1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass statically checks for common and easily-identified constructs 10 // which produce undefined or likely unintended behavior in LLVM IR. 11 // 12 // It is not a guarantee of correctness, in two ways. First, it isn't 13 // comprehensive. There are checks which could be done statically which are 14 // not yet implemented. Some of these are indicated by TODO comments, but 15 // those aren't comprehensive either. Second, many conditions cannot be 16 // checked statically. This pass does no dynamic instrumentation, so it 17 // can't check for all possible problems. 18 // 19 // Another limitation is that it assumes all code will be executed. A store 20 // through a null pointer in a basic block which is never reached is harmless, 21 // but this pass will warn about it anyway. This is the main reason why most 22 // of these checks live here instead of in the Verifier pass. 23 // 24 // Optimization passes may make conditions that this pass checks for more or 25 // less obvious. If an optimization pass appears to be introducing a warning, 26 // it may be that the optimization pass is merely exposing an existing 27 // condition in the code. 28 // 29 // This code may be run before instcombine. In many cases, instcombine checks 30 // for the same kinds of things and turns instructions with undefined behavior 31 // into unreachable (or equivalent). Because of this, this pass makes some 32 // effort to look through bitcasts and so on. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Analysis/Lint.h" 37 #include "llvm/ADT/APInt.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/BasicAliasAnalysis.h" 44 #include "llvm/Analysis/ConstantFolding.h" 45 #include "llvm/Analysis/InstructionSimplify.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/Analysis/MemoryLocation.h" 48 #include "llvm/Analysis/ScopedNoAliasAA.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/GlobalVariable.h" 61 #include "llvm/IR/InstVisitor.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instruction.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/IntrinsicInst.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <string> 77 78 using namespace llvm; 79 80 static const char LintAbortOnErrorArgName[] = "lint-abort-on-error"; 81 static cl::opt<bool> 82 LintAbortOnError(LintAbortOnErrorArgName, cl::init(false), 83 cl::desc("In the Lint pass, abort on errors.")); 84 85 namespace { 86 namespace MemRef { 87 static const unsigned Read = 1; 88 static const unsigned Write = 2; 89 static const unsigned Callee = 4; 90 static const unsigned Branchee = 8; 91 } // end namespace MemRef 92 93 class Lint : public InstVisitor<Lint> { 94 friend class InstVisitor<Lint>; 95 96 void visitFunction(Function &F); 97 98 void visitCallBase(CallBase &CB); 99 void visitMemoryReference(Instruction &I, const MemoryLocation &Loc, 100 MaybeAlign Alignment, Type *Ty, unsigned Flags); 101 102 void visitReturnInst(ReturnInst &I); 103 void visitLoadInst(LoadInst &I); 104 void visitStoreInst(StoreInst &I); 105 void visitXor(BinaryOperator &I); 106 void visitSub(BinaryOperator &I); 107 void visitLShr(BinaryOperator &I); 108 void visitAShr(BinaryOperator &I); 109 void visitShl(BinaryOperator &I); 110 void visitSDiv(BinaryOperator &I); 111 void visitUDiv(BinaryOperator &I); 112 void visitSRem(BinaryOperator &I); 113 void visitURem(BinaryOperator &I); 114 void visitAllocaInst(AllocaInst &I); 115 void visitVAArgInst(VAArgInst &I); 116 void visitIndirectBrInst(IndirectBrInst &I); 117 void visitExtractElementInst(ExtractElementInst &I); 118 void visitInsertElementInst(InsertElementInst &I); 119 void visitUnreachableInst(UnreachableInst &I); 120 121 Value *findValue(Value *V, bool OffsetOk) const; 122 Value *findValueImpl(Value *V, bool OffsetOk, 123 SmallPtrSetImpl<Value *> &Visited) const; 124 125 public: 126 Module *Mod; 127 const DataLayout *DL; 128 AliasAnalysis *AA; 129 AssumptionCache *AC; 130 DominatorTree *DT; 131 TargetLibraryInfo *TLI; 132 133 std::string Messages; 134 raw_string_ostream MessagesStr; 135 136 Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA, 137 AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI) 138 : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI), 139 MessagesStr(Messages) {} 140 141 void WriteValues(ArrayRef<const Value *> Vs) { 142 for (const Value *V : Vs) { 143 if (!V) 144 continue; 145 if (isa<Instruction>(V)) { 146 MessagesStr << *V << '\n'; 147 } else { 148 V->printAsOperand(MessagesStr, true, Mod); 149 MessagesStr << '\n'; 150 } 151 } 152 } 153 154 /// A check failed, so printout out the condition and the message. 155 /// 156 /// This provides a nice place to put a breakpoint if you want to see why 157 /// something is not correct. 158 void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } 159 160 /// A check failed (with values to print). 161 /// 162 /// This calls the Message-only version so that the above is easier to set 163 /// a breakpoint on. 164 template <typename T1, typename... Ts> 165 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 166 CheckFailed(Message); 167 WriteValues({V1, Vs...}); 168 } 169 }; 170 } // end anonymous namespace 171 172 // Check - We know that cond should be true, if not print an error message. 173 #define Check(C, ...) \ 174 do { \ 175 if (!(C)) { \ 176 CheckFailed(__VA_ARGS__); \ 177 return; \ 178 } \ 179 } while (false) 180 181 void Lint::visitFunction(Function &F) { 182 // This isn't undefined behavior, it's just a little unusual, and it's a 183 // fairly common mistake to neglect to name a function. 184 Check(F.hasName() || F.hasLocalLinkage(), 185 "Unusual: Unnamed function with non-local linkage", &F); 186 187 // TODO: Check for irreducible control flow. 188 } 189 190 void Lint::visitCallBase(CallBase &I) { 191 Value *Callee = I.getCalledOperand(); 192 193 visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt, 194 nullptr, MemRef::Callee); 195 196 if (Function *F = dyn_cast<Function>(findValue(Callee, 197 /*OffsetOk=*/false))) { 198 Check(I.getCallingConv() == F->getCallingConv(), 199 "Undefined behavior: Caller and callee calling convention differ", 200 &I); 201 202 FunctionType *FT = F->getFunctionType(); 203 unsigned NumActualArgs = I.arg_size(); 204 205 Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs 206 : FT->getNumParams() == NumActualArgs, 207 "Undefined behavior: Call argument count mismatches callee " 208 "argument count", 209 &I); 210 211 Check(FT->getReturnType() == I.getType(), 212 "Undefined behavior: Call return type mismatches " 213 "callee return type", 214 &I); 215 216 // Check argument types (in case the callee was casted) and attributes. 217 // TODO: Verify that caller and callee attributes are compatible. 218 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); 219 auto AI = I.arg_begin(), AE = I.arg_end(); 220 for (; AI != AE; ++AI) { 221 Value *Actual = *AI; 222 if (PI != PE) { 223 Argument *Formal = &*PI++; 224 Check(Formal->getType() == Actual->getType(), 225 "Undefined behavior: Call argument type mismatches " 226 "callee parameter type", 227 &I); 228 229 // Check that noalias arguments don't alias other arguments. This is 230 // not fully precise because we don't know the sizes of the dereferenced 231 // memory regions. 232 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) { 233 AttributeList PAL = I.getAttributes(); 234 unsigned ArgNo = 0; 235 for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) { 236 // Skip ByVal arguments since they will be memcpy'd to the callee's 237 // stack so we're not really passing the pointer anyway. 238 if (PAL.hasParamAttr(ArgNo, Attribute::ByVal)) 239 continue; 240 // If both arguments are readonly, they have no dependence. 241 if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo)) 242 continue; 243 // Skip readnone arguments since those are guaranteed not to be 244 // dereferenced anyway. 245 if (I.doesNotAccessMemory(ArgNo)) 246 continue; 247 if (AI != BI && (*BI)->getType()->isPointerTy()) { 248 AliasResult Result = AA->alias(*AI, *BI); 249 Check(Result != AliasResult::MustAlias && 250 Result != AliasResult::PartialAlias, 251 "Unusual: noalias argument aliases another argument", &I); 252 } 253 } 254 } 255 256 // Check that an sret argument points to valid memory. 257 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { 258 Type *Ty = Formal->getParamStructRetType(); 259 MemoryLocation Loc( 260 Actual, LocationSize::precise(DL->getTypeStoreSize(Ty))); 261 visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty, 262 MemRef::Read | MemRef::Write); 263 } 264 } 265 } 266 } 267 268 if (const auto *CI = dyn_cast<CallInst>(&I)) { 269 if (CI->isTailCall()) { 270 const AttributeList &PAL = CI->getAttributes(); 271 unsigned ArgNo = 0; 272 for (Value *Arg : I.args()) { 273 // Skip ByVal arguments since they will be memcpy'd to the callee's 274 // stack anyway. 275 if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal)) 276 continue; 277 Value *Obj = findValue(Arg, /*OffsetOk=*/true); 278 Check(!isa<AllocaInst>(Obj), 279 "Undefined behavior: Call with \"tail\" keyword references " 280 "alloca", 281 &I); 282 } 283 } 284 } 285 286 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) 287 switch (II->getIntrinsicID()) { 288 default: 289 break; 290 291 // TODO: Check more intrinsics 292 293 case Intrinsic::memcpy: 294 case Intrinsic::memcpy_inline: { 295 MemCpyInst *MCI = cast<MemCpyInst>(&I); 296 visitMemoryReference(I, MemoryLocation::getForDest(MCI), 297 MCI->getDestAlign(), nullptr, MemRef::Write); 298 visitMemoryReference(I, MemoryLocation::getForSource(MCI), 299 MCI->getSourceAlign(), nullptr, MemRef::Read); 300 301 // Check that the memcpy arguments don't overlap. The AliasAnalysis API 302 // isn't expressive enough for what we really want to do. Known partial 303 // overlap is not distinguished from the case where nothing is known. 304 auto Size = LocationSize::afterPointer(); 305 if (const ConstantInt *Len = 306 dyn_cast<ConstantInt>(findValue(MCI->getLength(), 307 /*OffsetOk=*/false))) 308 if (Len->getValue().isIntN(32)) 309 Size = LocationSize::precise(Len->getValue().getZExtValue()); 310 Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != 311 AliasResult::MustAlias, 312 "Undefined behavior: memcpy source and destination overlap", &I); 313 break; 314 } 315 case Intrinsic::memmove: { 316 MemMoveInst *MMI = cast<MemMoveInst>(&I); 317 visitMemoryReference(I, MemoryLocation::getForDest(MMI), 318 MMI->getDestAlign(), nullptr, MemRef::Write); 319 visitMemoryReference(I, MemoryLocation::getForSource(MMI), 320 MMI->getSourceAlign(), nullptr, MemRef::Read); 321 break; 322 } 323 case Intrinsic::memset: { 324 MemSetInst *MSI = cast<MemSetInst>(&I); 325 visitMemoryReference(I, MemoryLocation::getForDest(MSI), 326 MSI->getDestAlign(), nullptr, MemRef::Write); 327 break; 328 } 329 case Intrinsic::memset_inline: { 330 MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I); 331 visitMemoryReference(I, MemoryLocation::getForDest(MSII), 332 MSII->getDestAlign(), nullptr, MemRef::Write); 333 break; 334 } 335 336 case Intrinsic::vastart: 337 // vastart in non-varargs function is rejected by the verifier 338 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), 339 std::nullopt, nullptr, MemRef::Read | MemRef::Write); 340 break; 341 case Intrinsic::vacopy: 342 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), 343 std::nullopt, nullptr, MemRef::Write); 344 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI), 345 std::nullopt, nullptr, MemRef::Read); 346 break; 347 case Intrinsic::vaend: 348 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), 349 std::nullopt, nullptr, MemRef::Read | MemRef::Write); 350 break; 351 352 case Intrinsic::stackrestore: 353 // Stackrestore doesn't read or write memory, but it sets the 354 // stack pointer, which the compiler may read from or write to 355 // at any time, so check it for both readability and writeability. 356 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), 357 std::nullopt, nullptr, MemRef::Read | MemRef::Write); 358 break; 359 case Intrinsic::get_active_lane_mask: 360 if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1))) 361 Check(!TripCount->isZero(), 362 "get_active_lane_mask: operand #2 " 363 "must be greater than 0", 364 &I); 365 break; 366 } 367 } 368 369 void Lint::visitReturnInst(ReturnInst &I) { 370 Function *F = I.getParent()->getParent(); 371 Check(!F->doesNotReturn(), 372 "Unusual: Return statement in function with noreturn attribute", &I); 373 374 if (Value *V = I.getReturnValue()) { 375 Value *Obj = findValue(V, /*OffsetOk=*/true); 376 Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); 377 } 378 } 379 380 // TODO: Check that the reference is in bounds. 381 // TODO: Check readnone/readonly function attributes. 382 void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc, 383 MaybeAlign Align, Type *Ty, unsigned Flags) { 384 // If no memory is being referenced, it doesn't matter if the pointer 385 // is valid. 386 if (Loc.Size.isZero()) 387 return; 388 389 Value *Ptr = const_cast<Value *>(Loc.Ptr); 390 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); 391 Check(!isa<ConstantPointerNull>(UnderlyingObject), 392 "Undefined behavior: Null pointer dereference", &I); 393 Check(!isa<UndefValue>(UnderlyingObject), 394 "Undefined behavior: Undef pointer dereference", &I); 395 Check(!isa<ConstantInt>(UnderlyingObject) || 396 !cast<ConstantInt>(UnderlyingObject)->isMinusOne(), 397 "Unusual: All-ones pointer dereference", &I); 398 Check(!isa<ConstantInt>(UnderlyingObject) || 399 !cast<ConstantInt>(UnderlyingObject)->isOne(), 400 "Unusual: Address one pointer dereference", &I); 401 402 if (Flags & MemRef::Write) { 403 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) 404 Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory", 405 &I); 406 Check(!isa<Function>(UnderlyingObject) && 407 !isa<BlockAddress>(UnderlyingObject), 408 "Undefined behavior: Write to text section", &I); 409 } 410 if (Flags & MemRef::Read) { 411 Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", 412 &I); 413 Check(!isa<BlockAddress>(UnderlyingObject), 414 "Undefined behavior: Load from block address", &I); 415 } 416 if (Flags & MemRef::Callee) { 417 Check(!isa<BlockAddress>(UnderlyingObject), 418 "Undefined behavior: Call to block address", &I); 419 } 420 if (Flags & MemRef::Branchee) { 421 Check(!isa<Constant>(UnderlyingObject) || 422 isa<BlockAddress>(UnderlyingObject), 423 "Undefined behavior: Branch to non-blockaddress", &I); 424 } 425 426 // Check for buffer overflows and misalignment. 427 // Only handles memory references that read/write something simple like an 428 // alloca instruction or a global variable. 429 int64_t Offset = 0; 430 if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { 431 // OK, so the access is to a constant offset from Ptr. Check that Ptr is 432 // something we can handle and if so extract the size of this base object 433 // along with its alignment. 434 uint64_t BaseSize = MemoryLocation::UnknownSize; 435 MaybeAlign BaseAlign; 436 437 if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 438 Type *ATy = AI->getAllocatedType(); 439 if (!AI->isArrayAllocation() && ATy->isSized()) 440 BaseSize = DL->getTypeAllocSize(ATy); 441 BaseAlign = AI->getAlign(); 442 } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 443 // If the global may be defined differently in another compilation unit 444 // then don't warn about funky memory accesses. 445 if (GV->hasDefinitiveInitializer()) { 446 Type *GTy = GV->getValueType(); 447 if (GTy->isSized()) 448 BaseSize = DL->getTypeAllocSize(GTy); 449 BaseAlign = GV->getAlign(); 450 if (!BaseAlign && GTy->isSized()) 451 BaseAlign = DL->getABITypeAlign(GTy); 452 } 453 } 454 455 // Accesses from before the start or after the end of the object are not 456 // defined. 457 Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize || 458 (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize), 459 "Undefined behavior: Buffer overflow", &I); 460 461 // Accesses that say that the memory is more aligned than it is are not 462 // defined. 463 if (!Align && Ty && Ty->isSized()) 464 Align = DL->getABITypeAlign(Ty); 465 if (BaseAlign && Align) 466 Check(*Align <= commonAlignment(*BaseAlign, Offset), 467 "Undefined behavior: Memory reference address is misaligned", &I); 468 } 469 } 470 471 void Lint::visitLoadInst(LoadInst &I) { 472 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(), 473 MemRef::Read); 474 } 475 476 void Lint::visitStoreInst(StoreInst &I) { 477 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), 478 I.getOperand(0)->getType(), MemRef::Write); 479 } 480 481 void Lint::visitXor(BinaryOperator &I) { 482 Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), 483 "Undefined result: xor(undef, undef)", &I); 484 } 485 486 void Lint::visitSub(BinaryOperator &I) { 487 Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), 488 "Undefined result: sub(undef, undef)", &I); 489 } 490 491 void Lint::visitLShr(BinaryOperator &I) { 492 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), 493 /*OffsetOk=*/false))) 494 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 495 "Undefined result: Shift count out of range", &I); 496 } 497 498 void Lint::visitAShr(BinaryOperator &I) { 499 if (ConstantInt *CI = 500 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) 501 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 502 "Undefined result: Shift count out of range", &I); 503 } 504 505 void Lint::visitShl(BinaryOperator &I) { 506 if (ConstantInt *CI = 507 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) 508 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 509 "Undefined result: Shift count out of range", &I); 510 } 511 512 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, 513 AssumptionCache *AC) { 514 // Assume undef could be zero. 515 if (isa<UndefValue>(V)) 516 return true; 517 518 VectorType *VecTy = dyn_cast<VectorType>(V->getType()); 519 if (!VecTy) { 520 KnownBits Known = 521 computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT); 522 return Known.isZero(); 523 } 524 525 // Per-component check doesn't work with zeroinitializer 526 Constant *C = dyn_cast<Constant>(V); 527 if (!C) 528 return false; 529 530 if (C->isZeroValue()) 531 return true; 532 533 // For a vector, KnownZero will only be true if all values are zero, so check 534 // this per component 535 for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements(); 536 I != N; ++I) { 537 Constant *Elem = C->getAggregateElement(I); 538 if (isa<UndefValue>(Elem)) 539 return true; 540 541 KnownBits Known = computeKnownBits(Elem, DL); 542 if (Known.isZero()) 543 return true; 544 } 545 546 return false; 547 } 548 549 void Lint::visitSDiv(BinaryOperator &I) { 550 Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC), 551 "Undefined behavior: Division by zero", &I); 552 } 553 554 void Lint::visitUDiv(BinaryOperator &I) { 555 Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC), 556 "Undefined behavior: Division by zero", &I); 557 } 558 559 void Lint::visitSRem(BinaryOperator &I) { 560 Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC), 561 "Undefined behavior: Division by zero", &I); 562 } 563 564 void Lint::visitURem(BinaryOperator &I) { 565 Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC), 566 "Undefined behavior: Division by zero", &I); 567 } 568 569 void Lint::visitAllocaInst(AllocaInst &I) { 570 if (isa<ConstantInt>(I.getArraySize())) 571 // This isn't undefined behavior, it's just an obvious pessimization. 572 Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), 573 "Pessimization: Static alloca outside of entry block", &I); 574 575 // TODO: Check for an unusual size (MSB set?) 576 } 577 578 void Lint::visitVAArgInst(VAArgInst &I) { 579 visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr, 580 MemRef::Read | MemRef::Write); 581 } 582 583 void Lint::visitIndirectBrInst(IndirectBrInst &I) { 584 visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()), 585 std::nullopt, nullptr, MemRef::Branchee); 586 587 Check(I.getNumDestinations() != 0, 588 "Undefined behavior: indirectbr with no destinations", &I); 589 } 590 591 void Lint::visitExtractElementInst(ExtractElementInst &I) { 592 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), 593 /*OffsetOk=*/false))) 594 Check( 595 CI->getValue().ult( 596 cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()), 597 "Undefined result: extractelement index out of range", &I); 598 } 599 600 void Lint::visitInsertElementInst(InsertElementInst &I) { 601 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), 602 /*OffsetOk=*/false))) 603 Check(CI->getValue().ult( 604 cast<FixedVectorType>(I.getType())->getNumElements()), 605 "Undefined result: insertelement index out of range", &I); 606 } 607 608 void Lint::visitUnreachableInst(UnreachableInst &I) { 609 // This isn't undefined behavior, it's merely suspicious. 610 Check(&I == &I.getParent()->front() || 611 std::prev(I.getIterator())->mayHaveSideEffects(), 612 "Unusual: unreachable immediately preceded by instruction without " 613 "side effects", 614 &I); 615 } 616 617 /// findValue - Look through bitcasts and simple memory reference patterns 618 /// to identify an equivalent, but more informative, value. If OffsetOk 619 /// is true, look through getelementptrs with non-zero offsets too. 620 /// 621 /// Most analysis passes don't require this logic, because instcombine 622 /// will simplify most of these kinds of things away. But it's a goal of 623 /// this Lint pass to be useful even on non-optimized IR. 624 Value *Lint::findValue(Value *V, bool OffsetOk) const { 625 SmallPtrSet<Value *, 4> Visited; 626 return findValueImpl(V, OffsetOk, Visited); 627 } 628 629 /// findValueImpl - Implementation helper for findValue. 630 Value *Lint::findValueImpl(Value *V, bool OffsetOk, 631 SmallPtrSetImpl<Value *> &Visited) const { 632 // Detect self-referential values. 633 if (!Visited.insert(V).second) 634 return PoisonValue::get(V->getType()); 635 636 // TODO: Look through sext or zext cast, when the result is known to 637 // be interpreted as signed or unsigned, respectively. 638 // TODO: Look through eliminable cast pairs. 639 // TODO: Look through calls with unique return values. 640 // TODO: Look through vector insert/extract/shuffle. 641 V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts(); 642 if (LoadInst *L = dyn_cast<LoadInst>(V)) { 643 BasicBlock::iterator BBI = L->getIterator(); 644 BasicBlock *BB = L->getParent(); 645 SmallPtrSet<BasicBlock *, 4> VisitedBlocks; 646 BatchAAResults BatchAA(*AA); 647 for (;;) { 648 if (!VisitedBlocks.insert(BB).second) 649 break; 650 if (Value *U = 651 FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, &BatchAA)) 652 return findValueImpl(U, OffsetOk, Visited); 653 if (BBI != BB->begin()) 654 break; 655 BB = BB->getUniquePredecessor(); 656 if (!BB) 657 break; 658 BBI = BB->end(); 659 } 660 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 661 if (Value *W = PN->hasConstantValue()) 662 return findValueImpl(W, OffsetOk, Visited); 663 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 664 if (CI->isNoopCast(*DL)) 665 return findValueImpl(CI->getOperand(0), OffsetOk, Visited); 666 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { 667 if (Value *W = 668 FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices())) 669 if (W != V) 670 return findValueImpl(W, OffsetOk, Visited); 671 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 672 // Same as above, but for ConstantExpr instead of Instruction. 673 if (Instruction::isCast(CE->getOpcode())) { 674 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), 675 CE->getOperand(0)->getType(), CE->getType(), 676 *DL)) 677 return findValueImpl(CE->getOperand(0), OffsetOk, Visited); 678 } 679 } 680 681 // As a last resort, try SimplifyInstruction or constant folding. 682 if (Instruction *Inst = dyn_cast<Instruction>(V)) { 683 if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC})) 684 return findValueImpl(W, OffsetOk, Visited); 685 } else if (auto *C = dyn_cast<Constant>(V)) { 686 Value *W = ConstantFoldConstant(C, *DL, TLI); 687 if (W != V) 688 return findValueImpl(W, OffsetOk, Visited); 689 } 690 691 return V; 692 } 693 694 PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) { 695 auto *Mod = F.getParent(); 696 auto *DL = &F.getDataLayout(); 697 auto *AA = &AM.getResult<AAManager>(F); 698 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 699 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 700 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 701 Lint L(Mod, DL, AA, AC, DT, TLI); 702 L.visit(F); 703 dbgs() << L.MessagesStr.str(); 704 if (LintAbortOnError && !L.MessagesStr.str().empty()) 705 report_fatal_error(Twine("Linter found errors, aborting. (enabled by --") + 706 LintAbortOnErrorArgName + ")", 707 false); 708 return PreservedAnalyses::all(); 709 } 710 711 //===----------------------------------------------------------------------===// 712 // Implement the public interfaces to this file... 713 //===----------------------------------------------------------------------===// 714 715 /// lintFunction - Check a function for errors, printing messages on stderr. 716 /// 717 void llvm::lintFunction(const Function &f) { 718 Function &F = const_cast<Function &>(f); 719 assert(!F.isDeclaration() && "Cannot lint external functions"); 720 721 FunctionAnalysisManager FAM; 722 FAM.registerPass([&] { return TargetLibraryAnalysis(); }); 723 FAM.registerPass([&] { return DominatorTreeAnalysis(); }); 724 FAM.registerPass([&] { return AssumptionAnalysis(); }); 725 FAM.registerPass([&] { 726 AAManager AA; 727 AA.registerFunctionAnalysis<BasicAA>(); 728 AA.registerFunctionAnalysis<ScopedNoAliasAA>(); 729 AA.registerFunctionAnalysis<TypeBasedAA>(); 730 return AA; 731 }); 732 LintPass().run(F, FAM); 733 } 734 735 /// lintModule - Check a module for errors, printing messages on stderr. 736 /// 737 void llvm::lintModule(const Module &M) { 738 for (const Function &F : M) { 739 if (!F.isDeclaration()) 740 lintFunction(F); 741 } 742 } 743