1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing exception info into assembly files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "EHStreamer.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/BinaryFormat/Dwarf.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineOperand.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCContext.h" 25 #include "llvm/MC/MCStreamer.h" 26 #include "llvm/MC/MCSymbol.h" 27 #include "llvm/MC/MCTargetOptions.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/LEB128.h" 30 #include "llvm/Target/TargetLoweringObjectFile.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstdint> 34 #include <vector> 35 36 using namespace llvm; 37 38 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 39 40 EHStreamer::~EHStreamer() = default; 41 42 /// How many leading type ids two landing pads have in common. 43 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, 44 const LandingPadInfo *R) { 45 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 46 return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end()) 47 .first - 48 LIds.begin(); 49 } 50 51 /// Compute the actions table and gather the first action index for each landing 52 /// pad site. 53 void EHStreamer::computeActionsTable( 54 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 55 SmallVectorImpl<ActionEntry> &Actions, 56 SmallVectorImpl<unsigned> &FirstActions) { 57 // The action table follows the call-site table in the LSDA. The individual 58 // records are of two types: 59 // 60 // * Catch clause 61 // * Exception specification 62 // 63 // The two record kinds have the same format, with only small differences. 64 // They are distinguished by the "switch value" field: Catch clauses 65 // (TypeInfos) have strictly positive switch values, and exception 66 // specifications (FilterIds) have strictly negative switch values. Value 0 67 // indicates a catch-all clause. 68 // 69 // Negative type IDs index into FilterIds. Positive type IDs index into 70 // TypeInfos. The value written for a positive type ID is just the type ID 71 // itself. For a negative type ID, however, the value written is the 72 // (negative) byte offset of the corresponding FilterIds entry. The byte 73 // offset is usually equal to the type ID (because the FilterIds entries are 74 // written using a variable width encoding, which outputs one byte per entry 75 // as long as the value written is not too large) but can differ. This kind 76 // of complication does not occur for positive type IDs because type infos are 77 // output using a fixed width encoding. FilterOffsets[i] holds the byte 78 // offset corresponding to FilterIds[i]. 79 80 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds(); 81 SmallVector<int, 16> FilterOffsets; 82 FilterOffsets.reserve(FilterIds.size()); 83 int Offset = -1; 84 85 for (unsigned FilterId : FilterIds) { 86 FilterOffsets.push_back(Offset); 87 Offset -= getULEB128Size(FilterId); 88 } 89 90 FirstActions.reserve(LandingPads.size()); 91 92 int FirstAction = 0; 93 unsigned SizeActions = 0; // Total size of all action entries for a function 94 const LandingPadInfo *PrevLPI = nullptr; 95 96 for (const LandingPadInfo *LPI : LandingPads) { 97 const std::vector<int> &TypeIds = LPI->TypeIds; 98 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; 99 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad 100 101 if (NumShared < TypeIds.size()) { 102 // Size of one action entry (typeid + next action) 103 unsigned SizeActionEntry = 0; 104 unsigned PrevAction = (unsigned)-1; 105 106 if (NumShared) { 107 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 108 assert(Actions.size()); 109 PrevAction = Actions.size() - 1; 110 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) + 111 getSLEB128Size(Actions[PrevAction].ValueForTypeID); 112 113 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 114 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 115 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); 116 SizeActionEntry += -Actions[PrevAction].NextAction; 117 PrevAction = Actions[PrevAction].Previous; 118 } 119 } 120 121 // Compute the actions. 122 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 123 int TypeID = TypeIds[J]; 124 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 125 int ValueForTypeID = 126 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID; 127 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); 128 129 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0; 130 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction); 131 SizeSiteActions += SizeActionEntry; 132 133 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 134 Actions.push_back(Action); 135 PrevAction = Actions.size() - 1; 136 } 137 138 // Record the first action of the landing pad site. 139 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1; 140 } // else identical - re-use previous FirstAction 141 142 // Information used when creating the call-site table. The action record 143 // field of the call site record is the offset of the first associated 144 // action record, relative to the start of the actions table. This value is 145 // biased by 1 (1 indicating the start of the actions table), and 0 146 // indicates that there are no actions. 147 FirstActions.push_back(FirstAction); 148 149 // Compute this sites contribution to size. 150 SizeActions += SizeSiteActions; 151 152 PrevLPI = LPI; 153 } 154 } 155 156 /// Return `true' if this is a call to a function marked `nounwind'. Return 157 /// `false' otherwise. 158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { 159 assert(MI->isCall() && "This should be a call instruction!"); 160 161 bool MarkedNoUnwind = false; 162 bool SawFunc = false; 163 164 for (const MachineOperand &MO : MI->operands()) { 165 if (!MO.isGlobal()) continue; 166 167 const Function *F = dyn_cast<Function>(MO.getGlobal()); 168 if (!F) continue; 169 170 if (SawFunc) { 171 // Be conservative. If we have more than one function operand for this 172 // call, then we can't make the assumption that it's the callee and 173 // not a parameter to the call. 174 // 175 // FIXME: Determine if there's a way to say that `F' is the callee or 176 // parameter. 177 MarkedNoUnwind = false; 178 break; 179 } 180 181 MarkedNoUnwind = F->doesNotThrow(); 182 SawFunc = true; 183 } 184 185 return MarkedNoUnwind; 186 } 187 188 void EHStreamer::computePadMap( 189 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 190 RangeMapType &PadMap) { 191 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 192 // by try-range labels when lowered). Ordinary calls do not, so appropriate 193 // try-ranges for them need be deduced so we can put them in the LSDA. 194 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 195 const LandingPadInfo *LandingPad = LandingPads[i]; 196 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 197 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 198 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 199 PadRange P = { i, j }; 200 PadMap[BeginLabel] = P; 201 } 202 } 203 } 204 205 /// Compute the call-site table. The entry for an invoke has a try-range 206 /// containing the call, a non-zero landing pad, and an appropriate action. The 207 /// entry for an ordinary call has a try-range containing the call and zero for 208 /// the landing pad and the action. Calls marked 'nounwind' have no entry and 209 /// must not be contained in the try-range of any entry - they form gaps in the 210 /// table. Entries must be ordered by try-range address. 211 /// 212 /// Call-sites are split into one or more call-site ranges associated with 213 /// different sections of the function. 214 /// 215 /// - Without -basic-block-sections, all call-sites are grouped into one 216 /// call-site-range corresponding to the function section. 217 /// 218 /// - With -basic-block-sections, one call-site range is created for each 219 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively 220 // set to the beginning and ending of the corresponding section and its 221 // ExceptionLabel set to the exception symbol dedicated for this section. 222 // Later, one LSDA header will be emitted for each call-site range with its 223 // call-sites following. The action table and type info table will be 224 // shared across all ranges. 225 void EHStreamer::computeCallSiteTable( 226 SmallVectorImpl<CallSiteEntry> &CallSites, 227 SmallVectorImpl<CallSiteRange> &CallSiteRanges, 228 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 229 const SmallVectorImpl<unsigned> &FirstActions) { 230 RangeMapType PadMap; 231 computePadMap(LandingPads, PadMap); 232 233 // The end label of the previous invoke or nounwind try-range. 234 MCSymbol *LastLabel = Asm->getFunctionBegin(); 235 236 // Whether there is a potentially throwing instruction (currently this means 237 // an ordinary call) between the end of the previous try-range and now. 238 bool SawPotentiallyThrowing = false; 239 240 // Whether the last CallSite entry was for an invoke. 241 bool PreviousIsInvoke = false; 242 243 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 244 245 // Visit all instructions in order of address. 246 for (const auto &MBB : *Asm->MF) { 247 if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) { 248 // We start a call-site range upon function entry and at the beginning of 249 // every basic block section. 250 CallSiteRanges.push_back( 251 {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel, 252 Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel, 253 Asm->getMBBExceptionSym(MBB), CallSites.size()}); 254 PreviousIsInvoke = false; 255 SawPotentiallyThrowing = false; 256 LastLabel = nullptr; 257 } 258 259 if (MBB.isEHPad()) 260 CallSiteRanges.back().IsLPRange = true; 261 262 for (const auto &MI : MBB) { 263 if (!MI.isEHLabel()) { 264 if (MI.isCall()) 265 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); 266 continue; 267 } 268 269 // End of the previous try-range? 270 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); 271 if (BeginLabel == LastLabel) 272 SawPotentiallyThrowing = false; 273 274 // Beginning of a new try-range? 275 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 276 if (L == PadMap.end()) 277 // Nope, it was just some random label. 278 continue; 279 280 const PadRange &P = L->second; 281 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 282 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 283 "Inconsistent landing pad map!"); 284 285 // For Dwarf and AIX exception handling (SjLj handling doesn't use this). 286 // If some instruction between the previous try-range and this one may 287 // throw, create a call-site entry with no landing pad for the region 288 // between the try-ranges. 289 if (SawPotentiallyThrowing && 290 (Asm->MAI->usesCFIForEH() || 291 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) { 292 CallSites.push_back({LastLabel, BeginLabel, nullptr, 0}); 293 PreviousIsInvoke = false; 294 } 295 296 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 297 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 298 299 if (!LandingPad->LandingPadLabel) { 300 // Create a gap. 301 PreviousIsInvoke = false; 302 } else { 303 // This try-range is for an invoke. 304 CallSiteEntry Site = { 305 BeginLabel, 306 LastLabel, 307 LandingPad, 308 FirstActions[P.PadIndex] 309 }; 310 311 // Try to merge with the previous call-site. SJLJ doesn't do this 312 if (PreviousIsInvoke && !IsSJLJ) { 313 CallSiteEntry &Prev = CallSites.back(); 314 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) { 315 // Extend the range of the previous entry. 316 Prev.EndLabel = Site.EndLabel; 317 continue; 318 } 319 } 320 321 // Otherwise, create a new call-site. 322 if (!IsSJLJ) 323 CallSites.push_back(Site); 324 else { 325 // SjLj EH must maintain the call sites in the order assigned 326 // to them by the SjLjPrepare pass. 327 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel); 328 if (CallSites.size() < SiteNo) 329 CallSites.resize(SiteNo); 330 CallSites[SiteNo - 1] = Site; 331 } 332 PreviousIsInvoke = true; 333 } 334 } 335 336 // We end the call-site range upon function exit and at the end of every 337 // basic block section. 338 if (&MBB == &Asm->MF->back() || MBB.isEndSection()) { 339 // If some instruction between the previous try-range and the end of the 340 // function may throw, create a call-site entry with no landing pad for 341 // the region following the try-range. 342 if (SawPotentiallyThrowing && !IsSJLJ) { 343 CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel, 344 nullptr, 0}; 345 CallSites.push_back(Site); 346 SawPotentiallyThrowing = false; 347 } 348 CallSiteRanges.back().CallSiteEndIdx = CallSites.size(); 349 } 350 } 351 } 352 353 /// Emit landing pads and actions. 354 /// 355 /// The general organization of the table is complex, but the basic concepts are 356 /// easy. First there is a header which describes the location and organization 357 /// of the three components that follow. 358 /// 359 /// 1. The landing pad site information describes the range of code covered by 360 /// the try. In our case it's an accumulation of the ranges covered by the 361 /// invokes in the try. There is also a reference to the landing pad that 362 /// handles the exception once processed. Finally an index into the actions 363 /// table. 364 /// 2. The action table, in our case, is composed of pairs of type IDs and next 365 /// action offset. Starting with the action index from the landing pad 366 /// site, each type ID is checked for a match to the current exception. If 367 /// it matches then the exception and type id are passed on to the landing 368 /// pad. Otherwise the next action is looked up. This chain is terminated 369 /// with a next action of zero. If no type id is found then the frame is 370 /// unwound and handling continues. 371 /// 3. Type ID table contains references to all the C++ typeinfo for all 372 /// catches in the function. This tables is reverse indexed base 1. 373 /// 374 /// Returns the starting symbol of an exception table. 375 MCSymbol *EHStreamer::emitExceptionTable() { 376 const MachineFunction *MF = Asm->MF; 377 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 378 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 379 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads(); 380 381 // Sort the landing pads in order of their type ids. This is used to fold 382 // duplicate actions. 383 SmallVector<const LandingPadInfo *, 64> LandingPads; 384 LandingPads.reserve(PadInfos.size()); 385 386 for (const LandingPadInfo &LPI : PadInfos) 387 LandingPads.push_back(&LPI); 388 389 // Order landing pads lexicographically by type id. 390 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) { 391 return L->TypeIds < R->TypeIds; 392 }); 393 394 // Compute the actions table and gather the first action index for each 395 // landing pad site. 396 SmallVector<ActionEntry, 32> Actions; 397 SmallVector<unsigned, 64> FirstActions; 398 computeActionsTable(LandingPads, Actions, FirstActions); 399 400 // Compute the call-site table and call-site ranges. Normally, there is only 401 // one call-site-range which covers the whole funciton. With 402 // -basic-block-sections, there is one call-site-range per basic block 403 // section. 404 SmallVector<CallSiteEntry, 64> CallSites; 405 SmallVector<CallSiteRange, 4> CallSiteRanges; 406 computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions); 407 408 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 409 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm; 410 bool HasLEB128Directives = Asm->MAI->hasLEB128Directives(); 411 unsigned CallSiteEncoding = 412 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) : 413 Asm->getObjFileLowering().getCallSiteEncoding(); 414 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty(); 415 416 // Type infos. 417 MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA( 418 MF->getFunction(), *Asm->CurrentFnSym, Asm->TM); 419 unsigned TTypeEncoding; 420 421 if (!HaveTTData) { 422 // If there is no TypeInfo, then we just explicitly say that we're omitting 423 // that bit. 424 TTypeEncoding = dwarf::DW_EH_PE_omit; 425 } else { 426 // Okay, we have actual filters or typeinfos to emit. As such, we need to 427 // pick a type encoding for them. We're about to emit a list of pointers to 428 // typeinfo objects at the end of the LSDA. However, unless we're in static 429 // mode, this reference will require a relocation by the dynamic linker. 430 // 431 // Because of this, we have a couple of options: 432 // 433 // 1) If we are in -static mode, we can always use an absolute reference 434 // from the LSDA, because the static linker will resolve it. 435 // 436 // 2) Otherwise, if the LSDA section is writable, we can output the direct 437 // reference to the typeinfo and allow the dynamic linker to relocate 438 // it. Since it is in a writable section, the dynamic linker won't 439 // have a problem. 440 // 441 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 442 // we need to use some form of indirection. For example, on Darwin, 443 // we can output a statically-relocatable reference to a dyld stub. The 444 // offset to the stub is constant, but the contents are in a section 445 // that is updated by the dynamic linker. This is easy enough, but we 446 // need to tell the personality function of the unwinder to indirect 447 // through the dyld stub. 448 // 449 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 450 // somewhere. This predicate should be moved to a shared location that is 451 // in target-independent code. 452 // 453 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 454 } 455 456 // Begin the exception table. 457 // Sometimes we want not to emit the data into separate section (e.g. ARM 458 // EHABI). In this case LSDASection will be NULL. 459 if (LSDASection) 460 Asm->OutStreamer->switchSection(LSDASection); 461 Asm->emitAlignment(Align(4)); 462 463 // Emit the LSDA. 464 MCSymbol *GCCETSym = 465 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+ 466 Twine(Asm->getFunctionNumber())); 467 Asm->OutStreamer->emitLabel(GCCETSym); 468 MCSymbol *CstEndLabel = Asm->createTempSymbol( 469 CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end"); 470 471 MCSymbol *TTBaseLabel = nullptr; 472 if (HaveTTData) 473 TTBaseLabel = Asm->createTempSymbol("ttbase"); 474 475 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 476 477 // Helper for emitting references (offsets) for type table and the end of the 478 // call-site table (which marks the beginning of the action table). 479 // * For Itanium, these references will be emitted for every callsite range. 480 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header. 481 auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() { 482 Asm->emitEncodingByte(TTypeEncoding, "@TType"); 483 if (HaveTTData) { 484 // N.B.: There is a dependency loop between the size of the TTBase uleb128 485 // here and the amount of padding before the aligned type table. The 486 // assembler must sometimes pad this uleb128 or insert extra padding 487 // before the type table. See PR35809 or GNU as bug 4029. 488 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref"); 489 Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel); 490 Asm->OutStreamer->emitLabel(TTBaseRefLabel); 491 } 492 493 // The Action table follows the call-site table. So we emit the 494 // label difference from here (start of the call-site table for SJLJ and 495 // Wasm, and start of a call-site range for Itanium) to the end of the 496 // whole call-site table (end of the last call-site range for Itanium). 497 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin"); 498 Asm->emitEncodingByte(CallSiteEncoding, "Call site"); 499 Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel); 500 Asm->OutStreamer->emitLabel(CstBeginLabel); 501 }; 502 503 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef. 504 // For some platforms, the system assembler does not accept the form of 505 // `.uleb128 label2 - label1`. In those situations, we would need to calculate 506 // the size between label1 and label2 manually. 507 // In this case, we would need to calculate the LSDA size and the call 508 // site table size. 509 auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() { 510 assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives && 511 "Targets supporting .uleb128 do not need to take this path."); 512 if (CallSiteRanges.size() > 1) 513 report_fatal_error( 514 "-fbasic-block-sections is not yet supported on " 515 "platforms that do not have general LEB128 directive support."); 516 517 uint64_t CallSiteTableSize = 0; 518 const CallSiteRange &CSRange = CallSiteRanges.back(); 519 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx; 520 CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) { 521 const CallSiteEntry &S = CallSites[CallSiteIdx]; 522 // Each call site entry consists of 3 udata4 fields (12 bytes) and 523 // 1 ULEB128 field. 524 CallSiteTableSize += 12 + getULEB128Size(S.Action); 525 assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows."); 526 } 527 528 Asm->emitEncodingByte(TTypeEncoding, "@TType"); 529 if (HaveTTData) { 530 const unsigned ByteSizeOfCallSiteOffset = 531 getULEB128Size(CallSiteTableSize); 532 uint64_t ActionTableSize = 0; 533 for (const ActionEntry &Action : Actions) { 534 // Each action entry consists of two SLEB128 fields. 535 ActionTableSize += getSLEB128Size(Action.ValueForTypeID) + 536 getSLEB128Size(Action.NextAction); 537 assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows."); 538 } 539 540 const unsigned TypeInfoSize = 541 Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size(); 542 543 const uint64_t LSDASizeBeforeAlign = 544 1 // Call site encoding byte. 545 + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize. 546 + CallSiteTableSize // Call site table content. 547 + ActionTableSize; // Action table content. 548 549 const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize; 550 const unsigned ByteSizeOfLSDAWithoutAlign = 551 getULEB128Size(LSDASizeWithoutAlign); 552 const uint64_t DisplacementBeforeAlign = 553 2 // LPStartEncoding and TypeTableEncoding. 554 + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign; 555 556 // The type info area starts with 4 byte alignment. 557 const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4; 558 uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal; 559 const unsigned ByteSizeOfLSDAWithAlign = 560 getULEB128Size(LSDASizeWithAlign); 561 562 // The LSDASizeWithAlign could use 1 byte less padding for alignment 563 // when the data we use to represent the LSDA Size "needs" to be 1 byte 564 // larger than the one previously calculated without alignment. 565 if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign) 566 LSDASizeWithAlign -= 1; 567 568 Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign, 569 ByteSizeOfLSDAWithAlign); 570 } 571 572 Asm->emitEncodingByte(CallSiteEncoding, "Call site"); 573 Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize); 574 }; 575 576 // SjLj / Wasm Exception handling 577 if (IsSJLJ || IsWasm) { 578 Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front())); 579 580 // emit the LSDA header. 581 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 582 EmitTypeTableRefAndCallSiteTableEndRef(); 583 584 unsigned idx = 0; 585 for (SmallVectorImpl<CallSiteEntry>::const_iterator 586 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 587 const CallSiteEntry &S = *I; 588 589 // Index of the call site entry. 590 if (VerboseAsm) { 591 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<"); 592 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx)); 593 } 594 Asm->emitULEB128(idx); 595 596 // Offset of the first associated action record, relative to the start of 597 // the action table. This value is biased by 1 (1 indicates the start of 598 // the action table), and 0 indicates that there are no actions. 599 if (VerboseAsm) { 600 if (S.Action == 0) 601 Asm->OutStreamer->AddComment(" Action: cleanup"); 602 else 603 Asm->OutStreamer->AddComment(" Action: " + 604 Twine((S.Action - 1) / 2 + 1)); 605 } 606 Asm->emitULEB128(S.Action); 607 } 608 Asm->OutStreamer->emitLabel(CstEndLabel); 609 } else { 610 // Itanium LSDA exception handling 611 612 // The call-site table is a list of all call sites that may throw an 613 // exception (including C++ 'throw' statements) in the procedure 614 // fragment. It immediately follows the LSDA header. Each entry indicates, 615 // for a given call, the first corresponding action record and corresponding 616 // landing pad. 617 // 618 // The table begins with the number of bytes, stored as an LEB128 619 // compressed, unsigned integer. The records immediately follow the record 620 // count. They are sorted in increasing call-site address. Each record 621 // indicates: 622 // 623 // * The position of the call-site. 624 // * The position of the landing pad. 625 // * The first action record for that call site. 626 // 627 // A missing entry in the call-site table indicates that a call is not 628 // supposed to throw. 629 630 assert(CallSiteRanges.size() != 0 && "No call-site ranges!"); 631 632 // There should be only one call-site range which includes all the landing 633 // pads. Find that call-site range here. 634 const CallSiteRange *LandingPadRange = nullptr; 635 for (const CallSiteRange &CSRange : CallSiteRanges) { 636 if (CSRange.IsLPRange) { 637 assert(LandingPadRange == nullptr && 638 "All landing pads must be in a single callsite range."); 639 LandingPadRange = &CSRange; 640 } 641 } 642 643 // The call-site table is split into its call-site ranges, each being 644 // emitted as: 645 // [ LPStartEncoding | LPStart ] 646 // [ TypeTableEncoding | TypeTableOffset ] 647 // [ CallSiteEncoding | CallSiteTableEndOffset ] 648 // cst_begin -> { call-site entries contained in this range } 649 // 650 // and is followed by the next call-site range. 651 // 652 // For each call-site range, CallSiteTableEndOffset is computed as the 653 // difference between cst_begin of that range and the last call-site-table's 654 // end label. This offset is used to find the action table. 655 656 unsigned Entry = 0; 657 for (const CallSiteRange &CSRange : CallSiteRanges) { 658 if (CSRange.CallSiteBeginIdx != 0) { 659 // Align the call-site range for all ranges except the first. The 660 // first range is already aligned due to the exception table alignment. 661 Asm->emitAlignment(Align(4)); 662 } 663 Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel); 664 665 // Emit the LSDA header. 666 // If only one call-site range exists, LPStart is omitted as it is the 667 // same as the function entry. 668 if (CallSiteRanges.size() == 1) { 669 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 670 } else if (!Asm->isPositionIndependent()) { 671 // For more than one call-site ranges, LPStart must be explicitly 672 // specified. 673 // For non-PIC we can simply use the absolute value. 674 Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart"); 675 Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel, 676 Asm->MAI->getCodePointerSize()); 677 } else { 678 // For PIC mode, we Emit a PC-relative address for LPStart. 679 Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart"); 680 MCContext &Context = Asm->OutStreamer->getContext(); 681 MCSymbol *Dot = Context.createTempSymbol(); 682 Asm->OutStreamer->emitLabel(Dot); 683 Asm->OutStreamer->emitValue( 684 MCBinaryExpr::createSub( 685 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel, 686 Context), 687 MCSymbolRefExpr::create(Dot, Context), Context), 688 Asm->MAI->getCodePointerSize()); 689 } 690 691 if (HasLEB128Directives) 692 EmitTypeTableRefAndCallSiteTableEndRef(); 693 else 694 EmitTypeTableOffsetAndCallSiteTableOffset(); 695 696 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx; 697 CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) { 698 const CallSiteEntry &S = CallSites[CallSiteIdx]; 699 700 MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel; 701 MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel; 702 703 MCSymbol *BeginLabel = S.BeginLabel; 704 if (!BeginLabel) 705 BeginLabel = EHFuncBeginSym; 706 MCSymbol *EndLabel = S.EndLabel; 707 if (!EndLabel) 708 EndLabel = EHFuncEndSym; 709 710 // Offset of the call site relative to the start of the procedure. 711 if (VerboseAsm) 712 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + 713 " <<"); 714 Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding); 715 if (VerboseAsm) 716 Asm->OutStreamer->AddComment(Twine(" Call between ") + 717 BeginLabel->getName() + " and " + 718 EndLabel->getName()); 719 Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding); 720 721 // Offset of the landing pad relative to the start of the landing pad 722 // fragment. 723 if (!S.LPad) { 724 if (VerboseAsm) 725 Asm->OutStreamer->AddComment(" has no landing pad"); 726 Asm->emitCallSiteValue(0, CallSiteEncoding); 727 } else { 728 if (VerboseAsm) 729 Asm->OutStreamer->AddComment(Twine(" jumps to ") + 730 S.LPad->LandingPadLabel->getName()); 731 Asm->emitCallSiteOffset(S.LPad->LandingPadLabel, 732 LandingPadRange->FragmentBeginLabel, 733 CallSiteEncoding); 734 } 735 736 // Offset of the first associated action record, relative to the start 737 // of the action table. This value is biased by 1 (1 indicates the start 738 // of the action table), and 0 indicates that there are no actions. 739 if (VerboseAsm) { 740 if (S.Action == 0) 741 Asm->OutStreamer->AddComment(" On action: cleanup"); 742 else 743 Asm->OutStreamer->AddComment(" On action: " + 744 Twine((S.Action - 1) / 2 + 1)); 745 } 746 Asm->emitULEB128(S.Action); 747 } 748 } 749 Asm->OutStreamer->emitLabel(CstEndLabel); 750 } 751 752 // Emit the Action Table. 753 int Entry = 0; 754 for (const ActionEntry &Action : Actions) { 755 if (VerboseAsm) { 756 // Emit comments that decode the action table. 757 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<"); 758 } 759 760 // Type Filter 761 // 762 // Used by the runtime to match the type of the thrown exception to the 763 // type of the catch clauses or the types in the exception specification. 764 if (VerboseAsm) { 765 if (Action.ValueForTypeID > 0) 766 Asm->OutStreamer->AddComment(" Catch TypeInfo " + 767 Twine(Action.ValueForTypeID)); 768 else if (Action.ValueForTypeID < 0) 769 Asm->OutStreamer->AddComment(" Filter TypeInfo " + 770 Twine(Action.ValueForTypeID)); 771 else 772 Asm->OutStreamer->AddComment(" Cleanup"); 773 } 774 Asm->emitSLEB128(Action.ValueForTypeID); 775 776 // Action Record 777 if (VerboseAsm) { 778 if (Action.Previous == unsigned(-1)) { 779 Asm->OutStreamer->AddComment(" No further actions"); 780 } else { 781 Asm->OutStreamer->AddComment(" Continue to action " + 782 Twine(Action.Previous + 1)); 783 } 784 } 785 Asm->emitSLEB128(Action.NextAction); 786 } 787 788 if (HaveTTData) { 789 Asm->emitAlignment(Align(4)); 790 emitTypeInfos(TTypeEncoding, TTBaseLabel); 791 } 792 793 Asm->emitAlignment(Align(4)); 794 return GCCETSym; 795 } 796 797 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) { 798 const MachineFunction *MF = Asm->MF; 799 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 800 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 801 802 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 803 804 int Entry = 0; 805 // Emit the Catch TypeInfos. 806 if (VerboseAsm && !TypeInfos.empty()) { 807 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<"); 808 Asm->OutStreamer->addBlankLine(); 809 Entry = TypeInfos.size(); 810 } 811 812 for (const GlobalValue *GV : llvm::reverse(TypeInfos)) { 813 if (VerboseAsm) 814 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--)); 815 Asm->emitTTypeReference(GV, TTypeEncoding); 816 } 817 818 Asm->OutStreamer->emitLabel(TTBaseLabel); 819 820 // Emit the Exception Specifications. 821 if (VerboseAsm && !FilterIds.empty()) { 822 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<"); 823 Asm->OutStreamer->addBlankLine(); 824 Entry = 0; 825 } 826 for (std::vector<unsigned>::const_iterator 827 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 828 unsigned TypeID = *I; 829 if (VerboseAsm) { 830 --Entry; 831 if (isFilterEHSelector(TypeID)) 832 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry)); 833 } 834 835 Asm->emitULEB128(TypeID); 836 } 837 } 838