; 2306 } 2307 Builder.setInstrAndDebugLoc(MI); 2308 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2309 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2310 else 2311 Builder.buildTrunc(DstReg, SrcReg); 2312 MI.eraseFromParent(); 2313 } 2314 2315 static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) { 2316 const unsigned ShiftSize = ShiftTy.getScalarSizeInBits(); 2317 const unsigned TruncSize = TruncTy.getScalarSizeInBits(); 2318 2319 // ShiftTy > 32 > TruncTy -> 32 2320 if (ShiftSize > 32 && TruncSize < 32) 2321 return ShiftTy.changeElementSize(32); 2322 2323 // TODO: We could also reduce to 16 bits, but that's more target-dependent. 2324 // Some targets like it, some don't, some only like it under certain 2325 // conditions/processor versions, etc. 2326 // A TL hook might be needed for this. 2327 2328 // Don't combine 2329 return ShiftTy; 2330 } 2331 2332 bool CombinerHelper::matchCombineTruncOfShift( 2333 MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) { 2334 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2335 Register DstReg = MI.getOperand(0).getReg(); 2336 Register SrcReg = MI.getOperand(1).getReg(); 2337 2338 if (!MRI.hasOneNonDBGUse(SrcReg)) 2339 return false; 2340 2341 LLT SrcTy = MRI.getType(SrcReg); 2342 LLT DstTy = MRI.getType(DstReg); 2343 2344 MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI); 2345 const auto &TL = getTargetLowering(); 2346 2347 LLT NewShiftTy; 2348 switch (SrcMI->getOpcode()) { 2349 default: 2350 return false; 2351 case TargetOpcode::G_SHL: { 2352 NewShiftTy = DstTy; 2353 2354 // Make sure new shift amount is legal. 2355 KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); 2356 if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits())) 2357 return false; 2358 break; 2359 } 2360 case TargetOpcode::G_LSHR: 2361 case TargetOpcode::G_ASHR: { 2362 // For right shifts, we conservatively do not do the transform if the TRUNC 2363 // has any STORE users. The reason is that if we change the type of the 2364 // shift, we may break the truncstore combine. 2365 // 2366 // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)). 2367 for (auto &User : MRI.use_instructions(DstReg)) 2368 if (User.getOpcode() == TargetOpcode::G_STORE) 2369 return false; 2370 2371 NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy); 2372 if (NewShiftTy == SrcTy) 2373 return false; 2374 2375 // Make sure we won't lose information by truncating the high bits. 2376 KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); 2377 if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() - 2378 DstTy.getScalarSizeInBits())) 2379 return false; 2380 break; 2381 } 2382 } 2383 2384 if (!isLegalOrBeforeLegalizer( 2385 {SrcMI->getOpcode(), 2386 {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}})) 2387 return false; 2388 2389 MatchInfo = std::make_pair(SrcMI, NewShiftTy); 2390 return true; 2391 } 2392 2393 void CombinerHelper::applyCombineTruncOfShift( 2394 MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) { 2395 Builder.setInstrAndDebugLoc(MI); 2396 2397 MachineInstr *ShiftMI = MatchInfo.first; 2398 LLT NewShiftTy = MatchInfo.second; 2399 2400 Register Dst = MI.getOperand(0).getReg(); 2401 LLT DstTy = MRI.getType(Dst); 2402 2403 Register ShiftAmt = ShiftMI->getOperand(2).getReg(); 2404 Register ShiftSrc = ShiftMI->getOperand(1).getReg(); 2405 ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0); 2406 2407 Register NewShift = 2408 Builder 2409 .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt}) 2410 .getReg(0); 2411 2412 if (NewShiftTy == DstTy) 2413 replaceRegWith(MRI, Dst, NewShift); 2414 else 2415 Builder.buildTrunc(Dst, NewShift); 2416 2417 eraseInst(MI); 2418 } 2419 2420 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2421 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2422 return MO.isReg() && 2423 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2424 }); 2425 } 2426 2427 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2428 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2429 return !MO.isReg() || 2430 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2431 }); 2432 } 2433 2434 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2435 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2436 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2437 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2438 } 2439 2440 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2441 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2442 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2443 MRI); 2444 } 2445 2446 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2447 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2448 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2449 MRI); 2450 } 2451 2452 bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) { 2453 assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT || 2454 MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) && 2455 "Expected an insert/extract element op"); 2456 LLT VecTy = MRI.getType(MI.getOperand(1).getReg()); 2457 unsigned IdxIdx = 2458 MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 2459 auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI); 2460 if (!Idx) 2461 return false; 2462 return Idx->getZExtValue() >= VecTy.getNumElements(); 2463 } 2464 2465 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2466 GSelect &SelMI = cast<GSelect>(MI); 2467 auto Cst = 2468 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2469 if (!Cst) 2470 return false; 2471 OpIdx = Cst->isZero() ? 3 : 2; 2472 return true; 2473 } 2474 2475 void CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); } 2476 2477 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2478 const MachineOperand &MOP2) { 2479 if (!MOP1.isReg() || !MOP2.isReg()) 2480 return false; 2481 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2482 if (!InstAndDef1) 2483 return false; 2484 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2485 if (!InstAndDef2) 2486 return false; 2487 MachineInstr *I1 = InstAndDef1->MI; 2488 MachineInstr *I2 = InstAndDef2->MI; 2489 2490 // Handle a case like this: 2491 // 2492 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2493 // 2494 // Even though %0 and %1 are produced by the same instruction they are not 2495 // the same values. 2496 if (I1 == I2) 2497 return MOP1.getReg() == MOP2.getReg(); 2498 2499 // If we have an instruction which loads or stores, we can't guarantee that 2500 // it is identical. 2501 // 2502 // For example, we may have 2503 // 2504 // %x1 = G_LOAD %addr (load N from @somewhere) 2505 // ... 2506 // call @foo 2507 // ... 2508 // %x2 = G_LOAD %addr (load N from @somewhere) 2509 // ... 2510 // %or = G_OR %x1, %x2 2511 // 2512 // It's possible that @foo will modify whatever lives at the address we're 2513 // loading from. To be safe, let's just assume that all loads and stores 2514 // are different (unless we have something which is guaranteed to not 2515 // change.) 2516 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad()) 2517 return false; 2518 2519 // If both instructions are loads or stores, they are equal only if both 2520 // are dereferenceable invariant loads with the same number of bits. 2521 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { 2522 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1); 2523 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2); 2524 if (!LS1 || !LS2) 2525 return false; 2526 2527 if (!I2->isDereferenceableInvariantLoad() || 2528 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) 2529 return false; 2530 } 2531 2532 // Check for physical registers on the instructions first to avoid cases 2533 // like this: 2534 // 2535 // %a = COPY $physreg 2536 // ... 2537 // SOMETHING implicit-def $physreg 2538 // ... 2539 // %b = COPY $physreg 2540 // 2541 // These copies are not equivalent. 2542 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2543 return MO.isReg() && MO.getReg().isPhysical(); 2544 })) { 2545 // Check if we have a case like this: 2546 // 2547 // %a = COPY $physreg 2548 // %b = COPY %a 2549 // 2550 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2551 // From that, we know that they must have the same value, since they must 2552 // have come from the same COPY. 2553 return I1->isIdenticalTo(*I2); 2554 } 2555 2556 // We don't have any physical registers, so we don't necessarily need the 2557 // same vreg defs. 2558 // 2559 // On the off-chance that there's some target instruction feeding into the 2560 // instruction, let's use produceSameValue instead of isIdenticalTo. 2561 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2562 // Handle instructions with multiple defs that produce same values. Values 2563 // are same for operands with same index. 2564 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2565 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2566 // I1 and I2 are different instructions but produce same values, 2567 // %1 and %6 are same, %1 and %7 are not the same value. 2568 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2569 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2570 } 2571 return false; 2572 } 2573 2574 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2575 if (!MOP.isReg()) 2576 return false; 2577 auto *MI = MRI.getVRegDef(MOP.getReg()); 2578 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2579 return MaybeCst && MaybeCst->getBitWidth() <= 64 && 2580 MaybeCst->getSExtValue() == C; 2581 } 2582 2583 void CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2584 unsigned OpIdx) { 2585 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2586 Register OldReg = MI.getOperand(0).getReg(); 2587 Register Replacement = MI.getOperand(OpIdx).getReg(); 2588 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2589 MI.eraseFromParent(); 2590 replaceRegWith(MRI, OldReg, Replacement); 2591 } 2592 2593 void CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2594 Register Replacement) { 2595 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2596 Register OldReg = MI.getOperand(0).getReg(); 2597 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2598 MI.eraseFromParent(); 2599 replaceRegWith(MRI, OldReg, Replacement); 2600 } 2601 2602 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2603 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2604 // Match (cond ? x : x) 2605 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2606 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2607 MRI); 2608 } 2609 2610 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2611 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2612 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2613 MRI); 2614 } 2615 2616 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2617 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2618 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2619 MRI); 2620 } 2621 2622 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2623 MachineOperand &MO = MI.getOperand(OpIdx); 2624 return MO.isReg() && 2625 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2626 } 2627 2628 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2629 unsigned OpIdx) { 2630 MachineOperand &MO = MI.getOperand(OpIdx); 2631 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2632 } 2633 2634 void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2635 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2636 Builder.setInstr(MI); 2637 Builder.buildFConstant(MI.getOperand(0), C); 2638 MI.eraseFromParent(); 2639 } 2640 2641 void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2642 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2643 Builder.setInstr(MI); 2644 Builder.buildConstant(MI.getOperand(0), C); 2645 MI.eraseFromParent(); 2646 } 2647 2648 void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2649 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2650 Builder.setInstr(MI); 2651 Builder.buildConstant(MI.getOperand(0), C); 2652 MI.eraseFromParent(); 2653 } 2654 2655 void CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2656 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2657 Builder.setInstr(MI); 2658 Builder.buildUndef(MI.getOperand(0)); 2659 MI.eraseFromParent(); 2660 } 2661 2662 bool CombinerHelper::matchSimplifyAddToSub( 2663 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2664 Register LHS = MI.getOperand(1).getReg(); 2665 Register RHS = MI.getOperand(2).getReg(); 2666 Register &NewLHS = std::get<0>(MatchInfo); 2667 Register &NewRHS = std::get<1>(MatchInfo); 2668 2669 // Helper lambda to check for opportunities for 2670 // ((0-A) + B) -> B - A 2671 // (A + (0-B)) -> A - B 2672 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2673 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2674 return false; 2675 NewLHS = MaybeNewLHS; 2676 return true; 2677 }; 2678 2679 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2680 } 2681 2682 bool CombinerHelper::matchCombineInsertVecElts( 2683 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2684 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2685 "Invalid opcode"); 2686 Register DstReg = MI.getOperand(0).getReg(); 2687 LLT DstTy = MRI.getType(DstReg); 2688 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2689 unsigned NumElts = DstTy.getNumElements(); 2690 // If this MI is part of a sequence of insert_vec_elts, then 2691 // don't do the combine in the middle of the sequence. 2692 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2693 TargetOpcode::G_INSERT_VECTOR_ELT) 2694 return false; 2695 MachineInstr *CurrInst = &MI; 2696 MachineInstr *TmpInst; 2697 int64_t IntImm; 2698 Register TmpReg; 2699 MatchInfo.resize(NumElts); 2700 while (mi_match( 2701 CurrInst->getOperand(0).getReg(), MRI, 2702 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2703 if (IntImm >= NumElts || IntImm < 0) 2704 return false; 2705 if (!MatchInfo[IntImm]) 2706 MatchInfo[IntImm] = TmpReg; 2707 CurrInst = TmpInst; 2708 } 2709 // Variable index. 2710 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2711 return false; 2712 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2713 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2714 if (!MatchInfo[I - 1].isValid()) 2715 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2716 } 2717 return true; 2718 } 2719 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2720 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2721 } 2722 2723 void CombinerHelper::applyCombineInsertVecElts( 2724 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2725 Builder.setInstr(MI); 2726 Register UndefReg; 2727 auto GetUndef = [&]() { 2728 if (UndefReg) 2729 return UndefReg; 2730 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2731 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2732 return UndefReg; 2733 }; 2734 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2735 if (!MatchInfo[I]) 2736 MatchInfo[I] = GetUndef(); 2737 } 2738 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2739 MI.eraseFromParent(); 2740 } 2741 2742 void CombinerHelper::applySimplifyAddToSub( 2743 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2744 Builder.setInstr(MI); 2745 Register SubLHS, SubRHS; 2746 std::tie(SubLHS, SubRHS) = MatchInfo; 2747 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2748 MI.eraseFromParent(); 2749 } 2750 2751 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2752 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2753 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2754 // 2755 // Creates the new hand + logic instruction (but does not insert them.) 2756 // 2757 // On success, MatchInfo is populated with the new instructions. These are 2758 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2759 unsigned LogicOpcode = MI.getOpcode(); 2760 assert(LogicOpcode == TargetOpcode::G_AND || 2761 LogicOpcode == TargetOpcode::G_OR || 2762 LogicOpcode == TargetOpcode::G_XOR); 2763 MachineIRBuilder MIB(MI); 2764 Register Dst = MI.getOperand(0).getReg(); 2765 Register LHSReg = MI.getOperand(1).getReg(); 2766 Register RHSReg = MI.getOperand(2).getReg(); 2767 2768 // Don't recompute anything. 2769 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2770 return false; 2771 2772 // Make sure we have (hand x, ...), (hand y, ...) 2773 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2774 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2775 if (!LeftHandInst || !RightHandInst) 2776 return false; 2777 unsigned HandOpcode = LeftHandInst->getOpcode(); 2778 if (HandOpcode != RightHandInst->getOpcode()) 2779 return false; 2780 if (!LeftHandInst->getOperand(1).isReg() || 2781 !RightHandInst->getOperand(1).isReg()) 2782 return false; 2783 2784 // Make sure the types match up, and if we're doing this post-legalization, 2785 // we end up with legal types. 2786 Register X = LeftHandInst->getOperand(1).getReg(); 2787 Register Y = RightHandInst->getOperand(1).getReg(); 2788 LLT XTy = MRI.getType(X); 2789 LLT YTy = MRI.getType(Y); 2790 if (!XTy.isValid() || XTy != YTy) 2791 return false; 2792 2793 // Optional extra source register. 2794 Register ExtraHandOpSrcReg; 2795 switch (HandOpcode) { 2796 default: 2797 return false; 2798 case TargetOpcode::G_ANYEXT: 2799 case TargetOpcode::G_SEXT: 2800 case TargetOpcode::G_ZEXT: { 2801 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2802 break; 2803 } 2804 case TargetOpcode::G_AND: 2805 case TargetOpcode::G_ASHR: 2806 case TargetOpcode::G_LSHR: 2807 case TargetOpcode::G_SHL: { 2808 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2809 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2810 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2811 return false; 2812 ExtraHandOpSrcReg = ZOp.getReg(); 2813 break; 2814 } 2815 } 2816 2817 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2818 return false; 2819 2820 // Record the steps to build the new instructions. 2821 // 2822 // Steps to build (logic x, y) 2823 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2824 OperandBuildSteps LogicBuildSteps = { 2825 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2826 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2827 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2828 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2829 2830 // Steps to build hand (logic x, y), ...z 2831 OperandBuildSteps HandBuildSteps = { 2832 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2833 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2834 if (ExtraHandOpSrcReg.isValid()) 2835 HandBuildSteps.push_back( 2836 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2837 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2838 2839 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2840 return true; 2841 } 2842 2843 void CombinerHelper::applyBuildInstructionSteps( 2844 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2845 assert(MatchInfo.InstrsToBuild.size() && 2846 "Expected at least one instr to build?"); 2847 Builder.setInstr(MI); 2848 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2849 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2850 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2851 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2852 for (auto &OperandFn : InstrToBuild.OperandFns) 2853 OperandFn(Instr); 2854 } 2855 MI.eraseFromParent(); 2856 } 2857 2858 bool CombinerHelper::matchAshrShlToSextInreg( 2859 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2860 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2861 int64_t ShlCst, AshrCst; 2862 Register Src; 2863 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2864 m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)), 2865 m_ICstOrSplat(AshrCst)))) 2866 return false; 2867 if (ShlCst != AshrCst) 2868 return false; 2869 if (!isLegalOrBeforeLegalizer( 2870 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2871 return false; 2872 MatchInfo = std::make_tuple(Src, ShlCst); 2873 return true; 2874 } 2875 2876 void CombinerHelper::applyAshShlToSextInreg( 2877 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2878 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2879 Register Src; 2880 int64_t ShiftAmt; 2881 std::tie(Src, ShiftAmt) = MatchInfo; 2882 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2883 Builder.setInstrAndDebugLoc(MI); 2884 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2885 MI.eraseFromParent(); 2886 } 2887 2888 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2889 bool CombinerHelper::matchOverlappingAnd( 2890 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2891 assert(MI.getOpcode() == TargetOpcode::G_AND); 2892 2893 Register Dst = MI.getOperand(0).getReg(); 2894 LLT Ty = MRI.getType(Dst); 2895 2896 Register R; 2897 int64_t C1; 2898 int64_t C2; 2899 if (!mi_match( 2900 Dst, MRI, 2901 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2902 return false; 2903 2904 MatchInfo = [=](MachineIRBuilder &B) { 2905 if (C1 & C2) { 2906 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2907 return; 2908 } 2909 auto Zero = B.buildConstant(Ty, 0); 2910 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2911 }; 2912 return true; 2913 } 2914 2915 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2916 Register &Replacement) { 2917 // Given 2918 // 2919 // %y:_(sN) = G_SOMETHING 2920 // %x:_(sN) = G_SOMETHING 2921 // %res:_(sN) = G_AND %x, %y 2922 // 2923 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2924 // 2925 // Patterns like this can appear as a result of legalization. E.g. 2926 // 2927 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2928 // %one:_(s32) = G_CONSTANT i32 1 2929 // %and:_(s32) = G_AND %cmp, %one 2930 // 2931 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2932 assert(MI.getOpcode() == TargetOpcode::G_AND); 2933 if (!KB) 2934 return false; 2935 2936 Register AndDst = MI.getOperand(0).getReg(); 2937 Register LHS = MI.getOperand(1).getReg(); 2938 Register RHS = MI.getOperand(2).getReg(); 2939 KnownBits LHSBits = KB->getKnownBits(LHS); 2940 KnownBits RHSBits = KB->getKnownBits(RHS); 2941 2942 // Check that x & Mask == x. 2943 // x & 1 == x, always 2944 // x & 0 == x, only if x is also 0 2945 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2946 // 2947 // Check if we can replace AndDst with the LHS of the G_AND 2948 if (canReplaceReg(AndDst, LHS, MRI) && 2949 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2950 Replacement = LHS; 2951 return true; 2952 } 2953 2954 // Check if we can replace AndDst with the RHS of the G_AND 2955 if (canReplaceReg(AndDst, RHS, MRI) && 2956 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2957 Replacement = RHS; 2958 return true; 2959 } 2960 2961 return false; 2962 } 2963 2964 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2965 // Given 2966 // 2967 // %y:_(sN) = G_SOMETHING 2968 // %x:_(sN) = G_SOMETHING 2969 // %res:_(sN) = G_OR %x, %y 2970 // 2971 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2972 assert(MI.getOpcode() == TargetOpcode::G_OR); 2973 if (!KB) 2974 return false; 2975 2976 Register OrDst = MI.getOperand(0).getReg(); 2977 Register LHS = MI.getOperand(1).getReg(); 2978 Register RHS = MI.getOperand(2).getReg(); 2979 KnownBits LHSBits = KB->getKnownBits(LHS); 2980 KnownBits RHSBits = KB->getKnownBits(RHS); 2981 2982 // Check that x | Mask == x. 2983 // x | 0 == x, always 2984 // x | 1 == x, only if x is also 1 2985 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2986 // 2987 // Check if we can replace OrDst with the LHS of the G_OR 2988 if (canReplaceReg(OrDst, LHS, MRI) && 2989 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2990 Replacement = LHS; 2991 return true; 2992 } 2993 2994 // Check if we can replace OrDst with the RHS of the G_OR 2995 if (canReplaceReg(OrDst, RHS, MRI) && 2996 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2997 Replacement = RHS; 2998 return true; 2999 } 3000 3001 return false; 3002 } 3003 3004 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3005 // If the input is already sign extended, just drop the extension. 3006 Register Src = MI.getOperand(1).getReg(); 3007 unsigned ExtBits = MI.getOperand(2).getImm(); 3008 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3009 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3010 } 3011 3012 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3013 int64_t Cst, bool IsVector, bool IsFP) { 3014 // For i1, Cst will always be -1 regardless of boolean contents. 3015 return (ScalarSizeBits == 1 && Cst == -1) || 3016 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3017 } 3018 3019 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3020 SmallVectorImpl<Register> &RegsToNegate) { 3021 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3022 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3023 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3024 Register XorSrc; 3025 Register CstReg; 3026 // We match xor(src, true) here. 3027 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3028 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3029 return false; 3030 3031 if (!MRI.hasOneNonDBGUse(XorSrc)) 3032 return false; 3033 3034 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3035 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3036 // list of tree nodes to visit. 3037 RegsToNegate.push_back(XorSrc); 3038 // Remember whether the comparisons are all integer or all floating point. 3039 bool IsInt = false; 3040 bool IsFP = false; 3041 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3042 Register Reg = RegsToNegate[I]; 3043 if (!MRI.hasOneNonDBGUse(Reg)) 3044 return false; 3045 MachineInstr *Def = MRI.getVRegDef(Reg); 3046 switch (Def->getOpcode()) { 3047 default: 3048 // Don't match if the tree contains anything other than ANDs, ORs and 3049 // comparisons. 3050 return false; 3051 case TargetOpcode::G_ICMP: 3052 if (IsFP) 3053 return false; 3054 IsInt = true; 3055 // When we apply the combine we will invert the predicate. 3056 break; 3057 case TargetOpcode::G_FCMP: 3058 if (IsInt) 3059 return false; 3060 IsFP = true; 3061 // When we apply the combine we will invert the predicate. 3062 break; 3063 case TargetOpcode::G_AND: 3064 case TargetOpcode::G_OR: 3065 // Implement De Morgan's laws: 3066 // ~(x & y) -> ~x | ~y 3067 // ~(x | y) -> ~x & ~y 3068 // When we apply the combine we will change the opcode and recursively 3069 // negate the operands. 3070 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3071 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3072 break; 3073 } 3074 } 3075 3076 // Now we know whether the comparisons are integer or floating point, check 3077 // the constant in the xor. 3078 int64_t Cst; 3079 if (Ty.isVector()) { 3080 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3081 auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI); 3082 if (!MaybeCst) 3083 return false; 3084 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3085 return false; 3086 } else { 3087 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3088 return false; 3089 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3090 return false; 3091 } 3092 3093 return true; 3094 } 3095 3096 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3097 SmallVectorImpl<Register> &RegsToNegate) { 3098 for (Register Reg : RegsToNegate) { 3099 MachineInstr *Def = MRI.getVRegDef(Reg); 3100 Observer.changingInstr(*Def); 3101 // For each comparison, invert the opcode. For each AND and OR, change the 3102 // opcode. 3103 switch (Def->getOpcode()) { 3104 default: 3105 llvm_unreachable("Unexpected opcode"); 3106 case TargetOpcode::G_ICMP: 3107 case TargetOpcode::G_FCMP: { 3108 MachineOperand &PredOp = Def->getOperand(1); 3109 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3110 (CmpInst::Predicate)PredOp.getPredicate()); 3111 PredOp.setPredicate(NewP); 3112 break; 3113 } 3114 case TargetOpcode::G_AND: 3115 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3116 break; 3117 case TargetOpcode::G_OR: 3118 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3119 break; 3120 } 3121 Observer.changedInstr(*Def); 3122 } 3123 3124 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3125 MI.eraseFromParent(); 3126 } 3127 3128 bool CombinerHelper::matchXorOfAndWithSameReg( 3129 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3130 // Match (xor (and x, y), y) (or any of its commuted cases) 3131 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3132 Register &X = MatchInfo.first; 3133 Register &Y = MatchInfo.second; 3134 Register AndReg = MI.getOperand(1).getReg(); 3135 Register SharedReg = MI.getOperand(2).getReg(); 3136 3137 // Find a G_AND on either side of the G_XOR. 3138 // Look for one of 3139 // 3140 // (xor (and x, y), SharedReg) 3141 // (xor SharedReg, (and x, y)) 3142 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3143 std::swap(AndReg, SharedReg); 3144 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3145 return false; 3146 } 3147 3148 // Only do this if we'll eliminate the G_AND. 3149 if (!MRI.hasOneNonDBGUse(AndReg)) 3150 return false; 3151 3152 // We can combine if SharedReg is the same as either the LHS or RHS of the 3153 // G_AND. 3154 if (Y != SharedReg) 3155 std::swap(X, Y); 3156 return Y == SharedReg; 3157 } 3158 3159 void CombinerHelper::applyXorOfAndWithSameReg( 3160 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3161 // Fold (xor (and x, y), y) -> (and (not x), y) 3162 Builder.setInstrAndDebugLoc(MI); 3163 Register X, Y; 3164 std::tie(X, Y) = MatchInfo; 3165 auto Not = Builder.buildNot(MRI.getType(X), X); 3166 Observer.changingInstr(MI); 3167 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3168 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3169 MI.getOperand(2).setReg(Y); 3170 Observer.changedInstr(MI); 3171 } 3172 3173 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3174 auto &PtrAdd = cast<GPtrAdd>(MI); 3175 Register DstReg = PtrAdd.getReg(0); 3176 LLT Ty = MRI.getType(DstReg); 3177 const DataLayout &DL = Builder.getMF().getDataLayout(); 3178 3179 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3180 return false; 3181 3182 if (Ty.isPointer()) { 3183 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3184 return ConstVal && *ConstVal == 0; 3185 } 3186 3187 assert(Ty.isVector() && "Expecting a vector type"); 3188 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3189 return isBuildVectorAllZeros(*VecMI, MRI); 3190 } 3191 3192 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3193 auto &PtrAdd = cast<GPtrAdd>(MI); 3194 Builder.setInstrAndDebugLoc(PtrAdd); 3195 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3196 PtrAdd.eraseFromParent(); 3197 } 3198 3199 /// The second source operand is known to be a power of 2. 3200 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3201 Register DstReg = MI.getOperand(0).getReg(); 3202 Register Src0 = MI.getOperand(1).getReg(); 3203 Register Pow2Src1 = MI.getOperand(2).getReg(); 3204 LLT Ty = MRI.getType(DstReg); 3205 Builder.setInstrAndDebugLoc(MI); 3206 3207 // Fold (urem x, pow2) -> (and x, pow2-1) 3208 auto NegOne = Builder.buildConstant(Ty, -1); 3209 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3210 Builder.buildAnd(DstReg, Src0, Add); 3211 MI.eraseFromParent(); 3212 } 3213 3214 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI, 3215 unsigned &SelectOpNo) { 3216 Register LHS = MI.getOperand(1).getReg(); 3217 Register RHS = MI.getOperand(2).getReg(); 3218 3219 Register OtherOperandReg = RHS; 3220 SelectOpNo = 1; 3221 MachineInstr *Select = MRI.getVRegDef(LHS); 3222 3223 // Don't do this unless the old select is going away. We want to eliminate the 3224 // binary operator, not replace a binop with a select. 3225 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3226 !MRI.hasOneNonDBGUse(LHS)) { 3227 OtherOperandReg = LHS; 3228 SelectOpNo = 2; 3229 Select = MRI.getVRegDef(RHS); 3230 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3231 !MRI.hasOneNonDBGUse(RHS)) 3232 return false; 3233 } 3234 3235 MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg()); 3236 MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg()); 3237 3238 if (!isConstantOrConstantVector(*SelectLHS, MRI, 3239 /*AllowFP*/ true, 3240 /*AllowOpaqueConstants*/ false)) 3241 return false; 3242 if (!isConstantOrConstantVector(*SelectRHS, MRI, 3243 /*AllowFP*/ true, 3244 /*AllowOpaqueConstants*/ false)) 3245 return false; 3246 3247 unsigned BinOpcode = MI.getOpcode(); 3248 3249 // We know know one of the operands is a select of constants. Now verify that 3250 // the other binary operator operand is either a constant, or we can handle a 3251 // variable. 3252 bool CanFoldNonConst = 3253 (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) && 3254 (isNullOrNullSplat(*SelectLHS, MRI) || 3255 isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) && 3256 (isNullOrNullSplat(*SelectRHS, MRI) || 3257 isAllOnesOrAllOnesSplat(*SelectRHS, MRI)); 3258 if (CanFoldNonConst) 3259 return true; 3260 3261 return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI, 3262 /*AllowFP*/ true, 3263 /*AllowOpaqueConstants*/ false); 3264 } 3265 3266 /// \p SelectOperand is the operand in binary operator \p MI that is the select 3267 /// to fold. 3268 void CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI, 3269 const unsigned &SelectOperand) { 3270 Builder.setInstrAndDebugLoc(MI); 3271 3272 Register Dst = MI.getOperand(0).getReg(); 3273 Register LHS = MI.getOperand(1).getReg(); 3274 Register RHS = MI.getOperand(2).getReg(); 3275 MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg()); 3276 3277 Register SelectCond = Select->getOperand(1).getReg(); 3278 Register SelectTrue = Select->getOperand(2).getReg(); 3279 Register SelectFalse = Select->getOperand(3).getReg(); 3280 3281 LLT Ty = MRI.getType(Dst); 3282 unsigned BinOpcode = MI.getOpcode(); 3283 3284 Register FoldTrue, FoldFalse; 3285 3286 // We have a select-of-constants followed by a binary operator with a 3287 // constant. Eliminate the binop by pulling the constant math into the select. 3288 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 3289 if (SelectOperand == 1) { 3290 // TODO: SelectionDAG verifies this actually constant folds before 3291 // committing to the combine. 3292 3293 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0); 3294 FoldFalse = 3295 Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0); 3296 } else { 3297 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0); 3298 FoldFalse = 3299 Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0); 3300 } 3301 3302 Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags()); 3303 MI.eraseFromParent(); 3304 } 3305 3306 std::optional<SmallVector<Register, 8>> 3307 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3308 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3309 // We want to detect if Root is part of a tree which represents a bunch 3310 // of loads being merged into a larger load. We'll try to recognize patterns 3311 // like, for example: 3312 // 3313 // Reg Reg 3314 // \ / 3315 // OR_1 Reg 3316 // \ / 3317 // OR_2 3318 // \ Reg 3319 // .. / 3320 // Root 3321 // 3322 // Reg Reg Reg Reg 3323 // \ / \ / 3324 // OR_1 OR_2 3325 // \ / 3326 // \ / 3327 // ... 3328 // Root 3329 // 3330 // Each "Reg" may have been produced by a load + some arithmetic. This 3331 // function will save each of them. 3332 SmallVector<Register, 8> RegsToVisit; 3333 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3334 3335 // In the "worst" case, we're dealing with a load for each byte. So, there 3336 // are at most #bytes - 1 ORs. 3337 const unsigned MaxIter = 3338 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3339 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3340 if (Ors.empty()) 3341 break; 3342 const MachineInstr *Curr = Ors.pop_back_val(); 3343 Register OrLHS = Curr->getOperand(1).getReg(); 3344 Register OrRHS = Curr->getOperand(2).getReg(); 3345 3346 // In the combine, we want to elimate the entire tree. 3347 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3348 return std::nullopt; 3349 3350 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3351 // something that may be a load + arithmetic. 3352 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3353 Ors.push_back(Or); 3354 else 3355 RegsToVisit.push_back(OrLHS); 3356 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3357 Ors.push_back(Or); 3358 else 3359 RegsToVisit.push_back(OrRHS); 3360 } 3361 3362 // We're going to try and merge each register into a wider power-of-2 type, 3363 // so we ought to have an even number of registers. 3364 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3365 return std::nullopt; 3366 return RegsToVisit; 3367 } 3368 3369 /// Helper function for findLoadOffsetsForLoadOrCombine. 3370 /// 3371 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3372 /// and then moving that value into a specific byte offset. 3373 /// 3374 /// e.g. x[i] << 24 3375 /// 3376 /// \returns The load instruction and the byte offset it is moved into. 3377 static std::optional<std::pair<GZExtLoad *, int64_t>> 3378 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3379 const MachineRegisterInfo &MRI) { 3380 assert(MRI.hasOneNonDBGUse(Reg) && 3381 "Expected Reg to only have one non-debug use?"); 3382 Register MaybeLoad; 3383 int64_t Shift; 3384 if (!mi_match(Reg, MRI, 3385 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3386 Shift = 0; 3387 MaybeLoad = Reg; 3388 } 3389 3390 if (Shift % MemSizeInBits != 0) 3391 return std::nullopt; 3392 3393 // TODO: Handle other types of loads. 3394 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3395 if (!Load) 3396 return std::nullopt; 3397 3398 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3399 return std::nullopt; 3400 3401 return std::make_pair(Load, Shift / MemSizeInBits); 3402 } 3403 3404 std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3405 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3406 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3407 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3408 3409 // Each load found for the pattern. There should be one for each RegsToVisit. 3410 SmallSetVector<const MachineInstr *, 8> Loads; 3411 3412 // The lowest index used in any load. (The lowest "i" for each x[i].) 3413 int64_t LowestIdx = INT64_MAX; 3414 3415 // The load which uses the lowest index. 3416 GZExtLoad *LowestIdxLoad = nullptr; 3417 3418 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3419 SmallSet<int64_t, 8> SeenIdx; 3420 3421 // Ensure each load is in the same MBB. 3422 // TODO: Support multiple MachineBasicBlocks. 3423 MachineBasicBlock *MBB = nullptr; 3424 const MachineMemOperand *MMO = nullptr; 3425 3426 // Earliest instruction-order load in the pattern. 3427 GZExtLoad *EarliestLoad = nullptr; 3428 3429 // Latest instruction-order load in the pattern. 3430 GZExtLoad *LatestLoad = nullptr; 3431 3432 // Base pointer which every load should share. 3433 Register BasePtr; 3434 3435 // We want to find a load for each register. Each load should have some 3436 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3437 // track of the load which uses the lowest index. Later, we will check if we 3438 // can use its pointer in the final, combined load. 3439 for (auto Reg : RegsToVisit) { 3440 // Find the load, and find the position that it will end up in (e.g. a 3441 // shifted) value. 3442 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3443 if (!LoadAndPos) 3444 return std::nullopt; 3445 GZExtLoad *Load; 3446 int64_t DstPos; 3447 std::tie(Load, DstPos) = *LoadAndPos; 3448 3449 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3450 // it is difficult to check for stores/calls/etc between loads. 3451 MachineBasicBlock *LoadMBB = Load->getParent(); 3452 if (!MBB) 3453 MBB = LoadMBB; 3454 if (LoadMBB != MBB) 3455 return std::nullopt; 3456 3457 // Make sure that the MachineMemOperands of every seen load are compatible. 3458 auto &LoadMMO = Load->getMMO(); 3459 if (!MMO) 3460 MMO = &LoadMMO; 3461 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3462 return std::nullopt; 3463 3464 // Find out what the base pointer and index for the load is. 3465 Register LoadPtr; 3466 int64_t Idx; 3467 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3468 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3469 LoadPtr = Load->getOperand(1).getReg(); 3470 Idx = 0; 3471 } 3472 3473 // Don't combine things like a[i], a[i] -> a bigger load. 3474 if (!SeenIdx.insert(Idx).second) 3475 return std::nullopt; 3476 3477 // Every load must share the same base pointer; don't combine things like: 3478 // 3479 // a[i], b[i + 1] -> a bigger load. 3480 if (!BasePtr.isValid()) 3481 BasePtr = LoadPtr; 3482 if (BasePtr != LoadPtr) 3483 return std::nullopt; 3484 3485 if (Idx < LowestIdx) { 3486 LowestIdx = Idx; 3487 LowestIdxLoad = Load; 3488 } 3489 3490 // Keep track of the byte offset that this load ends up at. If we have seen 3491 // the byte offset, then stop here. We do not want to combine: 3492 // 3493 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3494 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3495 return std::nullopt; 3496 Loads.insert(Load); 3497 3498 // Keep track of the position of the earliest/latest loads in the pattern. 3499 // We will check that there are no load fold barriers between them later 3500 // on. 3501 // 3502 // FIXME: Is there a better way to check for load fold barriers? 3503 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3504 EarliestLoad = Load; 3505 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3506 LatestLoad = Load; 3507 } 3508 3509 // We found a load for each register. Let's check if each load satisfies the 3510 // pattern. 3511 assert(Loads.size() == RegsToVisit.size() && 3512 "Expected to find a load for each register?"); 3513 assert(EarliestLoad != LatestLoad && EarliestLoad && 3514 LatestLoad && "Expected at least two loads?"); 3515 3516 // Check if there are any stores, calls, etc. between any of the loads. If 3517 // there are, then we can't safely perform the combine. 3518 // 3519 // MaxIter is chosen based off the (worst case) number of iterations it 3520 // typically takes to succeed in the LLVM test suite plus some padding. 3521 // 3522 // FIXME: Is there a better way to check for load fold barriers? 3523 const unsigned MaxIter = 20; 3524 unsigned Iter = 0; 3525 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3526 LatestLoad->getIterator())) { 3527 if (Loads.count(&MI)) 3528 continue; 3529 if (MI.isLoadFoldBarrier()) 3530 return std::nullopt; 3531 if (Iter++ == MaxIter) 3532 return std::nullopt; 3533 } 3534 3535 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3536 } 3537 3538 bool CombinerHelper::matchLoadOrCombine( 3539 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3540 assert(MI.getOpcode() == TargetOpcode::G_OR); 3541 MachineFunction &MF = *MI.getMF(); 3542 // Assuming a little-endian target, transform: 3543 // s8 *a = ... 3544 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3545 // => 3546 // s32 val = *((i32)a) 3547 // 3548 // s8 *a = ... 3549 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3550 // => 3551 // s32 val = BSWAP(*((s32)a)) 3552 Register Dst = MI.getOperand(0).getReg(); 3553 LLT Ty = MRI.getType(Dst); 3554 if (Ty.isVector()) 3555 return false; 3556 3557 // We need to combine at least two loads into this type. Since the smallest 3558 // possible load is into a byte, we need at least a 16-bit wide type. 3559 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3560 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3561 return false; 3562 3563 // Match a collection of non-OR instructions in the pattern. 3564 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3565 if (!RegsToVisit) 3566 return false; 3567 3568 // We have a collection of non-OR instructions. Figure out how wide each of 3569 // the small loads should be based off of the number of potential loads we 3570 // found. 3571 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3572 if (NarrowMemSizeInBits % 8 != 0) 3573 return false; 3574 3575 // Check if each register feeding into each OR is a load from the same 3576 // base pointer + some arithmetic. 3577 // 3578 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3579 // 3580 // Also verify that each of these ends up putting a[i] into the same memory 3581 // offset as a load into a wide type would. 3582 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3583 GZExtLoad *LowestIdxLoad, *LatestLoad; 3584 int64_t LowestIdx; 3585 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3586 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3587 if (!MaybeLoadInfo) 3588 return false; 3589 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3590 3591 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3592 // we found before, check if this corresponds to a big or little endian byte 3593 // pattern. If it does, then we can represent it using a load + possibly a 3594 // BSWAP. 3595 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3596 std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3597 if (!IsBigEndian) 3598 return false; 3599 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3600 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3601 return false; 3602 3603 // Make sure that the load from the lowest index produces offset 0 in the 3604 // final value. 3605 // 3606 // This ensures that we won't combine something like this: 3607 // 3608 // load x[i] -> byte 2 3609 // load x[i+1] -> byte 0 ---> wide_load x[i] 3610 // load x[i+2] -> byte 1 3611 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3612 const unsigned ZeroByteOffset = 3613 *IsBigEndian 3614 ? bigEndianByteAt(NumLoadsInTy, 0) 3615 : littleEndianByteAt(NumLoadsInTy, 0); 3616 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3617 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3618 ZeroOffsetIdx->second != LowestIdx) 3619 return false; 3620 3621 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3622 // may not use index 0. 3623 Register Ptr = LowestIdxLoad->getPointerReg(); 3624 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3625 LegalityQuery::MemDesc MMDesc(MMO); 3626 MMDesc.MemoryTy = Ty; 3627 if (!isLegalOrBeforeLegalizer( 3628 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3629 return false; 3630 auto PtrInfo = MMO.getPointerInfo(); 3631 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3632 3633 // Load must be allowed and fast on the target. 3634 LLVMContext &C = MF.getFunction().getContext(); 3635 auto &DL = MF.getDataLayout(); 3636 unsigned Fast = 0; 3637 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3638 !Fast) 3639 return false; 3640 3641 MatchInfo = [=](MachineIRBuilder &MIB) { 3642 MIB.setInstrAndDebugLoc(*LatestLoad); 3643 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3644 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3645 if (NeedsBSwap) 3646 MIB.buildBSwap(Dst, LoadDst); 3647 }; 3648 return true; 3649 } 3650 3651 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3652 MachineInstr *&ExtMI) { 3653 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3654 3655 Register DstReg = MI.getOperand(0).getReg(); 3656 3657 // TODO: Extending a vector may be expensive, don't do this until heuristics 3658 // are better. 3659 if (MRI.getType(DstReg).isVector()) 3660 return false; 3661 3662 // Try to match a phi, whose only use is an extend. 3663 if (!MRI.hasOneNonDBGUse(DstReg)) 3664 return false; 3665 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3666 switch (ExtMI->getOpcode()) { 3667 case TargetOpcode::G_ANYEXT: 3668 return true; // G_ANYEXT is usually free. 3669 case TargetOpcode::G_ZEXT: 3670 case TargetOpcode::G_SEXT: 3671 break; 3672 default: 3673 return false; 3674 } 3675 3676 // If the target is likely to fold this extend away, don't propagate. 3677 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3678 return false; 3679 3680 // We don't want to propagate the extends unless there's a good chance that 3681 // they'll be optimized in some way. 3682 // Collect the unique incoming values. 3683 SmallPtrSet<MachineInstr *, 4> InSrcs; 3684 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3685 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3686 switch (DefMI->getOpcode()) { 3687 case TargetOpcode::G_LOAD: 3688 case TargetOpcode::G_TRUNC: 3689 case TargetOpcode::G_SEXT: 3690 case TargetOpcode::G_ZEXT: 3691 case TargetOpcode::G_ANYEXT: 3692 case TargetOpcode::G_CONSTANT: 3693 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3694 // Don't try to propagate if there are too many places to create new 3695 // extends, chances are it'll increase code size. 3696 if (InSrcs.size() > 2) 3697 return false; 3698 break; 3699 default: 3700 return false; 3701 } 3702 } 3703 return true; 3704 } 3705 3706 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3707 MachineInstr *&ExtMI) { 3708 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3709 Register DstReg = ExtMI->getOperand(0).getReg(); 3710 LLT ExtTy = MRI.getType(DstReg); 3711 3712 // Propagate the extension into the block of each incoming reg's block. 3713 // Use a SetVector here because PHIs can have duplicate edges, and we want 3714 // deterministic iteration order. 3715 SmallSetVector<MachineInstr *, 8> SrcMIs; 3716 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3717 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3718 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3719 if (!SrcMIs.insert(SrcMI)) 3720 continue; 3721 3722 // Build an extend after each src inst. 3723 auto *MBB = SrcMI->getParent(); 3724 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3725 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3726 InsertPt = MBB->getFirstNonPHI(); 3727 3728 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3729 Builder.setDebugLoc(MI.getDebugLoc()); 3730 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3731 SrcMI->getOperand(0).getReg()); 3732 OldToNewSrcMap[SrcMI] = NewExt; 3733 } 3734 3735 // Create a new phi with the extended inputs. 3736 Builder.setInstrAndDebugLoc(MI); 3737 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3738 NewPhi.addDef(DstReg); 3739 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 3740 if (!MO.isReg()) { 3741 NewPhi.addMBB(MO.getMBB()); 3742 continue; 3743 } 3744 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3745 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3746 } 3747 Builder.insertInstr(NewPhi); 3748 ExtMI->eraseFromParent(); 3749 } 3750 3751 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3752 Register &Reg) { 3753 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3754 // If we have a constant index, look for a G_BUILD_VECTOR source 3755 // and find the source register that the index maps to. 3756 Register SrcVec = MI.getOperand(1).getReg(); 3757 LLT SrcTy = MRI.getType(SrcVec); 3758 3759 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3760 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3761 return false; 3762 3763 unsigned VecIdx = Cst->Value.getZExtValue(); 3764 3765 // Check if we have a build_vector or build_vector_trunc with an optional 3766 // trunc in front. 3767 MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec); 3768 if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) { 3769 SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg()); 3770 } 3771 3772 if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 3773 SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC) 3774 return false; 3775 3776 EVT Ty(getMVTForLLT(SrcTy)); 3777 if (!MRI.hasOneNonDBGUse(SrcVec) && 3778 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3779 return false; 3780 3781 Reg = SrcVecMI->getOperand(VecIdx + 1).getReg(); 3782 return true; 3783 } 3784 3785 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3786 Register &Reg) { 3787 // Check the type of the register, since it may have come from a 3788 // G_BUILD_VECTOR_TRUNC. 3789 LLT ScalarTy = MRI.getType(Reg); 3790 Register DstReg = MI.getOperand(0).getReg(); 3791 LLT DstTy = MRI.getType(DstReg); 3792 3793 Builder.setInstrAndDebugLoc(MI); 3794 if (ScalarTy != DstTy) { 3795 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3796 Builder.buildTrunc(DstReg, Reg); 3797 MI.eraseFromParent(); 3798 return; 3799 } 3800 replaceSingleDefInstWithReg(MI, Reg); 3801 } 3802 3803 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3804 MachineInstr &MI, 3805 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3806 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3807 // This combine tries to find build_vector's which have every source element 3808 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3809 // the masked load scalarization is run late in the pipeline. There's already 3810 // a combine for a similar pattern starting from the extract, but that 3811 // doesn't attempt to do it if there are multiple uses of the build_vector, 3812 // which in this case is true. Starting the combine from the build_vector 3813 // feels more natural than trying to find sibling nodes of extracts. 3814 // E.g. 3815 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3816 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3817 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3818 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3819 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3820 // ==> 3821 // replace ext{1,2,3,4} with %s{1,2,3,4} 3822 3823 Register DstReg = MI.getOperand(0).getReg(); 3824 LLT DstTy = MRI.getType(DstReg); 3825 unsigned NumElts = DstTy.getNumElements(); 3826 3827 SmallBitVector ExtractedElts(NumElts); 3828 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 3829 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3830 return false; 3831 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3832 if (!Cst) 3833 return false; 3834 unsigned Idx = Cst->getZExtValue(); 3835 if (Idx >= NumElts) 3836 return false; // Out of range. 3837 ExtractedElts.set(Idx); 3838 SrcDstPairs.emplace_back( 3839 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3840 } 3841 // Match if every element was extracted. 3842 return ExtractedElts.all(); 3843 } 3844 3845 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3846 MachineInstr &MI, 3847 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3848 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3849 for (auto &Pair : SrcDstPairs) { 3850 auto *ExtMI = Pair.second; 3851 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3852 ExtMI->eraseFromParent(); 3853 } 3854 MI.eraseFromParent(); 3855 } 3856 3857 void CombinerHelper::applyBuildFn( 3858 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3859 Builder.setInstrAndDebugLoc(MI); 3860 MatchInfo(Builder); 3861 MI.eraseFromParent(); 3862 } 3863 3864 void CombinerHelper::applyBuildFnNoErase( 3865 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3866 Builder.setInstrAndDebugLoc(MI); 3867 MatchInfo(Builder); 3868 } 3869 3870 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 3871 BuildFnTy &MatchInfo) { 3872 assert(MI.getOpcode() == TargetOpcode::G_OR); 3873 3874 Register Dst = MI.getOperand(0).getReg(); 3875 LLT Ty = MRI.getType(Dst); 3876 unsigned BitWidth = Ty.getScalarSizeInBits(); 3877 3878 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; 3879 unsigned FshOpc = 0; 3880 3881 // Match (or (shl ...), (lshr ...)). 3882 if (!mi_match(Dst, MRI, 3883 // m_GOr() handles the commuted version as well. 3884 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 3885 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) 3886 return false; 3887 3888 // Given constants C0 and C1 such that C0 + C1 is bit-width: 3889 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) 3890 int64_t CstShlAmt, CstLShrAmt; 3891 if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) && 3892 mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) && 3893 CstShlAmt + CstLShrAmt == BitWidth) { 3894 FshOpc = TargetOpcode::G_FSHR; 3895 Amt = LShrAmt; 3896 3897 } else if (mi_match(LShrAmt, MRI, 3898 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 3899 ShlAmt == Amt) { 3900 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) 3901 FshOpc = TargetOpcode::G_FSHL; 3902 3903 } else if (mi_match(ShlAmt, MRI, 3904 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 3905 LShrAmt == Amt) { 3906 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) 3907 FshOpc = TargetOpcode::G_FSHR; 3908 3909 } else { 3910 return false; 3911 } 3912 3913 LLT AmtTy = MRI.getType(Amt); 3914 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 3915 return false; 3916 3917 MatchInfo = [=](MachineIRBuilder &B) { 3918 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); 3919 }; 3920 return true; 3921 } 3922 3923 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3924 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3925 unsigned Opc = MI.getOpcode(); 3926 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3927 Register X = MI.getOperand(1).getReg(); 3928 Register Y = MI.getOperand(2).getReg(); 3929 if (X != Y) 3930 return false; 3931 unsigned RotateOpc = 3932 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3933 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3934 } 3935 3936 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3937 unsigned Opc = MI.getOpcode(); 3938 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3939 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3940 Observer.changingInstr(MI); 3941 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3942 : TargetOpcode::G_ROTR)); 3943 MI.removeOperand(2); 3944 Observer.changedInstr(MI); 3945 } 3946 3947 // Fold (rot x, c) -> (rot x, c % BitSize) 3948 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3949 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3950 MI.getOpcode() == TargetOpcode::G_ROTR); 3951 unsigned Bitsize = 3952 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3953 Register AmtReg = MI.getOperand(2).getReg(); 3954 bool OutOfRange = false; 3955 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3956 if (auto *CI = dyn_cast<ConstantInt>(C)) 3957 OutOfRange |= CI->getValue().uge(Bitsize); 3958 return true; 3959 }; 3960 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3961 } 3962 3963 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3964 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3965 MI.getOpcode() == TargetOpcode::G_ROTR); 3966 unsigned Bitsize = 3967 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3968 Builder.setInstrAndDebugLoc(MI); 3969 Register Amt = MI.getOperand(2).getReg(); 3970 LLT AmtTy = MRI.getType(Amt); 3971 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3972 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3973 Observer.changingInstr(MI); 3974 MI.getOperand(2).setReg(Amt); 3975 Observer.changedInstr(MI); 3976 } 3977 3978 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3979 int64_t &MatchInfo) { 3980 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3981 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3982 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3983 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3984 std::optional<bool> KnownVal; 3985 switch (Pred) { 3986 default: 3987 llvm_unreachable("Unexpected G_ICMP predicate?"); 3988 case CmpInst::ICMP_EQ: 3989 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3990 break; 3991 case CmpInst::ICMP_NE: 3992 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3993 break; 3994 case CmpInst::ICMP_SGE: 3995 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3996 break; 3997 case CmpInst::ICMP_SGT: 3998 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3999 break; 4000 case CmpInst::ICMP_SLE: 4001 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4002 break; 4003 case CmpInst::ICMP_SLT: 4004 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4005 break; 4006 case CmpInst::ICMP_UGE: 4007 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4008 break; 4009 case CmpInst::ICMP_UGT: 4010 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4011 break; 4012 case CmpInst::ICMP_ULE: 4013 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4014 break; 4015 case CmpInst::ICMP_ULT: 4016 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4017 break; 4018 } 4019 if (!KnownVal) 4020 return false; 4021 MatchInfo = 4022 *KnownVal 4023 ? getICmpTrueVal(getTargetLowering(), 4024 /*IsVector = */ 4025 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4026 /* IsFP = */ false) 4027 : 0; 4028 return true; 4029 } 4030 4031 bool CombinerHelper::matchICmpToLHSKnownBits( 4032 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4033 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4034 // Given: 4035 // 4036 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4037 // %cmp = G_ICMP ne %x, 0 4038 // 4039 // Or: 4040 // 4041 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4042 // %cmp = G_ICMP eq %x, 1 4043 // 4044 // We can replace %cmp with %x assuming true is 1 on the target. 4045 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4046 if (!CmpInst::isEquality(Pred)) 4047 return false; 4048 Register Dst = MI.getOperand(0).getReg(); 4049 LLT DstTy = MRI.getType(Dst); 4050 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4051 /* IsFP = */ false) != 1) 4052 return false; 4053 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4054 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4055 return false; 4056 Register LHS = MI.getOperand(2).getReg(); 4057 auto KnownLHS = KB->getKnownBits(LHS); 4058 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4059 return false; 4060 // Make sure replacing Dst with the LHS is a legal operation. 4061 LLT LHSTy = MRI.getType(LHS); 4062 unsigned LHSSize = LHSTy.getSizeInBits(); 4063 unsigned DstSize = DstTy.getSizeInBits(); 4064 unsigned Op = TargetOpcode::COPY; 4065 if (DstSize != LHSSize) 4066 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4067 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4068 return false; 4069 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4070 return true; 4071 } 4072 4073 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4074 bool CombinerHelper::matchAndOrDisjointMask( 4075 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4076 assert(MI.getOpcode() == TargetOpcode::G_AND); 4077 4078 // Ignore vector types to simplify matching the two constants. 4079 // TODO: do this for vectors and scalars via a demanded bits analysis. 4080 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4081 if (Ty.isVector()) 4082 return false; 4083 4084 Register Src; 4085 Register AndMaskReg; 4086 int64_t AndMaskBits; 4087 int64_t OrMaskBits; 4088 if (!mi_match(MI, MRI, 4089 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)), 4090 m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg))))) 4091 return false; 4092 4093 // Check if OrMask could turn on any bits in Src. 4094 if (AndMaskBits & OrMaskBits) 4095 return false; 4096 4097 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4098 Observer.changingInstr(MI); 4099 // Canonicalize the result to have the constant on the RHS. 4100 if (MI.getOperand(1).getReg() == AndMaskReg) 4101 MI.getOperand(2).setReg(AndMaskReg); 4102 MI.getOperand(1).setReg(Src); 4103 Observer.changedInstr(MI); 4104 }; 4105 return true; 4106 } 4107 4108 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4109 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4110 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4111 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4112 Register Dst = MI.getOperand(0).getReg(); 4113 Register Src = MI.getOperand(1).getReg(); 4114 LLT Ty = MRI.getType(Src); 4115 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4116 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4117 return false; 4118 int64_t Width = MI.getOperand(2).getImm(); 4119 Register ShiftSrc; 4120 int64_t ShiftImm; 4121 if (!mi_match( 4122 Src, MRI, 4123 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4124 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4125 return false; 4126 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4127 return false; 4128 4129 MatchInfo = [=](MachineIRBuilder &B) { 4130 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4131 auto Cst2 = B.buildConstant(ExtractTy, Width); 4132 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4133 }; 4134 return true; 4135 } 4136 4137 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4138 bool CombinerHelper::matchBitfieldExtractFromAnd( 4139 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4140 assert(MI.getOpcode() == TargetOpcode::G_AND); 4141 Register Dst = MI.getOperand(0).getReg(); 4142 LLT Ty = MRI.getType(Dst); 4143 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4144 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4145 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4146 return false; 4147 4148 int64_t AndImm, LSBImm; 4149 Register ShiftSrc; 4150 const unsigned Size = Ty.getScalarSizeInBits(); 4151 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4152 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4153 m_ICst(AndImm)))) 4154 return false; 4155 4156 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4157 auto MaybeMask = static_cast<uint64_t>(AndImm); 4158 if (MaybeMask & (MaybeMask + 1)) 4159 return false; 4160 4161 // LSB must fit within the register. 4162 if (static_cast<uint64_t>(LSBImm) >= Size) 4163 return false; 4164 4165 uint64_t Width = APInt(Size, AndImm).countr_one(); 4166 MatchInfo = [=](MachineIRBuilder &B) { 4167 auto WidthCst = B.buildConstant(ExtractTy, Width); 4168 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4169 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4170 }; 4171 return true; 4172 } 4173 4174 bool CombinerHelper::matchBitfieldExtractFromShr( 4175 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4176 const unsigned Opcode = MI.getOpcode(); 4177 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4178 4179 const Register Dst = MI.getOperand(0).getReg(); 4180 4181 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4182 ? TargetOpcode::G_SBFX 4183 : TargetOpcode::G_UBFX; 4184 4185 // Check if the type we would use for the extract is legal 4186 LLT Ty = MRI.getType(Dst); 4187 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4188 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4189 return false; 4190 4191 Register ShlSrc; 4192 int64_t ShrAmt; 4193 int64_t ShlAmt; 4194 const unsigned Size = Ty.getScalarSizeInBits(); 4195 4196 // Try to match shr (shl x, c1), c2 4197 if (!mi_match(Dst, MRI, 4198 m_BinOp(Opcode, 4199 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4200 m_ICst(ShrAmt)))) 4201 return false; 4202 4203 // Make sure that the shift sizes can fit a bitfield extract 4204 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4205 return false; 4206 4207 // Skip this combine if the G_SEXT_INREG combine could handle it 4208 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4209 return false; 4210 4211 // Calculate start position and width of the extract 4212 const int64_t Pos = ShrAmt - ShlAmt; 4213 const int64_t Width = Size - ShrAmt; 4214 4215 MatchInfo = [=](MachineIRBuilder &B) { 4216 auto WidthCst = B.buildConstant(ExtractTy, Width); 4217 auto PosCst = B.buildConstant(ExtractTy, Pos); 4218 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4219 }; 4220 return true; 4221 } 4222 4223 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4224 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4225 const unsigned Opcode = MI.getOpcode(); 4226 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4227 4228 const Register Dst = MI.getOperand(0).getReg(); 4229 LLT Ty = MRI.getType(Dst); 4230 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4231 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4232 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4233 return false; 4234 4235 // Try to match shr (and x, c1), c2 4236 Register AndSrc; 4237 int64_t ShrAmt; 4238 int64_t SMask; 4239 if (!mi_match(Dst, MRI, 4240 m_BinOp(Opcode, 4241 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4242 m_ICst(ShrAmt)))) 4243 return false; 4244 4245 const unsigned Size = Ty.getScalarSizeInBits(); 4246 if (ShrAmt < 0 || ShrAmt >= Size) 4247 return false; 4248 4249 // If the shift subsumes the mask, emit the 0 directly. 4250 if (0 == (SMask >> ShrAmt)) { 4251 MatchInfo = [=](MachineIRBuilder &B) { 4252 B.buildConstant(Dst, 0); 4253 }; 4254 return true; 4255 } 4256 4257 // Check that ubfx can do the extraction, with no holes in the mask. 4258 uint64_t UMask = SMask; 4259 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4260 UMask &= maskTrailingOnes<uint64_t>(Size); 4261 if (!isMask_64(UMask)) 4262 return false; 4263 4264 // Calculate start position and width of the extract. 4265 const int64_t Pos = ShrAmt; 4266 const int64_t Width = llvm::countr_one(UMask) - ShrAmt; 4267 4268 // It's preferable to keep the shift, rather than form G_SBFX. 4269 // TODO: remove the G_AND via demanded bits analysis. 4270 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4271 return false; 4272 4273 MatchInfo = [=](MachineIRBuilder &B) { 4274 auto WidthCst = B.buildConstant(ExtractTy, Width); 4275 auto PosCst = B.buildConstant(ExtractTy, Pos); 4276 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4277 }; 4278 return true; 4279 } 4280 4281 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4282 MachineInstr &PtrAdd) { 4283 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4284 4285 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4286 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4287 if (!Src1Def) 4288 return false; 4289 4290 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4291 4292 if (MRI.hasOneNonDBGUse(Src1Reg)) 4293 return false; 4294 4295 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4296 if (!C1) 4297 return false; 4298 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4299 if (!C2) 4300 return false; 4301 4302 const APInt &C1APIntVal = *C1; 4303 const APInt &C2APIntVal = *C2; 4304 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4305 4306 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4307 // This combine may end up running before ptrtoint/inttoptr combines 4308 // manage to eliminate redundant conversions, so try to look through them. 4309 MachineInstr *ConvUseMI = &UseMI; 4310 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4311 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4312 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4313 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4314 if (!MRI.hasOneNonDBGUse(DefReg)) 4315 break; 4316 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4317 ConvUseOpc = ConvUseMI->getOpcode(); 4318 } 4319 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4320 ConvUseOpc == TargetOpcode::G_STORE; 4321 if (!LoadStore) 4322 continue; 4323 // Is x[offset2] already not a legal addressing mode? If so then 4324 // reassociating the constants breaks nothing (we test offset2 because 4325 // that's the one we hope to fold into the load or store). 4326 TargetLoweringBase::AddrMode AM; 4327 AM.HasBaseReg = true; 4328 AM.BaseOffs = C2APIntVal.getSExtValue(); 4329 unsigned AS = 4330 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4331 Type *AccessTy = 4332 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4333 PtrAdd.getMF()->getFunction().getContext()); 4334 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4335 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4336 AccessTy, AS)) 4337 continue; 4338 4339 // Would x[offset1+offset2] still be a legal addressing mode? 4340 AM.BaseOffs = CombinedValue; 4341 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4342 AccessTy, AS)) 4343 return true; 4344 } 4345 4346 return false; 4347 } 4348 4349 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4350 MachineInstr *RHS, 4351 BuildFnTy &MatchInfo) { 4352 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4353 Register Src1Reg = MI.getOperand(1).getReg(); 4354 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4355 return false; 4356 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4357 if (!C2) 4358 return false; 4359 4360 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4361 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4362 4363 auto NewBase = 4364 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4365 Observer.changingInstr(MI); 4366 MI.getOperand(1).setReg(NewBase.getReg(0)); 4367 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4368 Observer.changedInstr(MI); 4369 }; 4370 return !reassociationCanBreakAddressingModePattern(MI); 4371 } 4372 4373 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4374 MachineInstr *LHS, 4375 MachineInstr *RHS, 4376 BuildFnTy &MatchInfo) { 4377 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4378 // if and only if (G_PTR_ADD X, C) has one use. 4379 Register LHSBase; 4380 std::optional<ValueAndVReg> LHSCstOff; 4381 if (!mi_match(MI.getBaseReg(), MRI, 4382 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4383 return false; 4384 4385 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4386 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4387 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4388 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4389 // doesn't happen. 4390 LHSPtrAdd->moveBefore(&MI); 4391 Register RHSReg = MI.getOffsetReg(); 4392 // set VReg will cause type mismatch if it comes from extend/trunc 4393 auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value); 4394 Observer.changingInstr(MI); 4395 MI.getOperand(2).setReg(NewCst.getReg(0)); 4396 Observer.changedInstr(MI); 4397 Observer.changingInstr(*LHSPtrAdd); 4398 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4399 Observer.changedInstr(*LHSPtrAdd); 4400 }; 4401 return !reassociationCanBreakAddressingModePattern(MI); 4402 } 4403 4404 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4405 MachineInstr *LHS, 4406 MachineInstr *RHS, 4407 BuildFnTy &MatchInfo) { 4408 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4409 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4410 if (!LHSPtrAdd) 4411 return false; 4412 4413 Register Src2Reg = MI.getOperand(2).getReg(); 4414 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4415 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4416 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4417 if (!C1) 4418 return false; 4419 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4420 if (!C2) 4421 return false; 4422 4423 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4424 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4425 Observer.changingInstr(MI); 4426 MI.getOperand(1).setReg(LHSSrc1); 4427 MI.getOperand(2).setReg(NewCst.getReg(0)); 4428 Observer.changedInstr(MI); 4429 }; 4430 return !reassociationCanBreakAddressingModePattern(MI); 4431 } 4432 4433 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4434 BuildFnTy &MatchInfo) { 4435 auto &PtrAdd = cast<GPtrAdd>(MI); 4436 // We're trying to match a few pointer computation patterns here for 4437 // re-association opportunities. 4438 // 1) Isolating a constant operand to be on the RHS, e.g.: 4439 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4440 // 4441 // 2) Folding two constants in each sub-tree as long as such folding 4442 // doesn't break a legal addressing mode. 4443 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4444 // 4445 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4446 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4447 // iif (G_PTR_ADD X, C) has one use. 4448 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4449 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4450 4451 // Try to match example 2. 4452 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4453 return true; 4454 4455 // Try to match example 3. 4456 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4457 return true; 4458 4459 // Try to match example 1. 4460 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4461 return true; 4462 4463 return false; 4464 } 4465 bool CombinerHelper::tryReassocBinOp(unsigned Opc, Register DstReg, 4466 Register OpLHS, Register OpRHS, 4467 BuildFnTy &MatchInfo) { 4468 LLT OpRHSTy = MRI.getType(OpRHS); 4469 MachineInstr *OpLHSDef = MRI.getVRegDef(OpLHS); 4470 4471 if (OpLHSDef->getOpcode() != Opc) 4472 return false; 4473 4474 MachineInstr *OpRHSDef = MRI.getVRegDef(OpRHS); 4475 Register OpLHSLHS = OpLHSDef->getOperand(1).getReg(); 4476 Register OpLHSRHS = OpLHSDef->getOperand(2).getReg(); 4477 4478 // If the inner op is (X op C), pull the constant out so it can be folded with 4479 // other constants in the expression tree. Folding is not guaranteed so we 4480 // might have (C1 op C2). In that case do not pull a constant out because it 4481 // won't help and can lead to infinite loops. 4482 if (isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSRHS), MRI) && 4483 !isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSLHS), MRI)) { 4484 if (isConstantOrConstantSplatVector(*OpRHSDef, MRI)) { 4485 // (Opc (Opc X, C1), C2) -> (Opc X, (Opc C1, C2)) 4486 MatchInfo = [=](MachineIRBuilder &B) { 4487 auto NewCst = B.buildInstr(Opc, {OpRHSTy}, {OpLHSRHS, OpRHS}); 4488 B.buildInstr(Opc, {DstReg}, {OpLHSLHS, NewCst}); 4489 }; 4490 return true; 4491 } 4492 if (getTargetLowering().isReassocProfitable(MRI, OpLHS, OpRHS)) { 4493 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 4494 // iff (op x, c1) has one use 4495 MatchInfo = [=](MachineIRBuilder &B) { 4496 auto NewLHSLHS = B.buildInstr(Opc, {OpRHSTy}, {OpLHSLHS, OpRHS}); 4497 B.buildInstr(Opc, {DstReg}, {NewLHSLHS, OpLHSRHS}); 4498 }; 4499 return true; 4500 } 4501 } 4502 4503 return false; 4504 } 4505 4506 bool CombinerHelper::matchReassocCommBinOp(MachineInstr &MI, 4507 BuildFnTy &MatchInfo) { 4508 // We don't check if the reassociation will break a legal addressing mode 4509 // here since pointer arithmetic is handled by G_PTR_ADD. 4510 unsigned Opc = MI.getOpcode(); 4511 Register DstReg = MI.getOperand(0).getReg(); 4512 Register LHSReg = MI.getOperand(1).getReg(); 4513 Register RHSReg = MI.getOperand(2).getReg(); 4514 4515 if (tryReassocBinOp(Opc, DstReg, LHSReg, RHSReg, MatchInfo)) 4516 return true; 4517 if (tryReassocBinOp(Opc, DstReg, RHSReg, LHSReg, MatchInfo)) 4518 return true; 4519 return false; 4520 } 4521 4522 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4523 Register Op1 = MI.getOperand(1).getReg(); 4524 Register Op2 = MI.getOperand(2).getReg(); 4525 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4526 if (!MaybeCst) 4527 return false; 4528 MatchInfo = *MaybeCst; 4529 return true; 4530 } 4531 4532 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4533 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4534 // Look for a binop feeding into an AND with a mask: 4535 // 4536 // %add = G_ADD %lhs, %rhs 4537 // %and = G_AND %add, 000...11111111 4538 // 4539 // Check if it's possible to perform the binop at a narrower width and zext 4540 // back to the original width like so: 4541 // 4542 // %narrow_lhs = G_TRUNC %lhs 4543 // %narrow_rhs = G_TRUNC %rhs 4544 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4545 // %new_add = G_ZEXT %narrow_add 4546 // %and = G_AND %new_add, 000...11111111 4547 // 4548 // This can allow later combines to eliminate the G_AND if it turns out 4549 // that the mask is irrelevant. 4550 assert(MI.getOpcode() == TargetOpcode::G_AND); 4551 Register Dst = MI.getOperand(0).getReg(); 4552 Register AndLHS = MI.getOperand(1).getReg(); 4553 Register AndRHS = MI.getOperand(2).getReg(); 4554 LLT WideTy = MRI.getType(Dst); 4555 4556 // If the potential binop has more than one use, then it's possible that one 4557 // of those uses will need its full width. 4558 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4559 return false; 4560 4561 // Check if the LHS feeding the AND is impacted by the high bits that we're 4562 // masking out. 4563 // 4564 // e.g. for 64-bit x, y: 4565 // 4566 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4567 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4568 if (!LHSInst) 4569 return false; 4570 unsigned LHSOpc = LHSInst->getOpcode(); 4571 switch (LHSOpc) { 4572 default: 4573 return false; 4574 case TargetOpcode::G_ADD: 4575 case TargetOpcode::G_SUB: 4576 case TargetOpcode::G_MUL: 4577 case TargetOpcode::G_AND: 4578 case TargetOpcode::G_OR: 4579 case TargetOpcode::G_XOR: 4580 break; 4581 } 4582 4583 // Find the mask on the RHS. 4584 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4585 if (!Cst) 4586 return false; 4587 auto Mask = Cst->Value; 4588 if (!Mask.isMask()) 4589 return false; 4590 4591 // No point in combining if there's nothing to truncate. 4592 unsigned NarrowWidth = Mask.countr_one(); 4593 if (NarrowWidth == WideTy.getSizeInBits()) 4594 return false; 4595 LLT NarrowTy = LLT::scalar(NarrowWidth); 4596 4597 // Check if adding the zext + truncates could be harmful. 4598 auto &MF = *MI.getMF(); 4599 const auto &TLI = getTargetLowering(); 4600 LLVMContext &Ctx = MF.getFunction().getContext(); 4601 auto &DL = MF.getDataLayout(); 4602 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4603 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4604 return false; 4605 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4606 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4607 return false; 4608 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4609 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4610 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4611 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4612 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4613 auto NarrowBinOp = 4614 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4615 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4616 Observer.changingInstr(MI); 4617 MI.getOperand(1).setReg(Ext.getReg(0)); 4618 Observer.changedInstr(MI); 4619 }; 4620 return true; 4621 } 4622 4623 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4624 unsigned Opc = MI.getOpcode(); 4625 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4626 4627 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 4628 return false; 4629 4630 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4631 Observer.changingInstr(MI); 4632 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4633 : TargetOpcode::G_SADDO; 4634 MI.setDesc(Builder.getTII().get(NewOpc)); 4635 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4636 Observer.changedInstr(MI); 4637 }; 4638 return true; 4639 } 4640 4641 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4642 // (G_*MULO x, 0) -> 0 + no carry out 4643 assert(MI.getOpcode() == TargetOpcode::G_UMULO || 4644 MI.getOpcode() == TargetOpcode::G_SMULO); 4645 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4646 return false; 4647 Register Dst = MI.getOperand(0).getReg(); 4648 Register Carry = MI.getOperand(1).getReg(); 4649 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || 4650 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4651 return false; 4652 MatchInfo = [=](MachineIRBuilder &B) { 4653 B.buildConstant(Dst, 0); 4654 B.buildConstant(Carry, 0); 4655 }; 4656 return true; 4657 } 4658 4659 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4660 // (G_*ADDO x, 0) -> x + no carry out 4661 assert(MI.getOpcode() == TargetOpcode::G_UADDO || 4662 MI.getOpcode() == TargetOpcode::G_SADDO); 4663 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4664 return false; 4665 Register Carry = MI.getOperand(1).getReg(); 4666 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4667 return false; 4668 Register Dst = MI.getOperand(0).getReg(); 4669 Register LHS = MI.getOperand(2).getReg(); 4670 MatchInfo = [=](MachineIRBuilder &B) { 4671 B.buildCopy(Dst, LHS); 4672 B.buildConstant(Carry, 0); 4673 }; 4674 return true; 4675 } 4676 4677 bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) { 4678 // (G_*ADDE x, y, 0) -> (G_*ADDO x, y) 4679 // (G_*SUBE x, y, 0) -> (G_*SUBO x, y) 4680 assert(MI.getOpcode() == TargetOpcode::G_UADDE || 4681 MI.getOpcode() == TargetOpcode::G_SADDE || 4682 MI.getOpcode() == TargetOpcode::G_USUBE || 4683 MI.getOpcode() == TargetOpcode::G_SSUBE); 4684 if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0))) 4685 return false; 4686 MatchInfo = [&](MachineIRBuilder &B) { 4687 unsigned NewOpcode; 4688 switch (MI.getOpcode()) { 4689 case TargetOpcode::G_UADDE: 4690 NewOpcode = TargetOpcode::G_UADDO; 4691 break; 4692 case TargetOpcode::G_SADDE: 4693 NewOpcode = TargetOpcode::G_SADDO; 4694 break; 4695 case TargetOpcode::G_USUBE: 4696 NewOpcode = TargetOpcode::G_USUBO; 4697 break; 4698 case TargetOpcode::G_SSUBE: 4699 NewOpcode = TargetOpcode::G_SSUBO; 4700 break; 4701 } 4702 Observer.changingInstr(MI); 4703 MI.setDesc(B.getTII().get(NewOpcode)); 4704 MI.removeOperand(4); 4705 Observer.changedInstr(MI); 4706 }; 4707 return true; 4708 } 4709 4710 bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI, 4711 BuildFnTy &MatchInfo) { 4712 assert(MI.getOpcode() == TargetOpcode::G_SUB); 4713 Register Dst = MI.getOperand(0).getReg(); 4714 // (x + y) - z -> x (if y == z) 4715 // (x + y) - z -> y (if x == z) 4716 Register X, Y, Z; 4717 if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) { 4718 Register ReplaceReg; 4719 int64_t CstX, CstY; 4720 if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) && 4721 mi_match(Z, MRI, m_SpecificICstOrSplat(CstY)))) 4722 ReplaceReg = X; 4723 else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && 4724 mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) 4725 ReplaceReg = Y; 4726 if (ReplaceReg) { 4727 MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); }; 4728 return true; 4729 } 4730 } 4731 4732 // x - (y + z) -> 0 - y (if x == z) 4733 // x - (y + z) -> 0 - z (if x == y) 4734 if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) { 4735 Register ReplaceReg; 4736 int64_t CstX; 4737 if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && 4738 mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) 4739 ReplaceReg = Y; 4740 else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && 4741 mi_match(Y, MRI, m_SpecificICstOrSplat(CstX)))) 4742 ReplaceReg = Z; 4743 if (ReplaceReg) { 4744 MatchInfo = [=](MachineIRBuilder &B) { 4745 auto Zero = B.buildConstant(MRI.getType(Dst), 0); 4746 B.buildSub(Dst, Zero, ReplaceReg); 4747 }; 4748 return true; 4749 } 4750 } 4751 return false; 4752 } 4753 4754 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4755 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4756 auto &UDiv = cast<GenericMachineInstr>(MI); 4757 Register Dst = UDiv.getReg(0); 4758 Register LHS = UDiv.getReg(1); 4759 Register RHS = UDiv.getReg(2); 4760 LLT Ty = MRI.getType(Dst); 4761 LLT ScalarTy = Ty.getScalarType(); 4762 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4763 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4764 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4765 auto &MIB = Builder; 4766 MIB.setInstrAndDebugLoc(MI); 4767 4768 bool UseNPQ = false; 4769 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4770 4771 auto BuildUDIVPattern = [&](const Constant *C) { 4772 auto *CI = cast<ConstantInt>(C); 4773 const APInt &Divisor = CI->getValue(); 4774 4775 bool SelNPQ = false; 4776 APInt Magic(Divisor.getBitWidth(), 0); 4777 unsigned PreShift = 0, PostShift = 0; 4778 4779 // Magic algorithm doesn't work for division by 1. We need to emit a select 4780 // at the end. 4781 // TODO: Use undef values for divisor of 1. 4782 if (!Divisor.isOne()) { 4783 UnsignedDivisionByConstantInfo magics = 4784 UnsignedDivisionByConstantInfo::get(Divisor); 4785 4786 Magic = std::move(magics.Magic); 4787 4788 assert(magics.PreShift < Divisor.getBitWidth() && 4789 "We shouldn't generate an undefined shift!"); 4790 assert(magics.PostShift < Divisor.getBitWidth() && 4791 "We shouldn't generate an undefined shift!"); 4792 assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift"); 4793 PreShift = magics.PreShift; 4794 PostShift = magics.PostShift; 4795 SelNPQ = magics.IsAdd; 4796 } 4797 4798 PreShifts.push_back( 4799 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4800 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4801 NPQFactors.push_back( 4802 MIB.buildConstant(ScalarTy, 4803 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4804 : APInt::getZero(EltBits)) 4805 .getReg(0)); 4806 PostShifts.push_back( 4807 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4808 UseNPQ |= SelNPQ; 4809 return true; 4810 }; 4811 4812 // Collect the shifts/magic values from each element. 4813 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4814 (void)Matched; 4815 assert(Matched && "Expected unary predicate match to succeed"); 4816 4817 Register PreShift, PostShift, MagicFactor, NPQFactor; 4818 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4819 if (RHSDef) { 4820 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4821 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4822 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4823 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4824 } else { 4825 assert(MRI.getType(RHS).isScalar() && 4826 "Non-build_vector operation should have been a scalar"); 4827 PreShift = PreShifts[0]; 4828 MagicFactor = MagicFactors[0]; 4829 PostShift = PostShifts[0]; 4830 } 4831 4832 Register Q = LHS; 4833 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4834 4835 // Multiply the numerator (operand 0) by the magic value. 4836 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4837 4838 if (UseNPQ) { 4839 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4840 4841 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4842 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4843 if (Ty.isVector()) 4844 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4845 else 4846 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4847 4848 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4849 } 4850 4851 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4852 auto One = MIB.buildConstant(Ty, 1); 4853 auto IsOne = MIB.buildICmp( 4854 CmpInst::Predicate::ICMP_EQ, 4855 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4856 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4857 } 4858 4859 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4860 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4861 Register Dst = MI.getOperand(0).getReg(); 4862 Register RHS = MI.getOperand(2).getReg(); 4863 LLT DstTy = MRI.getType(Dst); 4864 auto *RHSDef = MRI.getVRegDef(RHS); 4865 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4866 return false; 4867 4868 auto &MF = *MI.getMF(); 4869 AttributeList Attr = MF.getFunction().getAttributes(); 4870 const auto &TLI = getTargetLowering(); 4871 LLVMContext &Ctx = MF.getFunction().getContext(); 4872 auto &DL = MF.getDataLayout(); 4873 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4874 return false; 4875 4876 // Don't do this for minsize because the instruction sequence is usually 4877 // larger. 4878 if (MF.getFunction().hasMinSize()) 4879 return false; 4880 4881 // Don't do this if the types are not going to be legal. 4882 if (LI) { 4883 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4884 return false; 4885 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4886 return false; 4887 if (!isLegalOrBeforeLegalizer( 4888 {TargetOpcode::G_ICMP, 4889 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4890 DstTy}})) 4891 return false; 4892 } 4893 4894 auto CheckEltValue = [&](const Constant *C) { 4895 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4896 return !CI->isZero(); 4897 return false; 4898 }; 4899 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4900 } 4901 4902 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4903 auto *NewMI = buildUDivUsingMul(MI); 4904 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4905 } 4906 4907 bool CombinerHelper::matchSDivByConst(MachineInstr &MI) { 4908 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); 4909 Register Dst = MI.getOperand(0).getReg(); 4910 Register RHS = MI.getOperand(2).getReg(); 4911 LLT DstTy = MRI.getType(Dst); 4912 4913 auto &MF = *MI.getMF(); 4914 AttributeList Attr = MF.getFunction().getAttributes(); 4915 const auto &TLI = getTargetLowering(); 4916 LLVMContext &Ctx = MF.getFunction().getContext(); 4917 auto &DL = MF.getDataLayout(); 4918 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4919 return false; 4920 4921 // Don't do this for minsize because the instruction sequence is usually 4922 // larger. 4923 if (MF.getFunction().hasMinSize()) 4924 return false; 4925 4926 // If the sdiv has an 'exact' flag we can use a simpler lowering. 4927 if (MI.getFlag(MachineInstr::MIFlag::IsExact)) { 4928 return matchUnaryPredicate( 4929 MRI, RHS, [](const Constant *C) { return C && !C->isZeroValue(); }); 4930 } 4931 4932 // Don't support the general case for now. 4933 return false; 4934 } 4935 4936 void CombinerHelper::applySDivByConst(MachineInstr &MI) { 4937 auto *NewMI = buildSDivUsingMul(MI); 4938 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4939 } 4940 4941 MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) { 4942 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); 4943 auto &SDiv = cast<GenericMachineInstr>(MI); 4944 Register Dst = SDiv.getReg(0); 4945 Register LHS = SDiv.getReg(1); 4946 Register RHS = SDiv.getReg(2); 4947 LLT Ty = MRI.getType(Dst); 4948 LLT ScalarTy = Ty.getScalarType(); 4949 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4950 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4951 auto &MIB = Builder; 4952 MIB.setInstrAndDebugLoc(MI); 4953 4954 bool UseSRA = false; 4955 SmallVector<Register, 16> Shifts, Factors; 4956 4957 auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI)); 4958 bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value(); 4959 4960 auto BuildSDIVPattern = [&](const Constant *C) { 4961 // Don't recompute inverses for each splat element. 4962 if (IsSplat && !Factors.empty()) { 4963 Shifts.push_back(Shifts[0]); 4964 Factors.push_back(Factors[0]); 4965 return true; 4966 } 4967 4968 auto *CI = cast<ConstantInt>(C); 4969 APInt Divisor = CI->getValue(); 4970 unsigned Shift = Divisor.countr_zero(); 4971 if (Shift) { 4972 Divisor.ashrInPlace(Shift); 4973 UseSRA = true; 4974 } 4975 4976 // Calculate the multiplicative inverse modulo BW. 4977 // 2^W requires W + 1 bits, so we have to extend and then truncate. 4978 unsigned W = Divisor.getBitWidth(); 4979 APInt Factor = Divisor.zext(W + 1) 4980 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 4981 .trunc(W); 4982 Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0)); 4983 Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0)); 4984 return true; 4985 }; 4986 4987 // Collect all magic values from the build vector. 4988 bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern); 4989 (void)Matched; 4990 assert(Matched && "Expected unary predicate match to succeed"); 4991 4992 Register Shift, Factor; 4993 if (Ty.isVector()) { 4994 Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0); 4995 Factor = MIB.buildBuildVector(Ty, Factors).getReg(0); 4996 } else { 4997 Shift = Shifts[0]; 4998 Factor = Factors[0]; 4999 } 5000 5001 Register Res = LHS; 5002 5003 if (UseSRA) 5004 Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0); 5005 5006 return MIB.buildMul(Ty, Res, Factor); 5007 } 5008 5009 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 5010 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 5011 Register RHS = MI.getOperand(2).getReg(); 5012 Register Dst = MI.getOperand(0).getReg(); 5013 LLT Ty = MRI.getType(Dst); 5014 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 5015 auto MatchPow2ExceptOne = [&](const Constant *C) { 5016 if (auto *CI = dyn_cast<ConstantInt>(C)) 5017 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 5018 return false; 5019 }; 5020 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 5021 return false; 5022 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 5023 } 5024 5025 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 5026 Register LHS = MI.getOperand(1).getReg(); 5027 Register RHS = MI.getOperand(2).getReg(); 5028 Register Dst = MI.getOperand(0).getReg(); 5029 LLT Ty = MRI.getType(Dst); 5030 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 5031 unsigned NumEltBits = Ty.getScalarSizeInBits(); 5032 5033 Builder.setInstrAndDebugLoc(MI); 5034 auto LogBase2 = buildLogBase2(RHS, Builder); 5035 auto ShiftAmt = 5036 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 5037 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 5038 Builder.buildLShr(Dst, LHS, Trunc); 5039 MI.eraseFromParent(); 5040 } 5041 5042 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 5043 BuildFnTy &MatchInfo) { 5044 unsigned Opc = MI.getOpcode(); 5045 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 5046 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 5047 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 5048 5049 Register Dst = MI.getOperand(0).getReg(); 5050 Register X = MI.getOperand(1).getReg(); 5051 Register Y = MI.getOperand(2).getReg(); 5052 LLT Type = MRI.getType(Dst); 5053 5054 // fold (fadd x, fneg(y)) -> (fsub x, y) 5055 // fold (fadd fneg(y), x) -> (fsub x, y) 5056 // G_ADD is commutative so both cases are checked by m_GFAdd 5057 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 5058 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 5059 Opc = TargetOpcode::G_FSUB; 5060 } 5061 /// fold (fsub x, fneg(y)) -> (fadd x, y) 5062 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 5063 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 5064 Opc = TargetOpcode::G_FADD; 5065 } 5066 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 5067 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 5068 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 5069 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 5070 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 5071 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 5072 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 5073 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 5074 // no opcode change 5075 } else 5076 return false; 5077 5078 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5079 Observer.changingInstr(MI); 5080 MI.setDesc(B.getTII().get(Opc)); 5081 MI.getOperand(1).setReg(X); 5082 MI.getOperand(2).setReg(Y); 5083 Observer.changedInstr(MI); 5084 }; 5085 return true; 5086 } 5087 5088 bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) { 5089 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5090 5091 Register LHS = MI.getOperand(1).getReg(); 5092 MatchInfo = MI.getOperand(2).getReg(); 5093 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 5094 5095 const auto LHSCst = Ty.isVector() 5096 ? getFConstantSplat(LHS, MRI, /* allowUndef */ true) 5097 : getFConstantVRegValWithLookThrough(LHS, MRI); 5098 if (!LHSCst) 5099 return false; 5100 5101 // -0.0 is always allowed 5102 if (LHSCst->Value.isNegZero()) 5103 return true; 5104 5105 // +0.0 is only allowed if nsz is set. 5106 if (LHSCst->Value.isPosZero()) 5107 return MI.getFlag(MachineInstr::FmNsz); 5108 5109 return false; 5110 } 5111 5112 void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) { 5113 Builder.setInstrAndDebugLoc(MI); 5114 Register Dst = MI.getOperand(0).getReg(); 5115 Builder.buildFNeg( 5116 Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0)); 5117 eraseInst(MI); 5118 } 5119 5120 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 5121 /// due to global flags or MachineInstr flags. 5122 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 5123 if (MI.getOpcode() != TargetOpcode::G_FMUL) 5124 return false; 5125 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 5126 } 5127 5128 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 5129 const MachineRegisterInfo &MRI) { 5130 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 5131 MRI.use_instr_nodbg_end()) > 5132 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 5133 MRI.use_instr_nodbg_end()); 5134 } 5135 5136 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 5137 bool &AllowFusionGlobally, 5138 bool &HasFMAD, bool &Aggressive, 5139 bool CanReassociate) { 5140 5141 auto *MF = MI.getMF(); 5142 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 5143 const TargetOptions &Options = MF->getTarget().Options; 5144 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5145 5146 if (CanReassociate && 5147 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 5148 return false; 5149 5150 // Floating-point multiply-add with intermediate rounding. 5151 HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType)); 5152 // Floating-point multiply-add without intermediate rounding. 5153 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 5154 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 5155 // No valid opcode, do not combine. 5156 if (!HasFMAD && !HasFMA) 5157 return false; 5158 5159 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 5160 Options.UnsafeFPMath || HasFMAD; 5161 // If the addition is not contractable, do not combine. 5162 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 5163 return false; 5164 5165 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 5166 return true; 5167 } 5168 5169 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 5170 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5171 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5172 5173 bool AllowFusionGlobally, HasFMAD, Aggressive; 5174 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5175 return false; 5176 5177 Register Op1 = MI.getOperand(1).getReg(); 5178 Register Op2 = MI.getOperand(2).getReg(); 5179 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5180 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5181 unsigned PreferredFusedOpcode = 5182 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5183 5184 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5185 // prefer to fold the multiply with fewer uses. 5186 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5187 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5188 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5189 std::swap(LHS, RHS); 5190 } 5191 5192 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 5193 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5194 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { 5195 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5196 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5197 {LHS.MI->getOperand(1).getReg(), 5198 LHS.MI->getOperand(2).getReg(), RHS.Reg}); 5199 }; 5200 return true; 5201 } 5202 5203 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 5204 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5205 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { 5206 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5207 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5208 {RHS.MI->getOperand(1).getReg(), 5209 RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5210 }; 5211 return true; 5212 } 5213 5214 return false; 5215 } 5216 5217 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 5218 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5219 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5220 5221 bool AllowFusionGlobally, HasFMAD, Aggressive; 5222 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5223 return false; 5224 5225 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5226 Register Op1 = MI.getOperand(1).getReg(); 5227 Register Op2 = MI.getOperand(2).getReg(); 5228 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5229 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5230 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5231 5232 unsigned PreferredFusedOpcode = 5233 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5234 5235 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5236 // prefer to fold the multiply with fewer uses. 5237 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5238 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5239 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5240 std::swap(LHS, RHS); 5241 } 5242 5243 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 5244 MachineInstr *FpExtSrc; 5245 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5246 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5247 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5248 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5249 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5250 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5251 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5252 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5253 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); 5254 }; 5255 return true; 5256 } 5257 5258 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 5259 // Note: Commutes FADD operands. 5260 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5261 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5262 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5263 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5264 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5265 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5266 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5267 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5268 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); 5269 }; 5270 return true; 5271 } 5272 5273 return false; 5274 } 5275 5276 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 5277 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5278 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5279 5280 bool AllowFusionGlobally, HasFMAD, Aggressive; 5281 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 5282 return false; 5283 5284 Register Op1 = MI.getOperand(1).getReg(); 5285 Register Op2 = MI.getOperand(2).getReg(); 5286 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5287 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5288 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5289 5290 unsigned PreferredFusedOpcode = 5291 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5292 5293 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5294 // prefer to fold the multiply with fewer uses. 5295 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5296 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5297 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5298 std::swap(LHS, RHS); 5299 } 5300 5301 MachineInstr *FMA = nullptr; 5302 Register Z; 5303 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 5304 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5305 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == 5306 TargetOpcode::G_FMUL) && 5307 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && 5308 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { 5309 FMA = LHS.MI; 5310 Z = RHS.Reg; 5311 } 5312 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 5313 else if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5314 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == 5315 TargetOpcode::G_FMUL) && 5316 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && 5317 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { 5318 Z = LHS.Reg; 5319 FMA = RHS.MI; 5320 } 5321 5322 if (FMA) { 5323 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 5324 Register X = FMA->getOperand(1).getReg(); 5325 Register Y = FMA->getOperand(2).getReg(); 5326 Register U = FMulMI->getOperand(1).getReg(); 5327 Register V = FMulMI->getOperand(2).getReg(); 5328 5329 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5330 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5331 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5332 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5333 {X, Y, InnerFMA}); 5334 }; 5335 return true; 5336 } 5337 5338 return false; 5339 } 5340 5341 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5342 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5343 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5344 5345 bool AllowFusionGlobally, HasFMAD, Aggressive; 5346 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5347 return false; 5348 5349 if (!Aggressive) 5350 return false; 5351 5352 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5353 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5354 Register Op1 = MI.getOperand(1).getReg(); 5355 Register Op2 = MI.getOperand(2).getReg(); 5356 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5357 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5358 5359 unsigned PreferredFusedOpcode = 5360 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5361 5362 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5363 // prefer to fold the multiply with fewer uses. 5364 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5365 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5366 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5367 std::swap(LHS, RHS); 5368 } 5369 5370 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5371 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5372 Register Y, MachineIRBuilder &B) { 5373 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5374 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5375 Register InnerFMA = 5376 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5377 .getReg(0); 5378 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5379 {X, Y, InnerFMA}); 5380 }; 5381 5382 MachineInstr *FMulMI, *FMAMI; 5383 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5384 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5385 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5386 mi_match(LHS.MI->getOperand(3).getReg(), MRI, 5387 m_GFPExt(m_MInstr(FMulMI))) && 5388 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5389 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5390 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5391 MatchInfo = [=](MachineIRBuilder &B) { 5392 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5393 FMulMI->getOperand(2).getReg(), RHS.Reg, 5394 LHS.MI->getOperand(1).getReg(), 5395 LHS.MI->getOperand(2).getReg(), B); 5396 }; 5397 return true; 5398 } 5399 5400 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5401 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5402 // FIXME: This turns two single-precision and one double-precision 5403 // operation into two double-precision operations, which might not be 5404 // interesting for all targets, especially GPUs. 5405 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5406 FMAMI->getOpcode() == PreferredFusedOpcode) { 5407 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5408 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5409 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5410 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5411 MatchInfo = [=](MachineIRBuilder &B) { 5412 Register X = FMAMI->getOperand(1).getReg(); 5413 Register Y = FMAMI->getOperand(2).getReg(); 5414 X = B.buildFPExt(DstType, X).getReg(0); 5415 Y = B.buildFPExt(DstType, Y).getReg(0); 5416 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5417 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); 5418 }; 5419 5420 return true; 5421 } 5422 } 5423 5424 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5425 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5426 if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5427 mi_match(RHS.MI->getOperand(3).getReg(), MRI, 5428 m_GFPExt(m_MInstr(FMulMI))) && 5429 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5430 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5431 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5432 MatchInfo = [=](MachineIRBuilder &B) { 5433 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5434 FMulMI->getOperand(2).getReg(), LHS.Reg, 5435 RHS.MI->getOperand(1).getReg(), 5436 RHS.MI->getOperand(2).getReg(), B); 5437 }; 5438 return true; 5439 } 5440 5441 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5442 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5443 // FIXME: This turns two single-precision and one double-precision 5444 // operation into two double-precision operations, which might not be 5445 // interesting for all targets, especially GPUs. 5446 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5447 FMAMI->getOpcode() == PreferredFusedOpcode) { 5448 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5449 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5450 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5451 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5452 MatchInfo = [=](MachineIRBuilder &B) { 5453 Register X = FMAMI->getOperand(1).getReg(); 5454 Register Y = FMAMI->getOperand(2).getReg(); 5455 X = B.buildFPExt(DstType, X).getReg(0); 5456 Y = B.buildFPExt(DstType, Y).getReg(0); 5457 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5458 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); 5459 }; 5460 return true; 5461 } 5462 } 5463 5464 return false; 5465 } 5466 5467 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 5468 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5469 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5470 5471 bool AllowFusionGlobally, HasFMAD, Aggressive; 5472 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5473 return false; 5474 5475 Register Op1 = MI.getOperand(1).getReg(); 5476 Register Op2 = MI.getOperand(2).getReg(); 5477 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5478 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5479 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5480 5481 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5482 // prefer to fold the multiply with fewer uses. 5483 int FirstMulHasFewerUses = true; 5484 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5485 isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5486 hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5487 FirstMulHasFewerUses = false; 5488 5489 unsigned PreferredFusedOpcode = 5490 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5491 5492 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 5493 if (FirstMulHasFewerUses && 5494 (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5495 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { 5496 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5497 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); 5498 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5499 {LHS.MI->getOperand(1).getReg(), 5500 LHS.MI->getOperand(2).getReg(), NegZ}); 5501 }; 5502 return true; 5503 } 5504 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 5505 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5506 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { 5507 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5508 Register NegY = 5509 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); 5510 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5511 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5512 }; 5513 return true; 5514 } 5515 5516 return false; 5517 } 5518 5519 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 5520 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5521 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5522 5523 bool AllowFusionGlobally, HasFMAD, Aggressive; 5524 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5525 return false; 5526 5527 Register LHSReg = MI.getOperand(1).getReg(); 5528 Register RHSReg = MI.getOperand(2).getReg(); 5529 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5530 5531 unsigned PreferredFusedOpcode = 5532 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5533 5534 MachineInstr *FMulMI; 5535 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 5536 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5537 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 5538 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5539 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5540 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5541 Register NegX = 5542 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5543 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5544 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5545 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 5546 }; 5547 return true; 5548 } 5549 5550 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 5551 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5552 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 5553 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5554 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5555 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5556 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5557 {FMulMI->getOperand(1).getReg(), 5558 FMulMI->getOperand(2).getReg(), LHSReg}); 5559 }; 5560 return true; 5561 } 5562 5563 return false; 5564 } 5565 5566 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 5567 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5568 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5569 5570 bool AllowFusionGlobally, HasFMAD, Aggressive; 5571 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5572 return false; 5573 5574 Register LHSReg = MI.getOperand(1).getReg(); 5575 Register RHSReg = MI.getOperand(2).getReg(); 5576 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5577 5578 unsigned PreferredFusedOpcode = 5579 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5580 5581 MachineInstr *FMulMI; 5582 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 5583 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5584 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5585 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 5586 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5587 Register FpExtX = 5588 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5589 Register FpExtY = 5590 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5591 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5592 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5593 {FpExtX, FpExtY, NegZ}); 5594 }; 5595 return true; 5596 } 5597 5598 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 5599 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5600 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5601 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 5602 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5603 Register FpExtY = 5604 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5605 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 5606 Register FpExtZ = 5607 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5608 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5609 {NegY, FpExtZ, LHSReg}); 5610 }; 5611 return true; 5612 } 5613 5614 return false; 5615 } 5616 5617 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 5618 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5619 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5620 5621 bool AllowFusionGlobally, HasFMAD, Aggressive; 5622 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5623 return false; 5624 5625 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5626 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5627 Register LHSReg = MI.getOperand(1).getReg(); 5628 Register RHSReg = MI.getOperand(2).getReg(); 5629 5630 unsigned PreferredFusedOpcode = 5631 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5632 5633 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 5634 MachineIRBuilder &B) { 5635 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 5636 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 5637 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 5638 }; 5639 5640 MachineInstr *FMulMI; 5641 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 5642 // (fneg (fma (fpext x), (fpext y), z)) 5643 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 5644 // (fneg (fma (fpext x), (fpext y), z)) 5645 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5646 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5647 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5648 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5649 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5650 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5651 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 5652 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 5653 FMulMI->getOperand(2).getReg(), RHSReg, B); 5654 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 5655 }; 5656 return true; 5657 } 5658 5659 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5660 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5661 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5662 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5663 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5664 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5665 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5666 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5667 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 5668 FMulMI->getOperand(2).getReg(), LHSReg, B); 5669 }; 5670 return true; 5671 } 5672 5673 return false; 5674 } 5675 5676 bool CombinerHelper::matchSelectToLogical(MachineInstr &MI, 5677 BuildFnTy &MatchInfo) { 5678 GSelect &Sel = cast<GSelect>(MI); 5679 Register DstReg = Sel.getReg(0); 5680 Register Cond = Sel.getCondReg(); 5681 Register TrueReg = Sel.getTrueReg(); 5682 Register FalseReg = Sel.getFalseReg(); 5683 5684 auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI); 5685 auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI); 5686 5687 const LLT CondTy = MRI.getType(Cond); 5688 const LLT OpTy = MRI.getType(TrueReg); 5689 if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1) 5690 return false; 5691 5692 // We have a boolean select. 5693 5694 // select Cond, Cond, F --> or Cond, F 5695 // select Cond, 1, F --> or Cond, F 5696 auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI); 5697 if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) { 5698 MatchInfo = [=](MachineIRBuilder &MIB) { 5699 MIB.buildOr(DstReg, Cond, FalseReg); 5700 }; 5701 return true; 5702 } 5703 5704 // select Cond, T, Cond --> and Cond, T 5705 // select Cond, T, 0 --> and Cond, T 5706 auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI); 5707 if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) { 5708 MatchInfo = [=](MachineIRBuilder &MIB) { 5709 MIB.buildAnd(DstReg, Cond, TrueReg); 5710 }; 5711 return true; 5712 } 5713 5714 // select Cond, T, 1 --> or (not Cond), T 5715 if (MaybeCstFalse && MaybeCstFalse->isOne()) { 5716 MatchInfo = [=](MachineIRBuilder &MIB) { 5717 MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg); 5718 }; 5719 return true; 5720 } 5721 5722 // select Cond, 0, F --> and (not Cond), F 5723 if (MaybeCstTrue && MaybeCstTrue->isZero()) { 5724 MatchInfo = [=](MachineIRBuilder &MIB) { 5725 MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg); 5726 }; 5727 return true; 5728 } 5729 return false; 5730 } 5731 5732 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI, 5733 unsigned &IdxToPropagate) { 5734 bool PropagateNaN; 5735 switch (MI.getOpcode()) { 5736 default: 5737 return false; 5738 case TargetOpcode::G_FMINNUM: 5739 case TargetOpcode::G_FMAXNUM: 5740 PropagateNaN = false; 5741 break; 5742 case TargetOpcode::G_FMINIMUM: 5743 case TargetOpcode::G_FMAXIMUM: 5744 PropagateNaN = true; 5745 break; 5746 } 5747 5748 auto MatchNaN = [&](unsigned Idx) { 5749 Register MaybeNaNReg = MI.getOperand(Idx).getReg(); 5750 const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI); 5751 if (!MaybeCst || !MaybeCst->getValueAPF().isNaN()) 5752 return false; 5753 IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1); 5754 return true; 5755 }; 5756 5757 return MatchNaN(1) || MatchNaN(2); 5758 } 5759 5760 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) { 5761 assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD"); 5762 Register LHS = MI.getOperand(1).getReg(); 5763 Register RHS = MI.getOperand(2).getReg(); 5764 5765 // Helper lambda to check for opportunities for 5766 // A + (B - A) -> B 5767 // (B - A) + A -> B 5768 auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) { 5769 Register Reg; 5770 return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) && 5771 Reg == MaybeSameReg; 5772 }; 5773 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 5774 } 5775 5776 bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI, 5777 Register &MatchInfo) { 5778 // This combine folds the following patterns: 5779 // 5780 // G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k)) 5781 // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k))) 5782 // into 5783 // x 5784 // if 5785 // k == sizeof(VecEltTy)/2 5786 // type(x) == type(dst) 5787 // 5788 // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef) 5789 // into 5790 // x 5791 // if 5792 // type(x) == type(dst) 5793 5794 LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg()); 5795 LLT DstEltTy = DstVecTy.getElementType(); 5796 5797 Register Lo, Hi; 5798 5799 if (mi_match( 5800 MI, MRI, 5801 m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) { 5802 MatchInfo = Lo; 5803 return MRI.getType(MatchInfo) == DstVecTy; 5804 } 5805 5806 std::optional<ValueAndVReg> ShiftAmount; 5807 const auto LoPattern = m_GBitcast(m_Reg(Lo)); 5808 const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount)); 5809 if (mi_match( 5810 MI, MRI, 5811 m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern), 5812 m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) { 5813 if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) { 5814 MatchInfo = Lo; 5815 return MRI.getType(MatchInfo) == DstVecTy; 5816 } 5817 } 5818 5819 return false; 5820 } 5821 5822 bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI, 5823 Register &MatchInfo) { 5824 // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x 5825 // if type(x) == type(G_TRUNC) 5826 if (!mi_match(MI.getOperand(1).getReg(), MRI, 5827 m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg())))) 5828 return false; 5829 5830 return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg()); 5831 } 5832 5833 bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI, 5834 Register &MatchInfo) { 5835 // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with 5836 // y if K == size of vector element type 5837 std::optional<ValueAndVReg> ShiftAmt; 5838 if (!mi_match(MI.getOperand(1).getReg(), MRI, 5839 m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))), 5840 m_GCst(ShiftAmt)))) 5841 return false; 5842 5843 LLT MatchTy = MRI.getType(MatchInfo); 5844 return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() && 5845 MatchTy == MRI.getType(MI.getOperand(0).getReg()); 5846 } 5847 5848 unsigned CombinerHelper::getFPMinMaxOpcForSelect( 5849 CmpInst::Predicate Pred, LLT DstTy, 5850 SelectPatternNaNBehaviour VsNaNRetVal) const { 5851 assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE && 5852 "Expected a NaN behaviour?"); 5853 // Choose an opcode based off of legality or the behaviour when one of the 5854 // LHS/RHS may be NaN. 5855 switch (Pred) { 5856 default: 5857 return 0; 5858 case CmpInst::FCMP_UGT: 5859 case CmpInst::FCMP_UGE: 5860 case CmpInst::FCMP_OGT: 5861 case CmpInst::FCMP_OGE: 5862 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) 5863 return TargetOpcode::G_FMAXNUM; 5864 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) 5865 return TargetOpcode::G_FMAXIMUM; 5866 if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}})) 5867 return TargetOpcode::G_FMAXNUM; 5868 if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}})) 5869 return TargetOpcode::G_FMAXIMUM; 5870 return 0; 5871 case CmpInst::FCMP_ULT: 5872 case CmpInst::FCMP_ULE: 5873 case CmpInst::FCMP_OLT: 5874 case CmpInst::FCMP_OLE: 5875 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) 5876 return TargetOpcode::G_FMINNUM; 5877 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) 5878 return TargetOpcode::G_FMINIMUM; 5879 if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}})) 5880 return TargetOpcode::G_FMINNUM; 5881 if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}})) 5882 return 0; 5883 return TargetOpcode::G_FMINIMUM; 5884 } 5885 } 5886 5887 CombinerHelper::SelectPatternNaNBehaviour 5888 CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS, 5889 bool IsOrderedComparison) const { 5890 bool LHSSafe = isKnownNeverNaN(LHS, MRI); 5891 bool RHSSafe = isKnownNeverNaN(RHS, MRI); 5892 // Completely unsafe. 5893 if (!LHSSafe && !RHSSafe) 5894 return SelectPatternNaNBehaviour::NOT_APPLICABLE; 5895 if (LHSSafe && RHSSafe) 5896 return SelectPatternNaNBehaviour::RETURNS_ANY; 5897 // An ordered comparison will return false when given a NaN, so it 5898 // returns the RHS. 5899 if (IsOrderedComparison) 5900 return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN 5901 : SelectPatternNaNBehaviour::RETURNS_OTHER; 5902 // An unordered comparison will return true when given a NaN, so it 5903 // returns the LHS. 5904 return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER 5905 : SelectPatternNaNBehaviour::RETURNS_NAN; 5906 } 5907 5908 bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond, 5909 Register TrueVal, Register FalseVal, 5910 BuildFnTy &MatchInfo) { 5911 // Match: select (fcmp cond x, y) x, y 5912 // select (fcmp cond x, y) y, x 5913 // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition. 5914 LLT DstTy = MRI.getType(Dst); 5915 // Bail out early on pointers, since we'll never want to fold to a min/max. 5916 if (DstTy.isPointer()) 5917 return false; 5918 // Match a floating point compare with a less-than/greater-than predicate. 5919 // TODO: Allow multiple users of the compare if they are all selects. 5920 CmpInst::Predicate Pred; 5921 Register CmpLHS, CmpRHS; 5922 if (!mi_match(Cond, MRI, 5923 m_OneNonDBGUse( 5924 m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) || 5925 CmpInst::isEquality(Pred)) 5926 return false; 5927 SelectPatternNaNBehaviour ResWithKnownNaNInfo = 5928 computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred)); 5929 if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE) 5930 return false; 5931 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5932 std::swap(CmpLHS, CmpRHS); 5933 Pred = CmpInst::getSwappedPredicate(Pred); 5934 if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN) 5935 ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER; 5936 else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER) 5937 ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN; 5938 } 5939 if (TrueVal != CmpLHS || FalseVal != CmpRHS) 5940 return false; 5941 // Decide what type of max/min this should be based off of the predicate. 5942 unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo); 5943 if (!Opc || !isLegal({Opc, {DstTy}})) 5944 return false; 5945 // Comparisons between signed zero and zero may have different results... 5946 // unless we have fmaximum/fminimum. In that case, we know -0 < 0. 5947 if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) { 5948 // We don't know if a comparison between two 0s will give us a consistent 5949 // result. Be conservative and only proceed if at least one side is 5950 // non-zero. 5951 auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI); 5952 if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) { 5953 KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI); 5954 if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) 5955 return false; 5956 } 5957 } 5958 MatchInfo = [=](MachineIRBuilder &B) { 5959 B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS}); 5960 }; 5961 return true; 5962 } 5963 5964 bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI, 5965 BuildFnTy &MatchInfo) { 5966 // TODO: Handle integer cases. 5967 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 5968 // Condition may be fed by a truncated compare. 5969 Register Cond = MI.getOperand(1).getReg(); 5970 Register MaybeTrunc; 5971 if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc))))) 5972 Cond = MaybeTrunc; 5973 Register Dst = MI.getOperand(0).getReg(); 5974 Register TrueVal = MI.getOperand(2).getReg(); 5975 Register FalseVal = MI.getOperand(3).getReg(); 5976 return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo); 5977 } 5978 5979 bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI, 5980 BuildFnTy &MatchInfo) { 5981 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 5982 // (X + Y) == X --> Y == 0 5983 // (X + Y) != X --> Y != 0 5984 // (X - Y) == X --> Y == 0 5985 // (X - Y) != X --> Y != 0 5986 // (X ^ Y) == X --> Y == 0 5987 // (X ^ Y) != X --> Y != 0 5988 Register Dst = MI.getOperand(0).getReg(); 5989 CmpInst::Predicate Pred; 5990 Register X, Y, OpLHS, OpRHS; 5991 bool MatchedSub = mi_match( 5992 Dst, MRI, 5993 m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y)))); 5994 if (MatchedSub && X != OpLHS) 5995 return false; 5996 if (!MatchedSub) { 5997 if (!mi_match(Dst, MRI, 5998 m_c_GICmp(m_Pred(Pred), m_Reg(X), 5999 m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)), 6000 m_GXor(m_Reg(OpLHS), m_Reg(OpRHS)))))) 6001 return false; 6002 Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register(); 6003 } 6004 MatchInfo = [=](MachineIRBuilder &B) { 6005 auto Zero = B.buildConstant(MRI.getType(Y), 0); 6006 B.buildICmp(Pred, Dst, Y, Zero); 6007 }; 6008 return CmpInst::isEquality(Pred) && Y.isValid(); 6009 } 6010 6011 bool CombinerHelper::matchShiftsTooBig(MachineInstr &MI) { 6012 Register ShiftReg = MI.getOperand(2).getReg(); 6013 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 6014 auto IsShiftTooBig = [&](const Constant *C) { 6015 auto *CI = dyn_cast<ConstantInt>(C); 6016 return CI && CI->uge(ResTy.getScalarSizeInBits()); 6017 }; 6018 return matchUnaryPredicate(MRI, ShiftReg, IsShiftTooBig); 6019 } 6020 6021 bool CombinerHelper::tryCombine(MachineInstr &MI) { 6022 if (tryCombineCopy(MI)) 6023 return true; 6024 if (tryCombineExtendingLoads(MI)) 6025 return true; 6026 if (tryCombineIndexedLoadStore(MI)) 6027 return true; 6028 return false; 6029 } 6030