1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CriticalAntiDepBreaker class, which 10 // implements register anti-dependence breaking along a blocks 11 // critical path during post-RA scheduler. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CriticalAntiDepBreaker.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/ScheduleDAG.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <cassert> 35 #include <utility> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "post-RA-sched" 40 41 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 42 const RegisterClassInfo &RCI) 43 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 44 TII(MF.getSubtarget().getInstrInfo()), 45 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 46 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 47 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 48 49 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default; 50 51 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 52 const unsigned BBSize = BB->size(); 53 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 54 // Clear out the register class data. 55 Classes[i] = nullptr; 56 57 // Initialize the indices to indicate that no registers are live. 58 KillIndices[i] = ~0u; 59 DefIndices[i] = BBSize; 60 } 61 62 // Clear "do not change" set. 63 KeepRegs.reset(); 64 65 bool IsReturnBlock = BB->isReturnBlock(); 66 67 // Examine the live-in regs of all successors. 68 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 69 SE = BB->succ_end(); SI != SE; ++SI) 70 for (const auto &LI : (*SI)->liveins()) { 71 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 72 unsigned Reg = *AI; 73 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 74 KillIndices[Reg] = BBSize; 75 DefIndices[Reg] = ~0u; 76 } 77 } 78 79 // Mark live-out callee-saved registers. In a return block this is 80 // all callee-saved registers. In non-return this is any 81 // callee-saved register that is not saved in the prolog. 82 const MachineFrameInfo &MFI = MF.getFrameInfo(); 83 BitVector Pristine = MFI.getPristineRegs(MF); 84 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 85 ++I) { 86 unsigned Reg = *I; 87 if (!IsReturnBlock && !Pristine.test(Reg)) 88 continue; 89 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 90 unsigned Reg = *AI; 91 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 92 KillIndices[Reg] = BBSize; 93 DefIndices[Reg] = ~0u; 94 } 95 } 96 } 97 98 void CriticalAntiDepBreaker::FinishBlock() { 99 RegRefs.clear(); 100 KeepRegs.reset(); 101 } 102 103 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 104 unsigned InsertPosIndex) { 105 // Kill instructions can define registers but are really nops, and there might 106 // be a real definition earlier that needs to be paired with uses dominated by 107 // this kill. 108 109 // FIXME: It may be possible to remove the isKill() restriction once PR18663 110 // has been properly fixed. There can be value in processing kills as seen in 111 // the AggressiveAntiDepBreaker class. 112 if (MI.isDebugInstr() || MI.isKill()) 113 return; 114 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 115 116 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 117 if (KillIndices[Reg] != ~0u) { 118 // If Reg is currently live, then mark that it can't be renamed as 119 // we don't know the extent of its live-range anymore (now that it 120 // has been scheduled). 121 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 122 KillIndices[Reg] = Count; 123 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 124 // Any register which was defined within the previous scheduling region 125 // may have been rescheduled and its lifetime may overlap with registers 126 // in ways not reflected in our current liveness state. For each such 127 // register, adjust the liveness state to be conservatively correct. 128 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 129 130 // Move the def index to the end of the previous region, to reflect 131 // that the def could theoretically have been scheduled at the end. 132 DefIndices[Reg] = InsertPosIndex; 133 } 134 } 135 136 PrescanInstruction(MI); 137 ScanInstruction(MI, Count); 138 } 139 140 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 141 /// critical path. 142 static const SDep *CriticalPathStep(const SUnit *SU) { 143 const SDep *Next = nullptr; 144 unsigned NextDepth = 0; 145 // Find the predecessor edge with the greatest depth. 146 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 147 P != PE; ++P) { 148 const SUnit *PredSU = P->getSUnit(); 149 unsigned PredLatency = P->getLatency(); 150 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 151 // In the case of a latency tie, prefer an anti-dependency edge over 152 // other types of edges. 153 if (NextDepth < PredTotalLatency || 154 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 155 NextDepth = PredTotalLatency; 156 Next = &*P; 157 } 158 } 159 return Next; 160 } 161 162 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { 163 // It's not safe to change register allocation for source operands of 164 // instructions that have special allocation requirements. Also assume all 165 // registers used in a call must not be changed (ABI). 166 // FIXME: The issue with predicated instruction is more complex. We are being 167 // conservative here because the kill markers cannot be trusted after 168 // if-conversion: 169 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 170 // ... 171 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 172 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 173 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 174 // 175 // The first R6 kill is not really a kill since it's killed by a predicated 176 // instruction which may not be executed. The second R6 def may or may not 177 // re-define R6 so it's not safe to change it since the last R6 use cannot be 178 // changed. 179 bool Special = 180 MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); 181 182 // Scan the register operands for this instruction and update 183 // Classes and RegRefs. 184 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 185 MachineOperand &MO = MI.getOperand(i); 186 if (!MO.isReg()) continue; 187 Register Reg = MO.getReg(); 188 if (Reg == 0) continue; 189 const TargetRegisterClass *NewRC = nullptr; 190 191 if (i < MI.getDesc().getNumOperands()) 192 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 193 194 // For now, only allow the register to be changed if its register 195 // class is consistent across all uses. 196 if (!Classes[Reg] && NewRC) 197 Classes[Reg] = NewRC; 198 else if (!NewRC || Classes[Reg] != NewRC) 199 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 200 201 // Now check for aliases. 202 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 203 // If an alias of the reg is used during the live range, give up. 204 // Note that this allows us to skip checking if AntiDepReg 205 // overlaps with any of the aliases, among other things. 206 unsigned AliasReg = *AI; 207 if (Classes[AliasReg]) { 208 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 209 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 210 } 211 } 212 213 // If we're still willing to consider this register, note the reference. 214 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 215 RegRefs.insert(std::make_pair(Reg, &MO)); 216 217 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 218 // it or any of its sub or super regs. We need to use KeepRegs to mark the 219 // reg because not all uses of the same reg within an instruction are 220 // necessarily tagged as tied. 221 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 222 // def register but not the second (see PR20020 for details). 223 // FIXME: can this check be relaxed to account for undef uses 224 // of a register? In the above 'xor' example, the uses of %eax are undef, so 225 // earlier instructions could still replace %eax even though the 'xor' 226 // itself can't be changed. 227 if (MI.isRegTiedToUseOperand(i) && 228 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 229 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 230 SubRegs.isValid(); ++SubRegs) { 231 KeepRegs.set(*SubRegs); 232 } 233 for (MCSuperRegIterator SuperRegs(Reg, TRI); 234 SuperRegs.isValid(); ++SuperRegs) { 235 KeepRegs.set(*SuperRegs); 236 } 237 } 238 239 if (MO.isUse() && Special) { 240 if (!KeepRegs.test(Reg)) { 241 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 242 SubRegs.isValid(); ++SubRegs) 243 KeepRegs.set(*SubRegs); 244 } 245 } 246 } 247 } 248 249 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { 250 // Update liveness. 251 // Proceeding upwards, registers that are defed but not used in this 252 // instruction are now dead. 253 assert(!MI.isKill() && "Attempting to scan a kill instruction"); 254 255 if (!TII->isPredicated(MI)) { 256 // Predicated defs are modeled as read + write, i.e. similar to two 257 // address updates. 258 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 259 MachineOperand &MO = MI.getOperand(i); 260 261 if (MO.isRegMask()) { 262 auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) { 263 for (MCSubRegIterator SRI(PhysReg, TRI, true); SRI.isValid(); ++SRI) 264 if (!MO.clobbersPhysReg(*SRI)) 265 return false; 266 267 return true; 268 }; 269 270 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 271 if (ClobbersPhysRegAndSubRegs(i)) { 272 DefIndices[i] = Count; 273 KillIndices[i] = ~0u; 274 KeepRegs.reset(i); 275 Classes[i] = nullptr; 276 RegRefs.erase(i); 277 } 278 } 279 } 280 281 if (!MO.isReg()) continue; 282 Register Reg = MO.getReg(); 283 if (Reg == 0) continue; 284 if (!MO.isDef()) continue; 285 286 // Ignore two-addr defs. 287 if (MI.isRegTiedToUseOperand(i)) 288 continue; 289 290 // If we've already marked this reg as unchangeable, don't remove 291 // it or any of its subregs from KeepRegs. 292 bool Keep = KeepRegs.test(Reg); 293 294 // For the reg itself and all subregs: update the def to current; 295 // reset the kill state, any restrictions, and references. 296 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { 297 unsigned SubregReg = *SRI; 298 DefIndices[SubregReg] = Count; 299 KillIndices[SubregReg] = ~0u; 300 Classes[SubregReg] = nullptr; 301 RegRefs.erase(SubregReg); 302 if (!Keep) 303 KeepRegs.reset(SubregReg); 304 } 305 // Conservatively mark super-registers as unusable. 306 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 307 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 308 } 309 } 310 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 311 MachineOperand &MO = MI.getOperand(i); 312 if (!MO.isReg()) continue; 313 Register Reg = MO.getReg(); 314 if (Reg == 0) continue; 315 if (!MO.isUse()) continue; 316 317 const TargetRegisterClass *NewRC = nullptr; 318 if (i < MI.getDesc().getNumOperands()) 319 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 320 321 // For now, only allow the register to be changed if its register 322 // class is consistent across all uses. 323 if (!Classes[Reg] && NewRC) 324 Classes[Reg] = NewRC; 325 else if (!NewRC || Classes[Reg] != NewRC) 326 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 327 328 RegRefs.insert(std::make_pair(Reg, &MO)); 329 330 // It wasn't previously live but now it is, this is a kill. 331 // Repeat for all aliases. 332 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 333 unsigned AliasReg = *AI; 334 if (KillIndices[AliasReg] == ~0u) { 335 KillIndices[AliasReg] = Count; 336 DefIndices[AliasReg] = ~0u; 337 } 338 } 339 } 340 } 341 342 // Check all machine operands that reference the antidependent register and must 343 // be replaced by NewReg. Return true if any of their parent instructions may 344 // clobber the new register. 345 // 346 // Note: AntiDepReg may be referenced by a two-address instruction such that 347 // it's use operand is tied to a def operand. We guard against the case in which 348 // the two-address instruction also defines NewReg, as may happen with 349 // pre/postincrement loads. In this case, both the use and def operands are in 350 // RegRefs because the def is inserted by PrescanInstruction and not erased 351 // during ScanInstruction. So checking for an instruction with definitions of 352 // both NewReg and AntiDepReg covers it. 353 bool 354 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 355 RegRefIter RegRefEnd, 356 unsigned NewReg) { 357 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 358 MachineOperand *RefOper = I->second; 359 360 // Don't allow the instruction defining AntiDepReg to earlyclobber its 361 // operands, in case they may be assigned to NewReg. In this case antidep 362 // breaking must fail, but it's too rare to bother optimizing. 363 if (RefOper->isDef() && RefOper->isEarlyClobber()) 364 return true; 365 366 // Handle cases in which this instruction defines NewReg. 367 MachineInstr *MI = RefOper->getParent(); 368 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 369 const MachineOperand &CheckOper = MI->getOperand(i); 370 371 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 372 return true; 373 374 if (!CheckOper.isReg() || !CheckOper.isDef() || 375 CheckOper.getReg() != NewReg) 376 continue; 377 378 // Don't allow the instruction to define NewReg and AntiDepReg. 379 // When AntiDepReg is renamed it will be an illegal op. 380 if (RefOper->isDef()) 381 return true; 382 383 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 384 // NewReg. 385 if (CheckOper.isEarlyClobber()) 386 return true; 387 388 // Don't allow inline asm to define NewReg at all. Who knows what it's 389 // doing with it. 390 if (MI->isInlineAsm()) 391 return true; 392 } 393 } 394 return false; 395 } 396 397 unsigned CriticalAntiDepBreaker:: 398 findSuitableFreeRegister(RegRefIter RegRefBegin, 399 RegRefIter RegRefEnd, 400 unsigned AntiDepReg, 401 unsigned LastNewReg, 402 const TargetRegisterClass *RC, 403 SmallVectorImpl<unsigned> &Forbid) { 404 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 405 for (unsigned i = 0; i != Order.size(); ++i) { 406 unsigned NewReg = Order[i]; 407 // Don't replace a register with itself. 408 if (NewReg == AntiDepReg) continue; 409 // Don't replace a register with one that was recently used to repair 410 // an anti-dependence with this AntiDepReg, because that would 411 // re-introduce that anti-dependence. 412 if (NewReg == LastNewReg) continue; 413 // If any instructions that define AntiDepReg also define the NewReg, it's 414 // not suitable. For example, Instruction with multiple definitions can 415 // result in this condition. 416 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 417 // If NewReg is dead and NewReg's most recent def is not before 418 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 419 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 420 && "Kill and Def maps aren't consistent for AntiDepReg!"); 421 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 422 && "Kill and Def maps aren't consistent for NewReg!"); 423 if (KillIndices[NewReg] != ~0u || 424 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 425 KillIndices[AntiDepReg] > DefIndices[NewReg]) 426 continue; 427 // If NewReg overlaps any of the forbidden registers, we can't use it. 428 bool Forbidden = false; 429 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), 430 ite = Forbid.end(); it != ite; ++it) 431 if (TRI->regsOverlap(NewReg, *it)) { 432 Forbidden = true; 433 break; 434 } 435 if (Forbidden) continue; 436 return NewReg; 437 } 438 439 // No registers are free and available! 440 return 0; 441 } 442 443 unsigned CriticalAntiDepBreaker:: 444 BreakAntiDependencies(const std::vector<SUnit> &SUnits, 445 MachineBasicBlock::iterator Begin, 446 MachineBasicBlock::iterator End, 447 unsigned InsertPosIndex, 448 DbgValueVector &DbgValues) { 449 // The code below assumes that there is at least one instruction, 450 // so just duck out immediately if the block is empty. 451 if (SUnits.empty()) return 0; 452 453 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 454 // This is used for updating debug information. 455 // 456 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 457 DenseMap<MachineInstr *, const SUnit *> MISUnitMap; 458 459 // Find the node at the bottom of the critical path. 460 const SUnit *Max = nullptr; 461 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 462 const SUnit *SU = &SUnits[i]; 463 MISUnitMap[SU->getInstr()] = SU; 464 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 465 Max = SU; 466 } 467 assert(Max && "Failed to find bottom of the critical path"); 468 469 #ifndef NDEBUG 470 { 471 LLVM_DEBUG(dbgs() << "Critical path has total latency " 472 << (Max->getDepth() + Max->Latency) << "\n"); 473 LLVM_DEBUG(dbgs() << "Available regs:"); 474 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 475 if (KillIndices[Reg] == ~0u) 476 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 477 } 478 LLVM_DEBUG(dbgs() << '\n'); 479 } 480 #endif 481 482 // Track progress along the critical path through the SUnit graph as we walk 483 // the instructions. 484 const SUnit *CriticalPathSU = Max; 485 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 486 487 // Consider this pattern: 488 // A = ... 489 // ... = A 490 // A = ... 491 // ... = A 492 // A = ... 493 // ... = A 494 // A = ... 495 // ... = A 496 // There are three anti-dependencies here, and without special care, 497 // we'd break all of them using the same register: 498 // A = ... 499 // ... = A 500 // B = ... 501 // ... = B 502 // B = ... 503 // ... = B 504 // B = ... 505 // ... = B 506 // because at each anti-dependence, B is the first register that 507 // isn't A which is free. This re-introduces anti-dependencies 508 // at all but one of the original anti-dependencies that we were 509 // trying to break. To avoid this, keep track of the most recent 510 // register that each register was replaced with, avoid 511 // using it to repair an anti-dependence on the same register. 512 // This lets us produce this: 513 // A = ... 514 // ... = A 515 // B = ... 516 // ... = B 517 // C = ... 518 // ... = C 519 // B = ... 520 // ... = B 521 // This still has an anti-dependence on B, but at least it isn't on the 522 // original critical path. 523 // 524 // TODO: If we tracked more than one register here, we could potentially 525 // fix that remaining critical edge too. This is a little more involved, 526 // because unlike the most recent register, less recent registers should 527 // still be considered, though only if no other registers are available. 528 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 529 530 // Attempt to break anti-dependence edges on the critical path. Walk the 531 // instructions from the bottom up, tracking information about liveness 532 // as we go to help determine which registers are available. 533 unsigned Broken = 0; 534 unsigned Count = InsertPosIndex - 1; 535 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 536 MachineInstr &MI = *--I; 537 // Kill instructions can define registers but are really nops, and there 538 // might be a real definition earlier that needs to be paired with uses 539 // dominated by this kill. 540 541 // FIXME: It may be possible to remove the isKill() restriction once PR18663 542 // has been properly fixed. There can be value in processing kills as seen 543 // in the AggressiveAntiDepBreaker class. 544 if (MI.isDebugInstr() || MI.isKill()) 545 continue; 546 547 // Check if this instruction has a dependence on the critical path that 548 // is an anti-dependence that we may be able to break. If it is, set 549 // AntiDepReg to the non-zero register associated with the anti-dependence. 550 // 551 // We limit our attention to the critical path as a heuristic to avoid 552 // breaking anti-dependence edges that aren't going to significantly 553 // impact the overall schedule. There are a limited number of registers 554 // and we want to save them for the important edges. 555 // 556 // TODO: Instructions with multiple defs could have multiple 557 // anti-dependencies. The current code here only knows how to break one 558 // edge per instruction. Note that we'd have to be able to break all of 559 // the anti-dependencies in an instruction in order to be effective. 560 unsigned AntiDepReg = 0; 561 if (&MI == CriticalPathMI) { 562 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 563 const SUnit *NextSU = Edge->getSUnit(); 564 565 // Only consider anti-dependence edges. 566 if (Edge->getKind() == SDep::Anti) { 567 AntiDepReg = Edge->getReg(); 568 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 569 if (!MRI.isAllocatable(AntiDepReg)) 570 // Don't break anti-dependencies on non-allocatable registers. 571 AntiDepReg = 0; 572 else if (KeepRegs.test(AntiDepReg)) 573 // Don't break anti-dependencies if a use down below requires 574 // this exact register. 575 AntiDepReg = 0; 576 else { 577 // If the SUnit has other dependencies on the SUnit that it 578 // anti-depends on, don't bother breaking the anti-dependency 579 // since those edges would prevent such units from being 580 // scheduled past each other regardless. 581 // 582 // Also, if there are dependencies on other SUnits with the 583 // same register as the anti-dependency, don't attempt to 584 // break it. 585 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 586 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 587 if (P->getSUnit() == NextSU ? 588 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 589 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 590 AntiDepReg = 0; 591 break; 592 } 593 } 594 } 595 CriticalPathSU = NextSU; 596 CriticalPathMI = CriticalPathSU->getInstr(); 597 } else { 598 // We've reached the end of the critical path. 599 CriticalPathSU = nullptr; 600 CriticalPathMI = nullptr; 601 } 602 } 603 604 PrescanInstruction(MI); 605 606 SmallVector<unsigned, 2> ForbidRegs; 607 608 // If MI's defs have a special allocation requirement, don't allow 609 // any def registers to be changed. Also assume all registers 610 // defined in a call must not be changed (ABI). 611 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 612 // If this instruction's defs have special allocation requirement, don't 613 // break this anti-dependency. 614 AntiDepReg = 0; 615 else if (AntiDepReg) { 616 // If this instruction has a use of AntiDepReg, breaking it 617 // is invalid. If the instruction defines other registers, 618 // save a list of them so that we don't pick a new register 619 // that overlaps any of them. 620 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 621 MachineOperand &MO = MI.getOperand(i); 622 if (!MO.isReg()) continue; 623 Register Reg = MO.getReg(); 624 if (Reg == 0) continue; 625 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 626 AntiDepReg = 0; 627 break; 628 } 629 if (MO.isDef() && Reg != AntiDepReg) 630 ForbidRegs.push_back(Reg); 631 } 632 } 633 634 // Determine AntiDepReg's register class, if it is live and is 635 // consistently used within a single class. 636 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 637 : nullptr; 638 assert((AntiDepReg == 0 || RC != nullptr) && 639 "Register should be live if it's causing an anti-dependence!"); 640 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 641 AntiDepReg = 0; 642 643 // Look for a suitable register to use to break the anti-dependence. 644 // 645 // TODO: Instead of picking the first free register, consider which might 646 // be the best. 647 if (AntiDepReg != 0) { 648 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 649 std::multimap<unsigned, MachineOperand *>::iterator> 650 Range = RegRefs.equal_range(AntiDepReg); 651 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 652 AntiDepReg, 653 LastNewReg[AntiDepReg], 654 RC, ForbidRegs)) { 655 LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on " 656 << printReg(AntiDepReg, TRI) << " with " 657 << RegRefs.count(AntiDepReg) << " references" 658 << " using " << printReg(NewReg, TRI) << "!\n"); 659 660 // Update the references to the old register to refer to the new 661 // register. 662 for (std::multimap<unsigned, MachineOperand *>::iterator 663 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 664 Q->second->setReg(NewReg); 665 // If the SU for the instruction being updated has debug information 666 // related to the anti-dependency register, make sure to update that 667 // as well. 668 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 669 if (!SU) continue; 670 UpdateDbgValues(DbgValues, Q->second->getParent(), 671 AntiDepReg, NewReg); 672 } 673 674 // We just went back in time and modified history; the 675 // liveness information for the anti-dependence reg is now 676 // inconsistent. Set the state as if it were dead. 677 Classes[NewReg] = Classes[AntiDepReg]; 678 DefIndices[NewReg] = DefIndices[AntiDepReg]; 679 KillIndices[NewReg] = KillIndices[AntiDepReg]; 680 assert(((KillIndices[NewReg] == ~0u) != 681 (DefIndices[NewReg] == ~0u)) && 682 "Kill and Def maps aren't consistent for NewReg!"); 683 684 Classes[AntiDepReg] = nullptr; 685 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 686 KillIndices[AntiDepReg] = ~0u; 687 assert(((KillIndices[AntiDepReg] == ~0u) != 688 (DefIndices[AntiDepReg] == ~0u)) && 689 "Kill and Def maps aren't consistent for AntiDepReg!"); 690 691 RegRefs.erase(AntiDepReg); 692 LastNewReg[AntiDepReg] = NewReg; 693 ++Broken; 694 } 695 } 696 697 ScanInstruction(MI, Count); 698 } 699 700 return Broken; 701 } 702 703 AntiDepBreaker * 704 llvm::createCriticalAntiDepBreaker(MachineFunction &MFi, 705 const RegisterClassInfo &RCI) { 706 return new CriticalAntiDepBreaker(MFi, RCI); 707 } 708