1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass tries to expand memcmp() calls into optimally-sized loads and 10 // compares for the target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/DomTreeUpdater.h" 17 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 18 #include "llvm/Analysis/ProfileSummaryInfo.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/TargetPassConfig.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Target/TargetMachine.h" 28 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Transforms/Utils/SizeOpts.h" 31 #include <optional> 32 33 using namespace llvm; 34 35 namespace llvm { 36 class TargetLowering; 37 } 38 39 #define DEBUG_TYPE "expandmemcmp" 40 41 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 42 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 43 STATISTIC(NumMemCmpGreaterThanMax, 44 "Number of memcmp calls with size greater than max size"); 45 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 46 47 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock( 48 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 49 cl::desc("The number of loads per basic block for inline expansion of " 50 "memcmp that is only being compared against zero.")); 51 52 static cl::opt<unsigned> MaxLoadsPerMemcmp( 53 "max-loads-per-memcmp", cl::Hidden, 54 cl::desc("Set maximum number of loads used in expanded memcmp")); 55 56 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize( 57 "max-loads-per-memcmp-opt-size", cl::Hidden, 58 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz")); 59 60 namespace { 61 62 63 // This class provides helper functions to expand a memcmp library call into an 64 // inline expansion. 65 class MemCmpExpansion { 66 struct ResultBlock { 67 BasicBlock *BB = nullptr; 68 PHINode *PhiSrc1 = nullptr; 69 PHINode *PhiSrc2 = nullptr; 70 71 ResultBlock() = default; 72 }; 73 74 CallInst *const CI = nullptr; 75 ResultBlock ResBlock; 76 const uint64_t Size; 77 unsigned MaxLoadSize = 0; 78 uint64_t NumLoadsNonOneByte = 0; 79 const uint64_t NumLoadsPerBlockForZeroCmp; 80 std::vector<BasicBlock *> LoadCmpBlocks; 81 BasicBlock *EndBlock = nullptr; 82 PHINode *PhiRes = nullptr; 83 const bool IsUsedForZeroCmp; 84 const DataLayout &DL; 85 DomTreeUpdater *DTU = nullptr; 86 IRBuilder<> Builder; 87 // Represents the decomposition in blocks of the expansion. For example, 88 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and 89 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}. 90 struct LoadEntry { 91 LoadEntry(unsigned LoadSize, uint64_t Offset) 92 : LoadSize(LoadSize), Offset(Offset) { 93 } 94 95 // The size of the load for this block, in bytes. 96 unsigned LoadSize; 97 // The offset of this load from the base pointer, in bytes. 98 uint64_t Offset; 99 }; 100 using LoadEntryVector = SmallVector<LoadEntry, 8>; 101 LoadEntryVector LoadSequence; 102 103 void createLoadCmpBlocks(); 104 void createResultBlock(); 105 void setupResultBlockPHINodes(); 106 void setupEndBlockPHINodes(); 107 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex); 108 void emitLoadCompareBlock(unsigned BlockIndex); 109 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 110 unsigned &LoadIndex); 111 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes); 112 void emitMemCmpResultBlock(); 113 Value *getMemCmpExpansionZeroCase(); 114 Value *getMemCmpEqZeroOneBlock(); 115 Value *getMemCmpOneBlock(); 116 struct LoadPair { 117 Value *Lhs = nullptr; 118 Value *Rhs = nullptr; 119 }; 120 LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType, 121 unsigned OffsetBytes); 122 123 static LoadEntryVector 124 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 125 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte); 126 static LoadEntryVector 127 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize, 128 unsigned MaxNumLoads, 129 unsigned &NumLoadsNonOneByte); 130 131 public: 132 MemCmpExpansion(CallInst *CI, uint64_t Size, 133 const TargetTransformInfo::MemCmpExpansionOptions &Options, 134 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout, 135 DomTreeUpdater *DTU); 136 137 unsigned getNumBlocks(); 138 uint64_t getNumLoads() const { return LoadSequence.size(); } 139 140 Value *getMemCmpExpansion(); 141 }; 142 143 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence( 144 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 145 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) { 146 NumLoadsNonOneByte = 0; 147 LoadEntryVector LoadSequence; 148 uint64_t Offset = 0; 149 while (Size && !LoadSizes.empty()) { 150 const unsigned LoadSize = LoadSizes.front(); 151 const uint64_t NumLoadsForThisSize = Size / LoadSize; 152 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) { 153 // Do not expand if the total number of loads is larger than what the 154 // target allows. Note that it's important that we exit before completing 155 // the expansion to avoid using a ton of memory to store the expansion for 156 // large sizes. 157 return {}; 158 } 159 if (NumLoadsForThisSize > 0) { 160 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) { 161 LoadSequence.push_back({LoadSize, Offset}); 162 Offset += LoadSize; 163 } 164 if (LoadSize > 1) 165 ++NumLoadsNonOneByte; 166 Size = Size % LoadSize; 167 } 168 LoadSizes = LoadSizes.drop_front(); 169 } 170 return LoadSequence; 171 } 172 173 MemCmpExpansion::LoadEntryVector 174 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size, 175 const unsigned MaxLoadSize, 176 const unsigned MaxNumLoads, 177 unsigned &NumLoadsNonOneByte) { 178 // These are already handled by the greedy approach. 179 if (Size < 2 || MaxLoadSize < 2) 180 return {}; 181 182 // We try to do as many non-overlapping loads as possible starting from the 183 // beginning. 184 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize; 185 assert(NumNonOverlappingLoads && "there must be at least one load"); 186 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with 187 // an overlapping load. 188 Size = Size - NumNonOverlappingLoads * MaxLoadSize; 189 // Bail if we do not need an overloapping store, this is already handled by 190 // the greedy approach. 191 if (Size == 0) 192 return {}; 193 // Bail if the number of loads (non-overlapping + potential overlapping one) 194 // is larger than the max allowed. 195 if ((NumNonOverlappingLoads + 1) > MaxNumLoads) 196 return {}; 197 198 // Add non-overlapping loads. 199 LoadEntryVector LoadSequence; 200 uint64_t Offset = 0; 201 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) { 202 LoadSequence.push_back({MaxLoadSize, Offset}); 203 Offset += MaxLoadSize; 204 } 205 206 // Add the last overlapping load. 207 assert(Size > 0 && Size < MaxLoadSize && "broken invariant"); 208 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)}); 209 NumLoadsNonOneByte = 1; 210 return LoadSequence; 211 } 212 213 // Initialize the basic block structure required for expansion of memcmp call 214 // with given maximum load size and memcmp size parameter. 215 // This structure includes: 216 // 1. A list of load compare blocks - LoadCmpBlocks. 217 // 2. An EndBlock, split from original instruction point, which is the block to 218 // return from. 219 // 3. ResultBlock, block to branch to for early exit when a 220 // LoadCmpBlock finds a difference. 221 MemCmpExpansion::MemCmpExpansion( 222 CallInst *const CI, uint64_t Size, 223 const TargetTransformInfo::MemCmpExpansionOptions &Options, 224 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout, 225 DomTreeUpdater *DTU) 226 : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock), 227 IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU), 228 Builder(CI) { 229 assert(Size > 0 && "zero blocks"); 230 // Scale the max size down if the target can load more bytes than we need. 231 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes); 232 while (!LoadSizes.empty() && LoadSizes.front() > Size) { 233 LoadSizes = LoadSizes.drop_front(); 234 } 235 assert(!LoadSizes.empty() && "cannot load Size bytes"); 236 MaxLoadSize = LoadSizes.front(); 237 // Compute the decomposition. 238 unsigned GreedyNumLoadsNonOneByte = 0; 239 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads, 240 GreedyNumLoadsNonOneByte); 241 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte; 242 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant"); 243 // If we allow overlapping loads and the load sequence is not already optimal, 244 // use overlapping loads. 245 if (Options.AllowOverlappingLoads && 246 (LoadSequence.empty() || LoadSequence.size() > 2)) { 247 unsigned OverlappingNumLoadsNonOneByte = 0; 248 auto OverlappingLoads = computeOverlappingLoadSequence( 249 Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte); 250 if (!OverlappingLoads.empty() && 251 (LoadSequence.empty() || 252 OverlappingLoads.size() < LoadSequence.size())) { 253 LoadSequence = OverlappingLoads; 254 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte; 255 } 256 } 257 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant"); 258 } 259 260 unsigned MemCmpExpansion::getNumBlocks() { 261 if (IsUsedForZeroCmp) 262 return getNumLoads() / NumLoadsPerBlockForZeroCmp + 263 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0); 264 return getNumLoads(); 265 } 266 267 void MemCmpExpansion::createLoadCmpBlocks() { 268 for (unsigned i = 0; i < getNumBlocks(); i++) { 269 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 270 EndBlock->getParent(), EndBlock); 271 LoadCmpBlocks.push_back(BB); 272 } 273 } 274 275 void MemCmpExpansion::createResultBlock() { 276 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 277 EndBlock->getParent(), EndBlock); 278 } 279 280 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType, 281 bool NeedsBSwap, 282 Type *CmpSizeType, 283 unsigned OffsetBytes) { 284 // Get the memory source at offset `OffsetBytes`. 285 Value *LhsSource = CI->getArgOperand(0); 286 Value *RhsSource = CI->getArgOperand(1); 287 Align LhsAlign = LhsSource->getPointerAlignment(DL); 288 Align RhsAlign = RhsSource->getPointerAlignment(DL); 289 if (OffsetBytes > 0) { 290 auto *ByteType = Type::getInt8Ty(CI->getContext()); 291 LhsSource = Builder.CreateConstGEP1_64(ByteType, LhsSource, OffsetBytes); 292 RhsSource = Builder.CreateConstGEP1_64(ByteType, RhsSource, OffsetBytes); 293 LhsAlign = commonAlignment(LhsAlign, OffsetBytes); 294 RhsAlign = commonAlignment(RhsAlign, OffsetBytes); 295 } 296 297 // Create a constant or a load from the source. 298 Value *Lhs = nullptr; 299 if (auto *C = dyn_cast<Constant>(LhsSource)) 300 Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL); 301 if (!Lhs) 302 Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign); 303 304 Value *Rhs = nullptr; 305 if (auto *C = dyn_cast<Constant>(RhsSource)) 306 Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL); 307 if (!Rhs) 308 Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign); 309 310 // Swap bytes if required. 311 if (NeedsBSwap) { 312 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 313 Intrinsic::bswap, LoadSizeType); 314 Lhs = Builder.CreateCall(Bswap, Lhs); 315 Rhs = Builder.CreateCall(Bswap, Rhs); 316 } 317 318 // Zero extend if required. 319 if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) { 320 Lhs = Builder.CreateZExt(Lhs, CmpSizeType); 321 Rhs = Builder.CreateZExt(Rhs, CmpSizeType); 322 } 323 return {Lhs, Rhs}; 324 } 325 326 // This function creates the IR instructions for loading and comparing 1 byte. 327 // It loads 1 byte from each source of the memcmp parameters with the given 328 // GEPIndex. It then subtracts the two loaded values and adds this result to the 329 // final phi node for selecting the memcmp result. 330 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex, 331 unsigned OffsetBytes) { 332 BasicBlock *BB = LoadCmpBlocks[BlockIndex]; 333 Builder.SetInsertPoint(BB); 334 const LoadPair Loads = 335 getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false, 336 Type::getInt32Ty(CI->getContext()), OffsetBytes); 337 Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs); 338 339 PhiRes->addIncoming(Diff, BB); 340 341 if (BlockIndex < (LoadCmpBlocks.size() - 1)) { 342 // Early exit branch if difference found to EndBlock. Otherwise, continue to 343 // next LoadCmpBlock, 344 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 345 ConstantInt::get(Diff->getType(), 0)); 346 BranchInst *CmpBr = 347 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp); 348 Builder.Insert(CmpBr); 349 if (DTU) 350 DTU->applyUpdates( 351 {{DominatorTree::Insert, BB, EndBlock}, 352 {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}}); 353 } else { 354 // The last block has an unconditional branch to EndBlock. 355 BranchInst *CmpBr = BranchInst::Create(EndBlock); 356 Builder.Insert(CmpBr); 357 if (DTU) 358 DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}}); 359 } 360 } 361 362 /// Generate an equality comparison for one or more pairs of loaded values. 363 /// This is used in the case where the memcmp() call is compared equal or not 364 /// equal to zero. 365 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex, 366 unsigned &LoadIndex) { 367 assert(LoadIndex < getNumLoads() && 368 "getCompareLoadPairs() called with no remaining loads"); 369 std::vector<Value *> XorList, OrList; 370 Value *Diff = nullptr; 371 372 const unsigned NumLoads = 373 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp); 374 375 // For a single-block expansion, start inserting before the memcmp call. 376 if (LoadCmpBlocks.empty()) 377 Builder.SetInsertPoint(CI); 378 else 379 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 380 381 Value *Cmp = nullptr; 382 // If we have multiple loads per block, we need to generate a composite 383 // comparison using xor+or. The type for the combinations is the largest load 384 // type. 385 IntegerType *const MaxLoadType = 386 NumLoads == 1 ? nullptr 387 : IntegerType::get(CI->getContext(), MaxLoadSize * 8); 388 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) { 389 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex]; 390 const LoadPair Loads = getLoadPair( 391 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8), 392 /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset); 393 394 if (NumLoads != 1) { 395 // If we have multiple loads per block, we need to generate a composite 396 // comparison using xor+or. 397 Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs); 398 Diff = Builder.CreateZExt(Diff, MaxLoadType); 399 XorList.push_back(Diff); 400 } else { 401 // If there's only one load per block, we just compare the loaded values. 402 Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs); 403 } 404 } 405 406 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 407 std::vector<Value *> OutList; 408 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 409 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 410 OutList.push_back(Or); 411 } 412 if (InList.size() % 2 != 0) 413 OutList.push_back(InList.back()); 414 return OutList; 415 }; 416 417 if (!Cmp) { 418 // Pairwise OR the XOR results. 419 OrList = pairWiseOr(XorList); 420 421 // Pairwise OR the OR results until one result left. 422 while (OrList.size() != 1) { 423 OrList = pairWiseOr(OrList); 424 } 425 426 assert(Diff && "Failed to find comparison diff"); 427 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 428 } 429 430 return Cmp; 431 } 432 433 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 434 unsigned &LoadIndex) { 435 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex); 436 437 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 438 ? EndBlock 439 : LoadCmpBlocks[BlockIndex + 1]; 440 // Early exit branch if difference found to ResultBlock. Otherwise, 441 // continue to next LoadCmpBlock or EndBlock. 442 BasicBlock *BB = Builder.GetInsertBlock(); 443 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 444 Builder.Insert(CmpBr); 445 if (DTU) 446 DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB}, 447 {DominatorTree::Insert, BB, NextBB}}); 448 449 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 450 // since early exit to ResultBlock was not taken (no difference was found in 451 // any of the bytes). 452 if (BlockIndex == LoadCmpBlocks.size() - 1) { 453 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 454 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 455 } 456 } 457 458 // This function creates the IR intructions for loading and comparing using the 459 // given LoadSize. It loads the number of bytes specified by LoadSize from each 460 // source of the memcmp parameters. It then does a subtract to see if there was 461 // a difference in the loaded values. If a difference is found, it branches 462 // with an early exit to the ResultBlock for calculating which source was 463 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 464 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 465 // a special case through emitLoadCompareByteBlock. The special handling can 466 // simply subtract the loaded values and add it to the result phi node. 467 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) { 468 // There is one load per block in this case, BlockIndex == LoadIndex. 469 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex]; 470 471 if (CurLoadEntry.LoadSize == 1) { 472 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset); 473 return; 474 } 475 476 Type *LoadSizeType = 477 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 478 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 479 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type"); 480 481 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 482 483 const LoadPair Loads = 484 getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType, 485 CurLoadEntry.Offset); 486 487 // Add the loaded values to the phi nodes for calculating memcmp result only 488 // if result is not used in a zero equality. 489 if (!IsUsedForZeroCmp) { 490 ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]); 491 ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]); 492 } 493 494 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs); 495 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 496 ? EndBlock 497 : LoadCmpBlocks[BlockIndex + 1]; 498 // Early exit branch if difference found to ResultBlock. Otherwise, continue 499 // to next LoadCmpBlock or EndBlock. 500 BasicBlock *BB = Builder.GetInsertBlock(); 501 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 502 Builder.Insert(CmpBr); 503 if (DTU) 504 DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB}, 505 {DominatorTree::Insert, BB, ResBlock.BB}}); 506 507 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 508 // since early exit to ResultBlock was not taken (no difference was found in 509 // any of the bytes). 510 if (BlockIndex == LoadCmpBlocks.size() - 1) { 511 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 512 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 513 } 514 } 515 516 // This function populates the ResultBlock with a sequence to calculate the 517 // memcmp result. It compares the two loaded source values and returns -1 if 518 // src1 < src2 and 1 if src1 > src2. 519 void MemCmpExpansion::emitMemCmpResultBlock() { 520 // Special case: if memcmp result is used in a zero equality, result does not 521 // need to be calculated and can simply return 1. 522 if (IsUsedForZeroCmp) { 523 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 524 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 525 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 526 PhiRes->addIncoming(Res, ResBlock.BB); 527 BranchInst *NewBr = BranchInst::Create(EndBlock); 528 Builder.Insert(NewBr); 529 if (DTU) 530 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}}); 531 return; 532 } 533 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 534 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 535 536 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 537 ResBlock.PhiSrc2); 538 539 Value *Res = 540 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 541 ConstantInt::get(Builder.getInt32Ty(), 1)); 542 543 PhiRes->addIncoming(Res, ResBlock.BB); 544 BranchInst *NewBr = BranchInst::Create(EndBlock); 545 Builder.Insert(NewBr); 546 if (DTU) 547 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}}); 548 } 549 550 void MemCmpExpansion::setupResultBlockPHINodes() { 551 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 552 Builder.SetInsertPoint(ResBlock.BB); 553 // Note: this assumes one load per block. 554 ResBlock.PhiSrc1 = 555 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1"); 556 ResBlock.PhiSrc2 = 557 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2"); 558 } 559 560 void MemCmpExpansion::setupEndBlockPHINodes() { 561 Builder.SetInsertPoint(&EndBlock->front()); 562 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 563 } 564 565 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() { 566 unsigned LoadIndex = 0; 567 // This loop populates each of the LoadCmpBlocks with the IR sequence to 568 // handle multiple loads per block. 569 for (unsigned I = 0; I < getNumBlocks(); ++I) { 570 emitLoadCompareBlockMultipleLoads(I, LoadIndex); 571 } 572 573 emitMemCmpResultBlock(); 574 return PhiRes; 575 } 576 577 /// A memcmp expansion that compares equality with 0 and only has one block of 578 /// load and compare can bypass the compare, branch, and phi IR that is required 579 /// in the general case. 580 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() { 581 unsigned LoadIndex = 0; 582 Value *Cmp = getCompareLoadPairs(0, LoadIndex); 583 assert(LoadIndex == getNumLoads() && "some entries were not consumed"); 584 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 585 } 586 587 /// A memcmp expansion that only has one block of load and compare can bypass 588 /// the compare, branch, and phi IR that is required in the general case. 589 Value *MemCmpExpansion::getMemCmpOneBlock() { 590 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 591 bool NeedsBSwap = DL.isLittleEndian() && Size != 1; 592 593 // The i8 and i16 cases don't need compares. We zext the loaded values and 594 // subtract them to get the suitable negative, zero, or positive i32 result. 595 if (Size < 4) { 596 const LoadPair Loads = 597 getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(), 598 /*Offset*/ 0); 599 return Builder.CreateSub(Loads.Lhs, Loads.Rhs); 600 } 601 602 const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType, 603 /*Offset*/ 0); 604 // The result of memcmp is negative, zero, or positive, so produce that by 605 // subtracting 2 extended compare bits: sub (ugt, ult). 606 // If a target prefers to use selects to get -1/0/1, they should be able 607 // to transform this later. The inverse transform (going from selects to math) 608 // may not be possible in the DAG because the selects got converted into 609 // branches before we got there. 610 Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs); 611 Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs); 612 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty()); 613 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty()); 614 return Builder.CreateSub(ZextUGT, ZextULT); 615 } 616 617 // This function expands the memcmp call into an inline expansion and returns 618 // the memcmp result. 619 Value *MemCmpExpansion::getMemCmpExpansion() { 620 // Create the basic block framework for a multi-block expansion. 621 if (getNumBlocks() != 1) { 622 BasicBlock *StartBlock = CI->getParent(); 623 EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr, 624 /*MSSAU=*/nullptr, "endblock"); 625 setupEndBlockPHINodes(); 626 createResultBlock(); 627 628 // If return value of memcmp is not used in a zero equality, we need to 629 // calculate which source was larger. The calculation requires the 630 // two loaded source values of each load compare block. 631 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 632 if (!IsUsedForZeroCmp) setupResultBlockPHINodes(); 633 634 // Create the number of required load compare basic blocks. 635 createLoadCmpBlocks(); 636 637 // Update the terminator added by SplitBlock to branch to the first 638 // LoadCmpBlock. 639 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 640 if (DTU) 641 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]}, 642 {DominatorTree::Delete, StartBlock, EndBlock}}); 643 } 644 645 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 646 647 if (IsUsedForZeroCmp) 648 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock() 649 : getMemCmpExpansionZeroCase(); 650 651 if (getNumBlocks() == 1) 652 return getMemCmpOneBlock(); 653 654 for (unsigned I = 0; I < getNumBlocks(); ++I) { 655 emitLoadCompareBlock(I); 656 } 657 658 emitMemCmpResultBlock(); 659 return PhiRes; 660 } 661 662 // This function checks to see if an expansion of memcmp can be generated. 663 // It checks for constant compare size that is less than the max inline size. 664 // If an expansion cannot occur, returns false to leave as a library call. 665 // Otherwise, the library call is replaced with a new IR instruction sequence. 666 /// We want to transform: 667 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 668 /// To: 669 /// loadbb: 670 /// %0 = bitcast i32* %buffer2 to i8* 671 /// %1 = bitcast i32* %buffer1 to i8* 672 /// %2 = bitcast i8* %1 to i64* 673 /// %3 = bitcast i8* %0 to i64* 674 /// %4 = load i64, i64* %2 675 /// %5 = load i64, i64* %3 676 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 677 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 678 /// %8 = sub i64 %6, %7 679 /// %9 = icmp ne i64 %8, 0 680 /// br i1 %9, label %res_block, label %loadbb1 681 /// res_block: ; preds = %loadbb2, 682 /// %loadbb1, %loadbb 683 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 684 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 685 /// %10 = icmp ult i64 %phi.src1, %phi.src2 686 /// %11 = select i1 %10, i32 -1, i32 1 687 /// br label %endblock 688 /// loadbb1: ; preds = %loadbb 689 /// %12 = bitcast i32* %buffer2 to i8* 690 /// %13 = bitcast i32* %buffer1 to i8* 691 /// %14 = bitcast i8* %13 to i32* 692 /// %15 = bitcast i8* %12 to i32* 693 /// %16 = getelementptr i32, i32* %14, i32 2 694 /// %17 = getelementptr i32, i32* %15, i32 2 695 /// %18 = load i32, i32* %16 696 /// %19 = load i32, i32* %17 697 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 698 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 699 /// %22 = zext i32 %20 to i64 700 /// %23 = zext i32 %21 to i64 701 /// %24 = sub i64 %22, %23 702 /// %25 = icmp ne i64 %24, 0 703 /// br i1 %25, label %res_block, label %loadbb2 704 /// loadbb2: ; preds = %loadbb1 705 /// %26 = bitcast i32* %buffer2 to i8* 706 /// %27 = bitcast i32* %buffer1 to i8* 707 /// %28 = bitcast i8* %27 to i16* 708 /// %29 = bitcast i8* %26 to i16* 709 /// %30 = getelementptr i16, i16* %28, i16 6 710 /// %31 = getelementptr i16, i16* %29, i16 6 711 /// %32 = load i16, i16* %30 712 /// %33 = load i16, i16* %31 713 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 714 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 715 /// %36 = zext i16 %34 to i64 716 /// %37 = zext i16 %35 to i64 717 /// %38 = sub i64 %36, %37 718 /// %39 = icmp ne i64 %38, 0 719 /// br i1 %39, label %res_block, label %loadbb3 720 /// loadbb3: ; preds = %loadbb2 721 /// %40 = bitcast i32* %buffer2 to i8* 722 /// %41 = bitcast i32* %buffer1 to i8* 723 /// %42 = getelementptr i8, i8* %41, i8 14 724 /// %43 = getelementptr i8, i8* %40, i8 14 725 /// %44 = load i8, i8* %42 726 /// %45 = load i8, i8* %43 727 /// %46 = zext i8 %44 to i32 728 /// %47 = zext i8 %45 to i32 729 /// %48 = sub i32 %46, %47 730 /// br label %endblock 731 /// endblock: ; preds = %res_block, 732 /// %loadbb3 733 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 734 /// ret i32 %phi.res 735 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 736 const TargetLowering *TLI, const DataLayout *DL, 737 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 738 DomTreeUpdater *DTU, const bool IsBCmp) { 739 NumMemCmpCalls++; 740 741 // Early exit from expansion if -Oz. 742 if (CI->getFunction()->hasMinSize()) 743 return false; 744 745 // Early exit from expansion if size is not a constant. 746 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 747 if (!SizeCast) { 748 NumMemCmpNotConstant++; 749 return false; 750 } 751 const uint64_t SizeVal = SizeCast->getZExtValue(); 752 753 if (SizeVal == 0) { 754 return false; 755 } 756 // TTI call to check if target would like to expand memcmp. Also, get the 757 // available load sizes. 758 const bool IsUsedForZeroCmp = 759 IsBCmp || isOnlyUsedInZeroEqualityComparison(CI); 760 bool OptForSize = CI->getFunction()->hasOptSize() || 761 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 762 auto Options = TTI->enableMemCmpExpansion(OptForSize, 763 IsUsedForZeroCmp); 764 if (!Options) return false; 765 766 if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences()) 767 Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock; 768 769 if (OptForSize && 770 MaxLoadsPerMemcmpOptSize.getNumOccurrences()) 771 Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize; 772 773 if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences()) 774 Options.MaxNumLoads = MaxLoadsPerMemcmp; 775 776 MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU); 777 778 // Don't expand if this will require more loads than desired by the target. 779 if (Expansion.getNumLoads() == 0) { 780 NumMemCmpGreaterThanMax++; 781 return false; 782 } 783 784 NumMemCmpInlined++; 785 786 Value *Res = Expansion.getMemCmpExpansion(); 787 788 // Replace call with result of expansion and erase call. 789 CI->replaceAllUsesWith(Res); 790 CI->eraseFromParent(); 791 792 return true; 793 } 794 795 class ExpandMemCmpPass : public FunctionPass { 796 public: 797 static char ID; 798 799 ExpandMemCmpPass() : FunctionPass(ID) { 800 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry()); 801 } 802 803 bool runOnFunction(Function &F) override { 804 if (skipFunction(F)) return false; 805 806 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 807 if (!TPC) { 808 return false; 809 } 810 const TargetLowering* TL = 811 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering(); 812 813 const TargetLibraryInfo *TLI = 814 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 815 const TargetTransformInfo *TTI = 816 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 817 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 818 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 819 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 820 nullptr; 821 DominatorTree *DT = nullptr; 822 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 823 DT = &DTWP->getDomTree(); 824 auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT); 825 return !PA.areAllPreserved(); 826 } 827 828 private: 829 void getAnalysisUsage(AnalysisUsage &AU) const override { 830 AU.addRequired<TargetLibraryInfoWrapperPass>(); 831 AU.addRequired<TargetTransformInfoWrapperPass>(); 832 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 833 AU.addPreserved<DominatorTreeWrapperPass>(); 834 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 835 FunctionPass::getAnalysisUsage(AU); 836 } 837 838 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 839 const TargetTransformInfo *TTI, 840 const TargetLowering *TL, ProfileSummaryInfo *PSI, 841 BlockFrequencyInfo *BFI, DominatorTree *DT); 842 // Returns true if a change was made. 843 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 844 const TargetTransformInfo *TTI, const TargetLowering *TL, 845 const DataLayout &DL, ProfileSummaryInfo *PSI, 846 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU); 847 }; 848 849 bool ExpandMemCmpPass::runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 850 const TargetTransformInfo *TTI, 851 const TargetLowering *TL, 852 const DataLayout &DL, ProfileSummaryInfo *PSI, 853 BlockFrequencyInfo *BFI, 854 DomTreeUpdater *DTU) { 855 for (Instruction& I : BB) { 856 CallInst *CI = dyn_cast<CallInst>(&I); 857 if (!CI) { 858 continue; 859 } 860 LibFunc Func; 861 if (TLI->getLibFunc(*CI, Func) && 862 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) && 863 expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) { 864 return true; 865 } 866 } 867 return false; 868 } 869 870 PreservedAnalyses 871 ExpandMemCmpPass::runImpl(Function &F, const TargetLibraryInfo *TLI, 872 const TargetTransformInfo *TTI, 873 const TargetLowering *TL, ProfileSummaryInfo *PSI, 874 BlockFrequencyInfo *BFI, DominatorTree *DT) { 875 std::optional<DomTreeUpdater> DTU; 876 if (DT) 877 DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy); 878 879 const DataLayout& DL = F.getParent()->getDataLayout(); 880 bool MadeChanges = false; 881 for (auto BBIt = F.begin(); BBIt != F.end();) { 882 if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) { 883 MadeChanges = true; 884 // If changes were made, restart the function from the beginning, since 885 // the structure of the function was changed. 886 BBIt = F.begin(); 887 } else { 888 ++BBIt; 889 } 890 } 891 if (MadeChanges) 892 for (BasicBlock &BB : F) 893 SimplifyInstructionsInBlock(&BB); 894 if (!MadeChanges) 895 return PreservedAnalyses::all(); 896 PreservedAnalyses PA; 897 PA.preserve<DominatorTreeAnalysis>(); 898 return PA; 899 } 900 901 } // namespace 902 903 char ExpandMemCmpPass::ID = 0; 904 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp", 905 "Expand memcmp() to load/stores", false, false) 906 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 907 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 908 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 909 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 910 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 911 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp", 912 "Expand memcmp() to load/stores", false, false) 913 914 FunctionPass *llvm::createExpandMemCmpPass() { 915 return new ExpandMemCmpPass(); 916 } 917