1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 964 return Flags; 965 } 966 967 /// Decode the flags for GlobalValue in the summary. 968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 969 uint64_t Version) { 970 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 971 // like getDecodedLinkage() above. Any future change to the linkage enum and 972 // to getDecodedLinkage() will need to be taken into account here as above. 973 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 974 RawFlags = RawFlags >> 4; 975 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 976 // The Live flag wasn't introduced until version 3. For dead stripping 977 // to work correctly on earlier versions, we must conservatively treat all 978 // values as live. 979 bool Live = (RawFlags & 0x2) || Version < 3; 980 bool Local = (RawFlags & 0x4); 981 bool AutoHide = (RawFlags & 0x8); 982 983 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 984 } 985 986 // Decode the flags for GlobalVariable in the summary 987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 988 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false, 989 (RawFlags & 0x2) ? true : false); 990 } 991 992 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 993 switch (Val) { 994 default: // Map unknown visibilities to default. 995 case 0: return GlobalValue::DefaultVisibility; 996 case 1: return GlobalValue::HiddenVisibility; 997 case 2: return GlobalValue::ProtectedVisibility; 998 } 999 } 1000 1001 static GlobalValue::DLLStorageClassTypes 1002 getDecodedDLLStorageClass(unsigned Val) { 1003 switch (Val) { 1004 default: // Map unknown values to default. 1005 case 0: return GlobalValue::DefaultStorageClass; 1006 case 1: return GlobalValue::DLLImportStorageClass; 1007 case 2: return GlobalValue::DLLExportStorageClass; 1008 } 1009 } 1010 1011 static bool getDecodedDSOLocal(unsigned Val) { 1012 switch(Val) { 1013 default: // Map unknown values to preemptable. 1014 case 0: return false; 1015 case 1: return true; 1016 } 1017 } 1018 1019 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1020 switch (Val) { 1021 case 0: return GlobalVariable::NotThreadLocal; 1022 default: // Map unknown non-zero value to general dynamic. 1023 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1024 case 2: return GlobalVariable::LocalDynamicTLSModel; 1025 case 3: return GlobalVariable::InitialExecTLSModel; 1026 case 4: return GlobalVariable::LocalExecTLSModel; 1027 } 1028 } 1029 1030 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1031 switch (Val) { 1032 default: // Map unknown to UnnamedAddr::None. 1033 case 0: return GlobalVariable::UnnamedAddr::None; 1034 case 1: return GlobalVariable::UnnamedAddr::Global; 1035 case 2: return GlobalVariable::UnnamedAddr::Local; 1036 } 1037 } 1038 1039 static int getDecodedCastOpcode(unsigned Val) { 1040 switch (Val) { 1041 default: return -1; 1042 case bitc::CAST_TRUNC : return Instruction::Trunc; 1043 case bitc::CAST_ZEXT : return Instruction::ZExt; 1044 case bitc::CAST_SEXT : return Instruction::SExt; 1045 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1046 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1047 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1048 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1049 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1050 case bitc::CAST_FPEXT : return Instruction::FPExt; 1051 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1052 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1053 case bitc::CAST_BITCAST : return Instruction::BitCast; 1054 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1055 } 1056 } 1057 1058 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1059 bool IsFP = Ty->isFPOrFPVectorTy(); 1060 // UnOps are only valid for int/fp or vector of int/fp types 1061 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1062 return -1; 1063 1064 switch (Val) { 1065 default: 1066 return -1; 1067 case bitc::UNOP_FNEG: 1068 return IsFP ? Instruction::FNeg : -1; 1069 } 1070 } 1071 1072 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1073 bool IsFP = Ty->isFPOrFPVectorTy(); 1074 // BinOps are only valid for int/fp or vector of int/fp types 1075 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1076 return -1; 1077 1078 switch (Val) { 1079 default: 1080 return -1; 1081 case bitc::BINOP_ADD: 1082 return IsFP ? Instruction::FAdd : Instruction::Add; 1083 case bitc::BINOP_SUB: 1084 return IsFP ? Instruction::FSub : Instruction::Sub; 1085 case bitc::BINOP_MUL: 1086 return IsFP ? Instruction::FMul : Instruction::Mul; 1087 case bitc::BINOP_UDIV: 1088 return IsFP ? -1 : Instruction::UDiv; 1089 case bitc::BINOP_SDIV: 1090 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1091 case bitc::BINOP_UREM: 1092 return IsFP ? -1 : Instruction::URem; 1093 case bitc::BINOP_SREM: 1094 return IsFP ? Instruction::FRem : Instruction::SRem; 1095 case bitc::BINOP_SHL: 1096 return IsFP ? -1 : Instruction::Shl; 1097 case bitc::BINOP_LSHR: 1098 return IsFP ? -1 : Instruction::LShr; 1099 case bitc::BINOP_ASHR: 1100 return IsFP ? -1 : Instruction::AShr; 1101 case bitc::BINOP_AND: 1102 return IsFP ? -1 : Instruction::And; 1103 case bitc::BINOP_OR: 1104 return IsFP ? -1 : Instruction::Or; 1105 case bitc::BINOP_XOR: 1106 return IsFP ? -1 : Instruction::Xor; 1107 } 1108 } 1109 1110 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1111 switch (Val) { 1112 default: return AtomicRMWInst::BAD_BINOP; 1113 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1114 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1115 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1116 case bitc::RMW_AND: return AtomicRMWInst::And; 1117 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1118 case bitc::RMW_OR: return AtomicRMWInst::Or; 1119 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1120 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1121 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1122 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1123 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1124 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1125 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1126 } 1127 } 1128 1129 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1130 switch (Val) { 1131 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1132 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1133 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1134 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1135 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1136 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1137 default: // Map unknown orderings to sequentially-consistent. 1138 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1139 } 1140 } 1141 1142 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1143 switch (Val) { 1144 default: // Map unknown selection kinds to any. 1145 case bitc::COMDAT_SELECTION_KIND_ANY: 1146 return Comdat::Any; 1147 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1148 return Comdat::ExactMatch; 1149 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1150 return Comdat::Largest; 1151 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1152 return Comdat::NoDuplicates; 1153 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1154 return Comdat::SameSize; 1155 } 1156 } 1157 1158 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1159 FastMathFlags FMF; 1160 if (0 != (Val & bitc::UnsafeAlgebra)) 1161 FMF.setFast(); 1162 if (0 != (Val & bitc::AllowReassoc)) 1163 FMF.setAllowReassoc(); 1164 if (0 != (Val & bitc::NoNaNs)) 1165 FMF.setNoNaNs(); 1166 if (0 != (Val & bitc::NoInfs)) 1167 FMF.setNoInfs(); 1168 if (0 != (Val & bitc::NoSignedZeros)) 1169 FMF.setNoSignedZeros(); 1170 if (0 != (Val & bitc::AllowReciprocal)) 1171 FMF.setAllowReciprocal(); 1172 if (0 != (Val & bitc::AllowContract)) 1173 FMF.setAllowContract(true); 1174 if (0 != (Val & bitc::ApproxFunc)) 1175 FMF.setApproxFunc(); 1176 return FMF; 1177 } 1178 1179 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1180 switch (Val) { 1181 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1182 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1183 } 1184 } 1185 1186 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1187 // The type table size is always specified correctly. 1188 if (ID >= TypeList.size()) 1189 return nullptr; 1190 1191 if (Type *Ty = TypeList[ID]) 1192 return Ty; 1193 1194 // If we have a forward reference, the only possible case is when it is to a 1195 // named struct. Just create a placeholder for now. 1196 return TypeList[ID] = createIdentifiedStructType(Context); 1197 } 1198 1199 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1200 StringRef Name) { 1201 auto *Ret = StructType::create(Context, Name); 1202 IdentifiedStructTypes.push_back(Ret); 1203 return Ret; 1204 } 1205 1206 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1207 auto *Ret = StructType::create(Context); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 //===----------------------------------------------------------------------===// 1213 // Functions for parsing blocks from the bitcode file 1214 //===----------------------------------------------------------------------===// 1215 1216 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1217 switch (Val) { 1218 case Attribute::EndAttrKinds: 1219 llvm_unreachable("Synthetic enumerators which should never get here"); 1220 1221 case Attribute::None: return 0; 1222 case Attribute::ZExt: return 1 << 0; 1223 case Attribute::SExt: return 1 << 1; 1224 case Attribute::NoReturn: return 1 << 2; 1225 case Attribute::InReg: return 1 << 3; 1226 case Attribute::StructRet: return 1 << 4; 1227 case Attribute::NoUnwind: return 1 << 5; 1228 case Attribute::NoAlias: return 1 << 6; 1229 case Attribute::ByVal: return 1 << 7; 1230 case Attribute::Nest: return 1 << 8; 1231 case Attribute::ReadNone: return 1 << 9; 1232 case Attribute::ReadOnly: return 1 << 10; 1233 case Attribute::NoInline: return 1 << 11; 1234 case Attribute::AlwaysInline: return 1 << 12; 1235 case Attribute::OptimizeForSize: return 1 << 13; 1236 case Attribute::StackProtect: return 1 << 14; 1237 case Attribute::StackProtectReq: return 1 << 15; 1238 case Attribute::Alignment: return 31 << 16; 1239 case Attribute::NoCapture: return 1 << 21; 1240 case Attribute::NoRedZone: return 1 << 22; 1241 case Attribute::NoImplicitFloat: return 1 << 23; 1242 case Attribute::Naked: return 1 << 24; 1243 case Attribute::InlineHint: return 1 << 25; 1244 case Attribute::StackAlignment: return 7 << 26; 1245 case Attribute::ReturnsTwice: return 1 << 29; 1246 case Attribute::UWTable: return 1 << 30; 1247 case Attribute::NonLazyBind: return 1U << 31; 1248 case Attribute::SanitizeAddress: return 1ULL << 32; 1249 case Attribute::MinSize: return 1ULL << 33; 1250 case Attribute::NoDuplicate: return 1ULL << 34; 1251 case Attribute::StackProtectStrong: return 1ULL << 35; 1252 case Attribute::SanitizeThread: return 1ULL << 36; 1253 case Attribute::SanitizeMemory: return 1ULL << 37; 1254 case Attribute::NoBuiltin: return 1ULL << 38; 1255 case Attribute::Returned: return 1ULL << 39; 1256 case Attribute::Cold: return 1ULL << 40; 1257 case Attribute::Builtin: return 1ULL << 41; 1258 case Attribute::OptimizeNone: return 1ULL << 42; 1259 case Attribute::InAlloca: return 1ULL << 43; 1260 case Attribute::NonNull: return 1ULL << 44; 1261 case Attribute::JumpTable: return 1ULL << 45; 1262 case Attribute::Convergent: return 1ULL << 46; 1263 case Attribute::SafeStack: return 1ULL << 47; 1264 case Attribute::NoRecurse: return 1ULL << 48; 1265 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1266 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1267 case Attribute::SwiftSelf: return 1ULL << 51; 1268 case Attribute::SwiftError: return 1ULL << 52; 1269 case Attribute::WriteOnly: return 1ULL << 53; 1270 case Attribute::Speculatable: return 1ULL << 54; 1271 case Attribute::StrictFP: return 1ULL << 55; 1272 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1273 case Attribute::NoCfCheck: return 1ULL << 57; 1274 case Attribute::OptForFuzzing: return 1ULL << 58; 1275 case Attribute::ShadowCallStack: return 1ULL << 59; 1276 case Attribute::SpeculativeLoadHardening: 1277 return 1ULL << 60; 1278 case Attribute::ImmArg: 1279 return 1ULL << 61; 1280 case Attribute::WillReturn: 1281 return 1ULL << 62; 1282 case Attribute::NoFree: 1283 return 1ULL << 63; 1284 case Attribute::NoSync: 1285 llvm_unreachable("nosync attribute not supported in raw format"); 1286 break; 1287 case Attribute::Dereferenceable: 1288 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1289 break; 1290 case Attribute::DereferenceableOrNull: 1291 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1292 "format"); 1293 break; 1294 case Attribute::ArgMemOnly: 1295 llvm_unreachable("argmemonly attribute not supported in raw format"); 1296 break; 1297 case Attribute::AllocSize: 1298 llvm_unreachable("allocsize not supported in raw format"); 1299 break; 1300 case Attribute::SanitizeMemTag: 1301 llvm_unreachable("sanitize_memtag attribute not supported in raw format"); 1302 break; 1303 } 1304 llvm_unreachable("Unsupported attribute type"); 1305 } 1306 1307 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1308 if (!Val) return; 1309 1310 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1311 I = Attribute::AttrKind(I + 1)) { 1312 if (I == Attribute::SanitizeMemTag || 1313 I == Attribute::Dereferenceable || 1314 I == Attribute::DereferenceableOrNull || 1315 I == Attribute::ArgMemOnly || 1316 I == Attribute::AllocSize || 1317 I == Attribute::NoSync) 1318 continue; 1319 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1320 if (I == Attribute::Alignment) 1321 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1322 else if (I == Attribute::StackAlignment) 1323 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1324 else 1325 B.addAttribute(I); 1326 } 1327 } 1328 } 1329 1330 /// This fills an AttrBuilder object with the LLVM attributes that have 1331 /// been decoded from the given integer. This function must stay in sync with 1332 /// 'encodeLLVMAttributesForBitcode'. 1333 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1334 uint64_t EncodedAttrs) { 1335 // FIXME: Remove in 4.0. 1336 1337 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1338 // the bits above 31 down by 11 bits. 1339 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1340 assert((!Alignment || isPowerOf2_32(Alignment)) && 1341 "Alignment must be a power of two."); 1342 1343 if (Alignment) 1344 B.addAlignmentAttr(Alignment); 1345 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1346 (EncodedAttrs & 0xffff)); 1347 } 1348 1349 Error BitcodeReader::parseAttributeBlock() { 1350 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1351 return Err; 1352 1353 if (!MAttributes.empty()) 1354 return error("Invalid multiple blocks"); 1355 1356 SmallVector<uint64_t, 64> Record; 1357 1358 SmallVector<AttributeList, 8> Attrs; 1359 1360 // Read all the records. 1361 while (true) { 1362 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1363 if (!MaybeEntry) 1364 return MaybeEntry.takeError(); 1365 BitstreamEntry Entry = MaybeEntry.get(); 1366 1367 switch (Entry.Kind) { 1368 case BitstreamEntry::SubBlock: // Handled for us already. 1369 case BitstreamEntry::Error: 1370 return error("Malformed block"); 1371 case BitstreamEntry::EndBlock: 1372 return Error::success(); 1373 case BitstreamEntry::Record: 1374 // The interesting case. 1375 break; 1376 } 1377 1378 // Read a record. 1379 Record.clear(); 1380 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1381 if (!MaybeRecord) 1382 return MaybeRecord.takeError(); 1383 switch (MaybeRecord.get()) { 1384 default: // Default behavior: ignore. 1385 break; 1386 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1387 // FIXME: Remove in 4.0. 1388 if (Record.size() & 1) 1389 return error("Invalid record"); 1390 1391 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1392 AttrBuilder B; 1393 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1394 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1395 } 1396 1397 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1398 Attrs.clear(); 1399 break; 1400 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1401 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1402 Attrs.push_back(MAttributeGroups[Record[i]]); 1403 1404 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1405 Attrs.clear(); 1406 break; 1407 } 1408 } 1409 } 1410 1411 // Returns Attribute::None on unrecognized codes. 1412 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1413 switch (Code) { 1414 default: 1415 return Attribute::None; 1416 case bitc::ATTR_KIND_ALIGNMENT: 1417 return Attribute::Alignment; 1418 case bitc::ATTR_KIND_ALWAYS_INLINE: 1419 return Attribute::AlwaysInline; 1420 case bitc::ATTR_KIND_ARGMEMONLY: 1421 return Attribute::ArgMemOnly; 1422 case bitc::ATTR_KIND_BUILTIN: 1423 return Attribute::Builtin; 1424 case bitc::ATTR_KIND_BY_VAL: 1425 return Attribute::ByVal; 1426 case bitc::ATTR_KIND_IN_ALLOCA: 1427 return Attribute::InAlloca; 1428 case bitc::ATTR_KIND_COLD: 1429 return Attribute::Cold; 1430 case bitc::ATTR_KIND_CONVERGENT: 1431 return Attribute::Convergent; 1432 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1433 return Attribute::InaccessibleMemOnly; 1434 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1435 return Attribute::InaccessibleMemOrArgMemOnly; 1436 case bitc::ATTR_KIND_INLINE_HINT: 1437 return Attribute::InlineHint; 1438 case bitc::ATTR_KIND_IN_REG: 1439 return Attribute::InReg; 1440 case bitc::ATTR_KIND_JUMP_TABLE: 1441 return Attribute::JumpTable; 1442 case bitc::ATTR_KIND_MIN_SIZE: 1443 return Attribute::MinSize; 1444 case bitc::ATTR_KIND_NAKED: 1445 return Attribute::Naked; 1446 case bitc::ATTR_KIND_NEST: 1447 return Attribute::Nest; 1448 case bitc::ATTR_KIND_NO_ALIAS: 1449 return Attribute::NoAlias; 1450 case bitc::ATTR_KIND_NO_BUILTIN: 1451 return Attribute::NoBuiltin; 1452 case bitc::ATTR_KIND_NO_CAPTURE: 1453 return Attribute::NoCapture; 1454 case bitc::ATTR_KIND_NO_DUPLICATE: 1455 return Attribute::NoDuplicate; 1456 case bitc::ATTR_KIND_NOFREE: 1457 return Attribute::NoFree; 1458 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1459 return Attribute::NoImplicitFloat; 1460 case bitc::ATTR_KIND_NO_INLINE: 1461 return Attribute::NoInline; 1462 case bitc::ATTR_KIND_NO_RECURSE: 1463 return Attribute::NoRecurse; 1464 case bitc::ATTR_KIND_NON_LAZY_BIND: 1465 return Attribute::NonLazyBind; 1466 case bitc::ATTR_KIND_NON_NULL: 1467 return Attribute::NonNull; 1468 case bitc::ATTR_KIND_DEREFERENCEABLE: 1469 return Attribute::Dereferenceable; 1470 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1471 return Attribute::DereferenceableOrNull; 1472 case bitc::ATTR_KIND_ALLOC_SIZE: 1473 return Attribute::AllocSize; 1474 case bitc::ATTR_KIND_NO_RED_ZONE: 1475 return Attribute::NoRedZone; 1476 case bitc::ATTR_KIND_NO_RETURN: 1477 return Attribute::NoReturn; 1478 case bitc::ATTR_KIND_NOSYNC: 1479 return Attribute::NoSync; 1480 case bitc::ATTR_KIND_NOCF_CHECK: 1481 return Attribute::NoCfCheck; 1482 case bitc::ATTR_KIND_NO_UNWIND: 1483 return Attribute::NoUnwind; 1484 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1485 return Attribute::OptForFuzzing; 1486 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1487 return Attribute::OptimizeForSize; 1488 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1489 return Attribute::OptimizeNone; 1490 case bitc::ATTR_KIND_READ_NONE: 1491 return Attribute::ReadNone; 1492 case bitc::ATTR_KIND_READ_ONLY: 1493 return Attribute::ReadOnly; 1494 case bitc::ATTR_KIND_RETURNED: 1495 return Attribute::Returned; 1496 case bitc::ATTR_KIND_RETURNS_TWICE: 1497 return Attribute::ReturnsTwice; 1498 case bitc::ATTR_KIND_S_EXT: 1499 return Attribute::SExt; 1500 case bitc::ATTR_KIND_SPECULATABLE: 1501 return Attribute::Speculatable; 1502 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1503 return Attribute::StackAlignment; 1504 case bitc::ATTR_KIND_STACK_PROTECT: 1505 return Attribute::StackProtect; 1506 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1507 return Attribute::StackProtectReq; 1508 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1509 return Attribute::StackProtectStrong; 1510 case bitc::ATTR_KIND_SAFESTACK: 1511 return Attribute::SafeStack; 1512 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1513 return Attribute::ShadowCallStack; 1514 case bitc::ATTR_KIND_STRICT_FP: 1515 return Attribute::StrictFP; 1516 case bitc::ATTR_KIND_STRUCT_RET: 1517 return Attribute::StructRet; 1518 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1519 return Attribute::SanitizeAddress; 1520 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1521 return Attribute::SanitizeHWAddress; 1522 case bitc::ATTR_KIND_SANITIZE_THREAD: 1523 return Attribute::SanitizeThread; 1524 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1525 return Attribute::SanitizeMemory; 1526 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1527 return Attribute::SpeculativeLoadHardening; 1528 case bitc::ATTR_KIND_SWIFT_ERROR: 1529 return Attribute::SwiftError; 1530 case bitc::ATTR_KIND_SWIFT_SELF: 1531 return Attribute::SwiftSelf; 1532 case bitc::ATTR_KIND_UW_TABLE: 1533 return Attribute::UWTable; 1534 case bitc::ATTR_KIND_WILLRETURN: 1535 return Attribute::WillReturn; 1536 case bitc::ATTR_KIND_WRITEONLY: 1537 return Attribute::WriteOnly; 1538 case bitc::ATTR_KIND_Z_EXT: 1539 return Attribute::ZExt; 1540 case bitc::ATTR_KIND_IMMARG: 1541 return Attribute::ImmArg; 1542 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1543 return Attribute::SanitizeMemTag; 1544 } 1545 } 1546 1547 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1548 MaybeAlign &Alignment) { 1549 // Note: Alignment in bitcode files is incremented by 1, so that zero 1550 // can be used for default alignment. 1551 if (Exponent > Value::MaxAlignmentExponent + 1) 1552 return error("Invalid alignment value"); 1553 Alignment = decodeMaybeAlign(Exponent); 1554 return Error::success(); 1555 } 1556 1557 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1558 *Kind = getAttrFromCode(Code); 1559 if (*Kind == Attribute::None) 1560 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1561 return Error::success(); 1562 } 1563 1564 Error BitcodeReader::parseAttributeGroupBlock() { 1565 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1566 return Err; 1567 1568 if (!MAttributeGroups.empty()) 1569 return error("Invalid multiple blocks"); 1570 1571 SmallVector<uint64_t, 64> Record; 1572 1573 // Read all the records. 1574 while (true) { 1575 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1576 if (!MaybeEntry) 1577 return MaybeEntry.takeError(); 1578 BitstreamEntry Entry = MaybeEntry.get(); 1579 1580 switch (Entry.Kind) { 1581 case BitstreamEntry::SubBlock: // Handled for us already. 1582 case BitstreamEntry::Error: 1583 return error("Malformed block"); 1584 case BitstreamEntry::EndBlock: 1585 return Error::success(); 1586 case BitstreamEntry::Record: 1587 // The interesting case. 1588 break; 1589 } 1590 1591 // Read a record. 1592 Record.clear(); 1593 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1594 if (!MaybeRecord) 1595 return MaybeRecord.takeError(); 1596 switch (MaybeRecord.get()) { 1597 default: // Default behavior: ignore. 1598 break; 1599 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1600 if (Record.size() < 3) 1601 return error("Invalid record"); 1602 1603 uint64_t GrpID = Record[0]; 1604 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1605 1606 AttrBuilder B; 1607 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1608 if (Record[i] == 0) { // Enum attribute 1609 Attribute::AttrKind Kind; 1610 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1611 return Err; 1612 1613 // Upgrade old-style byval attribute to one with a type, even if it's 1614 // nullptr. We will have to insert the real type when we associate 1615 // this AttributeList with a function. 1616 if (Kind == Attribute::ByVal) 1617 B.addByValAttr(nullptr); 1618 1619 B.addAttribute(Kind); 1620 } else if (Record[i] == 1) { // Integer attribute 1621 Attribute::AttrKind Kind; 1622 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1623 return Err; 1624 if (Kind == Attribute::Alignment) 1625 B.addAlignmentAttr(Record[++i]); 1626 else if (Kind == Attribute::StackAlignment) 1627 B.addStackAlignmentAttr(Record[++i]); 1628 else if (Kind == Attribute::Dereferenceable) 1629 B.addDereferenceableAttr(Record[++i]); 1630 else if (Kind == Attribute::DereferenceableOrNull) 1631 B.addDereferenceableOrNullAttr(Record[++i]); 1632 else if (Kind == Attribute::AllocSize) 1633 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1634 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1635 bool HasValue = (Record[i++] == 4); 1636 SmallString<64> KindStr; 1637 SmallString<64> ValStr; 1638 1639 while (Record[i] != 0 && i != e) 1640 KindStr += Record[i++]; 1641 assert(Record[i] == 0 && "Kind string not null terminated"); 1642 1643 if (HasValue) { 1644 // Has a value associated with it. 1645 ++i; // Skip the '0' that terminates the "kind" string. 1646 while (Record[i] != 0 && i != e) 1647 ValStr += Record[i++]; 1648 assert(Record[i] == 0 && "Value string not null terminated"); 1649 } 1650 1651 B.addAttribute(KindStr.str(), ValStr.str()); 1652 } else { 1653 assert((Record[i] == 5 || Record[i] == 6) && 1654 "Invalid attribute group entry"); 1655 bool HasType = Record[i] == 6; 1656 Attribute::AttrKind Kind; 1657 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1658 return Err; 1659 if (Kind == Attribute::ByVal) 1660 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } 1662 } 1663 1664 UpgradeFramePointerAttributes(B); 1665 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1666 break; 1667 } 1668 } 1669 } 1670 } 1671 1672 Error BitcodeReader::parseTypeTable() { 1673 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1674 return Err; 1675 1676 return parseTypeTableBody(); 1677 } 1678 1679 Error BitcodeReader::parseTypeTableBody() { 1680 if (!TypeList.empty()) 1681 return error("Invalid multiple blocks"); 1682 1683 SmallVector<uint64_t, 64> Record; 1684 unsigned NumRecords = 0; 1685 1686 SmallString<64> TypeName; 1687 1688 // Read all the records for this type table. 1689 while (true) { 1690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1691 if (!MaybeEntry) 1692 return MaybeEntry.takeError(); 1693 BitstreamEntry Entry = MaybeEntry.get(); 1694 1695 switch (Entry.Kind) { 1696 case BitstreamEntry::SubBlock: // Handled for us already. 1697 case BitstreamEntry::Error: 1698 return error("Malformed block"); 1699 case BitstreamEntry::EndBlock: 1700 if (NumRecords != TypeList.size()) 1701 return error("Malformed block"); 1702 return Error::success(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Read a record. 1709 Record.clear(); 1710 Type *ResultTy = nullptr; 1711 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1712 if (!MaybeRecord) 1713 return MaybeRecord.takeError(); 1714 switch (MaybeRecord.get()) { 1715 default: 1716 return error("Invalid value"); 1717 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1718 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1719 // type list. This allows us to reserve space. 1720 if (Record.size() < 1) 1721 return error("Invalid record"); 1722 TypeList.resize(Record[0]); 1723 continue; 1724 case bitc::TYPE_CODE_VOID: // VOID 1725 ResultTy = Type::getVoidTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_HALF: // HALF 1728 ResultTy = Type::getHalfTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_FLOAT: // FLOAT 1731 ResultTy = Type::getFloatTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1734 ResultTy = Type::getDoubleTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1737 ResultTy = Type::getX86_FP80Ty(Context); 1738 break; 1739 case bitc::TYPE_CODE_FP128: // FP128 1740 ResultTy = Type::getFP128Ty(Context); 1741 break; 1742 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1743 ResultTy = Type::getPPC_FP128Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_LABEL: // LABEL 1746 ResultTy = Type::getLabelTy(Context); 1747 break; 1748 case bitc::TYPE_CODE_METADATA: // METADATA 1749 ResultTy = Type::getMetadataTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1752 ResultTy = Type::getX86_MMXTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_TOKEN: // TOKEN 1755 ResultTy = Type::getTokenTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1758 if (Record.size() < 1) 1759 return error("Invalid record"); 1760 1761 uint64_t NumBits = Record[0]; 1762 if (NumBits < IntegerType::MIN_INT_BITS || 1763 NumBits > IntegerType::MAX_INT_BITS) 1764 return error("Bitwidth for integer type out of range"); 1765 ResultTy = IntegerType::get(Context, NumBits); 1766 break; 1767 } 1768 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1769 // [pointee type, address space] 1770 if (Record.size() < 1) 1771 return error("Invalid record"); 1772 unsigned AddressSpace = 0; 1773 if (Record.size() == 2) 1774 AddressSpace = Record[1]; 1775 ResultTy = getTypeByID(Record[0]); 1776 if (!ResultTy || 1777 !PointerType::isValidElementType(ResultTy)) 1778 return error("Invalid type"); 1779 ResultTy = PointerType::get(ResultTy, AddressSpace); 1780 break; 1781 } 1782 case bitc::TYPE_CODE_FUNCTION_OLD: { 1783 // FIXME: attrid is dead, remove it in LLVM 4.0 1784 // FUNCTION: [vararg, attrid, retty, paramty x N] 1785 if (Record.size() < 3) 1786 return error("Invalid record"); 1787 SmallVector<Type*, 8> ArgTys; 1788 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1789 if (Type *T = getTypeByID(Record[i])) 1790 ArgTys.push_back(T); 1791 else 1792 break; 1793 } 1794 1795 ResultTy = getTypeByID(Record[2]); 1796 if (!ResultTy || ArgTys.size() < Record.size()-3) 1797 return error("Invalid type"); 1798 1799 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1800 break; 1801 } 1802 case bitc::TYPE_CODE_FUNCTION: { 1803 // FUNCTION: [vararg, retty, paramty x N] 1804 if (Record.size() < 2) 1805 return error("Invalid record"); 1806 SmallVector<Type*, 8> ArgTys; 1807 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1808 if (Type *T = getTypeByID(Record[i])) { 1809 if (!FunctionType::isValidArgumentType(T)) 1810 return error("Invalid function argument type"); 1811 ArgTys.push_back(T); 1812 } 1813 else 1814 break; 1815 } 1816 1817 ResultTy = getTypeByID(Record[1]); 1818 if (!ResultTy || ArgTys.size() < Record.size()-2) 1819 return error("Invalid type"); 1820 1821 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1822 break; 1823 } 1824 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1825 if (Record.size() < 1) 1826 return error("Invalid record"); 1827 SmallVector<Type*, 8> EltTys; 1828 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1829 if (Type *T = getTypeByID(Record[i])) 1830 EltTys.push_back(T); 1831 else 1832 break; 1833 } 1834 if (EltTys.size() != Record.size()-1) 1835 return error("Invalid type"); 1836 ResultTy = StructType::get(Context, EltTys, Record[0]); 1837 break; 1838 } 1839 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1840 if (convertToString(Record, 0, TypeName)) 1841 return error("Invalid record"); 1842 continue; 1843 1844 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1845 if (Record.size() < 1) 1846 return error("Invalid record"); 1847 1848 if (NumRecords >= TypeList.size()) 1849 return error("Invalid TYPE table"); 1850 1851 // Check to see if this was forward referenced, if so fill in the temp. 1852 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1853 if (Res) { 1854 Res->setName(TypeName); 1855 TypeList[NumRecords] = nullptr; 1856 } else // Otherwise, create a new struct. 1857 Res = createIdentifiedStructType(Context, TypeName); 1858 TypeName.clear(); 1859 1860 SmallVector<Type*, 8> EltTys; 1861 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1862 if (Type *T = getTypeByID(Record[i])) 1863 EltTys.push_back(T); 1864 else 1865 break; 1866 } 1867 if (EltTys.size() != Record.size()-1) 1868 return error("Invalid record"); 1869 Res->setBody(EltTys, Record[0]); 1870 ResultTy = Res; 1871 break; 1872 } 1873 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1874 if (Record.size() != 1) 1875 return error("Invalid record"); 1876 1877 if (NumRecords >= TypeList.size()) 1878 return error("Invalid TYPE table"); 1879 1880 // Check to see if this was forward referenced, if so fill in the temp. 1881 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1882 if (Res) { 1883 Res->setName(TypeName); 1884 TypeList[NumRecords] = nullptr; 1885 } else // Otherwise, create a new struct with no body. 1886 Res = createIdentifiedStructType(Context, TypeName); 1887 TypeName.clear(); 1888 ResultTy = Res; 1889 break; 1890 } 1891 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1892 if (Record.size() < 2) 1893 return error("Invalid record"); 1894 ResultTy = getTypeByID(Record[1]); 1895 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1896 return error("Invalid type"); 1897 ResultTy = ArrayType::get(ResultTy, Record[0]); 1898 break; 1899 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1900 // [numelts, eltty, scalable] 1901 if (Record.size() < 2) 1902 return error("Invalid record"); 1903 if (Record[0] == 0) 1904 return error("Invalid vector length"); 1905 ResultTy = getTypeByID(Record[1]); 1906 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1907 return error("Invalid type"); 1908 bool Scalable = Record.size() > 2 ? Record[2] : false; 1909 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1910 break; 1911 } 1912 1913 if (NumRecords >= TypeList.size()) 1914 return error("Invalid TYPE table"); 1915 if (TypeList[NumRecords]) 1916 return error( 1917 "Invalid TYPE table: Only named structs can be forward referenced"); 1918 assert(ResultTy && "Didn't read a type?"); 1919 TypeList[NumRecords++] = ResultTy; 1920 } 1921 } 1922 1923 Error BitcodeReader::parseOperandBundleTags() { 1924 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1925 return Err; 1926 1927 if (!BundleTags.empty()) 1928 return error("Invalid multiple blocks"); 1929 1930 SmallVector<uint64_t, 64> Record; 1931 1932 while (true) { 1933 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1934 if (!MaybeEntry) 1935 return MaybeEntry.takeError(); 1936 BitstreamEntry Entry = MaybeEntry.get(); 1937 1938 switch (Entry.Kind) { 1939 case BitstreamEntry::SubBlock: // Handled for us already. 1940 case BitstreamEntry::Error: 1941 return error("Malformed block"); 1942 case BitstreamEntry::EndBlock: 1943 return Error::success(); 1944 case BitstreamEntry::Record: 1945 // The interesting case. 1946 break; 1947 } 1948 1949 // Tags are implicitly mapped to integers by their order. 1950 1951 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1952 if (!MaybeRecord) 1953 return MaybeRecord.takeError(); 1954 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1955 return error("Invalid record"); 1956 1957 // OPERAND_BUNDLE_TAG: [strchr x N] 1958 BundleTags.emplace_back(); 1959 if (convertToString(Record, 0, BundleTags.back())) 1960 return error("Invalid record"); 1961 Record.clear(); 1962 } 1963 } 1964 1965 Error BitcodeReader::parseSyncScopeNames() { 1966 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1967 return Err; 1968 1969 if (!SSIDs.empty()) 1970 return error("Invalid multiple synchronization scope names blocks"); 1971 1972 SmallVector<uint64_t, 64> Record; 1973 while (true) { 1974 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1975 if (!MaybeEntry) 1976 return MaybeEntry.takeError(); 1977 BitstreamEntry Entry = MaybeEntry.get(); 1978 1979 switch (Entry.Kind) { 1980 case BitstreamEntry::SubBlock: // Handled for us already. 1981 case BitstreamEntry::Error: 1982 return error("Malformed block"); 1983 case BitstreamEntry::EndBlock: 1984 if (SSIDs.empty()) 1985 return error("Invalid empty synchronization scope names block"); 1986 return Error::success(); 1987 case BitstreamEntry::Record: 1988 // The interesting case. 1989 break; 1990 } 1991 1992 // Synchronization scope names are implicitly mapped to synchronization 1993 // scope IDs by their order. 1994 1995 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1996 if (!MaybeRecord) 1997 return MaybeRecord.takeError(); 1998 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1999 return error("Invalid record"); 2000 2001 SmallString<16> SSN; 2002 if (convertToString(Record, 0, SSN)) 2003 return error("Invalid record"); 2004 2005 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2006 Record.clear(); 2007 } 2008 } 2009 2010 /// Associate a value with its name from the given index in the provided record. 2011 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2012 unsigned NameIndex, Triple &TT) { 2013 SmallString<128> ValueName; 2014 if (convertToString(Record, NameIndex, ValueName)) 2015 return error("Invalid record"); 2016 unsigned ValueID = Record[0]; 2017 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2018 return error("Invalid record"); 2019 Value *V = ValueList[ValueID]; 2020 2021 StringRef NameStr(ValueName.data(), ValueName.size()); 2022 if (NameStr.find_first_of(0) != StringRef::npos) 2023 return error("Invalid value name"); 2024 V->setName(NameStr); 2025 auto *GO = dyn_cast<GlobalObject>(V); 2026 if (GO) { 2027 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2028 if (TT.supportsCOMDAT()) 2029 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2030 else 2031 GO->setComdat(nullptr); 2032 } 2033 } 2034 return V; 2035 } 2036 2037 /// Helper to note and return the current location, and jump to the given 2038 /// offset. 2039 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2040 BitstreamCursor &Stream) { 2041 // Save the current parsing location so we can jump back at the end 2042 // of the VST read. 2043 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2044 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2045 return std::move(JumpFailed); 2046 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2047 if (!MaybeEntry) 2048 return MaybeEntry.takeError(); 2049 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2050 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2051 return CurrentBit; 2052 } 2053 2054 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2055 Function *F, 2056 ArrayRef<uint64_t> Record) { 2057 // Note that we subtract 1 here because the offset is relative to one word 2058 // before the start of the identification or module block, which was 2059 // historically always the start of the regular bitcode header. 2060 uint64_t FuncWordOffset = Record[1] - 1; 2061 uint64_t FuncBitOffset = FuncWordOffset * 32; 2062 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2063 // Set the LastFunctionBlockBit to point to the last function block. 2064 // Later when parsing is resumed after function materialization, 2065 // we can simply skip that last function block. 2066 if (FuncBitOffset > LastFunctionBlockBit) 2067 LastFunctionBlockBit = FuncBitOffset; 2068 } 2069 2070 /// Read a new-style GlobalValue symbol table. 2071 Error BitcodeReader::parseGlobalValueSymbolTable() { 2072 unsigned FuncBitcodeOffsetDelta = 2073 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2074 2075 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2076 return Err; 2077 2078 SmallVector<uint64_t, 64> Record; 2079 while (true) { 2080 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2081 if (!MaybeEntry) 2082 return MaybeEntry.takeError(); 2083 BitstreamEntry Entry = MaybeEntry.get(); 2084 2085 switch (Entry.Kind) { 2086 case BitstreamEntry::SubBlock: 2087 case BitstreamEntry::Error: 2088 return error("Malformed block"); 2089 case BitstreamEntry::EndBlock: 2090 return Error::success(); 2091 case BitstreamEntry::Record: 2092 break; 2093 } 2094 2095 Record.clear(); 2096 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2097 if (!MaybeRecord) 2098 return MaybeRecord.takeError(); 2099 switch (MaybeRecord.get()) { 2100 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2101 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2102 cast<Function>(ValueList[Record[0]]), Record); 2103 break; 2104 } 2105 } 2106 } 2107 2108 /// Parse the value symbol table at either the current parsing location or 2109 /// at the given bit offset if provided. 2110 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2111 uint64_t CurrentBit; 2112 // Pass in the Offset to distinguish between calling for the module-level 2113 // VST (where we want to jump to the VST offset) and the function-level 2114 // VST (where we don't). 2115 if (Offset > 0) { 2116 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2117 if (!MaybeCurrentBit) 2118 return MaybeCurrentBit.takeError(); 2119 CurrentBit = MaybeCurrentBit.get(); 2120 // If this module uses a string table, read this as a module-level VST. 2121 if (UseStrtab) { 2122 if (Error Err = parseGlobalValueSymbolTable()) 2123 return Err; 2124 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2125 return JumpFailed; 2126 return Error::success(); 2127 } 2128 // Otherwise, the VST will be in a similar format to a function-level VST, 2129 // and will contain symbol names. 2130 } 2131 2132 // Compute the delta between the bitcode indices in the VST (the word offset 2133 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2134 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2135 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2136 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2137 // just before entering the VST subblock because: 1) the EnterSubBlock 2138 // changes the AbbrevID width; 2) the VST block is nested within the same 2139 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2140 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2141 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2142 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2143 unsigned FuncBitcodeOffsetDelta = 2144 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2145 2146 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2147 return Err; 2148 2149 SmallVector<uint64_t, 64> Record; 2150 2151 Triple TT(TheModule->getTargetTriple()); 2152 2153 // Read all the records for this value table. 2154 SmallString<128> ValueName; 2155 2156 while (true) { 2157 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2158 if (!MaybeEntry) 2159 return MaybeEntry.takeError(); 2160 BitstreamEntry Entry = MaybeEntry.get(); 2161 2162 switch (Entry.Kind) { 2163 case BitstreamEntry::SubBlock: // Handled for us already. 2164 case BitstreamEntry::Error: 2165 return error("Malformed block"); 2166 case BitstreamEntry::EndBlock: 2167 if (Offset > 0) 2168 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2169 return JumpFailed; 2170 return Error::success(); 2171 case BitstreamEntry::Record: 2172 // The interesting case. 2173 break; 2174 } 2175 2176 // Read a record. 2177 Record.clear(); 2178 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2179 if (!MaybeRecord) 2180 return MaybeRecord.takeError(); 2181 switch (MaybeRecord.get()) { 2182 default: // Default behavior: unknown type. 2183 break; 2184 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2185 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2186 if (Error Err = ValOrErr.takeError()) 2187 return Err; 2188 ValOrErr.get(); 2189 break; 2190 } 2191 case bitc::VST_CODE_FNENTRY: { 2192 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2193 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2194 if (Error Err = ValOrErr.takeError()) 2195 return Err; 2196 Value *V = ValOrErr.get(); 2197 2198 // Ignore function offsets emitted for aliases of functions in older 2199 // versions of LLVM. 2200 if (auto *F = dyn_cast<Function>(V)) 2201 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2202 break; 2203 } 2204 case bitc::VST_CODE_BBENTRY: { 2205 if (convertToString(Record, 1, ValueName)) 2206 return error("Invalid record"); 2207 BasicBlock *BB = getBasicBlock(Record[0]); 2208 if (!BB) 2209 return error("Invalid record"); 2210 2211 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2212 ValueName.clear(); 2213 break; 2214 } 2215 } 2216 } 2217 } 2218 2219 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2220 /// encoding. 2221 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2222 if ((V & 1) == 0) 2223 return V >> 1; 2224 if (V != 1) 2225 return -(V >> 1); 2226 // There is no such thing as -0 with integers. "-0" really means MININT. 2227 return 1ULL << 63; 2228 } 2229 2230 /// Resolve all of the initializers for global values and aliases that we can. 2231 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2232 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2233 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2234 IndirectSymbolInitWorklist; 2235 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2236 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2237 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2238 2239 GlobalInitWorklist.swap(GlobalInits); 2240 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2241 FunctionPrefixWorklist.swap(FunctionPrefixes); 2242 FunctionPrologueWorklist.swap(FunctionPrologues); 2243 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2244 2245 while (!GlobalInitWorklist.empty()) { 2246 unsigned ValID = GlobalInitWorklist.back().second; 2247 if (ValID >= ValueList.size()) { 2248 // Not ready to resolve this yet, it requires something later in the file. 2249 GlobalInits.push_back(GlobalInitWorklist.back()); 2250 } else { 2251 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2252 GlobalInitWorklist.back().first->setInitializer(C); 2253 else 2254 return error("Expected a constant"); 2255 } 2256 GlobalInitWorklist.pop_back(); 2257 } 2258 2259 while (!IndirectSymbolInitWorklist.empty()) { 2260 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2261 if (ValID >= ValueList.size()) { 2262 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2263 } else { 2264 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2265 if (!C) 2266 return error("Expected a constant"); 2267 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2268 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2269 return error("Alias and aliasee types don't match"); 2270 GIS->setIndirectSymbol(C); 2271 } 2272 IndirectSymbolInitWorklist.pop_back(); 2273 } 2274 2275 while (!FunctionPrefixWorklist.empty()) { 2276 unsigned ValID = FunctionPrefixWorklist.back().second; 2277 if (ValID >= ValueList.size()) { 2278 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2279 } else { 2280 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2281 FunctionPrefixWorklist.back().first->setPrefixData(C); 2282 else 2283 return error("Expected a constant"); 2284 } 2285 FunctionPrefixWorklist.pop_back(); 2286 } 2287 2288 while (!FunctionPrologueWorklist.empty()) { 2289 unsigned ValID = FunctionPrologueWorklist.back().second; 2290 if (ValID >= ValueList.size()) { 2291 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2292 } else { 2293 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2294 FunctionPrologueWorklist.back().first->setPrologueData(C); 2295 else 2296 return error("Expected a constant"); 2297 } 2298 FunctionPrologueWorklist.pop_back(); 2299 } 2300 2301 while (!FunctionPersonalityFnWorklist.empty()) { 2302 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2303 if (ValID >= ValueList.size()) { 2304 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2305 } else { 2306 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2307 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2308 else 2309 return error("Expected a constant"); 2310 } 2311 FunctionPersonalityFnWorklist.pop_back(); 2312 } 2313 2314 return Error::success(); 2315 } 2316 2317 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2318 SmallVector<uint64_t, 8> Words(Vals.size()); 2319 transform(Vals, Words.begin(), 2320 BitcodeReader::decodeSignRotatedValue); 2321 2322 return APInt(TypeBits, Words); 2323 } 2324 2325 Error BitcodeReader::parseConstants() { 2326 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2327 return Err; 2328 2329 SmallVector<uint64_t, 64> Record; 2330 2331 // Read all the records for this value table. 2332 Type *CurTy = Type::getInt32Ty(Context); 2333 Type *CurFullTy = Type::getInt32Ty(Context); 2334 unsigned NextCstNo = ValueList.size(); 2335 2336 while (true) { 2337 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2338 if (!MaybeEntry) 2339 return MaybeEntry.takeError(); 2340 BitstreamEntry Entry = MaybeEntry.get(); 2341 2342 switch (Entry.Kind) { 2343 case BitstreamEntry::SubBlock: // Handled for us already. 2344 case BitstreamEntry::Error: 2345 return error("Malformed block"); 2346 case BitstreamEntry::EndBlock: 2347 if (NextCstNo != ValueList.size()) 2348 return error("Invalid constant reference"); 2349 2350 // Once all the constants have been read, go through and resolve forward 2351 // references. 2352 ValueList.resolveConstantForwardRefs(); 2353 return Error::success(); 2354 case BitstreamEntry::Record: 2355 // The interesting case. 2356 break; 2357 } 2358 2359 // Read a record. 2360 Record.clear(); 2361 Type *VoidType = Type::getVoidTy(Context); 2362 Value *V = nullptr; 2363 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2364 if (!MaybeBitCode) 2365 return MaybeBitCode.takeError(); 2366 switch (unsigned BitCode = MaybeBitCode.get()) { 2367 default: // Default behavior: unknown constant 2368 case bitc::CST_CODE_UNDEF: // UNDEF 2369 V = UndefValue::get(CurTy); 2370 break; 2371 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2372 if (Record.empty()) 2373 return error("Invalid record"); 2374 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2375 return error("Invalid record"); 2376 if (TypeList[Record[0]] == VoidType) 2377 return error("Invalid constant type"); 2378 CurFullTy = TypeList[Record[0]]; 2379 CurTy = flattenPointerTypes(CurFullTy); 2380 continue; // Skip the ValueList manipulation. 2381 case bitc::CST_CODE_NULL: // NULL 2382 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2383 return error("Invalid type for a constant null value"); 2384 V = Constant::getNullValue(CurTy); 2385 break; 2386 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2387 if (!CurTy->isIntegerTy() || Record.empty()) 2388 return error("Invalid record"); 2389 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2390 break; 2391 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2392 if (!CurTy->isIntegerTy() || Record.empty()) 2393 return error("Invalid record"); 2394 2395 APInt VInt = 2396 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2397 V = ConstantInt::get(Context, VInt); 2398 2399 break; 2400 } 2401 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2402 if (Record.empty()) 2403 return error("Invalid record"); 2404 if (CurTy->isHalfTy()) 2405 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2406 APInt(16, (uint16_t)Record[0]))); 2407 else if (CurTy->isFloatTy()) 2408 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2409 APInt(32, (uint32_t)Record[0]))); 2410 else if (CurTy->isDoubleTy()) 2411 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2412 APInt(64, Record[0]))); 2413 else if (CurTy->isX86_FP80Ty()) { 2414 // Bits are not stored the same way as a normal i80 APInt, compensate. 2415 uint64_t Rearrange[2]; 2416 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2417 Rearrange[1] = Record[0] >> 48; 2418 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2419 APInt(80, Rearrange))); 2420 } else if (CurTy->isFP128Ty()) 2421 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2422 APInt(128, Record))); 2423 else if (CurTy->isPPC_FP128Ty()) 2424 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2425 APInt(128, Record))); 2426 else 2427 V = UndefValue::get(CurTy); 2428 break; 2429 } 2430 2431 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2432 if (Record.empty()) 2433 return error("Invalid record"); 2434 2435 unsigned Size = Record.size(); 2436 SmallVector<Constant*, 16> Elts; 2437 2438 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2439 for (unsigned i = 0; i != Size; ++i) 2440 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2441 STy->getElementType(i))); 2442 V = ConstantStruct::get(STy, Elts); 2443 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2444 Type *EltTy = ATy->getElementType(); 2445 for (unsigned i = 0; i != Size; ++i) 2446 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2447 V = ConstantArray::get(ATy, Elts); 2448 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2449 Type *EltTy = VTy->getElementType(); 2450 for (unsigned i = 0; i != Size; ++i) 2451 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2452 V = ConstantVector::get(Elts); 2453 } else { 2454 V = UndefValue::get(CurTy); 2455 } 2456 break; 2457 } 2458 case bitc::CST_CODE_STRING: // STRING: [values] 2459 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2460 if (Record.empty()) 2461 return error("Invalid record"); 2462 2463 SmallString<16> Elts(Record.begin(), Record.end()); 2464 V = ConstantDataArray::getString(Context, Elts, 2465 BitCode == bitc::CST_CODE_CSTRING); 2466 break; 2467 } 2468 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2469 if (Record.empty()) 2470 return error("Invalid record"); 2471 2472 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2473 if (EltTy->isIntegerTy(8)) { 2474 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2475 if (isa<VectorType>(CurTy)) 2476 V = ConstantDataVector::get(Context, Elts); 2477 else 2478 V = ConstantDataArray::get(Context, Elts); 2479 } else if (EltTy->isIntegerTy(16)) { 2480 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2481 if (isa<VectorType>(CurTy)) 2482 V = ConstantDataVector::get(Context, Elts); 2483 else 2484 V = ConstantDataArray::get(Context, Elts); 2485 } else if (EltTy->isIntegerTy(32)) { 2486 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2487 if (isa<VectorType>(CurTy)) 2488 V = ConstantDataVector::get(Context, Elts); 2489 else 2490 V = ConstantDataArray::get(Context, Elts); 2491 } else if (EltTy->isIntegerTy(64)) { 2492 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2493 if (isa<VectorType>(CurTy)) 2494 V = ConstantDataVector::get(Context, Elts); 2495 else 2496 V = ConstantDataArray::get(Context, Elts); 2497 } else if (EltTy->isHalfTy()) { 2498 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2499 if (isa<VectorType>(CurTy)) 2500 V = ConstantDataVector::getFP(Context, Elts); 2501 else 2502 V = ConstantDataArray::getFP(Context, Elts); 2503 } else if (EltTy->isFloatTy()) { 2504 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2505 if (isa<VectorType>(CurTy)) 2506 V = ConstantDataVector::getFP(Context, Elts); 2507 else 2508 V = ConstantDataArray::getFP(Context, Elts); 2509 } else if (EltTy->isDoubleTy()) { 2510 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2511 if (isa<VectorType>(CurTy)) 2512 V = ConstantDataVector::getFP(Context, Elts); 2513 else 2514 V = ConstantDataArray::getFP(Context, Elts); 2515 } else { 2516 return error("Invalid type for value"); 2517 } 2518 break; 2519 } 2520 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2521 if (Record.size() < 2) 2522 return error("Invalid record"); 2523 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2524 if (Opc < 0) { 2525 V = UndefValue::get(CurTy); // Unknown unop. 2526 } else { 2527 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2528 unsigned Flags = 0; 2529 V = ConstantExpr::get(Opc, LHS, Flags); 2530 } 2531 break; 2532 } 2533 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2534 if (Record.size() < 3) 2535 return error("Invalid record"); 2536 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2537 if (Opc < 0) { 2538 V = UndefValue::get(CurTy); // Unknown binop. 2539 } else { 2540 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2541 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2542 unsigned Flags = 0; 2543 if (Record.size() >= 4) { 2544 if (Opc == Instruction::Add || 2545 Opc == Instruction::Sub || 2546 Opc == Instruction::Mul || 2547 Opc == Instruction::Shl) { 2548 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2549 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2550 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2551 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2552 } else if (Opc == Instruction::SDiv || 2553 Opc == Instruction::UDiv || 2554 Opc == Instruction::LShr || 2555 Opc == Instruction::AShr) { 2556 if (Record[3] & (1 << bitc::PEO_EXACT)) 2557 Flags |= SDivOperator::IsExact; 2558 } 2559 } 2560 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2561 } 2562 break; 2563 } 2564 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2565 if (Record.size() < 3) 2566 return error("Invalid record"); 2567 int Opc = getDecodedCastOpcode(Record[0]); 2568 if (Opc < 0) { 2569 V = UndefValue::get(CurTy); // Unknown cast. 2570 } else { 2571 Type *OpTy = getTypeByID(Record[1]); 2572 if (!OpTy) 2573 return error("Invalid record"); 2574 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2575 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2576 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2577 } 2578 break; 2579 } 2580 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2581 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2582 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2583 // operands] 2584 unsigned OpNum = 0; 2585 Type *PointeeType = nullptr; 2586 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2587 Record.size() % 2) 2588 PointeeType = getTypeByID(Record[OpNum++]); 2589 2590 bool InBounds = false; 2591 Optional<unsigned> InRangeIndex; 2592 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2593 uint64_t Op = Record[OpNum++]; 2594 InBounds = Op & 1; 2595 InRangeIndex = Op >> 1; 2596 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2597 InBounds = true; 2598 2599 SmallVector<Constant*, 16> Elts; 2600 Type *Elt0FullTy = nullptr; 2601 while (OpNum != Record.size()) { 2602 if (!Elt0FullTy) 2603 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2604 Type *ElTy = getTypeByID(Record[OpNum++]); 2605 if (!ElTy) 2606 return error("Invalid record"); 2607 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2608 } 2609 2610 if (Elts.size() < 1) 2611 return error("Invalid gep with no operands"); 2612 2613 Type *ImplicitPointeeType = 2614 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2615 if (!PointeeType) 2616 PointeeType = ImplicitPointeeType; 2617 else if (PointeeType != ImplicitPointeeType) 2618 return error("Explicit gep operator type does not match pointee type " 2619 "of pointer operand"); 2620 2621 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2622 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2623 InBounds, InRangeIndex); 2624 break; 2625 } 2626 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2627 if (Record.size() < 3) 2628 return error("Invalid record"); 2629 2630 Type *SelectorTy = Type::getInt1Ty(Context); 2631 2632 // The selector might be an i1 or an <n x i1> 2633 // Get the type from the ValueList before getting a forward ref. 2634 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2635 if (Value *V = ValueList[Record[0]]) 2636 if (SelectorTy != V->getType()) 2637 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2638 2639 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2640 SelectorTy), 2641 ValueList.getConstantFwdRef(Record[1],CurTy), 2642 ValueList.getConstantFwdRef(Record[2],CurTy)); 2643 break; 2644 } 2645 case bitc::CST_CODE_CE_EXTRACTELT 2646 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2647 if (Record.size() < 3) 2648 return error("Invalid record"); 2649 VectorType *OpTy = 2650 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2651 if (!OpTy) 2652 return error("Invalid record"); 2653 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2654 Constant *Op1 = nullptr; 2655 if (Record.size() == 4) { 2656 Type *IdxTy = getTypeByID(Record[2]); 2657 if (!IdxTy) 2658 return error("Invalid record"); 2659 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2660 } else // TODO: Remove with llvm 4.0 2661 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2662 if (!Op1) 2663 return error("Invalid record"); 2664 V = ConstantExpr::getExtractElement(Op0, Op1); 2665 break; 2666 } 2667 case bitc::CST_CODE_CE_INSERTELT 2668 : { // CE_INSERTELT: [opval, opval, opty, opval] 2669 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2670 if (Record.size() < 3 || !OpTy) 2671 return error("Invalid record"); 2672 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2673 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2674 OpTy->getElementType()); 2675 Constant *Op2 = nullptr; 2676 if (Record.size() == 4) { 2677 Type *IdxTy = getTypeByID(Record[2]); 2678 if (!IdxTy) 2679 return error("Invalid record"); 2680 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2681 } else // TODO: Remove with llvm 4.0 2682 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2683 if (!Op2) 2684 return error("Invalid record"); 2685 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2686 break; 2687 } 2688 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2689 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2690 if (Record.size() < 3 || !OpTy) 2691 return error("Invalid record"); 2692 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2693 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2694 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2695 OpTy->getNumElements()); 2696 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2697 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2698 break; 2699 } 2700 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2701 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2702 VectorType *OpTy = 2703 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2704 if (Record.size() < 4 || !RTy || !OpTy) 2705 return error("Invalid record"); 2706 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2707 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2708 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2709 RTy->getNumElements()); 2710 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2711 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2712 break; 2713 } 2714 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2715 if (Record.size() < 4) 2716 return error("Invalid record"); 2717 Type *OpTy = getTypeByID(Record[0]); 2718 if (!OpTy) 2719 return error("Invalid record"); 2720 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2721 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2722 2723 if (OpTy->isFPOrFPVectorTy()) 2724 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2725 else 2726 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2727 break; 2728 } 2729 // This maintains backward compatibility, pre-asm dialect keywords. 2730 // FIXME: Remove with the 4.0 release. 2731 case bitc::CST_CODE_INLINEASM_OLD: { 2732 if (Record.size() < 2) 2733 return error("Invalid record"); 2734 std::string AsmStr, ConstrStr; 2735 bool HasSideEffects = Record[0] & 1; 2736 bool IsAlignStack = Record[0] >> 1; 2737 unsigned AsmStrSize = Record[1]; 2738 if (2+AsmStrSize >= Record.size()) 2739 return error("Invalid record"); 2740 unsigned ConstStrSize = Record[2+AsmStrSize]; 2741 if (3+AsmStrSize+ConstStrSize > Record.size()) 2742 return error("Invalid record"); 2743 2744 for (unsigned i = 0; i != AsmStrSize; ++i) 2745 AsmStr += (char)Record[2+i]; 2746 for (unsigned i = 0; i != ConstStrSize; ++i) 2747 ConstrStr += (char)Record[3+AsmStrSize+i]; 2748 UpgradeInlineAsmString(&AsmStr); 2749 V = InlineAsm::get( 2750 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2751 ConstrStr, HasSideEffects, IsAlignStack); 2752 break; 2753 } 2754 // This version adds support for the asm dialect keywords (e.g., 2755 // inteldialect). 2756 case bitc::CST_CODE_INLINEASM: { 2757 if (Record.size() < 2) 2758 return error("Invalid record"); 2759 std::string AsmStr, ConstrStr; 2760 bool HasSideEffects = Record[0] & 1; 2761 bool IsAlignStack = (Record[0] >> 1) & 1; 2762 unsigned AsmDialect = Record[0] >> 2; 2763 unsigned AsmStrSize = Record[1]; 2764 if (2+AsmStrSize >= Record.size()) 2765 return error("Invalid record"); 2766 unsigned ConstStrSize = Record[2+AsmStrSize]; 2767 if (3+AsmStrSize+ConstStrSize > Record.size()) 2768 return error("Invalid record"); 2769 2770 for (unsigned i = 0; i != AsmStrSize; ++i) 2771 AsmStr += (char)Record[2+i]; 2772 for (unsigned i = 0; i != ConstStrSize; ++i) 2773 ConstrStr += (char)Record[3+AsmStrSize+i]; 2774 UpgradeInlineAsmString(&AsmStr); 2775 V = InlineAsm::get( 2776 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2777 ConstrStr, HasSideEffects, IsAlignStack, 2778 InlineAsm::AsmDialect(AsmDialect)); 2779 break; 2780 } 2781 case bitc::CST_CODE_BLOCKADDRESS:{ 2782 if (Record.size() < 3) 2783 return error("Invalid record"); 2784 Type *FnTy = getTypeByID(Record[0]); 2785 if (!FnTy) 2786 return error("Invalid record"); 2787 Function *Fn = 2788 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2789 if (!Fn) 2790 return error("Invalid record"); 2791 2792 // If the function is already parsed we can insert the block address right 2793 // away. 2794 BasicBlock *BB; 2795 unsigned BBID = Record[2]; 2796 if (!BBID) 2797 // Invalid reference to entry block. 2798 return error("Invalid ID"); 2799 if (!Fn->empty()) { 2800 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2801 for (size_t I = 0, E = BBID; I != E; ++I) { 2802 if (BBI == BBE) 2803 return error("Invalid ID"); 2804 ++BBI; 2805 } 2806 BB = &*BBI; 2807 } else { 2808 // Otherwise insert a placeholder and remember it so it can be inserted 2809 // when the function is parsed. 2810 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2811 if (FwdBBs.empty()) 2812 BasicBlockFwdRefQueue.push_back(Fn); 2813 if (FwdBBs.size() < BBID + 1) 2814 FwdBBs.resize(BBID + 1); 2815 if (!FwdBBs[BBID]) 2816 FwdBBs[BBID] = BasicBlock::Create(Context); 2817 BB = FwdBBs[BBID]; 2818 } 2819 V = BlockAddress::get(Fn, BB); 2820 break; 2821 } 2822 } 2823 2824 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2825 "Incorrect fully structured type provided for Constant"); 2826 ValueList.assignValue(V, NextCstNo, CurFullTy); 2827 ++NextCstNo; 2828 } 2829 } 2830 2831 Error BitcodeReader::parseUseLists() { 2832 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2833 return Err; 2834 2835 // Read all the records. 2836 SmallVector<uint64_t, 64> Record; 2837 2838 while (true) { 2839 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2840 if (!MaybeEntry) 2841 return MaybeEntry.takeError(); 2842 BitstreamEntry Entry = MaybeEntry.get(); 2843 2844 switch (Entry.Kind) { 2845 case BitstreamEntry::SubBlock: // Handled for us already. 2846 case BitstreamEntry::Error: 2847 return error("Malformed block"); 2848 case BitstreamEntry::EndBlock: 2849 return Error::success(); 2850 case BitstreamEntry::Record: 2851 // The interesting case. 2852 break; 2853 } 2854 2855 // Read a use list record. 2856 Record.clear(); 2857 bool IsBB = false; 2858 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2859 if (!MaybeRecord) 2860 return MaybeRecord.takeError(); 2861 switch (MaybeRecord.get()) { 2862 default: // Default behavior: unknown type. 2863 break; 2864 case bitc::USELIST_CODE_BB: 2865 IsBB = true; 2866 LLVM_FALLTHROUGH; 2867 case bitc::USELIST_CODE_DEFAULT: { 2868 unsigned RecordLength = Record.size(); 2869 if (RecordLength < 3) 2870 // Records should have at least an ID and two indexes. 2871 return error("Invalid record"); 2872 unsigned ID = Record.back(); 2873 Record.pop_back(); 2874 2875 Value *V; 2876 if (IsBB) { 2877 assert(ID < FunctionBBs.size() && "Basic block not found"); 2878 V = FunctionBBs[ID]; 2879 } else 2880 V = ValueList[ID]; 2881 unsigned NumUses = 0; 2882 SmallDenseMap<const Use *, unsigned, 16> Order; 2883 for (const Use &U : V->materialized_uses()) { 2884 if (++NumUses > Record.size()) 2885 break; 2886 Order[&U] = Record[NumUses - 1]; 2887 } 2888 if (Order.size() != Record.size() || NumUses > Record.size()) 2889 // Mismatches can happen if the functions are being materialized lazily 2890 // (out-of-order), or a value has been upgraded. 2891 break; 2892 2893 V->sortUseList([&](const Use &L, const Use &R) { 2894 return Order.lookup(&L) < Order.lookup(&R); 2895 }); 2896 break; 2897 } 2898 } 2899 } 2900 } 2901 2902 /// When we see the block for metadata, remember where it is and then skip it. 2903 /// This lets us lazily deserialize the metadata. 2904 Error BitcodeReader::rememberAndSkipMetadata() { 2905 // Save the current stream state. 2906 uint64_t CurBit = Stream.GetCurrentBitNo(); 2907 DeferredMetadataInfo.push_back(CurBit); 2908 2909 // Skip over the block for now. 2910 if (Error Err = Stream.SkipBlock()) 2911 return Err; 2912 return Error::success(); 2913 } 2914 2915 Error BitcodeReader::materializeMetadata() { 2916 for (uint64_t BitPos : DeferredMetadataInfo) { 2917 // Move the bit stream to the saved position. 2918 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2919 return JumpFailed; 2920 if (Error Err = MDLoader->parseModuleMetadata()) 2921 return Err; 2922 } 2923 2924 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2925 // metadata. 2926 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2927 NamedMDNode *LinkerOpts = 2928 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2929 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2930 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2931 } 2932 2933 DeferredMetadataInfo.clear(); 2934 return Error::success(); 2935 } 2936 2937 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2938 2939 /// When we see the block for a function body, remember where it is and then 2940 /// skip it. This lets us lazily deserialize the functions. 2941 Error BitcodeReader::rememberAndSkipFunctionBody() { 2942 // Get the function we are talking about. 2943 if (FunctionsWithBodies.empty()) 2944 return error("Insufficient function protos"); 2945 2946 Function *Fn = FunctionsWithBodies.back(); 2947 FunctionsWithBodies.pop_back(); 2948 2949 // Save the current stream state. 2950 uint64_t CurBit = Stream.GetCurrentBitNo(); 2951 assert( 2952 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2953 "Mismatch between VST and scanned function offsets"); 2954 DeferredFunctionInfo[Fn] = CurBit; 2955 2956 // Skip over the function block for now. 2957 if (Error Err = Stream.SkipBlock()) 2958 return Err; 2959 return Error::success(); 2960 } 2961 2962 Error BitcodeReader::globalCleanup() { 2963 // Patch the initializers for globals and aliases up. 2964 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2965 return Err; 2966 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2967 return error("Malformed global initializer set"); 2968 2969 // Look for intrinsic functions which need to be upgraded at some point 2970 for (Function &F : *TheModule) { 2971 MDLoader->upgradeDebugIntrinsics(F); 2972 Function *NewFn; 2973 if (UpgradeIntrinsicFunction(&F, NewFn)) 2974 UpgradedIntrinsics[&F] = NewFn; 2975 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2976 // Some types could be renamed during loading if several modules are 2977 // loaded in the same LLVMContext (LTO scenario). In this case we should 2978 // remangle intrinsics names as well. 2979 RemangledIntrinsics[&F] = Remangled.getValue(); 2980 } 2981 2982 // Look for global variables which need to be renamed. 2983 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2984 for (GlobalVariable &GV : TheModule->globals()) 2985 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2986 UpgradedVariables.emplace_back(&GV, Upgraded); 2987 for (auto &Pair : UpgradedVariables) { 2988 Pair.first->eraseFromParent(); 2989 TheModule->getGlobalList().push_back(Pair.second); 2990 } 2991 2992 // Force deallocation of memory for these vectors to favor the client that 2993 // want lazy deserialization. 2994 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2995 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2996 IndirectSymbolInits); 2997 return Error::success(); 2998 } 2999 3000 /// Support for lazy parsing of function bodies. This is required if we 3001 /// either have an old bitcode file without a VST forward declaration record, 3002 /// or if we have an anonymous function being materialized, since anonymous 3003 /// functions do not have a name and are therefore not in the VST. 3004 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3005 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3006 return JumpFailed; 3007 3008 if (Stream.AtEndOfStream()) 3009 return error("Could not find function in stream"); 3010 3011 if (!SeenFirstFunctionBody) 3012 return error("Trying to materialize functions before seeing function blocks"); 3013 3014 // An old bitcode file with the symbol table at the end would have 3015 // finished the parse greedily. 3016 assert(SeenValueSymbolTable); 3017 3018 SmallVector<uint64_t, 64> Record; 3019 3020 while (true) { 3021 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3022 if (!MaybeEntry) 3023 return MaybeEntry.takeError(); 3024 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3025 3026 switch (Entry.Kind) { 3027 default: 3028 return error("Expect SubBlock"); 3029 case BitstreamEntry::SubBlock: 3030 switch (Entry.ID) { 3031 default: 3032 return error("Expect function block"); 3033 case bitc::FUNCTION_BLOCK_ID: 3034 if (Error Err = rememberAndSkipFunctionBody()) 3035 return Err; 3036 NextUnreadBit = Stream.GetCurrentBitNo(); 3037 return Error::success(); 3038 } 3039 } 3040 } 3041 } 3042 3043 bool BitcodeReaderBase::readBlockInfo() { 3044 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3045 Stream.ReadBlockInfoBlock(); 3046 if (!MaybeNewBlockInfo) 3047 return true; // FIXME Handle the error. 3048 Optional<BitstreamBlockInfo> NewBlockInfo = 3049 std::move(MaybeNewBlockInfo.get()); 3050 if (!NewBlockInfo) 3051 return true; 3052 BlockInfo = std::move(*NewBlockInfo); 3053 return false; 3054 } 3055 3056 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3057 // v1: [selection_kind, name] 3058 // v2: [strtab_offset, strtab_size, selection_kind] 3059 StringRef Name; 3060 std::tie(Name, Record) = readNameFromStrtab(Record); 3061 3062 if (Record.empty()) 3063 return error("Invalid record"); 3064 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3065 std::string OldFormatName; 3066 if (!UseStrtab) { 3067 if (Record.size() < 2) 3068 return error("Invalid record"); 3069 unsigned ComdatNameSize = Record[1]; 3070 OldFormatName.reserve(ComdatNameSize); 3071 for (unsigned i = 0; i != ComdatNameSize; ++i) 3072 OldFormatName += (char)Record[2 + i]; 3073 Name = OldFormatName; 3074 } 3075 Comdat *C = TheModule->getOrInsertComdat(Name); 3076 C->setSelectionKind(SK); 3077 ComdatList.push_back(C); 3078 return Error::success(); 3079 } 3080 3081 static void inferDSOLocal(GlobalValue *GV) { 3082 // infer dso_local from linkage and visibility if it is not encoded. 3083 if (GV->hasLocalLinkage() || 3084 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3085 GV->setDSOLocal(true); 3086 } 3087 3088 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3089 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3090 // visibility, threadlocal, unnamed_addr, externally_initialized, 3091 // dllstorageclass, comdat, attributes, preemption specifier, 3092 // partition strtab offset, partition strtab size] (name in VST) 3093 // v2: [strtab_offset, strtab_size, v1] 3094 StringRef Name; 3095 std::tie(Name, Record) = readNameFromStrtab(Record); 3096 3097 if (Record.size() < 6) 3098 return error("Invalid record"); 3099 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3100 Type *Ty = flattenPointerTypes(FullTy); 3101 if (!Ty) 3102 return error("Invalid record"); 3103 bool isConstant = Record[1] & 1; 3104 bool explicitType = Record[1] & 2; 3105 unsigned AddressSpace; 3106 if (explicitType) { 3107 AddressSpace = Record[1] >> 2; 3108 } else { 3109 if (!Ty->isPointerTy()) 3110 return error("Invalid type for value"); 3111 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3112 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3113 } 3114 3115 uint64_t RawLinkage = Record[3]; 3116 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3117 MaybeAlign Alignment; 3118 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3119 return Err; 3120 std::string Section; 3121 if (Record[5]) { 3122 if (Record[5] - 1 >= SectionTable.size()) 3123 return error("Invalid ID"); 3124 Section = SectionTable[Record[5] - 1]; 3125 } 3126 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3127 // Local linkage must have default visibility. 3128 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3129 // FIXME: Change to an error if non-default in 4.0. 3130 Visibility = getDecodedVisibility(Record[6]); 3131 3132 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3133 if (Record.size() > 7) 3134 TLM = getDecodedThreadLocalMode(Record[7]); 3135 3136 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3137 if (Record.size() > 8) 3138 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3139 3140 bool ExternallyInitialized = false; 3141 if (Record.size() > 9) 3142 ExternallyInitialized = Record[9]; 3143 3144 GlobalVariable *NewGV = 3145 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3146 nullptr, TLM, AddressSpace, ExternallyInitialized); 3147 NewGV->setAlignment(Alignment); 3148 if (!Section.empty()) 3149 NewGV->setSection(Section); 3150 NewGV->setVisibility(Visibility); 3151 NewGV->setUnnamedAddr(UnnamedAddr); 3152 3153 if (Record.size() > 10) 3154 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3155 else 3156 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3157 3158 FullTy = PointerType::get(FullTy, AddressSpace); 3159 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3160 "Incorrect fully specified type for GlobalVariable"); 3161 ValueList.push_back(NewGV, FullTy); 3162 3163 // Remember which value to use for the global initializer. 3164 if (unsigned InitID = Record[2]) 3165 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3166 3167 if (Record.size() > 11) { 3168 if (unsigned ComdatID = Record[11]) { 3169 if (ComdatID > ComdatList.size()) 3170 return error("Invalid global variable comdat ID"); 3171 NewGV->setComdat(ComdatList[ComdatID - 1]); 3172 } 3173 } else if (hasImplicitComdat(RawLinkage)) { 3174 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3175 } 3176 3177 if (Record.size() > 12) { 3178 auto AS = getAttributes(Record[12]).getFnAttributes(); 3179 NewGV->setAttributes(AS); 3180 } 3181 3182 if (Record.size() > 13) { 3183 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3184 } 3185 inferDSOLocal(NewGV); 3186 3187 // Check whether we have enough values to read a partition name. 3188 if (Record.size() > 15) 3189 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3190 3191 return Error::success(); 3192 } 3193 3194 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3195 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3196 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3197 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3198 // v2: [strtab_offset, strtab_size, v1] 3199 StringRef Name; 3200 std::tie(Name, Record) = readNameFromStrtab(Record); 3201 3202 if (Record.size() < 8) 3203 return error("Invalid record"); 3204 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3205 Type *FTy = flattenPointerTypes(FullFTy); 3206 if (!FTy) 3207 return error("Invalid record"); 3208 if (isa<PointerType>(FTy)) 3209 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3210 3211 if (!isa<FunctionType>(FTy)) 3212 return error("Invalid type for value"); 3213 auto CC = static_cast<CallingConv::ID>(Record[1]); 3214 if (CC & ~CallingConv::MaxID) 3215 return error("Invalid calling convention ID"); 3216 3217 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3218 if (Record.size() > 16) 3219 AddrSpace = Record[16]; 3220 3221 Function *Func = 3222 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3223 AddrSpace, Name, TheModule); 3224 3225 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3226 "Incorrect fully specified type provided for function"); 3227 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3228 3229 Func->setCallingConv(CC); 3230 bool isProto = Record[2]; 3231 uint64_t RawLinkage = Record[3]; 3232 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3233 Func->setAttributes(getAttributes(Record[4])); 3234 3235 // Upgrade any old-style byval without a type by propagating the argument's 3236 // pointee type. There should be no opaque pointers where the byval type is 3237 // implicit. 3238 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3239 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3240 continue; 3241 3242 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3243 Func->removeParamAttr(i, Attribute::ByVal); 3244 Func->addParamAttr(i, Attribute::getWithByValType( 3245 Context, getPointerElementFlatType(PTy))); 3246 } 3247 3248 MaybeAlign Alignment; 3249 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3250 return Err; 3251 Func->setAlignment(Alignment); 3252 if (Record[6]) { 3253 if (Record[6] - 1 >= SectionTable.size()) 3254 return error("Invalid ID"); 3255 Func->setSection(SectionTable[Record[6] - 1]); 3256 } 3257 // Local linkage must have default visibility. 3258 if (!Func->hasLocalLinkage()) 3259 // FIXME: Change to an error if non-default in 4.0. 3260 Func->setVisibility(getDecodedVisibility(Record[7])); 3261 if (Record.size() > 8 && Record[8]) { 3262 if (Record[8] - 1 >= GCTable.size()) 3263 return error("Invalid ID"); 3264 Func->setGC(GCTable[Record[8] - 1]); 3265 } 3266 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3267 if (Record.size() > 9) 3268 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3269 Func->setUnnamedAddr(UnnamedAddr); 3270 if (Record.size() > 10 && Record[10] != 0) 3271 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3272 3273 if (Record.size() > 11) 3274 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3275 else 3276 upgradeDLLImportExportLinkage(Func, RawLinkage); 3277 3278 if (Record.size() > 12) { 3279 if (unsigned ComdatID = Record[12]) { 3280 if (ComdatID > ComdatList.size()) 3281 return error("Invalid function comdat ID"); 3282 Func->setComdat(ComdatList[ComdatID - 1]); 3283 } 3284 } else if (hasImplicitComdat(RawLinkage)) { 3285 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3286 } 3287 3288 if (Record.size() > 13 && Record[13] != 0) 3289 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3290 3291 if (Record.size() > 14 && Record[14] != 0) 3292 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3293 3294 if (Record.size() > 15) { 3295 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3296 } 3297 inferDSOLocal(Func); 3298 3299 // Record[16] is the address space number. 3300 3301 // Check whether we have enough values to read a partition name. 3302 if (Record.size() > 18) 3303 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3304 3305 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3306 assert(Func->getType() == flattenPointerTypes(FullTy) && 3307 "Incorrect fully specified type provided for Function"); 3308 ValueList.push_back(Func, FullTy); 3309 3310 // If this is a function with a body, remember the prototype we are 3311 // creating now, so that we can match up the body with them later. 3312 if (!isProto) { 3313 Func->setIsMaterializable(true); 3314 FunctionsWithBodies.push_back(Func); 3315 DeferredFunctionInfo[Func] = 0; 3316 } 3317 return Error::success(); 3318 } 3319 3320 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3321 unsigned BitCode, ArrayRef<uint64_t> Record) { 3322 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3323 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3324 // dllstorageclass, threadlocal, unnamed_addr, 3325 // preemption specifier] (name in VST) 3326 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3327 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3328 // preemption specifier] (name in VST) 3329 // v2: [strtab_offset, strtab_size, v1] 3330 StringRef Name; 3331 std::tie(Name, Record) = readNameFromStrtab(Record); 3332 3333 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3334 if (Record.size() < (3 + (unsigned)NewRecord)) 3335 return error("Invalid record"); 3336 unsigned OpNum = 0; 3337 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3338 Type *Ty = flattenPointerTypes(FullTy); 3339 if (!Ty) 3340 return error("Invalid record"); 3341 3342 unsigned AddrSpace; 3343 if (!NewRecord) { 3344 auto *PTy = dyn_cast<PointerType>(Ty); 3345 if (!PTy) 3346 return error("Invalid type for value"); 3347 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3348 AddrSpace = PTy->getAddressSpace(); 3349 } else { 3350 AddrSpace = Record[OpNum++]; 3351 } 3352 3353 auto Val = Record[OpNum++]; 3354 auto Linkage = Record[OpNum++]; 3355 GlobalIndirectSymbol *NewGA; 3356 if (BitCode == bitc::MODULE_CODE_ALIAS || 3357 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3358 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3359 TheModule); 3360 else 3361 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3362 nullptr, TheModule); 3363 3364 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3365 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3366 // Old bitcode files didn't have visibility field. 3367 // Local linkage must have default visibility. 3368 if (OpNum != Record.size()) { 3369 auto VisInd = OpNum++; 3370 if (!NewGA->hasLocalLinkage()) 3371 // FIXME: Change to an error if non-default in 4.0. 3372 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3373 } 3374 if (BitCode == bitc::MODULE_CODE_ALIAS || 3375 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3376 if (OpNum != Record.size()) 3377 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3378 else 3379 upgradeDLLImportExportLinkage(NewGA, Linkage); 3380 if (OpNum != Record.size()) 3381 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3382 if (OpNum != Record.size()) 3383 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3384 } 3385 if (OpNum != Record.size()) 3386 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3387 inferDSOLocal(NewGA); 3388 3389 // Check whether we have enough values to read a partition name. 3390 if (OpNum + 1 < Record.size()) { 3391 NewGA->setPartition( 3392 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3393 OpNum += 2; 3394 } 3395 3396 FullTy = PointerType::get(FullTy, AddrSpace); 3397 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3398 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3399 ValueList.push_back(NewGA, FullTy); 3400 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3401 return Error::success(); 3402 } 3403 3404 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3405 bool ShouldLazyLoadMetadata) { 3406 if (ResumeBit) { 3407 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3408 return JumpFailed; 3409 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3410 return Err; 3411 3412 SmallVector<uint64_t, 64> Record; 3413 3414 // Read all the records for this module. 3415 while (true) { 3416 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3417 if (!MaybeEntry) 3418 return MaybeEntry.takeError(); 3419 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3420 3421 switch (Entry.Kind) { 3422 case BitstreamEntry::Error: 3423 return error("Malformed block"); 3424 case BitstreamEntry::EndBlock: 3425 return globalCleanup(); 3426 3427 case BitstreamEntry::SubBlock: 3428 switch (Entry.ID) { 3429 default: // Skip unknown content. 3430 if (Error Err = Stream.SkipBlock()) 3431 return Err; 3432 break; 3433 case bitc::BLOCKINFO_BLOCK_ID: 3434 if (readBlockInfo()) 3435 return error("Malformed block"); 3436 break; 3437 case bitc::PARAMATTR_BLOCK_ID: 3438 if (Error Err = parseAttributeBlock()) 3439 return Err; 3440 break; 3441 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3442 if (Error Err = parseAttributeGroupBlock()) 3443 return Err; 3444 break; 3445 case bitc::TYPE_BLOCK_ID_NEW: 3446 if (Error Err = parseTypeTable()) 3447 return Err; 3448 break; 3449 case bitc::VALUE_SYMTAB_BLOCK_ID: 3450 if (!SeenValueSymbolTable) { 3451 // Either this is an old form VST without function index and an 3452 // associated VST forward declaration record (which would have caused 3453 // the VST to be jumped to and parsed before it was encountered 3454 // normally in the stream), or there were no function blocks to 3455 // trigger an earlier parsing of the VST. 3456 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3457 if (Error Err = parseValueSymbolTable()) 3458 return Err; 3459 SeenValueSymbolTable = true; 3460 } else { 3461 // We must have had a VST forward declaration record, which caused 3462 // the parser to jump to and parse the VST earlier. 3463 assert(VSTOffset > 0); 3464 if (Error Err = Stream.SkipBlock()) 3465 return Err; 3466 } 3467 break; 3468 case bitc::CONSTANTS_BLOCK_ID: 3469 if (Error Err = parseConstants()) 3470 return Err; 3471 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3472 return Err; 3473 break; 3474 case bitc::METADATA_BLOCK_ID: 3475 if (ShouldLazyLoadMetadata) { 3476 if (Error Err = rememberAndSkipMetadata()) 3477 return Err; 3478 break; 3479 } 3480 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3481 if (Error Err = MDLoader->parseModuleMetadata()) 3482 return Err; 3483 break; 3484 case bitc::METADATA_KIND_BLOCK_ID: 3485 if (Error Err = MDLoader->parseMetadataKinds()) 3486 return Err; 3487 break; 3488 case bitc::FUNCTION_BLOCK_ID: 3489 // If this is the first function body we've seen, reverse the 3490 // FunctionsWithBodies list. 3491 if (!SeenFirstFunctionBody) { 3492 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3493 if (Error Err = globalCleanup()) 3494 return Err; 3495 SeenFirstFunctionBody = true; 3496 } 3497 3498 if (VSTOffset > 0) { 3499 // If we have a VST forward declaration record, make sure we 3500 // parse the VST now if we haven't already. It is needed to 3501 // set up the DeferredFunctionInfo vector for lazy reading. 3502 if (!SeenValueSymbolTable) { 3503 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3504 return Err; 3505 SeenValueSymbolTable = true; 3506 // Fall through so that we record the NextUnreadBit below. 3507 // This is necessary in case we have an anonymous function that 3508 // is later materialized. Since it will not have a VST entry we 3509 // need to fall back to the lazy parse to find its offset. 3510 } else { 3511 // If we have a VST forward declaration record, but have already 3512 // parsed the VST (just above, when the first function body was 3513 // encountered here), then we are resuming the parse after 3514 // materializing functions. The ResumeBit points to the 3515 // start of the last function block recorded in the 3516 // DeferredFunctionInfo map. Skip it. 3517 if (Error Err = Stream.SkipBlock()) 3518 return Err; 3519 continue; 3520 } 3521 } 3522 3523 // Support older bitcode files that did not have the function 3524 // index in the VST, nor a VST forward declaration record, as 3525 // well as anonymous functions that do not have VST entries. 3526 // Build the DeferredFunctionInfo vector on the fly. 3527 if (Error Err = rememberAndSkipFunctionBody()) 3528 return Err; 3529 3530 // Suspend parsing when we reach the function bodies. Subsequent 3531 // materialization calls will resume it when necessary. If the bitcode 3532 // file is old, the symbol table will be at the end instead and will not 3533 // have been seen yet. In this case, just finish the parse now. 3534 if (SeenValueSymbolTable) { 3535 NextUnreadBit = Stream.GetCurrentBitNo(); 3536 // After the VST has been parsed, we need to make sure intrinsic name 3537 // are auto-upgraded. 3538 return globalCleanup(); 3539 } 3540 break; 3541 case bitc::USELIST_BLOCK_ID: 3542 if (Error Err = parseUseLists()) 3543 return Err; 3544 break; 3545 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3546 if (Error Err = parseOperandBundleTags()) 3547 return Err; 3548 break; 3549 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3550 if (Error Err = parseSyncScopeNames()) 3551 return Err; 3552 break; 3553 } 3554 continue; 3555 3556 case BitstreamEntry::Record: 3557 // The interesting case. 3558 break; 3559 } 3560 3561 // Read a record. 3562 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3563 if (!MaybeBitCode) 3564 return MaybeBitCode.takeError(); 3565 switch (unsigned BitCode = MaybeBitCode.get()) { 3566 default: break; // Default behavior, ignore unknown content. 3567 case bitc::MODULE_CODE_VERSION: { 3568 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3569 if (!VersionOrErr) 3570 return VersionOrErr.takeError(); 3571 UseRelativeIDs = *VersionOrErr >= 1; 3572 break; 3573 } 3574 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3575 std::string S; 3576 if (convertToString(Record, 0, S)) 3577 return error("Invalid record"); 3578 TheModule->setTargetTriple(S); 3579 break; 3580 } 3581 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3582 std::string S; 3583 if (convertToString(Record, 0, S)) 3584 return error("Invalid record"); 3585 TheModule->setDataLayout(S); 3586 break; 3587 } 3588 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3589 std::string S; 3590 if (convertToString(Record, 0, S)) 3591 return error("Invalid record"); 3592 TheModule->setModuleInlineAsm(S); 3593 break; 3594 } 3595 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3596 // FIXME: Remove in 4.0. 3597 std::string S; 3598 if (convertToString(Record, 0, S)) 3599 return error("Invalid record"); 3600 // Ignore value. 3601 break; 3602 } 3603 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3604 std::string S; 3605 if (convertToString(Record, 0, S)) 3606 return error("Invalid record"); 3607 SectionTable.push_back(S); 3608 break; 3609 } 3610 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3611 std::string S; 3612 if (convertToString(Record, 0, S)) 3613 return error("Invalid record"); 3614 GCTable.push_back(S); 3615 break; 3616 } 3617 case bitc::MODULE_CODE_COMDAT: 3618 if (Error Err = parseComdatRecord(Record)) 3619 return Err; 3620 break; 3621 case bitc::MODULE_CODE_GLOBALVAR: 3622 if (Error Err = parseGlobalVarRecord(Record)) 3623 return Err; 3624 break; 3625 case bitc::MODULE_CODE_FUNCTION: 3626 if (Error Err = parseFunctionRecord(Record)) 3627 return Err; 3628 break; 3629 case bitc::MODULE_CODE_IFUNC: 3630 case bitc::MODULE_CODE_ALIAS: 3631 case bitc::MODULE_CODE_ALIAS_OLD: 3632 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3633 return Err; 3634 break; 3635 /// MODULE_CODE_VSTOFFSET: [offset] 3636 case bitc::MODULE_CODE_VSTOFFSET: 3637 if (Record.size() < 1) 3638 return error("Invalid record"); 3639 // Note that we subtract 1 here because the offset is relative to one word 3640 // before the start of the identification or module block, which was 3641 // historically always the start of the regular bitcode header. 3642 VSTOffset = Record[0] - 1; 3643 break; 3644 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3645 case bitc::MODULE_CODE_SOURCE_FILENAME: 3646 SmallString<128> ValueName; 3647 if (convertToString(Record, 0, ValueName)) 3648 return error("Invalid record"); 3649 TheModule->setSourceFileName(ValueName); 3650 break; 3651 } 3652 Record.clear(); 3653 3654 // Upgrade data layout string. 3655 std::string DL = llvm::UpgradeDataLayoutString( 3656 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3657 TheModule->setDataLayout(DL); 3658 } 3659 } 3660 3661 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3662 bool IsImporting) { 3663 TheModule = M; 3664 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3665 [&](unsigned ID) { return getTypeByID(ID); }); 3666 return parseModule(0, ShouldLazyLoadMetadata); 3667 } 3668 3669 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3670 if (!isa<PointerType>(PtrType)) 3671 return error("Load/Store operand is not a pointer type"); 3672 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3673 3674 if (ValType && ValType != ElemType) 3675 return error("Explicit load/store type does not match pointee " 3676 "type of pointer operand"); 3677 if (!PointerType::isLoadableOrStorableType(ElemType)) 3678 return error("Cannot load/store from pointer"); 3679 return Error::success(); 3680 } 3681 3682 void BitcodeReader::propagateByValTypes(CallBase *CB, 3683 ArrayRef<Type *> ArgsFullTys) { 3684 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3685 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3686 continue; 3687 3688 CB->removeParamAttr(i, Attribute::ByVal); 3689 CB->addParamAttr( 3690 i, Attribute::getWithByValType( 3691 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3692 } 3693 } 3694 3695 /// Lazily parse the specified function body block. 3696 Error BitcodeReader::parseFunctionBody(Function *F) { 3697 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3698 return Err; 3699 3700 // Unexpected unresolved metadata when parsing function. 3701 if (MDLoader->hasFwdRefs()) 3702 return error("Invalid function metadata: incoming forward references"); 3703 3704 InstructionList.clear(); 3705 unsigned ModuleValueListSize = ValueList.size(); 3706 unsigned ModuleMDLoaderSize = MDLoader->size(); 3707 3708 // Add all the function arguments to the value table. 3709 unsigned ArgNo = 0; 3710 FunctionType *FullFTy = FunctionTypes[F]; 3711 for (Argument &I : F->args()) { 3712 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3713 "Incorrect fully specified type for Function Argument"); 3714 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3715 } 3716 unsigned NextValueNo = ValueList.size(); 3717 BasicBlock *CurBB = nullptr; 3718 unsigned CurBBNo = 0; 3719 3720 DebugLoc LastLoc; 3721 auto getLastInstruction = [&]() -> Instruction * { 3722 if (CurBB && !CurBB->empty()) 3723 return &CurBB->back(); 3724 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3725 !FunctionBBs[CurBBNo - 1]->empty()) 3726 return &FunctionBBs[CurBBNo - 1]->back(); 3727 return nullptr; 3728 }; 3729 3730 std::vector<OperandBundleDef> OperandBundles; 3731 3732 // Read all the records. 3733 SmallVector<uint64_t, 64> Record; 3734 3735 while (true) { 3736 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3737 if (!MaybeEntry) 3738 return MaybeEntry.takeError(); 3739 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3740 3741 switch (Entry.Kind) { 3742 case BitstreamEntry::Error: 3743 return error("Malformed block"); 3744 case BitstreamEntry::EndBlock: 3745 goto OutOfRecordLoop; 3746 3747 case BitstreamEntry::SubBlock: 3748 switch (Entry.ID) { 3749 default: // Skip unknown content. 3750 if (Error Err = Stream.SkipBlock()) 3751 return Err; 3752 break; 3753 case bitc::CONSTANTS_BLOCK_ID: 3754 if (Error Err = parseConstants()) 3755 return Err; 3756 NextValueNo = ValueList.size(); 3757 break; 3758 case bitc::VALUE_SYMTAB_BLOCK_ID: 3759 if (Error Err = parseValueSymbolTable()) 3760 return Err; 3761 break; 3762 case bitc::METADATA_ATTACHMENT_ID: 3763 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3764 return Err; 3765 break; 3766 case bitc::METADATA_BLOCK_ID: 3767 assert(DeferredMetadataInfo.empty() && 3768 "Must read all module-level metadata before function-level"); 3769 if (Error Err = MDLoader->parseFunctionMetadata()) 3770 return Err; 3771 break; 3772 case bitc::USELIST_BLOCK_ID: 3773 if (Error Err = parseUseLists()) 3774 return Err; 3775 break; 3776 } 3777 continue; 3778 3779 case BitstreamEntry::Record: 3780 // The interesting case. 3781 break; 3782 } 3783 3784 // Read a record. 3785 Record.clear(); 3786 Instruction *I = nullptr; 3787 Type *FullTy = nullptr; 3788 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3789 if (!MaybeBitCode) 3790 return MaybeBitCode.takeError(); 3791 switch (unsigned BitCode = MaybeBitCode.get()) { 3792 default: // Default behavior: reject 3793 return error("Invalid value"); 3794 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3795 if (Record.size() < 1 || Record[0] == 0) 3796 return error("Invalid record"); 3797 // Create all the basic blocks for the function. 3798 FunctionBBs.resize(Record[0]); 3799 3800 // See if anything took the address of blocks in this function. 3801 auto BBFRI = BasicBlockFwdRefs.find(F); 3802 if (BBFRI == BasicBlockFwdRefs.end()) { 3803 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3804 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3805 } else { 3806 auto &BBRefs = BBFRI->second; 3807 // Check for invalid basic block references. 3808 if (BBRefs.size() > FunctionBBs.size()) 3809 return error("Invalid ID"); 3810 assert(!BBRefs.empty() && "Unexpected empty array"); 3811 assert(!BBRefs.front() && "Invalid reference to entry block"); 3812 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3813 ++I) 3814 if (I < RE && BBRefs[I]) { 3815 BBRefs[I]->insertInto(F); 3816 FunctionBBs[I] = BBRefs[I]; 3817 } else { 3818 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3819 } 3820 3821 // Erase from the table. 3822 BasicBlockFwdRefs.erase(BBFRI); 3823 } 3824 3825 CurBB = FunctionBBs[0]; 3826 continue; 3827 } 3828 3829 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3830 // This record indicates that the last instruction is at the same 3831 // location as the previous instruction with a location. 3832 I = getLastInstruction(); 3833 3834 if (!I) 3835 return error("Invalid record"); 3836 I->setDebugLoc(LastLoc); 3837 I = nullptr; 3838 continue; 3839 3840 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3841 I = getLastInstruction(); 3842 if (!I || Record.size() < 4) 3843 return error("Invalid record"); 3844 3845 unsigned Line = Record[0], Col = Record[1]; 3846 unsigned ScopeID = Record[2], IAID = Record[3]; 3847 bool isImplicitCode = Record.size() == 5 && Record[4]; 3848 3849 MDNode *Scope = nullptr, *IA = nullptr; 3850 if (ScopeID) { 3851 Scope = dyn_cast_or_null<MDNode>( 3852 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3853 if (!Scope) 3854 return error("Invalid record"); 3855 } 3856 if (IAID) { 3857 IA = dyn_cast_or_null<MDNode>( 3858 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3859 if (!IA) 3860 return error("Invalid record"); 3861 } 3862 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3863 I->setDebugLoc(LastLoc); 3864 I = nullptr; 3865 continue; 3866 } 3867 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3868 unsigned OpNum = 0; 3869 Value *LHS; 3870 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3871 OpNum+1 > Record.size()) 3872 return error("Invalid record"); 3873 3874 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3875 if (Opc == -1) 3876 return error("Invalid record"); 3877 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3878 InstructionList.push_back(I); 3879 if (OpNum < Record.size()) { 3880 if (isa<FPMathOperator>(I)) { 3881 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3882 if (FMF.any()) 3883 I->setFastMathFlags(FMF); 3884 } 3885 } 3886 break; 3887 } 3888 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3889 unsigned OpNum = 0; 3890 Value *LHS, *RHS; 3891 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3892 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3893 OpNum+1 > Record.size()) 3894 return error("Invalid record"); 3895 3896 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3897 if (Opc == -1) 3898 return error("Invalid record"); 3899 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3900 InstructionList.push_back(I); 3901 if (OpNum < Record.size()) { 3902 if (Opc == Instruction::Add || 3903 Opc == Instruction::Sub || 3904 Opc == Instruction::Mul || 3905 Opc == Instruction::Shl) { 3906 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3907 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3908 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3909 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3910 } else if (Opc == Instruction::SDiv || 3911 Opc == Instruction::UDiv || 3912 Opc == Instruction::LShr || 3913 Opc == Instruction::AShr) { 3914 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3915 cast<BinaryOperator>(I)->setIsExact(true); 3916 } else if (isa<FPMathOperator>(I)) { 3917 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3918 if (FMF.any()) 3919 I->setFastMathFlags(FMF); 3920 } 3921 3922 } 3923 break; 3924 } 3925 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3926 unsigned OpNum = 0; 3927 Value *Op; 3928 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3929 OpNum+2 != Record.size()) 3930 return error("Invalid record"); 3931 3932 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3933 Type *ResTy = flattenPointerTypes(FullTy); 3934 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3935 if (Opc == -1 || !ResTy) 3936 return error("Invalid record"); 3937 Instruction *Temp = nullptr; 3938 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3939 if (Temp) { 3940 InstructionList.push_back(Temp); 3941 assert(CurBB && "No current BB?"); 3942 CurBB->getInstList().push_back(Temp); 3943 } 3944 } else { 3945 auto CastOp = (Instruction::CastOps)Opc; 3946 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3947 return error("Invalid cast"); 3948 I = CastInst::Create(CastOp, Op, ResTy); 3949 } 3950 InstructionList.push_back(I); 3951 break; 3952 } 3953 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3954 case bitc::FUNC_CODE_INST_GEP_OLD: 3955 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3956 unsigned OpNum = 0; 3957 3958 Type *Ty; 3959 bool InBounds; 3960 3961 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3962 InBounds = Record[OpNum++]; 3963 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3964 Ty = flattenPointerTypes(FullTy); 3965 } else { 3966 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3967 Ty = nullptr; 3968 } 3969 3970 Value *BasePtr; 3971 Type *FullBaseTy = nullptr; 3972 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3973 return error("Invalid record"); 3974 3975 if (!Ty) { 3976 std::tie(FullTy, Ty) = 3977 getPointerElementTypes(FullBaseTy->getScalarType()); 3978 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3979 return error( 3980 "Explicit gep type does not match pointee type of pointer operand"); 3981 3982 SmallVector<Value*, 16> GEPIdx; 3983 while (OpNum != Record.size()) { 3984 Value *Op; 3985 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3986 return error("Invalid record"); 3987 GEPIdx.push_back(Op); 3988 } 3989 3990 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3991 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3992 3993 InstructionList.push_back(I); 3994 if (InBounds) 3995 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3996 break; 3997 } 3998 3999 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4000 // EXTRACTVAL: [opty, opval, n x indices] 4001 unsigned OpNum = 0; 4002 Value *Agg; 4003 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4004 return error("Invalid record"); 4005 4006 unsigned RecSize = Record.size(); 4007 if (OpNum == RecSize) 4008 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4009 4010 SmallVector<unsigned, 4> EXTRACTVALIdx; 4011 for (; OpNum != RecSize; ++OpNum) { 4012 bool IsArray = FullTy->isArrayTy(); 4013 bool IsStruct = FullTy->isStructTy(); 4014 uint64_t Index = Record[OpNum]; 4015 4016 if (!IsStruct && !IsArray) 4017 return error("EXTRACTVAL: Invalid type"); 4018 if ((unsigned)Index != Index) 4019 return error("Invalid value"); 4020 if (IsStruct && Index >= FullTy->getStructNumElements()) 4021 return error("EXTRACTVAL: Invalid struct index"); 4022 if (IsArray && Index >= FullTy->getArrayNumElements()) 4023 return error("EXTRACTVAL: Invalid array index"); 4024 EXTRACTVALIdx.push_back((unsigned)Index); 4025 4026 if (IsStruct) 4027 FullTy = FullTy->getStructElementType(Index); 4028 else 4029 FullTy = FullTy->getArrayElementType(); 4030 } 4031 4032 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4033 InstructionList.push_back(I); 4034 break; 4035 } 4036 4037 case bitc::FUNC_CODE_INST_INSERTVAL: { 4038 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4039 unsigned OpNum = 0; 4040 Value *Agg; 4041 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4042 return error("Invalid record"); 4043 Value *Val; 4044 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4045 return error("Invalid record"); 4046 4047 unsigned RecSize = Record.size(); 4048 if (OpNum == RecSize) 4049 return error("INSERTVAL: Invalid instruction with 0 indices"); 4050 4051 SmallVector<unsigned, 4> INSERTVALIdx; 4052 Type *CurTy = Agg->getType(); 4053 for (; OpNum != RecSize; ++OpNum) { 4054 bool IsArray = CurTy->isArrayTy(); 4055 bool IsStruct = CurTy->isStructTy(); 4056 uint64_t Index = Record[OpNum]; 4057 4058 if (!IsStruct && !IsArray) 4059 return error("INSERTVAL: Invalid type"); 4060 if ((unsigned)Index != Index) 4061 return error("Invalid value"); 4062 if (IsStruct && Index >= CurTy->getStructNumElements()) 4063 return error("INSERTVAL: Invalid struct index"); 4064 if (IsArray && Index >= CurTy->getArrayNumElements()) 4065 return error("INSERTVAL: Invalid array index"); 4066 4067 INSERTVALIdx.push_back((unsigned)Index); 4068 if (IsStruct) 4069 CurTy = CurTy->getStructElementType(Index); 4070 else 4071 CurTy = CurTy->getArrayElementType(); 4072 } 4073 4074 if (CurTy != Val->getType()) 4075 return error("Inserted value type doesn't match aggregate type"); 4076 4077 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4078 InstructionList.push_back(I); 4079 break; 4080 } 4081 4082 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4083 // obsolete form of select 4084 // handles select i1 ... in old bitcode 4085 unsigned OpNum = 0; 4086 Value *TrueVal, *FalseVal, *Cond; 4087 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4088 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4089 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4090 return error("Invalid record"); 4091 4092 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4093 InstructionList.push_back(I); 4094 break; 4095 } 4096 4097 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4098 // new form of select 4099 // handles select i1 or select [N x i1] 4100 unsigned OpNum = 0; 4101 Value *TrueVal, *FalseVal, *Cond; 4102 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4103 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4104 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4105 return error("Invalid record"); 4106 4107 // select condition can be either i1 or [N x i1] 4108 if (VectorType* vector_type = 4109 dyn_cast<VectorType>(Cond->getType())) { 4110 // expect <n x i1> 4111 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4112 return error("Invalid type for value"); 4113 } else { 4114 // expect i1 4115 if (Cond->getType() != Type::getInt1Ty(Context)) 4116 return error("Invalid type for value"); 4117 } 4118 4119 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4120 InstructionList.push_back(I); 4121 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4122 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4123 if (FMF.any()) 4124 I->setFastMathFlags(FMF); 4125 } 4126 break; 4127 } 4128 4129 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4130 unsigned OpNum = 0; 4131 Value *Vec, *Idx; 4132 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4133 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4134 return error("Invalid record"); 4135 if (!Vec->getType()->isVectorTy()) 4136 return error("Invalid type for value"); 4137 I = ExtractElementInst::Create(Vec, Idx); 4138 FullTy = FullTy->getVectorElementType(); 4139 InstructionList.push_back(I); 4140 break; 4141 } 4142 4143 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4144 unsigned OpNum = 0; 4145 Value *Vec, *Elt, *Idx; 4146 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4147 return error("Invalid record"); 4148 if (!Vec->getType()->isVectorTy()) 4149 return error("Invalid type for value"); 4150 if (popValue(Record, OpNum, NextValueNo, 4151 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4152 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4153 return error("Invalid record"); 4154 I = InsertElementInst::Create(Vec, Elt, Idx); 4155 InstructionList.push_back(I); 4156 break; 4157 } 4158 4159 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4160 unsigned OpNum = 0; 4161 Value *Vec1, *Vec2, *Mask; 4162 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4163 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4164 return error("Invalid record"); 4165 4166 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4167 return error("Invalid record"); 4168 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4169 return error("Invalid type for value"); 4170 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4171 FullTy = VectorType::get(FullTy->getVectorElementType(), 4172 Mask->getType()->getVectorNumElements()); 4173 InstructionList.push_back(I); 4174 break; 4175 } 4176 4177 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4178 // Old form of ICmp/FCmp returning bool 4179 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4180 // both legal on vectors but had different behaviour. 4181 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4182 // FCmp/ICmp returning bool or vector of bool 4183 4184 unsigned OpNum = 0; 4185 Value *LHS, *RHS; 4186 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4187 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4188 return error("Invalid record"); 4189 4190 if (OpNum >= Record.size()) 4191 return error( 4192 "Invalid record: operand number exceeded available operands"); 4193 4194 unsigned PredVal = Record[OpNum]; 4195 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4196 FastMathFlags FMF; 4197 if (IsFP && Record.size() > OpNum+1) 4198 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4199 4200 if (OpNum+1 != Record.size()) 4201 return error("Invalid record"); 4202 4203 if (LHS->getType()->isFPOrFPVectorTy()) 4204 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4205 else 4206 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4207 4208 if (FMF.any()) 4209 I->setFastMathFlags(FMF); 4210 InstructionList.push_back(I); 4211 break; 4212 } 4213 4214 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4215 { 4216 unsigned Size = Record.size(); 4217 if (Size == 0) { 4218 I = ReturnInst::Create(Context); 4219 InstructionList.push_back(I); 4220 break; 4221 } 4222 4223 unsigned OpNum = 0; 4224 Value *Op = nullptr; 4225 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4226 return error("Invalid record"); 4227 if (OpNum != Record.size()) 4228 return error("Invalid record"); 4229 4230 I = ReturnInst::Create(Context, Op); 4231 InstructionList.push_back(I); 4232 break; 4233 } 4234 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4235 if (Record.size() != 1 && Record.size() != 3) 4236 return error("Invalid record"); 4237 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4238 if (!TrueDest) 4239 return error("Invalid record"); 4240 4241 if (Record.size() == 1) { 4242 I = BranchInst::Create(TrueDest); 4243 InstructionList.push_back(I); 4244 } 4245 else { 4246 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4247 Value *Cond = getValue(Record, 2, NextValueNo, 4248 Type::getInt1Ty(Context)); 4249 if (!FalseDest || !Cond) 4250 return error("Invalid record"); 4251 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4252 InstructionList.push_back(I); 4253 } 4254 break; 4255 } 4256 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4257 if (Record.size() != 1 && Record.size() != 2) 4258 return error("Invalid record"); 4259 unsigned Idx = 0; 4260 Value *CleanupPad = 4261 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4262 if (!CleanupPad) 4263 return error("Invalid record"); 4264 BasicBlock *UnwindDest = nullptr; 4265 if (Record.size() == 2) { 4266 UnwindDest = getBasicBlock(Record[Idx++]); 4267 if (!UnwindDest) 4268 return error("Invalid record"); 4269 } 4270 4271 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4272 InstructionList.push_back(I); 4273 break; 4274 } 4275 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4276 if (Record.size() != 2) 4277 return error("Invalid record"); 4278 unsigned Idx = 0; 4279 Value *CatchPad = 4280 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4281 if (!CatchPad) 4282 return error("Invalid record"); 4283 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4284 if (!BB) 4285 return error("Invalid record"); 4286 4287 I = CatchReturnInst::Create(CatchPad, BB); 4288 InstructionList.push_back(I); 4289 break; 4290 } 4291 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4292 // We must have, at minimum, the outer scope and the number of arguments. 4293 if (Record.size() < 2) 4294 return error("Invalid record"); 4295 4296 unsigned Idx = 0; 4297 4298 Value *ParentPad = 4299 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4300 4301 unsigned NumHandlers = Record[Idx++]; 4302 4303 SmallVector<BasicBlock *, 2> Handlers; 4304 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4305 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4306 if (!BB) 4307 return error("Invalid record"); 4308 Handlers.push_back(BB); 4309 } 4310 4311 BasicBlock *UnwindDest = nullptr; 4312 if (Idx + 1 == Record.size()) { 4313 UnwindDest = getBasicBlock(Record[Idx++]); 4314 if (!UnwindDest) 4315 return error("Invalid record"); 4316 } 4317 4318 if (Record.size() != Idx) 4319 return error("Invalid record"); 4320 4321 auto *CatchSwitch = 4322 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4323 for (BasicBlock *Handler : Handlers) 4324 CatchSwitch->addHandler(Handler); 4325 I = CatchSwitch; 4326 InstructionList.push_back(I); 4327 break; 4328 } 4329 case bitc::FUNC_CODE_INST_CATCHPAD: 4330 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4331 // We must have, at minimum, the outer scope and the number of arguments. 4332 if (Record.size() < 2) 4333 return error("Invalid record"); 4334 4335 unsigned Idx = 0; 4336 4337 Value *ParentPad = 4338 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4339 4340 unsigned NumArgOperands = Record[Idx++]; 4341 4342 SmallVector<Value *, 2> Args; 4343 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4344 Value *Val; 4345 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4346 return error("Invalid record"); 4347 Args.push_back(Val); 4348 } 4349 4350 if (Record.size() != Idx) 4351 return error("Invalid record"); 4352 4353 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4354 I = CleanupPadInst::Create(ParentPad, Args); 4355 else 4356 I = CatchPadInst::Create(ParentPad, Args); 4357 InstructionList.push_back(I); 4358 break; 4359 } 4360 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4361 // Check magic 4362 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4363 // "New" SwitchInst format with case ranges. The changes to write this 4364 // format were reverted but we still recognize bitcode that uses it. 4365 // Hopefully someday we will have support for case ranges and can use 4366 // this format again. 4367 4368 Type *OpTy = getTypeByID(Record[1]); 4369 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4370 4371 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4372 BasicBlock *Default = getBasicBlock(Record[3]); 4373 if (!OpTy || !Cond || !Default) 4374 return error("Invalid record"); 4375 4376 unsigned NumCases = Record[4]; 4377 4378 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4379 InstructionList.push_back(SI); 4380 4381 unsigned CurIdx = 5; 4382 for (unsigned i = 0; i != NumCases; ++i) { 4383 SmallVector<ConstantInt*, 1> CaseVals; 4384 unsigned NumItems = Record[CurIdx++]; 4385 for (unsigned ci = 0; ci != NumItems; ++ci) { 4386 bool isSingleNumber = Record[CurIdx++]; 4387 4388 APInt Low; 4389 unsigned ActiveWords = 1; 4390 if (ValueBitWidth > 64) 4391 ActiveWords = Record[CurIdx++]; 4392 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4393 ValueBitWidth); 4394 CurIdx += ActiveWords; 4395 4396 if (!isSingleNumber) { 4397 ActiveWords = 1; 4398 if (ValueBitWidth > 64) 4399 ActiveWords = Record[CurIdx++]; 4400 APInt High = readWideAPInt( 4401 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4402 CurIdx += ActiveWords; 4403 4404 // FIXME: It is not clear whether values in the range should be 4405 // compared as signed or unsigned values. The partially 4406 // implemented changes that used this format in the past used 4407 // unsigned comparisons. 4408 for ( ; Low.ule(High); ++Low) 4409 CaseVals.push_back(ConstantInt::get(Context, Low)); 4410 } else 4411 CaseVals.push_back(ConstantInt::get(Context, Low)); 4412 } 4413 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4414 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4415 cve = CaseVals.end(); cvi != cve; ++cvi) 4416 SI->addCase(*cvi, DestBB); 4417 } 4418 I = SI; 4419 break; 4420 } 4421 4422 // Old SwitchInst format without case ranges. 4423 4424 if (Record.size() < 3 || (Record.size() & 1) == 0) 4425 return error("Invalid record"); 4426 Type *OpTy = getTypeByID(Record[0]); 4427 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4428 BasicBlock *Default = getBasicBlock(Record[2]); 4429 if (!OpTy || !Cond || !Default) 4430 return error("Invalid record"); 4431 unsigned NumCases = (Record.size()-3)/2; 4432 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4433 InstructionList.push_back(SI); 4434 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4435 ConstantInt *CaseVal = 4436 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4437 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4438 if (!CaseVal || !DestBB) { 4439 delete SI; 4440 return error("Invalid record"); 4441 } 4442 SI->addCase(CaseVal, DestBB); 4443 } 4444 I = SI; 4445 break; 4446 } 4447 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4448 if (Record.size() < 2) 4449 return error("Invalid record"); 4450 Type *OpTy = getTypeByID(Record[0]); 4451 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4452 if (!OpTy || !Address) 4453 return error("Invalid record"); 4454 unsigned NumDests = Record.size()-2; 4455 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4456 InstructionList.push_back(IBI); 4457 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4458 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4459 IBI->addDestination(DestBB); 4460 } else { 4461 delete IBI; 4462 return error("Invalid record"); 4463 } 4464 } 4465 I = IBI; 4466 break; 4467 } 4468 4469 case bitc::FUNC_CODE_INST_INVOKE: { 4470 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4471 if (Record.size() < 4) 4472 return error("Invalid record"); 4473 unsigned OpNum = 0; 4474 AttributeList PAL = getAttributes(Record[OpNum++]); 4475 unsigned CCInfo = Record[OpNum++]; 4476 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4477 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4478 4479 FunctionType *FTy = nullptr; 4480 FunctionType *FullFTy = nullptr; 4481 if ((CCInfo >> 13) & 1) { 4482 FullFTy = 4483 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4484 if (!FullFTy) 4485 return error("Explicit invoke type is not a function type"); 4486 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4487 } 4488 4489 Value *Callee; 4490 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4491 return error("Invalid record"); 4492 4493 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4494 if (!CalleeTy) 4495 return error("Callee is not a pointer"); 4496 if (!FTy) { 4497 FullFTy = 4498 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4499 if (!FullFTy) 4500 return error("Callee is not of pointer to function type"); 4501 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4502 } else if (getPointerElementFlatType(FullTy) != FTy) 4503 return error("Explicit invoke type does not match pointee type of " 4504 "callee operand"); 4505 if (Record.size() < FTy->getNumParams() + OpNum) 4506 return error("Insufficient operands to call"); 4507 4508 SmallVector<Value*, 16> Ops; 4509 SmallVector<Type *, 16> ArgsFullTys; 4510 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4511 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4512 FTy->getParamType(i))); 4513 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4514 if (!Ops.back()) 4515 return error("Invalid record"); 4516 } 4517 4518 if (!FTy->isVarArg()) { 4519 if (Record.size() != OpNum) 4520 return error("Invalid record"); 4521 } else { 4522 // Read type/value pairs for varargs params. 4523 while (OpNum != Record.size()) { 4524 Value *Op; 4525 Type *FullTy; 4526 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4527 return error("Invalid record"); 4528 Ops.push_back(Op); 4529 ArgsFullTys.push_back(FullTy); 4530 } 4531 } 4532 4533 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4534 OperandBundles); 4535 FullTy = FullFTy->getReturnType(); 4536 OperandBundles.clear(); 4537 InstructionList.push_back(I); 4538 cast<InvokeInst>(I)->setCallingConv( 4539 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4540 cast<InvokeInst>(I)->setAttributes(PAL); 4541 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4542 4543 break; 4544 } 4545 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4546 unsigned Idx = 0; 4547 Value *Val = nullptr; 4548 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4549 return error("Invalid record"); 4550 I = ResumeInst::Create(Val); 4551 InstructionList.push_back(I); 4552 break; 4553 } 4554 case bitc::FUNC_CODE_INST_CALLBR: { 4555 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4556 unsigned OpNum = 0; 4557 AttributeList PAL = getAttributes(Record[OpNum++]); 4558 unsigned CCInfo = Record[OpNum++]; 4559 4560 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4561 unsigned NumIndirectDests = Record[OpNum++]; 4562 SmallVector<BasicBlock *, 16> IndirectDests; 4563 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4564 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4565 4566 FunctionType *FTy = nullptr; 4567 FunctionType *FullFTy = nullptr; 4568 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4569 FullFTy = 4570 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4571 if (!FullFTy) 4572 return error("Explicit call type is not a function type"); 4573 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4574 } 4575 4576 Value *Callee; 4577 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4578 return error("Invalid record"); 4579 4580 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4581 if (!OpTy) 4582 return error("Callee is not a pointer type"); 4583 if (!FTy) { 4584 FullFTy = 4585 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4586 if (!FullFTy) 4587 return error("Callee is not of pointer to function type"); 4588 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4589 } else if (getPointerElementFlatType(FullTy) != FTy) 4590 return error("Explicit call type does not match pointee type of " 4591 "callee operand"); 4592 if (Record.size() < FTy->getNumParams() + OpNum) 4593 return error("Insufficient operands to call"); 4594 4595 SmallVector<Value*, 16> Args; 4596 // Read the fixed params. 4597 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4598 if (FTy->getParamType(i)->isLabelTy()) 4599 Args.push_back(getBasicBlock(Record[OpNum])); 4600 else 4601 Args.push_back(getValue(Record, OpNum, NextValueNo, 4602 FTy->getParamType(i))); 4603 if (!Args.back()) 4604 return error("Invalid record"); 4605 } 4606 4607 // Read type/value pairs for varargs params. 4608 if (!FTy->isVarArg()) { 4609 if (OpNum != Record.size()) 4610 return error("Invalid record"); 4611 } else { 4612 while (OpNum != Record.size()) { 4613 Value *Op; 4614 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4615 return error("Invalid record"); 4616 Args.push_back(Op); 4617 } 4618 } 4619 4620 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4621 OperandBundles); 4622 FullTy = FullFTy->getReturnType(); 4623 OperandBundles.clear(); 4624 InstructionList.push_back(I); 4625 cast<CallBrInst>(I)->setCallingConv( 4626 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4627 cast<CallBrInst>(I)->setAttributes(PAL); 4628 break; 4629 } 4630 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4631 I = new UnreachableInst(Context); 4632 InstructionList.push_back(I); 4633 break; 4634 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4635 if (Record.size() < 1) 4636 return error("Invalid record"); 4637 // The first record specifies the type. 4638 FullTy = getFullyStructuredTypeByID(Record[0]); 4639 Type *Ty = flattenPointerTypes(FullTy); 4640 if (!Ty) 4641 return error("Invalid record"); 4642 4643 // Phi arguments are pairs of records of [value, basic block]. 4644 // There is an optional final record for fast-math-flags if this phi has a 4645 // floating-point type. 4646 size_t NumArgs = (Record.size() - 1) / 2; 4647 PHINode *PN = PHINode::Create(Ty, NumArgs); 4648 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4649 return error("Invalid record"); 4650 InstructionList.push_back(PN); 4651 4652 for (unsigned i = 0; i != NumArgs; i++) { 4653 Value *V; 4654 // With the new function encoding, it is possible that operands have 4655 // negative IDs (for forward references). Use a signed VBR 4656 // representation to keep the encoding small. 4657 if (UseRelativeIDs) 4658 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4659 else 4660 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4661 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4662 if (!V || !BB) 4663 return error("Invalid record"); 4664 PN->addIncoming(V, BB); 4665 } 4666 I = PN; 4667 4668 // If there are an even number of records, the final record must be FMF. 4669 if (Record.size() % 2 == 0) { 4670 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4671 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4672 if (FMF.any()) 4673 I->setFastMathFlags(FMF); 4674 } 4675 4676 break; 4677 } 4678 4679 case bitc::FUNC_CODE_INST_LANDINGPAD: 4680 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4681 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4682 unsigned Idx = 0; 4683 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4684 if (Record.size() < 3) 4685 return error("Invalid record"); 4686 } else { 4687 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4688 if (Record.size() < 4) 4689 return error("Invalid record"); 4690 } 4691 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4692 Type *Ty = flattenPointerTypes(FullTy); 4693 if (!Ty) 4694 return error("Invalid record"); 4695 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4696 Value *PersFn = nullptr; 4697 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4698 return error("Invalid record"); 4699 4700 if (!F->hasPersonalityFn()) 4701 F->setPersonalityFn(cast<Constant>(PersFn)); 4702 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4703 return error("Personality function mismatch"); 4704 } 4705 4706 bool IsCleanup = !!Record[Idx++]; 4707 unsigned NumClauses = Record[Idx++]; 4708 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4709 LP->setCleanup(IsCleanup); 4710 for (unsigned J = 0; J != NumClauses; ++J) { 4711 LandingPadInst::ClauseType CT = 4712 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4713 Value *Val; 4714 4715 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4716 delete LP; 4717 return error("Invalid record"); 4718 } 4719 4720 assert((CT != LandingPadInst::Catch || 4721 !isa<ArrayType>(Val->getType())) && 4722 "Catch clause has a invalid type!"); 4723 assert((CT != LandingPadInst::Filter || 4724 isa<ArrayType>(Val->getType())) && 4725 "Filter clause has invalid type!"); 4726 LP->addClause(cast<Constant>(Val)); 4727 } 4728 4729 I = LP; 4730 InstructionList.push_back(I); 4731 break; 4732 } 4733 4734 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4735 if (Record.size() != 4) 4736 return error("Invalid record"); 4737 uint64_t AlignRecord = Record[3]; 4738 const uint64_t InAllocaMask = uint64_t(1) << 5; 4739 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4740 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4741 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4742 SwiftErrorMask; 4743 bool InAlloca = AlignRecord & InAllocaMask; 4744 bool SwiftError = AlignRecord & SwiftErrorMask; 4745 FullTy = getFullyStructuredTypeByID(Record[0]); 4746 Type *Ty = flattenPointerTypes(FullTy); 4747 if ((AlignRecord & ExplicitTypeMask) == 0) { 4748 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4749 if (!PTy) 4750 return error("Old-style alloca with a non-pointer type"); 4751 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4752 } 4753 Type *OpTy = getTypeByID(Record[1]); 4754 Value *Size = getFnValueByID(Record[2], OpTy); 4755 MaybeAlign Align; 4756 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4757 return Err; 4758 } 4759 if (!Ty || !Size) 4760 return error("Invalid record"); 4761 4762 // FIXME: Make this an optional field. 4763 const DataLayout &DL = TheModule->getDataLayout(); 4764 unsigned AS = DL.getAllocaAddrSpace(); 4765 4766 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4767 AI->setUsedWithInAlloca(InAlloca); 4768 AI->setSwiftError(SwiftError); 4769 I = AI; 4770 FullTy = PointerType::get(FullTy, AS); 4771 InstructionList.push_back(I); 4772 break; 4773 } 4774 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4775 unsigned OpNum = 0; 4776 Value *Op; 4777 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4778 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4779 return error("Invalid record"); 4780 4781 if (!isa<PointerType>(Op->getType())) 4782 return error("Load operand is not a pointer type"); 4783 4784 Type *Ty = nullptr; 4785 if (OpNum + 3 == Record.size()) { 4786 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4787 Ty = flattenPointerTypes(FullTy); 4788 } else 4789 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4790 4791 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4792 return Err; 4793 4794 MaybeAlign Align; 4795 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4796 return Err; 4797 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4798 InstructionList.push_back(I); 4799 break; 4800 } 4801 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4802 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4803 unsigned OpNum = 0; 4804 Value *Op; 4805 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4806 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4807 return error("Invalid record"); 4808 4809 if (!isa<PointerType>(Op->getType())) 4810 return error("Load operand is not a pointer type"); 4811 4812 Type *Ty = nullptr; 4813 if (OpNum + 5 == Record.size()) { 4814 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4815 Ty = flattenPointerTypes(FullTy); 4816 } else 4817 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4818 4819 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4820 return Err; 4821 4822 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4823 if (Ordering == AtomicOrdering::NotAtomic || 4824 Ordering == AtomicOrdering::Release || 4825 Ordering == AtomicOrdering::AcquireRelease) 4826 return error("Invalid record"); 4827 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4828 return error("Invalid record"); 4829 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4830 4831 MaybeAlign Align; 4832 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4833 return Err; 4834 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4835 InstructionList.push_back(I); 4836 break; 4837 } 4838 case bitc::FUNC_CODE_INST_STORE: 4839 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4840 unsigned OpNum = 0; 4841 Value *Val, *Ptr; 4842 Type *FullTy; 4843 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4844 (BitCode == bitc::FUNC_CODE_INST_STORE 4845 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4846 : popValue(Record, OpNum, NextValueNo, 4847 getPointerElementFlatType(FullTy), Val)) || 4848 OpNum + 2 != Record.size()) 4849 return error("Invalid record"); 4850 4851 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4852 return Err; 4853 MaybeAlign Align; 4854 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4855 return Err; 4856 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4857 InstructionList.push_back(I); 4858 break; 4859 } 4860 case bitc::FUNC_CODE_INST_STOREATOMIC: 4861 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4862 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4863 unsigned OpNum = 0; 4864 Value *Val, *Ptr; 4865 Type *FullTy; 4866 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4867 !isa<PointerType>(Ptr->getType()) || 4868 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4869 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4870 : popValue(Record, OpNum, NextValueNo, 4871 getPointerElementFlatType(FullTy), Val)) || 4872 OpNum + 4 != Record.size()) 4873 return error("Invalid record"); 4874 4875 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4876 return Err; 4877 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4878 if (Ordering == AtomicOrdering::NotAtomic || 4879 Ordering == AtomicOrdering::Acquire || 4880 Ordering == AtomicOrdering::AcquireRelease) 4881 return error("Invalid record"); 4882 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4883 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4884 return error("Invalid record"); 4885 4886 MaybeAlign Align; 4887 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4888 return Err; 4889 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4890 InstructionList.push_back(I); 4891 break; 4892 } 4893 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4894 case bitc::FUNC_CODE_INST_CMPXCHG: { 4895 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4896 // failureordering?, isweak?] 4897 unsigned OpNum = 0; 4898 Value *Ptr, *Cmp, *New; 4899 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4900 return error("Invalid record"); 4901 4902 if (!isa<PointerType>(Ptr->getType())) 4903 return error("Cmpxchg operand is not a pointer type"); 4904 4905 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4906 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4907 return error("Invalid record"); 4908 } else if (popValue(Record, OpNum, NextValueNo, 4909 getPointerElementFlatType(FullTy), Cmp)) 4910 return error("Invalid record"); 4911 else 4912 FullTy = cast<PointerType>(FullTy)->getElementType(); 4913 4914 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4915 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4916 return error("Invalid record"); 4917 4918 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4919 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4920 SuccessOrdering == AtomicOrdering::Unordered) 4921 return error("Invalid record"); 4922 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4923 4924 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4925 return Err; 4926 AtomicOrdering FailureOrdering; 4927 if (Record.size() < 7) 4928 FailureOrdering = 4929 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4930 else 4931 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4932 4933 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4934 SSID); 4935 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4936 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4937 4938 if (Record.size() < 8) { 4939 // Before weak cmpxchgs existed, the instruction simply returned the 4940 // value loaded from memory, so bitcode files from that era will be 4941 // expecting the first component of a modern cmpxchg. 4942 CurBB->getInstList().push_back(I); 4943 I = ExtractValueInst::Create(I, 0); 4944 FullTy = cast<StructType>(FullTy)->getElementType(0); 4945 } else { 4946 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4947 } 4948 4949 InstructionList.push_back(I); 4950 break; 4951 } 4952 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4953 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4954 unsigned OpNum = 0; 4955 Value *Ptr, *Val; 4956 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4957 !isa<PointerType>(Ptr->getType()) || 4958 popValue(Record, OpNum, NextValueNo, 4959 getPointerElementFlatType(FullTy), Val) || 4960 OpNum + 4 != Record.size()) 4961 return error("Invalid record"); 4962 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4963 if (Operation < AtomicRMWInst::FIRST_BINOP || 4964 Operation > AtomicRMWInst::LAST_BINOP) 4965 return error("Invalid record"); 4966 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4967 if (Ordering == AtomicOrdering::NotAtomic || 4968 Ordering == AtomicOrdering::Unordered) 4969 return error("Invalid record"); 4970 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4971 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4972 FullTy = getPointerElementFlatType(FullTy); 4973 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4974 InstructionList.push_back(I); 4975 break; 4976 } 4977 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4978 if (2 != Record.size()) 4979 return error("Invalid record"); 4980 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4981 if (Ordering == AtomicOrdering::NotAtomic || 4982 Ordering == AtomicOrdering::Unordered || 4983 Ordering == AtomicOrdering::Monotonic) 4984 return error("Invalid record"); 4985 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4986 I = new FenceInst(Context, Ordering, SSID); 4987 InstructionList.push_back(I); 4988 break; 4989 } 4990 case bitc::FUNC_CODE_INST_CALL: { 4991 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4992 if (Record.size() < 3) 4993 return error("Invalid record"); 4994 4995 unsigned OpNum = 0; 4996 AttributeList PAL = getAttributes(Record[OpNum++]); 4997 unsigned CCInfo = Record[OpNum++]; 4998 4999 FastMathFlags FMF; 5000 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5001 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5002 if (!FMF.any()) 5003 return error("Fast math flags indicator set for call with no FMF"); 5004 } 5005 5006 FunctionType *FTy = nullptr; 5007 FunctionType *FullFTy = nullptr; 5008 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5009 FullFTy = 5010 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5011 if (!FullFTy) 5012 return error("Explicit call type is not a function type"); 5013 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5014 } 5015 5016 Value *Callee; 5017 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5018 return error("Invalid record"); 5019 5020 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5021 if (!OpTy) 5022 return error("Callee is not a pointer type"); 5023 if (!FTy) { 5024 FullFTy = 5025 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5026 if (!FullFTy) 5027 return error("Callee is not of pointer to function type"); 5028 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5029 } else if (getPointerElementFlatType(FullTy) != FTy) 5030 return error("Explicit call type does not match pointee type of " 5031 "callee operand"); 5032 if (Record.size() < FTy->getNumParams() + OpNum) 5033 return error("Insufficient operands to call"); 5034 5035 SmallVector<Value*, 16> Args; 5036 SmallVector<Type*, 16> ArgsFullTys; 5037 // Read the fixed params. 5038 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5039 if (FTy->getParamType(i)->isLabelTy()) 5040 Args.push_back(getBasicBlock(Record[OpNum])); 5041 else 5042 Args.push_back(getValue(Record, OpNum, NextValueNo, 5043 FTy->getParamType(i))); 5044 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5045 if (!Args.back()) 5046 return error("Invalid record"); 5047 } 5048 5049 // Read type/value pairs for varargs params. 5050 if (!FTy->isVarArg()) { 5051 if (OpNum != Record.size()) 5052 return error("Invalid record"); 5053 } else { 5054 while (OpNum != Record.size()) { 5055 Value *Op; 5056 Type *FullTy; 5057 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5058 return error("Invalid record"); 5059 Args.push_back(Op); 5060 ArgsFullTys.push_back(FullTy); 5061 } 5062 } 5063 5064 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5065 FullTy = FullFTy->getReturnType(); 5066 OperandBundles.clear(); 5067 InstructionList.push_back(I); 5068 cast<CallInst>(I)->setCallingConv( 5069 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5070 CallInst::TailCallKind TCK = CallInst::TCK_None; 5071 if (CCInfo & 1 << bitc::CALL_TAIL) 5072 TCK = CallInst::TCK_Tail; 5073 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5074 TCK = CallInst::TCK_MustTail; 5075 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5076 TCK = CallInst::TCK_NoTail; 5077 cast<CallInst>(I)->setTailCallKind(TCK); 5078 cast<CallInst>(I)->setAttributes(PAL); 5079 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5080 if (FMF.any()) { 5081 if (!isa<FPMathOperator>(I)) 5082 return error("Fast-math-flags specified for call without " 5083 "floating-point scalar or vector return type"); 5084 I->setFastMathFlags(FMF); 5085 } 5086 break; 5087 } 5088 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5089 if (Record.size() < 3) 5090 return error("Invalid record"); 5091 Type *OpTy = getTypeByID(Record[0]); 5092 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5093 FullTy = getFullyStructuredTypeByID(Record[2]); 5094 Type *ResTy = flattenPointerTypes(FullTy); 5095 if (!OpTy || !Op || !ResTy) 5096 return error("Invalid record"); 5097 I = new VAArgInst(Op, ResTy); 5098 InstructionList.push_back(I); 5099 break; 5100 } 5101 5102 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5103 // A call or an invoke can be optionally prefixed with some variable 5104 // number of operand bundle blocks. These blocks are read into 5105 // OperandBundles and consumed at the next call or invoke instruction. 5106 5107 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5108 return error("Invalid record"); 5109 5110 std::vector<Value *> Inputs; 5111 5112 unsigned OpNum = 1; 5113 while (OpNum != Record.size()) { 5114 Value *Op; 5115 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5116 return error("Invalid record"); 5117 Inputs.push_back(Op); 5118 } 5119 5120 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5121 continue; 5122 } 5123 5124 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5125 unsigned OpNum = 0; 5126 Value *Op = nullptr; 5127 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5128 return error("Invalid record"); 5129 if (OpNum != Record.size()) 5130 return error("Invalid record"); 5131 5132 I = new FreezeInst(Op); 5133 InstructionList.push_back(I); 5134 break; 5135 } 5136 } 5137 5138 // Add instruction to end of current BB. If there is no current BB, reject 5139 // this file. 5140 if (!CurBB) { 5141 I->deleteValue(); 5142 return error("Invalid instruction with no BB"); 5143 } 5144 if (!OperandBundles.empty()) { 5145 I->deleteValue(); 5146 return error("Operand bundles found with no consumer"); 5147 } 5148 CurBB->getInstList().push_back(I); 5149 5150 // If this was a terminator instruction, move to the next block. 5151 if (I->isTerminator()) { 5152 ++CurBBNo; 5153 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5154 } 5155 5156 // Non-void values get registered in the value table for future use. 5157 if (!I->getType()->isVoidTy()) { 5158 if (!FullTy) { 5159 FullTy = I->getType(); 5160 assert( 5161 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5162 !isa<ArrayType>(FullTy) && 5163 (!isa<VectorType>(FullTy) || 5164 FullTy->getVectorElementType()->isFloatingPointTy() || 5165 FullTy->getVectorElementType()->isIntegerTy()) && 5166 "Structured types must be assigned with corresponding non-opaque " 5167 "pointer type"); 5168 } 5169 5170 assert(I->getType() == flattenPointerTypes(FullTy) && 5171 "Incorrect fully structured type provided for Instruction"); 5172 ValueList.assignValue(I, NextValueNo++, FullTy); 5173 } 5174 } 5175 5176 OutOfRecordLoop: 5177 5178 if (!OperandBundles.empty()) 5179 return error("Operand bundles found with no consumer"); 5180 5181 // Check the function list for unresolved values. 5182 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5183 if (!A->getParent()) { 5184 // We found at least one unresolved value. Nuke them all to avoid leaks. 5185 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5186 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5187 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5188 delete A; 5189 } 5190 } 5191 return error("Never resolved value found in function"); 5192 } 5193 } 5194 5195 // Unexpected unresolved metadata about to be dropped. 5196 if (MDLoader->hasFwdRefs()) 5197 return error("Invalid function metadata: outgoing forward refs"); 5198 5199 // Trim the value list down to the size it was before we parsed this function. 5200 ValueList.shrinkTo(ModuleValueListSize); 5201 MDLoader->shrinkTo(ModuleMDLoaderSize); 5202 std::vector<BasicBlock*>().swap(FunctionBBs); 5203 return Error::success(); 5204 } 5205 5206 /// Find the function body in the bitcode stream 5207 Error BitcodeReader::findFunctionInStream( 5208 Function *F, 5209 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5210 while (DeferredFunctionInfoIterator->second == 0) { 5211 // This is the fallback handling for the old format bitcode that 5212 // didn't contain the function index in the VST, or when we have 5213 // an anonymous function which would not have a VST entry. 5214 // Assert that we have one of those two cases. 5215 assert(VSTOffset == 0 || !F->hasName()); 5216 // Parse the next body in the stream and set its position in the 5217 // DeferredFunctionInfo map. 5218 if (Error Err = rememberAndSkipFunctionBodies()) 5219 return Err; 5220 } 5221 return Error::success(); 5222 } 5223 5224 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5225 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5226 return SyncScope::ID(Val); 5227 if (Val >= SSIDs.size()) 5228 return SyncScope::System; // Map unknown synchronization scopes to system. 5229 return SSIDs[Val]; 5230 } 5231 5232 //===----------------------------------------------------------------------===// 5233 // GVMaterializer implementation 5234 //===----------------------------------------------------------------------===// 5235 5236 Error BitcodeReader::materialize(GlobalValue *GV) { 5237 Function *F = dyn_cast<Function>(GV); 5238 // If it's not a function or is already material, ignore the request. 5239 if (!F || !F->isMaterializable()) 5240 return Error::success(); 5241 5242 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5243 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5244 // If its position is recorded as 0, its body is somewhere in the stream 5245 // but we haven't seen it yet. 5246 if (DFII->second == 0) 5247 if (Error Err = findFunctionInStream(F, DFII)) 5248 return Err; 5249 5250 // Materialize metadata before parsing any function bodies. 5251 if (Error Err = materializeMetadata()) 5252 return Err; 5253 5254 // Move the bit stream to the saved position of the deferred function body. 5255 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5256 return JumpFailed; 5257 if (Error Err = parseFunctionBody(F)) 5258 return Err; 5259 F->setIsMaterializable(false); 5260 5261 if (StripDebugInfo) 5262 stripDebugInfo(*F); 5263 5264 // Upgrade any old intrinsic calls in the function. 5265 for (auto &I : UpgradedIntrinsics) { 5266 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5267 UI != UE;) { 5268 User *U = *UI; 5269 ++UI; 5270 if (CallInst *CI = dyn_cast<CallInst>(U)) 5271 UpgradeIntrinsicCall(CI, I.second); 5272 } 5273 } 5274 5275 // Update calls to the remangled intrinsics 5276 for (auto &I : RemangledIntrinsics) 5277 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5278 UI != UE;) 5279 // Don't expect any other users than call sites 5280 CallSite(*UI++).setCalledFunction(I.second); 5281 5282 // Finish fn->subprogram upgrade for materialized functions. 5283 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5284 F->setSubprogram(SP); 5285 5286 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5287 if (!MDLoader->isStrippingTBAA()) { 5288 for (auto &I : instructions(F)) { 5289 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5290 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5291 continue; 5292 MDLoader->setStripTBAA(true); 5293 stripTBAA(F->getParent()); 5294 } 5295 } 5296 5297 // Bring in any functions that this function forward-referenced via 5298 // blockaddresses. 5299 return materializeForwardReferencedFunctions(); 5300 } 5301 5302 Error BitcodeReader::materializeModule() { 5303 if (Error Err = materializeMetadata()) 5304 return Err; 5305 5306 // Promise to materialize all forward references. 5307 WillMaterializeAllForwardRefs = true; 5308 5309 // Iterate over the module, deserializing any functions that are still on 5310 // disk. 5311 for (Function &F : *TheModule) { 5312 if (Error Err = materialize(&F)) 5313 return Err; 5314 } 5315 // At this point, if there are any function bodies, parse the rest of 5316 // the bits in the module past the last function block we have recorded 5317 // through either lazy scanning or the VST. 5318 if (LastFunctionBlockBit || NextUnreadBit) 5319 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5320 ? LastFunctionBlockBit 5321 : NextUnreadBit)) 5322 return Err; 5323 5324 // Check that all block address forward references got resolved (as we 5325 // promised above). 5326 if (!BasicBlockFwdRefs.empty()) 5327 return error("Never resolved function from blockaddress"); 5328 5329 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5330 // delete the old functions to clean up. We can't do this unless the entire 5331 // module is materialized because there could always be another function body 5332 // with calls to the old function. 5333 for (auto &I : UpgradedIntrinsics) { 5334 for (auto *U : I.first->users()) { 5335 if (CallInst *CI = dyn_cast<CallInst>(U)) 5336 UpgradeIntrinsicCall(CI, I.second); 5337 } 5338 if (!I.first->use_empty()) 5339 I.first->replaceAllUsesWith(I.second); 5340 I.first->eraseFromParent(); 5341 } 5342 UpgradedIntrinsics.clear(); 5343 // Do the same for remangled intrinsics 5344 for (auto &I : RemangledIntrinsics) { 5345 I.first->replaceAllUsesWith(I.second); 5346 I.first->eraseFromParent(); 5347 } 5348 RemangledIntrinsics.clear(); 5349 5350 UpgradeDebugInfo(*TheModule); 5351 5352 UpgradeModuleFlags(*TheModule); 5353 5354 UpgradeARCRuntime(*TheModule); 5355 5356 return Error::success(); 5357 } 5358 5359 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5360 return IdentifiedStructTypes; 5361 } 5362 5363 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5364 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5365 StringRef ModulePath, unsigned ModuleId) 5366 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5367 ModulePath(ModulePath), ModuleId(ModuleId) {} 5368 5369 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5370 TheIndex.addModule(ModulePath, ModuleId); 5371 } 5372 5373 ModuleSummaryIndex::ModuleInfo * 5374 ModuleSummaryIndexBitcodeReader::getThisModule() { 5375 return TheIndex.getModule(ModulePath); 5376 } 5377 5378 std::pair<ValueInfo, GlobalValue::GUID> 5379 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5380 auto VGI = ValueIdToValueInfoMap[ValueId]; 5381 assert(VGI.first); 5382 return VGI; 5383 } 5384 5385 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5386 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5387 StringRef SourceFileName) { 5388 std::string GlobalId = 5389 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5390 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5391 auto OriginalNameID = ValueGUID; 5392 if (GlobalValue::isLocalLinkage(Linkage)) 5393 OriginalNameID = GlobalValue::getGUID(ValueName); 5394 if (PrintSummaryGUIDs) 5395 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5396 << ValueName << "\n"; 5397 5398 // UseStrtab is false for legacy summary formats and value names are 5399 // created on stack. In that case we save the name in a string saver in 5400 // the index so that the value name can be recorded. 5401 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5402 TheIndex.getOrInsertValueInfo( 5403 ValueGUID, 5404 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5405 OriginalNameID); 5406 } 5407 5408 // Specialized value symbol table parser used when reading module index 5409 // blocks where we don't actually create global values. The parsed information 5410 // is saved in the bitcode reader for use when later parsing summaries. 5411 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5412 uint64_t Offset, 5413 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5414 // With a strtab the VST is not required to parse the summary. 5415 if (UseStrtab) 5416 return Error::success(); 5417 5418 assert(Offset > 0 && "Expected non-zero VST offset"); 5419 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5420 if (!MaybeCurrentBit) 5421 return MaybeCurrentBit.takeError(); 5422 uint64_t CurrentBit = MaybeCurrentBit.get(); 5423 5424 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5425 return Err; 5426 5427 SmallVector<uint64_t, 64> Record; 5428 5429 // Read all the records for this value table. 5430 SmallString<128> ValueName; 5431 5432 while (true) { 5433 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5434 if (!MaybeEntry) 5435 return MaybeEntry.takeError(); 5436 BitstreamEntry Entry = MaybeEntry.get(); 5437 5438 switch (Entry.Kind) { 5439 case BitstreamEntry::SubBlock: // Handled for us already. 5440 case BitstreamEntry::Error: 5441 return error("Malformed block"); 5442 case BitstreamEntry::EndBlock: 5443 // Done parsing VST, jump back to wherever we came from. 5444 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5445 return JumpFailed; 5446 return Error::success(); 5447 case BitstreamEntry::Record: 5448 // The interesting case. 5449 break; 5450 } 5451 5452 // Read a record. 5453 Record.clear(); 5454 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5455 if (!MaybeRecord) 5456 return MaybeRecord.takeError(); 5457 switch (MaybeRecord.get()) { 5458 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5459 break; 5460 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5461 if (convertToString(Record, 1, ValueName)) 5462 return error("Invalid record"); 5463 unsigned ValueID = Record[0]; 5464 assert(!SourceFileName.empty()); 5465 auto VLI = ValueIdToLinkageMap.find(ValueID); 5466 assert(VLI != ValueIdToLinkageMap.end() && 5467 "No linkage found for VST entry?"); 5468 auto Linkage = VLI->second; 5469 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5470 ValueName.clear(); 5471 break; 5472 } 5473 case bitc::VST_CODE_FNENTRY: { 5474 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5475 if (convertToString(Record, 2, ValueName)) 5476 return error("Invalid record"); 5477 unsigned ValueID = Record[0]; 5478 assert(!SourceFileName.empty()); 5479 auto VLI = ValueIdToLinkageMap.find(ValueID); 5480 assert(VLI != ValueIdToLinkageMap.end() && 5481 "No linkage found for VST entry?"); 5482 auto Linkage = VLI->second; 5483 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5484 ValueName.clear(); 5485 break; 5486 } 5487 case bitc::VST_CODE_COMBINED_ENTRY: { 5488 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5489 unsigned ValueID = Record[0]; 5490 GlobalValue::GUID RefGUID = Record[1]; 5491 // The "original name", which is the second value of the pair will be 5492 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5493 ValueIdToValueInfoMap[ValueID] = 5494 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5495 break; 5496 } 5497 } 5498 } 5499 } 5500 5501 // Parse just the blocks needed for building the index out of the module. 5502 // At the end of this routine the module Index is populated with a map 5503 // from global value id to GlobalValueSummary objects. 5504 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5505 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5506 return Err; 5507 5508 SmallVector<uint64_t, 64> Record; 5509 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5510 unsigned ValueId = 0; 5511 5512 // Read the index for this module. 5513 while (true) { 5514 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5515 if (!MaybeEntry) 5516 return MaybeEntry.takeError(); 5517 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5518 5519 switch (Entry.Kind) { 5520 case BitstreamEntry::Error: 5521 return error("Malformed block"); 5522 case BitstreamEntry::EndBlock: 5523 return Error::success(); 5524 5525 case BitstreamEntry::SubBlock: 5526 switch (Entry.ID) { 5527 default: // Skip unknown content. 5528 if (Error Err = Stream.SkipBlock()) 5529 return Err; 5530 break; 5531 case bitc::BLOCKINFO_BLOCK_ID: 5532 // Need to parse these to get abbrev ids (e.g. for VST) 5533 if (readBlockInfo()) 5534 return error("Malformed block"); 5535 break; 5536 case bitc::VALUE_SYMTAB_BLOCK_ID: 5537 // Should have been parsed earlier via VSTOffset, unless there 5538 // is no summary section. 5539 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5540 !SeenGlobalValSummary) && 5541 "Expected early VST parse via VSTOffset record"); 5542 if (Error Err = Stream.SkipBlock()) 5543 return Err; 5544 break; 5545 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5546 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5547 // Add the module if it is a per-module index (has a source file name). 5548 if (!SourceFileName.empty()) 5549 addThisModule(); 5550 assert(!SeenValueSymbolTable && 5551 "Already read VST when parsing summary block?"); 5552 // We might not have a VST if there were no values in the 5553 // summary. An empty summary block generated when we are 5554 // performing ThinLTO compiles so we don't later invoke 5555 // the regular LTO process on them. 5556 if (VSTOffset > 0) { 5557 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5558 return Err; 5559 SeenValueSymbolTable = true; 5560 } 5561 SeenGlobalValSummary = true; 5562 if (Error Err = parseEntireSummary(Entry.ID)) 5563 return Err; 5564 break; 5565 case bitc::MODULE_STRTAB_BLOCK_ID: 5566 if (Error Err = parseModuleStringTable()) 5567 return Err; 5568 break; 5569 } 5570 continue; 5571 5572 case BitstreamEntry::Record: { 5573 Record.clear(); 5574 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5575 if (!MaybeBitCode) 5576 return MaybeBitCode.takeError(); 5577 switch (MaybeBitCode.get()) { 5578 default: 5579 break; // Default behavior, ignore unknown content. 5580 case bitc::MODULE_CODE_VERSION: { 5581 if (Error Err = parseVersionRecord(Record).takeError()) 5582 return Err; 5583 break; 5584 } 5585 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5586 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5587 SmallString<128> ValueName; 5588 if (convertToString(Record, 0, ValueName)) 5589 return error("Invalid record"); 5590 SourceFileName = ValueName.c_str(); 5591 break; 5592 } 5593 /// MODULE_CODE_HASH: [5*i32] 5594 case bitc::MODULE_CODE_HASH: { 5595 if (Record.size() != 5) 5596 return error("Invalid hash length " + Twine(Record.size()).str()); 5597 auto &Hash = getThisModule()->second.second; 5598 int Pos = 0; 5599 for (auto &Val : Record) { 5600 assert(!(Val >> 32) && "Unexpected high bits set"); 5601 Hash[Pos++] = Val; 5602 } 5603 break; 5604 } 5605 /// MODULE_CODE_VSTOFFSET: [offset] 5606 case bitc::MODULE_CODE_VSTOFFSET: 5607 if (Record.size() < 1) 5608 return error("Invalid record"); 5609 // Note that we subtract 1 here because the offset is relative to one 5610 // word before the start of the identification or module block, which 5611 // was historically always the start of the regular bitcode header. 5612 VSTOffset = Record[0] - 1; 5613 break; 5614 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5615 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5616 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5617 // v2: [strtab offset, strtab size, v1] 5618 case bitc::MODULE_CODE_GLOBALVAR: 5619 case bitc::MODULE_CODE_FUNCTION: 5620 case bitc::MODULE_CODE_ALIAS: { 5621 StringRef Name; 5622 ArrayRef<uint64_t> GVRecord; 5623 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5624 if (GVRecord.size() <= 3) 5625 return error("Invalid record"); 5626 uint64_t RawLinkage = GVRecord[3]; 5627 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5628 if (!UseStrtab) { 5629 ValueIdToLinkageMap[ValueId++] = Linkage; 5630 break; 5631 } 5632 5633 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5634 break; 5635 } 5636 } 5637 } 5638 continue; 5639 } 5640 } 5641 } 5642 5643 std::vector<ValueInfo> 5644 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5645 std::vector<ValueInfo> Ret; 5646 Ret.reserve(Record.size()); 5647 for (uint64_t RefValueId : Record) 5648 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5649 return Ret; 5650 } 5651 5652 std::vector<FunctionSummary::EdgeTy> 5653 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5654 bool IsOldProfileFormat, 5655 bool HasProfile, bool HasRelBF) { 5656 std::vector<FunctionSummary::EdgeTy> Ret; 5657 Ret.reserve(Record.size()); 5658 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5659 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5660 uint64_t RelBF = 0; 5661 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5662 if (IsOldProfileFormat) { 5663 I += 1; // Skip old callsitecount field 5664 if (HasProfile) 5665 I += 1; // Skip old profilecount field 5666 } else if (HasProfile) 5667 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5668 else if (HasRelBF) 5669 RelBF = Record[++I]; 5670 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5671 } 5672 return Ret; 5673 } 5674 5675 static void 5676 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5677 WholeProgramDevirtResolution &Wpd) { 5678 uint64_t ArgNum = Record[Slot++]; 5679 WholeProgramDevirtResolution::ByArg &B = 5680 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5681 Slot += ArgNum; 5682 5683 B.TheKind = 5684 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5685 B.Info = Record[Slot++]; 5686 B.Byte = Record[Slot++]; 5687 B.Bit = Record[Slot++]; 5688 } 5689 5690 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5691 StringRef Strtab, size_t &Slot, 5692 TypeIdSummary &TypeId) { 5693 uint64_t Id = Record[Slot++]; 5694 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5695 5696 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5697 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5698 static_cast<size_t>(Record[Slot + 1])}; 5699 Slot += 2; 5700 5701 uint64_t ResByArgNum = Record[Slot++]; 5702 for (uint64_t I = 0; I != ResByArgNum; ++I) 5703 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5704 } 5705 5706 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5707 StringRef Strtab, 5708 ModuleSummaryIndex &TheIndex) { 5709 size_t Slot = 0; 5710 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5711 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5712 Slot += 2; 5713 5714 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5715 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5716 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5717 TypeId.TTRes.SizeM1 = Record[Slot++]; 5718 TypeId.TTRes.BitMask = Record[Slot++]; 5719 TypeId.TTRes.InlineBits = Record[Slot++]; 5720 5721 while (Slot < Record.size()) 5722 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5723 } 5724 5725 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5726 ArrayRef<uint64_t> Record, size_t &Slot, 5727 TypeIdCompatibleVtableInfo &TypeId) { 5728 uint64_t Offset = Record[Slot++]; 5729 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5730 TypeId.push_back({Offset, Callee}); 5731 } 5732 5733 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5734 ArrayRef<uint64_t> Record) { 5735 size_t Slot = 0; 5736 TypeIdCompatibleVtableInfo &TypeId = 5737 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5738 {Strtab.data() + Record[Slot], 5739 static_cast<size_t>(Record[Slot + 1])}); 5740 Slot += 2; 5741 5742 while (Slot < Record.size()) 5743 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5744 } 5745 5746 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5747 unsigned WOCnt) { 5748 // Readonly and writeonly refs are in the end of the refs list. 5749 assert(ROCnt + WOCnt <= Refs.size()); 5750 unsigned FirstWORef = Refs.size() - WOCnt; 5751 unsigned RefNo = FirstWORef - ROCnt; 5752 for (; RefNo < FirstWORef; ++RefNo) 5753 Refs[RefNo].setReadOnly(); 5754 for (; RefNo < Refs.size(); ++RefNo) 5755 Refs[RefNo].setWriteOnly(); 5756 } 5757 5758 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5759 // objects in the index. 5760 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5761 if (Error Err = Stream.EnterSubBlock(ID)) 5762 return Err; 5763 SmallVector<uint64_t, 64> Record; 5764 5765 // Parse version 5766 { 5767 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5768 if (!MaybeEntry) 5769 return MaybeEntry.takeError(); 5770 BitstreamEntry Entry = MaybeEntry.get(); 5771 5772 if (Entry.Kind != BitstreamEntry::Record) 5773 return error("Invalid Summary Block: record for version expected"); 5774 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5775 if (!MaybeRecord) 5776 return MaybeRecord.takeError(); 5777 if (MaybeRecord.get() != bitc::FS_VERSION) 5778 return error("Invalid Summary Block: version expected"); 5779 } 5780 const uint64_t Version = Record[0]; 5781 const bool IsOldProfileFormat = Version == 1; 5782 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5783 return error("Invalid summary version " + Twine(Version) + 5784 ". Version should be in the range [1-" + 5785 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5786 "]."); 5787 Record.clear(); 5788 5789 // Keep around the last seen summary to be used when we see an optional 5790 // "OriginalName" attachement. 5791 GlobalValueSummary *LastSeenSummary = nullptr; 5792 GlobalValue::GUID LastSeenGUID = 0; 5793 5794 // We can expect to see any number of type ID information records before 5795 // each function summary records; these variables store the information 5796 // collected so far so that it can be used to create the summary object. 5797 std::vector<GlobalValue::GUID> PendingTypeTests; 5798 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5799 PendingTypeCheckedLoadVCalls; 5800 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5801 PendingTypeCheckedLoadConstVCalls; 5802 5803 while (true) { 5804 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5805 if (!MaybeEntry) 5806 return MaybeEntry.takeError(); 5807 BitstreamEntry Entry = MaybeEntry.get(); 5808 5809 switch (Entry.Kind) { 5810 case BitstreamEntry::SubBlock: // Handled for us already. 5811 case BitstreamEntry::Error: 5812 return error("Malformed block"); 5813 case BitstreamEntry::EndBlock: 5814 return Error::success(); 5815 case BitstreamEntry::Record: 5816 // The interesting case. 5817 break; 5818 } 5819 5820 // Read a record. The record format depends on whether this 5821 // is a per-module index or a combined index file. In the per-module 5822 // case the records contain the associated value's ID for correlation 5823 // with VST entries. In the combined index the correlation is done 5824 // via the bitcode offset of the summary records (which were saved 5825 // in the combined index VST entries). The records also contain 5826 // information used for ThinLTO renaming and importing. 5827 Record.clear(); 5828 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5829 if (!MaybeBitCode) 5830 return MaybeBitCode.takeError(); 5831 switch (unsigned BitCode = MaybeBitCode.get()) { 5832 default: // Default behavior: ignore. 5833 break; 5834 case bitc::FS_FLAGS: { // [flags] 5835 uint64_t Flags = Record[0]; 5836 // Scan flags. 5837 assert(Flags <= 0x3f && "Unexpected bits in flag"); 5838 5839 // 1 bit: WithGlobalValueDeadStripping flag. 5840 // Set on combined index only. 5841 if (Flags & 0x1) 5842 TheIndex.setWithGlobalValueDeadStripping(); 5843 // 1 bit: SkipModuleByDistributedBackend flag. 5844 // Set on combined index only. 5845 if (Flags & 0x2) 5846 TheIndex.setSkipModuleByDistributedBackend(); 5847 // 1 bit: HasSyntheticEntryCounts flag. 5848 // Set on combined index only. 5849 if (Flags & 0x4) 5850 TheIndex.setHasSyntheticEntryCounts(); 5851 // 1 bit: DisableSplitLTOUnit flag. 5852 // Set on per module indexes. It is up to the client to validate 5853 // the consistency of this flag across modules being linked. 5854 if (Flags & 0x8) 5855 TheIndex.setEnableSplitLTOUnit(); 5856 // 1 bit: PartiallySplitLTOUnits flag. 5857 // Set on combined index only. 5858 if (Flags & 0x10) 5859 TheIndex.setPartiallySplitLTOUnits(); 5860 // 1 bit: WithAttributePropagation flag. 5861 // Set on combined index only. 5862 if (Flags & 0x20) 5863 TheIndex.setWithAttributePropagation(); 5864 break; 5865 } 5866 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5867 uint64_t ValueID = Record[0]; 5868 GlobalValue::GUID RefGUID = Record[1]; 5869 ValueIdToValueInfoMap[ValueID] = 5870 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5871 break; 5872 } 5873 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5874 // numrefs x valueid, n x (valueid)] 5875 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5876 // numrefs x valueid, 5877 // n x (valueid, hotness)] 5878 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5879 // numrefs x valueid, 5880 // n x (valueid, relblockfreq)] 5881 case bitc::FS_PERMODULE: 5882 case bitc::FS_PERMODULE_RELBF: 5883 case bitc::FS_PERMODULE_PROFILE: { 5884 unsigned ValueID = Record[0]; 5885 uint64_t RawFlags = Record[1]; 5886 unsigned InstCount = Record[2]; 5887 uint64_t RawFunFlags = 0; 5888 unsigned NumRefs = Record[3]; 5889 unsigned NumRORefs = 0, NumWORefs = 0; 5890 int RefListStartIndex = 4; 5891 if (Version >= 4) { 5892 RawFunFlags = Record[3]; 5893 NumRefs = Record[4]; 5894 RefListStartIndex = 5; 5895 if (Version >= 5) { 5896 NumRORefs = Record[5]; 5897 RefListStartIndex = 6; 5898 if (Version >= 7) { 5899 NumWORefs = Record[6]; 5900 RefListStartIndex = 7; 5901 } 5902 } 5903 } 5904 5905 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5906 // The module path string ref set in the summary must be owned by the 5907 // index's module string table. Since we don't have a module path 5908 // string table section in the per-module index, we create a single 5909 // module path string table entry with an empty (0) ID to take 5910 // ownership. 5911 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5912 assert(Record.size() >= RefListStartIndex + NumRefs && 5913 "Record size inconsistent with number of references"); 5914 std::vector<ValueInfo> Refs = makeRefList( 5915 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5916 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5917 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5918 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5919 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5920 IsOldProfileFormat, HasProfile, HasRelBF); 5921 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5922 auto FS = std::make_unique<FunctionSummary>( 5923 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5924 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5925 std::move(PendingTypeTestAssumeVCalls), 5926 std::move(PendingTypeCheckedLoadVCalls), 5927 std::move(PendingTypeTestAssumeConstVCalls), 5928 std::move(PendingTypeCheckedLoadConstVCalls)); 5929 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5930 FS->setModulePath(getThisModule()->first()); 5931 FS->setOriginalName(VIAndOriginalGUID.second); 5932 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5933 break; 5934 } 5935 // FS_ALIAS: [valueid, flags, valueid] 5936 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5937 // they expect all aliasee summaries to be available. 5938 case bitc::FS_ALIAS: { 5939 unsigned ValueID = Record[0]; 5940 uint64_t RawFlags = Record[1]; 5941 unsigned AliaseeID = Record[2]; 5942 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5943 auto AS = std::make_unique<AliasSummary>(Flags); 5944 // The module path string ref set in the summary must be owned by the 5945 // index's module string table. Since we don't have a module path 5946 // string table section in the per-module index, we create a single 5947 // module path string table entry with an empty (0) ID to take 5948 // ownership. 5949 AS->setModulePath(getThisModule()->first()); 5950 5951 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5952 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5953 if (!AliaseeInModule) 5954 return error("Alias expects aliasee summary to be parsed"); 5955 AS->setAliasee(AliaseeVI, AliaseeInModule); 5956 5957 auto GUID = getValueInfoFromValueId(ValueID); 5958 AS->setOriginalName(GUID.second); 5959 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5960 break; 5961 } 5962 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5963 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5964 unsigned ValueID = Record[0]; 5965 uint64_t RawFlags = Record[1]; 5966 unsigned RefArrayStart = 2; 5967 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5968 /* WriteOnly */ false); 5969 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5970 if (Version >= 5) { 5971 GVF = getDecodedGVarFlags(Record[2]); 5972 RefArrayStart = 3; 5973 } 5974 std::vector<ValueInfo> Refs = 5975 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5976 auto FS = 5977 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5978 FS->setModulePath(getThisModule()->first()); 5979 auto GUID = getValueInfoFromValueId(ValueID); 5980 FS->setOriginalName(GUID.second); 5981 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5982 break; 5983 } 5984 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5985 // numrefs, numrefs x valueid, 5986 // n x (valueid, offset)] 5987 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5988 unsigned ValueID = Record[0]; 5989 uint64_t RawFlags = Record[1]; 5990 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5991 unsigned NumRefs = Record[3]; 5992 unsigned RefListStartIndex = 4; 5993 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5994 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5995 std::vector<ValueInfo> Refs = makeRefList( 5996 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5997 VTableFuncList VTableFuncs; 5998 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5999 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6000 uint64_t Offset = Record[++I]; 6001 VTableFuncs.push_back({Callee, Offset}); 6002 } 6003 auto VS = 6004 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6005 VS->setModulePath(getThisModule()->first()); 6006 VS->setVTableFuncs(VTableFuncs); 6007 auto GUID = getValueInfoFromValueId(ValueID); 6008 VS->setOriginalName(GUID.second); 6009 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6010 break; 6011 } 6012 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6013 // numrefs x valueid, n x (valueid)] 6014 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6015 // numrefs x valueid, n x (valueid, hotness)] 6016 case bitc::FS_COMBINED: 6017 case bitc::FS_COMBINED_PROFILE: { 6018 unsigned ValueID = Record[0]; 6019 uint64_t ModuleId = Record[1]; 6020 uint64_t RawFlags = Record[2]; 6021 unsigned InstCount = Record[3]; 6022 uint64_t RawFunFlags = 0; 6023 uint64_t EntryCount = 0; 6024 unsigned NumRefs = Record[4]; 6025 unsigned NumRORefs = 0, NumWORefs = 0; 6026 int RefListStartIndex = 5; 6027 6028 if (Version >= 4) { 6029 RawFunFlags = Record[4]; 6030 RefListStartIndex = 6; 6031 size_t NumRefsIndex = 5; 6032 if (Version >= 5) { 6033 unsigned NumRORefsOffset = 1; 6034 RefListStartIndex = 7; 6035 if (Version >= 6) { 6036 NumRefsIndex = 6; 6037 EntryCount = Record[5]; 6038 RefListStartIndex = 8; 6039 if (Version >= 7) { 6040 RefListStartIndex = 9; 6041 NumWORefs = Record[8]; 6042 NumRORefsOffset = 2; 6043 } 6044 } 6045 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6046 } 6047 NumRefs = Record[NumRefsIndex]; 6048 } 6049 6050 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6051 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6052 assert(Record.size() >= RefListStartIndex + NumRefs && 6053 "Record size inconsistent with number of references"); 6054 std::vector<ValueInfo> Refs = makeRefList( 6055 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6056 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6057 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6058 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6059 IsOldProfileFormat, HasProfile, false); 6060 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6061 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6062 auto FS = std::make_unique<FunctionSummary>( 6063 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6064 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6065 std::move(PendingTypeTestAssumeVCalls), 6066 std::move(PendingTypeCheckedLoadVCalls), 6067 std::move(PendingTypeTestAssumeConstVCalls), 6068 std::move(PendingTypeCheckedLoadConstVCalls)); 6069 LastSeenSummary = FS.get(); 6070 LastSeenGUID = VI.getGUID(); 6071 FS->setModulePath(ModuleIdMap[ModuleId]); 6072 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6073 break; 6074 } 6075 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6076 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6077 // they expect all aliasee summaries to be available. 6078 case bitc::FS_COMBINED_ALIAS: { 6079 unsigned ValueID = Record[0]; 6080 uint64_t ModuleId = Record[1]; 6081 uint64_t RawFlags = Record[2]; 6082 unsigned AliaseeValueId = Record[3]; 6083 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6084 auto AS = std::make_unique<AliasSummary>(Flags); 6085 LastSeenSummary = AS.get(); 6086 AS->setModulePath(ModuleIdMap[ModuleId]); 6087 6088 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6089 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6090 AS->setAliasee(AliaseeVI, AliaseeInModule); 6091 6092 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6093 LastSeenGUID = VI.getGUID(); 6094 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6095 break; 6096 } 6097 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6098 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6099 unsigned ValueID = Record[0]; 6100 uint64_t ModuleId = Record[1]; 6101 uint64_t RawFlags = Record[2]; 6102 unsigned RefArrayStart = 3; 6103 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6104 /* WriteOnly */ false); 6105 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6106 if (Version >= 5) { 6107 GVF = getDecodedGVarFlags(Record[3]); 6108 RefArrayStart = 4; 6109 } 6110 std::vector<ValueInfo> Refs = 6111 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6112 auto FS = 6113 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6114 LastSeenSummary = FS.get(); 6115 FS->setModulePath(ModuleIdMap[ModuleId]); 6116 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6117 LastSeenGUID = VI.getGUID(); 6118 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6119 break; 6120 } 6121 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6122 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6123 uint64_t OriginalName = Record[0]; 6124 if (!LastSeenSummary) 6125 return error("Name attachment that does not follow a combined record"); 6126 LastSeenSummary->setOriginalName(OriginalName); 6127 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6128 // Reset the LastSeenSummary 6129 LastSeenSummary = nullptr; 6130 LastSeenGUID = 0; 6131 break; 6132 } 6133 case bitc::FS_TYPE_TESTS: 6134 assert(PendingTypeTests.empty()); 6135 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6136 Record.end()); 6137 break; 6138 6139 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6140 assert(PendingTypeTestAssumeVCalls.empty()); 6141 for (unsigned I = 0; I != Record.size(); I += 2) 6142 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6143 break; 6144 6145 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6146 assert(PendingTypeCheckedLoadVCalls.empty()); 6147 for (unsigned I = 0; I != Record.size(); I += 2) 6148 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6149 break; 6150 6151 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6152 PendingTypeTestAssumeConstVCalls.push_back( 6153 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6154 break; 6155 6156 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6157 PendingTypeCheckedLoadConstVCalls.push_back( 6158 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6159 break; 6160 6161 case bitc::FS_CFI_FUNCTION_DEFS: { 6162 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6163 for (unsigned I = 0; I != Record.size(); I += 2) 6164 CfiFunctionDefs.insert( 6165 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6166 break; 6167 } 6168 6169 case bitc::FS_CFI_FUNCTION_DECLS: { 6170 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6171 for (unsigned I = 0; I != Record.size(); I += 2) 6172 CfiFunctionDecls.insert( 6173 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6174 break; 6175 } 6176 6177 case bitc::FS_TYPE_ID: 6178 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6179 break; 6180 6181 case bitc::FS_TYPE_ID_METADATA: 6182 parseTypeIdCompatibleVtableSummaryRecord(Record); 6183 break; 6184 } 6185 } 6186 llvm_unreachable("Exit infinite loop"); 6187 } 6188 6189 // Parse the module string table block into the Index. 6190 // This populates the ModulePathStringTable map in the index. 6191 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6192 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6193 return Err; 6194 6195 SmallVector<uint64_t, 64> Record; 6196 6197 SmallString<128> ModulePath; 6198 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6199 6200 while (true) { 6201 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6202 if (!MaybeEntry) 6203 return MaybeEntry.takeError(); 6204 BitstreamEntry Entry = MaybeEntry.get(); 6205 6206 switch (Entry.Kind) { 6207 case BitstreamEntry::SubBlock: // Handled for us already. 6208 case BitstreamEntry::Error: 6209 return error("Malformed block"); 6210 case BitstreamEntry::EndBlock: 6211 return Error::success(); 6212 case BitstreamEntry::Record: 6213 // The interesting case. 6214 break; 6215 } 6216 6217 Record.clear(); 6218 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6219 if (!MaybeRecord) 6220 return MaybeRecord.takeError(); 6221 switch (MaybeRecord.get()) { 6222 default: // Default behavior: ignore. 6223 break; 6224 case bitc::MST_CODE_ENTRY: { 6225 // MST_ENTRY: [modid, namechar x N] 6226 uint64_t ModuleId = Record[0]; 6227 6228 if (convertToString(Record, 1, ModulePath)) 6229 return error("Invalid record"); 6230 6231 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6232 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6233 6234 ModulePath.clear(); 6235 break; 6236 } 6237 /// MST_CODE_HASH: [5*i32] 6238 case bitc::MST_CODE_HASH: { 6239 if (Record.size() != 5) 6240 return error("Invalid hash length " + Twine(Record.size()).str()); 6241 if (!LastSeenModule) 6242 return error("Invalid hash that does not follow a module path"); 6243 int Pos = 0; 6244 for (auto &Val : Record) { 6245 assert(!(Val >> 32) && "Unexpected high bits set"); 6246 LastSeenModule->second.second[Pos++] = Val; 6247 } 6248 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6249 LastSeenModule = nullptr; 6250 break; 6251 } 6252 } 6253 } 6254 llvm_unreachable("Exit infinite loop"); 6255 } 6256 6257 namespace { 6258 6259 // FIXME: This class is only here to support the transition to llvm::Error. It 6260 // will be removed once this transition is complete. Clients should prefer to 6261 // deal with the Error value directly, rather than converting to error_code. 6262 class BitcodeErrorCategoryType : public std::error_category { 6263 const char *name() const noexcept override { 6264 return "llvm.bitcode"; 6265 } 6266 6267 std::string message(int IE) const override { 6268 BitcodeError E = static_cast<BitcodeError>(IE); 6269 switch (E) { 6270 case BitcodeError::CorruptedBitcode: 6271 return "Corrupted bitcode"; 6272 } 6273 llvm_unreachable("Unknown error type!"); 6274 } 6275 }; 6276 6277 } // end anonymous namespace 6278 6279 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6280 6281 const std::error_category &llvm::BitcodeErrorCategory() { 6282 return *ErrorCategory; 6283 } 6284 6285 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6286 unsigned Block, unsigned RecordID) { 6287 if (Error Err = Stream.EnterSubBlock(Block)) 6288 return std::move(Err); 6289 6290 StringRef Strtab; 6291 while (true) { 6292 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6293 if (!MaybeEntry) 6294 return MaybeEntry.takeError(); 6295 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6296 6297 switch (Entry.Kind) { 6298 case BitstreamEntry::EndBlock: 6299 return Strtab; 6300 6301 case BitstreamEntry::Error: 6302 return error("Malformed block"); 6303 6304 case BitstreamEntry::SubBlock: 6305 if (Error Err = Stream.SkipBlock()) 6306 return std::move(Err); 6307 break; 6308 6309 case BitstreamEntry::Record: 6310 StringRef Blob; 6311 SmallVector<uint64_t, 1> Record; 6312 Expected<unsigned> MaybeRecord = 6313 Stream.readRecord(Entry.ID, Record, &Blob); 6314 if (!MaybeRecord) 6315 return MaybeRecord.takeError(); 6316 if (MaybeRecord.get() == RecordID) 6317 Strtab = Blob; 6318 break; 6319 } 6320 } 6321 } 6322 6323 //===----------------------------------------------------------------------===// 6324 // External interface 6325 //===----------------------------------------------------------------------===// 6326 6327 Expected<std::vector<BitcodeModule>> 6328 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6329 auto FOrErr = getBitcodeFileContents(Buffer); 6330 if (!FOrErr) 6331 return FOrErr.takeError(); 6332 return std::move(FOrErr->Mods); 6333 } 6334 6335 Expected<BitcodeFileContents> 6336 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6337 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6338 if (!StreamOrErr) 6339 return StreamOrErr.takeError(); 6340 BitstreamCursor &Stream = *StreamOrErr; 6341 6342 BitcodeFileContents F; 6343 while (true) { 6344 uint64_t BCBegin = Stream.getCurrentByteNo(); 6345 6346 // We may be consuming bitcode from a client that leaves garbage at the end 6347 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6348 // the end that there cannot possibly be another module, stop looking. 6349 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6350 return F; 6351 6352 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6353 if (!MaybeEntry) 6354 return MaybeEntry.takeError(); 6355 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6356 6357 switch (Entry.Kind) { 6358 case BitstreamEntry::EndBlock: 6359 case BitstreamEntry::Error: 6360 return error("Malformed block"); 6361 6362 case BitstreamEntry::SubBlock: { 6363 uint64_t IdentificationBit = -1ull; 6364 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6365 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6366 if (Error Err = Stream.SkipBlock()) 6367 return std::move(Err); 6368 6369 { 6370 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6371 if (!MaybeEntry) 6372 return MaybeEntry.takeError(); 6373 Entry = MaybeEntry.get(); 6374 } 6375 6376 if (Entry.Kind != BitstreamEntry::SubBlock || 6377 Entry.ID != bitc::MODULE_BLOCK_ID) 6378 return error("Malformed block"); 6379 } 6380 6381 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6382 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6383 if (Error Err = Stream.SkipBlock()) 6384 return std::move(Err); 6385 6386 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6387 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6388 Buffer.getBufferIdentifier(), IdentificationBit, 6389 ModuleBit}); 6390 continue; 6391 } 6392 6393 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6394 Expected<StringRef> Strtab = 6395 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6396 if (!Strtab) 6397 return Strtab.takeError(); 6398 // This string table is used by every preceding bitcode module that does 6399 // not have its own string table. A bitcode file may have multiple 6400 // string tables if it was created by binary concatenation, for example 6401 // with "llvm-cat -b". 6402 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6403 if (!I->Strtab.empty()) 6404 break; 6405 I->Strtab = *Strtab; 6406 } 6407 // Similarly, the string table is used by every preceding symbol table; 6408 // normally there will be just one unless the bitcode file was created 6409 // by binary concatenation. 6410 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6411 F.StrtabForSymtab = *Strtab; 6412 continue; 6413 } 6414 6415 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6416 Expected<StringRef> SymtabOrErr = 6417 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6418 if (!SymtabOrErr) 6419 return SymtabOrErr.takeError(); 6420 6421 // We can expect the bitcode file to have multiple symbol tables if it 6422 // was created by binary concatenation. In that case we silently 6423 // ignore any subsequent symbol tables, which is fine because this is a 6424 // low level function. The client is expected to notice that the number 6425 // of modules in the symbol table does not match the number of modules 6426 // in the input file and regenerate the symbol table. 6427 if (F.Symtab.empty()) 6428 F.Symtab = *SymtabOrErr; 6429 continue; 6430 } 6431 6432 if (Error Err = Stream.SkipBlock()) 6433 return std::move(Err); 6434 continue; 6435 } 6436 case BitstreamEntry::Record: 6437 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6438 continue; 6439 else 6440 return StreamFailed.takeError(); 6441 } 6442 } 6443 } 6444 6445 /// Get a lazy one-at-time loading module from bitcode. 6446 /// 6447 /// This isn't always used in a lazy context. In particular, it's also used by 6448 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6449 /// in forward-referenced functions from block address references. 6450 /// 6451 /// \param[in] MaterializeAll Set to \c true if we should materialize 6452 /// everything. 6453 Expected<std::unique_ptr<Module>> 6454 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6455 bool ShouldLazyLoadMetadata, bool IsImporting) { 6456 BitstreamCursor Stream(Buffer); 6457 6458 std::string ProducerIdentification; 6459 if (IdentificationBit != -1ull) { 6460 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6461 return std::move(JumpFailed); 6462 Expected<std::string> ProducerIdentificationOrErr = 6463 readIdentificationBlock(Stream); 6464 if (!ProducerIdentificationOrErr) 6465 return ProducerIdentificationOrErr.takeError(); 6466 6467 ProducerIdentification = *ProducerIdentificationOrErr; 6468 } 6469 6470 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6471 return std::move(JumpFailed); 6472 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6473 Context); 6474 6475 std::unique_ptr<Module> M = 6476 std::make_unique<Module>(ModuleIdentifier, Context); 6477 M->setMaterializer(R); 6478 6479 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6480 if (Error Err = 6481 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6482 return std::move(Err); 6483 6484 if (MaterializeAll) { 6485 // Read in the entire module, and destroy the BitcodeReader. 6486 if (Error Err = M->materializeAll()) 6487 return std::move(Err); 6488 } else { 6489 // Resolve forward references from blockaddresses. 6490 if (Error Err = R->materializeForwardReferencedFunctions()) 6491 return std::move(Err); 6492 } 6493 return std::move(M); 6494 } 6495 6496 Expected<std::unique_ptr<Module>> 6497 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6498 bool IsImporting) { 6499 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6500 } 6501 6502 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6503 // We don't use ModuleIdentifier here because the client may need to control the 6504 // module path used in the combined summary (e.g. when reading summaries for 6505 // regular LTO modules). 6506 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6507 StringRef ModulePath, uint64_t ModuleId) { 6508 BitstreamCursor Stream(Buffer); 6509 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6510 return JumpFailed; 6511 6512 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6513 ModulePath, ModuleId); 6514 return R.parseModule(); 6515 } 6516 6517 // Parse the specified bitcode buffer, returning the function info index. 6518 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6519 BitstreamCursor Stream(Buffer); 6520 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6521 return std::move(JumpFailed); 6522 6523 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6524 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6525 ModuleIdentifier, 0); 6526 6527 if (Error Err = R.parseModule()) 6528 return std::move(Err); 6529 6530 return std::move(Index); 6531 } 6532 6533 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6534 unsigned ID) { 6535 if (Error Err = Stream.EnterSubBlock(ID)) 6536 return std::move(Err); 6537 SmallVector<uint64_t, 64> Record; 6538 6539 while (true) { 6540 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6541 if (!MaybeEntry) 6542 return MaybeEntry.takeError(); 6543 BitstreamEntry Entry = MaybeEntry.get(); 6544 6545 switch (Entry.Kind) { 6546 case BitstreamEntry::SubBlock: // Handled for us already. 6547 case BitstreamEntry::Error: 6548 return error("Malformed block"); 6549 case BitstreamEntry::EndBlock: 6550 // If no flags record found, conservatively return true to mimic 6551 // behavior before this flag was added. 6552 return true; 6553 case BitstreamEntry::Record: 6554 // The interesting case. 6555 break; 6556 } 6557 6558 // Look for the FS_FLAGS record. 6559 Record.clear(); 6560 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6561 if (!MaybeBitCode) 6562 return MaybeBitCode.takeError(); 6563 switch (MaybeBitCode.get()) { 6564 default: // Default behavior: ignore. 6565 break; 6566 case bitc::FS_FLAGS: { // [flags] 6567 uint64_t Flags = Record[0]; 6568 // Scan flags. 6569 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6570 6571 return Flags & 0x8; 6572 } 6573 } 6574 } 6575 llvm_unreachable("Exit infinite loop"); 6576 } 6577 6578 // Check if the given bitcode buffer contains a global value summary block. 6579 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6580 BitstreamCursor Stream(Buffer); 6581 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6582 return std::move(JumpFailed); 6583 6584 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6585 return std::move(Err); 6586 6587 while (true) { 6588 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6589 if (!MaybeEntry) 6590 return MaybeEntry.takeError(); 6591 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6592 6593 switch (Entry.Kind) { 6594 case BitstreamEntry::Error: 6595 return error("Malformed block"); 6596 case BitstreamEntry::EndBlock: 6597 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6598 /*EnableSplitLTOUnit=*/false}; 6599 6600 case BitstreamEntry::SubBlock: 6601 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6602 Expected<bool> EnableSplitLTOUnit = 6603 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6604 if (!EnableSplitLTOUnit) 6605 return EnableSplitLTOUnit.takeError(); 6606 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6607 *EnableSplitLTOUnit}; 6608 } 6609 6610 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6611 Expected<bool> EnableSplitLTOUnit = 6612 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6613 if (!EnableSplitLTOUnit) 6614 return EnableSplitLTOUnit.takeError(); 6615 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6616 *EnableSplitLTOUnit}; 6617 } 6618 6619 // Ignore other sub-blocks. 6620 if (Error Err = Stream.SkipBlock()) 6621 return std::move(Err); 6622 continue; 6623 6624 case BitstreamEntry::Record: 6625 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6626 continue; 6627 else 6628 return StreamFailed.takeError(); 6629 } 6630 } 6631 } 6632 6633 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6634 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6635 if (!MsOrErr) 6636 return MsOrErr.takeError(); 6637 6638 if (MsOrErr->size() != 1) 6639 return error("Expected a single module"); 6640 6641 return (*MsOrErr)[0]; 6642 } 6643 6644 Expected<std::unique_ptr<Module>> 6645 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6646 bool ShouldLazyLoadMetadata, bool IsImporting) { 6647 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6648 if (!BM) 6649 return BM.takeError(); 6650 6651 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6652 } 6653 6654 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6655 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6656 bool ShouldLazyLoadMetadata, bool IsImporting) { 6657 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6658 IsImporting); 6659 if (MOrErr) 6660 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6661 return MOrErr; 6662 } 6663 6664 Expected<std::unique_ptr<Module>> 6665 BitcodeModule::parseModule(LLVMContext &Context) { 6666 return getModuleImpl(Context, true, false, false); 6667 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6668 // written. We must defer until the Module has been fully materialized. 6669 } 6670 6671 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6672 LLVMContext &Context) { 6673 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6674 if (!BM) 6675 return BM.takeError(); 6676 6677 return BM->parseModule(Context); 6678 } 6679 6680 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6681 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6682 if (!StreamOrErr) 6683 return StreamOrErr.takeError(); 6684 6685 return readTriple(*StreamOrErr); 6686 } 6687 6688 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6689 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6690 if (!StreamOrErr) 6691 return StreamOrErr.takeError(); 6692 6693 return hasObjCCategory(*StreamOrErr); 6694 } 6695 6696 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6697 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6698 if (!StreamOrErr) 6699 return StreamOrErr.takeError(); 6700 6701 return readIdentificationCode(*StreamOrErr); 6702 } 6703 6704 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6705 ModuleSummaryIndex &CombinedIndex, 6706 uint64_t ModuleId) { 6707 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6708 if (!BM) 6709 return BM.takeError(); 6710 6711 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6712 } 6713 6714 Expected<std::unique_ptr<ModuleSummaryIndex>> 6715 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6716 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6717 if (!BM) 6718 return BM.takeError(); 6719 6720 return BM->getSummary(); 6721 } 6722 6723 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6724 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6725 if (!BM) 6726 return BM.takeError(); 6727 6728 return BM->getLTOInfo(); 6729 } 6730 6731 Expected<std::unique_ptr<ModuleSummaryIndex>> 6732 llvm::getModuleSummaryIndexForFile(StringRef Path, 6733 bool IgnoreEmptyThinLTOIndexFile) { 6734 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6735 MemoryBuffer::getFileOrSTDIN(Path); 6736 if (!FileOrErr) 6737 return errorCodeToError(FileOrErr.getError()); 6738 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6739 return nullptr; 6740 return getModuleSummaryIndex(**FileOrErr); 6741 } 6742