1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Common functionality for different debug information format backends.
10 // LLVM currently supports DWARF and CodeView.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/DebugHandlerBase.h"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/MC/MCStreamer.h"
23 #include "llvm/Support/CommandLine.h"
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "dwarfdebug"
28
29 /// If true, we drop variable location ranges which exist entirely outside the
30 /// variable's lexical scope instruction ranges.
31 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
32
33 std::optional<DbgVariableLocation>
extractFromMachineInstruction(const MachineInstr & Instruction)34 DbgVariableLocation::extractFromMachineInstruction(
35 const MachineInstr &Instruction) {
36 DbgVariableLocation Location;
37 // Variables calculated from multiple locations can't be represented here.
38 if (Instruction.getNumDebugOperands() != 1)
39 return std::nullopt;
40 if (!Instruction.getDebugOperand(0).isReg())
41 return std::nullopt;
42 Location.Register = Instruction.getDebugOperand(0).getReg();
43 Location.FragmentInfo.reset();
44 // We only handle expressions generated by DIExpression::appendOffset,
45 // which doesn't require a full stack machine.
46 int64_t Offset = 0;
47 const DIExpression *DIExpr = Instruction.getDebugExpression();
48 auto Op = DIExpr->expr_op_begin();
49 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
50 // appears exactly once at the start of the expression.
51 if (Instruction.isDebugValueList()) {
52 if (Instruction.getNumDebugOperands() == 1 &&
53 Op->getOp() == dwarf::DW_OP_LLVM_arg)
54 ++Op;
55 else
56 return std::nullopt;
57 }
58 while (Op != DIExpr->expr_op_end()) {
59 switch (Op->getOp()) {
60 case dwarf::DW_OP_constu: {
61 int Value = Op->getArg(0);
62 ++Op;
63 if (Op != DIExpr->expr_op_end()) {
64 switch (Op->getOp()) {
65 case dwarf::DW_OP_minus:
66 Offset -= Value;
67 break;
68 case dwarf::DW_OP_plus:
69 Offset += Value;
70 break;
71 default:
72 continue;
73 }
74 }
75 } break;
76 case dwarf::DW_OP_plus_uconst:
77 Offset += Op->getArg(0);
78 break;
79 case dwarf::DW_OP_LLVM_fragment:
80 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
81 break;
82 case dwarf::DW_OP_deref:
83 Location.LoadChain.push_back(Offset);
84 Offset = 0;
85 break;
86 default:
87 return std::nullopt;
88 }
89 ++Op;
90 }
91
92 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
93 // instruction.
94 // FIXME: Replace these with DIExpression.
95 if (Instruction.isIndirectDebugValue())
96 Location.LoadChain.push_back(Offset);
97
98 return Location;
99 }
100
DebugHandlerBase(AsmPrinter * A)101 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
102
103 DebugHandlerBase::~DebugHandlerBase() = default;
104
beginModule(Module * M)105 void DebugHandlerBase::beginModule(Module *M) {
106 if (M->debug_compile_units().empty())
107 Asm = nullptr;
108 }
109
110 // Each LexicalScope has first instruction and last instruction to mark
111 // beginning and end of a scope respectively. Create an inverse map that list
112 // scopes starts (and ends) with an instruction. One instruction may start (or
113 // end) multiple scopes. Ignore scopes that are not reachable.
identifyScopeMarkers()114 void DebugHandlerBase::identifyScopeMarkers() {
115 SmallVector<LexicalScope *, 4> WorkList;
116 WorkList.push_back(LScopes.getCurrentFunctionScope());
117 while (!WorkList.empty()) {
118 LexicalScope *S = WorkList.pop_back_val();
119
120 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
121 if (!Children.empty())
122 WorkList.append(Children.begin(), Children.end());
123
124 if (S->isAbstractScope())
125 continue;
126
127 for (const InsnRange &R : S->getRanges()) {
128 assert(R.first && "InsnRange does not have first instruction!");
129 assert(R.second && "InsnRange does not have second instruction!");
130 requestLabelBeforeInsn(R.first);
131 requestLabelAfterInsn(R.second);
132 }
133 }
134 }
135
136 // Return Label preceding the instruction.
getLabelBeforeInsn(const MachineInstr * MI)137 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
138 MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
139 assert(Label && "Didn't insert label before instruction");
140 return Label;
141 }
142
143 // Return Label immediately following the instruction.
getLabelAfterInsn(const MachineInstr * MI)144 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
145 return LabelsAfterInsn.lookup(MI);
146 }
147
148 /// If this type is derived from a base type then return base type size.
getBaseTypeSize(const DIType * Ty)149 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
150 assert(Ty);
151 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
152 if (!DDTy)
153 return Ty->getSizeInBits();
154
155 unsigned Tag = DDTy->getTag();
156
157 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
158 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
159 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type &&
160 Tag != dwarf::DW_TAG_immutable_type &&
161 Tag != dwarf::DW_TAG_template_alias)
162 return DDTy->getSizeInBits();
163
164 DIType *BaseType = DDTy->getBaseType();
165
166 if (!BaseType)
167 return 0;
168
169 // If this is a derived type, go ahead and get the base type, unless it's a
170 // reference then it's just the size of the field. Pointer types have no need
171 // of this since they're a different type of qualification on the type.
172 if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
173 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
174 return Ty->getSizeInBits();
175
176 return getBaseTypeSize(BaseType);
177 }
178
isUnsignedDIType(const DIType * Ty)179 bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) {
180 if (isa<DIStringType>(Ty)) {
181 // Some transformations (e.g. instcombine) may decide to turn a Fortran
182 // character object into an integer, and later ones (e.g. SROA) may
183 // further inject a constant integer in a llvm.dbg.value call to track
184 // the object's value. Here we trust the transformations are doing the
185 // right thing, and treat the constant as unsigned to preserve that value
186 // (i.e. avoid sign extension).
187 return true;
188 }
189
190 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
191 if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) {
192 if (!(Ty = CTy->getBaseType()))
193 // FIXME: Enums without a fixed underlying type have unknown signedness
194 // here, leading to incorrectly emitted constants.
195 return false;
196 } else
197 // (Pieces of) aggregate types that get hacked apart by SROA may be
198 // represented by a constant. Encode them as unsigned bytes.
199 return true;
200 }
201
202 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
203 dwarf::Tag T = (dwarf::Tag)Ty->getTag();
204 // Encode pointer constants as unsigned bytes. This is used at least for
205 // null pointer constant emission.
206 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
207 // here, but accept them for now due to a bug in SROA producing bogus
208 // dbg.values.
209 if (T == dwarf::DW_TAG_pointer_type ||
210 T == dwarf::DW_TAG_ptr_to_member_type ||
211 T == dwarf::DW_TAG_reference_type ||
212 T == dwarf::DW_TAG_rvalue_reference_type)
213 return true;
214 assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
215 T == dwarf::DW_TAG_volatile_type ||
216 T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type ||
217 T == dwarf::DW_TAG_immutable_type ||
218 T == dwarf::DW_TAG_template_alias);
219 assert(DTy->getBaseType() && "Expected valid base type");
220 return isUnsignedDIType(DTy->getBaseType());
221 }
222
223 auto *BTy = cast<DIBasicType>(Ty);
224 unsigned Encoding = BTy->getEncoding();
225 assert((Encoding == dwarf::DW_ATE_unsigned ||
226 Encoding == dwarf::DW_ATE_unsigned_char ||
227 Encoding == dwarf::DW_ATE_signed ||
228 Encoding == dwarf::DW_ATE_signed_char ||
229 Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
230 Encoding == dwarf::DW_ATE_boolean ||
231 Encoding == dwarf::DW_ATE_complex_float ||
232 Encoding == dwarf::DW_ATE_signed_fixed ||
233 Encoding == dwarf::DW_ATE_unsigned_fixed ||
234 (Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
235 Ty->getName() == "decltype(nullptr)")) &&
236 "Unsupported encoding");
237 return Encoding == dwarf::DW_ATE_unsigned ||
238 Encoding == dwarf::DW_ATE_unsigned_char ||
239 Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
240 Encoding == llvm::dwarf::DW_ATE_unsigned_fixed ||
241 Ty->getTag() == dwarf::DW_TAG_unspecified_type;
242 }
243
hasDebugInfo(const MachineModuleInfo * MMI,const MachineFunction * MF)244 static bool hasDebugInfo(const MachineModuleInfo *MMI,
245 const MachineFunction *MF) {
246 if (!MMI->hasDebugInfo())
247 return false;
248 auto *SP = MF->getFunction().getSubprogram();
249 if (!SP)
250 return false;
251 assert(SP->getUnit());
252 auto EK = SP->getUnit()->getEmissionKind();
253 if (EK == DICompileUnit::NoDebug)
254 return false;
255 return true;
256 }
257
beginFunction(const MachineFunction * MF)258 void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
259 PrevInstBB = nullptr;
260
261 if (!Asm || !hasDebugInfo(MMI, MF)) {
262 skippedNonDebugFunction();
263 return;
264 }
265
266 // Grab the lexical scopes for the function, if we don't have any of those
267 // then we're not going to be able to do anything.
268 LScopes.initialize(*MF);
269 if (LScopes.empty()) {
270 beginFunctionImpl(MF);
271 return;
272 }
273
274 // Make sure that each lexical scope will have a begin/end label.
275 identifyScopeMarkers();
276
277 // Calculate history for local variables.
278 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
279 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
280 calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
281 DbgValues, DbgLabels);
282 InstOrdering.initialize(*MF);
283 if (TrimVarLocs)
284 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
285 LLVM_DEBUG(DbgValues.dump(MF->getName()));
286
287 // Request labels for the full history.
288 for (const auto &I : DbgValues) {
289 const auto &Entries = I.second;
290 if (Entries.empty())
291 continue;
292
293 auto IsDescribedByReg = [](const MachineInstr *MI) {
294 return any_of(MI->debug_operands(),
295 [](auto &MO) { return MO.isReg() && MO.getReg(); });
296 };
297
298 // The first mention of a function argument gets the CurrentFnBegin label,
299 // so arguments are visible when breaking at function entry.
300 //
301 // We do not change the label for values that are described by registers,
302 // as that could place them above their defining instructions. We should
303 // ideally not change the labels for constant debug values either, since
304 // doing that violates the ranges that are calculated in the history map.
305 // However, we currently do not emit debug values for constant arguments
306 // directly at the start of the function, so this code is still useful.
307 const DILocalVariable *DIVar =
308 Entries.front().getInstr()->getDebugVariable();
309 if (DIVar->isParameter() &&
310 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
311 if (!IsDescribedByReg(Entries.front().getInstr()))
312 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
313 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
314 // Mark all non-overlapping initial fragments.
315 for (const auto *I = Entries.begin(); I != Entries.end(); ++I) {
316 if (!I->isDbgValue())
317 continue;
318 const DIExpression *Fragment = I->getInstr()->getDebugExpression();
319 if (std::any_of(Entries.begin(), I,
320 [&](DbgValueHistoryMap::Entry Pred) {
321 return Pred.isDbgValue() &&
322 Fragment->fragmentsOverlap(
323 Pred.getInstr()->getDebugExpression());
324 }))
325 break;
326 // The code that generates location lists for DWARF assumes that the
327 // entries' start labels are monotonically increasing, and since we
328 // don't change the label for fragments that are described by
329 // registers, we must bail out when encountering such a fragment.
330 if (IsDescribedByReg(I->getInstr()))
331 break;
332 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
333 }
334 }
335 }
336
337 for (const auto &Entry : Entries) {
338 if (Entry.isDbgValue())
339 requestLabelBeforeInsn(Entry.getInstr());
340 else
341 requestLabelAfterInsn(Entry.getInstr());
342 }
343 }
344
345 // Ensure there is a symbol before DBG_LABEL.
346 for (const auto &I : DbgLabels) {
347 const MachineInstr *MI = I.second;
348 requestLabelBeforeInsn(MI);
349 }
350
351 PrevInstLoc = DebugLoc();
352 PrevLabel = Asm->getFunctionBegin();
353 beginFunctionImpl(MF);
354 }
355
beginInstruction(const MachineInstr * MI)356 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
357 if (!Asm || !MMI->hasDebugInfo())
358 return;
359
360 assert(CurMI == nullptr);
361 CurMI = MI;
362
363 // Insert labels where requested.
364 DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
365 LabelsBeforeInsn.find(MI);
366
367 // No label needed.
368 if (I == LabelsBeforeInsn.end())
369 return;
370
371 // Label already assigned.
372 if (I->second)
373 return;
374
375 if (!PrevLabel) {
376 PrevLabel = MMI->getContext().createTempSymbol();
377 Asm->OutStreamer->emitLabel(PrevLabel);
378 }
379 I->second = PrevLabel;
380 }
381
endInstruction()382 void DebugHandlerBase::endInstruction() {
383 if (!Asm || !MMI->hasDebugInfo())
384 return;
385
386 assert(CurMI != nullptr);
387 // Don't create a new label after DBG_VALUE and other instructions that don't
388 // generate code.
389 if (!CurMI->isMetaInstruction()) {
390 PrevLabel = nullptr;
391 PrevInstBB = CurMI->getParent();
392 }
393
394 DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
395 LabelsAfterInsn.find(CurMI);
396
397 // No label needed or label already assigned.
398 if (I == LabelsAfterInsn.end() || I->second) {
399 CurMI = nullptr;
400 return;
401 }
402
403 // We need a label after this instruction. With basic block sections, just
404 // use the end symbol of the section if this is the last instruction of the
405 // section. This reduces the need for an additional label and also helps
406 // merging ranges.
407 if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) {
408 PrevLabel = CurMI->getParent()->getEndSymbol();
409 } else if (!PrevLabel) {
410 PrevLabel = MMI->getContext().createTempSymbol();
411 Asm->OutStreamer->emitLabel(PrevLabel);
412 }
413 I->second = PrevLabel;
414 CurMI = nullptr;
415 }
416
endFunction(const MachineFunction * MF)417 void DebugHandlerBase::endFunction(const MachineFunction *MF) {
418 if (Asm && hasDebugInfo(MMI, MF))
419 endFunctionImpl(MF);
420 DbgValues.clear();
421 DbgLabels.clear();
422 LabelsBeforeInsn.clear();
423 LabelsAfterInsn.clear();
424 InstOrdering.clear();
425 }
426
beginBasicBlockSection(const MachineBasicBlock & MBB)427 void DebugHandlerBase::beginBasicBlockSection(const MachineBasicBlock &MBB) {
428 EpilogBeginBlock = nullptr;
429 if (!MBB.isEntryBlock())
430 PrevLabel = MBB.getSymbol();
431 }
432
endBasicBlockSection(const MachineBasicBlock & MBB)433 void DebugHandlerBase::endBasicBlockSection(const MachineBasicBlock &MBB) {
434 PrevLabel = nullptr;
435 }
436