1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueLattice.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/AssemblyAnnotationWriter.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/FormattedStream.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <optional> 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "lazy-value-info" 46 47 // This is the number of worklist items we will process to try to discover an 48 // answer for a given value. 49 static const unsigned MaxProcessedPerValue = 500; 50 51 char LazyValueInfoWrapperPass::ID = 0; 52 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { 53 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 54 } 55 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 56 "Lazy Value Information Analysis", false, true) 57 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 58 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 59 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 60 "Lazy Value Information Analysis", false, true) 61 62 namespace llvm { 63 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 64 } 65 66 AnalysisKey LazyValueAnalysis::Key; 67 68 /// Returns true if this lattice value represents at most one possible value. 69 /// This is as precise as any lattice value can get while still representing 70 /// reachable code. 71 static bool hasSingleValue(const ValueLatticeElement &Val) { 72 if (Val.isConstantRange() && 73 Val.getConstantRange().isSingleElement()) 74 // Integer constants are single element ranges 75 return true; 76 if (Val.isConstant()) 77 // Non integer constants 78 return true; 79 return false; 80 } 81 82 /// Combine two sets of facts about the same value into a single set of 83 /// facts. Note that this method is not suitable for merging facts along 84 /// different paths in a CFG; that's what the mergeIn function is for. This 85 /// is for merging facts gathered about the same value at the same location 86 /// through two independent means. 87 /// Notes: 88 /// * This method does not promise to return the most precise possible lattice 89 /// value implied by A and B. It is allowed to return any lattice element 90 /// which is at least as strong as *either* A or B (unless our facts 91 /// conflict, see below). 92 /// * Due to unreachable code, the intersection of two lattice values could be 93 /// contradictory. If this happens, we return some valid lattice value so as 94 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 95 /// we do not make this guarantee. TODO: This would be a useful enhancement. 96 static ValueLatticeElement intersect(const ValueLatticeElement &A, 97 const ValueLatticeElement &B) { 98 // Undefined is the strongest state. It means the value is known to be along 99 // an unreachable path. 100 if (A.isUnknown()) 101 return A; 102 if (B.isUnknown()) 103 return B; 104 105 // If we gave up for one, but got a useable fact from the other, use it. 106 if (A.isOverdefined()) 107 return B; 108 if (B.isOverdefined()) 109 return A; 110 111 // Can't get any more precise than constants. 112 if (hasSingleValue(A)) 113 return A; 114 if (hasSingleValue(B)) 115 return B; 116 117 // Could be either constant range or not constant here. 118 if (!A.isConstantRange() || !B.isConstantRange()) { 119 // TODO: Arbitrary choice, could be improved 120 return A; 121 } 122 123 // Intersect two constant ranges 124 ConstantRange Range = 125 A.getConstantRange().intersectWith(B.getConstantRange()); 126 // Note: An empty range is implicitly converted to unknown or undef depending 127 // on MayIncludeUndef internally. 128 return ValueLatticeElement::getRange( 129 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() || 130 B.isConstantRangeIncludingUndef()); 131 } 132 133 //===----------------------------------------------------------------------===// 134 // LazyValueInfoCache Decl 135 //===----------------------------------------------------------------------===// 136 137 namespace { 138 /// A callback value handle updates the cache when values are erased. 139 class LazyValueInfoCache; 140 struct LVIValueHandle final : public CallbackVH { 141 LazyValueInfoCache *Parent; 142 143 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) 144 : CallbackVH(V), Parent(P) { } 145 146 void deleted() override; 147 void allUsesReplacedWith(Value *V) override { 148 deleted(); 149 } 150 }; 151 } // end anonymous namespace 152 153 namespace { 154 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; 155 156 /// This is the cache kept by LazyValueInfo which 157 /// maintains information about queries across the clients' queries. 158 class LazyValueInfoCache { 159 /// This is all of the cached information for one basic block. It contains 160 /// the per-value lattice elements, as well as a separate set for 161 /// overdefined values to reduce memory usage. Additionally pointers 162 /// dereferenced in the block are cached for nullability queries. 163 struct BlockCacheEntry { 164 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; 165 SmallDenseSet<AssertingVH<Value>, 4> OverDefined; 166 // std::nullopt indicates that the nonnull pointers for this basic block 167 // block have not been computed yet. 168 std::optional<NonNullPointerSet> NonNullPointers; 169 }; 170 171 /// Cached information per basic block. 172 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> 173 BlockCache; 174 /// Set of value handles used to erase values from the cache on deletion. 175 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; 176 177 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { 178 auto It = BlockCache.find_as(BB); 179 if (It == BlockCache.end()) 180 return nullptr; 181 return It->second.get(); 182 } 183 184 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { 185 auto It = BlockCache.find_as(BB); 186 if (It == BlockCache.end()) 187 It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) 188 .first; 189 190 return It->second.get(); 191 } 192 193 void addValueHandle(Value *Val) { 194 auto HandleIt = ValueHandles.find_as(Val); 195 if (HandleIt == ValueHandles.end()) 196 ValueHandles.insert({ Val, this }); 197 } 198 199 public: 200 void insertResult(Value *Val, BasicBlock *BB, 201 const ValueLatticeElement &Result) { 202 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 203 204 // Insert over-defined values into their own cache to reduce memory 205 // overhead. 206 if (Result.isOverdefined()) 207 Entry->OverDefined.insert(Val); 208 else 209 Entry->LatticeElements.insert({ Val, Result }); 210 211 addValueHandle(Val); 212 } 213 214 std::optional<ValueLatticeElement> 215 getCachedValueInfo(Value *V, BasicBlock *BB) const { 216 const BlockCacheEntry *Entry = getBlockEntry(BB); 217 if (!Entry) 218 return std::nullopt; 219 220 if (Entry->OverDefined.count(V)) 221 return ValueLatticeElement::getOverdefined(); 222 223 auto LatticeIt = Entry->LatticeElements.find_as(V); 224 if (LatticeIt == Entry->LatticeElements.end()) 225 return std::nullopt; 226 227 return LatticeIt->second; 228 } 229 230 bool isNonNullAtEndOfBlock( 231 Value *V, BasicBlock *BB, 232 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { 233 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 234 if (!Entry->NonNullPointers) { 235 Entry->NonNullPointers = InitFn(BB); 236 for (Value *V : *Entry->NonNullPointers) 237 addValueHandle(V); 238 } 239 240 return Entry->NonNullPointers->count(V); 241 } 242 243 /// clear - Empty the cache. 244 void clear() { 245 BlockCache.clear(); 246 ValueHandles.clear(); 247 } 248 249 /// Inform the cache that a given value has been deleted. 250 void eraseValue(Value *V); 251 252 /// This is part of the update interface to inform the cache 253 /// that a block has been deleted. 254 void eraseBlock(BasicBlock *BB); 255 256 /// Updates the cache to remove any influence an overdefined value in 257 /// OldSucc might have (unless also overdefined in NewSucc). This just 258 /// flushes elements from the cache and does not add any. 259 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 260 }; 261 } 262 263 void LazyValueInfoCache::eraseValue(Value *V) { 264 for (auto &Pair : BlockCache) { 265 Pair.second->LatticeElements.erase(V); 266 Pair.second->OverDefined.erase(V); 267 if (Pair.second->NonNullPointers) 268 Pair.second->NonNullPointers->erase(V); 269 } 270 271 auto HandleIt = ValueHandles.find_as(V); 272 if (HandleIt != ValueHandles.end()) 273 ValueHandles.erase(HandleIt); 274 } 275 276 void LVIValueHandle::deleted() { 277 // This erasure deallocates *this, so it MUST happen after we're done 278 // using any and all members of *this. 279 Parent->eraseValue(*this); 280 } 281 282 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 283 BlockCache.erase(BB); 284 } 285 286 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 287 BasicBlock *NewSucc) { 288 // When an edge in the graph has been threaded, values that we could not 289 // determine a value for before (i.e. were marked overdefined) may be 290 // possible to solve now. We do NOT try to proactively update these values. 291 // Instead, we clear their entries from the cache, and allow lazy updating to 292 // recompute them when needed. 293 294 // The updating process is fairly simple: we need to drop cached info 295 // for all values that were marked overdefined in OldSucc, and for those same 296 // values in any successor of OldSucc (except NewSucc) in which they were 297 // also marked overdefined. 298 std::vector<BasicBlock*> worklist; 299 worklist.push_back(OldSucc); 300 301 const BlockCacheEntry *Entry = getBlockEntry(OldSucc); 302 if (!Entry || Entry->OverDefined.empty()) 303 return; // Nothing to process here. 304 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), 305 Entry->OverDefined.end()); 306 307 // Use a worklist to perform a depth-first search of OldSucc's successors. 308 // NOTE: We do not need a visited list since any blocks we have already 309 // visited will have had their overdefined markers cleared already, and we 310 // thus won't loop to their successors. 311 while (!worklist.empty()) { 312 BasicBlock *ToUpdate = worklist.back(); 313 worklist.pop_back(); 314 315 // Skip blocks only accessible through NewSucc. 316 if (ToUpdate == NewSucc) continue; 317 318 // If a value was marked overdefined in OldSucc, and is here too... 319 auto OI = BlockCache.find_as(ToUpdate); 320 if (OI == BlockCache.end() || OI->second->OverDefined.empty()) 321 continue; 322 auto &ValueSet = OI->second->OverDefined; 323 324 bool changed = false; 325 for (Value *V : ValsToClear) { 326 if (!ValueSet.erase(V)) 327 continue; 328 329 // If we removed anything, then we potentially need to update 330 // blocks successors too. 331 changed = true; 332 } 333 334 if (!changed) continue; 335 336 llvm::append_range(worklist, successors(ToUpdate)); 337 } 338 } 339 340 namespace llvm { 341 namespace { 342 /// An assembly annotator class to print LazyValueCache information in 343 /// comments. 344 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 345 LazyValueInfoImpl *LVIImpl; 346 // While analyzing which blocks we can solve values for, we need the dominator 347 // information. 348 DominatorTree &DT; 349 350 public: 351 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 352 : LVIImpl(L), DT(DTree) {} 353 354 void emitBasicBlockStartAnnot(const BasicBlock *BB, 355 formatted_raw_ostream &OS) override; 356 357 void emitInstructionAnnot(const Instruction *I, 358 formatted_raw_ostream &OS) override; 359 }; 360 } // namespace 361 // The actual implementation of the lazy analysis and update. Note that the 362 // inheritance from LazyValueInfoCache is intended to be temporary while 363 // splitting the code and then transitioning to a has-a relationship. 364 class LazyValueInfoImpl { 365 366 /// Cached results from previous queries 367 LazyValueInfoCache TheCache; 368 369 /// This stack holds the state of the value solver during a query. 370 /// It basically emulates the callstack of the naive 371 /// recursive value lookup process. 372 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 373 374 /// Keeps track of which block-value pairs are in BlockValueStack. 375 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 376 377 /// Push BV onto BlockValueStack unless it's already in there. 378 /// Returns true on success. 379 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 380 if (!BlockValueSet.insert(BV).second) 381 return false; // It's already in the stack. 382 383 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 384 << BV.first->getName() << "\n"); 385 BlockValueStack.push_back(BV); 386 return true; 387 } 388 389 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 390 const DataLayout &DL; ///< A mandatory DataLayout 391 392 /// Declaration of the llvm.experimental.guard() intrinsic, 393 /// if it exists in the module. 394 Function *GuardDecl; 395 396 std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB, 397 Instruction *CxtI); 398 std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, 399 BasicBlock *T, 400 Instruction *CxtI = nullptr); 401 402 // These methods process one work item and may add more. A false value 403 // returned means that the work item was not completely processed and must 404 // be revisited after going through the new items. 405 bool solveBlockValue(Value *Val, BasicBlock *BB); 406 std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, 407 BasicBlock *BB); 408 std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, 409 BasicBlock *BB); 410 std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, 411 BasicBlock *BB); 412 std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, 413 BasicBlock *BB); 414 std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, 415 BasicBlock *BB); 416 std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( 417 Instruction *I, BasicBlock *BB, 418 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> 419 OpFn); 420 std::optional<ValueLatticeElement> 421 solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB); 422 std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, 423 BasicBlock *BB); 424 std::optional<ValueLatticeElement> 425 solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB); 426 std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, 427 BasicBlock *BB); 428 std::optional<ValueLatticeElement> 429 solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB); 430 bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); 431 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 432 ValueLatticeElement &BBLV, 433 Instruction *BBI); 434 435 void solve(); 436 437 // For the following methods, if UseBlockValue is true, the function may 438 // push additional values to the worklist and return nullopt. If 439 // UseBlockValue is false, it will never return nullopt. 440 441 std::optional<ValueLatticeElement> 442 getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, Value *RHS, 443 const APInt &Offset, Instruction *CxtI, 444 bool UseBlockValue); 445 446 std::optional<ValueLatticeElement> 447 getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest, 448 bool UseBlockValue); 449 450 std::optional<ValueLatticeElement> 451 getValueFromCondition(Value *Val, Value *Cond, bool IsTrueDest, 452 bool UseBlockValue, unsigned Depth = 0); 453 454 std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, 455 BasicBlock *BBFrom, 456 BasicBlock *BBTo, 457 bool UseBlockValue); 458 459 public: 460 /// This is the query interface to determine the lattice value for the 461 /// specified Value* at the context instruction (if specified) or at the 462 /// start of the block. 463 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 464 Instruction *CxtI = nullptr); 465 466 /// This is the query interface to determine the lattice value for the 467 /// specified Value* at the specified instruction using only information 468 /// from assumes/guards and range metadata. Unlike getValueInBlock(), no 469 /// recursive query is performed. 470 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 471 472 /// This is the query interface to determine the lattice 473 /// value for the specified Value* that is true on the specified edge. 474 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 475 BasicBlock *ToBB, 476 Instruction *CxtI = nullptr); 477 478 ValueLatticeElement getValueAtUse(const Use &U); 479 480 /// Complete flush all previously computed values 481 void clear() { 482 TheCache.clear(); 483 } 484 485 /// Printing the LazyValueInfo Analysis. 486 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 487 LazyValueInfoAnnotatedWriter Writer(this, DTree); 488 F.print(OS, &Writer); 489 } 490 491 /// This is part of the update interface to remove information related to this 492 /// value from the cache. 493 void forgetValue(Value *V) { TheCache.eraseValue(V); } 494 495 /// This is part of the update interface to inform the cache 496 /// that a block has been deleted. 497 void eraseBlock(BasicBlock *BB) { 498 TheCache.eraseBlock(BB); 499 } 500 501 /// This is the update interface to inform the cache that an edge from 502 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 503 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 504 505 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 506 Function *GuardDecl) 507 : AC(AC), DL(DL), GuardDecl(GuardDecl) {} 508 }; 509 } // namespace llvm 510 511 void LazyValueInfoImpl::solve() { 512 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 513 BlockValueStack.begin(), BlockValueStack.end()); 514 515 unsigned processedCount = 0; 516 while (!BlockValueStack.empty()) { 517 processedCount++; 518 // Abort if we have to process too many values to get a result for this one. 519 // Because of the design of the overdefined cache currently being per-block 520 // to avoid naming-related issues (IE it wants to try to give different 521 // results for the same name in different blocks), overdefined results don't 522 // get cached globally, which in turn means we will often try to rediscover 523 // the same overdefined result again and again. Once something like 524 // PredicateInfo is used in LVI or CVP, we should be able to make the 525 // overdefined cache global, and remove this throttle. 526 if (processedCount > MaxProcessedPerValue) { 527 LLVM_DEBUG( 528 dbgs() << "Giving up on stack because we are getting too deep\n"); 529 // Fill in the original values 530 while (!StartingStack.empty()) { 531 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 532 TheCache.insertResult(e.second, e.first, 533 ValueLatticeElement::getOverdefined()); 534 StartingStack.pop_back(); 535 } 536 BlockValueSet.clear(); 537 BlockValueStack.clear(); 538 return; 539 } 540 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 541 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 542 543 if (solveBlockValue(e.second, e.first)) { 544 // The work item was completely processed. 545 assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); 546 #ifndef NDEBUG 547 std::optional<ValueLatticeElement> BBLV = 548 TheCache.getCachedValueInfo(e.second, e.first); 549 assert(BBLV && "Result should be in cache!"); 550 LLVM_DEBUG( 551 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 552 << *BBLV << "\n"); 553 #endif 554 555 BlockValueStack.pop_back(); 556 BlockValueSet.erase(e); 557 } else { 558 // More work needs to be done before revisiting. 559 assert(BlockValueStack.back() != e && "Stack should have been pushed!"); 560 } 561 } 562 } 563 564 std::optional<ValueLatticeElement> 565 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB, 566 Instruction *CxtI) { 567 // If already a constant, there is nothing to compute. 568 if (Constant *VC = dyn_cast<Constant>(Val)) 569 return ValueLatticeElement::get(VC); 570 571 if (std::optional<ValueLatticeElement> OptLatticeVal = 572 TheCache.getCachedValueInfo(Val, BB)) { 573 intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI); 574 return OptLatticeVal; 575 } 576 577 // We have hit a cycle, assume overdefined. 578 if (!pushBlockValue({ BB, Val })) 579 return ValueLatticeElement::getOverdefined(); 580 581 // Yet to be resolved. 582 return std::nullopt; 583 } 584 585 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 586 switch (BBI->getOpcode()) { 587 default: break; 588 case Instruction::Load: 589 case Instruction::Call: 590 case Instruction::Invoke: 591 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 592 if (isa<IntegerType>(BBI->getType())) { 593 return ValueLatticeElement::getRange( 594 getConstantRangeFromMetadata(*Ranges)); 595 } 596 break; 597 }; 598 // Nothing known - will be intersected with other facts 599 return ValueLatticeElement::getOverdefined(); 600 } 601 602 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 603 assert(!isa<Constant>(Val) && "Value should not be constant"); 604 assert(!TheCache.getCachedValueInfo(Val, BB) && 605 "Value should not be in cache"); 606 607 // Hold off inserting this value into the Cache in case we have to return 608 // false and come back later. 609 std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); 610 if (!Res) 611 // Work pushed, will revisit 612 return false; 613 614 TheCache.insertResult(Val, BB, *Res); 615 return true; 616 } 617 618 std::optional<ValueLatticeElement> 619 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) { 620 Instruction *BBI = dyn_cast<Instruction>(Val); 621 if (!BBI || BBI->getParent() != BB) 622 return solveBlockValueNonLocal(Val, BB); 623 624 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 625 return solveBlockValuePHINode(PN, BB); 626 627 if (auto *SI = dyn_cast<SelectInst>(BBI)) 628 return solveBlockValueSelect(SI, BB); 629 630 // If this value is a nonnull pointer, record it's range and bailout. Note 631 // that for all other pointer typed values, we terminate the search at the 632 // definition. We could easily extend this to look through geps, bitcasts, 633 // and the like to prove non-nullness, but it's not clear that's worth it 634 // compile time wise. The context-insensitive value walk done inside 635 // isKnownNonZero gets most of the profitable cases at much less expense. 636 // This does mean that we have a sensitivity to where the defining 637 // instruction is placed, even if it could legally be hoisted much higher. 638 // That is unfortunate. 639 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 640 if (PT && isKnownNonZero(BBI, DL)) 641 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 642 643 if (BBI->getType()->isIntegerTy()) { 644 if (auto *CI = dyn_cast<CastInst>(BBI)) 645 return solveBlockValueCast(CI, BB); 646 647 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 648 return solveBlockValueBinaryOp(BO, BB); 649 650 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 651 return solveBlockValueExtractValue(EVI, BB); 652 653 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 654 return solveBlockValueIntrinsic(II, BB); 655 } 656 657 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 658 << "' - unknown inst def found.\n"); 659 return getFromRangeMetadata(BBI); 660 } 661 662 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { 663 // TODO: Use NullPointerIsDefined instead. 664 if (Ptr->getType()->getPointerAddressSpace() == 0) 665 PtrSet.insert(getUnderlyingObject(Ptr)); 666 } 667 668 static void AddNonNullPointersByInstruction( 669 Instruction *I, NonNullPointerSet &PtrSet) { 670 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 671 AddNonNullPointer(L->getPointerOperand(), PtrSet); 672 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { 673 AddNonNullPointer(S->getPointerOperand(), PtrSet); 674 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 675 if (MI->isVolatile()) return; 676 677 // FIXME: check whether it has a valuerange that excludes zero? 678 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 679 if (!Len || Len->isZero()) return; 680 681 AddNonNullPointer(MI->getRawDest(), PtrSet); 682 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 683 AddNonNullPointer(MTI->getRawSource(), PtrSet); 684 } 685 } 686 687 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { 688 if (NullPointerIsDefined(BB->getParent(), 689 Val->getType()->getPointerAddressSpace())) 690 return false; 691 692 Val = Val->stripInBoundsOffsets(); 693 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { 694 NonNullPointerSet NonNullPointers; 695 for (Instruction &I : *BB) 696 AddNonNullPointersByInstruction(&I, NonNullPointers); 697 return NonNullPointers; 698 }); 699 } 700 701 std::optional<ValueLatticeElement> 702 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) { 703 ValueLatticeElement Result; // Start Undefined. 704 705 // If this is the entry block, we must be asking about an argument. The 706 // value is overdefined. 707 if (BB->isEntryBlock()) { 708 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 709 return ValueLatticeElement::getOverdefined(); 710 } 711 712 // Loop over all of our predecessors, merging what we know from them into 713 // result. If we encounter an unexplored predecessor, we eagerly explore it 714 // in a depth first manner. In practice, this has the effect of discovering 715 // paths we can't analyze eagerly without spending compile times analyzing 716 // other paths. This heuristic benefits from the fact that predecessors are 717 // frequently arranged such that dominating ones come first and we quickly 718 // find a path to function entry. TODO: We should consider explicitly 719 // canonicalizing to make this true rather than relying on this happy 720 // accident. 721 for (BasicBlock *Pred : predecessors(BB)) { 722 std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); 723 if (!EdgeResult) 724 // Explore that input, then return here 725 return std::nullopt; 726 727 Result.mergeIn(*EdgeResult); 728 729 // If we hit overdefined, exit early. The BlockVals entry is already set 730 // to overdefined. 731 if (Result.isOverdefined()) { 732 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 733 << "' - overdefined because of pred '" 734 << Pred->getName() << "' (non local).\n"); 735 return Result; 736 } 737 } 738 739 // Return the merged value, which is more precise than 'overdefined'. 740 assert(!Result.isOverdefined()); 741 return Result; 742 } 743 744 std::optional<ValueLatticeElement> 745 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) { 746 ValueLatticeElement Result; // Start Undefined. 747 748 // Loop over all of our predecessors, merging what we know from them into 749 // result. See the comment about the chosen traversal order in 750 // solveBlockValueNonLocal; the same reasoning applies here. 751 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 752 BasicBlock *PhiBB = PN->getIncomingBlock(i); 753 Value *PhiVal = PN->getIncomingValue(i); 754 // Note that we can provide PN as the context value to getEdgeValue, even 755 // though the results will be cached, because PN is the value being used as 756 // the cache key in the caller. 757 std::optional<ValueLatticeElement> EdgeResult = 758 getEdgeValue(PhiVal, PhiBB, BB, PN); 759 if (!EdgeResult) 760 // Explore that input, then return here 761 return std::nullopt; 762 763 Result.mergeIn(*EdgeResult); 764 765 // If we hit overdefined, exit early. The BlockVals entry is already set 766 // to overdefined. 767 if (Result.isOverdefined()) { 768 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 769 << "' - overdefined because of pred (local).\n"); 770 771 return Result; 772 } 773 } 774 775 // Return the merged value, which is more precise than 'overdefined'. 776 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 777 return Result; 778 } 779 780 // If we can determine a constraint on the value given conditions assumed by 781 // the program, intersect those constraints with BBLV 782 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 783 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 784 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 785 if (!BBI) 786 return; 787 788 BasicBlock *BB = BBI->getParent(); 789 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 790 if (!AssumeVH) 791 continue; 792 793 // Only check assumes in the block of the context instruction. Other 794 // assumes will have already been taken into account when the value was 795 // propagated from predecessor blocks. 796 auto *I = cast<CallInst>(AssumeVH); 797 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) 798 continue; 799 800 BBLV = intersect(BBLV, *getValueFromCondition(Val, I->getArgOperand(0), 801 /*IsTrueDest*/ true, 802 /*UseBlockValue*/ false)); 803 } 804 805 // If guards are not used in the module, don't spend time looking for them 806 if (GuardDecl && !GuardDecl->use_empty() && 807 BBI->getIterator() != BB->begin()) { 808 for (Instruction &I : 809 make_range(std::next(BBI->getIterator().getReverse()), BB->rend())) { 810 Value *Cond = nullptr; 811 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 812 BBLV = intersect(BBLV, 813 *getValueFromCondition(Val, Cond, /*IsTrueDest*/ true, 814 /*UseBlockValue*/ false)); 815 } 816 } 817 818 if (BBLV.isOverdefined()) { 819 // Check whether we're checking at the terminator, and the pointer has 820 // been dereferenced in this block. 821 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 822 if (PTy && BB->getTerminator() == BBI && 823 isNonNullAtEndOfBlock(Val, BB)) 824 BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 825 } 826 } 827 828 static ConstantRange toConstantRange(const ValueLatticeElement &Val, 829 Type *Ty, bool UndefAllowed = false) { 830 assert(Ty->isIntOrIntVectorTy() && "Must be integer type"); 831 if (Val.isConstantRange(UndefAllowed)) 832 return Val.getConstantRange(); 833 unsigned BW = Ty->getScalarSizeInBits(); 834 if (Val.isUnknown()) 835 return ConstantRange::getEmpty(BW); 836 return ConstantRange::getFull(BW); 837 } 838 839 std::optional<ValueLatticeElement> 840 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) { 841 // Recurse on our inputs if needed 842 std::optional<ValueLatticeElement> OptTrueVal = 843 getBlockValue(SI->getTrueValue(), BB, SI); 844 if (!OptTrueVal) 845 return std::nullopt; 846 ValueLatticeElement &TrueVal = *OptTrueVal; 847 848 std::optional<ValueLatticeElement> OptFalseVal = 849 getBlockValue(SI->getFalseValue(), BB, SI); 850 if (!OptFalseVal) 851 return std::nullopt; 852 ValueLatticeElement &FalseVal = *OptFalseVal; 853 854 if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) { 855 const ConstantRange &TrueCR = toConstantRange(TrueVal, SI->getType()); 856 const ConstantRange &FalseCR = toConstantRange(FalseVal, SI->getType()); 857 Value *LHS = nullptr; 858 Value *RHS = nullptr; 859 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 860 // Is this a min specifically of our two inputs? (Avoid the risk of 861 // ValueTracking getting smarter looking back past our immediate inputs.) 862 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 863 ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) || 864 (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) { 865 ConstantRange ResultCR = [&]() { 866 switch (SPR.Flavor) { 867 default: 868 llvm_unreachable("unexpected minmax type!"); 869 case SPF_SMIN: /// Signed minimum 870 return TrueCR.smin(FalseCR); 871 case SPF_UMIN: /// Unsigned minimum 872 return TrueCR.umin(FalseCR); 873 case SPF_SMAX: /// Signed maximum 874 return TrueCR.smax(FalseCR); 875 case SPF_UMAX: /// Unsigned maximum 876 return TrueCR.umax(FalseCR); 877 }; 878 }(); 879 return ValueLatticeElement::getRange( 880 ResultCR, TrueVal.isConstantRangeIncludingUndef() || 881 FalseVal.isConstantRangeIncludingUndef()); 882 } 883 884 if (SPR.Flavor == SPF_ABS) { 885 if (LHS == SI->getTrueValue()) 886 return ValueLatticeElement::getRange( 887 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); 888 if (LHS == SI->getFalseValue()) 889 return ValueLatticeElement::getRange( 890 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); 891 } 892 893 if (SPR.Flavor == SPF_NABS) { 894 ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth())); 895 if (LHS == SI->getTrueValue()) 896 return ValueLatticeElement::getRange( 897 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 898 if (LHS == SI->getFalseValue()) 899 return ValueLatticeElement::getRange( 900 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 901 } 902 } 903 904 // Can we constrain the facts about the true and false values by using the 905 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 906 // TODO: We could potentially refine an overdefined true value above. 907 Value *Cond = SI->getCondition(); 908 // If the value is undef, a different value may be chosen in 909 // the select condition. 910 if (isGuaranteedNotToBeUndef(Cond, AC)) { 911 TrueVal = 912 intersect(TrueVal, *getValueFromCondition(SI->getTrueValue(), Cond, 913 /*IsTrueDest*/ true, 914 /*UseBlockValue*/ false)); 915 FalseVal = 916 intersect(FalseVal, *getValueFromCondition(SI->getFalseValue(), Cond, 917 /*IsTrueDest*/ false, 918 /*UseBlockValue*/ false)); 919 } 920 921 ValueLatticeElement Result = TrueVal; 922 Result.mergeIn(FalseVal); 923 return Result; 924 } 925 926 std::optional<ConstantRange> 927 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) { 928 std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI); 929 if (!OptVal) 930 return std::nullopt; 931 return toConstantRange(*OptVal, V->getType()); 932 } 933 934 std::optional<ValueLatticeElement> 935 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) { 936 // Filter out casts we don't know how to reason about before attempting to 937 // recurse on our operand. This can cut a long search short if we know we're 938 // not going to be able to get any useful information anways. 939 switch (CI->getOpcode()) { 940 case Instruction::Trunc: 941 case Instruction::SExt: 942 case Instruction::ZExt: 943 break; 944 default: 945 // Unhandled instructions are overdefined. 946 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 947 << "' - overdefined (unknown cast).\n"); 948 return ValueLatticeElement::getOverdefined(); 949 } 950 951 // Figure out the range of the LHS. If that fails, we still apply the 952 // transfer rule on the full set since we may be able to locally infer 953 // interesting facts. 954 std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); 955 if (!LHSRes) 956 // More work to do before applying this transfer rule. 957 return std::nullopt; 958 const ConstantRange &LHSRange = *LHSRes; 959 960 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 961 962 // NOTE: We're currently limited by the set of operations that ConstantRange 963 // can evaluate symbolically. Enhancing that set will allows us to analyze 964 // more definitions. 965 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 966 ResultBitWidth)); 967 } 968 969 std::optional<ValueLatticeElement> 970 LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 971 Instruction *I, BasicBlock *BB, 972 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> 973 OpFn) { 974 // Figure out the ranges of the operands. If that fails, use a 975 // conservative range, but apply the transfer rule anyways. This 976 // lets us pick up facts from expressions like "and i32 (call i32 977 // @foo()), 32" 978 std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); 979 if (!LHSRes) 980 return std::nullopt; 981 982 std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); 983 if (!RHSRes) 984 return std::nullopt; 985 986 const ConstantRange &LHSRange = *LHSRes; 987 const ConstantRange &RHSRange = *RHSRes; 988 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 989 } 990 991 std::optional<ValueLatticeElement> 992 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) { 993 assert(BO->getOperand(0)->getType()->isSized() && 994 "all operands to binary operators are sized"); 995 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 996 unsigned NoWrapKind = 0; 997 if (OBO->hasNoUnsignedWrap()) 998 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; 999 if (OBO->hasNoSignedWrap()) 1000 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; 1001 1002 return solveBlockValueBinaryOpImpl( 1003 BO, BB, 1004 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 1005 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 1006 }); 1007 } 1008 1009 return solveBlockValueBinaryOpImpl( 1010 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 1011 return CR1.binaryOp(BO->getOpcode(), CR2); 1012 }); 1013 } 1014 1015 std::optional<ValueLatticeElement> 1016 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, 1017 BasicBlock *BB) { 1018 return solveBlockValueBinaryOpImpl( 1019 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 1020 return CR1.binaryOp(WO->getBinaryOp(), CR2); 1021 }); 1022 } 1023 1024 std::optional<ValueLatticeElement> 1025 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) { 1026 ValueLatticeElement MetadataVal = getFromRangeMetadata(II); 1027 if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1028 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1029 << "' - unknown intrinsic.\n"); 1030 return MetadataVal; 1031 } 1032 1033 SmallVector<ConstantRange, 2> OpRanges; 1034 for (Value *Op : II->args()) { 1035 std::optional<ConstantRange> Range = getRangeFor(Op, II, BB); 1036 if (!Range) 1037 return std::nullopt; 1038 OpRanges.push_back(*Range); 1039 } 1040 1041 return intersect(ValueLatticeElement::getRange(ConstantRange::intrinsic( 1042 II->getIntrinsicID(), OpRanges)), 1043 MetadataVal); 1044 } 1045 1046 std::optional<ValueLatticeElement> 1047 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI, 1048 BasicBlock *BB) { 1049 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1050 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1051 return solveBlockValueOverflowIntrinsic(WO, BB); 1052 1053 // Handle extractvalue of insertvalue to allow further simplification 1054 // based on replaced with.overflow intrinsics. 1055 if (Value *V = simplifyExtractValueInst( 1056 EVI->getAggregateOperand(), EVI->getIndices(), 1057 EVI->getModule()->getDataLayout())) 1058 return getBlockValue(V, BB, EVI); 1059 1060 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1061 << "' - overdefined (unknown extractvalue).\n"); 1062 return ValueLatticeElement::getOverdefined(); 1063 } 1064 1065 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, 1066 ICmpInst::Predicate Pred) { 1067 if (LHS == Val) 1068 return true; 1069 1070 // Handle range checking idiom produced by InstCombine. We will subtract the 1071 // offset from the allowed range for RHS in this case. 1072 const APInt *C; 1073 if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) { 1074 Offset = *C; 1075 return true; 1076 } 1077 1078 // Handle the symmetric case. This appears in saturation patterns like 1079 // (x == 16) ? 16 : (x + 1). 1080 if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) { 1081 Offset = -*C; 1082 return true; 1083 } 1084 1085 // If (x | y) < C, then (x < C) && (y < C). 1086 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && 1087 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) 1088 return true; 1089 1090 // If (x & y) > C, then (x > C) && (y > C). 1091 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && 1092 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) 1093 return true; 1094 1095 return false; 1096 } 1097 1098 /// Get value range for a "(Val + Offset) Pred RHS" condition. 1099 std::optional<ValueLatticeElement> 1100 LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, 1101 Value *RHS, 1102 const APInt &Offset, 1103 Instruction *CxtI, 1104 bool UseBlockValue) { 1105 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1106 /*isFullSet=*/true); 1107 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1108 RHSRange = ConstantRange(CI->getValue()); 1109 } else if (UseBlockValue) { 1110 std::optional<ValueLatticeElement> R = 1111 getBlockValue(RHS, CxtI->getParent(), CxtI); 1112 if (!R) 1113 return std::nullopt; 1114 RHSRange = toConstantRange(*R, RHS->getType()); 1115 } else if (Instruction *I = dyn_cast<Instruction>(RHS)) { 1116 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1117 RHSRange = getConstantRangeFromMetadata(*Ranges); 1118 } 1119 1120 ConstantRange TrueValues = 1121 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1122 return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); 1123 } 1124 1125 static std::optional<ConstantRange> 1126 getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS, 1127 function_ref<std::optional<ConstantRange>(const APInt &)> Fn) { 1128 bool Invert = false; 1129 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 1130 Pred = ICmpInst::getInversePredicate(Pred); 1131 Invert = true; 1132 } 1133 if (Pred == ICmpInst::ICMP_SLE) { 1134 Pred = ICmpInst::ICMP_SLT; 1135 if (RHS.isMaxSignedValue()) 1136 return std::nullopt; // Could also return full/empty here, if we wanted. 1137 ++RHS; 1138 } 1139 assert(Pred == ICmpInst::ICMP_SLT && "Must be signed predicate"); 1140 if (auto CR = Fn(RHS)) 1141 return Invert ? CR->inverse() : CR; 1142 return std::nullopt; 1143 } 1144 1145 std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition( 1146 Value *Val, ICmpInst *ICI, bool isTrueDest, bool UseBlockValue) { 1147 Value *LHS = ICI->getOperand(0); 1148 Value *RHS = ICI->getOperand(1); 1149 1150 // Get the predicate that must hold along the considered edge. 1151 CmpInst::Predicate EdgePred = 1152 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); 1153 1154 if (isa<Constant>(RHS)) { 1155 if (ICI->isEquality() && LHS == Val) { 1156 if (EdgePred == ICmpInst::ICMP_EQ) 1157 return ValueLatticeElement::get(cast<Constant>(RHS)); 1158 else if (!isa<UndefValue>(RHS)) 1159 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1160 } 1161 } 1162 1163 Type *Ty = Val->getType(); 1164 if (!Ty->isIntegerTy()) 1165 return ValueLatticeElement::getOverdefined(); 1166 1167 unsigned BitWidth = Ty->getScalarSizeInBits(); 1168 APInt Offset(BitWidth, 0); 1169 if (matchICmpOperand(Offset, LHS, Val, EdgePred)) 1170 return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset, ICI, 1171 UseBlockValue); 1172 1173 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); 1174 if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) 1175 return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset, ICI, 1176 UseBlockValue); 1177 1178 const APInt *Mask, *C; 1179 if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && 1180 match(RHS, m_APInt(C))) { 1181 // If (Val & Mask) == C then all the masked bits are known and we can 1182 // compute a value range based on that. 1183 if (EdgePred == ICmpInst::ICMP_EQ) { 1184 KnownBits Known; 1185 Known.Zero = ~*C & *Mask; 1186 Known.One = *C & *Mask; 1187 return ValueLatticeElement::getRange( 1188 ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); 1189 } 1190 // If (Val & Mask) != 0 then the value must be larger than the lowest set 1191 // bit of Mask. 1192 if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) { 1193 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1194 APInt::getOneBitSet(BitWidth, Mask->countr_zero()), 1195 APInt::getZero(BitWidth))); 1196 } 1197 } 1198 1199 // If (X urem Modulus) >= C, then X >= C. 1200 // If trunc X >= C, then X >= C. 1201 // TODO: An upper bound could be computed as well. 1202 if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()), 1203 m_Trunc(m_Specific(Val)))) && 1204 match(RHS, m_APInt(C))) { 1205 // Use the icmp region so we don't have to deal with different predicates. 1206 ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C); 1207 if (!CR.isEmptySet()) 1208 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1209 CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0))); 1210 } 1211 1212 // Recognize: 1213 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, C << ShAmtC 1214 // Preconditions: (C << ShAmtC) >> ShAmtC == C 1215 const APInt *ShAmtC; 1216 if (CmpInst::isSigned(EdgePred) && 1217 match(LHS, m_AShr(m_Specific(Val), m_APInt(ShAmtC))) && 1218 match(RHS, m_APInt(C))) { 1219 auto CR = getRangeViaSLT( 1220 EdgePred, *C, [&](const APInt &RHS) -> std::optional<ConstantRange> { 1221 APInt New = RHS << *ShAmtC; 1222 if ((New.ashr(*ShAmtC)) != RHS) 1223 return std::nullopt; 1224 return ConstantRange::getNonEmpty( 1225 APInt::getSignedMinValue(New.getBitWidth()), New); 1226 }); 1227 if (CR) 1228 return ValueLatticeElement::getRange(*CR); 1229 } 1230 1231 return ValueLatticeElement::getOverdefined(); 1232 } 1233 1234 // Handle conditions of the form 1235 // extractvalue(op.with.overflow(%x, C), 1). 1236 static ValueLatticeElement getValueFromOverflowCondition( 1237 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1238 // TODO: This only works with a constant RHS for now. We could also compute 1239 // the range of the RHS, but this doesn't fit into the current structure of 1240 // the edge value calculation. 1241 const APInt *C; 1242 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1243 return ValueLatticeElement::getOverdefined(); 1244 1245 // Calculate the possible values of %x for which no overflow occurs. 1246 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1247 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1248 1249 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1250 // constrained to it's inverse (all values that might cause overflow). 1251 if (IsTrueDest) 1252 NWR = NWR.inverse(); 1253 return ValueLatticeElement::getRange(NWR); 1254 } 1255 1256 std::optional<ValueLatticeElement> 1257 LazyValueInfoImpl::getValueFromCondition(Value *Val, Value *Cond, 1258 bool IsTrueDest, bool UseBlockValue, 1259 unsigned Depth) { 1260 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1261 return getValueFromICmpCondition(Val, ICI, IsTrueDest, UseBlockValue); 1262 1263 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1264 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1265 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1266 return getValueFromOverflowCondition(Val, WO, IsTrueDest); 1267 1268 if (++Depth == MaxAnalysisRecursionDepth) 1269 return ValueLatticeElement::getOverdefined(); 1270 1271 Value *N; 1272 if (match(Cond, m_Not(m_Value(N)))) 1273 return getValueFromCondition(Val, N, !IsTrueDest, UseBlockValue, Depth); 1274 1275 Value *L, *R; 1276 bool IsAnd; 1277 if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) 1278 IsAnd = true; 1279 else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) 1280 IsAnd = false; 1281 else 1282 return ValueLatticeElement::getOverdefined(); 1283 1284 std::optional<ValueLatticeElement> LV = 1285 getValueFromCondition(Val, L, IsTrueDest, UseBlockValue, Depth); 1286 if (!LV) 1287 return std::nullopt; 1288 std::optional<ValueLatticeElement> RV = 1289 getValueFromCondition(Val, R, IsTrueDest, UseBlockValue, Depth); 1290 if (!RV) 1291 return std::nullopt; 1292 1293 // if (L && R) -> intersect L and R 1294 // if (!(L || R)) -> intersect !L and !R 1295 // if (L || R) -> union L and R 1296 // if (!(L && R)) -> union !L and !R 1297 if (IsTrueDest ^ IsAnd) { 1298 LV->mergeIn(*RV); 1299 return *LV; 1300 } 1301 1302 return intersect(*LV, *RV); 1303 } 1304 1305 // Return true if Usr has Op as an operand, otherwise false. 1306 static bool usesOperand(User *Usr, Value *Op) { 1307 return is_contained(Usr->operands(), Op); 1308 } 1309 1310 // Return true if the instruction type of Val is supported by 1311 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. 1312 // Call this before calling constantFoldUser() to find out if it's even worth 1313 // attempting to call it. 1314 static bool isOperationFoldable(User *Usr) { 1315 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); 1316 } 1317 1318 // Check if Usr can be simplified to an integer constant when the value of one 1319 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1320 // lattice value range with a single element or otherwise return an overdefined 1321 // lattice value. 1322 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1323 const APInt &OpConstVal, 1324 const DataLayout &DL) { 1325 assert(isOperationFoldable(Usr) && "Precondition"); 1326 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1327 // Check if Usr can be simplified to a constant. 1328 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1329 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1330 if (auto *C = dyn_cast_or_null<ConstantInt>( 1331 simplifyCastInst(CI->getOpcode(), OpConst, 1332 CI->getDestTy(), DL))) { 1333 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1334 } 1335 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1336 bool Op0Match = BO->getOperand(0) == Op; 1337 bool Op1Match = BO->getOperand(1) == Op; 1338 assert((Op0Match || Op1Match) && 1339 "Operand 0 nor Operand 1 isn't a match"); 1340 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1341 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1342 if (auto *C = dyn_cast_or_null<ConstantInt>( 1343 simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1344 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1345 } 1346 } else if (isa<FreezeInst>(Usr)) { 1347 assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op"); 1348 return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); 1349 } 1350 return ValueLatticeElement::getOverdefined(); 1351 } 1352 1353 /// Compute the value of Val on the edge BBFrom -> BBTo. 1354 std::optional<ValueLatticeElement> 1355 LazyValueInfoImpl::getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, 1356 BasicBlock *BBTo, bool UseBlockValue) { 1357 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1358 // know that v != 0. 1359 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1360 // If this is a conditional branch and only one successor goes to BBTo, then 1361 // we may be able to infer something from the condition. 1362 if (BI->isConditional() && 1363 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1364 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1365 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1366 "BBTo isn't a successor of BBFrom"); 1367 Value *Condition = BI->getCondition(); 1368 1369 // If V is the condition of the branch itself, then we know exactly what 1370 // it is. 1371 if (Condition == Val) 1372 return ValueLatticeElement::get(ConstantInt::get( 1373 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1374 1375 // If the condition of the branch is an equality comparison, we may be 1376 // able to infer the value. 1377 std::optional<ValueLatticeElement> Result = 1378 getValueFromCondition(Val, Condition, isTrueDest, UseBlockValue); 1379 if (!Result) 1380 return std::nullopt; 1381 1382 if (!Result->isOverdefined()) 1383 return Result; 1384 1385 if (User *Usr = dyn_cast<User>(Val)) { 1386 assert(Result->isOverdefined() && "Result isn't overdefined"); 1387 // Check with isOperationFoldable() first to avoid linearly iterating 1388 // over the operands unnecessarily which can be expensive for 1389 // instructions with many operands. 1390 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1391 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1392 if (usesOperand(Usr, Condition)) { 1393 // If Val has Condition as an operand and Val can be folded into a 1394 // constant with either Condition == true or Condition == false, 1395 // propagate the constant. 1396 // eg. 1397 // ; %Val is true on the edge to %then. 1398 // %Val = and i1 %Condition, true. 1399 // br %Condition, label %then, label %else 1400 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1401 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1402 } else { 1403 // If one of Val's operand has an inferred value, we may be able to 1404 // infer the value of Val. 1405 // eg. 1406 // ; %Val is 94 on the edge to %then. 1407 // %Val = add i8 %Op, 1 1408 // %Condition = icmp eq i8 %Op, 93 1409 // br i1 %Condition, label %then, label %else 1410 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1411 Value *Op = Usr->getOperand(i); 1412 ValueLatticeElement OpLatticeVal = *getValueFromCondition( 1413 Op, Condition, isTrueDest, /*UseBlockValue*/ false); 1414 if (std::optional<APInt> OpConst = 1415 OpLatticeVal.asConstantInteger()) { 1416 Result = constantFoldUser(Usr, Op, *OpConst, DL); 1417 break; 1418 } 1419 } 1420 } 1421 } 1422 } 1423 if (!Result->isOverdefined()) 1424 return Result; 1425 } 1426 } 1427 1428 // If the edge was formed by a switch on the value, then we may know exactly 1429 // what it is. 1430 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1431 Value *Condition = SI->getCondition(); 1432 if (!isa<IntegerType>(Val->getType())) 1433 return ValueLatticeElement::getOverdefined(); 1434 bool ValUsesConditionAndMayBeFoldable = false; 1435 if (Condition != Val) { 1436 // Check if Val has Condition as an operand. 1437 if (User *Usr = dyn_cast<User>(Val)) 1438 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1439 usesOperand(Usr, Condition); 1440 if (!ValUsesConditionAndMayBeFoldable) 1441 return ValueLatticeElement::getOverdefined(); 1442 } 1443 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1444 "Condition != Val nor Val doesn't use Condition"); 1445 1446 bool DefaultCase = SI->getDefaultDest() == BBTo; 1447 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1448 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1449 1450 for (auto Case : SI->cases()) { 1451 APInt CaseValue = Case.getCaseValue()->getValue(); 1452 ConstantRange EdgeVal(CaseValue); 1453 if (ValUsesConditionAndMayBeFoldable) { 1454 User *Usr = cast<User>(Val); 1455 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1456 ValueLatticeElement EdgeLatticeVal = 1457 constantFoldUser(Usr, Condition, CaseValue, DL); 1458 if (EdgeLatticeVal.isOverdefined()) 1459 return ValueLatticeElement::getOverdefined(); 1460 EdgeVal = EdgeLatticeVal.getConstantRange(); 1461 } 1462 if (DefaultCase) { 1463 // It is possible that the default destination is the destination of 1464 // some cases. We cannot perform difference for those cases. 1465 // We know Condition != CaseValue in BBTo. In some cases we can use 1466 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1467 // only do this when f is identity (i.e. Val == Condition), but we 1468 // should be able to do this for any injective f. 1469 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1470 EdgesVals = EdgesVals.difference(EdgeVal); 1471 } else if (Case.getCaseSuccessor() == BBTo) 1472 EdgesVals = EdgesVals.unionWith(EdgeVal); 1473 } 1474 return ValueLatticeElement::getRange(std::move(EdgesVals)); 1475 } 1476 return ValueLatticeElement::getOverdefined(); 1477 } 1478 1479 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1480 /// the basic block if the edge does not constrain Val. 1481 std::optional<ValueLatticeElement> 1482 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, 1483 BasicBlock *BBTo, Instruction *CxtI) { 1484 // If already a constant, there is nothing to compute. 1485 if (Constant *VC = dyn_cast<Constant>(Val)) 1486 return ValueLatticeElement::get(VC); 1487 1488 std::optional<ValueLatticeElement> LocalResult = 1489 getEdgeValueLocal(Val, BBFrom, BBTo, /*UseBlockValue*/ true); 1490 if (!LocalResult) 1491 return std::nullopt; 1492 1493 if (hasSingleValue(*LocalResult)) 1494 // Can't get any more precise here 1495 return LocalResult; 1496 1497 std::optional<ValueLatticeElement> OptInBlock = 1498 getBlockValue(Val, BBFrom, BBFrom->getTerminator()); 1499 if (!OptInBlock) 1500 return std::nullopt; 1501 ValueLatticeElement &InBlock = *OptInBlock; 1502 1503 // We can use the context instruction (generically the ultimate instruction 1504 // the calling pass is trying to simplify) here, even though the result of 1505 // this function is generally cached when called from the solve* functions 1506 // (and that cached result might be used with queries using a different 1507 // context instruction), because when this function is called from the solve* 1508 // functions, the context instruction is not provided. When called from 1509 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1510 // but then the result is not cached. 1511 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1512 1513 return intersect(*LocalResult, InBlock); 1514 } 1515 1516 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1517 Instruction *CxtI) { 1518 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1519 << BB->getName() << "'\n"); 1520 1521 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1522 std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI); 1523 if (!OptResult) { 1524 solve(); 1525 OptResult = getBlockValue(V, BB, CxtI); 1526 assert(OptResult && "Value not available after solving"); 1527 } 1528 1529 ValueLatticeElement Result = *OptResult; 1530 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1531 return Result; 1532 } 1533 1534 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1535 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1536 << "'\n"); 1537 1538 if (auto *C = dyn_cast<Constant>(V)) 1539 return ValueLatticeElement::get(C); 1540 1541 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1542 if (auto *I = dyn_cast<Instruction>(V)) 1543 Result = getFromRangeMetadata(I); 1544 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1545 1546 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1547 return Result; 1548 } 1549 1550 ValueLatticeElement LazyValueInfoImpl:: 1551 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1552 Instruction *CxtI) { 1553 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1554 << FromBB->getName() << "' to '" << ToBB->getName() 1555 << "'\n"); 1556 1557 std::optional<ValueLatticeElement> Result = 1558 getEdgeValue(V, FromBB, ToBB, CxtI); 1559 while (!Result) { 1560 // As the worklist only explicitly tracks block values (but not edge values) 1561 // we may have to call solve() multiple times, as the edge value calculation 1562 // may request additional block values. 1563 solve(); 1564 Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1565 } 1566 1567 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); 1568 return *Result; 1569 } 1570 1571 ValueLatticeElement LazyValueInfoImpl::getValueAtUse(const Use &U) { 1572 Value *V = U.get(); 1573 auto *CxtI = cast<Instruction>(U.getUser()); 1574 ValueLatticeElement VL = getValueInBlock(V, CxtI->getParent(), CxtI); 1575 1576 // Check whether the only (possibly transitive) use of the value is in a 1577 // position where V can be constrained by a select or branch condition. 1578 const Use *CurrU = &U; 1579 // TODO: Increase limit? 1580 const unsigned MaxUsesToInspect = 3; 1581 for (unsigned I = 0; I < MaxUsesToInspect; ++I) { 1582 std::optional<ValueLatticeElement> CondVal; 1583 auto *CurrI = cast<Instruction>(CurrU->getUser()); 1584 if (auto *SI = dyn_cast<SelectInst>(CurrI)) { 1585 // If the value is undef, a different value may be chosen in 1586 // the select condition and at use. 1587 if (!isGuaranteedNotToBeUndef(SI->getCondition(), AC)) 1588 break; 1589 if (CurrU->getOperandNo() == 1) 1590 CondVal = 1591 *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ true, 1592 /*UseBlockValue*/ false); 1593 else if (CurrU->getOperandNo() == 2) 1594 CondVal = 1595 *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ false, 1596 /*UseBlockValue*/ false); 1597 } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) { 1598 // TODO: Use non-local query? 1599 CondVal = *getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), 1600 PHI->getParent(), /*UseBlockValue*/ false); 1601 } 1602 if (CondVal) 1603 VL = intersect(VL, *CondVal); 1604 1605 // Only follow one-use chain, to allow direct intersection of conditions. 1606 // If there are multiple uses, we would have to intersect with the union of 1607 // all conditions at different uses. 1608 // Stop walking if we hit a non-speculatable instruction. Even if the 1609 // result is only used under a specific condition, executing the 1610 // instruction itself may cause side effects or UB already. 1611 // This also disallows looking through phi nodes: If the phi node is part 1612 // of a cycle, we might end up reasoning about values from different cycle 1613 // iterations (PR60629). 1614 if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI)) 1615 break; 1616 CurrU = &*CurrI->use_begin(); 1617 } 1618 return VL; 1619 } 1620 1621 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1622 BasicBlock *NewSucc) { 1623 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1624 } 1625 1626 //===----------------------------------------------------------------------===// 1627 // LazyValueInfo Impl 1628 //===----------------------------------------------------------------------===// 1629 1630 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1631 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1632 1633 if (auto *Impl = Info.getImpl()) 1634 Impl->clear(); 1635 1636 // Fully lazy. 1637 return false; 1638 } 1639 1640 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1641 AU.setPreservesAll(); 1642 AU.addRequired<AssumptionCacheTracker>(); 1643 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1644 } 1645 1646 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1647 1648 /// This lazily constructs the LazyValueInfoImpl. 1649 LazyValueInfoImpl &LazyValueInfo::getOrCreateImpl(const Module *M) { 1650 if (!PImpl) { 1651 assert(M && "getCache() called with a null Module"); 1652 const DataLayout &DL = M->getDataLayout(); 1653 Function *GuardDecl = 1654 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 1655 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); 1656 } 1657 return *static_cast<LazyValueInfoImpl *>(PImpl); 1658 } 1659 1660 LazyValueInfoImpl *LazyValueInfo::getImpl() { 1661 if (!PImpl) 1662 return nullptr; 1663 return static_cast<LazyValueInfoImpl *>(PImpl); 1664 } 1665 1666 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1667 1668 void LazyValueInfo::releaseMemory() { 1669 // If the cache was allocated, free it. 1670 if (auto *Impl = getImpl()) { 1671 delete &*Impl; 1672 PImpl = nullptr; 1673 } 1674 } 1675 1676 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1677 FunctionAnalysisManager::Invalidator &Inv) { 1678 // We need to invalidate if we have either failed to preserve this analyses 1679 // result directly or if any of its dependencies have been invalidated. 1680 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1681 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) 1682 return true; 1683 1684 return false; 1685 } 1686 1687 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1688 1689 LazyValueInfo LazyValueAnalysis::run(Function &F, 1690 FunctionAnalysisManager &FAM) { 1691 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1692 1693 return LazyValueInfo(&AC, &F.getParent()->getDataLayout()); 1694 } 1695 1696 /// Returns true if we can statically tell that this value will never be a 1697 /// "useful" constant. In practice, this means we've got something like an 1698 /// alloca or a malloc call for which a comparison against a constant can 1699 /// only be guarding dead code. Note that we are potentially giving up some 1700 /// precision in dead code (a constant result) in favour of avoiding a 1701 /// expensive search for a easily answered common query. 1702 static bool isKnownNonConstant(Value *V) { 1703 V = V->stripPointerCasts(); 1704 // The return val of alloc cannot be a Constant. 1705 if (isa<AllocaInst>(V)) 1706 return true; 1707 return false; 1708 } 1709 1710 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { 1711 // Bail out early if V is known not to be a Constant. 1712 if (isKnownNonConstant(V)) 1713 return nullptr; 1714 1715 BasicBlock *BB = CxtI->getParent(); 1716 ValueLatticeElement Result = 1717 getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); 1718 1719 if (Result.isConstant()) 1720 return Result.getConstant(); 1721 if (Result.isConstantRange()) { 1722 const ConstantRange &CR = Result.getConstantRange(); 1723 if (const APInt *SingleVal = CR.getSingleElement()) 1724 return ConstantInt::get(V->getContext(), *SingleVal); 1725 } 1726 return nullptr; 1727 } 1728 1729 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, 1730 bool UndefAllowed) { 1731 assert(V->getType()->isIntegerTy()); 1732 BasicBlock *BB = CxtI->getParent(); 1733 ValueLatticeElement Result = 1734 getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); 1735 return toConstantRange(Result, V->getType(), UndefAllowed); 1736 } 1737 1738 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U, 1739 bool UndefAllowed) { 1740 auto *Inst = cast<Instruction>(U.getUser()); 1741 ValueLatticeElement Result = 1742 getOrCreateImpl(Inst->getModule()).getValueAtUse(U); 1743 return toConstantRange(Result, U->getType(), UndefAllowed); 1744 } 1745 1746 /// Determine whether the specified value is known to be a 1747 /// constant on the specified edge. Return null if not. 1748 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1749 BasicBlock *ToBB, 1750 Instruction *CxtI) { 1751 Module *M = FromBB->getModule(); 1752 ValueLatticeElement Result = 1753 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1754 1755 if (Result.isConstant()) 1756 return Result.getConstant(); 1757 if (Result.isConstantRange()) { 1758 const ConstantRange &CR = Result.getConstantRange(); 1759 if (const APInt *SingleVal = CR.getSingleElement()) 1760 return ConstantInt::get(V->getContext(), *SingleVal); 1761 } 1762 return nullptr; 1763 } 1764 1765 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1766 BasicBlock *FromBB, 1767 BasicBlock *ToBB, 1768 Instruction *CxtI) { 1769 Module *M = FromBB->getModule(); 1770 ValueLatticeElement Result = 1771 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1772 // TODO: Should undef be allowed here? 1773 return toConstantRange(Result, V->getType(), /*UndefAllowed*/ true); 1774 } 1775 1776 static LazyValueInfo::Tristate 1777 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1778 const DataLayout &DL) { 1779 // If we know the value is a constant, evaluate the conditional. 1780 Constant *Res = nullptr; 1781 if (Val.isConstant()) { 1782 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL); 1783 if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res)) 1784 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1785 return LazyValueInfo::Unknown; 1786 } 1787 1788 if (Val.isConstantRange()) { 1789 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1790 if (!CI) return LazyValueInfo::Unknown; 1791 1792 const ConstantRange &CR = Val.getConstantRange(); 1793 if (Pred == ICmpInst::ICMP_EQ) { 1794 if (!CR.contains(CI->getValue())) 1795 return LazyValueInfo::False; 1796 1797 if (CR.isSingleElement()) 1798 return LazyValueInfo::True; 1799 } else if (Pred == ICmpInst::ICMP_NE) { 1800 if (!CR.contains(CI->getValue())) 1801 return LazyValueInfo::True; 1802 1803 if (CR.isSingleElement()) 1804 return LazyValueInfo::False; 1805 } else { 1806 // Handle more complex predicates. 1807 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1808 (ICmpInst::Predicate)Pred, CI->getValue()); 1809 if (TrueValues.contains(CR)) 1810 return LazyValueInfo::True; 1811 if (TrueValues.inverse().contains(CR)) 1812 return LazyValueInfo::False; 1813 } 1814 return LazyValueInfo::Unknown; 1815 } 1816 1817 if (Val.isNotConstant()) { 1818 // If this is an equality comparison, we can try to fold it knowing that 1819 // "V != C1". 1820 if (Pred == ICmpInst::ICMP_EQ) { 1821 // !C1 == C -> false iff C1 == C. 1822 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1823 Val.getNotConstant(), C, DL); 1824 if (Res && Res->isNullValue()) 1825 return LazyValueInfo::False; 1826 } else if (Pred == ICmpInst::ICMP_NE) { 1827 // !C1 != C -> true iff C1 == C. 1828 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1829 Val.getNotConstant(), C, DL); 1830 if (Res && Res->isNullValue()) 1831 return LazyValueInfo::True; 1832 } 1833 return LazyValueInfo::Unknown; 1834 } 1835 1836 return LazyValueInfo::Unknown; 1837 } 1838 1839 /// Determine whether the specified value comparison with a constant is known to 1840 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1841 LazyValueInfo::Tristate 1842 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1843 BasicBlock *FromBB, BasicBlock *ToBB, 1844 Instruction *CxtI) { 1845 Module *M = FromBB->getModule(); 1846 ValueLatticeElement Result = 1847 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1848 1849 return getPredicateResult(Pred, C, Result, M->getDataLayout()); 1850 } 1851 1852 LazyValueInfo::Tristate 1853 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1854 Instruction *CxtI, bool UseBlockValue) { 1855 // Is or is not NonNull are common predicates being queried. If 1856 // isKnownNonZero can tell us the result of the predicate, we can 1857 // return it quickly. But this is only a fastpath, and falling 1858 // through would still be correct. 1859 Module *M = CxtI->getModule(); 1860 const DataLayout &DL = M->getDataLayout(); 1861 if (V->getType()->isPointerTy() && C->isNullValue() && 1862 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1863 if (Pred == ICmpInst::ICMP_EQ) 1864 return LazyValueInfo::False; 1865 else if (Pred == ICmpInst::ICMP_NE) 1866 return LazyValueInfo::True; 1867 } 1868 1869 auto &Impl = getOrCreateImpl(M); 1870 ValueLatticeElement Result = 1871 UseBlockValue ? Impl.getValueInBlock(V, CxtI->getParent(), CxtI) 1872 : Impl.getValueAt(V, CxtI); 1873 Tristate Ret = getPredicateResult(Pred, C, Result, DL); 1874 if (Ret != Unknown) 1875 return Ret; 1876 1877 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1878 // LVI as a whole tries to compute a lattice value which is conservatively 1879 // correct at a given location. In this case, we have a predicate which we 1880 // weren't able to prove about the merged result, and we're pushing that 1881 // predicate back along each incoming edge to see if we can prove it 1882 // separately for each input. As a motivating example, consider: 1883 // bb1: 1884 // %v1 = ... ; constantrange<1, 5> 1885 // br label %merge 1886 // bb2: 1887 // %v2 = ... ; constantrange<10, 20> 1888 // br label %merge 1889 // merge: 1890 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1891 // %pred = icmp eq i32 %phi, 8 1892 // We can't tell from the lattice value for '%phi' that '%pred' is false 1893 // along each path, but by checking the predicate over each input separately, 1894 // we can. 1895 // We limit the search to one step backwards from the current BB and value. 1896 // We could consider extending this to search further backwards through the 1897 // CFG and/or value graph, but there are non-obvious compile time vs quality 1898 // tradeoffs. 1899 BasicBlock *BB = CxtI->getParent(); 1900 1901 // Function entry or an unreachable block. Bail to avoid confusing 1902 // analysis below. 1903 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1904 if (PI == PE) 1905 return Unknown; 1906 1907 // If V is a PHI node in the same block as the context, we need to ask 1908 // questions about the predicate as applied to the incoming value along 1909 // each edge. This is useful for eliminating cases where the predicate is 1910 // known along all incoming edges. 1911 if (auto *PHI = dyn_cast<PHINode>(V)) 1912 if (PHI->getParent() == BB) { 1913 Tristate Baseline = Unknown; 1914 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1915 Value *Incoming = PHI->getIncomingValue(i); 1916 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1917 // Note that PredBB may be BB itself. 1918 Tristate Result = 1919 getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); 1920 1921 // Keep going as long as we've seen a consistent known result for 1922 // all inputs. 1923 Baseline = (i == 0) ? Result /* First iteration */ 1924 : (Baseline == Result ? Baseline 1925 : Unknown); /* All others */ 1926 if (Baseline == Unknown) 1927 break; 1928 } 1929 if (Baseline != Unknown) 1930 return Baseline; 1931 } 1932 1933 // For a comparison where the V is outside this block, it's possible 1934 // that we've branched on it before. Look to see if the value is known 1935 // on all incoming edges. 1936 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { 1937 // For predecessor edge, determine if the comparison is true or false 1938 // on that edge. If they're all true or all false, we can conclude 1939 // the value of the comparison in this block. 1940 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1941 if (Baseline != Unknown) { 1942 // Check that all remaining incoming values match the first one. 1943 while (++PI != PE) { 1944 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1945 if (Ret != Baseline) 1946 break; 1947 } 1948 // If we terminated early, then one of the values didn't match. 1949 if (PI == PE) { 1950 return Baseline; 1951 } 1952 } 1953 } 1954 1955 return Unknown; 1956 } 1957 1958 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS, 1959 Value *RHS, 1960 Instruction *CxtI, 1961 bool UseBlockValue) { 1962 CmpInst::Predicate Pred = (CmpInst::Predicate)P; 1963 1964 if (auto *C = dyn_cast<Constant>(RHS)) 1965 return getPredicateAt(P, LHS, C, CxtI, UseBlockValue); 1966 if (auto *C = dyn_cast<Constant>(LHS)) 1967 return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, 1968 UseBlockValue); 1969 1970 // Got two non-Constant values. Try to determine the comparison results based 1971 // on the block values of the two operands, e.g. because they have 1972 // non-overlapping ranges. 1973 if (UseBlockValue) { 1974 Module *M = CxtI->getModule(); 1975 ValueLatticeElement L = 1976 getOrCreateImpl(M).getValueInBlock(LHS, CxtI->getParent(), CxtI); 1977 if (L.isOverdefined()) 1978 return LazyValueInfo::Unknown; 1979 1980 ValueLatticeElement R = 1981 getOrCreateImpl(M).getValueInBlock(RHS, CxtI->getParent(), CxtI); 1982 Type *Ty = CmpInst::makeCmpResultType(LHS->getType()); 1983 if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R, 1984 M->getDataLayout())) { 1985 if (Res->isNullValue()) 1986 return LazyValueInfo::False; 1987 if (Res->isOneValue()) 1988 return LazyValueInfo::True; 1989 } 1990 } 1991 return LazyValueInfo::Unknown; 1992 } 1993 1994 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1995 BasicBlock *NewSucc) { 1996 if (auto *Impl = getImpl()) 1997 Impl->threadEdge(PredBB, OldSucc, NewSucc); 1998 } 1999 2000 void LazyValueInfo::forgetValue(Value *V) { 2001 if (auto *Impl = getImpl()) 2002 Impl->forgetValue(V); 2003 } 2004 2005 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 2006 if (auto *Impl = getImpl()) 2007 Impl->eraseBlock(BB); 2008 } 2009 2010 void LazyValueInfo::clear() { 2011 if (auto *Impl = getImpl()) 2012 Impl->clear(); 2013 } 2014 2015 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 2016 if (auto *Impl = getImpl()) 2017 Impl->printLVI(F, DTree, OS); 2018 } 2019 2020 // Print the LVI for the function arguments at the start of each basic block. 2021 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 2022 const BasicBlock *BB, formatted_raw_ostream &OS) { 2023 // Find if there are latticevalues defined for arguments of the function. 2024 auto *F = BB->getParent(); 2025 for (const auto &Arg : F->args()) { 2026 ValueLatticeElement Result = LVIImpl->getValueInBlock( 2027 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 2028 if (Result.isUnknown()) 2029 continue; 2030 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 2031 } 2032 } 2033 2034 // This function prints the LVI analysis for the instruction I at the beginning 2035 // of various basic blocks. It relies on calculated values that are stored in 2036 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 2037 // LazyValueInfo for `I`, and print that info. 2038 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 2039 const Instruction *I, formatted_raw_ostream &OS) { 2040 2041 auto *ParentBB = I->getParent(); 2042 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 2043 // We can generate (solve) LVI values only for blocks that are dominated by 2044 // the I's parent. However, to avoid generating LVI for all dominating blocks, 2045 // that contain redundant/uninteresting information, we print LVI for 2046 // blocks that may use this LVI information (such as immediate successor 2047 // blocks, and blocks that contain uses of `I`). 2048 auto printResult = [&](const BasicBlock *BB) { 2049 if (!BlocksContainingLVI.insert(BB).second) 2050 return; 2051 ValueLatticeElement Result = LVIImpl->getValueInBlock( 2052 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 2053 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 2054 BB->printAsOperand(OS, false); 2055 OS << "' is: " << Result << "\n"; 2056 }; 2057 2058 printResult(ParentBB); 2059 // Print the LVI analysis results for the immediate successor blocks, that 2060 // are dominated by `ParentBB`. 2061 for (const auto *BBSucc : successors(ParentBB)) 2062 if (DT.dominates(ParentBB, BBSucc)) 2063 printResult(BBSucc); 2064 2065 // Print LVI in blocks where `I` is used. 2066 for (const auto *U : I->users()) 2067 if (auto *UseI = dyn_cast<Instruction>(U)) 2068 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 2069 printResult(UseI->getParent()); 2070 2071 } 2072 2073 PreservedAnalyses LazyValueInfoPrinterPass::run(Function &F, 2074 FunctionAnalysisManager &AM) { 2075 OS << "LVI for function '" << F.getName() << "':\n"; 2076 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 2077 auto &DTree = AM.getResult<DominatorTreeAnalysis>(F); 2078 LVI.printLVI(F, DTree, OS); 2079 return PreservedAnalyses::all(); 2080 } 2081