1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (char C : Str) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 601 AbbrevToUse = 0; 602 Vals.push_back(C); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (const AttributeList &AL : Attrs) { 837 for (unsigned i : AL.indexes()) { 838 AttributeSet AS = AL.getAttributes(i); 839 if (AS.hasAttributes()) 840 Record.push_back(VE.getAttributeGroupID({i, AS})); 841 } 842 843 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 844 Record.clear(); 845 } 846 847 Stream.ExitBlock(); 848 } 849 850 /// WriteTypeTable - Write out the type table for a module. 851 void ModuleBitcodeWriter::writeTypeTable() { 852 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 853 854 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 855 SmallVector<uint64_t, 64> TypeVals; 856 857 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 858 859 // Abbrev for TYPE_CODE_POINTER. 860 auto Abbv = std::make_shared<BitCodeAbbrev>(); 861 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 863 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 864 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 865 866 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 867 Abbv = std::make_shared<BitCodeAbbrev>(); 868 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 869 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 870 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 871 872 // Abbrev for TYPE_CODE_FUNCTION. 873 Abbv = std::make_shared<BitCodeAbbrev>(); 874 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 878 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 879 880 // Abbrev for TYPE_CODE_STRUCT_ANON. 881 Abbv = std::make_shared<BitCodeAbbrev>(); 882 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 886 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 887 888 // Abbrev for TYPE_CODE_STRUCT_NAME. 889 Abbv = std::make_shared<BitCodeAbbrev>(); 890 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 893 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 894 895 // Abbrev for TYPE_CODE_STRUCT_NAMED. 896 Abbv = std::make_shared<BitCodeAbbrev>(); 897 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 901 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 902 903 // Abbrev for TYPE_CODE_ARRAY. 904 Abbv = std::make_shared<BitCodeAbbrev>(); 905 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 908 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 909 910 // Emit an entry count so the reader can reserve space. 911 TypeVals.push_back(TypeList.size()); 912 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 913 TypeVals.clear(); 914 915 // Loop over all of the types, emitting each in turn. 916 for (Type *T : TypeList) { 917 int AbbrevToUse = 0; 918 unsigned Code = 0; 919 920 switch (T->getTypeID()) { 921 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 922 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 923 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 924 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 925 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 926 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 927 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 928 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 929 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 930 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 931 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 932 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 933 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 934 case Type::IntegerTyID: 935 // INTEGER: [width] 936 Code = bitc::TYPE_CODE_INTEGER; 937 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 938 break; 939 case Type::PointerTyID: { 940 PointerType *PTy = cast<PointerType>(T); 941 unsigned AddressSpace = PTy->getAddressSpace(); 942 if (PTy->isOpaque()) { 943 // OPAQUE_POINTER: [address space] 944 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 945 TypeVals.push_back(AddressSpace); 946 if (AddressSpace == 0) 947 AbbrevToUse = OpaquePtrAbbrev; 948 } else { 949 // POINTER: [pointee type, address space] 950 Code = bitc::TYPE_CODE_POINTER; 951 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 952 TypeVals.push_back(AddressSpace); 953 if (AddressSpace == 0) 954 AbbrevToUse = PtrAbbrev; 955 } 956 break; 957 } 958 case Type::FunctionTyID: { 959 FunctionType *FT = cast<FunctionType>(T); 960 // FUNCTION: [isvararg, retty, paramty x N] 961 Code = bitc::TYPE_CODE_FUNCTION; 962 TypeVals.push_back(FT->isVarArg()); 963 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 964 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 965 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 966 AbbrevToUse = FunctionAbbrev; 967 break; 968 } 969 case Type::StructTyID: { 970 StructType *ST = cast<StructType>(T); 971 // STRUCT: [ispacked, eltty x N] 972 TypeVals.push_back(ST->isPacked()); 973 // Output all of the element types. 974 for (Type *ET : ST->elements()) 975 TypeVals.push_back(VE.getTypeID(ET)); 976 977 if (ST->isLiteral()) { 978 Code = bitc::TYPE_CODE_STRUCT_ANON; 979 AbbrevToUse = StructAnonAbbrev; 980 } else { 981 if (ST->isOpaque()) { 982 Code = bitc::TYPE_CODE_OPAQUE; 983 } else { 984 Code = bitc::TYPE_CODE_STRUCT_NAMED; 985 AbbrevToUse = StructNamedAbbrev; 986 } 987 988 // Emit the name if it is present. 989 if (!ST->getName().empty()) 990 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 991 StructNameAbbrev); 992 } 993 break; 994 } 995 case Type::ArrayTyID: { 996 ArrayType *AT = cast<ArrayType>(T); 997 // ARRAY: [numelts, eltty] 998 Code = bitc::TYPE_CODE_ARRAY; 999 TypeVals.push_back(AT->getNumElements()); 1000 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1001 AbbrevToUse = ArrayAbbrev; 1002 break; 1003 } 1004 case Type::FixedVectorTyID: 1005 case Type::ScalableVectorTyID: { 1006 VectorType *VT = cast<VectorType>(T); 1007 // VECTOR [numelts, eltty] or 1008 // [numelts, eltty, scalable] 1009 Code = bitc::TYPE_CODE_VECTOR; 1010 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1011 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1012 if (isa<ScalableVectorType>(VT)) 1013 TypeVals.push_back(true); 1014 break; 1015 } 1016 } 1017 1018 // Emit the finished record. 1019 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1020 TypeVals.clear(); 1021 } 1022 1023 Stream.ExitBlock(); 1024 } 1025 1026 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1027 switch (Linkage) { 1028 case GlobalValue::ExternalLinkage: 1029 return 0; 1030 case GlobalValue::WeakAnyLinkage: 1031 return 16; 1032 case GlobalValue::AppendingLinkage: 1033 return 2; 1034 case GlobalValue::InternalLinkage: 1035 return 3; 1036 case GlobalValue::LinkOnceAnyLinkage: 1037 return 18; 1038 case GlobalValue::ExternalWeakLinkage: 1039 return 7; 1040 case GlobalValue::CommonLinkage: 1041 return 8; 1042 case GlobalValue::PrivateLinkage: 1043 return 9; 1044 case GlobalValue::WeakODRLinkage: 1045 return 17; 1046 case GlobalValue::LinkOnceODRLinkage: 1047 return 19; 1048 case GlobalValue::AvailableExternallyLinkage: 1049 return 12; 1050 } 1051 llvm_unreachable("Invalid linkage"); 1052 } 1053 1054 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1055 return getEncodedLinkage(GV.getLinkage()); 1056 } 1057 1058 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1059 uint64_t RawFlags = 0; 1060 RawFlags |= Flags.ReadNone; 1061 RawFlags |= (Flags.ReadOnly << 1); 1062 RawFlags |= (Flags.NoRecurse << 2); 1063 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1064 RawFlags |= (Flags.NoInline << 4); 1065 RawFlags |= (Flags.AlwaysInline << 5); 1066 RawFlags |= (Flags.NoUnwind << 6); 1067 RawFlags |= (Flags.MayThrow << 7); 1068 RawFlags |= (Flags.HasUnknownCall << 8); 1069 RawFlags |= (Flags.MustBeUnreachable << 9); 1070 return RawFlags; 1071 } 1072 1073 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1074 // in BitcodeReader.cpp. 1075 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1076 uint64_t RawFlags = 0; 1077 1078 RawFlags |= Flags.NotEligibleToImport; // bool 1079 RawFlags |= (Flags.Live << 1); 1080 RawFlags |= (Flags.DSOLocal << 2); 1081 RawFlags |= (Flags.CanAutoHide << 3); 1082 1083 // Linkage don't need to be remapped at that time for the summary. Any future 1084 // change to the getEncodedLinkage() function will need to be taken into 1085 // account here as well. 1086 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1087 1088 RawFlags |= (Flags.Visibility << 8); // 2 bits 1089 1090 return RawFlags; 1091 } 1092 1093 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1094 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1095 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1096 return RawFlags; 1097 } 1098 1099 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1100 switch (GV.getVisibility()) { 1101 case GlobalValue::DefaultVisibility: return 0; 1102 case GlobalValue::HiddenVisibility: return 1; 1103 case GlobalValue::ProtectedVisibility: return 2; 1104 } 1105 llvm_unreachable("Invalid visibility"); 1106 } 1107 1108 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1109 switch (GV.getDLLStorageClass()) { 1110 case GlobalValue::DefaultStorageClass: return 0; 1111 case GlobalValue::DLLImportStorageClass: return 1; 1112 case GlobalValue::DLLExportStorageClass: return 2; 1113 } 1114 llvm_unreachable("Invalid DLL storage class"); 1115 } 1116 1117 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1118 switch (GV.getThreadLocalMode()) { 1119 case GlobalVariable::NotThreadLocal: return 0; 1120 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1121 case GlobalVariable::LocalDynamicTLSModel: return 2; 1122 case GlobalVariable::InitialExecTLSModel: return 3; 1123 case GlobalVariable::LocalExecTLSModel: return 4; 1124 } 1125 llvm_unreachable("Invalid TLS model"); 1126 } 1127 1128 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1129 switch (C.getSelectionKind()) { 1130 case Comdat::Any: 1131 return bitc::COMDAT_SELECTION_KIND_ANY; 1132 case Comdat::ExactMatch: 1133 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1134 case Comdat::Largest: 1135 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1136 case Comdat::NoDeduplicate: 1137 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1138 case Comdat::SameSize: 1139 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1140 } 1141 llvm_unreachable("Invalid selection kind"); 1142 } 1143 1144 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1145 switch (GV.getUnnamedAddr()) { 1146 case GlobalValue::UnnamedAddr::None: return 0; 1147 case GlobalValue::UnnamedAddr::Local: return 2; 1148 case GlobalValue::UnnamedAddr::Global: return 1; 1149 } 1150 llvm_unreachable("Invalid unnamed_addr"); 1151 } 1152 1153 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1154 if (GenerateHash) 1155 Hasher.update(Str); 1156 return StrtabBuilder.add(Str); 1157 } 1158 1159 void ModuleBitcodeWriter::writeComdats() { 1160 SmallVector<unsigned, 64> Vals; 1161 for (const Comdat *C : VE.getComdats()) { 1162 // COMDAT: [strtab offset, strtab size, selection_kind] 1163 Vals.push_back(addToStrtab(C->getName())); 1164 Vals.push_back(C->getName().size()); 1165 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1166 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1167 Vals.clear(); 1168 } 1169 } 1170 1171 /// Write a record that will eventually hold the word offset of the 1172 /// module-level VST. For now the offset is 0, which will be backpatched 1173 /// after the real VST is written. Saves the bit offset to backpatch. 1174 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1175 // Write a placeholder value in for the offset of the real VST, 1176 // which is written after the function blocks so that it can include 1177 // the offset of each function. The placeholder offset will be 1178 // updated when the real VST is written. 1179 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1180 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1181 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1182 // hold the real VST offset. Must use fixed instead of VBR as we don't 1183 // know how many VBR chunks to reserve ahead of time. 1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1185 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1186 1187 // Emit the placeholder 1188 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1189 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1190 1191 // Compute and save the bit offset to the placeholder, which will be 1192 // patched when the real VST is written. We can simply subtract the 32-bit 1193 // fixed size from the current bit number to get the location to backpatch. 1194 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1195 } 1196 1197 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1198 1199 /// Determine the encoding to use for the given string name and length. 1200 static StringEncoding getStringEncoding(StringRef Str) { 1201 bool isChar6 = true; 1202 for (char C : Str) { 1203 if (isChar6) 1204 isChar6 = BitCodeAbbrevOp::isChar6(C); 1205 if ((unsigned char)C & 128) 1206 // don't bother scanning the rest. 1207 return SE_Fixed8; 1208 } 1209 if (isChar6) 1210 return SE_Char6; 1211 return SE_Fixed7; 1212 } 1213 1214 /// Emit top-level description of module, including target triple, inline asm, 1215 /// descriptors for global variables, and function prototype info. 1216 /// Returns the bit offset to backpatch with the location of the real VST. 1217 void ModuleBitcodeWriter::writeModuleInfo() { 1218 // Emit various pieces of data attached to a module. 1219 if (!M.getTargetTriple().empty()) 1220 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1221 0 /*TODO*/); 1222 const std::string &DL = M.getDataLayoutStr(); 1223 if (!DL.empty()) 1224 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1225 if (!M.getModuleInlineAsm().empty()) 1226 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1227 0 /*TODO*/); 1228 1229 // Emit information about sections and GC, computing how many there are. Also 1230 // compute the maximum alignment value. 1231 std::map<std::string, unsigned> SectionMap; 1232 std::map<std::string, unsigned> GCMap; 1233 MaybeAlign MaxAlignment; 1234 unsigned MaxGlobalType = 0; 1235 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1236 if (A) 1237 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1238 }; 1239 for (const GlobalVariable &GV : M.globals()) { 1240 UpdateMaxAlignment(GV.getAlign()); 1241 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1242 if (GV.hasSection()) { 1243 // Give section names unique ID's. 1244 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1245 if (!Entry) { 1246 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1247 0 /*TODO*/); 1248 Entry = SectionMap.size(); 1249 } 1250 } 1251 } 1252 for (const Function &F : M) { 1253 UpdateMaxAlignment(F.getAlign()); 1254 if (F.hasSection()) { 1255 // Give section names unique ID's. 1256 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1257 if (!Entry) { 1258 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1259 0 /*TODO*/); 1260 Entry = SectionMap.size(); 1261 } 1262 } 1263 if (F.hasGC()) { 1264 // Same for GC names. 1265 unsigned &Entry = GCMap[F.getGC()]; 1266 if (!Entry) { 1267 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1268 0 /*TODO*/); 1269 Entry = GCMap.size(); 1270 } 1271 } 1272 } 1273 1274 // Emit abbrev for globals, now that we know # sections and max alignment. 1275 unsigned SimpleGVarAbbrev = 0; 1276 if (!M.global_empty()) { 1277 // Add an abbrev for common globals with no visibility or thread localness. 1278 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1279 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1283 Log2_32_Ceil(MaxGlobalType+1))); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1285 //| explicitType << 1 1286 //| constant 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1289 if (!MaxAlignment) // Alignment. 1290 Abbv->Add(BitCodeAbbrevOp(0)); 1291 else { 1292 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1294 Log2_32_Ceil(MaxEncAlignment+1))); 1295 } 1296 if (SectionMap.empty()) // Section. 1297 Abbv->Add(BitCodeAbbrevOp(0)); 1298 else 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1300 Log2_32_Ceil(SectionMap.size()+1))); 1301 // Don't bother emitting vis + thread local. 1302 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1303 } 1304 1305 SmallVector<unsigned, 64> Vals; 1306 // Emit the module's source file name. 1307 { 1308 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1309 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1310 if (Bits == SE_Char6) 1311 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1312 else if (Bits == SE_Fixed7) 1313 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1314 1315 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1316 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1317 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1319 Abbv->Add(AbbrevOpToUse); 1320 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1321 1322 for (const auto P : M.getSourceFileName()) 1323 Vals.push_back((unsigned char)P); 1324 1325 // Emit the finished record. 1326 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1327 Vals.clear(); 1328 } 1329 1330 // Emit the global variable information. 1331 for (const GlobalVariable &GV : M.globals()) { 1332 unsigned AbbrevToUse = 0; 1333 1334 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1335 // linkage, alignment, section, visibility, threadlocal, 1336 // unnamed_addr, externally_initialized, dllstorageclass, 1337 // comdat, attributes, DSO_Local] 1338 Vals.push_back(addToStrtab(GV.getName())); 1339 Vals.push_back(GV.getName().size()); 1340 Vals.push_back(VE.getTypeID(GV.getValueType())); 1341 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1342 Vals.push_back(GV.isDeclaration() ? 0 : 1343 (VE.getValueID(GV.getInitializer()) + 1)); 1344 Vals.push_back(getEncodedLinkage(GV)); 1345 Vals.push_back(getEncodedAlign(GV.getAlign())); 1346 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1347 : 0); 1348 if (GV.isThreadLocal() || 1349 GV.getVisibility() != GlobalValue::DefaultVisibility || 1350 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1351 GV.isExternallyInitialized() || 1352 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1353 GV.hasComdat() || 1354 GV.hasAttributes() || 1355 GV.isDSOLocal() || 1356 GV.hasPartition()) { 1357 Vals.push_back(getEncodedVisibility(GV)); 1358 Vals.push_back(getEncodedThreadLocalMode(GV)); 1359 Vals.push_back(getEncodedUnnamedAddr(GV)); 1360 Vals.push_back(GV.isExternallyInitialized()); 1361 Vals.push_back(getEncodedDLLStorageClass(GV)); 1362 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1363 1364 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1365 Vals.push_back(VE.getAttributeListID(AL)); 1366 1367 Vals.push_back(GV.isDSOLocal()); 1368 Vals.push_back(addToStrtab(GV.getPartition())); 1369 Vals.push_back(GV.getPartition().size()); 1370 } else { 1371 AbbrevToUse = SimpleGVarAbbrev; 1372 } 1373 1374 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1375 Vals.clear(); 1376 } 1377 1378 // Emit the function proto information. 1379 for (const Function &F : M) { 1380 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1381 // linkage, paramattrs, alignment, section, visibility, gc, 1382 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1383 // prefixdata, personalityfn, DSO_Local, addrspace] 1384 Vals.push_back(addToStrtab(F.getName())); 1385 Vals.push_back(F.getName().size()); 1386 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1387 Vals.push_back(F.getCallingConv()); 1388 Vals.push_back(F.isDeclaration()); 1389 Vals.push_back(getEncodedLinkage(F)); 1390 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1391 Vals.push_back(getEncodedAlign(F.getAlign())); 1392 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1393 : 0); 1394 Vals.push_back(getEncodedVisibility(F)); 1395 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1396 Vals.push_back(getEncodedUnnamedAddr(F)); 1397 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1398 : 0); 1399 Vals.push_back(getEncodedDLLStorageClass(F)); 1400 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1401 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1402 : 0); 1403 Vals.push_back( 1404 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1405 1406 Vals.push_back(F.isDSOLocal()); 1407 Vals.push_back(F.getAddressSpace()); 1408 Vals.push_back(addToStrtab(F.getPartition())); 1409 Vals.push_back(F.getPartition().size()); 1410 1411 unsigned AbbrevToUse = 0; 1412 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1413 Vals.clear(); 1414 } 1415 1416 // Emit the alias information. 1417 for (const GlobalAlias &A : M.aliases()) { 1418 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1419 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1420 // DSO_Local] 1421 Vals.push_back(addToStrtab(A.getName())); 1422 Vals.push_back(A.getName().size()); 1423 Vals.push_back(VE.getTypeID(A.getValueType())); 1424 Vals.push_back(A.getType()->getAddressSpace()); 1425 Vals.push_back(VE.getValueID(A.getAliasee())); 1426 Vals.push_back(getEncodedLinkage(A)); 1427 Vals.push_back(getEncodedVisibility(A)); 1428 Vals.push_back(getEncodedDLLStorageClass(A)); 1429 Vals.push_back(getEncodedThreadLocalMode(A)); 1430 Vals.push_back(getEncodedUnnamedAddr(A)); 1431 Vals.push_back(A.isDSOLocal()); 1432 Vals.push_back(addToStrtab(A.getPartition())); 1433 Vals.push_back(A.getPartition().size()); 1434 1435 unsigned AbbrevToUse = 0; 1436 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1437 Vals.clear(); 1438 } 1439 1440 // Emit the ifunc information. 1441 for (const GlobalIFunc &I : M.ifuncs()) { 1442 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1443 // val#, linkage, visibility, DSO_Local] 1444 Vals.push_back(addToStrtab(I.getName())); 1445 Vals.push_back(I.getName().size()); 1446 Vals.push_back(VE.getTypeID(I.getValueType())); 1447 Vals.push_back(I.getType()->getAddressSpace()); 1448 Vals.push_back(VE.getValueID(I.getResolver())); 1449 Vals.push_back(getEncodedLinkage(I)); 1450 Vals.push_back(getEncodedVisibility(I)); 1451 Vals.push_back(I.isDSOLocal()); 1452 Vals.push_back(addToStrtab(I.getPartition())); 1453 Vals.push_back(I.getPartition().size()); 1454 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1455 Vals.clear(); 1456 } 1457 1458 writeValueSymbolTableForwardDecl(); 1459 } 1460 1461 static uint64_t getOptimizationFlags(const Value *V) { 1462 uint64_t Flags = 0; 1463 1464 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1465 if (OBO->hasNoSignedWrap()) 1466 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1467 if (OBO->hasNoUnsignedWrap()) 1468 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1469 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1470 if (PEO->isExact()) 1471 Flags |= 1 << bitc::PEO_EXACT; 1472 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1473 if (FPMO->hasAllowReassoc()) 1474 Flags |= bitc::AllowReassoc; 1475 if (FPMO->hasNoNaNs()) 1476 Flags |= bitc::NoNaNs; 1477 if (FPMO->hasNoInfs()) 1478 Flags |= bitc::NoInfs; 1479 if (FPMO->hasNoSignedZeros()) 1480 Flags |= bitc::NoSignedZeros; 1481 if (FPMO->hasAllowReciprocal()) 1482 Flags |= bitc::AllowReciprocal; 1483 if (FPMO->hasAllowContract()) 1484 Flags |= bitc::AllowContract; 1485 if (FPMO->hasApproxFunc()) 1486 Flags |= bitc::ApproxFunc; 1487 } 1488 1489 return Flags; 1490 } 1491 1492 void ModuleBitcodeWriter::writeValueAsMetadata( 1493 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1494 // Mimic an MDNode with a value as one operand. 1495 Value *V = MD->getValue(); 1496 Record.push_back(VE.getTypeID(V->getType())); 1497 Record.push_back(VE.getValueID(V)); 1498 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1499 Record.clear(); 1500 } 1501 1502 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1503 SmallVectorImpl<uint64_t> &Record, 1504 unsigned Abbrev) { 1505 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1506 Metadata *MD = N->getOperand(i); 1507 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1508 "Unexpected function-local metadata"); 1509 Record.push_back(VE.getMetadataOrNullID(MD)); 1510 } 1511 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1512 : bitc::METADATA_NODE, 1513 Record, Abbrev); 1514 Record.clear(); 1515 } 1516 1517 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1518 // Assume the column is usually under 128, and always output the inlined-at 1519 // location (it's never more expensive than building an array size 1). 1520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1521 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1528 return Stream.EmitAbbrev(std::move(Abbv)); 1529 } 1530 1531 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1532 SmallVectorImpl<uint64_t> &Record, 1533 unsigned &Abbrev) { 1534 if (!Abbrev) 1535 Abbrev = createDILocationAbbrev(); 1536 1537 Record.push_back(N->isDistinct()); 1538 Record.push_back(N->getLine()); 1539 Record.push_back(N->getColumn()); 1540 Record.push_back(VE.getMetadataID(N->getScope())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1542 Record.push_back(N->isImplicitCode()); 1543 1544 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1545 Record.clear(); 1546 } 1547 1548 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1549 // Assume the column is usually under 128, and always output the inlined-at 1550 // location (it's never more expensive than building an array size 1). 1551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1552 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1559 return Stream.EmitAbbrev(std::move(Abbv)); 1560 } 1561 1562 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1563 SmallVectorImpl<uint64_t> &Record, 1564 unsigned &Abbrev) { 1565 if (!Abbrev) 1566 Abbrev = createGenericDINodeAbbrev(); 1567 1568 Record.push_back(N->isDistinct()); 1569 Record.push_back(N->getTag()); 1570 Record.push_back(0); // Per-tag version field; unused for now. 1571 1572 for (auto &I : N->operands()) 1573 Record.push_back(VE.getMetadataOrNullID(I)); 1574 1575 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1576 Record.clear(); 1577 } 1578 1579 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1580 SmallVectorImpl<uint64_t> &Record, 1581 unsigned Abbrev) { 1582 const uint64_t Version = 2 << 1; 1583 Record.push_back((uint64_t)N->isDistinct() | Version); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1588 1589 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1590 Record.clear(); 1591 } 1592 1593 void ModuleBitcodeWriter::writeDIGenericSubrange( 1594 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1595 unsigned Abbrev) { 1596 Record.push_back((uint64_t)N->isDistinct()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1601 1602 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1603 Record.clear(); 1604 } 1605 1606 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1607 if ((int64_t)V >= 0) 1608 Vals.push_back(V << 1); 1609 else 1610 Vals.push_back((-V << 1) | 1); 1611 } 1612 1613 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1614 // We have an arbitrary precision integer value to write whose 1615 // bit width is > 64. However, in canonical unsigned integer 1616 // format it is likely that the high bits are going to be zero. 1617 // So, we only write the number of active words. 1618 unsigned NumWords = A.getActiveWords(); 1619 const uint64_t *RawData = A.getRawData(); 1620 for (unsigned i = 0; i < NumWords; i++) 1621 emitSignedInt64(Vals, RawData[i]); 1622 } 1623 1624 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1625 SmallVectorImpl<uint64_t> &Record, 1626 unsigned Abbrev) { 1627 const uint64_t IsBigInt = 1 << 2; 1628 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1629 Record.push_back(N->getValue().getBitWidth()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1631 emitWideAPInt(Record, N->getValue()); 1632 1633 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1638 SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 Record.push_back(N->isDistinct()); 1641 Record.push_back(N->getTag()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 Record.push_back(N->getSizeInBits()); 1644 Record.push_back(N->getAlignInBits()); 1645 Record.push_back(N->getEncoding()); 1646 Record.push_back(N->getFlags()); 1647 1648 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1649 Record.clear(); 1650 } 1651 1652 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1653 SmallVectorImpl<uint64_t> &Record, 1654 unsigned Abbrev) { 1655 Record.push_back(N->isDistinct()); 1656 Record.push_back(N->getTag()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1661 Record.push_back(N->getSizeInBits()); 1662 Record.push_back(N->getAlignInBits()); 1663 Record.push_back(N->getEncoding()); 1664 1665 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1670 SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 Record.push_back(N->isDistinct()); 1673 Record.push_back(N->getTag()); 1674 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1676 Record.push_back(N->getLine()); 1677 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1679 Record.push_back(N->getSizeInBits()); 1680 Record.push_back(N->getAlignInBits()); 1681 Record.push_back(N->getOffsetInBits()); 1682 Record.push_back(N->getFlags()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1684 1685 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1686 // that there is no DWARF address space associated with DIDerivedType. 1687 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1688 Record.push_back(*DWARFAddressSpace + 1); 1689 else 1690 Record.push_back(0); 1691 1692 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1693 1694 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1695 Record.clear(); 1696 } 1697 1698 void ModuleBitcodeWriter::writeDICompositeType( 1699 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1700 unsigned Abbrev) { 1701 const unsigned IsNotUsedInOldTypeRef = 0x2; 1702 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1703 Record.push_back(N->getTag()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1706 Record.push_back(N->getLine()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1709 Record.push_back(N->getSizeInBits()); 1710 Record.push_back(N->getAlignInBits()); 1711 Record.push_back(N->getOffsetInBits()); 1712 Record.push_back(N->getFlags()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1714 Record.push_back(N->getRuntimeLang()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1724 1725 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1726 Record.clear(); 1727 } 1728 1729 void ModuleBitcodeWriter::writeDISubroutineType( 1730 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1731 unsigned Abbrev) { 1732 const unsigned HasNoOldTypeRefs = 0x2; 1733 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1734 Record.push_back(N->getFlags()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1736 Record.push_back(N->getCC()); 1737 1738 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1739 Record.clear(); 1740 } 1741 1742 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1743 SmallVectorImpl<uint64_t> &Record, 1744 unsigned Abbrev) { 1745 Record.push_back(N->isDistinct()); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1748 if (N->getRawChecksum()) { 1749 Record.push_back(N->getRawChecksum()->Kind); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1751 } else { 1752 // Maintain backwards compatibility with the old internal representation of 1753 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1754 Record.push_back(0); 1755 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1756 } 1757 auto Source = N->getRawSource(); 1758 if (Source) 1759 Record.push_back(VE.getMetadataOrNullID(*Source)); 1760 1761 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1762 Record.clear(); 1763 } 1764 1765 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1766 SmallVectorImpl<uint64_t> &Record, 1767 unsigned Abbrev) { 1768 assert(N->isDistinct() && "Expected distinct compile units"); 1769 Record.push_back(/* IsDistinct */ true); 1770 Record.push_back(N->getSourceLanguage()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1773 Record.push_back(N->isOptimized()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1775 Record.push_back(N->getRuntimeVersion()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1777 Record.push_back(N->getEmissionKind()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1780 Record.push_back(/* subprograms */ 0); 1781 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1783 Record.push_back(N->getDWOId()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1785 Record.push_back(N->getSplitDebugInlining()); 1786 Record.push_back(N->getDebugInfoForProfiling()); 1787 Record.push_back((unsigned)N->getNameTableKind()); 1788 Record.push_back(N->getRangesBaseAddress()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1791 1792 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1793 Record.clear(); 1794 } 1795 1796 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1797 SmallVectorImpl<uint64_t> &Record, 1798 unsigned Abbrev) { 1799 const uint64_t HasUnitFlag = 1 << 1; 1800 const uint64_t HasSPFlagsFlag = 1 << 2; 1801 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1802 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1806 Record.push_back(N->getLine()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1808 Record.push_back(N->getScopeLine()); 1809 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1810 Record.push_back(N->getSPFlags()); 1811 Record.push_back(N->getVirtualIndex()); 1812 Record.push_back(N->getFlags()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1817 Record.push_back(N->getThisAdjustment()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1820 1821 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1822 Record.clear(); 1823 } 1824 1825 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1826 SmallVectorImpl<uint64_t> &Record, 1827 unsigned Abbrev) { 1828 Record.push_back(N->isDistinct()); 1829 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1831 Record.push_back(N->getLine()); 1832 Record.push_back(N->getColumn()); 1833 1834 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1835 Record.clear(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1839 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1840 unsigned Abbrev) { 1841 Record.push_back(N->isDistinct()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1844 Record.push_back(N->getDiscriminator()); 1845 1846 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1847 Record.clear(); 1848 } 1849 1850 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1851 SmallVectorImpl<uint64_t> &Record, 1852 unsigned Abbrev) { 1853 Record.push_back(N->isDistinct()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1858 Record.push_back(N->getLineNo()); 1859 1860 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1861 Record.clear(); 1862 } 1863 1864 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1865 SmallVectorImpl<uint64_t> &Record, 1866 unsigned Abbrev) { 1867 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1868 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1870 1871 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1872 Record.clear(); 1873 } 1874 1875 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1876 SmallVectorImpl<uint64_t> &Record, 1877 unsigned Abbrev) { 1878 Record.push_back(N->isDistinct()); 1879 Record.push_back(N->getMacinfoType()); 1880 Record.push_back(N->getLine()); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1883 1884 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1885 Record.clear(); 1886 } 1887 1888 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1889 SmallVectorImpl<uint64_t> &Record, 1890 unsigned Abbrev) { 1891 Record.push_back(N->isDistinct()); 1892 Record.push_back(N->getMacinfoType()); 1893 Record.push_back(N->getLine()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1896 1897 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1898 Record.clear(); 1899 } 1900 1901 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1902 SmallVectorImpl<uint64_t> &Record, 1903 unsigned Abbrev) { 1904 Record.reserve(N->getArgs().size()); 1905 for (ValueAsMetadata *MD : N->getArgs()) 1906 Record.push_back(VE.getMetadataID(MD)); 1907 1908 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1909 Record.clear(); 1910 } 1911 1912 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1913 SmallVectorImpl<uint64_t> &Record, 1914 unsigned Abbrev) { 1915 Record.push_back(N->isDistinct()); 1916 for (auto &I : N->operands()) 1917 Record.push_back(VE.getMetadataOrNullID(I)); 1918 Record.push_back(N->getLineNo()); 1919 Record.push_back(N->getIsDecl()); 1920 1921 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1926 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 Record.push_back(N->isDistinct()); 1929 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1931 Record.push_back(N->isDefault()); 1932 1933 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1934 Record.clear(); 1935 } 1936 1937 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1938 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1939 unsigned Abbrev) { 1940 Record.push_back(N->isDistinct()); 1941 Record.push_back(N->getTag()); 1942 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1944 Record.push_back(N->isDefault()); 1945 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1946 1947 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1948 Record.clear(); 1949 } 1950 1951 void ModuleBitcodeWriter::writeDIGlobalVariable( 1952 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1953 unsigned Abbrev) { 1954 const uint64_t Version = 2 << 1; 1955 Record.push_back((uint64_t)N->isDistinct() | Version); 1956 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1960 Record.push_back(N->getLine()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1962 Record.push_back(N->isLocalToUnit()); 1963 Record.push_back(N->isDefinition()); 1964 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1965 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1966 Record.push_back(N->getAlignInBits()); 1967 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1968 1969 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1970 Record.clear(); 1971 } 1972 1973 void ModuleBitcodeWriter::writeDILocalVariable( 1974 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1975 unsigned Abbrev) { 1976 // In order to support all possible bitcode formats in BitcodeReader we need 1977 // to distinguish the following cases: 1978 // 1) Record has no artificial tag (Record[1]), 1979 // has no obsolete inlinedAt field (Record[9]). 1980 // In this case Record size will be 8, HasAlignment flag is false. 1981 // 2) Record has artificial tag (Record[1]), 1982 // has no obsolete inlignedAt field (Record[9]). 1983 // In this case Record size will be 9, HasAlignment flag is false. 1984 // 3) Record has both artificial tag (Record[1]) and 1985 // obsolete inlignedAt field (Record[9]). 1986 // In this case Record size will be 10, HasAlignment flag is false. 1987 // 4) Record has neither artificial tag, nor inlignedAt field, but 1988 // HasAlignment flag is true and Record[8] contains alignment value. 1989 const uint64_t HasAlignmentFlag = 1 << 1; 1990 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1991 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1993 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1994 Record.push_back(N->getLine()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1996 Record.push_back(N->getArg()); 1997 Record.push_back(N->getFlags()); 1998 Record.push_back(N->getAlignInBits()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2000 2001 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2002 Record.clear(); 2003 } 2004 2005 void ModuleBitcodeWriter::writeDILabel( 2006 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2007 unsigned Abbrev) { 2008 Record.push_back((uint64_t)N->isDistinct()); 2009 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2010 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2011 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2012 Record.push_back(N->getLine()); 2013 2014 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2015 Record.clear(); 2016 } 2017 2018 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2019 SmallVectorImpl<uint64_t> &Record, 2020 unsigned Abbrev) { 2021 Record.reserve(N->getElements().size() + 1); 2022 const uint64_t Version = 3 << 1; 2023 Record.push_back((uint64_t)N->isDistinct() | Version); 2024 Record.append(N->elements_begin(), N->elements_end()); 2025 2026 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2027 Record.clear(); 2028 } 2029 2030 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2031 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2032 unsigned Abbrev) { 2033 Record.push_back(N->isDistinct()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2036 2037 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2038 Record.clear(); 2039 } 2040 2041 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2042 SmallVectorImpl<uint64_t> &Record, 2043 unsigned Abbrev) { 2044 Record.push_back(N->isDistinct()); 2045 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2046 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2047 Record.push_back(N->getLine()); 2048 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2049 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2050 Record.push_back(N->getAttributes()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2052 2053 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2054 Record.clear(); 2055 } 2056 2057 void ModuleBitcodeWriter::writeDIImportedEntity( 2058 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2059 unsigned Abbrev) { 2060 Record.push_back(N->isDistinct()); 2061 Record.push_back(N->getTag()); 2062 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2063 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2064 Record.push_back(N->getLine()); 2065 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2066 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2067 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2068 2069 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2070 Record.clear(); 2071 } 2072 2073 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2074 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2075 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2078 return Stream.EmitAbbrev(std::move(Abbv)); 2079 } 2080 2081 void ModuleBitcodeWriter::writeNamedMetadata( 2082 SmallVectorImpl<uint64_t> &Record) { 2083 if (M.named_metadata_empty()) 2084 return; 2085 2086 unsigned Abbrev = createNamedMetadataAbbrev(); 2087 for (const NamedMDNode &NMD : M.named_metadata()) { 2088 // Write name. 2089 StringRef Str = NMD.getName(); 2090 Record.append(Str.bytes_begin(), Str.bytes_end()); 2091 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2092 Record.clear(); 2093 2094 // Write named metadata operands. 2095 for (const MDNode *N : NMD.operands()) 2096 Record.push_back(VE.getMetadataID(N)); 2097 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2098 Record.clear(); 2099 } 2100 } 2101 2102 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2103 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2104 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2108 return Stream.EmitAbbrev(std::move(Abbv)); 2109 } 2110 2111 /// Write out a record for MDString. 2112 /// 2113 /// All the metadata strings in a metadata block are emitted in a single 2114 /// record. The sizes and strings themselves are shoved into a blob. 2115 void ModuleBitcodeWriter::writeMetadataStrings( 2116 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2117 if (Strings.empty()) 2118 return; 2119 2120 // Start the record with the number of strings. 2121 Record.push_back(bitc::METADATA_STRINGS); 2122 Record.push_back(Strings.size()); 2123 2124 // Emit the sizes of the strings in the blob. 2125 SmallString<256> Blob; 2126 { 2127 BitstreamWriter W(Blob); 2128 for (const Metadata *MD : Strings) 2129 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2130 W.FlushToWord(); 2131 } 2132 2133 // Add the offset to the strings to the record. 2134 Record.push_back(Blob.size()); 2135 2136 // Add the strings to the blob. 2137 for (const Metadata *MD : Strings) 2138 Blob.append(cast<MDString>(MD)->getString()); 2139 2140 // Emit the final record. 2141 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2142 Record.clear(); 2143 } 2144 2145 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2146 enum MetadataAbbrev : unsigned { 2147 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2148 #include "llvm/IR/Metadata.def" 2149 LastPlusOne 2150 }; 2151 2152 void ModuleBitcodeWriter::writeMetadataRecords( 2153 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2154 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2155 if (MDs.empty()) 2156 return; 2157 2158 // Initialize MDNode abbreviations. 2159 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2160 #include "llvm/IR/Metadata.def" 2161 2162 for (const Metadata *MD : MDs) { 2163 if (IndexPos) 2164 IndexPos->push_back(Stream.GetCurrentBitNo()); 2165 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2166 assert(N->isResolved() && "Expected forward references to be resolved"); 2167 2168 switch (N->getMetadataID()) { 2169 default: 2170 llvm_unreachable("Invalid MDNode subclass"); 2171 #define HANDLE_MDNODE_LEAF(CLASS) \ 2172 case Metadata::CLASS##Kind: \ 2173 if (MDAbbrevs) \ 2174 write##CLASS(cast<CLASS>(N), Record, \ 2175 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2176 else \ 2177 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2178 continue; 2179 #include "llvm/IR/Metadata.def" 2180 } 2181 } 2182 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2183 } 2184 } 2185 2186 void ModuleBitcodeWriter::writeModuleMetadata() { 2187 if (!VE.hasMDs() && M.named_metadata_empty()) 2188 return; 2189 2190 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2191 SmallVector<uint64_t, 64> Record; 2192 2193 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2194 // block and load any metadata. 2195 std::vector<unsigned> MDAbbrevs; 2196 2197 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2198 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2199 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2200 createGenericDINodeAbbrev(); 2201 2202 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2203 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2206 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2207 2208 Abbv = std::make_shared<BitCodeAbbrev>(); 2209 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2212 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2213 2214 // Emit MDStrings together upfront. 2215 writeMetadataStrings(VE.getMDStrings(), Record); 2216 2217 // We only emit an index for the metadata record if we have more than a given 2218 // (naive) threshold of metadatas, otherwise it is not worth it. 2219 if (VE.getNonMDStrings().size() > IndexThreshold) { 2220 // Write a placeholder value in for the offset of the metadata index, 2221 // which is written after the records, so that it can include 2222 // the offset of each entry. The placeholder offset will be 2223 // updated after all records are emitted. 2224 uint64_t Vals[] = {0, 0}; 2225 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2226 } 2227 2228 // Compute and save the bit offset to the current position, which will be 2229 // patched when we emit the index later. We can simply subtract the 64-bit 2230 // fixed size from the current bit number to get the location to backpatch. 2231 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2232 2233 // This index will contain the bitpos for each individual record. 2234 std::vector<uint64_t> IndexPos; 2235 IndexPos.reserve(VE.getNonMDStrings().size()); 2236 2237 // Write all the records 2238 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2239 2240 if (VE.getNonMDStrings().size() > IndexThreshold) { 2241 // Now that we have emitted all the records we will emit the index. But 2242 // first 2243 // backpatch the forward reference so that the reader can skip the records 2244 // efficiently. 2245 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2246 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2247 2248 // Delta encode the index. 2249 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2250 for (auto &Elt : IndexPos) { 2251 auto EltDelta = Elt - PreviousValue; 2252 PreviousValue = Elt; 2253 Elt = EltDelta; 2254 } 2255 // Emit the index record. 2256 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2257 IndexPos.clear(); 2258 } 2259 2260 // Write the named metadata now. 2261 writeNamedMetadata(Record); 2262 2263 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2264 SmallVector<uint64_t, 4> Record; 2265 Record.push_back(VE.getValueID(&GO)); 2266 pushGlobalMetadataAttachment(Record, GO); 2267 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2268 }; 2269 for (const Function &F : M) 2270 if (F.isDeclaration() && F.hasMetadata()) 2271 AddDeclAttachedMetadata(F); 2272 // FIXME: Only store metadata for declarations here, and move data for global 2273 // variable definitions to a separate block (PR28134). 2274 for (const GlobalVariable &GV : M.globals()) 2275 if (GV.hasMetadata()) 2276 AddDeclAttachedMetadata(GV); 2277 2278 Stream.ExitBlock(); 2279 } 2280 2281 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2282 if (!VE.hasMDs()) 2283 return; 2284 2285 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2286 SmallVector<uint64_t, 64> Record; 2287 writeMetadataStrings(VE.getMDStrings(), Record); 2288 writeMetadataRecords(VE.getNonMDStrings(), Record); 2289 Stream.ExitBlock(); 2290 } 2291 2292 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2293 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2294 // [n x [id, mdnode]] 2295 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2296 GO.getAllMetadata(MDs); 2297 for (const auto &I : MDs) { 2298 Record.push_back(I.first); 2299 Record.push_back(VE.getMetadataID(I.second)); 2300 } 2301 } 2302 2303 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2304 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2305 2306 SmallVector<uint64_t, 64> Record; 2307 2308 if (F.hasMetadata()) { 2309 pushGlobalMetadataAttachment(Record, F); 2310 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2311 Record.clear(); 2312 } 2313 2314 // Write metadata attachments 2315 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2316 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2317 for (const BasicBlock &BB : F) 2318 for (const Instruction &I : BB) { 2319 MDs.clear(); 2320 I.getAllMetadataOtherThanDebugLoc(MDs); 2321 2322 // If no metadata, ignore instruction. 2323 if (MDs.empty()) continue; 2324 2325 Record.push_back(VE.getInstructionID(&I)); 2326 2327 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2328 Record.push_back(MDs[i].first); 2329 Record.push_back(VE.getMetadataID(MDs[i].second)); 2330 } 2331 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2332 Record.clear(); 2333 } 2334 2335 Stream.ExitBlock(); 2336 } 2337 2338 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2339 SmallVector<uint64_t, 64> Record; 2340 2341 // Write metadata kinds 2342 // METADATA_KIND - [n x [id, name]] 2343 SmallVector<StringRef, 8> Names; 2344 M.getMDKindNames(Names); 2345 2346 if (Names.empty()) return; 2347 2348 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2349 2350 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2351 Record.push_back(MDKindID); 2352 StringRef KName = Names[MDKindID]; 2353 Record.append(KName.begin(), KName.end()); 2354 2355 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2356 Record.clear(); 2357 } 2358 2359 Stream.ExitBlock(); 2360 } 2361 2362 void ModuleBitcodeWriter::writeOperandBundleTags() { 2363 // Write metadata kinds 2364 // 2365 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2366 // 2367 // OPERAND_BUNDLE_TAG - [strchr x N] 2368 2369 SmallVector<StringRef, 8> Tags; 2370 M.getOperandBundleTags(Tags); 2371 2372 if (Tags.empty()) 2373 return; 2374 2375 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2376 2377 SmallVector<uint64_t, 64> Record; 2378 2379 for (auto Tag : Tags) { 2380 Record.append(Tag.begin(), Tag.end()); 2381 2382 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2383 Record.clear(); 2384 } 2385 2386 Stream.ExitBlock(); 2387 } 2388 2389 void ModuleBitcodeWriter::writeSyncScopeNames() { 2390 SmallVector<StringRef, 8> SSNs; 2391 M.getContext().getSyncScopeNames(SSNs); 2392 if (SSNs.empty()) 2393 return; 2394 2395 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2396 2397 SmallVector<uint64_t, 64> Record; 2398 for (auto SSN : SSNs) { 2399 Record.append(SSN.begin(), SSN.end()); 2400 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2401 Record.clear(); 2402 } 2403 2404 Stream.ExitBlock(); 2405 } 2406 2407 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2408 bool isGlobal) { 2409 if (FirstVal == LastVal) return; 2410 2411 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2412 2413 unsigned AggregateAbbrev = 0; 2414 unsigned String8Abbrev = 0; 2415 unsigned CString7Abbrev = 0; 2416 unsigned CString6Abbrev = 0; 2417 // If this is a constant pool for the module, emit module-specific abbrevs. 2418 if (isGlobal) { 2419 // Abbrev for CST_CODE_AGGREGATE. 2420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2421 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2424 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2425 2426 // Abbrev for CST_CODE_STRING. 2427 Abbv = std::make_shared<BitCodeAbbrev>(); 2428 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2431 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2432 // Abbrev for CST_CODE_CSTRING. 2433 Abbv = std::make_shared<BitCodeAbbrev>(); 2434 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2437 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2438 // Abbrev for CST_CODE_CSTRING. 2439 Abbv = std::make_shared<BitCodeAbbrev>(); 2440 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2443 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2444 } 2445 2446 SmallVector<uint64_t, 64> Record; 2447 2448 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2449 Type *LastTy = nullptr; 2450 for (unsigned i = FirstVal; i != LastVal; ++i) { 2451 const Value *V = Vals[i].first; 2452 // If we need to switch types, do so now. 2453 if (V->getType() != LastTy) { 2454 LastTy = V->getType(); 2455 Record.push_back(VE.getTypeID(LastTy)); 2456 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2457 CONSTANTS_SETTYPE_ABBREV); 2458 Record.clear(); 2459 } 2460 2461 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2462 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2463 Record.push_back( 2464 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2465 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2466 2467 // Add the asm string. 2468 const std::string &AsmStr = IA->getAsmString(); 2469 Record.push_back(AsmStr.size()); 2470 Record.append(AsmStr.begin(), AsmStr.end()); 2471 2472 // Add the constraint string. 2473 const std::string &ConstraintStr = IA->getConstraintString(); 2474 Record.push_back(ConstraintStr.size()); 2475 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2476 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2477 Record.clear(); 2478 continue; 2479 } 2480 const Constant *C = cast<Constant>(V); 2481 unsigned Code = -1U; 2482 unsigned AbbrevToUse = 0; 2483 if (C->isNullValue()) { 2484 Code = bitc::CST_CODE_NULL; 2485 } else if (isa<PoisonValue>(C)) { 2486 Code = bitc::CST_CODE_POISON; 2487 } else if (isa<UndefValue>(C)) { 2488 Code = bitc::CST_CODE_UNDEF; 2489 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2490 if (IV->getBitWidth() <= 64) { 2491 uint64_t V = IV->getSExtValue(); 2492 emitSignedInt64(Record, V); 2493 Code = bitc::CST_CODE_INTEGER; 2494 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2495 } else { // Wide integers, > 64 bits in size. 2496 emitWideAPInt(Record, IV->getValue()); 2497 Code = bitc::CST_CODE_WIDE_INTEGER; 2498 } 2499 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2500 Code = bitc::CST_CODE_FLOAT; 2501 Type *Ty = CFP->getType(); 2502 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2503 Ty->isDoubleTy()) { 2504 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2505 } else if (Ty->isX86_FP80Ty()) { 2506 // api needed to prevent premature destruction 2507 // bits are not in the same order as a normal i80 APInt, compensate. 2508 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2509 const uint64_t *p = api.getRawData(); 2510 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2511 Record.push_back(p[0] & 0xffffLL); 2512 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2513 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2514 const uint64_t *p = api.getRawData(); 2515 Record.push_back(p[0]); 2516 Record.push_back(p[1]); 2517 } else { 2518 assert(0 && "Unknown FP type!"); 2519 } 2520 } else if (isa<ConstantDataSequential>(C) && 2521 cast<ConstantDataSequential>(C)->isString()) { 2522 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2523 // Emit constant strings specially. 2524 unsigned NumElts = Str->getNumElements(); 2525 // If this is a null-terminated string, use the denser CSTRING encoding. 2526 if (Str->isCString()) { 2527 Code = bitc::CST_CODE_CSTRING; 2528 --NumElts; // Don't encode the null, which isn't allowed by char6. 2529 } else { 2530 Code = bitc::CST_CODE_STRING; 2531 AbbrevToUse = String8Abbrev; 2532 } 2533 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2534 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2535 for (unsigned i = 0; i != NumElts; ++i) { 2536 unsigned char V = Str->getElementAsInteger(i); 2537 Record.push_back(V); 2538 isCStr7 &= (V & 128) == 0; 2539 if (isCStrChar6) 2540 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2541 } 2542 2543 if (isCStrChar6) 2544 AbbrevToUse = CString6Abbrev; 2545 else if (isCStr7) 2546 AbbrevToUse = CString7Abbrev; 2547 } else if (const ConstantDataSequential *CDS = 2548 dyn_cast<ConstantDataSequential>(C)) { 2549 Code = bitc::CST_CODE_DATA; 2550 Type *EltTy = CDS->getElementType(); 2551 if (isa<IntegerType>(EltTy)) { 2552 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2553 Record.push_back(CDS->getElementAsInteger(i)); 2554 } else { 2555 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2556 Record.push_back( 2557 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2558 } 2559 } else if (isa<ConstantAggregate>(C)) { 2560 Code = bitc::CST_CODE_AGGREGATE; 2561 for (const Value *Op : C->operands()) 2562 Record.push_back(VE.getValueID(Op)); 2563 AbbrevToUse = AggregateAbbrev; 2564 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2565 switch (CE->getOpcode()) { 2566 default: 2567 if (Instruction::isCast(CE->getOpcode())) { 2568 Code = bitc::CST_CODE_CE_CAST; 2569 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2570 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2571 Record.push_back(VE.getValueID(C->getOperand(0))); 2572 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2573 } else { 2574 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2575 Code = bitc::CST_CODE_CE_BINOP; 2576 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2577 Record.push_back(VE.getValueID(C->getOperand(0))); 2578 Record.push_back(VE.getValueID(C->getOperand(1))); 2579 uint64_t Flags = getOptimizationFlags(CE); 2580 if (Flags != 0) 2581 Record.push_back(Flags); 2582 } 2583 break; 2584 case Instruction::FNeg: { 2585 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2586 Code = bitc::CST_CODE_CE_UNOP; 2587 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2588 Record.push_back(VE.getValueID(C->getOperand(0))); 2589 uint64_t Flags = getOptimizationFlags(CE); 2590 if (Flags != 0) 2591 Record.push_back(Flags); 2592 break; 2593 } 2594 case Instruction::GetElementPtr: { 2595 Code = bitc::CST_CODE_CE_GEP; 2596 const auto *GO = cast<GEPOperator>(C); 2597 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2598 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2599 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2600 Record.push_back((*Idx << 1) | GO->isInBounds()); 2601 } else if (GO->isInBounds()) 2602 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2603 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2604 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2605 Record.push_back(VE.getValueID(C->getOperand(i))); 2606 } 2607 break; 2608 } 2609 case Instruction::Select: 2610 Code = bitc::CST_CODE_CE_SELECT; 2611 Record.push_back(VE.getValueID(C->getOperand(0))); 2612 Record.push_back(VE.getValueID(C->getOperand(1))); 2613 Record.push_back(VE.getValueID(C->getOperand(2))); 2614 break; 2615 case Instruction::ExtractElement: 2616 Code = bitc::CST_CODE_CE_EXTRACTELT; 2617 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2618 Record.push_back(VE.getValueID(C->getOperand(0))); 2619 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2620 Record.push_back(VE.getValueID(C->getOperand(1))); 2621 break; 2622 case Instruction::InsertElement: 2623 Code = bitc::CST_CODE_CE_INSERTELT; 2624 Record.push_back(VE.getValueID(C->getOperand(0))); 2625 Record.push_back(VE.getValueID(C->getOperand(1))); 2626 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2627 Record.push_back(VE.getValueID(C->getOperand(2))); 2628 break; 2629 case Instruction::ShuffleVector: 2630 // If the return type and argument types are the same, this is a 2631 // standard shufflevector instruction. If the types are different, 2632 // then the shuffle is widening or truncating the input vectors, and 2633 // the argument type must also be encoded. 2634 if (C->getType() == C->getOperand(0)->getType()) { 2635 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2636 } else { 2637 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2638 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2639 } 2640 Record.push_back(VE.getValueID(C->getOperand(0))); 2641 Record.push_back(VE.getValueID(C->getOperand(1))); 2642 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2643 break; 2644 case Instruction::ICmp: 2645 case Instruction::FCmp: 2646 Code = bitc::CST_CODE_CE_CMP; 2647 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2648 Record.push_back(VE.getValueID(C->getOperand(0))); 2649 Record.push_back(VE.getValueID(C->getOperand(1))); 2650 Record.push_back(CE->getPredicate()); 2651 break; 2652 } 2653 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2654 Code = bitc::CST_CODE_BLOCKADDRESS; 2655 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2656 Record.push_back(VE.getValueID(BA->getFunction())); 2657 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2658 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2659 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2660 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2661 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2662 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2663 Code = bitc::CST_CODE_NO_CFI_VALUE; 2664 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2665 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2666 } else { 2667 #ifndef NDEBUG 2668 C->dump(); 2669 #endif 2670 llvm_unreachable("Unknown constant!"); 2671 } 2672 Stream.EmitRecord(Code, Record, AbbrevToUse); 2673 Record.clear(); 2674 } 2675 2676 Stream.ExitBlock(); 2677 } 2678 2679 void ModuleBitcodeWriter::writeModuleConstants() { 2680 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2681 2682 // Find the first constant to emit, which is the first non-globalvalue value. 2683 // We know globalvalues have been emitted by WriteModuleInfo. 2684 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2685 if (!isa<GlobalValue>(Vals[i].first)) { 2686 writeConstants(i, Vals.size(), true); 2687 return; 2688 } 2689 } 2690 } 2691 2692 /// pushValueAndType - The file has to encode both the value and type id for 2693 /// many values, because we need to know what type to create for forward 2694 /// references. However, most operands are not forward references, so this type 2695 /// field is not needed. 2696 /// 2697 /// This function adds V's value ID to Vals. If the value ID is higher than the 2698 /// instruction ID, then it is a forward reference, and it also includes the 2699 /// type ID. The value ID that is written is encoded relative to the InstID. 2700 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2701 SmallVectorImpl<unsigned> &Vals) { 2702 unsigned ValID = VE.getValueID(V); 2703 // Make encoding relative to the InstID. 2704 Vals.push_back(InstID - ValID); 2705 if (ValID >= InstID) { 2706 Vals.push_back(VE.getTypeID(V->getType())); 2707 return true; 2708 } 2709 return false; 2710 } 2711 2712 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2713 unsigned InstID) { 2714 SmallVector<unsigned, 64> Record; 2715 LLVMContext &C = CS.getContext(); 2716 2717 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2718 const auto &Bundle = CS.getOperandBundleAt(i); 2719 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2720 2721 for (auto &Input : Bundle.Inputs) 2722 pushValueAndType(Input, InstID, Record); 2723 2724 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2725 Record.clear(); 2726 } 2727 } 2728 2729 /// pushValue - Like pushValueAndType, but where the type of the value is 2730 /// omitted (perhaps it was already encoded in an earlier operand). 2731 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2732 SmallVectorImpl<unsigned> &Vals) { 2733 unsigned ValID = VE.getValueID(V); 2734 Vals.push_back(InstID - ValID); 2735 } 2736 2737 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2738 SmallVectorImpl<uint64_t> &Vals) { 2739 unsigned ValID = VE.getValueID(V); 2740 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2741 emitSignedInt64(Vals, diff); 2742 } 2743 2744 /// WriteInstruction - Emit an instruction to the specified stream. 2745 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2746 unsigned InstID, 2747 SmallVectorImpl<unsigned> &Vals) { 2748 unsigned Code = 0; 2749 unsigned AbbrevToUse = 0; 2750 VE.setInstructionID(&I); 2751 switch (I.getOpcode()) { 2752 default: 2753 if (Instruction::isCast(I.getOpcode())) { 2754 Code = bitc::FUNC_CODE_INST_CAST; 2755 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2756 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2757 Vals.push_back(VE.getTypeID(I.getType())); 2758 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2759 } else { 2760 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2761 Code = bitc::FUNC_CODE_INST_BINOP; 2762 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2763 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2764 pushValue(I.getOperand(1), InstID, Vals); 2765 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2766 uint64_t Flags = getOptimizationFlags(&I); 2767 if (Flags != 0) { 2768 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2769 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2770 Vals.push_back(Flags); 2771 } 2772 } 2773 break; 2774 case Instruction::FNeg: { 2775 Code = bitc::FUNC_CODE_INST_UNOP; 2776 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2777 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2778 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2779 uint64_t Flags = getOptimizationFlags(&I); 2780 if (Flags != 0) { 2781 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2782 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2783 Vals.push_back(Flags); 2784 } 2785 break; 2786 } 2787 case Instruction::GetElementPtr: { 2788 Code = bitc::FUNC_CODE_INST_GEP; 2789 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2790 auto &GEPInst = cast<GetElementPtrInst>(I); 2791 Vals.push_back(GEPInst.isInBounds()); 2792 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2793 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2794 pushValueAndType(I.getOperand(i), InstID, Vals); 2795 break; 2796 } 2797 case Instruction::ExtractValue: { 2798 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2799 pushValueAndType(I.getOperand(0), InstID, Vals); 2800 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2801 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2802 break; 2803 } 2804 case Instruction::InsertValue: { 2805 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2806 pushValueAndType(I.getOperand(0), InstID, Vals); 2807 pushValueAndType(I.getOperand(1), InstID, Vals); 2808 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2809 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2810 break; 2811 } 2812 case Instruction::Select: { 2813 Code = bitc::FUNC_CODE_INST_VSELECT; 2814 pushValueAndType(I.getOperand(1), InstID, Vals); 2815 pushValue(I.getOperand(2), InstID, Vals); 2816 pushValueAndType(I.getOperand(0), InstID, Vals); 2817 uint64_t Flags = getOptimizationFlags(&I); 2818 if (Flags != 0) 2819 Vals.push_back(Flags); 2820 break; 2821 } 2822 case Instruction::ExtractElement: 2823 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2824 pushValueAndType(I.getOperand(0), InstID, Vals); 2825 pushValueAndType(I.getOperand(1), InstID, Vals); 2826 break; 2827 case Instruction::InsertElement: 2828 Code = bitc::FUNC_CODE_INST_INSERTELT; 2829 pushValueAndType(I.getOperand(0), InstID, Vals); 2830 pushValue(I.getOperand(1), InstID, Vals); 2831 pushValueAndType(I.getOperand(2), InstID, Vals); 2832 break; 2833 case Instruction::ShuffleVector: 2834 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2835 pushValueAndType(I.getOperand(0), InstID, Vals); 2836 pushValue(I.getOperand(1), InstID, Vals); 2837 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2838 Vals); 2839 break; 2840 case Instruction::ICmp: 2841 case Instruction::FCmp: { 2842 // compare returning Int1Ty or vector of Int1Ty 2843 Code = bitc::FUNC_CODE_INST_CMP2; 2844 pushValueAndType(I.getOperand(0), InstID, Vals); 2845 pushValue(I.getOperand(1), InstID, Vals); 2846 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2847 uint64_t Flags = getOptimizationFlags(&I); 2848 if (Flags != 0) 2849 Vals.push_back(Flags); 2850 break; 2851 } 2852 2853 case Instruction::Ret: 2854 { 2855 Code = bitc::FUNC_CODE_INST_RET; 2856 unsigned NumOperands = I.getNumOperands(); 2857 if (NumOperands == 0) 2858 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2859 else if (NumOperands == 1) { 2860 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2861 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2862 } else { 2863 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2864 pushValueAndType(I.getOperand(i), InstID, Vals); 2865 } 2866 } 2867 break; 2868 case Instruction::Br: 2869 { 2870 Code = bitc::FUNC_CODE_INST_BR; 2871 const BranchInst &II = cast<BranchInst>(I); 2872 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2873 if (II.isConditional()) { 2874 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2875 pushValue(II.getCondition(), InstID, Vals); 2876 } 2877 } 2878 break; 2879 case Instruction::Switch: 2880 { 2881 Code = bitc::FUNC_CODE_INST_SWITCH; 2882 const SwitchInst &SI = cast<SwitchInst>(I); 2883 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2884 pushValue(SI.getCondition(), InstID, Vals); 2885 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2886 for (auto Case : SI.cases()) { 2887 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2888 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2889 } 2890 } 2891 break; 2892 case Instruction::IndirectBr: 2893 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2894 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2895 // Encode the address operand as relative, but not the basic blocks. 2896 pushValue(I.getOperand(0), InstID, Vals); 2897 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2898 Vals.push_back(VE.getValueID(I.getOperand(i))); 2899 break; 2900 2901 case Instruction::Invoke: { 2902 const InvokeInst *II = cast<InvokeInst>(&I); 2903 const Value *Callee = II->getCalledOperand(); 2904 FunctionType *FTy = II->getFunctionType(); 2905 2906 if (II->hasOperandBundles()) 2907 writeOperandBundles(*II, InstID); 2908 2909 Code = bitc::FUNC_CODE_INST_INVOKE; 2910 2911 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2912 Vals.push_back(II->getCallingConv() | 1 << 13); 2913 Vals.push_back(VE.getValueID(II->getNormalDest())); 2914 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2915 Vals.push_back(VE.getTypeID(FTy)); 2916 pushValueAndType(Callee, InstID, Vals); 2917 2918 // Emit value #'s for the fixed parameters. 2919 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2920 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2921 2922 // Emit type/value pairs for varargs params. 2923 if (FTy->isVarArg()) { 2924 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2925 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2926 } 2927 break; 2928 } 2929 case Instruction::Resume: 2930 Code = bitc::FUNC_CODE_INST_RESUME; 2931 pushValueAndType(I.getOperand(0), InstID, Vals); 2932 break; 2933 case Instruction::CleanupRet: { 2934 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2935 const auto &CRI = cast<CleanupReturnInst>(I); 2936 pushValue(CRI.getCleanupPad(), InstID, Vals); 2937 if (CRI.hasUnwindDest()) 2938 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2939 break; 2940 } 2941 case Instruction::CatchRet: { 2942 Code = bitc::FUNC_CODE_INST_CATCHRET; 2943 const auto &CRI = cast<CatchReturnInst>(I); 2944 pushValue(CRI.getCatchPad(), InstID, Vals); 2945 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2946 break; 2947 } 2948 case Instruction::CleanupPad: 2949 case Instruction::CatchPad: { 2950 const auto &FuncletPad = cast<FuncletPadInst>(I); 2951 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2952 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2953 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2954 2955 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2956 Vals.push_back(NumArgOperands); 2957 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2958 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2959 break; 2960 } 2961 case Instruction::CatchSwitch: { 2962 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2963 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2964 2965 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2966 2967 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2968 Vals.push_back(NumHandlers); 2969 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2970 Vals.push_back(VE.getValueID(CatchPadBB)); 2971 2972 if (CatchSwitch.hasUnwindDest()) 2973 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2974 break; 2975 } 2976 case Instruction::CallBr: { 2977 const CallBrInst *CBI = cast<CallBrInst>(&I); 2978 const Value *Callee = CBI->getCalledOperand(); 2979 FunctionType *FTy = CBI->getFunctionType(); 2980 2981 if (CBI->hasOperandBundles()) 2982 writeOperandBundles(*CBI, InstID); 2983 2984 Code = bitc::FUNC_CODE_INST_CALLBR; 2985 2986 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2987 2988 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2989 1 << bitc::CALL_EXPLICIT_TYPE); 2990 2991 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2992 Vals.push_back(CBI->getNumIndirectDests()); 2993 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2994 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2995 2996 Vals.push_back(VE.getTypeID(FTy)); 2997 pushValueAndType(Callee, InstID, Vals); 2998 2999 // Emit value #'s for the fixed parameters. 3000 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3001 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3002 3003 // Emit type/value pairs for varargs params. 3004 if (FTy->isVarArg()) { 3005 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3006 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3007 } 3008 break; 3009 } 3010 case Instruction::Unreachable: 3011 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3012 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3013 break; 3014 3015 case Instruction::PHI: { 3016 const PHINode &PN = cast<PHINode>(I); 3017 Code = bitc::FUNC_CODE_INST_PHI; 3018 // With the newer instruction encoding, forward references could give 3019 // negative valued IDs. This is most common for PHIs, so we use 3020 // signed VBRs. 3021 SmallVector<uint64_t, 128> Vals64; 3022 Vals64.push_back(VE.getTypeID(PN.getType())); 3023 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3024 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3025 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3026 } 3027 3028 uint64_t Flags = getOptimizationFlags(&I); 3029 if (Flags != 0) 3030 Vals64.push_back(Flags); 3031 3032 // Emit a Vals64 vector and exit. 3033 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3034 Vals64.clear(); 3035 return; 3036 } 3037 3038 case Instruction::LandingPad: { 3039 const LandingPadInst &LP = cast<LandingPadInst>(I); 3040 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3041 Vals.push_back(VE.getTypeID(LP.getType())); 3042 Vals.push_back(LP.isCleanup()); 3043 Vals.push_back(LP.getNumClauses()); 3044 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3045 if (LP.isCatch(I)) 3046 Vals.push_back(LandingPadInst::Catch); 3047 else 3048 Vals.push_back(LandingPadInst::Filter); 3049 pushValueAndType(LP.getClause(I), InstID, Vals); 3050 } 3051 break; 3052 } 3053 3054 case Instruction::Alloca: { 3055 Code = bitc::FUNC_CODE_INST_ALLOCA; 3056 const AllocaInst &AI = cast<AllocaInst>(I); 3057 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3058 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3059 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3060 using APV = AllocaPackedValues; 3061 unsigned Record = 0; 3062 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3063 Bitfield::set<APV::AlignLower>( 3064 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3065 Bitfield::set<APV::AlignUpper>(Record, 3066 EncodedAlign >> APV::AlignLower::Bits); 3067 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3068 Bitfield::set<APV::ExplicitType>(Record, true); 3069 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3070 Vals.push_back(Record); 3071 break; 3072 } 3073 3074 case Instruction::Load: 3075 if (cast<LoadInst>(I).isAtomic()) { 3076 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3077 pushValueAndType(I.getOperand(0), InstID, Vals); 3078 } else { 3079 Code = bitc::FUNC_CODE_INST_LOAD; 3080 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3081 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3082 } 3083 Vals.push_back(VE.getTypeID(I.getType())); 3084 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3085 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3086 if (cast<LoadInst>(I).isAtomic()) { 3087 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3088 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3089 } 3090 break; 3091 case Instruction::Store: 3092 if (cast<StoreInst>(I).isAtomic()) 3093 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3094 else 3095 Code = bitc::FUNC_CODE_INST_STORE; 3096 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3097 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3098 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3099 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3100 if (cast<StoreInst>(I).isAtomic()) { 3101 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3102 Vals.push_back( 3103 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3104 } 3105 break; 3106 case Instruction::AtomicCmpXchg: 3107 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3108 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3109 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3110 pushValue(I.getOperand(2), InstID, Vals); // newval. 3111 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3112 Vals.push_back( 3113 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3114 Vals.push_back( 3115 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3116 Vals.push_back( 3117 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3118 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3119 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3120 break; 3121 case Instruction::AtomicRMW: 3122 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3123 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3124 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3125 Vals.push_back( 3126 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3127 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3128 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3129 Vals.push_back( 3130 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3131 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3132 break; 3133 case Instruction::Fence: 3134 Code = bitc::FUNC_CODE_INST_FENCE; 3135 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3136 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3137 break; 3138 case Instruction::Call: { 3139 const CallInst &CI = cast<CallInst>(I); 3140 FunctionType *FTy = CI.getFunctionType(); 3141 3142 if (CI.hasOperandBundles()) 3143 writeOperandBundles(CI, InstID); 3144 3145 Code = bitc::FUNC_CODE_INST_CALL; 3146 3147 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3148 3149 unsigned Flags = getOptimizationFlags(&I); 3150 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3151 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3152 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3153 1 << bitc::CALL_EXPLICIT_TYPE | 3154 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3155 unsigned(Flags != 0) << bitc::CALL_FMF); 3156 if (Flags != 0) 3157 Vals.push_back(Flags); 3158 3159 Vals.push_back(VE.getTypeID(FTy)); 3160 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3161 3162 // Emit value #'s for the fixed parameters. 3163 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3164 // Check for labels (can happen with asm labels). 3165 if (FTy->getParamType(i)->isLabelTy()) 3166 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3167 else 3168 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3169 } 3170 3171 // Emit type/value pairs for varargs params. 3172 if (FTy->isVarArg()) { 3173 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3174 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3175 } 3176 break; 3177 } 3178 case Instruction::VAArg: 3179 Code = bitc::FUNC_CODE_INST_VAARG; 3180 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3181 pushValue(I.getOperand(0), InstID, Vals); // valist. 3182 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3183 break; 3184 case Instruction::Freeze: 3185 Code = bitc::FUNC_CODE_INST_FREEZE; 3186 pushValueAndType(I.getOperand(0), InstID, Vals); 3187 break; 3188 } 3189 3190 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3191 Vals.clear(); 3192 } 3193 3194 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3195 /// to allow clients to efficiently find the function body. 3196 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3197 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3198 // Get the offset of the VST we are writing, and backpatch it into 3199 // the VST forward declaration record. 3200 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3201 // The BitcodeStartBit was the stream offset of the identification block. 3202 VSTOffset -= bitcodeStartBit(); 3203 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3204 // Note that we add 1 here because the offset is relative to one word 3205 // before the start of the identification block, which was historically 3206 // always the start of the regular bitcode header. 3207 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3208 3209 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3210 3211 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3212 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3215 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3216 3217 for (const Function &F : M) { 3218 uint64_t Record[2]; 3219 3220 if (F.isDeclaration()) 3221 continue; 3222 3223 Record[0] = VE.getValueID(&F); 3224 3225 // Save the word offset of the function (from the start of the 3226 // actual bitcode written to the stream). 3227 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3228 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3229 // Note that we add 1 here because the offset is relative to one word 3230 // before the start of the identification block, which was historically 3231 // always the start of the regular bitcode header. 3232 Record[1] = BitcodeIndex / 32 + 1; 3233 3234 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3235 } 3236 3237 Stream.ExitBlock(); 3238 } 3239 3240 /// Emit names for arguments, instructions and basic blocks in a function. 3241 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3242 const ValueSymbolTable &VST) { 3243 if (VST.empty()) 3244 return; 3245 3246 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3247 3248 // FIXME: Set up the abbrev, we know how many values there are! 3249 // FIXME: We know if the type names can use 7-bit ascii. 3250 SmallVector<uint64_t, 64> NameVals; 3251 3252 for (const ValueName &Name : VST) { 3253 // Figure out the encoding to use for the name. 3254 StringEncoding Bits = getStringEncoding(Name.getKey()); 3255 3256 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3257 NameVals.push_back(VE.getValueID(Name.getValue())); 3258 3259 // VST_CODE_ENTRY: [valueid, namechar x N] 3260 // VST_CODE_BBENTRY: [bbid, namechar x N] 3261 unsigned Code; 3262 if (isa<BasicBlock>(Name.getValue())) { 3263 Code = bitc::VST_CODE_BBENTRY; 3264 if (Bits == SE_Char6) 3265 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3266 } else { 3267 Code = bitc::VST_CODE_ENTRY; 3268 if (Bits == SE_Char6) 3269 AbbrevToUse = VST_ENTRY_6_ABBREV; 3270 else if (Bits == SE_Fixed7) 3271 AbbrevToUse = VST_ENTRY_7_ABBREV; 3272 } 3273 3274 for (const auto P : Name.getKey()) 3275 NameVals.push_back((unsigned char)P); 3276 3277 // Emit the finished record. 3278 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3279 NameVals.clear(); 3280 } 3281 3282 Stream.ExitBlock(); 3283 } 3284 3285 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3286 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3287 unsigned Code; 3288 if (isa<BasicBlock>(Order.V)) 3289 Code = bitc::USELIST_CODE_BB; 3290 else 3291 Code = bitc::USELIST_CODE_DEFAULT; 3292 3293 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3294 Record.push_back(VE.getValueID(Order.V)); 3295 Stream.EmitRecord(Code, Record); 3296 } 3297 3298 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3299 assert(VE.shouldPreserveUseListOrder() && 3300 "Expected to be preserving use-list order"); 3301 3302 auto hasMore = [&]() { 3303 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3304 }; 3305 if (!hasMore()) 3306 // Nothing to do. 3307 return; 3308 3309 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3310 while (hasMore()) { 3311 writeUseList(std::move(VE.UseListOrders.back())); 3312 VE.UseListOrders.pop_back(); 3313 } 3314 Stream.ExitBlock(); 3315 } 3316 3317 /// Emit a function body to the module stream. 3318 void ModuleBitcodeWriter::writeFunction( 3319 const Function &F, 3320 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3321 // Save the bitcode index of the start of this function block for recording 3322 // in the VST. 3323 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3324 3325 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3326 VE.incorporateFunction(F); 3327 3328 SmallVector<unsigned, 64> Vals; 3329 3330 // Emit the number of basic blocks, so the reader can create them ahead of 3331 // time. 3332 Vals.push_back(VE.getBasicBlocks().size()); 3333 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3334 Vals.clear(); 3335 3336 // If there are function-local constants, emit them now. 3337 unsigned CstStart, CstEnd; 3338 VE.getFunctionConstantRange(CstStart, CstEnd); 3339 writeConstants(CstStart, CstEnd, false); 3340 3341 // If there is function-local metadata, emit it now. 3342 writeFunctionMetadata(F); 3343 3344 // Keep a running idea of what the instruction ID is. 3345 unsigned InstID = CstEnd; 3346 3347 bool NeedsMetadataAttachment = F.hasMetadata(); 3348 3349 DILocation *LastDL = nullptr; 3350 // Finally, emit all the instructions, in order. 3351 for (const BasicBlock &BB : F) 3352 for (const Instruction &I : BB) { 3353 writeInstruction(I, InstID, Vals); 3354 3355 if (!I.getType()->isVoidTy()) 3356 ++InstID; 3357 3358 // If the instruction has metadata, write a metadata attachment later. 3359 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3360 3361 // If the instruction has a debug location, emit it. 3362 DILocation *DL = I.getDebugLoc(); 3363 if (!DL) 3364 continue; 3365 3366 if (DL == LastDL) { 3367 // Just repeat the same debug loc as last time. 3368 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3369 continue; 3370 } 3371 3372 Vals.push_back(DL->getLine()); 3373 Vals.push_back(DL->getColumn()); 3374 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3375 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3376 Vals.push_back(DL->isImplicitCode()); 3377 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3378 Vals.clear(); 3379 3380 LastDL = DL; 3381 } 3382 3383 // Emit names for all the instructions etc. 3384 if (auto *Symtab = F.getValueSymbolTable()) 3385 writeFunctionLevelValueSymbolTable(*Symtab); 3386 3387 if (NeedsMetadataAttachment) 3388 writeFunctionMetadataAttachment(F); 3389 if (VE.shouldPreserveUseListOrder()) 3390 writeUseListBlock(&F); 3391 VE.purgeFunction(); 3392 Stream.ExitBlock(); 3393 } 3394 3395 // Emit blockinfo, which defines the standard abbreviations etc. 3396 void ModuleBitcodeWriter::writeBlockInfo() { 3397 // We only want to emit block info records for blocks that have multiple 3398 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3399 // Other blocks can define their abbrevs inline. 3400 Stream.EnterBlockInfoBlock(); 3401 3402 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3403 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3408 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3409 VST_ENTRY_8_ABBREV) 3410 llvm_unreachable("Unexpected abbrev ordering!"); 3411 } 3412 3413 { // 7-bit fixed width VST_CODE_ENTRY strings. 3414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3415 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3419 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3420 VST_ENTRY_7_ABBREV) 3421 llvm_unreachable("Unexpected abbrev ordering!"); 3422 } 3423 { // 6-bit char6 VST_CODE_ENTRY strings. 3424 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3425 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3429 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3430 VST_ENTRY_6_ABBREV) 3431 llvm_unreachable("Unexpected abbrev ordering!"); 3432 } 3433 { // 6-bit char6 VST_CODE_BBENTRY strings. 3434 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3435 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3439 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3440 VST_BBENTRY_6_ABBREV) 3441 llvm_unreachable("Unexpected abbrev ordering!"); 3442 } 3443 3444 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3445 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3446 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3448 VE.computeBitsRequiredForTypeIndicies())); 3449 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3450 CONSTANTS_SETTYPE_ABBREV) 3451 llvm_unreachable("Unexpected abbrev ordering!"); 3452 } 3453 3454 { // INTEGER abbrev for CONSTANTS_BLOCK. 3455 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3456 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3458 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3459 CONSTANTS_INTEGER_ABBREV) 3460 llvm_unreachable("Unexpected abbrev ordering!"); 3461 } 3462 3463 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3464 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3465 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3468 VE.computeBitsRequiredForTypeIndicies())); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3470 3471 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3472 CONSTANTS_CE_CAST_Abbrev) 3473 llvm_unreachable("Unexpected abbrev ordering!"); 3474 } 3475 { // NULL abbrev for CONSTANTS_BLOCK. 3476 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3477 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3478 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3479 CONSTANTS_NULL_Abbrev) 3480 llvm_unreachable("Unexpected abbrev ordering!"); 3481 } 3482 3483 // FIXME: This should only use space for first class types! 3484 3485 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3486 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3487 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3490 VE.computeBitsRequiredForTypeIndicies())); 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3493 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3494 FUNCTION_INST_LOAD_ABBREV) 3495 llvm_unreachable("Unexpected abbrev ordering!"); 3496 } 3497 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3498 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3499 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3502 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3503 FUNCTION_INST_UNOP_ABBREV) 3504 llvm_unreachable("Unexpected abbrev ordering!"); 3505 } 3506 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3507 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3508 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3512 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3513 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3514 llvm_unreachable("Unexpected abbrev ordering!"); 3515 } 3516 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3517 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3518 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3522 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3523 FUNCTION_INST_BINOP_ABBREV) 3524 llvm_unreachable("Unexpected abbrev ordering!"); 3525 } 3526 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3527 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3528 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3533 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3534 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3535 llvm_unreachable("Unexpected abbrev ordering!"); 3536 } 3537 { // INST_CAST abbrev for FUNCTION_BLOCK. 3538 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3539 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3542 VE.computeBitsRequiredForTypeIndicies())); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3544 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3545 FUNCTION_INST_CAST_ABBREV) 3546 llvm_unreachable("Unexpected abbrev ordering!"); 3547 } 3548 3549 { // INST_RET abbrev for FUNCTION_BLOCK. 3550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3551 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3552 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3553 FUNCTION_INST_RET_VOID_ABBREV) 3554 llvm_unreachable("Unexpected abbrev ordering!"); 3555 } 3556 { // INST_RET abbrev for FUNCTION_BLOCK. 3557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3560 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3561 FUNCTION_INST_RET_VAL_ABBREV) 3562 llvm_unreachable("Unexpected abbrev ordering!"); 3563 } 3564 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3565 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3566 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3567 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3568 FUNCTION_INST_UNREACHABLE_ABBREV) 3569 llvm_unreachable("Unexpected abbrev ordering!"); 3570 } 3571 { 3572 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3573 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3576 Log2_32_Ceil(VE.getTypes().size() + 1))); 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3579 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3580 FUNCTION_INST_GEP_ABBREV) 3581 llvm_unreachable("Unexpected abbrev ordering!"); 3582 } 3583 3584 Stream.ExitBlock(); 3585 } 3586 3587 /// Write the module path strings, currently only used when generating 3588 /// a combined index file. 3589 void IndexBitcodeWriter::writeModStrings() { 3590 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3591 3592 // TODO: See which abbrev sizes we actually need to emit 3593 3594 // 8-bit fixed-width MST_ENTRY strings. 3595 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3596 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3600 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3601 3602 // 7-bit fixed width MST_ENTRY strings. 3603 Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3608 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3609 3610 // 6-bit char6 MST_ENTRY strings. 3611 Abbv = std::make_shared<BitCodeAbbrev>(); 3612 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3616 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3617 3618 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3619 Abbv = std::make_shared<BitCodeAbbrev>(); 3620 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3626 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3627 3628 SmallVector<unsigned, 64> Vals; 3629 forEachModule( 3630 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3631 StringRef Key = MPSE.getKey(); 3632 const auto &Value = MPSE.getValue(); 3633 StringEncoding Bits = getStringEncoding(Key); 3634 unsigned AbbrevToUse = Abbrev8Bit; 3635 if (Bits == SE_Char6) 3636 AbbrevToUse = Abbrev6Bit; 3637 else if (Bits == SE_Fixed7) 3638 AbbrevToUse = Abbrev7Bit; 3639 3640 Vals.push_back(Value.first); 3641 Vals.append(Key.begin(), Key.end()); 3642 3643 // Emit the finished record. 3644 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3645 3646 // Emit an optional hash for the module now 3647 const auto &Hash = Value.second; 3648 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3649 Vals.assign(Hash.begin(), Hash.end()); 3650 // Emit the hash record. 3651 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3652 } 3653 3654 Vals.clear(); 3655 }); 3656 Stream.ExitBlock(); 3657 } 3658 3659 /// Write the function type metadata related records that need to appear before 3660 /// a function summary entry (whether per-module or combined). 3661 template <typename Fn> 3662 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3663 FunctionSummary *FS, 3664 Fn GetValueID) { 3665 if (!FS->type_tests().empty()) 3666 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3667 3668 SmallVector<uint64_t, 64> Record; 3669 3670 auto WriteVFuncIdVec = [&](uint64_t Ty, 3671 ArrayRef<FunctionSummary::VFuncId> VFs) { 3672 if (VFs.empty()) 3673 return; 3674 Record.clear(); 3675 for (auto &VF : VFs) { 3676 Record.push_back(VF.GUID); 3677 Record.push_back(VF.Offset); 3678 } 3679 Stream.EmitRecord(Ty, Record); 3680 }; 3681 3682 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3683 FS->type_test_assume_vcalls()); 3684 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3685 FS->type_checked_load_vcalls()); 3686 3687 auto WriteConstVCallVec = [&](uint64_t Ty, 3688 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3689 for (auto &VC : VCs) { 3690 Record.clear(); 3691 Record.push_back(VC.VFunc.GUID); 3692 Record.push_back(VC.VFunc.Offset); 3693 llvm::append_range(Record, VC.Args); 3694 Stream.EmitRecord(Ty, Record); 3695 } 3696 }; 3697 3698 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3699 FS->type_test_assume_const_vcalls()); 3700 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3701 FS->type_checked_load_const_vcalls()); 3702 3703 auto WriteRange = [&](ConstantRange Range) { 3704 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3705 assert(Range.getLower().getNumWords() == 1); 3706 assert(Range.getUpper().getNumWords() == 1); 3707 emitSignedInt64(Record, *Range.getLower().getRawData()); 3708 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3709 }; 3710 3711 if (!FS->paramAccesses().empty()) { 3712 Record.clear(); 3713 for (auto &Arg : FS->paramAccesses()) { 3714 size_t UndoSize = Record.size(); 3715 Record.push_back(Arg.ParamNo); 3716 WriteRange(Arg.Use); 3717 Record.push_back(Arg.Calls.size()); 3718 for (auto &Call : Arg.Calls) { 3719 Record.push_back(Call.ParamNo); 3720 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3721 if (!ValueID) { 3722 // If ValueID is unknown we can't drop just this call, we must drop 3723 // entire parameter. 3724 Record.resize(UndoSize); 3725 break; 3726 } 3727 Record.push_back(*ValueID); 3728 WriteRange(Call.Offsets); 3729 } 3730 } 3731 if (!Record.empty()) 3732 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3733 } 3734 } 3735 3736 /// Collect type IDs from type tests used by function. 3737 static void 3738 getReferencedTypeIds(FunctionSummary *FS, 3739 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3740 if (!FS->type_tests().empty()) 3741 for (auto &TT : FS->type_tests()) 3742 ReferencedTypeIds.insert(TT); 3743 3744 auto GetReferencedTypesFromVFuncIdVec = 3745 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3746 for (auto &VF : VFs) 3747 ReferencedTypeIds.insert(VF.GUID); 3748 }; 3749 3750 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3751 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3752 3753 auto GetReferencedTypesFromConstVCallVec = 3754 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3755 for (auto &VC : VCs) 3756 ReferencedTypeIds.insert(VC.VFunc.GUID); 3757 }; 3758 3759 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3760 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3761 } 3762 3763 static void writeWholeProgramDevirtResolutionByArg( 3764 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3765 const WholeProgramDevirtResolution::ByArg &ByArg) { 3766 NameVals.push_back(args.size()); 3767 llvm::append_range(NameVals, args); 3768 3769 NameVals.push_back(ByArg.TheKind); 3770 NameVals.push_back(ByArg.Info); 3771 NameVals.push_back(ByArg.Byte); 3772 NameVals.push_back(ByArg.Bit); 3773 } 3774 3775 static void writeWholeProgramDevirtResolution( 3776 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3777 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3778 NameVals.push_back(Id); 3779 3780 NameVals.push_back(Wpd.TheKind); 3781 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3782 NameVals.push_back(Wpd.SingleImplName.size()); 3783 3784 NameVals.push_back(Wpd.ResByArg.size()); 3785 for (auto &A : Wpd.ResByArg) 3786 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3787 } 3788 3789 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3790 StringTableBuilder &StrtabBuilder, 3791 const std::string &Id, 3792 const TypeIdSummary &Summary) { 3793 NameVals.push_back(StrtabBuilder.add(Id)); 3794 NameVals.push_back(Id.size()); 3795 3796 NameVals.push_back(Summary.TTRes.TheKind); 3797 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3798 NameVals.push_back(Summary.TTRes.AlignLog2); 3799 NameVals.push_back(Summary.TTRes.SizeM1); 3800 NameVals.push_back(Summary.TTRes.BitMask); 3801 NameVals.push_back(Summary.TTRes.InlineBits); 3802 3803 for (auto &W : Summary.WPDRes) 3804 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3805 W.second); 3806 } 3807 3808 static void writeTypeIdCompatibleVtableSummaryRecord( 3809 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3810 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3811 ValueEnumerator &VE) { 3812 NameVals.push_back(StrtabBuilder.add(Id)); 3813 NameVals.push_back(Id.size()); 3814 3815 for (auto &P : Summary) { 3816 NameVals.push_back(P.AddressPointOffset); 3817 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3818 } 3819 } 3820 3821 // Helper to emit a single function summary record. 3822 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3823 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3824 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3825 const Function &F) { 3826 NameVals.push_back(ValueID); 3827 3828 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3829 3830 writeFunctionTypeMetadataRecords( 3831 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3832 return {VE.getValueID(VI.getValue())}; 3833 }); 3834 3835 auto SpecialRefCnts = FS->specialRefCounts(); 3836 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3837 NameVals.push_back(FS->instCount()); 3838 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3839 NameVals.push_back(FS->refs().size()); 3840 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3841 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3842 3843 for (auto &RI : FS->refs()) 3844 NameVals.push_back(VE.getValueID(RI.getValue())); 3845 3846 bool HasProfileData = 3847 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3848 for (auto &ECI : FS->calls()) { 3849 NameVals.push_back(getValueId(ECI.first)); 3850 if (HasProfileData) 3851 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3852 else if (WriteRelBFToSummary) 3853 NameVals.push_back(ECI.second.RelBlockFreq); 3854 } 3855 3856 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3857 unsigned Code = 3858 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3859 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3860 : bitc::FS_PERMODULE)); 3861 3862 // Emit the finished record. 3863 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3864 NameVals.clear(); 3865 } 3866 3867 // Collect the global value references in the given variable's initializer, 3868 // and emit them in a summary record. 3869 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3870 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3871 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3872 auto VI = Index->getValueInfo(V.getGUID()); 3873 if (!VI || VI.getSummaryList().empty()) { 3874 // Only declarations should not have a summary (a declaration might however 3875 // have a summary if the def was in module level asm). 3876 assert(V.isDeclaration()); 3877 return; 3878 } 3879 auto *Summary = VI.getSummaryList()[0].get(); 3880 NameVals.push_back(VE.getValueID(&V)); 3881 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3882 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3883 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3884 3885 auto VTableFuncs = VS->vTableFuncs(); 3886 if (!VTableFuncs.empty()) 3887 NameVals.push_back(VS->refs().size()); 3888 3889 unsigned SizeBeforeRefs = NameVals.size(); 3890 for (auto &RI : VS->refs()) 3891 NameVals.push_back(VE.getValueID(RI.getValue())); 3892 // Sort the refs for determinism output, the vector returned by FS->refs() has 3893 // been initialized from a DenseSet. 3894 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3895 3896 if (VTableFuncs.empty()) 3897 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3898 FSModRefsAbbrev); 3899 else { 3900 // VTableFuncs pairs should already be sorted by offset. 3901 for (auto &P : VTableFuncs) { 3902 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3903 NameVals.push_back(P.VTableOffset); 3904 } 3905 3906 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3907 FSModVTableRefsAbbrev); 3908 } 3909 NameVals.clear(); 3910 } 3911 3912 /// Emit the per-module summary section alongside the rest of 3913 /// the module's bitcode. 3914 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3915 // By default we compile with ThinLTO if the module has a summary, but the 3916 // client can request full LTO with a module flag. 3917 bool IsThinLTO = true; 3918 if (auto *MD = 3919 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3920 IsThinLTO = MD->getZExtValue(); 3921 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3922 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3923 4); 3924 3925 Stream.EmitRecord( 3926 bitc::FS_VERSION, 3927 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3928 3929 // Write the index flags. 3930 uint64_t Flags = 0; 3931 // Bits 1-3 are set only in the combined index, skip them. 3932 if (Index->enableSplitLTOUnit()) 3933 Flags |= 0x8; 3934 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3935 3936 if (Index->begin() == Index->end()) { 3937 Stream.ExitBlock(); 3938 return; 3939 } 3940 3941 for (const auto &GVI : valueIds()) { 3942 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3943 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3944 } 3945 3946 // Abbrev for FS_PERMODULE_PROFILE. 3947 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3948 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3956 // numrefs x valueid, n x (valueid, hotness) 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3959 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3960 3961 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3962 Abbv = std::make_shared<BitCodeAbbrev>(); 3963 if (WriteRelBFToSummary) 3964 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3965 else 3966 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3974 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3977 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3978 3979 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3980 Abbv = std::make_shared<BitCodeAbbrev>(); 3981 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3986 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3987 3988 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3989 Abbv = std::make_shared<BitCodeAbbrev>(); 3990 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3994 // numrefs x valueid, n x (valueid , offset) 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3997 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3998 3999 // Abbrev for FS_ALIAS. 4000 Abbv = std::make_shared<BitCodeAbbrev>(); 4001 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4005 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4006 4007 // Abbrev for FS_TYPE_ID_METADATA 4008 Abbv = std::make_shared<BitCodeAbbrev>(); 4009 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4012 // n x (valueid , offset) 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4015 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4016 4017 SmallVector<uint64_t, 64> NameVals; 4018 // Iterate over the list of functions instead of the Index to 4019 // ensure the ordering is stable. 4020 for (const Function &F : M) { 4021 // Summary emission does not support anonymous functions, they have to 4022 // renamed using the anonymous function renaming pass. 4023 if (!F.hasName()) 4024 report_fatal_error("Unexpected anonymous function when writing summary"); 4025 4026 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4027 if (!VI || VI.getSummaryList().empty()) { 4028 // Only declarations should not have a summary (a declaration might 4029 // however have a summary if the def was in module level asm). 4030 assert(F.isDeclaration()); 4031 continue; 4032 } 4033 auto *Summary = VI.getSummaryList()[0].get(); 4034 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4035 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4036 } 4037 4038 // Capture references from GlobalVariable initializers, which are outside 4039 // of a function scope. 4040 for (const GlobalVariable &G : M.globals()) 4041 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4042 FSModVTableRefsAbbrev); 4043 4044 for (const GlobalAlias &A : M.aliases()) { 4045 auto *Aliasee = A.getAliaseeObject(); 4046 if (!Aliasee->hasName()) 4047 // Nameless function don't have an entry in the summary, skip it. 4048 continue; 4049 auto AliasId = VE.getValueID(&A); 4050 auto AliaseeId = VE.getValueID(Aliasee); 4051 NameVals.push_back(AliasId); 4052 auto *Summary = Index->getGlobalValueSummary(A); 4053 AliasSummary *AS = cast<AliasSummary>(Summary); 4054 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4055 NameVals.push_back(AliaseeId); 4056 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4057 NameVals.clear(); 4058 } 4059 4060 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4061 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4062 S.second, VE); 4063 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4064 TypeIdCompatibleVtableAbbrev); 4065 NameVals.clear(); 4066 } 4067 4068 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4069 ArrayRef<uint64_t>{Index->getBlockCount()}); 4070 4071 Stream.ExitBlock(); 4072 } 4073 4074 /// Emit the combined summary section into the combined index file. 4075 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4076 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4077 Stream.EmitRecord( 4078 bitc::FS_VERSION, 4079 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4080 4081 // Write the index flags. 4082 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4083 4084 for (const auto &GVI : valueIds()) { 4085 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4086 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4087 } 4088 4089 // Abbrev for FS_COMBINED. 4090 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4091 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4101 // numrefs x valueid, n x (valueid) 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4104 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4105 4106 // Abbrev for FS_COMBINED_PROFILE. 4107 Abbv = std::make_shared<BitCodeAbbrev>(); 4108 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4118 // numrefs x valueid, n x (valueid, hotness) 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4121 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4122 4123 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4124 Abbv = std::make_shared<BitCodeAbbrev>(); 4125 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4131 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4132 4133 // Abbrev for FS_COMBINED_ALIAS. 4134 Abbv = std::make_shared<BitCodeAbbrev>(); 4135 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4140 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4141 4142 // The aliases are emitted as a post-pass, and will point to the value 4143 // id of the aliasee. Save them in a vector for post-processing. 4144 SmallVector<AliasSummary *, 64> Aliases; 4145 4146 // Save the value id for each summary for alias emission. 4147 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4148 4149 SmallVector<uint64_t, 64> NameVals; 4150 4151 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4152 // with the type ids referenced by this index file. 4153 std::set<GlobalValue::GUID> ReferencedTypeIds; 4154 4155 // For local linkage, we also emit the original name separately 4156 // immediately after the record. 4157 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4158 // We don't need to emit the original name if we are writing the index for 4159 // distributed backends (in which case ModuleToSummariesForIndex is 4160 // non-null). The original name is only needed during the thin link, since 4161 // for SamplePGO the indirect call targets for local functions have 4162 // have the original name annotated in profile. 4163 // Continue to emit it when writing out the entire combined index, which is 4164 // used in testing the thin link via llvm-lto. 4165 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4166 return; 4167 NameVals.push_back(S.getOriginalName()); 4168 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4169 NameVals.clear(); 4170 }; 4171 4172 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4173 forEachSummary([&](GVInfo I, bool IsAliasee) { 4174 GlobalValueSummary *S = I.second; 4175 assert(S); 4176 DefOrUseGUIDs.insert(I.first); 4177 for (const ValueInfo &VI : S->refs()) 4178 DefOrUseGUIDs.insert(VI.getGUID()); 4179 4180 auto ValueId = getValueId(I.first); 4181 assert(ValueId); 4182 SummaryToValueIdMap[S] = *ValueId; 4183 4184 // If this is invoked for an aliasee, we want to record the above 4185 // mapping, but then not emit a summary entry (if the aliasee is 4186 // to be imported, we will invoke this separately with IsAliasee=false). 4187 if (IsAliasee) 4188 return; 4189 4190 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4191 // Will process aliases as a post-pass because the reader wants all 4192 // global to be loaded first. 4193 Aliases.push_back(AS); 4194 return; 4195 } 4196 4197 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4198 NameVals.push_back(*ValueId); 4199 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4200 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4201 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4202 for (auto &RI : VS->refs()) { 4203 auto RefValueId = getValueId(RI.getGUID()); 4204 if (!RefValueId) 4205 continue; 4206 NameVals.push_back(*RefValueId); 4207 } 4208 4209 // Emit the finished record. 4210 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4211 FSModRefsAbbrev); 4212 NameVals.clear(); 4213 MaybeEmitOriginalName(*S); 4214 return; 4215 } 4216 4217 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4218 return getValueId(VI.getGUID()); 4219 }; 4220 4221 auto *FS = cast<FunctionSummary>(S); 4222 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4223 getReferencedTypeIds(FS, ReferencedTypeIds); 4224 4225 NameVals.push_back(*ValueId); 4226 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4227 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4228 NameVals.push_back(FS->instCount()); 4229 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4230 NameVals.push_back(FS->entryCount()); 4231 4232 // Fill in below 4233 NameVals.push_back(0); // numrefs 4234 NameVals.push_back(0); // rorefcnt 4235 NameVals.push_back(0); // worefcnt 4236 4237 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4238 for (auto &RI : FS->refs()) { 4239 auto RefValueId = getValueId(RI.getGUID()); 4240 if (!RefValueId) 4241 continue; 4242 NameVals.push_back(*RefValueId); 4243 if (RI.isReadOnly()) 4244 RORefCnt++; 4245 else if (RI.isWriteOnly()) 4246 WORefCnt++; 4247 Count++; 4248 } 4249 NameVals[6] = Count; 4250 NameVals[7] = RORefCnt; 4251 NameVals[8] = WORefCnt; 4252 4253 bool HasProfileData = false; 4254 for (auto &EI : FS->calls()) { 4255 HasProfileData |= 4256 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4257 if (HasProfileData) 4258 break; 4259 } 4260 4261 for (auto &EI : FS->calls()) { 4262 // If this GUID doesn't have a value id, it doesn't have a function 4263 // summary and we don't need to record any calls to it. 4264 Optional<unsigned> CallValueId = GetValueId(EI.first); 4265 if (!CallValueId) 4266 continue; 4267 NameVals.push_back(*CallValueId); 4268 if (HasProfileData) 4269 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4270 } 4271 4272 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4273 unsigned Code = 4274 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4275 4276 // Emit the finished record. 4277 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4278 NameVals.clear(); 4279 MaybeEmitOriginalName(*S); 4280 }); 4281 4282 for (auto *AS : Aliases) { 4283 auto AliasValueId = SummaryToValueIdMap[AS]; 4284 assert(AliasValueId); 4285 NameVals.push_back(AliasValueId); 4286 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4287 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4288 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4289 assert(AliaseeValueId); 4290 NameVals.push_back(AliaseeValueId); 4291 4292 // Emit the finished record. 4293 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4294 NameVals.clear(); 4295 MaybeEmitOriginalName(*AS); 4296 4297 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4298 getReferencedTypeIds(FS, ReferencedTypeIds); 4299 } 4300 4301 if (!Index.cfiFunctionDefs().empty()) { 4302 for (auto &S : Index.cfiFunctionDefs()) { 4303 if (DefOrUseGUIDs.count( 4304 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4305 NameVals.push_back(StrtabBuilder.add(S)); 4306 NameVals.push_back(S.size()); 4307 } 4308 } 4309 if (!NameVals.empty()) { 4310 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4311 NameVals.clear(); 4312 } 4313 } 4314 4315 if (!Index.cfiFunctionDecls().empty()) { 4316 for (auto &S : Index.cfiFunctionDecls()) { 4317 if (DefOrUseGUIDs.count( 4318 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4319 NameVals.push_back(StrtabBuilder.add(S)); 4320 NameVals.push_back(S.size()); 4321 } 4322 } 4323 if (!NameVals.empty()) { 4324 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4325 NameVals.clear(); 4326 } 4327 } 4328 4329 // Walk the GUIDs that were referenced, and write the 4330 // corresponding type id records. 4331 for (auto &T : ReferencedTypeIds) { 4332 auto TidIter = Index.typeIds().equal_range(T); 4333 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4334 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4335 It->second.second); 4336 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4337 NameVals.clear(); 4338 } 4339 } 4340 4341 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4342 ArrayRef<uint64_t>{Index.getBlockCount()}); 4343 4344 Stream.ExitBlock(); 4345 } 4346 4347 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4348 /// current llvm version, and a record for the epoch number. 4349 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4350 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4351 4352 // Write the "user readable" string identifying the bitcode producer 4353 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4354 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4357 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4358 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4359 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4360 4361 // Write the epoch version 4362 Abbv = std::make_shared<BitCodeAbbrev>(); 4363 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4365 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4366 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4367 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4368 Stream.ExitBlock(); 4369 } 4370 4371 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4372 // Emit the module's hash. 4373 // MODULE_CODE_HASH: [5*i32] 4374 if (GenerateHash) { 4375 uint32_t Vals[5]; 4376 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4377 Buffer.size() - BlockStartPos)); 4378 StringRef Hash = Hasher.result(); 4379 for (int Pos = 0; Pos < 20; Pos += 4) { 4380 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4381 } 4382 4383 // Emit the finished record. 4384 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4385 4386 if (ModHash) 4387 // Save the written hash value. 4388 llvm::copy(Vals, std::begin(*ModHash)); 4389 } 4390 } 4391 4392 void ModuleBitcodeWriter::write() { 4393 writeIdentificationBlock(Stream); 4394 4395 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4396 size_t BlockStartPos = Buffer.size(); 4397 4398 writeModuleVersion(); 4399 4400 // Emit blockinfo, which defines the standard abbreviations etc. 4401 writeBlockInfo(); 4402 4403 // Emit information describing all of the types in the module. 4404 writeTypeTable(); 4405 4406 // Emit information about attribute groups. 4407 writeAttributeGroupTable(); 4408 4409 // Emit information about parameter attributes. 4410 writeAttributeTable(); 4411 4412 writeComdats(); 4413 4414 // Emit top-level description of module, including target triple, inline asm, 4415 // descriptors for global variables, and function prototype info. 4416 writeModuleInfo(); 4417 4418 // Emit constants. 4419 writeModuleConstants(); 4420 4421 // Emit metadata kind names. 4422 writeModuleMetadataKinds(); 4423 4424 // Emit metadata. 4425 writeModuleMetadata(); 4426 4427 // Emit module-level use-lists. 4428 if (VE.shouldPreserveUseListOrder()) 4429 writeUseListBlock(nullptr); 4430 4431 writeOperandBundleTags(); 4432 writeSyncScopeNames(); 4433 4434 // Emit function bodies. 4435 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4436 for (const Function &F : M) 4437 if (!F.isDeclaration()) 4438 writeFunction(F, FunctionToBitcodeIndex); 4439 4440 // Need to write after the above call to WriteFunction which populates 4441 // the summary information in the index. 4442 if (Index) 4443 writePerModuleGlobalValueSummary(); 4444 4445 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4446 4447 writeModuleHash(BlockStartPos); 4448 4449 Stream.ExitBlock(); 4450 } 4451 4452 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4453 uint32_t &Position) { 4454 support::endian::write32le(&Buffer[Position], Value); 4455 Position += 4; 4456 } 4457 4458 /// If generating a bc file on darwin, we have to emit a 4459 /// header and trailer to make it compatible with the system archiver. To do 4460 /// this we emit the following header, and then emit a trailer that pads the 4461 /// file out to be a multiple of 16 bytes. 4462 /// 4463 /// struct bc_header { 4464 /// uint32_t Magic; // 0x0B17C0DE 4465 /// uint32_t Version; // Version, currently always 0. 4466 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4467 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4468 /// uint32_t CPUType; // CPU specifier. 4469 /// ... potentially more later ... 4470 /// }; 4471 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4472 const Triple &TT) { 4473 unsigned CPUType = ~0U; 4474 4475 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4476 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4477 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4478 // specific constants here because they are implicitly part of the Darwin ABI. 4479 enum { 4480 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4481 DARWIN_CPU_TYPE_X86 = 7, 4482 DARWIN_CPU_TYPE_ARM = 12, 4483 DARWIN_CPU_TYPE_POWERPC = 18 4484 }; 4485 4486 Triple::ArchType Arch = TT.getArch(); 4487 if (Arch == Triple::x86_64) 4488 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4489 else if (Arch == Triple::x86) 4490 CPUType = DARWIN_CPU_TYPE_X86; 4491 else if (Arch == Triple::ppc) 4492 CPUType = DARWIN_CPU_TYPE_POWERPC; 4493 else if (Arch == Triple::ppc64) 4494 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4495 else if (Arch == Triple::arm || Arch == Triple::thumb) 4496 CPUType = DARWIN_CPU_TYPE_ARM; 4497 4498 // Traditional Bitcode starts after header. 4499 assert(Buffer.size() >= BWH_HeaderSize && 4500 "Expected header size to be reserved"); 4501 unsigned BCOffset = BWH_HeaderSize; 4502 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4503 4504 // Write the magic and version. 4505 unsigned Position = 0; 4506 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4507 writeInt32ToBuffer(0, Buffer, Position); // Version. 4508 writeInt32ToBuffer(BCOffset, Buffer, Position); 4509 writeInt32ToBuffer(BCSize, Buffer, Position); 4510 writeInt32ToBuffer(CPUType, Buffer, Position); 4511 4512 // If the file is not a multiple of 16 bytes, insert dummy padding. 4513 while (Buffer.size() & 15) 4514 Buffer.push_back(0); 4515 } 4516 4517 /// Helper to write the header common to all bitcode files. 4518 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4519 // Emit the file header. 4520 Stream.Emit((unsigned)'B', 8); 4521 Stream.Emit((unsigned)'C', 8); 4522 Stream.Emit(0x0, 4); 4523 Stream.Emit(0xC, 4); 4524 Stream.Emit(0xE, 4); 4525 Stream.Emit(0xD, 4); 4526 } 4527 4528 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4529 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4530 writeBitcodeHeader(*Stream); 4531 } 4532 4533 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4534 4535 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4536 Stream->EnterSubblock(Block, 3); 4537 4538 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4539 Abbv->Add(BitCodeAbbrevOp(Record)); 4540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4541 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4542 4543 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4544 4545 Stream->ExitBlock(); 4546 } 4547 4548 void BitcodeWriter::writeSymtab() { 4549 assert(!WroteStrtab && !WroteSymtab); 4550 4551 // If any module has module-level inline asm, we will require a registered asm 4552 // parser for the target so that we can create an accurate symbol table for 4553 // the module. 4554 for (Module *M : Mods) { 4555 if (M->getModuleInlineAsm().empty()) 4556 continue; 4557 4558 std::string Err; 4559 const Triple TT(M->getTargetTriple()); 4560 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4561 if (!T || !T->hasMCAsmParser()) 4562 return; 4563 } 4564 4565 WroteSymtab = true; 4566 SmallVector<char, 0> Symtab; 4567 // The irsymtab::build function may be unable to create a symbol table if the 4568 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4569 // table is not required for correctness, but we still want to be able to 4570 // write malformed modules to bitcode files, so swallow the error. 4571 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4572 consumeError(std::move(E)); 4573 return; 4574 } 4575 4576 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4577 {Symtab.data(), Symtab.size()}); 4578 } 4579 4580 void BitcodeWriter::writeStrtab() { 4581 assert(!WroteStrtab); 4582 4583 std::vector<char> Strtab; 4584 StrtabBuilder.finalizeInOrder(); 4585 Strtab.resize(StrtabBuilder.getSize()); 4586 StrtabBuilder.write((uint8_t *)Strtab.data()); 4587 4588 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4589 {Strtab.data(), Strtab.size()}); 4590 4591 WroteStrtab = true; 4592 } 4593 4594 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4595 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4596 WroteStrtab = true; 4597 } 4598 4599 void BitcodeWriter::writeModule(const Module &M, 4600 bool ShouldPreserveUseListOrder, 4601 const ModuleSummaryIndex *Index, 4602 bool GenerateHash, ModuleHash *ModHash) { 4603 assert(!WroteStrtab); 4604 4605 // The Mods vector is used by irsymtab::build, which requires non-const 4606 // Modules in case it needs to materialize metadata. But the bitcode writer 4607 // requires that the module is materialized, so we can cast to non-const here, 4608 // after checking that it is in fact materialized. 4609 assert(M.isMaterialized()); 4610 Mods.push_back(const_cast<Module *>(&M)); 4611 4612 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4613 ShouldPreserveUseListOrder, Index, 4614 GenerateHash, ModHash); 4615 ModuleWriter.write(); 4616 } 4617 4618 void BitcodeWriter::writeIndex( 4619 const ModuleSummaryIndex *Index, 4620 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4621 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4622 ModuleToSummariesForIndex); 4623 IndexWriter.write(); 4624 } 4625 4626 /// Write the specified module to the specified output stream. 4627 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4628 bool ShouldPreserveUseListOrder, 4629 const ModuleSummaryIndex *Index, 4630 bool GenerateHash, ModuleHash *ModHash) { 4631 SmallVector<char, 0> Buffer; 4632 Buffer.reserve(256*1024); 4633 4634 // If this is darwin or another generic macho target, reserve space for the 4635 // header. 4636 Triple TT(M.getTargetTriple()); 4637 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4638 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4639 4640 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4641 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4642 ModHash); 4643 Writer.writeSymtab(); 4644 Writer.writeStrtab(); 4645 4646 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4647 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4648 4649 // Write the generated bitstream to "Out". 4650 if (!Buffer.empty()) 4651 Out.write((char *)&Buffer.front(), Buffer.size()); 4652 } 4653 4654 void IndexBitcodeWriter::write() { 4655 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4656 4657 writeModuleVersion(); 4658 4659 // Write the module paths in the combined index. 4660 writeModStrings(); 4661 4662 // Write the summary combined index records. 4663 writeCombinedGlobalValueSummary(); 4664 4665 Stream.ExitBlock(); 4666 } 4667 4668 // Write the specified module summary index to the given raw output stream, 4669 // where it will be written in a new bitcode block. This is used when 4670 // writing the combined index file for ThinLTO. When writing a subset of the 4671 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4672 void llvm::writeIndexToFile( 4673 const ModuleSummaryIndex &Index, raw_ostream &Out, 4674 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4675 SmallVector<char, 0> Buffer; 4676 Buffer.reserve(256 * 1024); 4677 4678 BitcodeWriter Writer(Buffer); 4679 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4680 Writer.writeStrtab(); 4681 4682 Out.write((char *)&Buffer.front(), Buffer.size()); 4683 } 4684 4685 namespace { 4686 4687 /// Class to manage the bitcode writing for a thin link bitcode file. 4688 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4689 /// ModHash is for use in ThinLTO incremental build, generated while writing 4690 /// the module bitcode file. 4691 const ModuleHash *ModHash; 4692 4693 public: 4694 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4695 BitstreamWriter &Stream, 4696 const ModuleSummaryIndex &Index, 4697 const ModuleHash &ModHash) 4698 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4699 /*ShouldPreserveUseListOrder=*/false, &Index), 4700 ModHash(&ModHash) {} 4701 4702 void write(); 4703 4704 private: 4705 void writeSimplifiedModuleInfo(); 4706 }; 4707 4708 } // end anonymous namespace 4709 4710 // This function writes a simpilified module info for thin link bitcode file. 4711 // It only contains the source file name along with the name(the offset and 4712 // size in strtab) and linkage for global values. For the global value info 4713 // entry, in order to keep linkage at offset 5, there are three zeros used 4714 // as padding. 4715 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4716 SmallVector<unsigned, 64> Vals; 4717 // Emit the module's source file name. 4718 { 4719 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4720 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4721 if (Bits == SE_Char6) 4722 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4723 else if (Bits == SE_Fixed7) 4724 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4725 4726 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4727 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4728 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4730 Abbv->Add(AbbrevOpToUse); 4731 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4732 4733 for (const auto P : M.getSourceFileName()) 4734 Vals.push_back((unsigned char)P); 4735 4736 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4737 Vals.clear(); 4738 } 4739 4740 // Emit the global variable information. 4741 for (const GlobalVariable &GV : M.globals()) { 4742 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4743 Vals.push_back(StrtabBuilder.add(GV.getName())); 4744 Vals.push_back(GV.getName().size()); 4745 Vals.push_back(0); 4746 Vals.push_back(0); 4747 Vals.push_back(0); 4748 Vals.push_back(getEncodedLinkage(GV)); 4749 4750 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4751 Vals.clear(); 4752 } 4753 4754 // Emit the function proto information. 4755 for (const Function &F : M) { 4756 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4757 Vals.push_back(StrtabBuilder.add(F.getName())); 4758 Vals.push_back(F.getName().size()); 4759 Vals.push_back(0); 4760 Vals.push_back(0); 4761 Vals.push_back(0); 4762 Vals.push_back(getEncodedLinkage(F)); 4763 4764 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4765 Vals.clear(); 4766 } 4767 4768 // Emit the alias information. 4769 for (const GlobalAlias &A : M.aliases()) { 4770 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4771 Vals.push_back(StrtabBuilder.add(A.getName())); 4772 Vals.push_back(A.getName().size()); 4773 Vals.push_back(0); 4774 Vals.push_back(0); 4775 Vals.push_back(0); 4776 Vals.push_back(getEncodedLinkage(A)); 4777 4778 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4779 Vals.clear(); 4780 } 4781 4782 // Emit the ifunc information. 4783 for (const GlobalIFunc &I : M.ifuncs()) { 4784 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4785 Vals.push_back(StrtabBuilder.add(I.getName())); 4786 Vals.push_back(I.getName().size()); 4787 Vals.push_back(0); 4788 Vals.push_back(0); 4789 Vals.push_back(0); 4790 Vals.push_back(getEncodedLinkage(I)); 4791 4792 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4793 Vals.clear(); 4794 } 4795 } 4796 4797 void ThinLinkBitcodeWriter::write() { 4798 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4799 4800 writeModuleVersion(); 4801 4802 writeSimplifiedModuleInfo(); 4803 4804 writePerModuleGlobalValueSummary(); 4805 4806 // Write module hash. 4807 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4808 4809 Stream.ExitBlock(); 4810 } 4811 4812 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4813 const ModuleSummaryIndex &Index, 4814 const ModuleHash &ModHash) { 4815 assert(!WroteStrtab); 4816 4817 // The Mods vector is used by irsymtab::build, which requires non-const 4818 // Modules in case it needs to materialize metadata. But the bitcode writer 4819 // requires that the module is materialized, so we can cast to non-const here, 4820 // after checking that it is in fact materialized. 4821 assert(M.isMaterialized()); 4822 Mods.push_back(const_cast<Module *>(&M)); 4823 4824 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4825 ModHash); 4826 ThinLinkWriter.write(); 4827 } 4828 4829 // Write the specified thin link bitcode file to the given raw output stream, 4830 // where it will be written in a new bitcode block. This is used when 4831 // writing the per-module index file for ThinLTO. 4832 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4833 const ModuleSummaryIndex &Index, 4834 const ModuleHash &ModHash) { 4835 SmallVector<char, 0> Buffer; 4836 Buffer.reserve(256 * 1024); 4837 4838 BitcodeWriter Writer(Buffer); 4839 Writer.writeThinLinkBitcode(M, Index, ModHash); 4840 Writer.writeSymtab(); 4841 Writer.writeStrtab(); 4842 4843 Out.write((char *)&Buffer.front(), Buffer.size()); 4844 } 4845 4846 static const char *getSectionNameForBitcode(const Triple &T) { 4847 switch (T.getObjectFormat()) { 4848 case Triple::MachO: 4849 return "__LLVM,__bitcode"; 4850 case Triple::COFF: 4851 case Triple::ELF: 4852 case Triple::Wasm: 4853 case Triple::UnknownObjectFormat: 4854 return ".llvmbc"; 4855 case Triple::GOFF: 4856 llvm_unreachable("GOFF is not yet implemented"); 4857 break; 4858 case Triple::XCOFF: 4859 llvm_unreachable("XCOFF is not yet implemented"); 4860 break; 4861 } 4862 llvm_unreachable("Unimplemented ObjectFormatType"); 4863 } 4864 4865 static const char *getSectionNameForCommandline(const Triple &T) { 4866 switch (T.getObjectFormat()) { 4867 case Triple::MachO: 4868 return "__LLVM,__cmdline"; 4869 case Triple::COFF: 4870 case Triple::ELF: 4871 case Triple::Wasm: 4872 case Triple::UnknownObjectFormat: 4873 return ".llvmcmd"; 4874 case Triple::GOFF: 4875 llvm_unreachable("GOFF is not yet implemented"); 4876 break; 4877 case Triple::XCOFF: 4878 llvm_unreachable("XCOFF is not yet implemented"); 4879 break; 4880 } 4881 llvm_unreachable("Unimplemented ObjectFormatType"); 4882 } 4883 4884 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4885 bool EmbedBitcode, bool EmbedCmdline, 4886 const std::vector<uint8_t> &CmdArgs) { 4887 // Save llvm.compiler.used and remove it. 4888 SmallVector<Constant *, 2> UsedArray; 4889 SmallVector<GlobalValue *, 4> UsedGlobals; 4890 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4891 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4892 for (auto *GV : UsedGlobals) { 4893 if (GV->getName() != "llvm.embedded.module" && 4894 GV->getName() != "llvm.cmdline") 4895 UsedArray.push_back( 4896 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4897 } 4898 if (Used) 4899 Used->eraseFromParent(); 4900 4901 // Embed the bitcode for the llvm module. 4902 std::string Data; 4903 ArrayRef<uint8_t> ModuleData; 4904 Triple T(M.getTargetTriple()); 4905 4906 if (EmbedBitcode) { 4907 if (Buf.getBufferSize() == 0 || 4908 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4909 (const unsigned char *)Buf.getBufferEnd())) { 4910 // If the input is LLVM Assembly, bitcode is produced by serializing 4911 // the module. Use-lists order need to be preserved in this case. 4912 llvm::raw_string_ostream OS(Data); 4913 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4914 ModuleData = 4915 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4916 } else 4917 // If the input is LLVM bitcode, write the input byte stream directly. 4918 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4919 Buf.getBufferSize()); 4920 } 4921 llvm::Constant *ModuleConstant = 4922 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4923 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4924 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4925 ModuleConstant); 4926 GV->setSection(getSectionNameForBitcode(T)); 4927 // Set alignment to 1 to prevent padding between two contributions from input 4928 // sections after linking. 4929 GV->setAlignment(Align(1)); 4930 UsedArray.push_back( 4931 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4932 if (llvm::GlobalVariable *Old = 4933 M.getGlobalVariable("llvm.embedded.module", true)) { 4934 assert(Old->hasOneUse() && 4935 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4936 GV->takeName(Old); 4937 Old->eraseFromParent(); 4938 } else { 4939 GV->setName("llvm.embedded.module"); 4940 } 4941 4942 // Skip if only bitcode needs to be embedded. 4943 if (EmbedCmdline) { 4944 // Embed command-line options. 4945 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4946 CmdArgs.size()); 4947 llvm::Constant *CmdConstant = 4948 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4949 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4950 llvm::GlobalValue::PrivateLinkage, 4951 CmdConstant); 4952 GV->setSection(getSectionNameForCommandline(T)); 4953 GV->setAlignment(Align(1)); 4954 UsedArray.push_back( 4955 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4956 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4957 assert(Old->hasOneUse() && 4958 "llvm.cmdline can only be used once in llvm.compiler.used"); 4959 GV->takeName(Old); 4960 Old->eraseFromParent(); 4961 } else { 4962 GV->setName("llvm.cmdline"); 4963 } 4964 } 4965 4966 if (UsedArray.empty()) 4967 return; 4968 4969 // Recreate llvm.compiler.used. 4970 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4971 auto *NewUsed = new GlobalVariable( 4972 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4973 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4974 NewUsed->setSection("llvm.metadata"); 4975 } 4976