1 //===-- AssignmentTrackingAnalysis.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 10 #include "LiveDebugValues/LiveDebugValues.h" 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/DenseMapInfo.h" 13 #include "llvm/ADT/IntervalMap.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/UniqueVector.h" 18 #include "llvm/Analysis/Interval.h" 19 #include "llvm/BinaryFormat/Dwarf.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DebugProgramInstruction.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PassManager.h" 28 #include "llvm/IR/PrintPasses.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include <assert.h> 35 #include <cstdint> 36 #include <optional> 37 #include <queue> 38 #include <sstream> 39 #include <unordered_map> 40 41 using namespace llvm; 42 #define DEBUG_TYPE "debug-ata" 43 44 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal"); 45 STATISTIC(NumDefsRemoved, "Number of dbg locs removed"); 46 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned"); 47 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed"); 48 49 static cl::opt<unsigned> 50 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), 51 cl::desc("Maximum num basic blocks before debug info dropped"), 52 cl::Hidden); 53 /// Option for debugging the pass, determines if the memory location fragment 54 /// filling happens after generating the variable locations. 55 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true), 56 cl::Hidden); 57 /// Print the results of the analysis. Respects -filter-print-funcs. 58 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false), 59 cl::Hidden); 60 61 /// Coalesce adjacent dbg locs describing memory locations that have contiguous 62 /// fragments. This reduces the cost of LiveDebugValues which does SSA 63 /// construction for each explicitly stated variable fragment. 64 static cl::opt<cl::boolOrDefault> 65 CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden); 66 67 // Implicit conversions are disabled for enum class types, so unfortunately we 68 // need to create a DenseMapInfo wrapper around the specified underlying type. 69 template <> struct llvm::DenseMapInfo<VariableID> { 70 using Wrapped = DenseMapInfo<unsigned>; 71 static inline VariableID getEmptyKey() { 72 return static_cast<VariableID>(Wrapped::getEmptyKey()); 73 } 74 static inline VariableID getTombstoneKey() { 75 return static_cast<VariableID>(Wrapped::getTombstoneKey()); 76 } 77 static unsigned getHashValue(const VariableID &Val) { 78 return Wrapped::getHashValue(static_cast<unsigned>(Val)); 79 } 80 static bool isEqual(const VariableID &LHS, const VariableID &RHS) { 81 return LHS == RHS; 82 } 83 }; 84 85 using VarLocInsertPt = PointerUnion<const Instruction *, const DPValue *>; 86 87 namespace std { 88 template <> struct hash<VarLocInsertPt> { 89 using argument_type = VarLocInsertPt; 90 using result_type = std::size_t; 91 92 result_type operator()(const argument_type &Arg) const { 93 return std::hash<void *>()(Arg.getOpaqueValue()); 94 } 95 }; 96 } // namespace std 97 98 /// Helper class to build FunctionVarLocs, since that class isn't easy to 99 /// modify. TODO: There's not a great deal of value in the split, it could be 100 /// worth merging the two classes. 101 class FunctionVarLocsBuilder { 102 friend FunctionVarLocs; 103 UniqueVector<DebugVariable> Variables; 104 // Use an unordered_map so we don't invalidate iterators after 105 // insert/modifications. 106 std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst; 107 108 SmallVector<VarLocInfo> SingleLocVars; 109 110 public: 111 unsigned getNumVariables() const { return Variables.size(); } 112 113 /// Find or insert \p V and return the ID. 114 VariableID insertVariable(DebugVariable V) { 115 return static_cast<VariableID>(Variables.insert(V)); 116 } 117 118 /// Get a variable from its \p ID. 119 const DebugVariable &getVariable(VariableID ID) const { 120 return Variables[static_cast<unsigned>(ID)]; 121 } 122 123 /// Return ptr to wedge of defs or nullptr if no defs come just before /p 124 /// Before. 125 const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const { 126 auto R = VarLocsBeforeInst.find(Before); 127 if (R == VarLocsBeforeInst.end()) 128 return nullptr; 129 return &R->second; 130 } 131 132 /// Replace the defs that come just before /p Before with /p Wedge. 133 void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) { 134 VarLocsBeforeInst[Before] = std::move(Wedge); 135 } 136 137 /// Add a def for a variable that is valid for its lifetime. 138 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, 139 RawLocationWrapper R) { 140 VarLocInfo VarLoc; 141 VarLoc.VariableID = insertVariable(Var); 142 VarLoc.Expr = Expr; 143 VarLoc.DL = DL; 144 VarLoc.Values = R; 145 SingleLocVars.emplace_back(VarLoc); 146 } 147 148 /// Add a def to the wedge of defs just before /p Before. 149 void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr, 150 DebugLoc DL, RawLocationWrapper R) { 151 VarLocInfo VarLoc; 152 VarLoc.VariableID = insertVariable(Var); 153 VarLoc.Expr = Expr; 154 VarLoc.DL = DL; 155 VarLoc.Values = R; 156 VarLocsBeforeInst[Before].emplace_back(VarLoc); 157 } 158 }; 159 160 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const { 161 // Print the variable table first. TODO: Sorting by variable could make the 162 // output more stable? 163 unsigned Counter = -1; 164 OS << "=== Variables ===\n"; 165 for (const DebugVariable &V : Variables) { 166 ++Counter; 167 // Skip first entry because it is a dummy entry. 168 if (Counter == 0) { 169 continue; 170 } 171 OS << "[" << Counter << "] " << V.getVariable()->getName(); 172 if (auto F = V.getFragment()) 173 OS << " bits [" << F->OffsetInBits << ", " 174 << F->OffsetInBits + F->SizeInBits << ")"; 175 if (const auto *IA = V.getInlinedAt()) 176 OS << " inlined-at " << *IA; 177 OS << "\n"; 178 } 179 180 auto PrintLoc = [&OS](const VarLocInfo &Loc) { 181 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]" 182 << " Expr=" << *Loc.Expr << " Values=("; 183 for (auto *Op : Loc.Values.location_ops()) { 184 errs() << Op->getName() << " "; 185 } 186 errs() << ")\n"; 187 }; 188 189 // Print the single location variables. 190 OS << "=== Single location vars ===\n"; 191 for (auto It = single_locs_begin(), End = single_locs_end(); It != End; 192 ++It) { 193 PrintLoc(*It); 194 } 195 196 // Print the non-single-location defs in line with IR. 197 OS << "=== In-line variable defs ==="; 198 for (const BasicBlock &BB : Fn) { 199 OS << "\n" << BB.getName() << ":\n"; 200 for (const Instruction &I : BB) { 201 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) { 202 PrintLoc(*It); 203 } 204 OS << I << "\n"; 205 } 206 } 207 } 208 209 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) { 210 // Add the single-location variables first. 211 for (const auto &VarLoc : Builder.SingleLocVars) 212 VarLocRecords.emplace_back(VarLoc); 213 // Mark the end of the section. 214 SingleVarLocEnd = VarLocRecords.size(); 215 216 // Insert a contiguous block of VarLocInfos for each instruction, mapping it 217 // to the start and end position in the vector with VarLocsBeforeInst. This 218 // block includes VarLocs for any DPValues attached to that instruction. 219 for (auto &P : Builder.VarLocsBeforeInst) { 220 // Process VarLocs attached to a DPValue alongside their marker Instruction. 221 if (isa<const DPValue *>(P.first)) 222 continue; 223 const Instruction *I = cast<const Instruction *>(P.first); 224 unsigned BlockStart = VarLocRecords.size(); 225 // Any VarLocInfos attached to a DPValue should now be remapped to their 226 // marker Instruction, in order of DPValue appearance and prior to any 227 // VarLocInfos attached directly to that instruction. 228 for (const DPValue &DPV : I->getDbgValueRange()) { 229 // Even though DPV defines a variable location, VarLocsBeforeInst can 230 // still be empty if that VarLoc was redundant. 231 if (!Builder.VarLocsBeforeInst.count(&DPV)) 232 continue; 233 for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DPV]) 234 VarLocRecords.emplace_back(VarLoc); 235 } 236 for (const VarLocInfo &VarLoc : P.second) 237 VarLocRecords.emplace_back(VarLoc); 238 unsigned BlockEnd = VarLocRecords.size(); 239 // Record the start and end indices. 240 if (BlockEnd != BlockStart) 241 VarLocsBeforeInst[I] = {BlockStart, BlockEnd}; 242 } 243 244 // Copy the Variables vector from the builder's UniqueVector. 245 assert(Variables.empty() && "Expect clear before init"); 246 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values 247 // are one-based) so reserve an extra and insert a dummy. 248 Variables.reserve(Builder.Variables.size() + 1); 249 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr)); 250 Variables.append(Builder.Variables.begin(), Builder.Variables.end()); 251 } 252 253 void FunctionVarLocs::clear() { 254 Variables.clear(); 255 VarLocRecords.clear(); 256 VarLocsBeforeInst.clear(); 257 SingleVarLocEnd = 0; 258 } 259 260 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p 261 /// Start as far as possible. Prepend \Expression with the offset and append it 262 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to 263 /// value and modified expression. 264 static std::pair<Value *, DIExpression *> 265 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, 266 DIExpression *Expression) { 267 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false); 268 Value *End = 269 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes); 270 SmallVector<uint64_t, 3> Ops; 271 if (OffsetInBytes.getBoolValue()) { 272 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()}; 273 Expression = DIExpression::prependOpcodes( 274 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false); 275 } 276 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref}); 277 return {End, Expression}; 278 } 279 280 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression 281 /// doesn't explicitly describe a memory location with DW_OP_deref or if the 282 /// expression is too complex to interpret. 283 static std::optional<int64_t> 284 getDerefOffsetInBytes(const DIExpression *DIExpr) { 285 int64_t Offset = 0; 286 const unsigned NumElements = DIExpr->getNumElements(); 287 const auto Elements = DIExpr->getElements(); 288 unsigned ExpectedDerefIdx = 0; 289 // Extract the offset. 290 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { 291 Offset = Elements[1]; 292 ExpectedDerefIdx = 2; 293 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) { 294 ExpectedDerefIdx = 3; 295 if (Elements[2] == dwarf::DW_OP_plus) 296 Offset = Elements[1]; 297 else if (Elements[2] == dwarf::DW_OP_minus) 298 Offset = -Elements[1]; 299 else 300 return std::nullopt; 301 } 302 303 // If that's all there is it means there's no deref. 304 if (ExpectedDerefIdx >= NumElements) 305 return std::nullopt; 306 307 // Check the next element is DW_OP_deref - otherwise this is too complex or 308 // isn't a deref expression. 309 if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref) 310 return std::nullopt; 311 312 // Check the final operation is either the DW_OP_deref or is a fragment. 313 if (NumElements == ExpectedDerefIdx + 1) 314 return Offset; // Ends with deref. 315 unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1; 316 unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2; 317 if (NumElements == ExpectedFragFinalIdx + 1 && 318 Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment) 319 return Offset; // Ends with deref + fragment. 320 321 // Don't bother trying to interpret anything more complex. 322 return std::nullopt; 323 } 324 325 /// A whole (unfragmented) source variable. 326 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>; 327 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) { 328 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt()); 329 } 330 static DebugAggregate getAggregate(const DebugVariable &Var) { 331 return DebugAggregate(Var.getVariable(), Var.getInlinedAt()); 332 } 333 334 static bool shouldCoalesceFragments(Function &F) { 335 // Enabling fragment coalescing reduces compiler run time when instruction 336 // referencing is enabled. However, it may cause LiveDebugVariables to create 337 // incorrect locations. Since instruction-referencing mode effectively 338 // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag 339 // has not been explicitly set and instruction-referencing is turned on. 340 switch (CoalesceAdjacentFragmentsOpt) { 341 case cl::boolOrDefault::BOU_UNSET: 342 return debuginfoShouldUseDebugInstrRef( 343 Triple(F.getParent()->getTargetTriple())); 344 case cl::boolOrDefault::BOU_TRUE: 345 return true; 346 case cl::boolOrDefault::BOU_FALSE: 347 return false; 348 } 349 llvm_unreachable("Unknown boolOrDefault value"); 350 } 351 352 namespace { 353 /// In dwarf emission, the following sequence 354 /// 1. dbg.value ... Fragment(0, 64) 355 /// 2. dbg.value ... Fragment(0, 32) 356 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in 357 /// the intersection of the fragments to having "no location"). This makes 358 /// sense for implicit location values because splitting the computed values 359 /// could be troublesome, and is probably quite uncommon. When we convert 360 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing 361 /// a location (memory) rather than a value means we don't need to worry about 362 /// splitting any values, so we try to recover the rest of the fragment 363 /// location here. 364 /// This class performs a(nother) dataflow analysis over the function, adding 365 /// variable locations so that any bits of a variable with a memory location 366 /// have that location explicitly reinstated at each subsequent variable 367 /// location definition that that doesn't overwrite those bits. i.e. after a 368 /// variable location def, insert new defs for the memory location with 369 /// fragments for the difference of "all bits currently in memory" and "the 370 /// fragment of the second def". 371 class MemLocFragmentFill { 372 Function &Fn; 373 FunctionVarLocsBuilder *FnVarLocs; 374 const DenseSet<DebugAggregate> *VarsWithStackSlot; 375 bool CoalesceAdjacentFragments; 376 377 // 0 = no memory location. 378 using BaseAddress = unsigned; 379 using OffsetInBitsTy = unsigned; 380 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>; 381 using FragsInMemMap = IntervalMap< 382 OffsetInBitsTy, BaseAddress, 383 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize, 384 FragTraits>; 385 FragsInMemMap::Allocator IntervalMapAlloc; 386 using VarFragMap = DenseMap<unsigned, FragsInMemMap>; 387 388 /// IDs for memory location base addresses in maps. Use 0 to indicate that 389 /// there's no memory location. 390 UniqueVector<RawLocationWrapper> Bases; 391 UniqueVector<DebugAggregate> Aggregates; 392 DenseMap<const BasicBlock *, VarFragMap> LiveIn; 393 DenseMap<const BasicBlock *, VarFragMap> LiveOut; 394 395 struct FragMemLoc { 396 unsigned Var; 397 unsigned Base; 398 unsigned OffsetInBits; 399 unsigned SizeInBits; 400 DebugLoc DL; 401 }; 402 using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>; 403 404 /// BBInsertBeforeMap holds a description for the set of location defs to be 405 /// inserted after the analysis is complete. It is updated during the dataflow 406 /// and the entry for a block is CLEARED each time it is (re-)visited. After 407 /// the dataflow is complete, each block entry will contain the set of defs 408 /// calculated during the final (fixed-point) iteration. 409 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap; 410 411 static bool intervalMapsAreEqual(const FragsInMemMap &A, 412 const FragsInMemMap &B) { 413 auto AIt = A.begin(), AEnd = A.end(); 414 auto BIt = B.begin(), BEnd = B.end(); 415 for (; AIt != AEnd; ++AIt, ++BIt) { 416 if (BIt == BEnd) 417 return false; // B has fewer elements than A. 418 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop()) 419 return false; // Interval is different. 420 if (*AIt != *BIt) 421 return false; // Value at interval is different. 422 } 423 // AIt == AEnd. Check BIt is also now at end. 424 return BIt == BEnd; 425 } 426 427 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) { 428 if (A.size() != B.size()) 429 return false; 430 for (const auto &APair : A) { 431 auto BIt = B.find(APair.first); 432 if (BIt == B.end()) 433 return false; 434 if (!intervalMapsAreEqual(APair.second, BIt->second)) 435 return false; 436 } 437 return true; 438 } 439 440 /// Return a string for the value that \p BaseID represents. 441 std::string toString(unsigned BaseID) { 442 if (BaseID) 443 return Bases[BaseID].getVariableLocationOp(0)->getName().str(); 444 else 445 return "None"; 446 } 447 448 /// Format string describing an FragsInMemMap (IntervalMap) interval. 449 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) { 450 std::string String; 451 std::stringstream S(String); 452 if (It.valid()) { 453 S << "[" << It.start() << ", " << It.stop() 454 << "): " << toString(It.value()); 455 } else { 456 S << "invalid iterator (end)"; 457 } 458 if (Newline) 459 S << "\n"; 460 return S.str(); 461 }; 462 463 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) { 464 FragsInMemMap Result(IntervalMapAlloc); 465 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) { 466 LLVM_DEBUG(dbgs() << "a " << toString(AIt)); 467 // This is basically copied from process() and inverted (process is 468 // performing something like a union whereas this is more of an 469 // intersect). 470 471 // There's no work to do if interval `a` overlaps no fragments in map `B`. 472 if (!B.overlaps(AIt.start(), AIt.stop())) 473 continue; 474 475 // Does StartBit intersect an existing fragment? 476 auto FirstOverlap = B.find(AIt.start()); 477 assert(FirstOverlap != B.end()); 478 bool IntersectStart = FirstOverlap.start() < AIt.start(); 479 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false) 480 << ", IntersectStart: " << IntersectStart << "\n"); 481 482 // Does EndBit intersect an existing fragment? 483 auto LastOverlap = B.find(AIt.stop()); 484 bool IntersectEnd = 485 LastOverlap != B.end() && LastOverlap.start() < AIt.stop(); 486 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false) 487 << ", IntersectEnd: " << IntersectEnd << "\n"); 488 489 // Check if both ends of `a` intersect the same interval `b`. 490 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 491 // Insert `a` (`a` is contained in `b`) if the values match. 492 // [ a ] 493 // [ - b - ] 494 // - 495 // [ r ] 496 LLVM_DEBUG(dbgs() << "- a is contained within " 497 << toString(FirstOverlap)); 498 if (*AIt && *AIt == *FirstOverlap) 499 Result.insert(AIt.start(), AIt.stop(), *AIt); 500 } else { 501 // There's an overlap but `a` is not fully contained within 502 // `b`. Shorten any end-point intersections. 503 // [ - a - ] 504 // [ - b - ] 505 // - 506 // [ r ] 507 auto Next = FirstOverlap; 508 if (IntersectStart) { 509 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 510 << toString(FirstOverlap)); 511 if (*AIt && *AIt == *FirstOverlap) 512 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt); 513 ++Next; 514 } 515 // [ - a - ] 516 // [ - b - ] 517 // - 518 // [ r ] 519 if (IntersectEnd) { 520 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 521 << toString(LastOverlap)); 522 if (*AIt && *AIt == *LastOverlap) 523 Result.insert(LastOverlap.start(), AIt.stop(), *AIt); 524 } 525 526 // Insert all intervals in map `B` that are contained within interval 527 // `a` where the values match. 528 // [ - - a - - ] 529 // [ b1 ] [ b2 ] 530 // - 531 // [ r1 ] [ r2 ] 532 while (Next != B.end() && Next.start() < AIt.stop() && 533 Next.stop() <= AIt.stop()) { 534 LLVM_DEBUG(dbgs() 535 << "- insert intersection of a and " << toString(Next)); 536 if (*AIt && *AIt == *Next) 537 Result.insert(Next.start(), Next.stop(), *Next); 538 ++Next; 539 } 540 } 541 } 542 return Result; 543 } 544 545 /// Meet \p A and \p B, storing the result in \p A. 546 void meetVars(VarFragMap &A, const VarFragMap &B) { 547 // Meet A and B. 548 // 549 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b) 550 for (auto It = A.begin(), End = A.end(); It != End; ++It) { 551 unsigned AVar = It->first; 552 FragsInMemMap &AFrags = It->second; 553 auto BIt = B.find(AVar); 554 if (BIt == B.end()) { 555 A.erase(It); 556 continue; // Var has no bits defined in B. 557 } 558 LLVM_DEBUG(dbgs() << "meet fragment maps for " 559 << Aggregates[AVar].first->getName() << "\n"); 560 AFrags = meetFragments(AFrags, BIt->second); 561 } 562 } 563 564 bool meet(const BasicBlock &BB, 565 const SmallPtrSet<BasicBlock *, 16> &Visited) { 566 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName() 567 << "\n"); 568 569 VarFragMap BBLiveIn; 570 bool FirstMeet = true; 571 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut 572 // locs. 573 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 574 // Ignore preds that haven't been processed yet. This is essentially the 575 // same as initialising all variables to implicit top value (⊤) which is 576 // the identity value for the meet operation. 577 const BasicBlock *Pred = *I; 578 if (!Visited.count(Pred)) 579 continue; 580 581 auto PredLiveOut = LiveOut.find(Pred); 582 assert(PredLiveOut != LiveOut.end()); 583 584 if (FirstMeet) { 585 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n"); 586 BBLiveIn = PredLiveOut->second; 587 FirstMeet = false; 588 } else { 589 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName() 590 << "\n"); 591 meetVars(BBLiveIn, PredLiveOut->second); 592 } 593 594 // An empty set is ⊥ for the intersect-like meet operation. If we've 595 // already got ⊥ there's no need to run the code - we know the result is 596 // ⊥ since `meet(a, ⊥) = ⊥`. 597 if (BBLiveIn.size() == 0) 598 break; 599 } 600 601 auto CurrentLiveInEntry = LiveIn.find(&BB); 602 // If there's no LiveIn entry for the block yet, add it. 603 if (CurrentLiveInEntry == LiveIn.end()) { 604 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName() 605 << "\n"); 606 LiveIn[&BB] = std::move(BBLiveIn); 607 return /*Changed=*/true; 608 } 609 610 // If the LiveIn set has changed (expensive check) update it and return 611 // true. 612 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) { 613 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n"); 614 CurrentLiveInEntry->second = std::move(BBLiveIn); 615 return /*Changed=*/true; 616 } 617 618 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n"); 619 return /*Changed=*/false; 620 } 621 622 void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var, 623 unsigned StartBit, unsigned EndBit, unsigned Base, 624 DebugLoc DL) { 625 assert(StartBit < EndBit && "Cannot create fragment of size <= 0"); 626 if (!Base) 627 return; 628 FragMemLoc Loc; 629 Loc.Var = Var; 630 Loc.OffsetInBits = StartBit; 631 Loc.SizeInBits = EndBit - StartBit; 632 assert(Base && "Expected a non-zero ID for Base address"); 633 Loc.Base = Base; 634 Loc.DL = DL; 635 BBInsertBeforeMap[&BB][Before].push_back(Loc); 636 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName() 637 << " bits [" << StartBit << ", " << EndBit << ")\n"); 638 } 639 640 /// Inserts a new dbg def if the interval found when looking up \p StartBit 641 /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which 642 /// indicates - assuming StartBit->EndBit has just been inserted - that the 643 /// slice has been coalesced in the map). 644 void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var, 645 unsigned StartBit, unsigned EndBit, unsigned Base, 646 DebugLoc DL, const FragsInMemMap &FragMap) { 647 if (!CoalesceAdjacentFragments) 648 return; 649 // We've inserted the location into the map. The map will have coalesced 650 // adjacent intervals (variable fragments) that describe the same memory 651 // location. Use this knowledge to insert a debug location that describes 652 // that coalesced fragment. This may eclipse other locs we've just 653 // inserted. This is okay as redundant locs will be cleaned up later. 654 auto CoalescedFrag = FragMap.find(StartBit); 655 // Bail if no coalescing has taken place. 656 if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit) 657 return; 658 659 LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start() 660 << " to " << CoalescedFrag.stop() << "\n"); 661 insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(), 662 Base, DL); 663 } 664 665 void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB, 666 VarFragMap &LiveSet) { 667 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID); 668 if (skipVariable(DbgVar.getVariable())) 669 return; 670 // Don't bother doing anything for this variables if we know it's fully 671 // promoted. We're only interested in variables that (sometimes) live on 672 // the stack here. 673 if (!VarsWithStackSlot->count(getAggregate(DbgVar))) 674 return; 675 unsigned Var = Aggregates.insert( 676 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt())); 677 678 // [StartBit: EndBit) are the bits affected by this def. 679 const DIExpression *DIExpr = VarLoc.Expr; 680 unsigned StartBit; 681 unsigned EndBit; 682 if (auto Frag = DIExpr->getFragmentInfo()) { 683 StartBit = Frag->OffsetInBits; 684 EndBit = StartBit + Frag->SizeInBits; 685 } else { 686 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits())); 687 StartBit = 0; 688 EndBit = *DbgVar.getVariable()->getSizeInBits(); 689 } 690 691 // We will only fill fragments for simple memory-describing dbg.value 692 // intrinsics. If the fragment offset is the same as the offset from the 693 // base pointer, do The Thing, otherwise fall back to normal dbg.value 694 // behaviour. AssignmentTrackingLowering has generated DIExpressions 695 // written in terms of the base pointer. 696 // TODO: Remove this condition since the fragment offset doesn't always 697 // equal the offset from base pointer (e.g. for a SROA-split variable). 698 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr); 699 const unsigned Base = 700 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit 701 ? Bases.insert(VarLoc.Values) 702 : 0; 703 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " [" 704 << StartBit << ", " << EndBit << "): " << toString(Base) 705 << "\n"); 706 707 // First of all, any locs that use mem that are disrupted need reinstating. 708 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap 709 // with existing intervals so this code involves a lot of fiddling around 710 // with intervals to do that manually. 711 auto FragIt = LiveSet.find(Var); 712 713 // Check if the variable does not exist in the map. 714 if (FragIt == LiveSet.end()) { 715 // Add this variable to the BB map. 716 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc)); 717 assert(P.second && "Var already in map?"); 718 // Add the interval to the fragment map. 719 P.first->second.insert(StartBit, EndBit, Base); 720 return; 721 } 722 // The variable has an entry in the map. 723 724 FragsInMemMap &FragMap = FragIt->second; 725 // First check the easy case: the new fragment `f` doesn't overlap with any 726 // intervals. 727 if (!FragMap.overlaps(StartBit, EndBit)) { 728 LLVM_DEBUG(dbgs() << "- No overlaps\n"); 729 FragMap.insert(StartBit, EndBit, Base); 730 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL, 731 FragMap); 732 return; 733 } 734 // There is at least one overlap. 735 736 // Does StartBit intersect an existing fragment? 737 auto FirstOverlap = FragMap.find(StartBit); 738 assert(FirstOverlap != FragMap.end()); 739 bool IntersectStart = FirstOverlap.start() < StartBit; 740 741 // Does EndBit intersect an existing fragment? 742 auto LastOverlap = FragMap.find(EndBit); 743 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit; 744 745 // Check if both ends of `f` intersect the same interval `i`. 746 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 747 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n"); 748 // Shorten `i` so that there's space to insert `f`. 749 // [ f ] 750 // [ - i - ] 751 // + 752 // [ i ][ f ][ i ] 753 754 // Save values for use after inserting a new interval. 755 auto EndBitOfOverlap = FirstOverlap.stop(); 756 unsigned OverlapValue = FirstOverlap.value(); 757 758 // Shorten the overlapping interval. 759 FirstOverlap.setStop(StartBit); 760 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 761 OverlapValue, VarLoc.DL); 762 763 // Insert a new interval to represent the end part. 764 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue); 765 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue, 766 VarLoc.DL); 767 768 // Insert the new (middle) fragment now there is space. 769 FragMap.insert(StartBit, EndBit, Base); 770 } else { 771 // There's an overlap but `f` may not be fully contained within 772 // `i`. Shorten any end-point intersections so that we can then 773 // insert `f`. 774 // [ - f - ] 775 // [ - i - ] 776 // | | 777 // [ i ] 778 // Shorten any end-point intersections. 779 if (IntersectStart) { 780 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n"); 781 // Split off at the intersection. 782 FirstOverlap.setStop(StartBit); 783 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 784 *FirstOverlap, VarLoc.DL); 785 } 786 // [ - f - ] 787 // [ - i - ] 788 // | | 789 // [ i ] 790 if (IntersectEnd) { 791 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n"); 792 // Split off at the intersection. 793 LastOverlap.setStart(EndBit); 794 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap, 795 VarLoc.DL); 796 } 797 798 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n"); 799 // FirstOverlap and LastOverlap have been shortened such that they're 800 // no longer overlapping with [StartBit, EndBit). Delete any overlaps 801 // that remain (these will be fully contained within `f`). 802 // [ - f - ] } 803 // [ - i - ] } Intersection shortening that has happened above. 804 // | | } 805 // [ i ] } 806 // ----------------- 807 // [i2 ] } Intervals fully contained within `f` get erased. 808 // ----------------- 809 // [ - f - ][ i ] } Completed insertion. 810 auto It = FirstOverlap; 811 if (IntersectStart) 812 ++It; // IntersectStart: first overlap has been shortened. 813 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) { 814 LLVM_DEBUG(dbgs() << "- Erase " << toString(It)); 815 It.erase(); // This increments It after removing the interval. 816 } 817 // We've dealt with all the overlaps now! 818 assert(!FragMap.overlaps(StartBit, EndBit)); 819 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n"); 820 FragMap.insert(StartBit, EndBit, Base); 821 } 822 823 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL, 824 FragMap); 825 } 826 827 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); } 828 829 void process(BasicBlock &BB, VarFragMap &LiveSet) { 830 BBInsertBeforeMap[&BB].clear(); 831 for (auto &I : BB) { 832 for (auto &DPV : I.getDbgValueRange()) { 833 if (const auto *Locs = FnVarLocs->getWedge(&DPV)) { 834 for (const VarLocInfo &Loc : *Locs) { 835 addDef(Loc, &DPV, *I.getParent(), LiveSet); 836 } 837 } 838 } 839 if (const auto *Locs = FnVarLocs->getWedge(&I)) { 840 for (const VarLocInfo &Loc : *Locs) { 841 addDef(Loc, &I, *I.getParent(), LiveSet); 842 } 843 } 844 } 845 } 846 847 public: 848 MemLocFragmentFill(Function &Fn, 849 const DenseSet<DebugAggregate> *VarsWithStackSlot, 850 bool CoalesceAdjacentFragments) 851 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot), 852 CoalesceAdjacentFragments(CoalesceAdjacentFragments) {} 853 854 /// Add variable locations to \p FnVarLocs so that any bits of a variable 855 /// with a memory location have that location explicitly reinstated at each 856 /// subsequent variable location definition that that doesn't overwrite those 857 /// bits. i.e. after a variable location def, insert new defs for the memory 858 /// location with fragments for the difference of "all bits currently in 859 /// memory" and "the fragment of the second def". e.g. 860 /// 861 /// Before: 862 /// 863 /// var x bits 0 to 63: value in memory 864 /// more instructions 865 /// var x bits 0 to 31: value is %0 866 /// 867 /// After: 868 /// 869 /// var x bits 0 to 63: value in memory 870 /// more instructions 871 /// var x bits 0 to 31: value is %0 872 /// var x bits 32 to 61: value in memory ; <-- new loc def 873 /// 874 void run(FunctionVarLocsBuilder *FnVarLocs) { 875 if (!EnableMemLocFragFill) 876 return; 877 878 this->FnVarLocs = FnVarLocs; 879 880 // Prepare for traversal. 881 // 882 ReversePostOrderTraversal<Function *> RPOT(&Fn); 883 std::priority_queue<unsigned int, std::vector<unsigned int>, 884 std::greater<unsigned int>> 885 Worklist; 886 std::priority_queue<unsigned int, std::vector<unsigned int>, 887 std::greater<unsigned int>> 888 Pending; 889 DenseMap<unsigned int, BasicBlock *> OrderToBB; 890 DenseMap<BasicBlock *, unsigned int> BBToOrder; 891 { // Init OrderToBB and BBToOrder. 892 unsigned int RPONumber = 0; 893 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 894 OrderToBB[RPONumber] = *RI; 895 BBToOrder[*RI] = RPONumber; 896 Worklist.push(RPONumber); 897 ++RPONumber; 898 } 899 LiveIn.init(RPONumber); 900 LiveOut.init(RPONumber); 901 } 902 903 // Perform the traversal. 904 // 905 // This is a standard "intersect of predecessor outs" dataflow problem. To 906 // solve it, we perform meet() and process() using the two worklist method 907 // until the LiveIn data for each block becomes unchanging. 908 // 909 // This dataflow is essentially working on maps of sets and at each meet we 910 // intersect the maps and the mapped sets. So, initialized live-in maps 911 // monotonically decrease in value throughout the dataflow. 912 SmallPtrSet<BasicBlock *, 16> Visited; 913 while (!Worklist.empty() || !Pending.empty()) { 914 // We track what is on the pending worklist to avoid inserting the same 915 // thing twice. We could avoid this with a custom priority queue, but 916 // this is probably not worth it. 917 SmallPtrSet<BasicBlock *, 16> OnPending; 918 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 919 while (!Worklist.empty()) { 920 BasicBlock *BB = OrderToBB[Worklist.top()]; 921 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 922 Worklist.pop(); 923 bool InChanged = meet(*BB, Visited); 924 // Always consider LiveIn changed on the first visit. 925 InChanged |= Visited.insert(BB).second; 926 if (InChanged) { 927 LLVM_DEBUG(dbgs() 928 << BB->getName() << " has new InLocs, process it\n"); 929 // Mutate a copy of LiveIn while processing BB. Once we've processed 930 // the terminator LiveSet is the LiveOut set for BB. 931 // This is an expensive copy! 932 VarFragMap LiveSet = LiveIn[BB]; 933 934 // Process the instructions in the block. 935 process(*BB, LiveSet); 936 937 // Relatively expensive check: has anything changed in LiveOut for BB? 938 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) { 939 LLVM_DEBUG(dbgs() << BB->getName() 940 << " has new OutLocs, add succs to worklist: [ "); 941 LiveOut[BB] = std::move(LiveSet); 942 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 943 if (OnPending.insert(*I).second) { 944 LLVM_DEBUG(dbgs() << I->getName() << " "); 945 Pending.push(BBToOrder[*I]); 946 } 947 } 948 LLVM_DEBUG(dbgs() << "]\n"); 949 } 950 } 951 } 952 Worklist.swap(Pending); 953 // At this point, pending must be empty, since it was just the empty 954 // worklist 955 assert(Pending.empty() && "Pending should be empty"); 956 } 957 958 // Insert new location defs. 959 for (auto &Pair : BBInsertBeforeMap) { 960 InsertMap &Map = Pair.second; 961 for (auto &Pair : Map) { 962 auto InsertBefore = Pair.first; 963 assert(InsertBefore && "should never be null"); 964 auto FragMemLocs = Pair.second; 965 auto &Ctx = Fn.getContext(); 966 967 for (auto &FragMemLoc : FragMemLocs) { 968 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt); 969 if (FragMemLoc.SizeInBits != 970 *Aggregates[FragMemLoc.Var].first->getSizeInBits()) 971 Expr = *DIExpression::createFragmentExpression( 972 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits); 973 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, 974 FragMemLoc.OffsetInBits / 8); 975 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr, 976 FragMemLoc.DL.getInlinedAt()); 977 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL, 978 Bases[FragMemLoc.Base]); 979 } 980 } 981 } 982 } 983 }; 984 985 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function 986 /// that interprets assignment tracking debug info metadata and stores in IR to 987 /// create a map of variable locations. 988 class AssignmentTrackingLowering { 989 public: 990 /// The kind of location in use for a variable, where Mem is the stack home, 991 /// Val is an SSA value or const, and None means that there is not one single 992 /// kind (either because there are multiple or because there is none; it may 993 /// prove useful to split this into two values in the future). 994 /// 995 /// LocKind is a join-semilattice with the partial order: 996 /// None > Mem, Val 997 /// 998 /// i.e. 999 /// join(Mem, Mem) = Mem 1000 /// join(Val, Val) = Val 1001 /// join(Mem, Val) = None 1002 /// join(None, Mem) = None 1003 /// join(None, Val) = None 1004 /// join(None, None) = None 1005 /// 1006 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID 1007 /// to name assignments and are not tracking the actual stored values. 1008 /// Therefore currently there's no way to ensure that Mem values and Val 1009 /// values are the same. This could be a future extension, though it's not 1010 /// clear that many additional locations would be recovered that way in 1011 /// practice as the likelihood of this sitation arising naturally seems 1012 /// incredibly low. 1013 enum class LocKind { Mem, Val, None }; 1014 1015 /// An abstraction of the assignment of a value to a variable or memory 1016 /// location. 1017 /// 1018 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a 1019 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or 1020 /// can't) know the ID of the last assignment that took place. 1021 /// 1022 /// The Status of the Assignment (Known or NoneOrPhi) is another 1023 /// join-semilattice. The partial order is: 1024 /// NoneOrPhi > Known {id_0, id_1, ...id_N} 1025 /// 1026 /// i.e. for all values x and y where x != y: 1027 /// join(x, x) = x 1028 /// join(x, y) = NoneOrPhi 1029 using AssignRecord = PointerUnion<DbgAssignIntrinsic *, DPValue *>; 1030 struct Assignment { 1031 enum S { Known, NoneOrPhi } Status; 1032 /// ID of the assignment. nullptr if Status is not Known. 1033 DIAssignID *ID; 1034 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field. 1035 /// May be nullptr. 1036 AssignRecord Source; 1037 1038 bool isSameSourceAssignment(const Assignment &Other) const { 1039 // Don't include Source in the equality check. Assignments are 1040 // defined by their ID, not debug intrinsic(s). 1041 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID); 1042 } 1043 void dump(raw_ostream &OS) { 1044 static const char *LUT[] = {"Known", "NoneOrPhi"}; 1045 OS << LUT[Status] << "(id="; 1046 if (ID) 1047 OS << ID; 1048 else 1049 OS << "null"; 1050 OS << ", s="; 1051 if (Source.isNull()) 1052 OS << "null"; 1053 else if (isa<DbgAssignIntrinsic *>(Source)) 1054 OS << Source.get<DbgAssignIntrinsic *>(); 1055 else 1056 OS << Source.get<DPValue *>(); 1057 OS << ")"; 1058 } 1059 1060 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) { 1061 return Assignment(Known, ID, Source); 1062 } 1063 static Assignment make(DIAssignID *ID, DPValue *Source) { 1064 assert(Source->isDbgAssign() && 1065 "Cannot make an assignment from a non-assign DPValue"); 1066 return Assignment(Known, ID, Source); 1067 } 1068 static Assignment make(DIAssignID *ID, AssignRecord Source) { 1069 return Assignment(Known, ID, Source); 1070 } 1071 static Assignment makeFromMemDef(DIAssignID *ID) { 1072 return Assignment(Known, ID); 1073 } 1074 static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); } 1075 // Again, need a Top value? 1076 Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this? 1077 Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) { 1078 // If the Status is Known then we expect there to be an assignment ID. 1079 assert(Status == NoneOrPhi || ID); 1080 } 1081 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source) 1082 : Status(Status), ID(ID), Source(Source) { 1083 // If the Status is Known then we expect there to be an assignment ID. 1084 assert(Status == NoneOrPhi || ID); 1085 } 1086 Assignment(S Status, DIAssignID *ID, DPValue *Source) 1087 : Status(Status), ID(ID), Source(Source) { 1088 // If the Status is Known then we expect there to be an assignment ID. 1089 assert(Status == NoneOrPhi || ID); 1090 } 1091 Assignment(S Status, DIAssignID *ID, AssignRecord Source) 1092 : Status(Status), ID(ID), Source(Source) { 1093 // If the Status is Known then we expect there to be an assignment ID. 1094 assert(Status == NoneOrPhi || ID); 1095 } 1096 }; 1097 1098 using AssignmentMap = SmallVector<Assignment>; 1099 using LocMap = SmallVector<LocKind>; 1100 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>; 1101 using UntaggedStoreAssignmentMap = 1102 DenseMap<const Instruction *, 1103 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>; 1104 1105 private: 1106 /// The highest numbered VariableID for partially promoted variables plus 1, 1107 /// the values for which start at 1. 1108 unsigned TrackedVariablesVectorSize = 0; 1109 /// Map a variable to the set of variables that it fully contains. 1110 OverlapMap VarContains; 1111 /// Map untagged stores to the variable fragments they assign to. Used by 1112 /// processUntaggedInstruction. 1113 UntaggedStoreAssignmentMap UntaggedStoreVars; 1114 1115 // Machinery to defer inserting dbg.values. 1116 using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>; 1117 InstInsertMap InsertBeforeMap; 1118 /// Clear the location definitions currently cached for insertion after /p 1119 /// After. 1120 void resetInsertionPoint(Instruction &After); 1121 void resetInsertionPoint(DPValue &After); 1122 1123 // emitDbgValue can be called with: 1124 // Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DPValue*] 1125 // Since AssignRecord can be cast to one of the latter two types, and all 1126 // other types have a shared interface, we use a template to handle the latter 1127 // three types, and an explicit overload for AssignRecord that forwards to 1128 // the template version with the right type. 1129 void emitDbgValue(LocKind Kind, AssignRecord Source, VarLocInsertPt After); 1130 template <typename T> 1131 void emitDbgValue(LocKind Kind, const T Source, VarLocInsertPt After); 1132 1133 static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A, 1134 const AssignmentMap &B) { 1135 return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) { 1136 return A[VarID].isSameSourceAssignment(B[VarID]); 1137 }); 1138 } 1139 1140 /// Represents the stack and debug assignments in a block. Used to describe 1141 /// the live-in and live-out values for blocks, as well as the "current" 1142 /// value as we process each instruction in a block. 1143 struct BlockInfo { 1144 /// The set of variables (VariableID) being tracked in this block. 1145 BitVector VariableIDsInBlock; 1146 /// Dominating assignment to memory for each variable, indexed by 1147 /// VariableID. 1148 AssignmentMap StackHomeValue; 1149 /// Dominating assignemnt to each variable, indexed by VariableID. 1150 AssignmentMap DebugValue; 1151 /// Location kind for each variable. LiveLoc indicates whether the 1152 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue 1153 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of 1154 /// preference. This cannot be derived by inspecting DebugValue and 1155 /// StackHomeValue due to the fact that there's no distinction in 1156 /// Assignment (the class) between whether an assignment is unknown or a 1157 /// merge of multiple assignments (both are Status::NoneOrPhi). In other 1158 /// words, the memory location may well be valid while both DebugValue and 1159 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi. 1160 /// Indexed by VariableID. 1161 LocMap LiveLoc; 1162 1163 public: 1164 enum AssignmentKind { Stack, Debug }; 1165 const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const { 1166 switch (Kind) { 1167 case Stack: 1168 return StackHomeValue; 1169 case Debug: 1170 return DebugValue; 1171 } 1172 llvm_unreachable("Unknown AssignmentKind"); 1173 } 1174 AssignmentMap &getAssignmentMap(AssignmentKind Kind) { 1175 return const_cast<AssignmentMap &>( 1176 const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind)); 1177 } 1178 1179 bool isVariableTracked(VariableID Var) const { 1180 return VariableIDsInBlock[static_cast<unsigned>(Var)]; 1181 } 1182 1183 const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const { 1184 assert(isVariableTracked(Var) && "Var not tracked in block"); 1185 return getAssignmentMap(Kind)[static_cast<unsigned>(Var)]; 1186 } 1187 1188 LocKind getLocKind(VariableID Var) const { 1189 assert(isVariableTracked(Var) && "Var not tracked in block"); 1190 return LiveLoc[static_cast<unsigned>(Var)]; 1191 } 1192 1193 /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of 1194 /// fragments contained win \p Var. 1195 void setLocKind(VariableID Var, LocKind K) { 1196 VariableIDsInBlock.set(static_cast<unsigned>(Var)); 1197 LiveLoc[static_cast<unsigned>(Var)] = K; 1198 } 1199 1200 /// Set the assignment in the \p Kind assignment map for \p Var only: does 1201 /// not set the assignment for VariableIDs of fragments contained win \p 1202 /// Var. 1203 void setAssignment(AssignmentKind Kind, VariableID Var, 1204 const Assignment &AV) { 1205 VariableIDsInBlock.set(static_cast<unsigned>(Var)); 1206 getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV; 1207 } 1208 1209 /// Return true if there is an assignment matching \p AV in the \p Kind 1210 /// assignment map. Does consider assignments for VariableIDs of fragments 1211 /// contained win \p Var. 1212 bool hasAssignment(AssignmentKind Kind, VariableID Var, 1213 const Assignment &AV) const { 1214 if (!isVariableTracked(Var)) 1215 return false; 1216 return AV.isSameSourceAssignment(getAssignment(Kind, Var)); 1217 } 1218 1219 /// Compare every element in each map to determine structural equality 1220 /// (slow). 1221 bool operator==(const BlockInfo &Other) const { 1222 return VariableIDsInBlock == Other.VariableIDsInBlock && 1223 LiveLoc == Other.LiveLoc && 1224 mapsAreEqual(VariableIDsInBlock, StackHomeValue, 1225 Other.StackHomeValue) && 1226 mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue); 1227 } 1228 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); } 1229 bool isValid() { 1230 return LiveLoc.size() == DebugValue.size() && 1231 LiveLoc.size() == StackHomeValue.size(); 1232 } 1233 1234 /// Clear everything and initialise with ⊤-values for all variables. 1235 void init(int NumVars) { 1236 StackHomeValue.clear(); 1237 DebugValue.clear(); 1238 LiveLoc.clear(); 1239 VariableIDsInBlock = BitVector(NumVars); 1240 StackHomeValue.insert(StackHomeValue.begin(), NumVars, 1241 Assignment::makeNoneOrPhi()); 1242 DebugValue.insert(DebugValue.begin(), NumVars, 1243 Assignment::makeNoneOrPhi()); 1244 LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None); 1245 } 1246 1247 /// Helper for join. 1248 template <typename ElmtType, typename FnInputType> 1249 static void joinElmt(int Index, SmallVector<ElmtType> &Target, 1250 const SmallVector<ElmtType> &A, 1251 const SmallVector<ElmtType> &B, 1252 ElmtType (*Fn)(FnInputType, FnInputType)) { 1253 Target[Index] = Fn(A[Index], B[Index]); 1254 } 1255 1256 /// See comment for AssignmentTrackingLowering::joinBlockInfo. 1257 static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) { 1258 // Join A and B. 1259 // 1260 // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b) 1261 // Difference = join(x, ⊤) for x where Var(x) is in A xor B 1262 // Join = Intersect ∪ Difference 1263 // 1264 // This is achieved by performing a join on elements from A and B with 1265 // variables common to both A and B (join elements indexed by var 1266 // intersect), then adding ⊤-value elements for vars in A xor B. The 1267 // latter part is equivalent to performing join on elements with variables 1268 // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤. 1269 // BlockInfo::init initializes all variable entries to the ⊤ value so we 1270 // don't need to explicitly perform that step as Join.VariableIDsInBlock 1271 // is set to the union of the variables in A and B at the end of this 1272 // function. 1273 BlockInfo Join; 1274 Join.init(NumVars); 1275 1276 BitVector Intersect = A.VariableIDsInBlock; 1277 Intersect &= B.VariableIDsInBlock; 1278 1279 for (auto VarID : Intersect.set_bits()) { 1280 joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind); 1281 joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue, 1282 joinAssignment); 1283 joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue, 1284 joinAssignment); 1285 } 1286 1287 Join.VariableIDsInBlock = A.VariableIDsInBlock; 1288 Join.VariableIDsInBlock |= B.VariableIDsInBlock; 1289 assert(Join.isValid()); 1290 return Join; 1291 } 1292 }; 1293 1294 Function &Fn; 1295 const DataLayout &Layout; 1296 const DenseSet<DebugAggregate> *VarsWithStackSlot; 1297 FunctionVarLocsBuilder *FnVarLocs; 1298 DenseMap<const BasicBlock *, BlockInfo> LiveIn; 1299 DenseMap<const BasicBlock *, BlockInfo> LiveOut; 1300 1301 /// Helper for process methods to track variables touched each frame. 1302 DenseSet<VariableID> VarsTouchedThisFrame; 1303 1304 /// The set of variables that sometimes are not located in their stack home. 1305 DenseSet<DebugAggregate> NotAlwaysStackHomed; 1306 1307 VariableID getVariableID(const DebugVariable &Var) { 1308 return static_cast<VariableID>(FnVarLocs->insertVariable(Var)); 1309 } 1310 1311 /// Join the LiveOut values of preds that are contained in \p Visited into 1312 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB] 1313 /// values monotonically increase. See the @link joinMethods join methods 1314 /// @endlink documentation for more info. 1315 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited); 1316 ///@name joinMethods 1317 /// Functions that implement `join` (the least upper bound) for the 1318 /// join-semilattice types used in the dataflow. There is an explicit bottom 1319 /// value (⊥) for some types and and explicit top value (⊤) for all types. 1320 /// By definition: 1321 /// 1322 /// Join(A, B) >= A && Join(A, B) >= B 1323 /// Join(A, ⊥) = A 1324 /// Join(A, ⊤) = ⊤ 1325 /// 1326 /// These invariants are important for monotonicity. 1327 /// 1328 /// For the map-type functions, all unmapped keys in an empty map are 1329 /// associated with a bottom value (⊥). This represents their values being 1330 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key 1331 /// only present in one) represents either a variable going out of scope or 1332 /// dropped debug info. It is assumed the key is associated with a top value 1333 /// (⊤) in this case (unknown location / assignment). 1334 ///@{ 1335 static LocKind joinKind(LocKind A, LocKind B); 1336 static Assignment joinAssignment(const Assignment &A, const Assignment &B); 1337 BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B); 1338 ///@} 1339 1340 /// Process the instructions in \p BB updating \p LiveSet along the way. \p 1341 /// LiveSet must be initialized with the current live-in locations before 1342 /// calling this. 1343 void process(BasicBlock &BB, BlockInfo *LiveSet); 1344 ///@name processMethods 1345 /// Methods to process instructions in order to update the LiveSet (current 1346 /// location information). 1347 ///@{ 1348 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1349 void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet); 1350 /// Update \p LiveSet after encountering an instruction with a DIAssignID 1351 /// attachment, \p I. 1352 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1353 /// Update \p LiveSet after encountering an instruciton without a DIAssignID 1354 /// attachment, \p I. 1355 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1356 void processDbgAssign(AssignRecord Assign, BlockInfo *LiveSet); 1357 void processDPValue(DPValue &DPV, BlockInfo *LiveSet); 1358 void processDbgValue(PointerUnion<DbgValueInst *, DPValue *> DbgValueRecord, 1359 BlockInfo *LiveSet); 1360 /// Add an assignment to memory for the variable /p Var. 1361 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1362 /// Add an assignment to the variable /p Var. 1363 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1364 ///@} 1365 1366 /// Set the LocKind for \p Var. 1367 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K); 1368 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to 1369 /// have been called for \p Var first. 1370 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var); 1371 /// Return true if \p Var has an assignment in \p M matching \p AV. 1372 bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, 1373 VariableID Var, const Assignment &AV); 1374 /// Return the set of VariableIDs corresponding the fragments contained fully 1375 /// within the variable/fragment \p Var. 1376 ArrayRef<VariableID> getContainedFragments(VariableID Var) const; 1377 1378 /// Mark \p Var as having been touched this frame. Note, this applies only 1379 /// to the exact fragment \p Var and not to any fragments contained within. 1380 void touchFragment(VariableID Var); 1381 1382 /// Emit info for variables that are fully promoted. 1383 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs); 1384 1385 public: 1386 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout, 1387 const DenseSet<DebugAggregate> *VarsWithStackSlot) 1388 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {} 1389 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns 1390 /// true if any variable locations have been added to FnVarLocs. 1391 bool run(FunctionVarLocsBuilder *FnVarLocs); 1392 }; 1393 } // namespace 1394 1395 ArrayRef<VariableID> 1396 AssignmentTrackingLowering::getContainedFragments(VariableID Var) const { 1397 auto R = VarContains.find(Var); 1398 if (R == VarContains.end()) 1399 return std::nullopt; 1400 return R->second; 1401 } 1402 1403 void AssignmentTrackingLowering::touchFragment(VariableID Var) { 1404 VarsTouchedThisFrame.insert(Var); 1405 } 1406 1407 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var, 1408 LocKind K) { 1409 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) { 1410 LiveSet->setLocKind(Var, K); 1411 touchFragment(Var); 1412 }; 1413 SetKind(LiveSet, Var, K); 1414 1415 // Update the LocKind for all fragments contained within Var. 1416 for (VariableID Frag : getContainedFragments(Var)) 1417 SetKind(LiveSet, Frag, K); 1418 } 1419 1420 AssignmentTrackingLowering::LocKind 1421 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) { 1422 return LiveSet->getLocKind(Var); 1423 } 1424 1425 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var, 1426 const Assignment &AV) { 1427 LiveSet->setAssignment(BlockInfo::Stack, Var, AV); 1428 1429 // Use this assigment for all fragments contained within Var, but do not 1430 // provide a Source because we cannot convert Var's value to a value for the 1431 // fragment. 1432 Assignment FragAV = AV; 1433 FragAV.Source = nullptr; 1434 for (VariableID Frag : getContainedFragments(Var)) 1435 LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV); 1436 } 1437 1438 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var, 1439 const Assignment &AV) { 1440 LiveSet->setAssignment(BlockInfo::Debug, Var, AV); 1441 1442 // Use this assigment for all fragments contained within Var, but do not 1443 // provide a Source because we cannot convert Var's value to a value for the 1444 // fragment. 1445 Assignment FragAV = AV; 1446 FragAV.Source = nullptr; 1447 for (VariableID Frag : getContainedFragments(Var)) 1448 LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV); 1449 } 1450 1451 static DIAssignID *getIDFromInst(const Instruction &I) { 1452 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID)); 1453 } 1454 1455 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) { 1456 return cast<DIAssignID>(DAI.getAssignID()); 1457 } 1458 1459 static DIAssignID *getIDFromMarker(const DPValue &DPV) { 1460 assert(DPV.isDbgAssign() && 1461 "Cannot get a DIAssignID from a non-assign DPValue!"); 1462 return DPV.getAssignID(); 1463 } 1464 1465 /// Return true if \p Var has an assignment in \p M matching \p AV. 1466 bool AssignmentTrackingLowering::hasVarWithAssignment( 1467 BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var, 1468 const Assignment &AV) { 1469 if (!LiveSet->hasAssignment(Kind, Var, AV)) 1470 return false; 1471 1472 // Check all the frags contained within Var as these will have all been 1473 // mapped to AV at the last store to Var. 1474 for (VariableID Frag : getContainedFragments(Var)) 1475 if (!LiveSet->hasAssignment(Kind, Frag, AV)) 1476 return false; 1477 return true; 1478 } 1479 1480 #ifndef NDEBUG 1481 const char *locStr(AssignmentTrackingLowering::LocKind Loc) { 1482 using LocKind = AssignmentTrackingLowering::LocKind; 1483 switch (Loc) { 1484 case LocKind::Val: 1485 return "Val"; 1486 case LocKind::Mem: 1487 return "Mem"; 1488 case LocKind::None: 1489 return "None"; 1490 }; 1491 llvm_unreachable("unknown LocKind"); 1492 } 1493 #endif 1494 1495 VarLocInsertPt getNextNode(const DPValue *DPV) { 1496 auto NextIt = ++(DPV->getIterator()); 1497 if (NextIt == DPV->getMarker()->getDbgValueRange().end()) 1498 return DPV->getMarker()->MarkedInstr; 1499 return &*NextIt; 1500 } 1501 VarLocInsertPt getNextNode(const Instruction *Inst) { 1502 const Instruction *Next = Inst->getNextNode(); 1503 if (!Next->hasDbgValues()) 1504 return Next; 1505 return &*Next->getDbgValueRange().begin(); 1506 } 1507 VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) { 1508 if (isa<const Instruction *>(InsertPt)) 1509 return getNextNode(cast<const Instruction *>(InsertPt)); 1510 return getNextNode(cast<const DPValue *>(InsertPt)); 1511 } 1512 1513 DbgAssignIntrinsic *CastToDbgAssign(DbgVariableIntrinsic *DVI) { 1514 return cast<DbgAssignIntrinsic>(DVI); 1515 } 1516 1517 DPValue *CastToDbgAssign(DPValue *DPV) { 1518 assert(DPV->isDbgAssign() && 1519 "Attempted to cast non-assign DPValue to DPVAssign."); 1520 return DPV; 1521 } 1522 1523 void AssignmentTrackingLowering::emitDbgValue( 1524 AssignmentTrackingLowering::LocKind Kind, 1525 AssignmentTrackingLowering::AssignRecord Source, VarLocInsertPt After) { 1526 if (isa<DbgAssignIntrinsic *>(Source)) 1527 emitDbgValue(Kind, cast<DbgAssignIntrinsic *>(Source), After); 1528 else 1529 emitDbgValue(Kind, cast<DPValue *>(Source), After); 1530 } 1531 template <typename T> 1532 void AssignmentTrackingLowering::emitDbgValue( 1533 AssignmentTrackingLowering::LocKind Kind, const T Source, 1534 VarLocInsertPt After) { 1535 1536 DILocation *DL = Source->getDebugLoc(); 1537 auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) { 1538 assert(Expr); 1539 if (!Val) 1540 Val = ValueAsMetadata::get( 1541 PoisonValue::get(Type::getInt1Ty(Source->getContext()))); 1542 1543 // Find a suitable insert point. 1544 auto InsertBefore = getNextNode(After); 1545 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1546 1547 VariableID Var = getVariableID(DebugVariable(Source)); 1548 VarLocInfo VarLoc; 1549 VarLoc.VariableID = static_cast<VariableID>(Var); 1550 VarLoc.Expr = Expr; 1551 VarLoc.Values = RawLocationWrapper(Val); 1552 VarLoc.DL = DL; 1553 // Insert it into the map for later. 1554 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1555 }; 1556 1557 // NOTE: This block can mutate Kind. 1558 if (Kind == LocKind::Mem) { 1559 const auto *Assign = CastToDbgAssign(Source); 1560 // Check the address hasn't been dropped (e.g. the debug uses may not have 1561 // been replaced before deleting a Value). 1562 if (Assign->isKillAddress()) { 1563 // The address isn't valid so treat this as a non-memory def. 1564 Kind = LocKind::Val; 1565 } else { 1566 Value *Val = Assign->getAddress(); 1567 DIExpression *Expr = Assign->getAddressExpression(); 1568 assert(!Expr->getFragmentInfo() && 1569 "fragment info should be stored in value-expression only"); 1570 // Copy the fragment info over from the value-expression to the new 1571 // DIExpression. 1572 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) { 1573 auto FragInfo = *OptFragInfo; 1574 Expr = *DIExpression::createFragmentExpression( 1575 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits); 1576 } 1577 // The address-expression has an implicit deref, add it now. 1578 std::tie(Val, Expr) = 1579 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr); 1580 Emit(ValueAsMetadata::get(Val), Expr); 1581 return; 1582 } 1583 } 1584 1585 if (Kind == LocKind::Val) { 1586 Emit(Source->getRawLocation(), Source->getExpression()); 1587 return; 1588 } 1589 1590 if (Kind == LocKind::None) { 1591 Emit(nullptr, Source->getExpression()); 1592 return; 1593 } 1594 } 1595 1596 void AssignmentTrackingLowering::processNonDbgInstruction( 1597 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1598 if (I.hasMetadata(LLVMContext::MD_DIAssignID)) 1599 processTaggedInstruction(I, LiveSet); 1600 else 1601 processUntaggedInstruction(I, LiveSet); 1602 } 1603 1604 void AssignmentTrackingLowering::processUntaggedInstruction( 1605 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1606 // Interpret stack stores that are not tagged as an assignment in memory for 1607 // the variables associated with that address. These stores may not be tagged 1608 // because a) the store cannot be represented using dbg.assigns (non-const 1609 // length or offset) or b) the tag was accidentally dropped during 1610 // optimisations. For these stores we fall back to assuming that the stack 1611 // home is a valid location for the variables. The benefit is that this 1612 // prevents us missing an assignment and therefore incorrectly maintaining 1613 // earlier location definitions, and in many cases it should be a reasonable 1614 // assumption. However, this will occasionally lead to slight 1615 // inaccuracies. The value of a hoisted untagged store will be visible 1616 // "early", for example. 1617 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID)); 1618 auto It = UntaggedStoreVars.find(&I); 1619 if (It == UntaggedStoreVars.end()) 1620 return; // No variables associated with the store destination. 1621 1622 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I 1623 << "\n"); 1624 // Iterate over the variables that this store affects, add a NoneOrPhi dbg 1625 // and mem def, set lockind to Mem, and emit a location def for each. 1626 for (auto [Var, Info] : It->second) { 1627 // This instruction is treated as both a debug and memory assignment, 1628 // meaning the memory location should be used. We don't have an assignment 1629 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one. 1630 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1631 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1632 setLocKind(LiveSet, Var, LocKind::Mem); 1633 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem) 1634 << "\n"); 1635 // Build the dbg location def to insert. 1636 // 1637 // DIExpression: Add fragment and offset. 1638 DebugVariable V = FnVarLocs->getVariable(Var); 1639 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt); 1640 if (auto Frag = V.getFragment()) { 1641 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits, 1642 Frag->SizeInBits); 1643 assert(R && "unexpected createFragmentExpression failure"); 1644 DIE = *R; 1645 } 1646 SmallVector<uint64_t, 3> Ops; 1647 if (Info.OffsetInBits) 1648 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8}; 1649 Ops.push_back(dwarf::DW_OP_deref); 1650 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false, 1651 /*EntryValue=*/false); 1652 // Find a suitable insert point, before the next instruction or DPValue 1653 // after I. 1654 auto InsertBefore = getNextNode(&I); 1655 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1656 1657 // Get DILocation for this unrecorded assignment. 1658 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt()); 1659 const DILocation *DILoc = DILocation::get( 1660 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt); 1661 1662 VarLocInfo VarLoc; 1663 VarLoc.VariableID = static_cast<VariableID>(Var); 1664 VarLoc.Expr = DIE; 1665 VarLoc.Values = RawLocationWrapper( 1666 ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base))); 1667 VarLoc.DL = DILoc; 1668 // 3. Insert it into the map for later. 1669 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1670 } 1671 } 1672 1673 void AssignmentTrackingLowering::processTaggedInstruction( 1674 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1675 auto Linked = at::getAssignmentMarkers(&I); 1676 auto LinkedDPAssigns = at::getDPVAssignmentMarkers(&I); 1677 // No dbg.assign intrinsics linked. 1678 // FIXME: All vars that have a stack slot this store modifies that don't have 1679 // a dbg.assign linked to it should probably treat this like an untagged 1680 // store. 1681 if (Linked.empty() && LinkedDPAssigns.empty()) 1682 return; 1683 1684 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n"); 1685 auto ProcessLinkedAssign = [&](auto *Assign) { 1686 VariableID Var = getVariableID(DebugVariable(Assign)); 1687 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable 1688 // that is linked to a store. 1689 assert(VarsWithStackSlot->count(getAggregate(Assign)) && 1690 "expected Assign's variable to have stack slot"); 1691 1692 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I)); 1693 addMemDef(LiveSet, Var, AV); 1694 1695 LLVM_DEBUG(dbgs() << " linked to " << *Assign << "\n"); 1696 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1697 << " -> "); 1698 1699 // The last assignment to the stack is now AV. Check if the last debug 1700 // assignment has a matching Assignment. 1701 if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) { 1702 // The StackHomeValue and DebugValue for this variable match so we can 1703 // emit a stack home location here. 1704 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1705 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n"); 1706 LLVM_DEBUG(dbgs() << " Debug val: "; 1707 LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs()); 1708 dbgs() << "\n"); 1709 setLocKind(LiveSet, Var, LocKind::Mem); 1710 emitDbgValue(LocKind::Mem, Assign, &I); 1711 return; 1712 } 1713 1714 // The StackHomeValue and DebugValue for this variable do not match. I.e. 1715 // The value currently stored in the stack is not what we'd expect to 1716 // see, so we cannot use emit a stack home location here. Now we will 1717 // look at the live LocKind for the variable and determine an appropriate 1718 // dbg.value to emit. 1719 LocKind PrevLoc = getLocKind(LiveSet, Var); 1720 switch (PrevLoc) { 1721 case LocKind::Val: { 1722 // The value in memory in memory has changed but we're not currently 1723 // using the memory location. Do nothing. 1724 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";); 1725 setLocKind(LiveSet, Var, LocKind::Val); 1726 } break; 1727 case LocKind::Mem: { 1728 // There's been an assignment to memory that we were using as a 1729 // location for this variable, and the Assignment doesn't match what 1730 // we'd expect to see in memory. 1731 Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var); 1732 if (DbgAV.Status == Assignment::NoneOrPhi) { 1733 // We need to terminate any previously open location now. 1734 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";); 1735 setLocKind(LiveSet, Var, LocKind::None); 1736 emitDbgValue(LocKind::None, Assign, &I); 1737 } else { 1738 // The previous DebugValue Value can be used here. 1739 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";); 1740 setLocKind(LiveSet, Var, LocKind::Val); 1741 if (DbgAV.Source) { 1742 emitDbgValue(LocKind::Val, DbgAV.Source, &I); 1743 } else { 1744 // PrevAV.Source is nullptr so we must emit undef here. 1745 emitDbgValue(LocKind::None, Assign, &I); 1746 } 1747 } 1748 } break; 1749 case LocKind::None: { 1750 // There's been an assignment to memory and we currently are 1751 // not tracking a location for the variable. Do not emit anything. 1752 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";); 1753 setLocKind(LiveSet, Var, LocKind::None); 1754 } break; 1755 } 1756 }; 1757 for (DbgAssignIntrinsic *DAI : Linked) 1758 ProcessLinkedAssign(DAI); 1759 for (DPValue *DPV : LinkedDPAssigns) 1760 ProcessLinkedAssign(DPV); 1761 } 1762 1763 void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign, 1764 BlockInfo *LiveSet) { 1765 auto ProcessDbgAssignImpl = [&](auto *DbgAssign) { 1766 // Only bother tracking variables that are at some point stack homed. Other 1767 // variables can be dealt with trivially later. 1768 if (!VarsWithStackSlot->count(getAggregate(DbgAssign))) 1769 return; 1770 1771 VariableID Var = getVariableID(DebugVariable(DbgAssign)); 1772 Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign); 1773 addDbgDef(LiveSet, Var, AV); 1774 1775 LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";); 1776 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1777 << " -> "); 1778 1779 // Check if the DebugValue and StackHomeValue both hold the same 1780 // Assignment. 1781 if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) { 1782 // They match. We can use the stack home because the debug intrinsics 1783 // state that an assignment happened here, and we know that specific 1784 // assignment was the last one to take place in memory for this variable. 1785 LocKind Kind; 1786 if (DbgAssign->isKillAddress()) { 1787 LLVM_DEBUG( 1788 dbgs() 1789 << "Val, Stack matches Debug program but address is killed\n";); 1790 Kind = LocKind::Val; 1791 } else { 1792 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1793 Kind = LocKind::Mem; 1794 }; 1795 setLocKind(LiveSet, Var, Kind); 1796 emitDbgValue(Kind, DbgAssign, DbgAssign); 1797 } else { 1798 // The last assignment to the memory location isn't the one that we want 1799 // to show to the user so emit a dbg.value(Value). Value may be undef. 1800 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";); 1801 setLocKind(LiveSet, Var, LocKind::Val); 1802 emitDbgValue(LocKind::Val, DbgAssign, DbgAssign); 1803 } 1804 }; 1805 if (isa<DPValue *>(Assign)) 1806 return ProcessDbgAssignImpl(cast<DPValue *>(Assign)); 1807 return ProcessDbgAssignImpl(cast<DbgAssignIntrinsic *>(Assign)); 1808 } 1809 1810 void AssignmentTrackingLowering::processDbgValue( 1811 PointerUnion<DbgValueInst *, DPValue *> DbgValueRecord, 1812 BlockInfo *LiveSet) { 1813 auto ProcessDbgValueImpl = [&](auto *DbgValue) { 1814 // Only other tracking variables that are at some point stack homed. 1815 // Other variables can be dealt with trivally later. 1816 if (!VarsWithStackSlot->count(getAggregate(DbgValue))) 1817 return; 1818 1819 VariableID Var = getVariableID(DebugVariable(DbgValue)); 1820 // We have no ID to create an Assignment with so we mark this assignment as 1821 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine 1822 // the assignment responsible for setting this value. 1823 // This is fine; dbg.values are essentially interchangable with unlinked 1824 // dbg.assigns, and some passes such as mem2reg and instcombine add them to 1825 // PHIs for promoted variables. 1826 Assignment AV = Assignment::makeNoneOrPhi(); 1827 addDbgDef(LiveSet, Var, AV); 1828 1829 LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";); 1830 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1831 << " -> Val, dbg.value override"); 1832 1833 setLocKind(LiveSet, Var, LocKind::Val); 1834 emitDbgValue(LocKind::Val, DbgValue, DbgValue); 1835 }; 1836 if (isa<DPValue *>(DbgValueRecord)) 1837 return ProcessDbgValueImpl(cast<DPValue *>(DbgValueRecord)); 1838 return ProcessDbgValueImpl(cast<DbgValueInst *>(DbgValueRecord)); 1839 } 1840 1841 template <typename T> static bool hasZeroSizedFragment(T &DbgValue) { 1842 if (auto F = DbgValue.getExpression()->getFragmentInfo()) 1843 return F->SizeInBits == 0; 1844 return false; 1845 } 1846 1847 void AssignmentTrackingLowering::processDbgInstruction( 1848 DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1849 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 1850 if (!DVI) 1851 return; 1852 1853 // Ignore assignments to zero bits of the variable. 1854 if (hasZeroSizedFragment(*DVI)) 1855 return; 1856 1857 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I)) 1858 processDbgAssign(DAI, LiveSet); 1859 else if (auto *DVI = dyn_cast<DbgValueInst>(&I)) 1860 processDbgValue(DVI, LiveSet); 1861 } 1862 void AssignmentTrackingLowering::processDPValue( 1863 DPValue &DPV, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1864 // Ignore assignments to zero bits of the variable. 1865 if (hasZeroSizedFragment(DPV)) 1866 return; 1867 1868 if (DPV.isDbgAssign()) 1869 processDbgAssign(&DPV, LiveSet); 1870 else if (DPV.isDbgValue()) 1871 processDbgValue(&DPV, LiveSet); 1872 } 1873 1874 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) { 1875 assert(!After.isTerminator() && "Can't insert after a terminator"); 1876 auto *R = InsertBeforeMap.find(getNextNode(&After)); 1877 if (R == InsertBeforeMap.end()) 1878 return; 1879 R->second.clear(); 1880 } 1881 void AssignmentTrackingLowering::resetInsertionPoint(DPValue &After) { 1882 auto *R = InsertBeforeMap.find(getNextNode(&After)); 1883 if (R == InsertBeforeMap.end()) 1884 return; 1885 R->second.clear(); 1886 } 1887 1888 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) { 1889 // If the block starts with DPValues, we need to process those DPValues as 1890 // their own frame without processing any instructions first. 1891 bool ProcessedLeadingDPValues = !BB.begin()->hasDbgValues(); 1892 for (auto II = BB.begin(), EI = BB.end(); II != EI;) { 1893 assert(VarsTouchedThisFrame.empty()); 1894 // Process the instructions in "frames". A "frame" includes a single 1895 // non-debug instruction followed any debug instructions before the 1896 // next non-debug instruction. 1897 1898 // Skip the current instruction if it has unprocessed DPValues attached (see 1899 // comment above `ProcessedLeadingDPValues`). 1900 if (ProcessedLeadingDPValues) { 1901 // II is now either a debug intrinsic, a non-debug instruction with no 1902 // attached DPValues, or a non-debug instruction with attached processed 1903 // DPValues. 1904 // II has not been processed. 1905 if (!isa<DbgInfoIntrinsic>(&*II)) { 1906 if (II->isTerminator()) 1907 break; 1908 resetInsertionPoint(*II); 1909 processNonDbgInstruction(*II, LiveSet); 1910 assert(LiveSet->isValid()); 1911 ++II; 1912 } 1913 } 1914 // II is now either a debug intrinsic, a non-debug instruction with no 1915 // attached DPValues, or a non-debug instruction with attached unprocessed 1916 // DPValues. 1917 if (II != EI && II->hasDbgValues()) { 1918 for (DPValue &DPV : II->getDbgValueRange()) { 1919 resetInsertionPoint(DPV); 1920 processDPValue(DPV, LiveSet); 1921 assert(LiveSet->isValid()); 1922 } 1923 } 1924 ProcessedLeadingDPValues = true; 1925 while (II != EI) { 1926 auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II); 1927 if (!Dbg) 1928 break; 1929 resetInsertionPoint(*II); 1930 processDbgInstruction(*Dbg, LiveSet); 1931 assert(LiveSet->isValid()); 1932 ++II; 1933 } 1934 // II is now a non-debug instruction either with no attached DPValues, or 1935 // with attached processed DPValues. II has not been processed, and all 1936 // debug instructions or DPValues in the frame preceding II have been 1937 // processed. 1938 1939 // We've processed everything in the "frame". Now determine which variables 1940 // cannot be represented by a dbg.declare. 1941 for (auto Var : VarsTouchedThisFrame) { 1942 LocKind Loc = getLocKind(LiveSet, Var); 1943 // If a variable's LocKind is anything other than LocKind::Mem then we 1944 // must note that it cannot be represented with a dbg.declare. 1945 // Note that this check is enough without having to check the result of 1946 // joins() because for join to produce anything other than Mem after 1947 // we've already seen a Mem we'd be joining None or Val with Mem. In that 1948 // case, we've already hit this codepath when we set the LocKind to Val 1949 // or None in that block. 1950 if (Loc != LocKind::Mem) { 1951 DebugVariable DbgVar = FnVarLocs->getVariable(Var); 1952 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()}; 1953 NotAlwaysStackHomed.insert(Aggr); 1954 } 1955 } 1956 VarsTouchedThisFrame.clear(); 1957 } 1958 } 1959 1960 AssignmentTrackingLowering::LocKind 1961 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) { 1962 // Partial order: 1963 // None > Mem, Val 1964 return A == B ? A : LocKind::None; 1965 } 1966 1967 AssignmentTrackingLowering::Assignment 1968 AssignmentTrackingLowering::joinAssignment(const Assignment &A, 1969 const Assignment &B) { 1970 // Partial order: 1971 // NoneOrPhi(null, null) > Known(v, ?s) 1972 1973 // If either are NoneOrPhi the join is NoneOrPhi. 1974 // If either value is different then the result is 1975 // NoneOrPhi (joining two values is a Phi). 1976 if (!A.isSameSourceAssignment(B)) 1977 return Assignment::makeNoneOrPhi(); 1978 if (A.Status == Assignment::NoneOrPhi) 1979 return Assignment::makeNoneOrPhi(); 1980 1981 // Source is used to lookup the value + expression in the debug program if 1982 // the stack slot gets assigned a value earlier than expected. Because 1983 // we're only tracking the one dbg.assign, we can't capture debug PHIs. 1984 // It's unlikely that we're losing out on much coverage by avoiding that 1985 // extra work. 1986 // The Source may differ in this situation: 1987 // Pred.1: 1988 // dbg.assign i32 0, ..., !1, ... 1989 // Pred.2: 1990 // dbg.assign i32 1, ..., !1, ... 1991 // Here the same assignment (!1) was performed in both preds in the source, 1992 // but we can't use either one unless they are identical (e.g. .we don't 1993 // want to arbitrarily pick between constant values). 1994 auto JoinSource = [&]() -> AssignRecord { 1995 if (A.Source == B.Source) 1996 return A.Source; 1997 if (!A.Source || !B.Source) 1998 return AssignRecord(); 1999 assert(isa<DPValue *>(A.Source) == isa<DPValue *>(B.Source)); 2000 if (isa<DPValue *>(A.Source) && 2001 cast<DPValue *>(A.Source)->isEquivalentTo(*cast<DPValue *>(B.Source))) 2002 return A.Source; 2003 if (isa<DbgAssignIntrinsic *>(A.Source) && 2004 cast<DbgAssignIntrinsic *>(A.Source)->isIdenticalTo( 2005 cast<DbgAssignIntrinsic *>(B.Source))) 2006 return A.Source; 2007 return AssignRecord(); 2008 }; 2009 AssignRecord Source = JoinSource(); 2010 assert(A.Status == B.Status && A.Status == Assignment::Known); 2011 assert(A.ID == B.ID); 2012 return Assignment::make(A.ID, Source); 2013 } 2014 2015 AssignmentTrackingLowering::BlockInfo 2016 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A, 2017 const BlockInfo &B) { 2018 return BlockInfo::join(A, B, TrackedVariablesVectorSize); 2019 } 2020 2021 bool AssignmentTrackingLowering::join( 2022 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) { 2023 2024 SmallVector<const BasicBlock *> VisitedPreds; 2025 // Ignore backedges if we have not visited the predecessor yet. As the 2026 // predecessor hasn't yet had locations propagated into it, most locations 2027 // will not yet be valid, so treat them as all being uninitialized and 2028 // potentially valid. If a location guessed to be correct here is 2029 // invalidated later, we will remove it when we revisit this block. This 2030 // is essentially the same as initialising all LocKinds and Assignments to 2031 // an implicit ⊥ value which is the identity value for the join operation. 2032 for (const BasicBlock *Pred : predecessors(&BB)) { 2033 if (Visited.count(Pred)) 2034 VisitedPreds.push_back(Pred); 2035 } 2036 2037 // No preds visited yet. 2038 if (VisitedPreds.empty()) { 2039 auto It = LiveIn.try_emplace(&BB, BlockInfo()); 2040 bool DidInsert = It.second; 2041 if (DidInsert) 2042 It.first->second.init(TrackedVariablesVectorSize); 2043 return /*Changed*/ DidInsert; 2044 } 2045 2046 // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn. 2047 if (VisitedPreds.size() == 1) { 2048 const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second; 2049 auto CurrentLiveInEntry = LiveIn.find(&BB); 2050 2051 // Check if there isn't an entry, or there is but the LiveIn set has 2052 // changed (expensive check). 2053 if (CurrentLiveInEntry == LiveIn.end()) 2054 LiveIn.insert(std::make_pair(&BB, PredLiveOut)); 2055 else if (PredLiveOut != CurrentLiveInEntry->second) 2056 CurrentLiveInEntry->second = PredLiveOut; 2057 else 2058 return /*Changed*/ false; 2059 return /*Changed*/ true; 2060 } 2061 2062 // More than one pred. Join LiveOuts of blocks 1 and 2. 2063 assert(VisitedPreds.size() > 1); 2064 const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second; 2065 const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second; 2066 BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1); 2067 2068 // Join the LiveOuts of subsequent blocks. 2069 ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2); 2070 for (const BasicBlock *Pred : Tail) { 2071 const auto &PredLiveOut = LiveOut.find(Pred); 2072 assert(PredLiveOut != LiveOut.end() && 2073 "block should have been processed already"); 2074 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second); 2075 } 2076 2077 // Save the joined result for BB. 2078 auto CurrentLiveInEntry = LiveIn.find(&BB); 2079 // Check if there isn't an entry, or there is but the LiveIn set has changed 2080 // (expensive check). 2081 if (CurrentLiveInEntry == LiveIn.end()) 2082 LiveIn.try_emplace(&BB, std::move(BBLiveIn)); 2083 else if (BBLiveIn != CurrentLiveInEntry->second) 2084 CurrentLiveInEntry->second = std::move(BBLiveIn); 2085 else 2086 return /*Changed*/ false; 2087 return /*Changed*/ true; 2088 } 2089 2090 /// Return true if A fully contains B. 2091 static bool fullyContains(DIExpression::FragmentInfo A, 2092 DIExpression::FragmentInfo B) { 2093 auto ALeft = A.OffsetInBits; 2094 auto BLeft = B.OffsetInBits; 2095 if (BLeft < ALeft) 2096 return false; 2097 2098 auto ARight = ALeft + A.SizeInBits; 2099 auto BRight = BLeft + B.SizeInBits; 2100 if (BRight > ARight) 2101 return false; 2102 return true; 2103 } 2104 2105 static std::optional<at::AssignmentInfo> 2106 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) { 2107 // Don't bother checking if this is an AllocaInst. We know this 2108 // instruction has no tag which means there are no variables associated 2109 // with it. 2110 if (const auto *SI = dyn_cast<StoreInst>(&I)) 2111 return at::getAssignmentInfo(Layout, SI); 2112 if (const auto *MI = dyn_cast<MemIntrinsic>(&I)) 2113 return at::getAssignmentInfo(Layout, MI); 2114 // Alloca or non-store-like inst. 2115 return std::nullopt; 2116 } 2117 2118 DbgDeclareInst *DynCastToDbgDeclare(DbgVariableIntrinsic *DVI) { 2119 return dyn_cast<DbgDeclareInst>(DVI); 2120 } 2121 2122 DPValue *DynCastToDbgDeclare(DPValue *DPV) { 2123 return DPV->isDbgDeclare() ? DPV : nullptr; 2124 } 2125 2126 /// Build a map of {Variable x: Variables y} where all variable fragments 2127 /// contained within the variable fragment x are in set y. This means that 2128 /// y does not contain all overlaps because partial overlaps are excluded. 2129 /// 2130 /// While we're iterating over the function, add single location defs for 2131 /// dbg.declares to \p FnVarLocs. 2132 /// 2133 /// Variables that are interesting to this pass in are added to 2134 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of 2135 /// the last interesting variable plus 1, meaning variables with ID 1 2136 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The 2137 /// subsequent variables are either stack homed or fully promoted. 2138 /// 2139 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to 2140 /// the stored-to variable fragments. 2141 /// 2142 /// These tasks are bundled together to reduce the number of times we need 2143 /// to iterate over the function as they can be achieved together in one pass. 2144 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares( 2145 Function &Fn, FunctionVarLocsBuilder *FnVarLocs, 2146 const DenseSet<DebugAggregate> &VarsWithStackSlot, 2147 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars, 2148 unsigned &TrackedVariablesVectorSize) { 2149 DenseSet<DebugVariable> Seen; 2150 // Map of Variable: [Fragments]. 2151 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap; 2152 // Iterate over all instructions: 2153 // - dbg.declare -> add single location variable record 2154 // - dbg.* -> Add fragments to FragmentMap 2155 // - untagged store -> Add fragments to FragmentMap and update 2156 // UntaggedStoreVars. 2157 // We need to add fragments for untagged stores too so that we can correctly 2158 // clobber overlapped fragment locations later. 2159 SmallVector<DbgDeclareInst *> InstDeclares; 2160 SmallVector<DPValue *> DPDeclares; 2161 auto ProcessDbgRecord = [&](auto *Record, auto &DeclareList) { 2162 if (auto *Declare = DynCastToDbgDeclare(Record)) { 2163 DeclareList.push_back(Declare); 2164 return; 2165 } 2166 DebugVariable DV = DebugVariable(Record); 2167 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 2168 if (!VarsWithStackSlot.contains(DA)) 2169 return; 2170 if (Seen.insert(DV).second) 2171 FragmentMap[DA].push_back(DV); 2172 }; 2173 for (auto &BB : Fn) { 2174 for (auto &I : BB) { 2175 for (auto &DPV : I.getDbgValueRange()) 2176 ProcessDbgRecord(&DPV, DPDeclares); 2177 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2178 ProcessDbgRecord(DII, InstDeclares); 2179 } else if (auto Info = getUntaggedStoreAssignmentInfo( 2180 I, Fn.getParent()->getDataLayout())) { 2181 // Find markers linked to this alloca. 2182 auto HandleDbgAssignForStore = [&](auto *Assign) { 2183 std::optional<DIExpression::FragmentInfo> FragInfo; 2184 2185 // Skip this assignment if the affected bits are outside of the 2186 // variable fragment. 2187 if (!at::calculateFragmentIntersect( 2188 I.getModule()->getDataLayout(), Info->Base, 2189 Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) || 2190 (FragInfo && FragInfo->SizeInBits == 0)) 2191 return; 2192 2193 // FragInfo from calculateFragmentIntersect is nullopt if the 2194 // resultant fragment matches DAI's fragment or entire variable - in 2195 // which case copy the fragment info from DAI. If FragInfo is still 2196 // nullopt after the copy it means "no fragment info" instead, which 2197 // is how it is usually interpreted. 2198 if (!FragInfo) 2199 FragInfo = Assign->getExpression()->getFragmentInfo(); 2200 2201 DebugVariable DV = 2202 DebugVariable(Assign->getVariable(), FragInfo, 2203 Assign->getDebugLoc().getInlinedAt()); 2204 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 2205 if (!VarsWithStackSlot.contains(DA)) 2206 return; 2207 2208 // Cache this info for later. 2209 UntaggedStoreVars[&I].push_back( 2210 {FnVarLocs->insertVariable(DV), *Info}); 2211 2212 if (Seen.insert(DV).second) 2213 FragmentMap[DA].push_back(DV); 2214 }; 2215 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) 2216 HandleDbgAssignForStore(DAI); 2217 for (DPValue *DPV : at::getDPVAssignmentMarkers(Info->Base)) 2218 HandleDbgAssignForStore(DPV); 2219 } 2220 } 2221 } 2222 2223 // Sort the fragment map for each DebugAggregate in ascending 2224 // order of fragment size - there should be no duplicates. 2225 for (auto &Pair : FragmentMap) { 2226 SmallVector<DebugVariable, 8> &Frags = Pair.second; 2227 std::sort(Frags.begin(), Frags.end(), 2228 [](const DebugVariable &Next, const DebugVariable &Elmt) { 2229 return Elmt.getFragmentOrDefault().SizeInBits > 2230 Next.getFragmentOrDefault().SizeInBits; 2231 }); 2232 // Check for duplicates. 2233 assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end()); 2234 } 2235 2236 // Build the map. 2237 AssignmentTrackingLowering::OverlapMap Map; 2238 for (auto &Pair : FragmentMap) { 2239 auto &Frags = Pair.second; 2240 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) { 2241 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault(); 2242 // Find the frags that this is contained within. 2243 // 2244 // Because Frags is sorted by size and none have the same offset and 2245 // size, we know that this frag can only be contained by subsequent 2246 // elements. 2247 SmallVector<DebugVariable, 8>::iterator OtherIt = It; 2248 ++OtherIt; 2249 VariableID ThisVar = FnVarLocs->insertVariable(*It); 2250 for (; OtherIt != IEnd; ++OtherIt) { 2251 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault(); 2252 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt); 2253 if (fullyContains(OtherFrag, Frag)) 2254 Map[OtherVar].push_back(ThisVar); 2255 } 2256 } 2257 } 2258 2259 // VariableIDs are 1-based so the variable-tracking bitvector needs 2260 // NumVariables plus 1 bits. 2261 TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1; 2262 2263 // Finally, insert the declares afterwards, so the first IDs are all 2264 // partially stack homed vars. 2265 for (auto *DDI : InstDeclares) 2266 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(), 2267 DDI->getDebugLoc(), DDI->getWrappedLocation()); 2268 for (auto *DPV : DPDeclares) 2269 FnVarLocs->addSingleLocVar(DebugVariable(DPV), DPV->getExpression(), 2270 DPV->getDebugLoc(), 2271 RawLocationWrapper(DPV->getRawLocation())); 2272 return Map; 2273 } 2274 2275 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) { 2276 if (Fn.size() > MaxNumBlocks) { 2277 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName() 2278 << ": too many blocks (" << Fn.size() << ")\n"); 2279 at::deleteAll(&Fn); 2280 return false; 2281 } 2282 2283 FnVarLocs = FnVarLocsBuilder; 2284 2285 // The general structure here is inspired by VarLocBasedImpl.cpp 2286 // (LiveDebugValues). 2287 2288 // Build the variable fragment overlap map. 2289 // Note that this pass doesn't handle partial overlaps correctly (FWIW 2290 // neither does LiveDebugVariables) because that is difficult to do and 2291 // appears to be rare occurance. 2292 VarContains = buildOverlapMapAndRecordDeclares( 2293 Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars, 2294 TrackedVariablesVectorSize); 2295 2296 // Prepare for traversal. 2297 ReversePostOrderTraversal<Function *> RPOT(&Fn); 2298 std::priority_queue<unsigned int, std::vector<unsigned int>, 2299 std::greater<unsigned int>> 2300 Worklist; 2301 std::priority_queue<unsigned int, std::vector<unsigned int>, 2302 std::greater<unsigned int>> 2303 Pending; 2304 DenseMap<unsigned int, BasicBlock *> OrderToBB; 2305 DenseMap<BasicBlock *, unsigned int> BBToOrder; 2306 { // Init OrderToBB and BBToOrder. 2307 unsigned int RPONumber = 0; 2308 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 2309 OrderToBB[RPONumber] = *RI; 2310 BBToOrder[*RI] = RPONumber; 2311 Worklist.push(RPONumber); 2312 ++RPONumber; 2313 } 2314 LiveIn.init(RPONumber); 2315 LiveOut.init(RPONumber); 2316 } 2317 2318 // Perform the traversal. 2319 // 2320 // This is a standard "union of predecessor outs" dataflow problem. To solve 2321 // it, we perform join() and process() using the two worklist method until 2322 // the LiveIn data for each block becomes unchanging. The "proof" that this 2323 // terminates can be put together by looking at the comments around LocKind, 2324 // Assignment, and the various join methods, which show that all the elements 2325 // involved are made up of join-semilattices; LiveIn(n) can only 2326 // monotonically increase in value throughout the dataflow. 2327 // 2328 SmallPtrSet<BasicBlock *, 16> Visited; 2329 while (!Worklist.empty()) { 2330 // We track what is on the pending worklist to avoid inserting the same 2331 // thing twice. 2332 SmallPtrSet<BasicBlock *, 16> OnPending; 2333 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2334 while (!Worklist.empty()) { 2335 BasicBlock *BB = OrderToBB[Worklist.top()]; 2336 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 2337 Worklist.pop(); 2338 bool InChanged = join(*BB, Visited); 2339 // Always consider LiveIn changed on the first visit. 2340 InChanged |= Visited.insert(BB).second; 2341 if (InChanged) { 2342 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n"); 2343 // Mutate a copy of LiveIn while processing BB. After calling process 2344 // LiveSet is the LiveOut set for BB. 2345 BlockInfo LiveSet = LiveIn[BB]; 2346 2347 // Process the instructions in the block. 2348 process(*BB, &LiveSet); 2349 2350 // Relatively expensive check: has anything changed in LiveOut for BB? 2351 if (LiveOut[BB] != LiveSet) { 2352 LLVM_DEBUG(dbgs() << BB->getName() 2353 << " has new OutLocs, add succs to worklist: [ "); 2354 LiveOut[BB] = std::move(LiveSet); 2355 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 2356 if (OnPending.insert(*I).second) { 2357 LLVM_DEBUG(dbgs() << I->getName() << " "); 2358 Pending.push(BBToOrder[*I]); 2359 } 2360 } 2361 LLVM_DEBUG(dbgs() << "]\n"); 2362 } 2363 } 2364 } 2365 Worklist.swap(Pending); 2366 // At this point, pending must be empty, since it was just the empty 2367 // worklist 2368 assert(Pending.empty() && "Pending should be empty"); 2369 } 2370 2371 // That's the hard part over. Now we just have some admin to do. 2372 2373 // Record whether we inserted any intrinsics. 2374 bool InsertedAnyIntrinsics = false; 2375 2376 // Identify and add defs for single location variables. 2377 // 2378 // Go through all of the defs that we plan to add. If the aggregate variable 2379 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single 2380 // location def and omit the rest. Add an entry to AlwaysStackHomed so that 2381 // we can identify those uneeded defs later. 2382 DenseSet<DebugAggregate> AlwaysStackHomed; 2383 for (const auto &Pair : InsertBeforeMap) { 2384 auto &Vec = Pair.second; 2385 for (VarLocInfo VarLoc : Vec) { 2386 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2387 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2388 2389 // Skip this Var if it's not always stack homed. 2390 if (NotAlwaysStackHomed.contains(Aggr)) 2391 continue; 2392 2393 // Skip complex cases such as when different fragments of a variable have 2394 // been split into different allocas. Skipping in this case means falling 2395 // back to using a list of defs (which could reduce coverage, but is no 2396 // less correct). 2397 bool Simple = 2398 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref(); 2399 if (!Simple) { 2400 NotAlwaysStackHomed.insert(Aggr); 2401 continue; 2402 } 2403 2404 // All source assignments to this variable remain and all stores to any 2405 // part of the variable store to the same address (with varying 2406 // offsets). We can just emit a single location for the whole variable. 2407 // 2408 // Unless we've already done so, create the single location def now. 2409 if (AlwaysStackHomed.insert(Aggr).second) { 2410 assert(!VarLoc.Values.hasArgList()); 2411 // TODO: When more complex cases are handled VarLoc.Expr should be 2412 // built appropriately rather than always using an empty DIExpression. 2413 // The assert below is a reminder. 2414 assert(Simple); 2415 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt); 2416 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2417 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values); 2418 InsertedAnyIntrinsics = true; 2419 } 2420 } 2421 } 2422 2423 // Insert the other DEFs. 2424 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) { 2425 SmallVector<VarLocInfo> NewDefs; 2426 for (const VarLocInfo &VarLoc : Vec) { 2427 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2428 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2429 // If this variable is always stack homed then we have already inserted a 2430 // dbg.declare and deleted this dbg.value. 2431 if (AlwaysStackHomed.contains(Aggr)) 2432 continue; 2433 NewDefs.push_back(VarLoc); 2434 InsertedAnyIntrinsics = true; 2435 } 2436 2437 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs)); 2438 } 2439 2440 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs); 2441 2442 return InsertedAnyIntrinsics; 2443 } 2444 2445 bool AssignmentTrackingLowering::emitPromotedVarLocs( 2446 FunctionVarLocsBuilder *FnVarLocs) { 2447 bool InsertedAnyIntrinsics = false; 2448 // Go through every block, translating debug intrinsics for fully promoted 2449 // variables into FnVarLocs location defs. No analysis required for these. 2450 auto TranslateDbgRecord = [&](auto *Record) { 2451 // Skip variables that haven't been promoted - we've dealt with those 2452 // already. 2453 if (VarsWithStackSlot->contains(getAggregate(Record))) 2454 return; 2455 auto InsertBefore = getNextNode(Record); 2456 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator"); 2457 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record), 2458 Record->getExpression(), Record->getDebugLoc(), 2459 RawLocationWrapper(Record->getRawLocation())); 2460 InsertedAnyIntrinsics = true; 2461 }; 2462 for (auto &BB : Fn) { 2463 for (auto &I : BB) { 2464 // Skip instructions other than dbg.values and dbg.assigns. 2465 for (DPValue &DPV : I.getDbgValueRange()) 2466 if (DPV.isDbgValue() || DPV.isDbgAssign()) 2467 TranslateDbgRecord(&DPV); 2468 auto *DVI = dyn_cast<DbgValueInst>(&I); 2469 if (DVI) 2470 TranslateDbgRecord(DVI); 2471 } 2472 } 2473 return InsertedAnyIntrinsics; 2474 } 2475 2476 /// Remove redundant definitions within sequences of consecutive location defs. 2477 /// This is done using a backward scan to keep the last def describing a 2478 /// specific variable/fragment. 2479 /// 2480 /// This implements removeRedundantDbgInstrsUsingBackwardScan from 2481 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2482 /// FunctionVarLocsBuilder instead of with intrinsics. 2483 static bool 2484 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, 2485 FunctionVarLocsBuilder &FnVarLocs) { 2486 bool Changed = false; 2487 SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes; 2488 // Scan over the entire block, not just over the instructions mapped by 2489 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2490 // instructions. 2491 for (const Instruction &I : reverse(*BB)) { 2492 if (!isa<DbgVariableIntrinsic>(I)) { 2493 // Sequence of consecutive defs ended. Clear map for the next one. 2494 VariableDefinedBytes.clear(); 2495 } 2496 2497 auto HandleLocsForWedge = [&](auto *WedgePosition) { 2498 // Get the location defs that start just before this instruction. 2499 const auto *Locs = FnVarLocs.getWedge(WedgePosition); 2500 if (!Locs) 2501 return; 2502 2503 NumWedgesScanned++; 2504 bool ChangedThisWedge = false; 2505 // The new pruned set of defs, reversed because we're scanning backwards. 2506 SmallVector<VarLocInfo> NewDefsReversed; 2507 2508 // Iterate over the existing defs in reverse. 2509 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) { 2510 NumDefsScanned++; 2511 DebugAggregate Aggr = 2512 getAggregate(FnVarLocs.getVariable(RIt->VariableID)); 2513 uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0); 2514 uint64_t SizeInBytes = divideCeil(SizeInBits, 8); 2515 2516 // Cutoff for large variables to prevent expensive bitvector operations. 2517 const uint64_t MaxSizeBytes = 2048; 2518 2519 if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) { 2520 // If the size is unknown (0) then keep this location def to be safe. 2521 // Do the same for defs of large variables, which would be expensive 2522 // to represent with a BitVector. 2523 NewDefsReversed.push_back(*RIt); 2524 continue; 2525 } 2526 2527 // Only keep this location definition if it is not fully eclipsed by 2528 // other definitions in this wedge that come after it 2529 2530 // Inert the bytes the location definition defines. 2531 auto InsertResult = 2532 VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes)); 2533 bool FirstDefinition = InsertResult.second; 2534 BitVector &DefinedBytes = InsertResult.first->second; 2535 2536 DIExpression::FragmentInfo Fragment = 2537 RIt->Expr->getFragmentInfo().value_or( 2538 DIExpression::FragmentInfo(SizeInBits, 0)); 2539 bool InvalidFragment = Fragment.endInBits() > SizeInBits; 2540 uint64_t StartInBytes = Fragment.startInBits() / 8; 2541 uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8); 2542 2543 // If this defines any previously undefined bytes, keep it. 2544 if (FirstDefinition || InvalidFragment || 2545 DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) { 2546 if (!InvalidFragment) 2547 DefinedBytes.set(StartInBytes, EndInBytes); 2548 NewDefsReversed.push_back(*RIt); 2549 continue; 2550 } 2551 2552 // Redundant def found: throw it away. Since the wedge of defs is being 2553 // rebuilt, doing nothing is the same as deleting an entry. 2554 ChangedThisWedge = true; 2555 NumDefsRemoved++; 2556 } 2557 2558 // Un-reverse the defs and replace the wedge with the pruned version. 2559 if (ChangedThisWedge) { 2560 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end()); 2561 FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed)); 2562 NumWedgesChanged++; 2563 Changed = true; 2564 } 2565 }; 2566 HandleLocsForWedge(&I); 2567 for (DPValue &DPV : reverse(I.getDbgValueRange())) 2568 HandleLocsForWedge(&DPV); 2569 } 2570 2571 return Changed; 2572 } 2573 2574 /// Remove redundant location defs using a forward scan. This can remove a 2575 /// location definition that is redundant due to indicating that a variable has 2576 /// the same value as is already being indicated by an earlier def. 2577 /// 2578 /// This implements removeRedundantDbgInstrsUsingForwardScan from 2579 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2580 /// FunctionVarLocsBuilder instead of with intrinsics 2581 static bool 2582 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, 2583 FunctionVarLocsBuilder &FnVarLocs) { 2584 bool Changed = false; 2585 DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>> 2586 VariableMap; 2587 2588 // Scan over the entire block, not just over the instructions mapped by 2589 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2590 // instructions. 2591 for (const Instruction &I : *BB) { 2592 // Get the defs that come just before this instruction. 2593 auto HandleLocsForWedge = [&](auto *WedgePosition) { 2594 const auto *Locs = FnVarLocs.getWedge(WedgePosition); 2595 if (!Locs) 2596 return; 2597 2598 NumWedgesScanned++; 2599 bool ChangedThisWedge = false; 2600 // The new pruned set of defs. 2601 SmallVector<VarLocInfo> NewDefs; 2602 2603 // Iterate over the existing defs. 2604 for (const VarLocInfo &Loc : *Locs) { 2605 NumDefsScanned++; 2606 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2607 std::nullopt, Loc.DL.getInlinedAt()); 2608 auto VMI = VariableMap.find(Key); 2609 2610 // Update the map if we found a new value/expression describing the 2611 // variable, or if the variable wasn't mapped already. 2612 if (VMI == VariableMap.end() || VMI->second.first != Loc.Values || 2613 VMI->second.second != Loc.Expr) { 2614 VariableMap[Key] = {Loc.Values, Loc.Expr}; 2615 NewDefs.push_back(Loc); 2616 continue; 2617 } 2618 2619 // Did not insert this Loc, which is the same as removing it. 2620 ChangedThisWedge = true; 2621 NumDefsRemoved++; 2622 } 2623 2624 // Replace the existing wedge with the pruned version. 2625 if (ChangedThisWedge) { 2626 FnVarLocs.setWedge(WedgePosition, std::move(NewDefs)); 2627 NumWedgesChanged++; 2628 Changed = true; 2629 } 2630 }; 2631 2632 for (DPValue &DPV : I.getDbgValueRange()) 2633 HandleLocsForWedge(&DPV); 2634 HandleLocsForWedge(&I); 2635 } 2636 2637 return Changed; 2638 } 2639 2640 static bool 2641 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, 2642 FunctionVarLocsBuilder &FnVarLocs) { 2643 assert(BB->isEntryBlock()); 2644 // Do extra work to ensure that we remove semantically unimportant undefs. 2645 // 2646 // This is to work around the fact that SelectionDAG will hoist dbg.values 2647 // using argument values to the top of the entry block. That can move arg 2648 // dbg.values before undef and constant dbg.values which they previously 2649 // followed. The easiest thing to do is to just try to feed SelectionDAG 2650 // input it's happy with. 2651 // 2652 // Map of {Variable x: Fragments y} where the fragments y of variable x have 2653 // have at least one non-undef location defined already. Don't use directly, 2654 // instead call DefineBits and HasDefinedBits. 2655 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>> 2656 VarsWithDef; 2657 // Specify that V (a fragment of A) has a non-undef location. 2658 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2659 VarsWithDef[A].insert(V.getFragmentOrDefault()); 2660 }; 2661 // Return true if a non-undef location has been defined for V (a fragment of 2662 // A). Doesn't imply that the location is currently non-undef, just that a 2663 // non-undef location has been seen previously. 2664 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2665 auto FragsIt = VarsWithDef.find(A); 2666 if (FragsIt == VarsWithDef.end()) 2667 return false; 2668 return llvm::any_of(FragsIt->second, [V](auto Frag) { 2669 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault()); 2670 }); 2671 }; 2672 2673 bool Changed = false; 2674 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap; 2675 2676 // Scan over the entire block, not just over the instructions mapped by 2677 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2678 // instructions. 2679 for (const Instruction &I : *BB) { 2680 // Get the defs that come just before this instruction. 2681 auto HandleLocsForWedge = [&](auto *WedgePosition) { 2682 const auto *Locs = FnVarLocs.getWedge(WedgePosition); 2683 if (!Locs) 2684 return; 2685 2686 NumWedgesScanned++; 2687 bool ChangedThisWedge = false; 2688 // The new pruned set of defs. 2689 SmallVector<VarLocInfo> NewDefs; 2690 2691 // Iterate over the existing defs. 2692 for (const VarLocInfo &Loc : *Locs) { 2693 NumDefsScanned++; 2694 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2695 Loc.DL.getInlinedAt()}; 2696 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID); 2697 2698 // Remove undef entries that are encountered before any non-undef 2699 // intrinsics from the entry block. 2700 if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) { 2701 // Did not insert this Loc, which is the same as removing it. 2702 NumDefsRemoved++; 2703 ChangedThisWedge = true; 2704 continue; 2705 } 2706 2707 DefineBits(Aggr, Var); 2708 NewDefs.push_back(Loc); 2709 } 2710 2711 // Replace the existing wedge with the pruned version. 2712 if (ChangedThisWedge) { 2713 FnVarLocs.setWedge(WedgePosition, std::move(NewDefs)); 2714 NumWedgesChanged++; 2715 Changed = true; 2716 } 2717 }; 2718 for (DPValue &DPV : I.getDbgValueRange()) 2719 HandleLocsForWedge(&DPV); 2720 HandleLocsForWedge(&I); 2721 } 2722 2723 return Changed; 2724 } 2725 2726 static bool removeRedundantDbgLocs(const BasicBlock *BB, 2727 FunctionVarLocsBuilder &FnVarLocs) { 2728 bool MadeChanges = false; 2729 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs); 2730 if (BB->isEntryBlock()) 2731 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs); 2732 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs); 2733 2734 if (MadeChanges) 2735 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName() 2736 << "\n"); 2737 return MadeChanges; 2738 } 2739 2740 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) { 2741 DenseSet<DebugAggregate> Result; 2742 for (auto &BB : Fn) { 2743 for (auto &I : BB) { 2744 // Any variable linked to an instruction is considered 2745 // interesting. Ideally we only need to check Allocas, however, a 2746 // DIAssignID might get dropped from an alloca but not stores. In that 2747 // case, we need to consider the variable interesting for NFC behaviour 2748 // with this change. TODO: Consider only looking at allocas. 2749 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) { 2750 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()}); 2751 } 2752 for (DPValue *DPV : at::getDPVAssignmentMarkers(&I)) { 2753 Result.insert({DPV->getVariable(), DPV->getDebugLoc().getInlinedAt()}); 2754 } 2755 } 2756 } 2757 return Result; 2758 } 2759 2760 static void analyzeFunction(Function &Fn, const DataLayout &Layout, 2761 FunctionVarLocsBuilder *FnVarLocs) { 2762 // The analysis will generate location definitions for all variables, but we 2763 // only need to perform a dataflow on the set of variables which have a stack 2764 // slot. Find those now. 2765 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn); 2766 2767 bool Changed = false; 2768 2769 // Use a scope block to clean up AssignmentTrackingLowering before running 2770 // MemLocFragmentFill to reduce peak memory consumption. 2771 { 2772 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot); 2773 Changed = Pass.run(FnVarLocs); 2774 } 2775 2776 if (Changed) { 2777 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot, 2778 shouldCoalesceFragments(Fn)); 2779 Pass.run(FnVarLocs); 2780 2781 // Remove redundant entries. As well as reducing memory consumption and 2782 // avoiding waiting cycles later by burning some now, this has another 2783 // important job. That is to work around some SelectionDAG quirks. See 2784 // removeRedundantDbgLocsUsingForwardScan comments for more info on that. 2785 for (auto &BB : Fn) 2786 removeRedundantDbgLocs(&BB, *FnVarLocs); 2787 } 2788 } 2789 2790 FunctionVarLocs 2791 DebugAssignmentTrackingAnalysis::run(Function &F, 2792 FunctionAnalysisManager &FAM) { 2793 if (!isAssignmentTrackingEnabled(*F.getParent())) 2794 return FunctionVarLocs(); 2795 2796 auto &DL = F.getParent()->getDataLayout(); 2797 2798 FunctionVarLocsBuilder Builder; 2799 analyzeFunction(F, DL, &Builder); 2800 2801 // Save these results. 2802 FunctionVarLocs Results; 2803 Results.init(Builder); 2804 return Results; 2805 } 2806 2807 AnalysisKey DebugAssignmentTrackingAnalysis::Key; 2808 2809 PreservedAnalyses 2810 DebugAssignmentTrackingPrinterPass::run(Function &F, 2811 FunctionAnalysisManager &FAM) { 2812 FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F); 2813 return PreservedAnalyses::all(); 2814 } 2815 2816 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) { 2817 if (!isAssignmentTrackingEnabled(*F.getParent())) 2818 return false; 2819 2820 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName() 2821 << "\n"); 2822 auto DL = std::make_unique<DataLayout>(F.getParent()); 2823 2824 // Clear previous results. 2825 Results->clear(); 2826 2827 FunctionVarLocsBuilder Builder; 2828 analyzeFunction(F, *DL.get(), &Builder); 2829 2830 // Save these results. 2831 Results->init(Builder); 2832 2833 if (PrintResults && isFunctionInPrintList(F.getName())) 2834 Results->print(errs(), F); 2835 2836 // Return false because this pass does not modify the function. 2837 return false; 2838 } 2839 2840 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis() 2841 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {} 2842 2843 char AssignmentTrackingAnalysis::ID = 0; 2844 2845 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE, 2846 "Assignment Tracking Analysis", false, true) 2847