1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CriticalAntiDepBreaker class, which 10 // implements register anti-dependence breaking along a blocks 11 // critical path during post-RA scheduler. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CriticalAntiDepBreaker.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/ScheduleDAG.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <cassert> 35 #include <utility> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "post-RA-sched" 40 41 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 42 const RegisterClassInfo &RCI) 43 : MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()), 44 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 45 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 46 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 47 48 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default; 49 50 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 51 const unsigned BBSize = BB->size(); 52 for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) { 53 // Clear out the register class data. 54 Classes[i] = nullptr; 55 56 // Initialize the indices to indicate that no registers are live. 57 KillIndices[i] = ~0u; 58 DefIndices[i] = BBSize; 59 } 60 61 // Clear "do not change" set. 62 KeepRegs.reset(); 63 64 bool IsReturnBlock = BB->isReturnBlock(); 65 66 // Examine the live-in regs of all successors. 67 for (const MachineBasicBlock *Succ : BB->successors()) 68 for (const auto &LI : Succ->liveins()) { 69 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 70 unsigned Reg = *AI; 71 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 72 KillIndices[Reg] = BBSize; 73 DefIndices[Reg] = ~0u; 74 } 75 } 76 77 // Mark live-out callee-saved registers. In a return block this is 78 // all callee-saved registers. In non-return this is any 79 // callee-saved register that is not saved in the prolog. 80 const MachineFrameInfo &MFI = MF.getFrameInfo(); 81 BitVector Pristine = MFI.getPristineRegs(MF); 82 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 83 ++I) { 84 unsigned Reg = *I; 85 if (!IsReturnBlock && !Pristine.test(Reg)) 86 continue; 87 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 88 unsigned Reg = *AI; 89 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 90 KillIndices[Reg] = BBSize; 91 DefIndices[Reg] = ~0u; 92 } 93 } 94 } 95 96 void CriticalAntiDepBreaker::FinishBlock() { 97 RegRefs.clear(); 98 KeepRegs.reset(); 99 } 100 101 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 102 unsigned InsertPosIndex) { 103 // Kill instructions can define registers but are really nops, and there might 104 // be a real definition earlier that needs to be paired with uses dominated by 105 // this kill. 106 107 // FIXME: It may be possible to remove the isKill() restriction once PR18663 108 // has been properly fixed. There can be value in processing kills as seen in 109 // the AggressiveAntiDepBreaker class. 110 if (MI.isDebugInstr() || MI.isKill()) 111 return; 112 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 113 114 for (unsigned Reg = 1; Reg != TRI->getNumRegs(); ++Reg) { 115 if (KillIndices[Reg] != ~0u) { 116 // If Reg is currently live, then mark that it can't be renamed as 117 // we don't know the extent of its live-range anymore (now that it 118 // has been scheduled). 119 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 120 KillIndices[Reg] = Count; 121 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 122 // Any register which was defined within the previous scheduling region 123 // may have been rescheduled and its lifetime may overlap with registers 124 // in ways not reflected in our current liveness state. For each such 125 // register, adjust the liveness state to be conservatively correct. 126 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 127 128 // Move the def index to the end of the previous region, to reflect 129 // that the def could theoretically have been scheduled at the end. 130 DefIndices[Reg] = InsertPosIndex; 131 } 132 } 133 134 PrescanInstruction(MI); 135 ScanInstruction(MI, Count); 136 } 137 138 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 139 /// critical path. 140 static const SDep *CriticalPathStep(const SUnit *SU) { 141 const SDep *Next = nullptr; 142 unsigned NextDepth = 0; 143 // Find the predecessor edge with the greatest depth. 144 for (const SDep &P : SU->Preds) { 145 const SUnit *PredSU = P.getSUnit(); 146 unsigned PredLatency = P.getLatency(); 147 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 148 // In the case of a latency tie, prefer an anti-dependency edge over 149 // other types of edges. 150 if (NextDepth < PredTotalLatency || 151 (NextDepth == PredTotalLatency && P.getKind() == SDep::Anti)) { 152 NextDepth = PredTotalLatency; 153 Next = &P; 154 } 155 } 156 return Next; 157 } 158 159 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { 160 // It's not safe to change register allocation for source operands of 161 // instructions that have special allocation requirements. Also assume all 162 // registers used in a call must not be changed (ABI). 163 // FIXME: The issue with predicated instruction is more complex. We are being 164 // conservative here because the kill markers cannot be trusted after 165 // if-conversion: 166 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 167 // ... 168 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 169 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 170 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 171 // 172 // The first R6 kill is not really a kill since it's killed by a predicated 173 // instruction which may not be executed. The second R6 def may or may not 174 // re-define R6 so it's not safe to change it since the last R6 use cannot be 175 // changed. 176 bool Special = 177 MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); 178 179 // Scan the register operands for this instruction and update 180 // Classes and RegRefs. 181 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 182 MachineOperand &MO = MI.getOperand(i); 183 if (!MO.isReg()) continue; 184 Register Reg = MO.getReg(); 185 if (Reg == 0) continue; 186 const TargetRegisterClass *NewRC = nullptr; 187 188 if (i < MI.getDesc().getNumOperands()) 189 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 190 191 // For now, only allow the register to be changed if its register 192 // class is consistent across all uses. 193 if (!Classes[Reg] && NewRC) 194 Classes[Reg] = NewRC; 195 else if (!NewRC || Classes[Reg] != NewRC) 196 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 197 198 // Now check for aliases. 199 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 200 // If an alias of the reg is used during the live range, give up. 201 // Note that this allows us to skip checking if AntiDepReg 202 // overlaps with any of the aliases, among other things. 203 unsigned AliasReg = *AI; 204 if (Classes[AliasReg]) { 205 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 206 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 207 } 208 } 209 210 // If we're still willing to consider this register, note the reference. 211 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 212 RegRefs.insert(std::make_pair(Reg, &MO)); 213 214 if (MO.isUse() && Special) { 215 if (!KeepRegs.test(Reg)) { 216 for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) 217 KeepRegs.set(SubReg); 218 } 219 } 220 } 221 222 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 223 const MachineOperand &MO = MI.getOperand(I); 224 if (!MO.isReg()) continue; 225 Register Reg = MO.getReg(); 226 if (!Reg.isValid()) 227 continue; 228 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 229 // it or any of its sub or super regs. We need to use KeepRegs to mark the 230 // reg because not all uses of the same reg within an instruction are 231 // necessarily tagged as tied. 232 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 233 // def register but not the second (see PR20020 for details). 234 // FIXME: can this check be relaxed to account for undef uses 235 // of a register? In the above 'xor' example, the uses of %eax are undef, so 236 // earlier instructions could still replace %eax even though the 'xor' 237 // itself can't be changed. 238 if (MI.isRegTiedToUseOperand(I) && 239 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 240 for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) { 241 KeepRegs.set(SubReg); 242 } 243 for (MCPhysReg SuperReg : TRI->superregs(Reg)) { 244 KeepRegs.set(SuperReg); 245 } 246 } 247 } 248 } 249 250 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { 251 // Update liveness. 252 // Proceeding upwards, registers that are defed but not used in this 253 // instruction are now dead. 254 assert(!MI.isKill() && "Attempting to scan a kill instruction"); 255 256 if (!TII->isPredicated(MI)) { 257 // Predicated defs are modeled as read + write, i.e. similar to two 258 // address updates. 259 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 260 MachineOperand &MO = MI.getOperand(i); 261 262 if (MO.isRegMask()) { 263 auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) { 264 return all_of(TRI->subregs_inclusive(PhysReg), 265 [&](MCPhysReg SR) { return MO.clobbersPhysReg(SR); }); 266 }; 267 268 for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) { 269 if (ClobbersPhysRegAndSubRegs(i)) { 270 DefIndices[i] = Count; 271 KillIndices[i] = ~0u; 272 KeepRegs.reset(i); 273 Classes[i] = nullptr; 274 RegRefs.erase(i); 275 } 276 } 277 } 278 279 if (!MO.isReg()) continue; 280 Register Reg = MO.getReg(); 281 if (Reg == 0) continue; 282 if (!MO.isDef()) continue; 283 284 // Ignore two-addr defs. 285 if (MI.isRegTiedToUseOperand(i)) 286 continue; 287 288 // If we've already marked this reg as unchangeable, don't remove 289 // it or any of its subregs from KeepRegs. 290 bool Keep = KeepRegs.test(Reg); 291 292 // For the reg itself and all subregs: update the def to current; 293 // reset the kill state, any restrictions, and references. 294 for (MCPhysReg SubregReg : TRI->subregs_inclusive(Reg)) { 295 DefIndices[SubregReg] = Count; 296 KillIndices[SubregReg] = ~0u; 297 Classes[SubregReg] = nullptr; 298 RegRefs.erase(SubregReg); 299 if (!Keep) 300 KeepRegs.reset(SubregReg); 301 } 302 // Conservatively mark super-registers as unusable. 303 for (MCPhysReg SR : TRI->superregs(Reg)) 304 Classes[SR] = reinterpret_cast<TargetRegisterClass *>(-1); 305 } 306 } 307 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 308 MachineOperand &MO = MI.getOperand(i); 309 if (!MO.isReg()) continue; 310 Register Reg = MO.getReg(); 311 if (Reg == 0) continue; 312 if (!MO.isUse()) continue; 313 314 const TargetRegisterClass *NewRC = nullptr; 315 if (i < MI.getDesc().getNumOperands()) 316 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 317 318 // For now, only allow the register to be changed if its register 319 // class is consistent across all uses. 320 if (!Classes[Reg] && NewRC) 321 Classes[Reg] = NewRC; 322 else if (!NewRC || Classes[Reg] != NewRC) 323 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 324 325 RegRefs.insert(std::make_pair(Reg, &MO)); 326 327 // It wasn't previously live but now it is, this is a kill. 328 // Repeat for all aliases. 329 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 330 unsigned AliasReg = *AI; 331 if (KillIndices[AliasReg] == ~0u) { 332 KillIndices[AliasReg] = Count; 333 DefIndices[AliasReg] = ~0u; 334 } 335 } 336 } 337 } 338 339 // Check all machine operands that reference the antidependent register and must 340 // be replaced by NewReg. Return true if any of their parent instructions may 341 // clobber the new register. 342 // 343 // Note: AntiDepReg may be referenced by a two-address instruction such that 344 // it's use operand is tied to a def operand. We guard against the case in which 345 // the two-address instruction also defines NewReg, as may happen with 346 // pre/postincrement loads. In this case, both the use and def operands are in 347 // RegRefs because the def is inserted by PrescanInstruction and not erased 348 // during ScanInstruction. So checking for an instruction with definitions of 349 // both NewReg and AntiDepReg covers it. 350 bool 351 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 352 RegRefIter RegRefEnd, 353 unsigned NewReg) { 354 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 355 MachineOperand *RefOper = I->second; 356 357 // Don't allow the instruction defining AntiDepReg to earlyclobber its 358 // operands, in case they may be assigned to NewReg. In this case antidep 359 // breaking must fail, but it's too rare to bother optimizing. 360 if (RefOper->isDef() && RefOper->isEarlyClobber()) 361 return true; 362 363 // Handle cases in which this instruction defines NewReg. 364 MachineInstr *MI = RefOper->getParent(); 365 for (const MachineOperand &CheckOper : MI->operands()) { 366 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 367 return true; 368 369 if (!CheckOper.isReg() || !CheckOper.isDef() || 370 CheckOper.getReg() != NewReg) 371 continue; 372 373 // Don't allow the instruction to define NewReg and AntiDepReg. 374 // When AntiDepReg is renamed it will be an illegal op. 375 if (RefOper->isDef()) 376 return true; 377 378 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 379 // NewReg. 380 if (CheckOper.isEarlyClobber()) 381 return true; 382 383 // Don't allow inline asm to define NewReg at all. Who knows what it's 384 // doing with it. 385 if (MI->isInlineAsm()) 386 return true; 387 } 388 } 389 return false; 390 } 391 392 unsigned CriticalAntiDepBreaker:: 393 findSuitableFreeRegister(RegRefIter RegRefBegin, 394 RegRefIter RegRefEnd, 395 unsigned AntiDepReg, 396 unsigned LastNewReg, 397 const TargetRegisterClass *RC, 398 SmallVectorImpl<unsigned> &Forbid) { 399 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 400 for (unsigned NewReg : Order) { 401 // Don't replace a register with itself. 402 if (NewReg == AntiDepReg) continue; 403 // Don't replace a register with one that was recently used to repair 404 // an anti-dependence with this AntiDepReg, because that would 405 // re-introduce that anti-dependence. 406 if (NewReg == LastNewReg) continue; 407 // If any instructions that define AntiDepReg also define the NewReg, it's 408 // not suitable. For example, Instruction with multiple definitions can 409 // result in this condition. 410 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 411 // If NewReg is dead and NewReg's most recent def is not before 412 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 413 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 414 && "Kill and Def maps aren't consistent for AntiDepReg!"); 415 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 416 && "Kill and Def maps aren't consistent for NewReg!"); 417 if (KillIndices[NewReg] != ~0u || 418 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 419 KillIndices[AntiDepReg] > DefIndices[NewReg]) 420 continue; 421 // If NewReg overlaps any of the forbidden registers, we can't use it. 422 bool Forbidden = false; 423 for (unsigned R : Forbid) 424 if (TRI->regsOverlap(NewReg, R)) { 425 Forbidden = true; 426 break; 427 } 428 if (Forbidden) continue; 429 return NewReg; 430 } 431 432 // No registers are free and available! 433 return 0; 434 } 435 436 unsigned CriticalAntiDepBreaker:: 437 BreakAntiDependencies(const std::vector<SUnit> &SUnits, 438 MachineBasicBlock::iterator Begin, 439 MachineBasicBlock::iterator End, 440 unsigned InsertPosIndex, 441 DbgValueVector &DbgValues) { 442 // The code below assumes that there is at least one instruction, 443 // so just duck out immediately if the block is empty. 444 if (SUnits.empty()) return 0; 445 446 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 447 // This is used for updating debug information. 448 // 449 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 450 DenseMap<MachineInstr *, const SUnit *> MISUnitMap; 451 452 // Find the node at the bottom of the critical path. 453 const SUnit *Max = nullptr; 454 for (const SUnit &SU : SUnits) { 455 MISUnitMap[SU.getInstr()] = &SU; 456 if (!Max || SU.getDepth() + SU.Latency > Max->getDepth() + Max->Latency) 457 Max = &SU; 458 } 459 assert(Max && "Failed to find bottom of the critical path"); 460 461 #ifndef NDEBUG 462 { 463 LLVM_DEBUG(dbgs() << "Critical path has total latency " 464 << (Max->getDepth() + Max->Latency) << "\n"); 465 LLVM_DEBUG(dbgs() << "Available regs:"); 466 for (unsigned Reg = 1; Reg < TRI->getNumRegs(); ++Reg) { 467 if (KillIndices[Reg] == ~0u) 468 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 469 } 470 LLVM_DEBUG(dbgs() << '\n'); 471 } 472 #endif 473 474 // Track progress along the critical path through the SUnit graph as we walk 475 // the instructions. 476 const SUnit *CriticalPathSU = Max; 477 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 478 479 // Consider this pattern: 480 // A = ... 481 // ... = A 482 // A = ... 483 // ... = A 484 // A = ... 485 // ... = A 486 // A = ... 487 // ... = A 488 // There are three anti-dependencies here, and without special care, 489 // we'd break all of them using the same register: 490 // A = ... 491 // ... = A 492 // B = ... 493 // ... = B 494 // B = ... 495 // ... = B 496 // B = ... 497 // ... = B 498 // because at each anti-dependence, B is the first register that 499 // isn't A which is free. This re-introduces anti-dependencies 500 // at all but one of the original anti-dependencies that we were 501 // trying to break. To avoid this, keep track of the most recent 502 // register that each register was replaced with, avoid 503 // using it to repair an anti-dependence on the same register. 504 // This lets us produce this: 505 // A = ... 506 // ... = A 507 // B = ... 508 // ... = B 509 // C = ... 510 // ... = C 511 // B = ... 512 // ... = B 513 // This still has an anti-dependence on B, but at least it isn't on the 514 // original critical path. 515 // 516 // TODO: If we tracked more than one register here, we could potentially 517 // fix that remaining critical edge too. This is a little more involved, 518 // because unlike the most recent register, less recent registers should 519 // still be considered, though only if no other registers are available. 520 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 521 522 // Attempt to break anti-dependence edges on the critical path. Walk the 523 // instructions from the bottom up, tracking information about liveness 524 // as we go to help determine which registers are available. 525 unsigned Broken = 0; 526 unsigned Count = InsertPosIndex - 1; 527 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 528 MachineInstr &MI = *--I; 529 // Kill instructions can define registers but are really nops, and there 530 // might be a real definition earlier that needs to be paired with uses 531 // dominated by this kill. 532 533 // FIXME: It may be possible to remove the isKill() restriction once PR18663 534 // has been properly fixed. There can be value in processing kills as seen 535 // in the AggressiveAntiDepBreaker class. 536 if (MI.isDebugInstr() || MI.isKill()) 537 continue; 538 539 // Check if this instruction has a dependence on the critical path that 540 // is an anti-dependence that we may be able to break. If it is, set 541 // AntiDepReg to the non-zero register associated with the anti-dependence. 542 // 543 // We limit our attention to the critical path as a heuristic to avoid 544 // breaking anti-dependence edges that aren't going to significantly 545 // impact the overall schedule. There are a limited number of registers 546 // and we want to save them for the important edges. 547 // 548 // TODO: Instructions with multiple defs could have multiple 549 // anti-dependencies. The current code here only knows how to break one 550 // edge per instruction. Note that we'd have to be able to break all of 551 // the anti-dependencies in an instruction in order to be effective. 552 unsigned AntiDepReg = 0; 553 if (&MI == CriticalPathMI) { 554 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 555 const SUnit *NextSU = Edge->getSUnit(); 556 557 // Only consider anti-dependence edges. 558 if (Edge->getKind() == SDep::Anti) { 559 AntiDepReg = Edge->getReg(); 560 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 561 if (!MRI.isAllocatable(AntiDepReg)) 562 // Don't break anti-dependencies on non-allocatable registers. 563 AntiDepReg = 0; 564 else if (KeepRegs.test(AntiDepReg)) 565 // Don't break anti-dependencies if a use down below requires 566 // this exact register. 567 AntiDepReg = 0; 568 else { 569 // If the SUnit has other dependencies on the SUnit that it 570 // anti-depends on, don't bother breaking the anti-dependency 571 // since those edges would prevent such units from being 572 // scheduled past each other regardless. 573 // 574 // Also, if there are dependencies on other SUnits with the 575 // same register as the anti-dependency, don't attempt to 576 // break it. 577 for (const SDep &P : CriticalPathSU->Preds) 578 if (P.getSUnit() == NextSU 579 ? (P.getKind() != SDep::Anti || P.getReg() != AntiDepReg) 580 : (P.getKind() == SDep::Data && 581 P.getReg() == AntiDepReg)) { 582 AntiDepReg = 0; 583 break; 584 } 585 } 586 } 587 CriticalPathSU = NextSU; 588 CriticalPathMI = CriticalPathSU->getInstr(); 589 } else { 590 // We've reached the end of the critical path. 591 CriticalPathSU = nullptr; 592 CriticalPathMI = nullptr; 593 } 594 } 595 596 PrescanInstruction(MI); 597 598 SmallVector<unsigned, 2> ForbidRegs; 599 600 // If MI's defs have a special allocation requirement, don't allow 601 // any def registers to be changed. Also assume all registers 602 // defined in a call must not be changed (ABI). 603 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 604 // If this instruction's defs have special allocation requirement, don't 605 // break this anti-dependency. 606 AntiDepReg = 0; 607 else if (AntiDepReg) { 608 // If this instruction has a use of AntiDepReg, breaking it 609 // is invalid. If the instruction defines other registers, 610 // save a list of them so that we don't pick a new register 611 // that overlaps any of them. 612 for (const MachineOperand &MO : MI.operands()) { 613 if (!MO.isReg()) continue; 614 Register Reg = MO.getReg(); 615 if (Reg == 0) continue; 616 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 617 AntiDepReg = 0; 618 break; 619 } 620 if (MO.isDef() && Reg != AntiDepReg) 621 ForbidRegs.push_back(Reg); 622 } 623 } 624 625 // Determine AntiDepReg's register class, if it is live and is 626 // consistently used within a single class. 627 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 628 : nullptr; 629 assert((AntiDepReg == 0 || RC != nullptr) && 630 "Register should be live if it's causing an anti-dependence!"); 631 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 632 AntiDepReg = 0; 633 634 // Look for a suitable register to use to break the anti-dependence. 635 // 636 // TODO: Instead of picking the first free register, consider which might 637 // be the best. 638 if (AntiDepReg != 0) { 639 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 640 std::multimap<unsigned, MachineOperand *>::iterator> 641 Range = RegRefs.equal_range(AntiDepReg); 642 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 643 AntiDepReg, 644 LastNewReg[AntiDepReg], 645 RC, ForbidRegs)) { 646 LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on " 647 << printReg(AntiDepReg, TRI) << " with " 648 << RegRefs.count(AntiDepReg) << " references" 649 << " using " << printReg(NewReg, TRI) << "!\n"); 650 651 // Update the references to the old register to refer to the new 652 // register. 653 for (std::multimap<unsigned, MachineOperand *>::iterator 654 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 655 Q->second->setReg(NewReg); 656 // If the SU for the instruction being updated has debug information 657 // related to the anti-dependency register, make sure to update that 658 // as well. 659 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 660 if (!SU) continue; 661 UpdateDbgValues(DbgValues, Q->second->getParent(), 662 AntiDepReg, NewReg); 663 } 664 665 // We just went back in time and modified history; the 666 // liveness information for the anti-dependence reg is now 667 // inconsistent. Set the state as if it were dead. 668 Classes[NewReg] = Classes[AntiDepReg]; 669 DefIndices[NewReg] = DefIndices[AntiDepReg]; 670 KillIndices[NewReg] = KillIndices[AntiDepReg]; 671 assert(((KillIndices[NewReg] == ~0u) != 672 (DefIndices[NewReg] == ~0u)) && 673 "Kill and Def maps aren't consistent for NewReg!"); 674 675 Classes[AntiDepReg] = nullptr; 676 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 677 KillIndices[AntiDepReg] = ~0u; 678 assert(((KillIndices[AntiDepReg] == ~0u) != 679 (DefIndices[AntiDepReg] == ~0u)) && 680 "Kill and Def maps aren't consistent for AntiDepReg!"); 681 682 RegRefs.erase(AntiDepReg); 683 LastNewReg[AntiDepReg] = NewReg; 684 ++Broken; 685 } 686 } 687 688 ScanInstruction(MI, Count); 689 } 690 691 return Broken; 692 } 693 694 AntiDepBreaker * 695 llvm::createCriticalAntiDepBreaker(MachineFunction &MFi, 696 const RegisterClassInfo &RCI) { 697 return new CriticalAntiDepBreaker(MFi, RCI); 698 } 699