xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetLibraryInfo.h"
13 #include "llvm/Analysis/TargetTransformInfoImpl.h"
14 #include "llvm/IR/CFG.h"
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/CommandLine.h"
24 #include <optional>
25 #include <utility>
26 
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "tti"
31 
32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33                                      cl::Hidden,
34                                      cl::desc("Recognize reduction patterns."));
35 
36 static cl::opt<unsigned> CacheLineSize(
37     "cache-line-size", cl::init(0), cl::Hidden,
38     cl::desc("Use this to override the target cache line size when "
39              "specified by the user."));
40 
41 static cl::opt<unsigned> MinPageSize(
42     "min-page-size", cl::init(0), cl::Hidden,
43     cl::desc("Use this to override the target's minimum page size."));
44 
45 static cl::opt<unsigned> PredictableBranchThreshold(
46     "predictable-branch-threshold", cl::init(99), cl::Hidden,
47     cl::desc(
48         "Use this to override the target's predictable branch threshold (%)."));
49 
50 namespace {
51 /// No-op implementation of the TTI interface using the utility base
52 /// classes.
53 ///
54 /// This is used when no target specific information is available.
55 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
NoTTIImpl__anonf4b1d5920111::NoTTIImpl56   explicit NoTTIImpl(const DataLayout &DL)
57       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
58 };
59 } // namespace
60 
canAnalyze(LoopInfo & LI)61 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
62   // If the loop has irreducible control flow, it can not be converted to
63   // Hardware loop.
64   LoopBlocksRPO RPOT(L);
65   RPOT.perform(&LI);
66   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
67     return false;
68   return true;
69 }
70 
IntrinsicCostAttributes(Intrinsic::ID Id,const CallBase & CI,InstructionCost ScalarizationCost,bool TypeBasedOnly)71 IntrinsicCostAttributes::IntrinsicCostAttributes(
72     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost,
73     bool TypeBasedOnly)
74     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
75       ScalarizationCost(ScalarizationCost) {
76 
77   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
78     FMF = FPMO->getFastMathFlags();
79 
80   if (!TypeBasedOnly)
81     Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
82   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
83   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
84 }
85 
IntrinsicCostAttributes(Intrinsic::ID Id,Type * RTy,ArrayRef<Type * > Tys,FastMathFlags Flags,const IntrinsicInst * I,InstructionCost ScalarCost)86 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
87                                                  ArrayRef<Type *> Tys,
88                                                  FastMathFlags Flags,
89                                                  const IntrinsicInst *I,
90                                                  InstructionCost ScalarCost)
91     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
92   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
93 }
94 
IntrinsicCostAttributes(Intrinsic::ID Id,Type * Ty,ArrayRef<const Value * > Args)95 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
96                                                  ArrayRef<const Value *> Args)
97     : RetTy(Ty), IID(Id) {
98 
99   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
100   ParamTys.reserve(Arguments.size());
101   for (const Value *Argument : Arguments)
102     ParamTys.push_back(Argument->getType());
103 }
104 
IntrinsicCostAttributes(Intrinsic::ID Id,Type * RTy,ArrayRef<const Value * > Args,ArrayRef<Type * > Tys,FastMathFlags Flags,const IntrinsicInst * I,InstructionCost ScalarCost)105 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
106                                                  ArrayRef<const Value *> Args,
107                                                  ArrayRef<Type *> Tys,
108                                                  FastMathFlags Flags,
109                                                  const IntrinsicInst *I,
110                                                  InstructionCost ScalarCost)
111     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
112   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
113   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
114 }
115 
HardwareLoopInfo(Loop * L)116 HardwareLoopInfo::HardwareLoopInfo(Loop *L) : L(L) {
117   // Match default options:
118   // - hardware-loop-counter-bitwidth = 32
119   // - hardware-loop-decrement = 1
120   CountType = Type::getInt32Ty(L->getHeader()->getContext());
121   LoopDecrement = ConstantInt::get(CountType, 1);
122 }
123 
isHardwareLoopCandidate(ScalarEvolution & SE,LoopInfo & LI,DominatorTree & DT,bool ForceNestedLoop,bool ForceHardwareLoopPHI)124 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
125                                                LoopInfo &LI, DominatorTree &DT,
126                                                bool ForceNestedLoop,
127                                                bool ForceHardwareLoopPHI) {
128   SmallVector<BasicBlock *, 4> ExitingBlocks;
129   L->getExitingBlocks(ExitingBlocks);
130 
131   for (BasicBlock *BB : ExitingBlocks) {
132     // If we pass the updated counter back through a phi, we need to know
133     // which latch the updated value will be coming from.
134     if (!L->isLoopLatch(BB)) {
135       if (ForceHardwareLoopPHI || CounterInReg)
136         continue;
137     }
138 
139     const SCEV *EC = SE.getExitCount(L, BB);
140     if (isa<SCEVCouldNotCompute>(EC))
141       continue;
142     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
143       if (ConstEC->getValue()->isZero())
144         continue;
145     } else if (!SE.isLoopInvariant(EC, L))
146       continue;
147 
148     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
149       continue;
150 
151     // If this exiting block is contained in a nested loop, it is not eligible
152     // for insertion of the branch-and-decrement since the inner loop would
153     // end up messing up the value in the CTR.
154     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
155       continue;
156 
157     // We now have a loop-invariant count of loop iterations (which is not the
158     // constant zero) for which we know that this loop will not exit via this
159     // existing block.
160 
161     // We need to make sure that this block will run on every loop iteration.
162     // For this to be true, we must dominate all blocks with backedges. Such
163     // blocks are in-loop predecessors to the header block.
164     bool NotAlways = false;
165     for (BasicBlock *Pred : predecessors(L->getHeader())) {
166       if (!L->contains(Pred))
167         continue;
168 
169       if (!DT.dominates(BB, Pred)) {
170         NotAlways = true;
171         break;
172       }
173     }
174 
175     if (NotAlways)
176       continue;
177 
178     // Make sure this blocks ends with a conditional branch.
179     Instruction *TI = BB->getTerminator();
180     if (!TI)
181       continue;
182 
183     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
184       if (!BI->isConditional())
185         continue;
186 
187       ExitBranch = BI;
188     } else
189       continue;
190 
191     // Note that this block may not be the loop latch block, even if the loop
192     // has a latch block.
193     ExitBlock = BB;
194     ExitCount = EC;
195     break;
196   }
197 
198   if (!ExitBlock)
199     return false;
200   return true;
201 }
202 
TargetTransformInfo(const DataLayout & DL)203 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
204     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
205 
206 TargetTransformInfo::~TargetTransformInfo() = default;
207 
TargetTransformInfo(TargetTransformInfo && Arg)208 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
209     : TTIImpl(std::move(Arg.TTIImpl)) {}
210 
operator =(TargetTransformInfo && RHS)211 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
212   TTIImpl = std::move(RHS.TTIImpl);
213   return *this;
214 }
215 
getInliningThresholdMultiplier() const216 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
217   return TTIImpl->getInliningThresholdMultiplier();
218 }
219 
220 unsigned
getInliningCostBenefitAnalysisSavingsMultiplier() const221 TargetTransformInfo::getInliningCostBenefitAnalysisSavingsMultiplier() const {
222   return TTIImpl->getInliningCostBenefitAnalysisSavingsMultiplier();
223 }
224 
225 unsigned
getInliningCostBenefitAnalysisProfitableMultiplier() const226 TargetTransformInfo::getInliningCostBenefitAnalysisProfitableMultiplier()
227     const {
228   return TTIImpl->getInliningCostBenefitAnalysisProfitableMultiplier();
229 }
230 
231 unsigned
adjustInliningThreshold(const CallBase * CB) const232 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
233   return TTIImpl->adjustInliningThreshold(CB);
234 }
235 
getCallerAllocaCost(const CallBase * CB,const AllocaInst * AI) const236 unsigned TargetTransformInfo::getCallerAllocaCost(const CallBase *CB,
237                                                   const AllocaInst *AI) const {
238   return TTIImpl->getCallerAllocaCost(CB, AI);
239 }
240 
getInlinerVectorBonusPercent() const241 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
242   return TTIImpl->getInlinerVectorBonusPercent();
243 }
244 
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands,Type * AccessType,TTI::TargetCostKind CostKind) const245 InstructionCost TargetTransformInfo::getGEPCost(
246     Type *PointeeType, const Value *Ptr, ArrayRef<const Value *> Operands,
247     Type *AccessType, TTI::TargetCostKind CostKind) const {
248   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind);
249 }
250 
getPointersChainCost(ArrayRef<const Value * > Ptrs,const Value * Base,const TTI::PointersChainInfo & Info,Type * AccessTy,TTI::TargetCostKind CostKind) const251 InstructionCost TargetTransformInfo::getPointersChainCost(
252     ArrayRef<const Value *> Ptrs, const Value *Base,
253     const TTI::PointersChainInfo &Info, Type *AccessTy,
254     TTI::TargetCostKind CostKind) const {
255   assert((Base || !Info.isSameBase()) &&
256          "If pointers have same base address it has to be provided.");
257   return TTIImpl->getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
258 }
259 
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI) const260 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
261     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
262     BlockFrequencyInfo *BFI) const {
263   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
264 }
265 
266 InstructionCost
getInstructionCost(const User * U,ArrayRef<const Value * > Operands,enum TargetCostKind CostKind) const267 TargetTransformInfo::getInstructionCost(const User *U,
268                                         ArrayRef<const Value *> Operands,
269                                         enum TargetCostKind CostKind) const {
270   InstructionCost Cost = TTIImpl->getInstructionCost(U, Operands, CostKind);
271   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
272          "TTI should not produce negative costs!");
273   return Cost;
274 }
275 
getPredictableBranchThreshold() const276 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
277   return PredictableBranchThreshold.getNumOccurrences() > 0
278              ? BranchProbability(PredictableBranchThreshold, 100)
279              : TTIImpl->getPredictableBranchThreshold();
280 }
281 
getBranchMispredictPenalty() const282 InstructionCost TargetTransformInfo::getBranchMispredictPenalty() const {
283   return TTIImpl->getBranchMispredictPenalty();
284 }
285 
hasBranchDivergence(const Function * F) const286 bool TargetTransformInfo::hasBranchDivergence(const Function *F) const {
287   return TTIImpl->hasBranchDivergence(F);
288 }
289 
isSourceOfDivergence(const Value * V) const290 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
291   return TTIImpl->isSourceOfDivergence(V);
292 }
293 
isAlwaysUniform(const Value * V) const294 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
295   return TTIImpl->isAlwaysUniform(V);
296 }
297 
isValidAddrSpaceCast(unsigned FromAS,unsigned ToAS) const298 bool llvm::TargetTransformInfo::isValidAddrSpaceCast(unsigned FromAS,
299                                                      unsigned ToAS) const {
300   return TTIImpl->isValidAddrSpaceCast(FromAS, ToAS);
301 }
302 
addrspacesMayAlias(unsigned FromAS,unsigned ToAS) const303 bool llvm::TargetTransformInfo::addrspacesMayAlias(unsigned FromAS,
304                                                    unsigned ToAS) const {
305   return TTIImpl->addrspacesMayAlias(FromAS, ToAS);
306 }
307 
getFlatAddressSpace() const308 unsigned TargetTransformInfo::getFlatAddressSpace() const {
309   return TTIImpl->getFlatAddressSpace();
310 }
311 
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID) const312 bool TargetTransformInfo::collectFlatAddressOperands(
313     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
314   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
315 }
316 
isNoopAddrSpaceCast(unsigned FromAS,unsigned ToAS) const317 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
318                                               unsigned ToAS) const {
319   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
320 }
321 
canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const322 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
323     unsigned AS) const {
324   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
325 }
326 
getAssumedAddrSpace(const Value * V) const327 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
328   return TTIImpl->getAssumedAddrSpace(V);
329 }
330 
isSingleThreaded() const331 bool TargetTransformInfo::isSingleThreaded() const {
332   return TTIImpl->isSingleThreaded();
333 }
334 
335 std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value * V) const336 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
337   return TTIImpl->getPredicatedAddrSpace(V);
338 }
339 
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV) const340 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
341     IntrinsicInst *II, Value *OldV, Value *NewV) const {
342   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
343 }
344 
isLoweredToCall(const Function * F) const345 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
346   return TTIImpl->isLoweredToCall(F);
347 }
348 
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo) const349 bool TargetTransformInfo::isHardwareLoopProfitable(
350     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
351     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
352   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
353 }
354 
preferPredicateOverEpilogue(TailFoldingInfo * TFI) const355 bool TargetTransformInfo::preferPredicateOverEpilogue(
356     TailFoldingInfo *TFI) const {
357   return TTIImpl->preferPredicateOverEpilogue(TFI);
358 }
359 
getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const360 TailFoldingStyle TargetTransformInfo::getPreferredTailFoldingStyle(
361     bool IVUpdateMayOverflow) const {
362   return TTIImpl->getPreferredTailFoldingStyle(IVUpdateMayOverflow);
363 }
364 
365 std::optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II) const366 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
367                                           IntrinsicInst &II) const {
368   return TTIImpl->instCombineIntrinsic(IC, II);
369 }
370 
simplifyDemandedUseBitsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed) const371 std::optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
372     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
373     bool &KnownBitsComputed) const {
374   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
375                                                    KnownBitsComputed);
376 }
377 
simplifyDemandedVectorEltsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp) const378 std::optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
379     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
380     APInt &UndefElts2, APInt &UndefElts3,
381     std::function<void(Instruction *, unsigned, APInt, APInt &)>
382         SimplifyAndSetOp) const {
383   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
384       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
385       SimplifyAndSetOp);
386 }
387 
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE) const388 void TargetTransformInfo::getUnrollingPreferences(
389     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
390     OptimizationRemarkEmitter *ORE) const {
391   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
392 }
393 
getPeelingPreferences(Loop * L,ScalarEvolution & SE,PeelingPreferences & PP) const394 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
395                                                 PeelingPreferences &PP) const {
396   return TTIImpl->getPeelingPreferences(L, SE, PP);
397 }
398 
isLegalAddImmediate(int64_t Imm) const399 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
400   return TTIImpl->isLegalAddImmediate(Imm);
401 }
402 
isLegalAddScalableImmediate(int64_t Imm) const403 bool TargetTransformInfo::isLegalAddScalableImmediate(int64_t Imm) const {
404   return TTIImpl->isLegalAddScalableImmediate(Imm);
405 }
406 
isLegalICmpImmediate(int64_t Imm) const407 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
408   return TTIImpl->isLegalICmpImmediate(Imm);
409 }
410 
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I,int64_t ScalableOffset) const411 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
412                                                 int64_t BaseOffset,
413                                                 bool HasBaseReg, int64_t Scale,
414                                                 unsigned AddrSpace,
415                                                 Instruction *I,
416                                                 int64_t ScalableOffset) const {
417   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
418                                         Scale, AddrSpace, I, ScalableOffset);
419 }
420 
isLSRCostLess(const LSRCost & C1,const LSRCost & C2) const421 bool TargetTransformInfo::isLSRCostLess(const LSRCost &C1,
422                                         const LSRCost &C2) const {
423   return TTIImpl->isLSRCostLess(C1, C2);
424 }
425 
isNumRegsMajorCostOfLSR() const426 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
427   return TTIImpl->isNumRegsMajorCostOfLSR();
428 }
429 
shouldFoldTerminatingConditionAfterLSR() const430 bool TargetTransformInfo::shouldFoldTerminatingConditionAfterLSR() const {
431   return TTIImpl->shouldFoldTerminatingConditionAfterLSR();
432 }
433 
shouldDropLSRSolutionIfLessProfitable() const434 bool TargetTransformInfo::shouldDropLSRSolutionIfLessProfitable() const {
435   return TTIImpl->shouldDropLSRSolutionIfLessProfitable();
436 }
437 
isProfitableLSRChainElement(Instruction * I) const438 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
439   return TTIImpl->isProfitableLSRChainElement(I);
440 }
441 
canMacroFuseCmp() const442 bool TargetTransformInfo::canMacroFuseCmp() const {
443   return TTIImpl->canMacroFuseCmp();
444 }
445 
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo) const446 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
447                                      ScalarEvolution *SE, LoopInfo *LI,
448                                      DominatorTree *DT, AssumptionCache *AC,
449                                      TargetLibraryInfo *LibInfo) const {
450   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
451 }
452 
453 TTI::AddressingModeKind
getPreferredAddressingMode(const Loop * L,ScalarEvolution * SE) const454 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
455                                                 ScalarEvolution *SE) const {
456   return TTIImpl->getPreferredAddressingMode(L, SE);
457 }
458 
isLegalMaskedStore(Type * DataType,Align Alignment) const459 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
460                                              Align Alignment) const {
461   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
462 }
463 
isLegalMaskedLoad(Type * DataType,Align Alignment) const464 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
465                                             Align Alignment) const {
466   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
467 }
468 
isLegalNTStore(Type * DataType,Align Alignment) const469 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
470                                          Align Alignment) const {
471   return TTIImpl->isLegalNTStore(DataType, Alignment);
472 }
473 
isLegalNTLoad(Type * DataType,Align Alignment) const474 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
475   return TTIImpl->isLegalNTLoad(DataType, Alignment);
476 }
477 
isLegalBroadcastLoad(Type * ElementTy,ElementCount NumElements) const478 bool TargetTransformInfo::isLegalBroadcastLoad(Type *ElementTy,
479                                                ElementCount NumElements) const {
480   return TTIImpl->isLegalBroadcastLoad(ElementTy, NumElements);
481 }
482 
isLegalMaskedGather(Type * DataType,Align Alignment) const483 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
484                                               Align Alignment) const {
485   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
486 }
487 
isLegalAltInstr(VectorType * VecTy,unsigned Opcode0,unsigned Opcode1,const SmallBitVector & OpcodeMask) const488 bool TargetTransformInfo::isLegalAltInstr(
489     VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
490     const SmallBitVector &OpcodeMask) const {
491   return TTIImpl->isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
492 }
493 
isLegalMaskedScatter(Type * DataType,Align Alignment) const494 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
495                                                Align Alignment) const {
496   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
497 }
498 
forceScalarizeMaskedGather(VectorType * DataType,Align Alignment) const499 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
500                                                      Align Alignment) const {
501   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
502 }
503 
forceScalarizeMaskedScatter(VectorType * DataType,Align Alignment) const504 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
505                                                       Align Alignment) const {
506   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
507 }
508 
isLegalMaskedCompressStore(Type * DataType,Align Alignment) const509 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType,
510                                                      Align Alignment) const {
511   return TTIImpl->isLegalMaskedCompressStore(DataType, Alignment);
512 }
513 
isLegalMaskedExpandLoad(Type * DataType,Align Alignment) const514 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType,
515                                                   Align Alignment) const {
516   return TTIImpl->isLegalMaskedExpandLoad(DataType, Alignment);
517 }
518 
isLegalStridedLoadStore(Type * DataType,Align Alignment) const519 bool TargetTransformInfo::isLegalStridedLoadStore(Type *DataType,
520                                                   Align Alignment) const {
521   return TTIImpl->isLegalStridedLoadStore(DataType, Alignment);
522 }
523 
isLegalMaskedVectorHistogram(Type * AddrType,Type * DataType) const524 bool TargetTransformInfo::isLegalMaskedVectorHistogram(Type *AddrType,
525                                                        Type *DataType) const {
526   return TTIImpl->isLegalMaskedVectorHistogram(AddrType, DataType);
527 }
528 
enableOrderedReductions() const529 bool TargetTransformInfo::enableOrderedReductions() const {
530   return TTIImpl->enableOrderedReductions();
531 }
532 
hasDivRemOp(Type * DataType,bool IsSigned) const533 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
534   return TTIImpl->hasDivRemOp(DataType, IsSigned);
535 }
536 
hasVolatileVariant(Instruction * I,unsigned AddrSpace) const537 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
538                                              unsigned AddrSpace) const {
539   return TTIImpl->hasVolatileVariant(I, AddrSpace);
540 }
541 
prefersVectorizedAddressing() const542 bool TargetTransformInfo::prefersVectorizedAddressing() const {
543   return TTIImpl->prefersVectorizedAddressing();
544 }
545 
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,StackOffset BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace) const546 InstructionCost TargetTransformInfo::getScalingFactorCost(
547     Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg,
548     int64_t Scale, unsigned AddrSpace) const {
549   InstructionCost Cost = TTIImpl->getScalingFactorCost(
550       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
551   assert(Cost >= 0 && "TTI should not produce negative costs!");
552   return Cost;
553 }
554 
LSRWithInstrQueries() const555 bool TargetTransformInfo::LSRWithInstrQueries() const {
556   return TTIImpl->LSRWithInstrQueries();
557 }
558 
isTruncateFree(Type * Ty1,Type * Ty2) const559 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
560   return TTIImpl->isTruncateFree(Ty1, Ty2);
561 }
562 
isProfitableToHoist(Instruction * I) const563 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
564   return TTIImpl->isProfitableToHoist(I);
565 }
566 
useAA() const567 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
568 
isTypeLegal(Type * Ty) const569 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
570   return TTIImpl->isTypeLegal(Ty);
571 }
572 
getRegUsageForType(Type * Ty) const573 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
574   return TTIImpl->getRegUsageForType(Ty);
575 }
576 
shouldBuildLookupTables() const577 bool TargetTransformInfo::shouldBuildLookupTables() const {
578   return TTIImpl->shouldBuildLookupTables();
579 }
580 
shouldBuildLookupTablesForConstant(Constant * C) const581 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
582     Constant *C) const {
583   return TTIImpl->shouldBuildLookupTablesForConstant(C);
584 }
585 
shouldBuildRelLookupTables() const586 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
587   return TTIImpl->shouldBuildRelLookupTables();
588 }
589 
useColdCCForColdCall(Function & F) const590 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
591   return TTIImpl->useColdCCForColdCall(F);
592 }
593 
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract,TTI::TargetCostKind CostKind) const594 InstructionCost TargetTransformInfo::getScalarizationOverhead(
595     VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
596     TTI::TargetCostKind CostKind) const {
597   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
598                                            CostKind);
599 }
600 
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,ArrayRef<Type * > Tys,TTI::TargetCostKind CostKind) const601 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
602     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys,
603     TTI::TargetCostKind CostKind) const {
604   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys, CostKind);
605 }
606 
supportsEfficientVectorElementLoadStore() const607 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
608   return TTIImpl->supportsEfficientVectorElementLoadStore();
609 }
610 
supportsTailCalls() const611 bool TargetTransformInfo::supportsTailCalls() const {
612   return TTIImpl->supportsTailCalls();
613 }
614 
supportsTailCallFor(const CallBase * CB) const615 bool TargetTransformInfo::supportsTailCallFor(const CallBase *CB) const {
616   return TTIImpl->supportsTailCallFor(CB);
617 }
618 
enableAggressiveInterleaving(bool LoopHasReductions) const619 bool TargetTransformInfo::enableAggressiveInterleaving(
620     bool LoopHasReductions) const {
621   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
622 }
623 
624 TargetTransformInfo::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const625 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
626   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
627 }
628 
enableSelectOptimize() const629 bool TargetTransformInfo::enableSelectOptimize() const {
630   return TTIImpl->enableSelectOptimize();
631 }
632 
shouldTreatInstructionLikeSelect(const Instruction * I) const633 bool TargetTransformInfo::shouldTreatInstructionLikeSelect(
634     const Instruction *I) const {
635   return TTIImpl->shouldTreatInstructionLikeSelect(I);
636 }
637 
enableInterleavedAccessVectorization() const638 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
639   return TTIImpl->enableInterleavedAccessVectorization();
640 }
641 
enableMaskedInterleavedAccessVectorization() const642 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
643   return TTIImpl->enableMaskedInterleavedAccessVectorization();
644 }
645 
isFPVectorizationPotentiallyUnsafe() const646 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
647   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
648 }
649 
650 bool
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,Align Alignment,unsigned * Fast) const651 TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
652                                                     unsigned BitWidth,
653                                                     unsigned AddressSpace,
654                                                     Align Alignment,
655                                                     unsigned *Fast) const {
656   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
657                                                  AddressSpace, Alignment, Fast);
658 }
659 
660 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned IntTyWidthInBit) const661 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
662   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
663 }
664 
haveFastSqrt(Type * Ty) const665 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
666   return TTIImpl->haveFastSqrt(Ty);
667 }
668 
isExpensiveToSpeculativelyExecute(const Instruction * I) const669 bool TargetTransformInfo::isExpensiveToSpeculativelyExecute(
670     const Instruction *I) const {
671   return TTIImpl->isExpensiveToSpeculativelyExecute(I);
672 }
673 
isFCmpOrdCheaperThanFCmpZero(Type * Ty) const674 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
675   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
676 }
677 
getFPOpCost(Type * Ty) const678 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
679   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
680   assert(Cost >= 0 && "TTI should not produce negative costs!");
681   return Cost;
682 }
683 
getIntImmCodeSizeCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty) const684 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
685                                                            unsigned Idx,
686                                                            const APInt &Imm,
687                                                            Type *Ty) const {
688   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
689   assert(Cost >= 0 && "TTI should not produce negative costs!");
690   return Cost;
691 }
692 
693 InstructionCost
getIntImmCost(const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind) const694 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
695                                    TTI::TargetCostKind CostKind) const {
696   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
697   assert(Cost >= 0 && "TTI should not produce negative costs!");
698   return Cost;
699 }
700 
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind,Instruction * Inst) const701 InstructionCost TargetTransformInfo::getIntImmCostInst(
702     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
703     TTI::TargetCostKind CostKind, Instruction *Inst) const {
704   InstructionCost Cost =
705       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
706   assert(Cost >= 0 && "TTI should not produce negative costs!");
707   return Cost;
708 }
709 
710 InstructionCost
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind) const711 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
712                                          const APInt &Imm, Type *Ty,
713                                          TTI::TargetCostKind CostKind) const {
714   InstructionCost Cost =
715       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
716   assert(Cost >= 0 && "TTI should not produce negative costs!");
717   return Cost;
718 }
719 
preferToKeepConstantsAttached(const Instruction & Inst,const Function & Fn) const720 bool TargetTransformInfo::preferToKeepConstantsAttached(
721     const Instruction &Inst, const Function &Fn) const {
722   return TTIImpl->preferToKeepConstantsAttached(Inst, Fn);
723 }
724 
getNumberOfRegisters(unsigned ClassID) const725 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
726   return TTIImpl->getNumberOfRegisters(ClassID);
727 }
728 
hasConditionalLoadStoreForType(Type * Ty) const729 bool TargetTransformInfo::hasConditionalLoadStoreForType(Type *Ty) const {
730   return TTIImpl->hasConditionalLoadStoreForType(Ty);
731 }
732 
getRegisterClassForType(bool Vector,Type * Ty) const733 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
734                                                       Type *Ty) const {
735   return TTIImpl->getRegisterClassForType(Vector, Ty);
736 }
737 
getRegisterClassName(unsigned ClassID) const738 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
739   return TTIImpl->getRegisterClassName(ClassID);
740 }
741 
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const742 TypeSize TargetTransformInfo::getRegisterBitWidth(
743     TargetTransformInfo::RegisterKind K) const {
744   return TTIImpl->getRegisterBitWidth(K);
745 }
746 
getMinVectorRegisterBitWidth() const747 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
748   return TTIImpl->getMinVectorRegisterBitWidth();
749 }
750 
getMaxVScale() const751 std::optional<unsigned> TargetTransformInfo::getMaxVScale() const {
752   return TTIImpl->getMaxVScale();
753 }
754 
getVScaleForTuning() const755 std::optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
756   return TTIImpl->getVScaleForTuning();
757 }
758 
isVScaleKnownToBeAPowerOfTwo() const759 bool TargetTransformInfo::isVScaleKnownToBeAPowerOfTwo() const {
760   return TTIImpl->isVScaleKnownToBeAPowerOfTwo();
761 }
762 
shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const763 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(
764     TargetTransformInfo::RegisterKind K) const {
765   return TTIImpl->shouldMaximizeVectorBandwidth(K);
766 }
767 
getMinimumVF(unsigned ElemWidth,bool IsScalable) const768 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
769                                                bool IsScalable) const {
770   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
771 }
772 
getMaximumVF(unsigned ElemWidth,unsigned Opcode) const773 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
774                                            unsigned Opcode) const {
775   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
776 }
777 
getStoreMinimumVF(unsigned VF,Type * ScalarMemTy,Type * ScalarValTy) const778 unsigned TargetTransformInfo::getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
779                                                 Type *ScalarValTy) const {
780   return TTIImpl->getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
781 }
782 
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader) const783 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
784     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
785   return TTIImpl->shouldConsiderAddressTypePromotion(
786       I, AllowPromotionWithoutCommonHeader);
787 }
788 
getCacheLineSize() const789 unsigned TargetTransformInfo::getCacheLineSize() const {
790   return CacheLineSize.getNumOccurrences() > 0 ? CacheLineSize
791                                                : TTIImpl->getCacheLineSize();
792 }
793 
794 std::optional<unsigned>
getCacheSize(CacheLevel Level) const795 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
796   return TTIImpl->getCacheSize(Level);
797 }
798 
799 std::optional<unsigned>
getCacheAssociativity(CacheLevel Level) const800 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
801   return TTIImpl->getCacheAssociativity(Level);
802 }
803 
getMinPageSize() const804 std::optional<unsigned> TargetTransformInfo::getMinPageSize() const {
805   return MinPageSize.getNumOccurrences() > 0 ? MinPageSize
806                                              : TTIImpl->getMinPageSize();
807 }
808 
getPrefetchDistance() const809 unsigned TargetTransformInfo::getPrefetchDistance() const {
810   return TTIImpl->getPrefetchDistance();
811 }
812 
getMinPrefetchStride(unsigned NumMemAccesses,unsigned NumStridedMemAccesses,unsigned NumPrefetches,bool HasCall) const813 unsigned TargetTransformInfo::getMinPrefetchStride(
814     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
815     unsigned NumPrefetches, bool HasCall) const {
816   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
817                                        NumPrefetches, HasCall);
818 }
819 
getMaxPrefetchIterationsAhead() const820 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
821   return TTIImpl->getMaxPrefetchIterationsAhead();
822 }
823 
enableWritePrefetching() const824 bool TargetTransformInfo::enableWritePrefetching() const {
825   return TTIImpl->enableWritePrefetching();
826 }
827 
shouldPrefetchAddressSpace(unsigned AS) const828 bool TargetTransformInfo::shouldPrefetchAddressSpace(unsigned AS) const {
829   return TTIImpl->shouldPrefetchAddressSpace(AS);
830 }
831 
getMaxInterleaveFactor(ElementCount VF) const832 unsigned TargetTransformInfo::getMaxInterleaveFactor(ElementCount VF) const {
833   return TTIImpl->getMaxInterleaveFactor(VF);
834 }
835 
836 TargetTransformInfo::OperandValueInfo
getOperandInfo(const Value * V)837 TargetTransformInfo::getOperandInfo(const Value *V) {
838   OperandValueKind OpInfo = OK_AnyValue;
839   OperandValueProperties OpProps = OP_None;
840 
841   if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
842     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
843       if (CI->getValue().isPowerOf2())
844         OpProps = OP_PowerOf2;
845       else if (CI->getValue().isNegatedPowerOf2())
846         OpProps = OP_NegatedPowerOf2;
847     }
848     return {OK_UniformConstantValue, OpProps};
849   }
850 
851   // A broadcast shuffle creates a uniform value.
852   // TODO: Add support for non-zero index broadcasts.
853   // TODO: Add support for different source vector width.
854   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
855     if (ShuffleInst->isZeroEltSplat())
856       OpInfo = OK_UniformValue;
857 
858   const Value *Splat = getSplatValue(V);
859 
860   // Check for a splat of a constant or for a non uniform vector of constants
861   // and check if the constant(s) are all powers of two.
862   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
863     OpInfo = OK_NonUniformConstantValue;
864     if (Splat) {
865       OpInfo = OK_UniformConstantValue;
866       if (auto *CI = dyn_cast<ConstantInt>(Splat)) {
867         if (CI->getValue().isPowerOf2())
868           OpProps = OP_PowerOf2;
869         else if (CI->getValue().isNegatedPowerOf2())
870           OpProps = OP_NegatedPowerOf2;
871       }
872     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
873       bool AllPow2 = true, AllNegPow2 = true;
874       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
875         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) {
876           AllPow2 &= CI->getValue().isPowerOf2();
877           AllNegPow2 &= CI->getValue().isNegatedPowerOf2();
878           if (AllPow2 || AllNegPow2)
879             continue;
880         }
881         AllPow2 = AllNegPow2 = false;
882         break;
883       }
884       OpProps = AllPow2 ? OP_PowerOf2 : OpProps;
885       OpProps = AllNegPow2 ? OP_NegatedPowerOf2 : OpProps;
886     }
887   }
888 
889   // Check for a splat of a uniform value. This is not loop aware, so return
890   // true only for the obviously uniform cases (argument, globalvalue)
891   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
892     OpInfo = OK_UniformValue;
893 
894   return {OpInfo, OpProps};
895 }
896 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,OperandValueInfo Op1Info,OperandValueInfo Op2Info,ArrayRef<const Value * > Args,const Instruction * CxtI,const TargetLibraryInfo * TLibInfo) const897 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
898     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
899     OperandValueInfo Op1Info, OperandValueInfo Op2Info,
900     ArrayRef<const Value *> Args, const Instruction *CxtI,
901     const TargetLibraryInfo *TLibInfo) const {
902 
903   // Use call cost for frem intructions that have platform specific vector math
904   // functions, as those will be replaced with calls later by SelectionDAG or
905   // ReplaceWithVecLib pass.
906   if (TLibInfo && Opcode == Instruction::FRem) {
907     VectorType *VecTy = dyn_cast<VectorType>(Ty);
908     LibFunc Func;
909     if (VecTy &&
910         TLibInfo->getLibFunc(Instruction::FRem, Ty->getScalarType(), Func) &&
911         TLibInfo->isFunctionVectorizable(TLibInfo->getName(Func),
912                                          VecTy->getElementCount()))
913       return getCallInstrCost(nullptr, VecTy, {VecTy, VecTy}, CostKind);
914   }
915 
916   InstructionCost Cost =
917       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind,
918                                       Op1Info, Op2Info,
919                                       Args, CxtI);
920   assert(Cost >= 0 && "TTI should not produce negative costs!");
921   return Cost;
922 }
923 
getAltInstrCost(VectorType * VecTy,unsigned Opcode0,unsigned Opcode1,const SmallBitVector & OpcodeMask,TTI::TargetCostKind CostKind) const924 InstructionCost TargetTransformInfo::getAltInstrCost(
925     VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
926     const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind) const {
927   InstructionCost Cost =
928       TTIImpl->getAltInstrCost(VecTy, Opcode0, Opcode1, OpcodeMask, CostKind);
929   assert(Cost >= 0 && "TTI should not produce negative costs!");
930   return Cost;
931 }
932 
getShuffleCost(ShuffleKind Kind,VectorType * Ty,ArrayRef<int> Mask,TTI::TargetCostKind CostKind,int Index,VectorType * SubTp,ArrayRef<const Value * > Args,const Instruction * CxtI) const933 InstructionCost TargetTransformInfo::getShuffleCost(
934     ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask,
935     TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
936     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
937   InstructionCost Cost = TTIImpl->getShuffleCost(Kind, Ty, Mask, CostKind,
938                                                  Index, SubTp, Args, CxtI);
939   assert(Cost >= 0 && "TTI should not produce negative costs!");
940   return Cost;
941 }
942 
943 TTI::CastContextHint
getCastContextHint(const Instruction * I)944 TargetTransformInfo::getCastContextHint(const Instruction *I) {
945   if (!I)
946     return CastContextHint::None;
947 
948   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
949                              unsigned GatScatOp) {
950     const Instruction *I = dyn_cast<Instruction>(V);
951     if (!I)
952       return CastContextHint::None;
953 
954     if (I->getOpcode() == LdStOp)
955       return CastContextHint::Normal;
956 
957     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
958       if (II->getIntrinsicID() == MaskedOp)
959         return TTI::CastContextHint::Masked;
960       if (II->getIntrinsicID() == GatScatOp)
961         return TTI::CastContextHint::GatherScatter;
962     }
963 
964     return TTI::CastContextHint::None;
965   };
966 
967   switch (I->getOpcode()) {
968   case Instruction::ZExt:
969   case Instruction::SExt:
970   case Instruction::FPExt:
971     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
972                             Intrinsic::masked_load, Intrinsic::masked_gather);
973   case Instruction::Trunc:
974   case Instruction::FPTrunc:
975     if (I->hasOneUse())
976       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
977                               Intrinsic::masked_store,
978                               Intrinsic::masked_scatter);
979     break;
980   default:
981     return CastContextHint::None;
982   }
983 
984   return TTI::CastContextHint::None;
985 }
986 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I) const987 InstructionCost TargetTransformInfo::getCastInstrCost(
988     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
989     TTI::TargetCostKind CostKind, const Instruction *I) const {
990   assert((I == nullptr || I->getOpcode() == Opcode) &&
991          "Opcode should reflect passed instruction.");
992   InstructionCost Cost =
993       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
994   assert(Cost >= 0 && "TTI should not produce negative costs!");
995   return Cost;
996 }
997 
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index) const998 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
999     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
1000   InstructionCost Cost =
1001       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
1002   assert(Cost >= 0 && "TTI should not produce negative costs!");
1003   return Cost;
1004 }
1005 
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I) const1006 InstructionCost TargetTransformInfo::getCFInstrCost(
1007     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
1008   assert((I == nullptr || I->getOpcode() == Opcode) &&
1009          "Opcode should reflect passed instruction.");
1010   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
1011   assert(Cost >= 0 && "TTI should not produce negative costs!");
1012   return Cost;
1013 }
1014 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I) const1015 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
1016     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
1017     TTI::TargetCostKind CostKind, const Instruction *I) const {
1018   assert((I == nullptr || I->getOpcode() == Opcode) &&
1019          "Opcode should reflect passed instruction.");
1020   InstructionCost Cost =
1021       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1022   assert(Cost >= 0 && "TTI should not produce negative costs!");
1023   return Cost;
1024 }
1025 
getVectorInstrCost(unsigned Opcode,Type * Val,TTI::TargetCostKind CostKind,unsigned Index,Value * Op0,Value * Op1) const1026 InstructionCost TargetTransformInfo::getVectorInstrCost(
1027     unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
1028     Value *Op0, Value *Op1) const {
1029   // FIXME: Assert that Opcode is either InsertElement or ExtractElement.
1030   // This is mentioned in the interface description and respected by all
1031   // callers, but never asserted upon.
1032   InstructionCost Cost =
1033       TTIImpl->getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
1034   assert(Cost >= 0 && "TTI should not produce negative costs!");
1035   return Cost;
1036 }
1037 
1038 InstructionCost
getVectorInstrCost(const Instruction & I,Type * Val,TTI::TargetCostKind CostKind,unsigned Index) const1039 TargetTransformInfo::getVectorInstrCost(const Instruction &I, Type *Val,
1040                                         TTI::TargetCostKind CostKind,
1041                                         unsigned Index) const {
1042   // FIXME: Assert that Opcode is either InsertElement or ExtractElement.
1043   // This is mentioned in the interface description and respected by all
1044   // callers, but never asserted upon.
1045   InstructionCost Cost = TTIImpl->getVectorInstrCost(I, Val, CostKind, Index);
1046   assert(Cost >= 0 && "TTI should not produce negative costs!");
1047   return Cost;
1048 }
1049 
getReplicationShuffleCost(Type * EltTy,int ReplicationFactor,int VF,const APInt & DemandedDstElts,TTI::TargetCostKind CostKind) const1050 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
1051     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
1052     TTI::TargetCostKind CostKind) const {
1053   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
1054       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
1055   assert(Cost >= 0 && "TTI should not produce negative costs!");
1056   return Cost;
1057 }
1058 
getMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,TTI::OperandValueInfo OpInfo,const Instruction * I) const1059 InstructionCost TargetTransformInfo::getMemoryOpCost(
1060     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1061     TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo,
1062     const Instruction *I) const {
1063   assert((I == nullptr || I->getOpcode() == Opcode) &&
1064          "Opcode should reflect passed instruction.");
1065   InstructionCost Cost = TTIImpl->getMemoryOpCost(
1066       Opcode, Src, Alignment, AddressSpace, CostKind, OpInfo, I);
1067   assert(Cost >= 0 && "TTI should not produce negative costs!");
1068   return Cost;
1069 }
1070 
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind) const1071 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
1072     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1073     TTI::TargetCostKind CostKind) const {
1074   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
1075                                                         AddressSpace, CostKind);
1076   assert(Cost >= 0 && "TTI should not produce negative costs!");
1077   return Cost;
1078 }
1079 
getGatherScatterOpCost(unsigned Opcode,Type * DataTy,const Value * Ptr,bool VariableMask,Align Alignment,TTI::TargetCostKind CostKind,const Instruction * I) const1080 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
1081     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1082     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
1083   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
1084       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
1085   assert((!Cost.isValid() || Cost >= 0) &&
1086          "TTI should not produce negative costs!");
1087   return Cost;
1088 }
1089 
getStridedMemoryOpCost(unsigned Opcode,Type * DataTy,const Value * Ptr,bool VariableMask,Align Alignment,TTI::TargetCostKind CostKind,const Instruction * I) const1090 InstructionCost TargetTransformInfo::getStridedMemoryOpCost(
1091     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1092     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
1093   InstructionCost Cost = TTIImpl->getStridedMemoryOpCost(
1094       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
1095   assert(Cost >= 0 && "TTI should not produce negative costs!");
1096   return Cost;
1097 }
1098 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps) const1099 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
1100     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1101     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1102     bool UseMaskForCond, bool UseMaskForGaps) const {
1103   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
1104       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
1105       UseMaskForCond, UseMaskForGaps);
1106   assert(Cost >= 0 && "TTI should not produce negative costs!");
1107   return Cost;
1108 }
1109 
1110 InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind) const1111 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1112                                            TTI::TargetCostKind CostKind) const {
1113   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
1114   assert(Cost >= 0 && "TTI should not produce negative costs!");
1115   return Cost;
1116 }
1117 
1118 InstructionCost
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys,TTI::TargetCostKind CostKind) const1119 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
1120                                       ArrayRef<Type *> Tys,
1121                                       TTI::TargetCostKind CostKind) const {
1122   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
1123   assert(Cost >= 0 && "TTI should not produce negative costs!");
1124   return Cost;
1125 }
1126 
getNumberOfParts(Type * Tp) const1127 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
1128   return TTIImpl->getNumberOfParts(Tp);
1129 }
1130 
1131 InstructionCost
getAddressComputationCost(Type * Tp,ScalarEvolution * SE,const SCEV * Ptr) const1132 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
1133                                                const SCEV *Ptr) const {
1134   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
1135   assert(Cost >= 0 && "TTI should not produce negative costs!");
1136   return Cost;
1137 }
1138 
getMemcpyCost(const Instruction * I) const1139 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
1140   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
1141   assert(Cost >= 0 && "TTI should not produce negative costs!");
1142   return Cost;
1143 }
1144 
getMaxMemIntrinsicInlineSizeThreshold() const1145 uint64_t TargetTransformInfo::getMaxMemIntrinsicInlineSizeThreshold() const {
1146   return TTIImpl->getMaxMemIntrinsicInlineSizeThreshold();
1147 }
1148 
getArithmeticReductionCost(unsigned Opcode,VectorType * Ty,std::optional<FastMathFlags> FMF,TTI::TargetCostKind CostKind) const1149 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
1150     unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1151     TTI::TargetCostKind CostKind) const {
1152   InstructionCost Cost =
1153       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
1154   assert(Cost >= 0 && "TTI should not produce negative costs!");
1155   return Cost;
1156 }
1157 
getMinMaxReductionCost(Intrinsic::ID IID,VectorType * Ty,FastMathFlags FMF,TTI::TargetCostKind CostKind) const1158 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
1159     Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
1160     TTI::TargetCostKind CostKind) const {
1161   InstructionCost Cost =
1162       TTIImpl->getMinMaxReductionCost(IID, Ty, FMF, CostKind);
1163   assert(Cost >= 0 && "TTI should not produce negative costs!");
1164   return Cost;
1165 }
1166 
getExtendedReductionCost(unsigned Opcode,bool IsUnsigned,Type * ResTy,VectorType * Ty,FastMathFlags FMF,TTI::TargetCostKind CostKind) const1167 InstructionCost TargetTransformInfo::getExtendedReductionCost(
1168     unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1169     FastMathFlags FMF, TTI::TargetCostKind CostKind) const {
1170   return TTIImpl->getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
1171                                            CostKind);
1172 }
1173 
getMulAccReductionCost(bool IsUnsigned,Type * ResTy,VectorType * Ty,TTI::TargetCostKind CostKind) const1174 InstructionCost TargetTransformInfo::getMulAccReductionCost(
1175     bool IsUnsigned, Type *ResTy, VectorType *Ty,
1176     TTI::TargetCostKind CostKind) const {
1177   return TTIImpl->getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
1178 }
1179 
1180 InstructionCost
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys) const1181 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
1182   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
1183 }
1184 
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info) const1185 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
1186                                              MemIntrinsicInfo &Info) const {
1187   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
1188 }
1189 
getAtomicMemIntrinsicMaxElementSize() const1190 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
1191   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
1192 }
1193 
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType) const1194 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
1195     IntrinsicInst *Inst, Type *ExpectedType) const {
1196   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
1197 }
1198 
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,std::optional<uint32_t> AtomicElementSize) const1199 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
1200     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1201     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1202     std::optional<uint32_t> AtomicElementSize) const {
1203   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
1204                                             DestAddrSpace, SrcAlign, DestAlign,
1205                                             AtomicElementSize);
1206 }
1207 
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,std::optional<uint32_t> AtomicCpySize) const1208 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
1209     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1210     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1211     unsigned SrcAlign, unsigned DestAlign,
1212     std::optional<uint32_t> AtomicCpySize) const {
1213   TTIImpl->getMemcpyLoopResidualLoweringType(
1214       OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
1215       DestAlign, AtomicCpySize);
1216 }
1217 
areInlineCompatible(const Function * Caller,const Function * Callee) const1218 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
1219                                               const Function *Callee) const {
1220   return TTIImpl->areInlineCompatible(Caller, Callee);
1221 }
1222 
1223 unsigned
getInlineCallPenalty(const Function * F,const CallBase & Call,unsigned DefaultCallPenalty) const1224 TargetTransformInfo::getInlineCallPenalty(const Function *F,
1225                                           const CallBase &Call,
1226                                           unsigned DefaultCallPenalty) const {
1227   return TTIImpl->getInlineCallPenalty(F, Call, DefaultCallPenalty);
1228 }
1229 
areTypesABICompatible(const Function * Caller,const Function * Callee,const ArrayRef<Type * > & Types) const1230 bool TargetTransformInfo::areTypesABICompatible(
1231     const Function *Caller, const Function *Callee,
1232     const ArrayRef<Type *> &Types) const {
1233   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
1234 }
1235 
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty) const1236 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1237                                              Type *Ty) const {
1238   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1239 }
1240 
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty) const1241 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1242                                               Type *Ty) const {
1243   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1244 }
1245 
getLoadStoreVecRegBitWidth(unsigned AS) const1246 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1247   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1248 }
1249 
isLegalToVectorizeLoad(LoadInst * LI) const1250 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1251   return TTIImpl->isLegalToVectorizeLoad(LI);
1252 }
1253 
isLegalToVectorizeStore(StoreInst * SI) const1254 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1255   return TTIImpl->isLegalToVectorizeStore(SI);
1256 }
1257 
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const1258 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1259     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1260   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1261                                               AddrSpace);
1262 }
1263 
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const1264 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1265     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1266   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1267                                                AddrSpace);
1268 }
1269 
isLegalToVectorizeReduction(const RecurrenceDescriptor & RdxDesc,ElementCount VF) const1270 bool TargetTransformInfo::isLegalToVectorizeReduction(
1271     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1272   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1273 }
1274 
isElementTypeLegalForScalableVector(Type * Ty) const1275 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1276   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1277 }
1278 
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy) const1279 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1280                                                   unsigned LoadSize,
1281                                                   unsigned ChainSizeInBytes,
1282                                                   VectorType *VecTy) const {
1283   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1284 }
1285 
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy) const1286 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1287                                                    unsigned StoreSize,
1288                                                    unsigned ChainSizeInBytes,
1289                                                    VectorType *VecTy) const {
1290   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1291 }
1292 
preferFixedOverScalableIfEqualCost() const1293 bool TargetTransformInfo::preferFixedOverScalableIfEqualCost() const {
1294   return TTIImpl->preferFixedOverScalableIfEqualCost();
1295 }
1296 
preferInLoopReduction(unsigned Opcode,Type * Ty,ReductionFlags Flags) const1297 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1298                                                 ReductionFlags Flags) const {
1299   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1300 }
1301 
preferPredicatedReductionSelect(unsigned Opcode,Type * Ty,ReductionFlags Flags) const1302 bool TargetTransformInfo::preferPredicatedReductionSelect(
1303     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1304   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1305 }
1306 
preferEpilogueVectorization() const1307 bool TargetTransformInfo::preferEpilogueVectorization() const {
1308   return TTIImpl->preferEpilogueVectorization();
1309 }
1310 
1311 TargetTransformInfo::VPLegalization
getVPLegalizationStrategy(const VPIntrinsic & VPI) const1312 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1313   return TTIImpl->getVPLegalizationStrategy(VPI);
1314 }
1315 
hasArmWideBranch(bool Thumb) const1316 bool TargetTransformInfo::hasArmWideBranch(bool Thumb) const {
1317   return TTIImpl->hasArmWideBranch(Thumb);
1318 }
1319 
getMaxNumArgs() const1320 unsigned TargetTransformInfo::getMaxNumArgs() const {
1321   return TTIImpl->getMaxNumArgs();
1322 }
1323 
shouldExpandReduction(const IntrinsicInst * II) const1324 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1325   return TTIImpl->shouldExpandReduction(II);
1326 }
1327 
1328 TargetTransformInfo::ReductionShuffle
getPreferredExpandedReductionShuffle(const IntrinsicInst * II) const1329 TargetTransformInfo::getPreferredExpandedReductionShuffle(
1330     const IntrinsicInst *II) const {
1331   return TTIImpl->getPreferredExpandedReductionShuffle(II);
1332 }
1333 
getGISelRematGlobalCost() const1334 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1335   return TTIImpl->getGISelRematGlobalCost();
1336 }
1337 
getMinTripCountTailFoldingThreshold() const1338 unsigned TargetTransformInfo::getMinTripCountTailFoldingThreshold() const {
1339   return TTIImpl->getMinTripCountTailFoldingThreshold();
1340 }
1341 
supportsScalableVectors() const1342 bool TargetTransformInfo::supportsScalableVectors() const {
1343   return TTIImpl->supportsScalableVectors();
1344 }
1345 
enableScalableVectorization() const1346 bool TargetTransformInfo::enableScalableVectorization() const {
1347   return TTIImpl->enableScalableVectorization();
1348 }
1349 
hasActiveVectorLength(unsigned Opcode,Type * DataType,Align Alignment) const1350 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1351                                                 Align Alignment) const {
1352   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1353 }
1354 
1355 TargetTransformInfo::Concept::~Concept() = default;
1356 
TargetIRAnalysis()1357 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1358 
TargetIRAnalysis(std::function<Result (const Function &)> TTICallback)1359 TargetIRAnalysis::TargetIRAnalysis(
1360     std::function<Result(const Function &)> TTICallback)
1361     : TTICallback(std::move(TTICallback)) {}
1362 
run(const Function & F,FunctionAnalysisManager &)1363 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1364                                                FunctionAnalysisManager &) {
1365   return TTICallback(F);
1366 }
1367 
1368 AnalysisKey TargetIRAnalysis::Key;
1369 
getDefaultTTI(const Function & F)1370 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1371   return Result(F.getDataLayout());
1372 }
1373 
1374 // Register the basic pass.
1375 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1376                 "Target Transform Information", false, true)
1377 char TargetTransformInfoWrapperPass::ID = 0;
1378 
anchor()1379 void TargetTransformInfoWrapperPass::anchor() {}
1380 
TargetTransformInfoWrapperPass()1381 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1382     : ImmutablePass(ID) {
1383   initializeTargetTransformInfoWrapperPassPass(
1384       *PassRegistry::getPassRegistry());
1385 }
1386 
TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)1387 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1388     TargetIRAnalysis TIRA)
1389     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1390   initializeTargetTransformInfoWrapperPassPass(
1391       *PassRegistry::getPassRegistry());
1392 }
1393 
getTTI(const Function & F)1394 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1395   FunctionAnalysisManager DummyFAM;
1396   TTI = TIRA.run(F, DummyFAM);
1397   return *TTI;
1398 }
1399 
1400 ImmutablePass *
createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)1401 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1402   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1403 }
1404