1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 74 const AttributeList &Attrs, 75 unsigned OpIdx) const { 76 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 77 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 78 }); 79 } 80 81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 82 ArrayRef<Register> ResRegs, 83 ArrayRef<ArrayRef<Register>> ArgRegs, 84 Register SwiftErrorVReg, 85 std::function<unsigned()> GetCalleeReg) const { 86 CallLoweringInfo Info; 87 const DataLayout &DL = MIRBuilder.getDataLayout(); 88 MachineFunction &MF = MIRBuilder.getMF(); 89 MachineRegisterInfo &MRI = MF.getRegInfo(); 90 bool CanBeTailCalled = CB.isTailCall() && 91 isInTailCallPosition(CB, MF.getTarget()) && 92 (MF.getFunction() 93 .getFnAttribute("disable-tail-calls") 94 .getValueAsString() != "true"); 95 96 CallingConv::ID CallConv = CB.getCallingConv(); 97 Type *RetTy = CB.getType(); 98 bool IsVarArg = CB.getFunctionType()->isVarArg(); 99 100 SmallVector<BaseArgInfo, 4> SplitArgs; 101 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 102 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 103 104 if (!Info.CanLowerReturn) { 105 // Callee requires sret demotion. 106 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 107 108 // The sret demotion isn't compatible with tail-calls, since the sret 109 // argument points into the caller's stack frame. 110 CanBeTailCalled = false; 111 } 112 113 114 // First step is to marshall all the function's parameters into the correct 115 // physregs and memory locations. Gather the sequence of argument types that 116 // we'll pass to the assigner function. 117 unsigned i = 0; 118 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 119 for (const auto &Arg : CB.args()) { 120 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 121 i < NumFixedArgs}; 122 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 123 124 // If we have an explicit sret argument that is an Instruction, (i.e., it 125 // might point to function-local memory), we can't meaningfully tail-call. 126 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 127 CanBeTailCalled = false; 128 129 Info.OrigArgs.push_back(OrigArg); 130 ++i; 131 } 132 133 // Try looking through a bitcast from one function type to another. 134 // Commonly happens with calls to objc_msgSend(). 135 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 136 if (const Function *F = dyn_cast<Function>(CalleeV)) 137 Info.Callee = MachineOperand::CreateGA(F, 0); 138 else 139 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 140 141 Register ReturnHintAlignReg; 142 Align ReturnHintAlign; 143 144 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 145 146 if (!Info.OrigRet.Ty->isVoidTy()) { 147 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 148 149 if (MaybeAlign Alignment = CB.getRetAlign()) { 150 if (*Alignment > Align(1)) { 151 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 152 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 153 ReturnHintAlign = *Alignment; 154 } 155 } 156 } 157 158 Info.CB = &CB; 159 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 160 Info.CallConv = CallConv; 161 Info.SwiftErrorVReg = SwiftErrorVReg; 162 Info.IsMustTailCall = CB.isMustTailCall(); 163 Info.IsTailCall = CanBeTailCalled; 164 Info.IsVarArg = IsVarArg; 165 if (!lowerCall(MIRBuilder, Info)) 166 return false; 167 168 if (ReturnHintAlignReg && !Info.IsTailCall) { 169 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 170 ReturnHintAlign); 171 } 172 173 return true; 174 } 175 176 template <typename FuncInfoTy> 177 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 178 const DataLayout &DL, 179 const FuncInfoTy &FuncInfo) const { 180 auto &Flags = Arg.Flags[0]; 181 const AttributeList &Attrs = FuncInfo.getAttributes(); 182 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 183 184 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 185 if (PtrTy) { 186 Flags.setPointer(); 187 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 188 } 189 190 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 191 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 192 assert(OpIdx >= AttributeList::FirstArgIndex); 193 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 194 195 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 196 if (!ElementTy) 197 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 198 if (!ElementTy) 199 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 200 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 201 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 202 203 // For ByVal, alignment should be passed from FE. BE will guess if 204 // this info is not there but there are cases it cannot get right. 205 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 206 MemAlign = *ParamAlign; 207 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 208 MemAlign = *ParamAlign; 209 else 210 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 211 } else if (OpIdx >= AttributeList::FirstArgIndex) { 212 if (auto ParamAlign = 213 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 214 MemAlign = *ParamAlign; 215 } 216 Flags.setMemAlign(MemAlign); 217 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 218 219 // Don't try to use the returned attribute if the argument is marked as 220 // swiftself, since it won't be passed in x0. 221 if (Flags.isSwiftSelf()) 222 Flags.setReturned(false); 223 } 224 225 template void 226 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 227 const DataLayout &DL, 228 const Function &FuncInfo) const; 229 230 template void 231 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 232 const DataLayout &DL, 233 const CallBase &FuncInfo) const; 234 235 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 236 SmallVectorImpl<ArgInfo> &SplitArgs, 237 const DataLayout &DL, 238 CallingConv::ID CallConv, 239 SmallVectorImpl<uint64_t> *Offsets) const { 240 LLVMContext &Ctx = OrigArg.Ty->getContext(); 241 242 SmallVector<EVT, 4> SplitVTs; 243 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 244 245 if (SplitVTs.size() == 0) 246 return; 247 248 if (SplitVTs.size() == 1) { 249 // No splitting to do, but we want to replace the original type (e.g. [1 x 250 // double] -> double). 251 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 252 OrigArg.OrigArgIndex, OrigArg.Flags[0], 253 OrigArg.IsFixed, OrigArg.OrigValue); 254 return; 255 } 256 257 // Create one ArgInfo for each virtual register in the original ArgInfo. 258 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 259 260 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 261 OrigArg.Ty, CallConv, false, DL); 262 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 263 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 264 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 265 OrigArg.Flags[0], OrigArg.IsFixed); 266 if (NeedsRegBlock) 267 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 268 } 269 270 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 271 } 272 273 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 274 static MachineInstrBuilder 275 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 276 ArrayRef<Register> SrcRegs) { 277 MachineRegisterInfo &MRI = *B.getMRI(); 278 LLT LLTy = MRI.getType(DstRegs[0]); 279 LLT PartLLT = MRI.getType(SrcRegs[0]); 280 281 // Deal with v3s16 split into v2s16 282 LLT LCMTy = getCoverTy(LLTy, PartLLT); 283 if (LCMTy == LLTy) { 284 // Common case where no padding is needed. 285 assert(DstRegs.size() == 1); 286 return B.buildConcatVectors(DstRegs[0], SrcRegs); 287 } 288 289 // We need to create an unmerge to the result registers, which may require 290 // widening the original value. 291 Register UnmergeSrcReg; 292 if (LCMTy != PartLLT) { 293 assert(DstRegs.size() == 1); 294 return B.buildDeleteTrailingVectorElements(DstRegs[0], 295 B.buildMerge(LCMTy, SrcRegs)); 296 } else { 297 // We don't need to widen anything if we're extracting a scalar which was 298 // promoted to a vector e.g. s8 -> v4s8 -> s8 299 assert(SrcRegs.size() == 1); 300 UnmergeSrcReg = SrcRegs[0]; 301 } 302 303 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 304 305 SmallVector<Register, 8> PadDstRegs(NumDst); 306 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 307 308 // Create the excess dead defs for the unmerge. 309 for (int I = DstRegs.size(); I != NumDst; ++I) 310 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 311 312 if (PadDstRegs.size() == 1) 313 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 314 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 315 } 316 317 /// Create a sequence of instructions to combine pieces split into register 318 /// typed values to the original IR value. \p OrigRegs contains the destination 319 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 320 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 321 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 322 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 323 const ISD::ArgFlagsTy Flags) { 324 MachineRegisterInfo &MRI = *B.getMRI(); 325 326 if (PartLLT == LLTy) { 327 // We should have avoided introducing a new virtual register, and just 328 // directly assigned here. 329 assert(OrigRegs[0] == Regs[0]); 330 return; 331 } 332 333 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 334 Regs.size() == 1) { 335 B.buildBitcast(OrigRegs[0], Regs[0]); 336 return; 337 } 338 339 // A vector PartLLT needs extending to LLTy's element size. 340 // E.g. <2 x s64> = G_SEXT <2 x s32>. 341 if (PartLLT.isVector() == LLTy.isVector() && 342 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 343 (!PartLLT.isVector() || 344 PartLLT.getNumElements() == LLTy.getNumElements()) && 345 OrigRegs.size() == 1 && Regs.size() == 1) { 346 Register SrcReg = Regs[0]; 347 348 LLT LocTy = MRI.getType(SrcReg); 349 350 if (Flags.isSExt()) { 351 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 352 .getReg(0); 353 } else if (Flags.isZExt()) { 354 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 355 .getReg(0); 356 } 357 358 // Sometimes pointers are passed zero extended. 359 LLT OrigTy = MRI.getType(OrigRegs[0]); 360 if (OrigTy.isPointer()) { 361 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 362 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 363 return; 364 } 365 366 B.buildTrunc(OrigRegs[0], SrcReg); 367 return; 368 } 369 370 if (!LLTy.isVector() && !PartLLT.isVector()) { 371 assert(OrigRegs.size() == 1); 372 LLT OrigTy = MRI.getType(OrigRegs[0]); 373 374 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 375 if (SrcSize == OrigTy.getSizeInBits()) 376 B.buildMerge(OrigRegs[0], Regs); 377 else { 378 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 379 B.buildTrunc(OrigRegs[0], Widened); 380 } 381 382 return; 383 } 384 385 if (PartLLT.isVector()) { 386 assert(OrigRegs.size() == 1); 387 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 388 389 // If PartLLT is a mismatched vector in both number of elements and element 390 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 391 // have the same elt type, i.e. v4s32. 392 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 393 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 394 Regs.size() == 1) { 395 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 396 .changeElementCount(PartLLT.getElementCount() * 2); 397 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 398 PartLLT = NewTy; 399 } 400 401 if (LLTy.getScalarType() == PartLLT.getElementType()) { 402 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 403 } else { 404 unsigned I = 0; 405 LLT GCDTy = getGCDType(LLTy, PartLLT); 406 407 // We are both splitting a vector, and bitcasting its element types. Cast 408 // the source pieces into the appropriate number of pieces with the result 409 // element type. 410 for (Register SrcReg : CastRegs) 411 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 412 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 413 } 414 415 return; 416 } 417 418 assert(LLTy.isVector() && !PartLLT.isVector()); 419 420 LLT DstEltTy = LLTy.getElementType(); 421 422 // Pointer information was discarded. We'll need to coerce some register types 423 // to avoid violating type constraints. 424 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 425 426 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 427 428 if (DstEltTy == PartLLT) { 429 // Vector was trivially scalarized. 430 431 if (RealDstEltTy.isPointer()) { 432 for (Register Reg : Regs) 433 MRI.setType(Reg, RealDstEltTy); 434 } 435 436 B.buildBuildVector(OrigRegs[0], Regs); 437 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 438 // Deal with vector with 64-bit elements decomposed to 32-bit 439 // registers. Need to create intermediate 64-bit elements. 440 SmallVector<Register, 8> EltMerges; 441 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 442 443 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 444 445 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 446 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 447 // Fix the type in case this is really a vector of pointers. 448 MRI.setType(Merge.getReg(0), RealDstEltTy); 449 EltMerges.push_back(Merge.getReg(0)); 450 Regs = Regs.drop_front(PartsPerElt); 451 } 452 453 B.buildBuildVector(OrigRegs[0], EltMerges); 454 } else { 455 // Vector was split, and elements promoted to a wider type. 456 // FIXME: Should handle floating point promotions. 457 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 458 auto BV = B.buildBuildVector(BVType, Regs); 459 B.buildTrunc(OrigRegs[0], BV); 460 } 461 } 462 463 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 464 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 465 /// contain the type of scalar value extension if necessary. 466 /// 467 /// This is used for outgoing values (vregs to physregs) 468 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 469 Register SrcReg, LLT SrcTy, LLT PartTy, 470 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 471 // We could just insert a regular copy, but this is unreachable at the moment. 472 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 473 474 const unsigned PartSize = PartTy.getSizeInBits(); 475 476 if (PartTy.isVector() == SrcTy.isVector() && 477 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 478 assert(DstRegs.size() == 1); 479 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 480 return; 481 } 482 483 if (SrcTy.isVector() && !PartTy.isVector() && 484 PartSize > SrcTy.getElementType().getSizeInBits()) { 485 // Vector was scalarized, and the elements extended. 486 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 487 for (int i = 0, e = DstRegs.size(); i != e; ++i) 488 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 489 return; 490 } 491 492 LLT GCDTy = getGCDType(SrcTy, PartTy); 493 if (GCDTy == PartTy) { 494 // If this already evenly divisible, we can create a simple unmerge. 495 B.buildUnmerge(DstRegs, SrcReg); 496 return; 497 } 498 499 MachineRegisterInfo &MRI = *B.getMRI(); 500 LLT DstTy = MRI.getType(DstRegs[0]); 501 LLT LCMTy = getCoverTy(SrcTy, PartTy); 502 503 if (PartTy.isVector() && LCMTy == PartTy) { 504 assert(DstRegs.size() == 1); 505 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 506 return; 507 } 508 509 const unsigned DstSize = DstTy.getSizeInBits(); 510 const unsigned SrcSize = SrcTy.getSizeInBits(); 511 unsigned CoveringSize = LCMTy.getSizeInBits(); 512 513 Register UnmergeSrc = SrcReg; 514 515 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 516 // For scalars, it's common to be able to use a simple extension. 517 if (SrcTy.isScalar() && DstTy.isScalar()) { 518 CoveringSize = alignTo(SrcSize, DstSize); 519 LLT CoverTy = LLT::scalar(CoveringSize); 520 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 521 } else { 522 // Widen to the common type. 523 // FIXME: This should respect the extend type 524 Register Undef = B.buildUndef(SrcTy).getReg(0); 525 SmallVector<Register, 8> MergeParts(1, SrcReg); 526 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 527 MergeParts.push_back(Undef); 528 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 529 } 530 } 531 532 if (LCMTy.isVector() && CoveringSize != SrcSize) 533 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 534 535 B.buildUnmerge(DstRegs, UnmergeSrc); 536 } 537 538 bool CallLowering::determineAndHandleAssignments( 539 ValueHandler &Handler, ValueAssigner &Assigner, 540 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 541 CallingConv::ID CallConv, bool IsVarArg, 542 ArrayRef<Register> ThisReturnRegs) const { 543 MachineFunction &MF = MIRBuilder.getMF(); 544 const Function &F = MF.getFunction(); 545 SmallVector<CCValAssign, 16> ArgLocs; 546 547 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 548 if (!determineAssignments(Assigner, Args, CCInfo)) 549 return false; 550 551 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 552 ThisReturnRegs); 553 } 554 555 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 556 if (Flags.isSExt()) 557 return TargetOpcode::G_SEXT; 558 if (Flags.isZExt()) 559 return TargetOpcode::G_ZEXT; 560 return TargetOpcode::G_ANYEXT; 561 } 562 563 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 564 SmallVectorImpl<ArgInfo> &Args, 565 CCState &CCInfo) const { 566 LLVMContext &Ctx = CCInfo.getContext(); 567 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 568 569 unsigned NumArgs = Args.size(); 570 for (unsigned i = 0; i != NumArgs; ++i) { 571 EVT CurVT = EVT::getEVT(Args[i].Ty); 572 573 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 574 575 // If we need to split the type over multiple regs, check it's a scenario 576 // we currently support. 577 unsigned NumParts = 578 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 579 580 if (NumParts == 1) { 581 // Try to use the register type if we couldn't assign the VT. 582 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 583 Args[i].Flags[0], CCInfo)) 584 return false; 585 continue; 586 } 587 588 // For incoming arguments (physregs to vregs), we could have values in 589 // physregs (or memlocs) which we want to extract and copy to vregs. 590 // During this, we might have to deal with the LLT being split across 591 // multiple regs, so we have to record this information for later. 592 // 593 // If we have outgoing args, then we have the opposite case. We have a 594 // vreg with an LLT which we want to assign to a physical location, and 595 // we might have to record that the value has to be split later. 596 597 // We're handling an incoming arg which is split over multiple regs. 598 // E.g. passing an s128 on AArch64. 599 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 600 Args[i].Flags.clear(); 601 602 for (unsigned Part = 0; Part < NumParts; ++Part) { 603 ISD::ArgFlagsTy Flags = OrigFlags; 604 if (Part == 0) { 605 Flags.setSplit(); 606 } else { 607 Flags.setOrigAlign(Align(1)); 608 if (Part == NumParts - 1) 609 Flags.setSplitEnd(); 610 } 611 612 Args[i].Flags.push_back(Flags); 613 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 614 Args[i].Flags[Part], CCInfo)) { 615 // Still couldn't assign this smaller part type for some reason. 616 return false; 617 } 618 } 619 } 620 621 return true; 622 } 623 624 bool CallLowering::handleAssignments(ValueHandler &Handler, 625 SmallVectorImpl<ArgInfo> &Args, 626 CCState &CCInfo, 627 SmallVectorImpl<CCValAssign> &ArgLocs, 628 MachineIRBuilder &MIRBuilder, 629 ArrayRef<Register> ThisReturnRegs) const { 630 MachineFunction &MF = MIRBuilder.getMF(); 631 MachineRegisterInfo &MRI = MF.getRegInfo(); 632 const Function &F = MF.getFunction(); 633 const DataLayout &DL = F.getParent()->getDataLayout(); 634 635 const unsigned NumArgs = Args.size(); 636 637 // Stores thunks for outgoing register assignments. This is used so we delay 638 // generating register copies until mem loc assignments are done. We do this 639 // so that if the target is using the delayed stack protector feature, we can 640 // find the split point of the block accurately. E.g. if we have: 641 // G_STORE %val, %memloc 642 // $x0 = COPY %foo 643 // $x1 = COPY %bar 644 // CALL func 645 // ... then the split point for the block will correctly be at, and including, 646 // the copy to $x0. If instead the G_STORE instruction immediately precedes 647 // the CALL, then we'd prematurely choose the CALL as the split point, thus 648 // generating a split block with a CALL that uses undefined physregs. 649 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 650 651 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 652 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 653 CCValAssign &VA = ArgLocs[j]; 654 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 655 656 if (VA.needsCustom()) { 657 std::function<void()> Thunk; 658 unsigned NumArgRegs = Handler.assignCustomValue( 659 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk); 660 if (Thunk) 661 DelayedOutgoingRegAssignments.emplace_back(Thunk); 662 if (!NumArgRegs) 663 return false; 664 j += NumArgRegs; 665 continue; 666 } 667 668 const MVT ValVT = VA.getValVT(); 669 const MVT LocVT = VA.getLocVT(); 670 671 const LLT LocTy(LocVT); 672 const LLT ValTy(ValVT); 673 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 674 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 675 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 676 677 // Expected to be multiple regs for a single incoming arg. 678 // There should be Regs.size() ArgLocs per argument. 679 // This should be the same as getNumRegistersForCallingConv 680 const unsigned NumParts = Args[i].Flags.size(); 681 682 // Now split the registers into the assigned types. 683 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 684 685 if (NumParts != 1 || NewLLT != OrigTy) { 686 // If we can't directly assign the register, we need one or more 687 // intermediate values. 688 Args[i].Regs.resize(NumParts); 689 690 // For each split register, create and assign a vreg that will store 691 // the incoming component of the larger value. These will later be 692 // merged to form the final vreg. 693 for (unsigned Part = 0; Part < NumParts; ++Part) 694 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 695 } 696 697 assert((j + (NumParts - 1)) < ArgLocs.size() && 698 "Too many regs for number of args"); 699 700 // Coerce into outgoing value types before register assignment. 701 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 702 assert(Args[i].OrigRegs.size() == 1); 703 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 704 ValTy, extendOpFromFlags(Args[i].Flags[0])); 705 } 706 707 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 708 for (unsigned Part = 0; Part < NumParts; ++Part) { 709 Register ArgReg = Args[i].Regs[Part]; 710 // There should be Regs.size() ArgLocs per argument. 711 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 712 CCValAssign &VA = ArgLocs[j + Idx]; 713 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 714 715 if (VA.isMemLoc() && !Flags.isByVal()) { 716 // Individual pieces may have been spilled to the stack and others 717 // passed in registers. 718 719 // TODO: The memory size may be larger than the value we need to 720 // store. We may need to adjust the offset for big endian targets. 721 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 722 723 MachinePointerInfo MPO; 724 Register StackAddr = Handler.getStackAddress( 725 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 726 727 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 728 continue; 729 } 730 731 if (VA.isMemLoc() && Flags.isByVal()) { 732 assert(Args[i].Regs.size() == 1 && 733 "didn't expect split byval pointer"); 734 735 if (Handler.isIncomingArgumentHandler()) { 736 // We just need to copy the frame index value to the pointer. 737 MachinePointerInfo MPO; 738 Register StackAddr = Handler.getStackAddress( 739 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 740 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 741 } else { 742 // For outgoing byval arguments, insert the implicit copy byval 743 // implies, such that writes in the callee do not modify the caller's 744 // value. 745 uint64_t MemSize = Flags.getByValSize(); 746 int64_t Offset = VA.getLocMemOffset(); 747 748 MachinePointerInfo DstMPO; 749 Register StackAddr = 750 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 751 752 MachinePointerInfo SrcMPO(Args[i].OrigValue); 753 if (!Args[i].OrigValue) { 754 // We still need to accurately track the stack address space if we 755 // don't know the underlying value. 756 const LLT PtrTy = MRI.getType(StackAddr); 757 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 758 } 759 760 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 761 inferAlignFromPtrInfo(MF, DstMPO)); 762 763 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 764 inferAlignFromPtrInfo(MF, SrcMPO)); 765 766 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 767 DstMPO, DstAlign, SrcMPO, SrcAlign, 768 MemSize, VA); 769 } 770 continue; 771 } 772 773 assert(!VA.needsCustom() && "custom loc should have been handled already"); 774 775 if (i == 0 && !ThisReturnRegs.empty() && 776 Handler.isIncomingArgumentHandler() && 777 isTypeIsValidForThisReturn(ValVT)) { 778 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 779 continue; 780 } 781 782 if (Handler.isIncomingArgumentHandler()) 783 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 784 else { 785 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 786 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 787 }); 788 } 789 } 790 791 // Now that all pieces have been assigned, re-pack the register typed values 792 // into the original value typed registers. 793 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 794 // Merge the split registers into the expected larger result vregs of 795 // the original call. 796 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 797 LocTy, Args[i].Flags[0]); 798 } 799 800 j += NumParts - 1; 801 } 802 for (auto &Fn : DelayedOutgoingRegAssignments) 803 Fn(); 804 805 return true; 806 } 807 808 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 809 ArrayRef<Register> VRegs, Register DemoteReg, 810 int FI) const { 811 MachineFunction &MF = MIRBuilder.getMF(); 812 MachineRegisterInfo &MRI = MF.getRegInfo(); 813 const DataLayout &DL = MF.getDataLayout(); 814 815 SmallVector<EVT, 4> SplitVTs; 816 SmallVector<uint64_t, 4> Offsets; 817 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 818 819 assert(VRegs.size() == SplitVTs.size()); 820 821 unsigned NumValues = SplitVTs.size(); 822 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 823 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 824 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 825 826 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 827 828 for (unsigned I = 0; I < NumValues; ++I) { 829 Register Addr; 830 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 831 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 832 MRI.getType(VRegs[I]), 833 commonAlignment(BaseAlign, Offsets[I])); 834 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 835 } 836 } 837 838 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 839 ArrayRef<Register> VRegs, 840 Register DemoteReg) const { 841 MachineFunction &MF = MIRBuilder.getMF(); 842 MachineRegisterInfo &MRI = MF.getRegInfo(); 843 const DataLayout &DL = MF.getDataLayout(); 844 845 SmallVector<EVT, 4> SplitVTs; 846 SmallVector<uint64_t, 4> Offsets; 847 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 848 849 assert(VRegs.size() == SplitVTs.size()); 850 851 unsigned NumValues = SplitVTs.size(); 852 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 853 unsigned AS = DL.getAllocaAddrSpace(); 854 LLT OffsetLLTy = 855 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 856 857 MachinePointerInfo PtrInfo(AS); 858 859 for (unsigned I = 0; I < NumValues; ++I) { 860 Register Addr; 861 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 862 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 863 MRI.getType(VRegs[I]), 864 commonAlignment(BaseAlign, Offsets[I])); 865 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 866 } 867 } 868 869 void CallLowering::insertSRetIncomingArgument( 870 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 871 MachineRegisterInfo &MRI, const DataLayout &DL) const { 872 unsigned AS = DL.getAllocaAddrSpace(); 873 DemoteReg = MRI.createGenericVirtualRegister( 874 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 875 876 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 877 878 SmallVector<EVT, 1> ValueVTs; 879 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 880 881 // NOTE: Assume that a pointer won't get split into more than one VT. 882 assert(ValueVTs.size() == 1); 883 884 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 885 ArgInfo::NoArgIndex); 886 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 887 DemoteArg.Flags[0].setSRet(); 888 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 889 } 890 891 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 892 const CallBase &CB, 893 CallLoweringInfo &Info) const { 894 const DataLayout &DL = MIRBuilder.getDataLayout(); 895 Type *RetTy = CB.getType(); 896 unsigned AS = DL.getAllocaAddrSpace(); 897 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 898 899 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 900 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 901 902 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 903 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 904 ArgInfo::NoArgIndex); 905 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 906 DemoteArg.Flags[0].setSRet(); 907 908 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 909 Info.DemoteStackIndex = FI; 910 Info.DemoteRegister = DemoteReg; 911 } 912 913 bool CallLowering::checkReturn(CCState &CCInfo, 914 SmallVectorImpl<BaseArgInfo> &Outs, 915 CCAssignFn *Fn) const { 916 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 917 MVT VT = MVT::getVT(Outs[I].Ty); 918 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 919 return false; 920 } 921 return true; 922 } 923 924 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 925 AttributeList Attrs, 926 SmallVectorImpl<BaseArgInfo> &Outs, 927 const DataLayout &DL) const { 928 LLVMContext &Context = RetTy->getContext(); 929 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 930 931 SmallVector<EVT, 4> SplitVTs; 932 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 933 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 934 935 for (EVT VT : SplitVTs) { 936 unsigned NumParts = 937 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 938 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 939 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 940 941 for (unsigned I = 0; I < NumParts; ++I) { 942 Outs.emplace_back(PartTy, Flags); 943 } 944 } 945 } 946 947 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 948 const auto &F = MF.getFunction(); 949 Type *ReturnType = F.getReturnType(); 950 CallingConv::ID CallConv = F.getCallingConv(); 951 952 SmallVector<BaseArgInfo, 4> SplitArgs; 953 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 954 MF.getDataLayout()); 955 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 956 } 957 958 bool CallLowering::parametersInCSRMatch( 959 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 960 const SmallVectorImpl<CCValAssign> &OutLocs, 961 const SmallVectorImpl<ArgInfo> &OutArgs) const { 962 for (unsigned i = 0; i < OutLocs.size(); ++i) { 963 const auto &ArgLoc = OutLocs[i]; 964 // If it's not a register, it's fine. 965 if (!ArgLoc.isRegLoc()) 966 continue; 967 968 MCRegister PhysReg = ArgLoc.getLocReg(); 969 970 // Only look at callee-saved registers. 971 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 972 continue; 973 974 LLVM_DEBUG( 975 dbgs() 976 << "... Call has an argument passed in a callee-saved register.\n"); 977 978 // Check if it was copied from. 979 const ArgInfo &OutInfo = OutArgs[i]; 980 981 if (OutInfo.Regs.size() > 1) { 982 LLVM_DEBUG( 983 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 984 return false; 985 } 986 987 // Check if we copy the register, walking through copies from virtual 988 // registers. Note that getDefIgnoringCopies does not ignore copies from 989 // physical registers. 990 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 991 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 992 LLVM_DEBUG( 993 dbgs() 994 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 995 return false; 996 } 997 998 // Got a copy. Verify that it's the same as the register we want. 999 Register CopyRHS = RegDef->getOperand(1).getReg(); 1000 if (CopyRHS != PhysReg) { 1001 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1002 "VReg, cannot tail call.\n"); 1003 return false; 1004 } 1005 } 1006 1007 return true; 1008 } 1009 1010 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1011 MachineFunction &MF, 1012 SmallVectorImpl<ArgInfo> &InArgs, 1013 ValueAssigner &CalleeAssigner, 1014 ValueAssigner &CallerAssigner) const { 1015 const Function &F = MF.getFunction(); 1016 CallingConv::ID CalleeCC = Info.CallConv; 1017 CallingConv::ID CallerCC = F.getCallingConv(); 1018 1019 if (CallerCC == CalleeCC) 1020 return true; 1021 1022 SmallVector<CCValAssign, 16> ArgLocs1; 1023 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1024 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1025 return false; 1026 1027 SmallVector<CCValAssign, 16> ArgLocs2; 1028 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1029 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1030 return false; 1031 1032 // We need the argument locations to match up exactly. If there's more in 1033 // one than the other, then we are done. 1034 if (ArgLocs1.size() != ArgLocs2.size()) 1035 return false; 1036 1037 // Make sure that each location is passed in exactly the same way. 1038 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1039 const CCValAssign &Loc1 = ArgLocs1[i]; 1040 const CCValAssign &Loc2 = ArgLocs2[i]; 1041 1042 // We need both of them to be the same. So if one is a register and one 1043 // isn't, we're done. 1044 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1045 return false; 1046 1047 if (Loc1.isRegLoc()) { 1048 // If they don't have the same register location, we're done. 1049 if (Loc1.getLocReg() != Loc2.getLocReg()) 1050 return false; 1051 1052 // They matched, so we can move to the next ArgLoc. 1053 continue; 1054 } 1055 1056 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1057 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1058 return false; 1059 } 1060 1061 return true; 1062 } 1063 1064 LLT CallLowering::ValueHandler::getStackValueStoreType( 1065 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1066 const MVT ValVT = VA.getValVT(); 1067 if (ValVT != MVT::iPTR) { 1068 LLT ValTy(ValVT); 1069 1070 // We lost the pointeriness going through CCValAssign, so try to restore it 1071 // based on the flags. 1072 if (Flags.isPointer()) { 1073 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1074 ValTy.getScalarSizeInBits()); 1075 if (ValVT.isVector()) 1076 return LLT::vector(ValTy.getElementCount(), PtrTy); 1077 return PtrTy; 1078 } 1079 1080 return ValTy; 1081 } 1082 1083 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1084 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1085 } 1086 1087 void CallLowering::ValueHandler::copyArgumentMemory( 1088 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1089 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1090 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1091 CCValAssign &VA) const { 1092 MachineFunction &MF = MIRBuilder.getMF(); 1093 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1094 SrcPtrInfo, 1095 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1096 SrcAlign); 1097 1098 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1099 DstPtrInfo, 1100 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1101 MemSize, DstAlign); 1102 1103 const LLT PtrTy = MRI.getType(DstPtr); 1104 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1105 1106 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1107 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1108 } 1109 1110 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1111 CCValAssign &VA, 1112 unsigned MaxSizeBits) { 1113 LLT LocTy{VA.getLocVT()}; 1114 LLT ValTy{VA.getValVT()}; 1115 1116 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1117 return ValReg; 1118 1119 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1120 if (MaxSizeBits <= ValTy.getSizeInBits()) 1121 return ValReg; 1122 LocTy = LLT::scalar(MaxSizeBits); 1123 } 1124 1125 const LLT ValRegTy = MRI.getType(ValReg); 1126 if (ValRegTy.isPointer()) { 1127 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1128 // we have to cast to do the extension. 1129 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1130 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1131 } 1132 1133 switch (VA.getLocInfo()) { 1134 default: break; 1135 case CCValAssign::Full: 1136 case CCValAssign::BCvt: 1137 // FIXME: bitconverting between vector types may or may not be a 1138 // nop in big-endian situations. 1139 return ValReg; 1140 case CCValAssign::AExt: { 1141 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1142 return MIB.getReg(0); 1143 } 1144 case CCValAssign::SExt: { 1145 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1146 MIRBuilder.buildSExt(NewReg, ValReg); 1147 return NewReg; 1148 } 1149 case CCValAssign::ZExt: { 1150 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1151 MIRBuilder.buildZExt(NewReg, ValReg); 1152 return NewReg; 1153 } 1154 } 1155 llvm_unreachable("unable to extend register"); 1156 } 1157 1158 void CallLowering::ValueAssigner::anchor() {} 1159 1160 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1161 Register SrcReg, 1162 LLT NarrowTy) { 1163 switch (VA.getLocInfo()) { 1164 case CCValAssign::LocInfo::ZExt: { 1165 return MIRBuilder 1166 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1167 NarrowTy.getScalarSizeInBits()) 1168 .getReg(0); 1169 } 1170 case CCValAssign::LocInfo::SExt: { 1171 return MIRBuilder 1172 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1173 NarrowTy.getScalarSizeInBits()) 1174 .getReg(0); 1175 break; 1176 } 1177 default: 1178 return SrcReg; 1179 } 1180 } 1181 1182 /// Check if we can use a basic COPY instruction between the two types. 1183 /// 1184 /// We're currently building on top of the infrastructure using MVT, which loses 1185 /// pointer information in the CCValAssign. We accept copies from physical 1186 /// registers that have been reported as integers if it's to an equivalent sized 1187 /// pointer LLT. 1188 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1189 if (SrcTy == DstTy) 1190 return true; 1191 1192 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1193 return false; 1194 1195 SrcTy = SrcTy.getScalarType(); 1196 DstTy = DstTy.getScalarType(); 1197 1198 return (SrcTy.isPointer() && DstTy.isScalar()) || 1199 (DstTy.isScalar() && SrcTy.isPointer()); 1200 } 1201 1202 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1203 Register PhysReg, 1204 CCValAssign VA) { 1205 const MVT LocVT = VA.getLocVT(); 1206 const LLT LocTy(LocVT); 1207 const LLT RegTy = MRI.getType(ValVReg); 1208 1209 if (isCopyCompatibleType(RegTy, LocTy)) { 1210 MIRBuilder.buildCopy(ValVReg, PhysReg); 1211 return; 1212 } 1213 1214 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1215 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1216 MIRBuilder.buildTrunc(ValVReg, Hint); 1217 } 1218