1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/StackSafetyAnalysis.h" 29 #include "llvm/Analysis/TypeMetadataUtils.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSummaryIndex.h" 44 #include "llvm/IR/Use.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Object/ModuleSymbolTable.h" 48 #include "llvm/Object/SymbolicFile.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/FileSystem.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdint> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "module-summary-analysis" 61 62 // Option to force edges cold which will block importing when the 63 // -import-cold-multiplier is set to 0. Useful for debugging. 64 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 65 FunctionSummary::FSHT_None; 66 cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 67 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 68 cl::desc("Force all edges in the function summary to cold"), 69 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 70 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 71 "all-non-critical", "All non-critical edges."), 72 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 73 74 cl::opt<std::string> ModuleSummaryDotFile( 75 "module-summary-dot-file", cl::init(""), cl::Hidden, 76 cl::value_desc("filename"), 77 cl::desc("File to emit dot graph of new summary into.")); 78 79 // Walk through the operands of a given User via worklist iteration and populate 80 // the set of GlobalValue references encountered. Invoked either on an 81 // Instruction or a GlobalVariable (which walks its initializer). 82 // Return true if any of the operands contains blockaddress. This is important 83 // to know when computing summary for global var, because if global variable 84 // references basic block address we can't import it separately from function 85 // containing that basic block. For simplicity we currently don't import such 86 // global vars at all. When importing function we aren't interested if any 87 // instruction in it takes an address of any basic block, because instruction 88 // can only take an address of basic block located in the same function. 89 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 90 SetVector<ValueInfo> &RefEdges, 91 SmallPtrSet<const User *, 8> &Visited) { 92 bool HasBlockAddress = false; 93 SmallVector<const User *, 32> Worklist; 94 if (Visited.insert(CurUser).second) 95 Worklist.push_back(CurUser); 96 97 while (!Worklist.empty()) { 98 const User *U = Worklist.pop_back_val(); 99 const auto *CB = dyn_cast<CallBase>(U); 100 101 for (const auto &OI : U->operands()) { 102 const User *Operand = dyn_cast<User>(OI); 103 if (!Operand) 104 continue; 105 if (isa<BlockAddress>(Operand)) { 106 HasBlockAddress = true; 107 continue; 108 } 109 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 110 // We have a reference to a global value. This should be added to 111 // the reference set unless it is a callee. Callees are handled 112 // specially by WriteFunction and are added to a separate list. 113 if (!(CB && CB->isCallee(&OI))) 114 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 115 continue; 116 } 117 if (Visited.insert(Operand).second) 118 Worklist.push_back(Operand); 119 } 120 } 121 return HasBlockAddress; 122 } 123 124 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 125 ProfileSummaryInfo *PSI) { 126 if (!PSI) 127 return CalleeInfo::HotnessType::Unknown; 128 if (PSI->isHotCount(ProfileCount)) 129 return CalleeInfo::HotnessType::Hot; 130 if (PSI->isColdCount(ProfileCount)) 131 return CalleeInfo::HotnessType::Cold; 132 return CalleeInfo::HotnessType::None; 133 } 134 135 static bool isNonRenamableLocal(const GlobalValue &GV) { 136 return GV.hasSection() && GV.hasLocalLinkage(); 137 } 138 139 /// Determine whether this call has all constant integer arguments (excluding 140 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 141 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, 142 SetVector<FunctionSummary::VFuncId> &VCalls, 143 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { 144 std::vector<uint64_t> Args; 145 // Start from the second argument to skip the "this" pointer. 146 for (auto &Arg : drop_begin(Call.CB.args())) { 147 auto *CI = dyn_cast<ConstantInt>(Arg); 148 if (!CI || CI->getBitWidth() > 64) { 149 VCalls.insert({Guid, Call.Offset}); 150 return; 151 } 152 Args.push_back(CI->getZExtValue()); 153 } 154 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 155 } 156 157 /// If this intrinsic call requires that we add information to the function 158 /// summary, do so via the non-constant reference arguments. 159 static void addIntrinsicToSummary( 160 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, 161 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, 162 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, 163 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, 164 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, 165 DominatorTree &DT) { 166 switch (CI->getCalledFunction()->getIntrinsicID()) { 167 case Intrinsic::type_test: 168 case Intrinsic::public_type_test: { 169 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 170 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 171 if (!TypeId) 172 break; 173 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 174 175 // Produce a summary from type.test intrinsics. We only summarize type.test 176 // intrinsics that are used other than by an llvm.assume intrinsic. 177 // Intrinsics that are assumed are relevant only to the devirtualization 178 // pass, not the type test lowering pass. 179 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 180 return !isa<AssumeInst>(CIU.getUser()); 181 }); 182 if (HasNonAssumeUses) 183 TypeTests.insert(Guid); 184 185 SmallVector<DevirtCallSite, 4> DevirtCalls; 186 SmallVector<CallInst *, 4> Assumes; 187 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 188 for (auto &Call : DevirtCalls) 189 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 190 TypeTestAssumeConstVCalls); 191 192 break; 193 } 194 195 case Intrinsic::type_checked_load: { 196 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 197 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 198 if (!TypeId) 199 break; 200 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 201 202 SmallVector<DevirtCallSite, 4> DevirtCalls; 203 SmallVector<Instruction *, 4> LoadedPtrs; 204 SmallVector<Instruction *, 4> Preds; 205 bool HasNonCallUses = false; 206 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 207 HasNonCallUses, CI, DT); 208 // Any non-call uses of the result of llvm.type.checked.load will 209 // prevent us from optimizing away the llvm.type.test. 210 if (HasNonCallUses) 211 TypeTests.insert(Guid); 212 for (auto &Call : DevirtCalls) 213 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 214 TypeCheckedLoadConstVCalls); 215 216 break; 217 } 218 default: 219 break; 220 } 221 } 222 223 static bool isNonVolatileLoad(const Instruction *I) { 224 if (const auto *LI = dyn_cast<LoadInst>(I)) 225 return !LI->isVolatile(); 226 227 return false; 228 } 229 230 static bool isNonVolatileStore(const Instruction *I) { 231 if (const auto *SI = dyn_cast<StoreInst>(I)) 232 return !SI->isVolatile(); 233 234 return false; 235 } 236 237 // Returns true if the function definition must be unreachable. 238 // 239 // Note if this helper function returns true, `F` is guaranteed 240 // to be unreachable; if it returns false, `F` might still 241 // be unreachable but not covered by this helper function. 242 static bool mustBeUnreachableFunction(const Function &F) { 243 // A function must be unreachable if its entry block ends with an 244 // 'unreachable'. 245 assert(!F.isDeclaration()); 246 return isa<UnreachableInst>(F.getEntryBlock().getTerminator()); 247 } 248 249 static void computeFunctionSummary( 250 ModuleSummaryIndex &Index, const Module &M, const Function &F, 251 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 252 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 253 bool IsThinLTO, 254 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 255 // Summary not currently supported for anonymous functions, they should 256 // have been named. 257 assert(F.hasName()); 258 259 unsigned NumInsts = 0; 260 // Map from callee ValueId to profile count. Used to accumulate profile 261 // counts for all static calls to a given callee. 262 MapVector<ValueInfo, CalleeInfo> CallGraphEdges; 263 SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; 264 SetVector<GlobalValue::GUID> TypeTests; 265 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, 266 TypeCheckedLoadVCalls; 267 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, 268 TypeCheckedLoadConstVCalls; 269 ICallPromotionAnalysis ICallAnalysis; 270 SmallPtrSet<const User *, 8> Visited; 271 272 // Add personality function, prefix data and prologue data to function's ref 273 // list. 274 findRefEdges(Index, &F, RefEdges, Visited); 275 std::vector<const Instruction *> NonVolatileLoads; 276 std::vector<const Instruction *> NonVolatileStores; 277 278 bool HasInlineAsmMaybeReferencingInternal = false; 279 bool HasIndirBranchToBlockAddress = false; 280 bool HasUnknownCall = false; 281 bool MayThrow = false; 282 for (const BasicBlock &BB : F) { 283 // We don't allow inlining of function with indirect branch to blockaddress. 284 // If the blockaddress escapes the function, e.g., via a global variable, 285 // inlining may lead to an invalid cross-function reference. So we shouldn't 286 // import such function either. 287 if (BB.hasAddressTaken()) { 288 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users()) 289 if (!isa<CallBrInst>(*U)) { 290 HasIndirBranchToBlockAddress = true; 291 break; 292 } 293 } 294 295 for (const Instruction &I : BB) { 296 if (I.isDebugOrPseudoInst()) 297 continue; 298 ++NumInsts; 299 300 // Regular LTO module doesn't participate in ThinLTO import, 301 // so no reference from it can be read/writeonly, since this 302 // would require importing variable as local copy 303 if (IsThinLTO) { 304 if (isNonVolatileLoad(&I)) { 305 // Postpone processing of non-volatile load instructions 306 // See comments below 307 Visited.insert(&I); 308 NonVolatileLoads.push_back(&I); 309 continue; 310 } else if (isNonVolatileStore(&I)) { 311 Visited.insert(&I); 312 NonVolatileStores.push_back(&I); 313 // All references from second operand of store (destination address) 314 // can be considered write-only if they're not referenced by any 315 // non-store instruction. References from first operand of store 316 // (stored value) can't be treated either as read- or as write-only 317 // so we add them to RefEdges as we do with all other instructions 318 // except non-volatile load. 319 Value *Stored = I.getOperand(0); 320 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 321 // findRefEdges will try to examine GV operands, so instead 322 // of calling it we should add GV to RefEdges directly. 323 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 324 else if (auto *U = dyn_cast<User>(Stored)) 325 findRefEdges(Index, U, RefEdges, Visited); 326 continue; 327 } 328 } 329 findRefEdges(Index, &I, RefEdges, Visited); 330 const auto *CB = dyn_cast<CallBase>(&I); 331 if (!CB) { 332 if (I.mayThrow()) 333 MayThrow = true; 334 continue; 335 } 336 337 const auto *CI = dyn_cast<CallInst>(&I); 338 // Since we don't know exactly which local values are referenced in inline 339 // assembly, conservatively mark the function as possibly referencing 340 // a local value from inline assembly to ensure we don't export a 341 // reference (which would require renaming and promotion of the 342 // referenced value). 343 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 344 HasInlineAsmMaybeReferencingInternal = true; 345 346 auto *CalledValue = CB->getCalledOperand(); 347 auto *CalledFunction = CB->getCalledFunction(); 348 if (CalledValue && !CalledFunction) { 349 CalledValue = CalledValue->stripPointerCasts(); 350 // Stripping pointer casts can reveal a called function. 351 CalledFunction = dyn_cast<Function>(CalledValue); 352 } 353 // Check if this is an alias to a function. If so, get the 354 // called aliasee for the checks below. 355 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 356 assert(!CalledFunction && "Expected null called function in callsite for alias"); 357 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 358 } 359 // Check if this is a direct call to a known function or a known 360 // intrinsic, or an indirect call with profile data. 361 if (CalledFunction) { 362 if (CI && CalledFunction->isIntrinsic()) { 363 addIntrinsicToSummary( 364 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 365 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 366 continue; 367 } 368 // We should have named any anonymous globals 369 assert(CalledFunction->hasName()); 370 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 371 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI) 372 : CalleeInfo::HotnessType::Unknown; 373 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 374 Hotness = CalleeInfo::HotnessType::Cold; 375 376 // Use the original CalledValue, in case it was an alias. We want 377 // to record the call edge to the alias in that case. Eventually 378 // an alias summary will be created to associate the alias and 379 // aliasee. 380 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 381 cast<GlobalValue>(CalledValue))]; 382 ValueInfo.updateHotness(Hotness); 383 // Add the relative block frequency to CalleeInfo if there is no profile 384 // information. 385 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 386 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 387 uint64_t EntryFreq = BFI->getEntryFreq(); 388 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 389 } 390 } else { 391 HasUnknownCall = true; 392 // Skip inline assembly calls. 393 if (CI && CI->isInlineAsm()) 394 continue; 395 // Skip direct calls. 396 if (!CalledValue || isa<Constant>(CalledValue)) 397 continue; 398 399 // Check if the instruction has a callees metadata. If so, add callees 400 // to CallGraphEdges to reflect the references from the metadata, and 401 // to enable importing for subsequent indirect call promotion and 402 // inlining. 403 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 404 for (const auto &Op : MD->operands()) { 405 Function *Callee = mdconst::extract_or_null<Function>(Op); 406 if (Callee) 407 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 408 } 409 } 410 411 uint32_t NumVals, NumCandidates; 412 uint64_t TotalCount; 413 auto CandidateProfileData = 414 ICallAnalysis.getPromotionCandidatesForInstruction( 415 &I, NumVals, TotalCount, NumCandidates); 416 for (const auto &Candidate : CandidateProfileData) 417 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 418 .updateHotness(getHotness(Candidate.Count, PSI)); 419 } 420 } 421 } 422 Index.addBlockCount(F.size()); 423 424 std::vector<ValueInfo> Refs; 425 if (IsThinLTO) { 426 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 427 SetVector<ValueInfo> &Edges, 428 SmallPtrSet<const User *, 8> &Cache) { 429 for (const auto *I : Instrs) { 430 Cache.erase(I); 431 findRefEdges(Index, I, Edges, Cache); 432 } 433 }; 434 435 // By now we processed all instructions in a function, except 436 // non-volatile loads and non-volatile value stores. Let's find 437 // ref edges for both of instruction sets 438 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 439 // We can add some values to the Visited set when processing load 440 // instructions which are also used by stores in NonVolatileStores. 441 // For example this can happen if we have following code: 442 // 443 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 444 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 445 // 446 // After processing loads we'll add bitcast to the Visited set, and if 447 // we use the same set while processing stores, we'll never see store 448 // to @bar and @bar will be mistakenly treated as readonly. 449 SmallPtrSet<const llvm::User *, 8> StoreCache; 450 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 451 452 // If both load and store instruction reference the same variable 453 // we won't be able to optimize it. Add all such reference edges 454 // to RefEdges set. 455 for (const auto &VI : StoreRefEdges) 456 if (LoadRefEdges.remove(VI)) 457 RefEdges.insert(VI); 458 459 unsigned RefCnt = RefEdges.size(); 460 // All new reference edges inserted in two loops below are either 461 // read or write only. They will be grouped in the end of RefEdges 462 // vector, so we can use a single integer value to identify them. 463 for (const auto &VI : LoadRefEdges) 464 RefEdges.insert(VI); 465 466 unsigned FirstWORef = RefEdges.size(); 467 for (const auto &VI : StoreRefEdges) 468 RefEdges.insert(VI); 469 470 Refs = RefEdges.takeVector(); 471 for (; RefCnt < FirstWORef; ++RefCnt) 472 Refs[RefCnt].setReadOnly(); 473 474 for (; RefCnt < Refs.size(); ++RefCnt) 475 Refs[RefCnt].setWriteOnly(); 476 } else { 477 Refs = RefEdges.takeVector(); 478 } 479 // Explicit add hot edges to enforce importing for designated GUIDs for 480 // sample PGO, to enable the same inlines as the profiled optimized binary. 481 for (auto &I : F.getImportGUIDs()) 482 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 483 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 484 ? CalleeInfo::HotnessType::Cold 485 : CalleeInfo::HotnessType::Critical); 486 487 bool NonRenamableLocal = isNonRenamableLocal(F); 488 bool NotEligibleForImport = NonRenamableLocal || 489 HasInlineAsmMaybeReferencingInternal || 490 HasIndirBranchToBlockAddress; 491 GlobalValueSummary::GVFlags Flags( 492 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 493 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable()); 494 FunctionSummary::FFlags FunFlags{ 495 F.hasFnAttribute(Attribute::ReadNone), 496 F.hasFnAttribute(Attribute::ReadOnly), 497 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 498 // FIXME: refactor this to use the same code that inliner is using. 499 // Don't try to import functions with noinline attribute. 500 F.getAttributes().hasFnAttr(Attribute::NoInline), 501 F.hasFnAttribute(Attribute::AlwaysInline), 502 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall, 503 mustBeUnreachableFunction(F)}; 504 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 505 if (auto *SSI = GetSSICallback(F)) 506 ParamAccesses = SSI->getParamAccesses(Index); 507 auto FuncSummary = std::make_unique<FunctionSummary>( 508 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 509 CallGraphEdges.takeVector(), TypeTests.takeVector(), 510 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 511 TypeTestAssumeConstVCalls.takeVector(), 512 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses)); 513 if (NonRenamableLocal) 514 CantBePromoted.insert(F.getGUID()); 515 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 516 } 517 518 /// Find function pointers referenced within the given vtable initializer 519 /// (or subset of an initializer) \p I. The starting offset of \p I within 520 /// the vtable initializer is \p StartingOffset. Any discovered function 521 /// pointers are added to \p VTableFuncs along with their cumulative offset 522 /// within the initializer. 523 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 524 const Module &M, ModuleSummaryIndex &Index, 525 VTableFuncList &VTableFuncs) { 526 // First check if this is a function pointer. 527 if (I->getType()->isPointerTy()) { 528 auto Fn = dyn_cast<Function>(I->stripPointerCasts()); 529 // We can disregard __cxa_pure_virtual as a possible call target, as 530 // calls to pure virtuals are UB. 531 if (Fn && Fn->getName() != "__cxa_pure_virtual") 532 VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); 533 return; 534 } 535 536 // Walk through the elements in the constant struct or array and recursively 537 // look for virtual function pointers. 538 const DataLayout &DL = M.getDataLayout(); 539 if (auto *C = dyn_cast<ConstantStruct>(I)) { 540 StructType *STy = dyn_cast<StructType>(C->getType()); 541 assert(STy); 542 const StructLayout *SL = DL.getStructLayout(C->getType()); 543 544 for (auto EI : llvm::enumerate(STy->elements())) { 545 auto Offset = SL->getElementOffset(EI.index()); 546 unsigned Op = SL->getElementContainingOffset(Offset); 547 findFuncPointers(cast<Constant>(I->getOperand(Op)), 548 StartingOffset + Offset, M, Index, VTableFuncs); 549 } 550 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 551 ArrayType *ATy = C->getType(); 552 Type *EltTy = ATy->getElementType(); 553 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 554 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 555 findFuncPointers(cast<Constant>(I->getOperand(i)), 556 StartingOffset + i * EltSize, M, Index, VTableFuncs); 557 } 558 } 559 } 560 561 // Identify the function pointers referenced by vtable definition \p V. 562 static void computeVTableFuncs(ModuleSummaryIndex &Index, 563 const GlobalVariable &V, const Module &M, 564 VTableFuncList &VTableFuncs) { 565 if (!V.isConstant()) 566 return; 567 568 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 569 VTableFuncs); 570 571 #ifndef NDEBUG 572 // Validate that the VTableFuncs list is ordered by offset. 573 uint64_t PrevOffset = 0; 574 for (auto &P : VTableFuncs) { 575 // The findVFuncPointers traversal should have encountered the 576 // functions in offset order. We need to use ">=" since PrevOffset 577 // starts at 0. 578 assert(P.VTableOffset >= PrevOffset); 579 PrevOffset = P.VTableOffset; 580 } 581 #endif 582 } 583 584 /// Record vtable definition \p V for each type metadata it references. 585 static void 586 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 587 const GlobalVariable &V, 588 SmallVectorImpl<MDNode *> &Types) { 589 for (MDNode *Type : Types) { 590 auto TypeID = Type->getOperand(1).get(); 591 592 uint64_t Offset = 593 cast<ConstantInt>( 594 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 595 ->getZExtValue(); 596 597 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 598 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 599 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 600 } 601 } 602 603 static void computeVariableSummary(ModuleSummaryIndex &Index, 604 const GlobalVariable &V, 605 DenseSet<GlobalValue::GUID> &CantBePromoted, 606 const Module &M, 607 SmallVectorImpl<MDNode *> &Types) { 608 SetVector<ValueInfo> RefEdges; 609 SmallPtrSet<const User *, 8> Visited; 610 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); 611 bool NonRenamableLocal = isNonRenamableLocal(V); 612 GlobalValueSummary::GVFlags Flags( 613 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 614 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable()); 615 616 VTableFuncList VTableFuncs; 617 // If splitting is not enabled, then we compute the summary information 618 // necessary for index-based whole program devirtualization. 619 if (!Index.enableSplitLTOUnit()) { 620 Types.clear(); 621 V.getMetadata(LLVMContext::MD_type, Types); 622 if (!Types.empty()) { 623 // Identify the function pointers referenced by this vtable definition. 624 computeVTableFuncs(Index, V, M, VTableFuncs); 625 626 // Record this vtable definition for each type metadata it references. 627 recordTypeIdCompatibleVtableReferences(Index, V, Types); 628 } 629 } 630 631 // Don't mark variables we won't be able to internalize as read/write-only. 632 bool CanBeInternalized = 633 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 634 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 635 bool Constant = V.isConstant(); 636 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 637 Constant ? false : CanBeInternalized, 638 Constant, V.getVCallVisibility()); 639 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 640 RefEdges.takeVector()); 641 if (NonRenamableLocal) 642 CantBePromoted.insert(V.getGUID()); 643 if (HasBlockAddress) 644 GVarSummary->setNotEligibleToImport(); 645 if (!VTableFuncs.empty()) 646 GVarSummary->setVTableFuncs(VTableFuncs); 647 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 648 } 649 650 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 651 DenseSet<GlobalValue::GUID> &CantBePromoted) { 652 // Skip summary for indirect function aliases as summary for aliasee will not 653 // be emitted. 654 const GlobalObject *Aliasee = A.getAliaseeObject(); 655 if (isa<GlobalIFunc>(Aliasee)) 656 return; 657 bool NonRenamableLocal = isNonRenamableLocal(A); 658 GlobalValueSummary::GVFlags Flags( 659 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 660 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable()); 661 auto AS = std::make_unique<AliasSummary>(Flags); 662 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 663 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 664 assert(AliaseeVI.getSummaryList().size() == 1 && 665 "Expected a single entry per aliasee in per-module index"); 666 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 667 if (NonRenamableLocal) 668 CantBePromoted.insert(A.getGUID()); 669 Index.addGlobalValueSummary(A, std::move(AS)); 670 } 671 672 // Set LiveRoot flag on entries matching the given value name. 673 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 674 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 675 for (const auto &Summary : VI.getSummaryList()) 676 Summary->setLive(true); 677 } 678 679 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 680 const Module &M, 681 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 682 ProfileSummaryInfo *PSI, 683 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 684 assert(PSI); 685 bool EnableSplitLTOUnit = false; 686 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 687 M.getModuleFlag("EnableSplitLTOUnit"))) 688 EnableSplitLTOUnit = MD->getZExtValue(); 689 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); 690 691 // Identify the local values in the llvm.used and llvm.compiler.used sets, 692 // which should not be exported as they would then require renaming and 693 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 694 // here because we use this information to mark functions containing inline 695 // assembly calls as not importable. 696 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 697 SmallVector<GlobalValue *, 4> Used; 698 // First collect those in the llvm.used set. 699 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 700 // Next collect those in the llvm.compiler.used set. 701 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 702 DenseSet<GlobalValue::GUID> CantBePromoted; 703 for (auto *V : Used) { 704 if (V->hasLocalLinkage()) { 705 LocalsUsed.insert(V); 706 CantBePromoted.insert(V->getGUID()); 707 } 708 } 709 710 bool HasLocalInlineAsmSymbol = false; 711 if (!M.getModuleInlineAsm().empty()) { 712 // Collect the local values defined by module level asm, and set up 713 // summaries for these symbols so that they can be marked as NoRename, 714 // to prevent export of any use of them in regular IR that would require 715 // renaming within the module level asm. Note we don't need to create a 716 // summary for weak or global defs, as they don't need to be flagged as 717 // NoRename, and defs in module level asm can't be imported anyway. 718 // Also, any values used but not defined within module level asm should 719 // be listed on the llvm.used or llvm.compiler.used global and marked as 720 // referenced from there. 721 ModuleSymbolTable::CollectAsmSymbols( 722 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 723 // Symbols not marked as Weak or Global are local definitions. 724 if (Flags & (object::BasicSymbolRef::SF_Weak | 725 object::BasicSymbolRef::SF_Global)) 726 return; 727 HasLocalInlineAsmSymbol = true; 728 GlobalValue *GV = M.getNamedValue(Name); 729 if (!GV) 730 return; 731 assert(GV->isDeclaration() && "Def in module asm already has definition"); 732 GlobalValueSummary::GVFlags GVFlags( 733 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 734 /* NotEligibleToImport = */ true, 735 /* Live = */ true, 736 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable()); 737 CantBePromoted.insert(GV->getGUID()); 738 // Create the appropriate summary type. 739 if (Function *F = dyn_cast<Function>(GV)) { 740 std::unique_ptr<FunctionSummary> Summary = 741 std::make_unique<FunctionSummary>( 742 GVFlags, /*InstCount=*/0, 743 FunctionSummary::FFlags{ 744 F->hasFnAttribute(Attribute::ReadNone), 745 F->hasFnAttribute(Attribute::ReadOnly), 746 F->hasFnAttribute(Attribute::NoRecurse), 747 F->returnDoesNotAlias(), 748 /* NoInline = */ false, 749 F->hasFnAttribute(Attribute::AlwaysInline), 750 F->hasFnAttribute(Attribute::NoUnwind), 751 /* MayThrow */ true, 752 /* HasUnknownCall */ true, 753 /* MustBeUnreachable */ false}, 754 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 755 ArrayRef<FunctionSummary::EdgeTy>{}, 756 ArrayRef<GlobalValue::GUID>{}, 757 ArrayRef<FunctionSummary::VFuncId>{}, 758 ArrayRef<FunctionSummary::VFuncId>{}, 759 ArrayRef<FunctionSummary::ConstVCall>{}, 760 ArrayRef<FunctionSummary::ConstVCall>{}, 761 ArrayRef<FunctionSummary::ParamAccess>{}); 762 Index.addGlobalValueSummary(*GV, std::move(Summary)); 763 } else { 764 std::unique_ptr<GlobalVarSummary> Summary = 765 std::make_unique<GlobalVarSummary>( 766 GVFlags, 767 GlobalVarSummary::GVarFlags( 768 false, false, cast<GlobalVariable>(GV)->isConstant(), 769 GlobalObject::VCallVisibilityPublic), 770 ArrayRef<ValueInfo>{}); 771 Index.addGlobalValueSummary(*GV, std::move(Summary)); 772 } 773 }); 774 } 775 776 bool IsThinLTO = true; 777 if (auto *MD = 778 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 779 IsThinLTO = MD->getZExtValue(); 780 781 // Compute summaries for all functions defined in module, and save in the 782 // index. 783 for (const auto &F : M) { 784 if (F.isDeclaration()) 785 continue; 786 787 DominatorTree DT(const_cast<Function &>(F)); 788 BlockFrequencyInfo *BFI = nullptr; 789 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 790 if (GetBFICallback) 791 BFI = GetBFICallback(F); 792 else if (F.hasProfileData()) { 793 LoopInfo LI{DT}; 794 BranchProbabilityInfo BPI{F, LI}; 795 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 796 BFI = BFIPtr.get(); 797 } 798 799 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 800 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 801 CantBePromoted, IsThinLTO, GetSSICallback); 802 } 803 804 // Compute summaries for all variables defined in module, and save in the 805 // index. 806 SmallVector<MDNode *, 2> Types; 807 for (const GlobalVariable &G : M.globals()) { 808 if (G.isDeclaration()) 809 continue; 810 computeVariableSummary(Index, G, CantBePromoted, M, Types); 811 } 812 813 // Compute summaries for all aliases defined in module, and save in the 814 // index. 815 for (const GlobalAlias &A : M.aliases()) 816 computeAliasSummary(Index, A, CantBePromoted); 817 818 // Iterate through ifuncs, set their resolvers all alive. 819 for (const GlobalIFunc &I : M.ifuncs()) { 820 I.applyAlongResolverPath([&Index](const GlobalValue &GV) { 821 Index.getGlobalValueSummary(GV)->setLive(true); 822 }); 823 } 824 825 for (auto *V : LocalsUsed) { 826 auto *Summary = Index.getGlobalValueSummary(*V); 827 assert(Summary && "Missing summary for global value"); 828 Summary->setNotEligibleToImport(); 829 } 830 831 // The linker doesn't know about these LLVM produced values, so we need 832 // to flag them as live in the index to ensure index-based dead value 833 // analysis treats them as live roots of the analysis. 834 setLiveRoot(Index, "llvm.used"); 835 setLiveRoot(Index, "llvm.compiler.used"); 836 setLiveRoot(Index, "llvm.global_ctors"); 837 setLiveRoot(Index, "llvm.global_dtors"); 838 setLiveRoot(Index, "llvm.global.annotations"); 839 840 for (auto &GlobalList : Index) { 841 // Ignore entries for references that are undefined in the current module. 842 if (GlobalList.second.SummaryList.empty()) 843 continue; 844 845 assert(GlobalList.second.SummaryList.size() == 1 && 846 "Expected module's index to have one summary per GUID"); 847 auto &Summary = GlobalList.second.SummaryList[0]; 848 if (!IsThinLTO) { 849 Summary->setNotEligibleToImport(); 850 continue; 851 } 852 853 bool AllRefsCanBeExternallyReferenced = 854 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 855 return !CantBePromoted.count(VI.getGUID()); 856 }); 857 if (!AllRefsCanBeExternallyReferenced) { 858 Summary->setNotEligibleToImport(); 859 continue; 860 } 861 862 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 863 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 864 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 865 return !CantBePromoted.count(Edge.first.getGUID()); 866 }); 867 if (!AllCallsCanBeExternallyReferenced) 868 Summary->setNotEligibleToImport(); 869 } 870 } 871 872 if (!ModuleSummaryDotFile.empty()) { 873 std::error_code EC; 874 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); 875 if (EC) 876 report_fatal_error(Twine("Failed to open dot file ") + 877 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 878 Index.exportToDot(OSDot, {}); 879 } 880 881 return Index; 882 } 883 884 AnalysisKey ModuleSummaryIndexAnalysis::Key; 885 886 ModuleSummaryIndex 887 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 888 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 889 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 890 bool NeedSSI = needsParamAccessSummary(M); 891 return buildModuleSummaryIndex( 892 M, 893 [&FAM](const Function &F) { 894 return &FAM.getResult<BlockFrequencyAnalysis>( 895 *const_cast<Function *>(&F)); 896 }, 897 &PSI, 898 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 899 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 900 const_cast<Function &>(F)) 901 : nullptr; 902 }); 903 } 904 905 char ModuleSummaryIndexWrapperPass::ID = 0; 906 907 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 908 "Module Summary Analysis", false, true) 909 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 910 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 911 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 912 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 913 "Module Summary Analysis", false, true) 914 915 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 916 return new ModuleSummaryIndexWrapperPass(); 917 } 918 919 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 920 : ModulePass(ID) { 921 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 922 } 923 924 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 925 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 926 bool NeedSSI = needsParamAccessSummary(M); 927 Index.emplace(buildModuleSummaryIndex( 928 M, 929 [this](const Function &F) { 930 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 931 *const_cast<Function *>(&F)) 932 .getBFI()); 933 }, 934 PSI, 935 [&](const Function &F) -> const StackSafetyInfo * { 936 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 937 const_cast<Function &>(F)) 938 .getResult() 939 : nullptr; 940 })); 941 return false; 942 } 943 944 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 945 Index.reset(); 946 return false; 947 } 948 949 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 950 AU.setPreservesAll(); 951 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 952 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 953 AU.addRequired<StackSafetyInfoWrapperPass>(); 954 } 955 956 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 957 958 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 959 const ModuleSummaryIndex *Index) 960 : ImmutablePass(ID), Index(Index) { 961 initializeImmutableModuleSummaryIndexWrapperPassPass( 962 *PassRegistry::getPassRegistry()); 963 } 964 965 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 966 AnalysisUsage &AU) const { 967 AU.setPreservesAll(); 968 } 969 970 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 971 const ModuleSummaryIndex *Index) { 972 return new ImmutableModuleSummaryIndexWrapperPass(Index); 973 } 974 975 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 976 "Module summary info", false, true) 977