1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/InstVisitor.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/FormattedStream.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <climits> 47 #include <limits> 48 #include <optional> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "inline-cost" 53 54 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 55 56 static cl::opt<int> 57 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 58 cl::desc("Default amount of inlining to perform")); 59 60 // We introduce this option since there is a minor compile-time win by avoiding 61 // addition of TTI attributes (target-features in particular) to inline 62 // candidates when they are guaranteed to be the same as top level methods in 63 // some use cases. If we avoid adding the attribute, we need an option to avoid 64 // checking these attributes. 65 static cl::opt<bool> IgnoreTTIInlineCompatible( 66 "ignore-tti-inline-compatible", cl::Hidden, cl::init(false), 67 cl::desc("Ignore TTI attributes compatibility check between callee/caller " 68 "during inline cost calculation")); 69 70 static cl::opt<bool> PrintInstructionComments( 71 "print-instruction-comments", cl::Hidden, cl::init(false), 72 cl::desc("Prints comments for instruction based on inline cost analysis")); 73 74 static cl::opt<int> InlineThreshold( 75 "inline-threshold", cl::Hidden, cl::init(225), 76 cl::desc("Control the amount of inlining to perform (default = 225)")); 77 78 static cl::opt<int> HintThreshold( 79 "inlinehint-threshold", cl::Hidden, cl::init(325), 80 cl::desc("Threshold for inlining functions with inline hint")); 81 82 static cl::opt<int> 83 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 84 cl::init(45), 85 cl::desc("Threshold for inlining cold callsites")); 86 87 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 88 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 89 cl::desc("Enable the cost-benefit analysis for the inliner")); 90 91 // InlineSavingsMultiplier overrides per TTI multipliers iff it is 92 // specified explicitly in command line options. This option is exposed 93 // for tuning and testing. 94 static cl::opt<int> InlineSavingsMultiplier( 95 "inline-savings-multiplier", cl::Hidden, cl::init(8), 96 cl::desc("Multiplier to multiply cycle savings by during inlining")); 97 98 // InlineSavingsProfitableMultiplier overrides per TTI multipliers iff it is 99 // specified explicitly in command line options. This option is exposed 100 // for tuning and testing. 101 static cl::opt<int> InlineSavingsProfitableMultiplier( 102 "inline-savings-profitable-multiplier", cl::Hidden, cl::init(4), 103 cl::desc("A multiplier on top of cycle savings to decide whether the " 104 "savings won't justify the cost")); 105 106 static cl::opt<int> 107 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 108 cl::desc("The maximum size of a callee that get's " 109 "inlined without sufficient cycle savings")); 110 111 // We introduce this threshold to help performance of instrumentation based 112 // PGO before we actually hook up inliner with analysis passes such as BPI and 113 // BFI. 114 static cl::opt<int> ColdThreshold( 115 "inlinecold-threshold", cl::Hidden, cl::init(45), 116 cl::desc("Threshold for inlining functions with cold attribute")); 117 118 static cl::opt<int> 119 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 120 cl::desc("Threshold for hot callsites ")); 121 122 static cl::opt<int> LocallyHotCallSiteThreshold( 123 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), 124 cl::desc("Threshold for locally hot callsites ")); 125 126 static cl::opt<int> ColdCallSiteRelFreq( 127 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), 128 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 129 "entry frequency, for a callsite to be cold in the absence of " 130 "profile information.")); 131 132 static cl::opt<uint64_t> HotCallSiteRelFreq( 133 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), 134 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 135 "entry frequency, for a callsite to be hot in the absence of " 136 "profile information.")); 137 138 static cl::opt<int> 139 InstrCost("inline-instr-cost", cl::Hidden, cl::init(5), 140 cl::desc("Cost of a single instruction when inlining")); 141 142 static cl::opt<int> 143 MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0), 144 cl::desc("Cost of load/store instruction when inlining")); 145 146 static cl::opt<int> CallPenalty( 147 "inline-call-penalty", cl::Hidden, cl::init(25), 148 cl::desc("Call penalty that is applied per callsite when inlining")); 149 150 static cl::opt<size_t> 151 StackSizeThreshold("inline-max-stacksize", cl::Hidden, 152 cl::init(std::numeric_limits<size_t>::max()), 153 cl::desc("Do not inline functions with a stack size " 154 "that exceeds the specified limit")); 155 156 static cl::opt<size_t> RecurStackSizeThreshold( 157 "recursive-inline-max-stacksize", cl::Hidden, 158 cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller), 159 cl::desc("Do not inline recursive functions with a stack " 160 "size that exceeds the specified limit")); 161 162 static cl::opt<bool> OptComputeFullInlineCost( 163 "inline-cost-full", cl::Hidden, 164 cl::desc("Compute the full inline cost of a call site even when the cost " 165 "exceeds the threshold.")); 166 167 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 168 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 169 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 170 "attributes.")); 171 172 static cl::opt<bool> DisableGEPConstOperand( 173 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 174 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 175 176 namespace llvm { 177 std::optional<int> getStringFnAttrAsInt(const Attribute &Attr) { 178 if (Attr.isValid()) { 179 int AttrValue = 0; 180 if (!Attr.getValueAsString().getAsInteger(10, AttrValue)) 181 return AttrValue; 182 } 183 return std::nullopt; 184 } 185 186 std::optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 187 return getStringFnAttrAsInt(CB.getFnAttr(AttrKind)); 188 } 189 190 std::optional<int> getStringFnAttrAsInt(Function *F, StringRef AttrKind) { 191 return getStringFnAttrAsInt(F->getFnAttribute(AttrKind)); 192 } 193 194 namespace InlineConstants { 195 int getInstrCost() { return InstrCost; } 196 197 } // namespace InlineConstants 198 199 } // namespace llvm 200 201 namespace { 202 class InlineCostCallAnalyzer; 203 204 // This struct is used to store information about inline cost of a 205 // particular instruction 206 struct InstructionCostDetail { 207 int CostBefore = 0; 208 int CostAfter = 0; 209 int ThresholdBefore = 0; 210 int ThresholdAfter = 0; 211 212 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 213 214 int getCostDelta() const { return CostAfter - CostBefore; } 215 216 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 217 }; 218 219 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 220 private: 221 InlineCostCallAnalyzer *const ICCA; 222 223 public: 224 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 225 void emitInstructionAnnot(const Instruction *I, 226 formatted_raw_ostream &OS) override; 227 }; 228 229 /// Carry out call site analysis, in order to evaluate inlinability. 230 /// NOTE: the type is currently used as implementation detail of functions such 231 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 232 /// expectation is that they come from the outer scope, from the wrapper 233 /// functions. If we want to support constructing CallAnalyzer objects where 234 /// lambdas are provided inline at construction, or where the object needs to 235 /// otherwise survive past the scope of the provided functions, we need to 236 /// revisit the argument types. 237 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 238 typedef InstVisitor<CallAnalyzer, bool> Base; 239 friend class InstVisitor<CallAnalyzer, bool>; 240 241 protected: 242 virtual ~CallAnalyzer() = default; 243 /// The TargetTransformInfo available for this compilation. 244 const TargetTransformInfo &TTI; 245 246 /// Getter for the cache of @llvm.assume intrinsics. 247 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 248 249 /// Getter for BlockFrequencyInfo 250 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 251 252 /// Profile summary information. 253 ProfileSummaryInfo *PSI; 254 255 /// The called function. 256 Function &F; 257 258 // Cache the DataLayout since we use it a lot. 259 const DataLayout &DL; 260 261 /// The OptimizationRemarkEmitter available for this compilation. 262 OptimizationRemarkEmitter *ORE; 263 264 /// The candidate callsite being analyzed. Please do not use this to do 265 /// analysis in the caller function; we want the inline cost query to be 266 /// easily cacheable. Instead, use the cover function paramHasAttr. 267 CallBase &CandidateCall; 268 269 /// Extension points for handling callsite features. 270 // Called before a basic block was analyzed. 271 virtual void onBlockStart(const BasicBlock *BB) {} 272 273 /// Called after a basic block was analyzed. 274 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 275 276 /// Called before an instruction was analyzed 277 virtual void onInstructionAnalysisStart(const Instruction *I) {} 278 279 /// Called after an instruction was analyzed 280 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 281 282 /// Called at the end of the analysis of the callsite. Return the outcome of 283 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 284 /// the reason it can't. 285 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 286 /// Called when we're about to start processing a basic block, and every time 287 /// we are done processing an instruction. Return true if there is no point in 288 /// continuing the analysis (e.g. we've determined already the call site is 289 /// too expensive to inline) 290 virtual bool shouldStop() { return false; } 291 292 /// Called before the analysis of the callee body starts (with callsite 293 /// contexts propagated). It checks callsite-specific information. Return a 294 /// reason analysis can't continue if that's the case, or 'true' if it may 295 /// continue. 296 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 297 /// Called if the analysis engine decides SROA cannot be done for the given 298 /// alloca. 299 virtual void onDisableSROA(AllocaInst *Arg) {} 300 301 /// Called the analysis engine determines load elimination won't happen. 302 virtual void onDisableLoadElimination() {} 303 304 /// Called when we visit a CallBase, before the analysis starts. Return false 305 /// to stop further processing of the instruction. 306 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 307 308 /// Called to account for a call. 309 virtual void onCallPenalty() {} 310 311 /// Called to account for a load or store. 312 virtual void onMemAccess(){}; 313 314 /// Called to account for the expectation the inlining would result in a load 315 /// elimination. 316 virtual void onLoadEliminationOpportunity() {} 317 318 /// Called to account for the cost of argument setup for the Call in the 319 /// callee's body (not the callsite currently under analysis). 320 virtual void onCallArgumentSetup(const CallBase &Call) {} 321 322 /// Called to account for a load relative intrinsic. 323 virtual void onLoadRelativeIntrinsic() {} 324 325 /// Called to account for a lowered call. 326 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 327 } 328 329 /// Account for a jump table of given size. Return false to stop further 330 /// processing the switch instruction 331 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 332 333 /// Account for a case cluster of given size. Return false to stop further 334 /// processing of the instruction. 335 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 336 337 /// Called at the end of processing a switch instruction, with the given 338 /// number of case clusters. 339 virtual void onFinalizeSwitch(unsigned JumpTableSize, 340 unsigned NumCaseCluster) {} 341 342 /// Called to account for any other instruction not specifically accounted 343 /// for. 344 virtual void onMissedSimplification() {} 345 346 /// Start accounting potential benefits due to SROA for the given alloca. 347 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 348 349 /// Account SROA savings for the AllocaInst value. 350 virtual void onAggregateSROAUse(AllocaInst *V) {} 351 352 bool handleSROA(Value *V, bool DoNotDisable) { 353 // Check for SROA candidates in comparisons. 354 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 355 if (DoNotDisable) { 356 onAggregateSROAUse(SROAArg); 357 return true; 358 } 359 disableSROAForArg(SROAArg); 360 } 361 return false; 362 } 363 364 bool IsCallerRecursive = false; 365 bool IsRecursiveCall = false; 366 bool ExposesReturnsTwice = false; 367 bool HasDynamicAlloca = false; 368 bool ContainsNoDuplicateCall = false; 369 bool HasReturn = false; 370 bool HasIndirectBr = false; 371 bool HasUninlineableIntrinsic = false; 372 bool InitsVargArgs = false; 373 374 /// Number of bytes allocated statically by the callee. 375 uint64_t AllocatedSize = 0; 376 unsigned NumInstructions = 0; 377 unsigned NumVectorInstructions = 0; 378 379 /// While we walk the potentially-inlined instructions, we build up and 380 /// maintain a mapping of simplified values specific to this callsite. The 381 /// idea is to propagate any special information we have about arguments to 382 /// this call through the inlinable section of the function, and account for 383 /// likely simplifications post-inlining. The most important aspect we track 384 /// is CFG altering simplifications -- when we prove a basic block dead, that 385 /// can cause dramatic shifts in the cost of inlining a function. 386 DenseMap<Value *, Constant *> SimplifiedValues; 387 388 /// Keep track of the values which map back (through function arguments) to 389 /// allocas on the caller stack which could be simplified through SROA. 390 DenseMap<Value *, AllocaInst *> SROAArgValues; 391 392 /// Keep track of Allocas for which we believe we may get SROA optimization. 393 DenseSet<AllocaInst *> EnabledSROAAllocas; 394 395 /// Keep track of values which map to a pointer base and constant offset. 396 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 397 398 /// Keep track of dead blocks due to the constant arguments. 399 SmallPtrSet<BasicBlock *, 16> DeadBlocks; 400 401 /// The mapping of the blocks to their known unique successors due to the 402 /// constant arguments. 403 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 404 405 /// Model the elimination of repeated loads that is expected to happen 406 /// whenever we simplify away the stores that would otherwise cause them to be 407 /// loads. 408 bool EnableLoadElimination = true; 409 410 /// Whether we allow inlining for recursive call. 411 bool AllowRecursiveCall = false; 412 413 SmallPtrSet<Value *, 16> LoadAddrSet; 414 415 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 416 auto It = SROAArgValues.find(V); 417 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 418 return nullptr; 419 return It->second; 420 } 421 422 // Custom simplification helper routines. 423 bool isAllocaDerivedArg(Value *V); 424 void disableSROAForArg(AllocaInst *SROAArg); 425 void disableSROA(Value *V); 426 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 427 void disableLoadElimination(); 428 bool isGEPFree(GetElementPtrInst &GEP); 429 bool canFoldInboundsGEP(GetElementPtrInst &I); 430 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 431 bool simplifyCallSite(Function *F, CallBase &Call); 432 bool simplifyInstruction(Instruction &I); 433 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 434 bool simplifyIntrinsicCallObjectSize(CallBase &CB); 435 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 436 437 /// Return true if the given argument to the function being considered for 438 /// inlining has the given attribute set either at the call site or the 439 /// function declaration. Primarily used to inspect call site specific 440 /// attributes since these can be more precise than the ones on the callee 441 /// itself. 442 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 443 444 /// Return true if the given value is known non null within the callee if 445 /// inlined through this particular callsite. 446 bool isKnownNonNullInCallee(Value *V); 447 448 /// Return true if size growth is allowed when inlining the callee at \p Call. 449 bool allowSizeGrowth(CallBase &Call); 450 451 // Custom analysis routines. 452 InlineResult analyzeBlock(BasicBlock *BB, 453 SmallPtrSetImpl<const Value *> &EphValues); 454 455 // Disable several entry points to the visitor so we don't accidentally use 456 // them by declaring but not defining them here. 457 void visit(Module *); 458 void visit(Module &); 459 void visit(Function *); 460 void visit(Function &); 461 void visit(BasicBlock *); 462 void visit(BasicBlock &); 463 464 // Provide base case for our instruction visit. 465 bool visitInstruction(Instruction &I); 466 467 // Our visit overrides. 468 bool visitAlloca(AllocaInst &I); 469 bool visitPHI(PHINode &I); 470 bool visitGetElementPtr(GetElementPtrInst &I); 471 bool visitBitCast(BitCastInst &I); 472 bool visitPtrToInt(PtrToIntInst &I); 473 bool visitIntToPtr(IntToPtrInst &I); 474 bool visitCastInst(CastInst &I); 475 bool visitCmpInst(CmpInst &I); 476 bool visitSub(BinaryOperator &I); 477 bool visitBinaryOperator(BinaryOperator &I); 478 bool visitFNeg(UnaryOperator &I); 479 bool visitLoad(LoadInst &I); 480 bool visitStore(StoreInst &I); 481 bool visitExtractValue(ExtractValueInst &I); 482 bool visitInsertValue(InsertValueInst &I); 483 bool visitCallBase(CallBase &Call); 484 bool visitReturnInst(ReturnInst &RI); 485 bool visitBranchInst(BranchInst &BI); 486 bool visitSelectInst(SelectInst &SI); 487 bool visitSwitchInst(SwitchInst &SI); 488 bool visitIndirectBrInst(IndirectBrInst &IBI); 489 bool visitResumeInst(ResumeInst &RI); 490 bool visitCleanupReturnInst(CleanupReturnInst &RI); 491 bool visitCatchReturnInst(CatchReturnInst &RI); 492 bool visitUnreachableInst(UnreachableInst &I); 493 494 public: 495 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 496 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 497 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 498 ProfileSummaryInfo *PSI = nullptr, 499 OptimizationRemarkEmitter *ORE = nullptr) 500 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 501 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 502 CandidateCall(Call) {} 503 504 InlineResult analyze(); 505 506 std::optional<Constant *> getSimplifiedValue(Instruction *I) { 507 if (SimplifiedValues.contains(I)) 508 return SimplifiedValues[I]; 509 return std::nullopt; 510 } 511 512 // Keep a bunch of stats about the cost savings found so we can print them 513 // out when debugging. 514 unsigned NumConstantArgs = 0; 515 unsigned NumConstantOffsetPtrArgs = 0; 516 unsigned NumAllocaArgs = 0; 517 unsigned NumConstantPtrCmps = 0; 518 unsigned NumConstantPtrDiffs = 0; 519 unsigned NumInstructionsSimplified = 0; 520 521 void dump(); 522 }; 523 524 // Considering forming a binary search, we should find the number of nodes 525 // which is same as the number of comparisons when lowered. For a given 526 // number of clusters, n, we can define a recursive function, f(n), to find 527 // the number of nodes in the tree. The recursion is : 528 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 529 // and f(n) = n, when n <= 3. 530 // This will lead a binary tree where the leaf should be either f(2) or f(3) 531 // when n > 3. So, the number of comparisons from leaves should be n, while 532 // the number of non-leaf should be : 533 // 2^(log2(n) - 1) - 1 534 // = 2^log2(n) * 2^-1 - 1 535 // = n / 2 - 1. 536 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 537 // number of comparisons in a simple closed form : 538 // n + n / 2 - 1 = n * 3 / 2 - 1 539 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 540 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 541 } 542 543 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 544 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 545 class InlineCostCallAnalyzer final : public CallAnalyzer { 546 const bool ComputeFullInlineCost; 547 int LoadEliminationCost = 0; 548 /// Bonus to be applied when percentage of vector instructions in callee is 549 /// high (see more details in updateThreshold). 550 int VectorBonus = 0; 551 /// Bonus to be applied when the callee has only one reachable basic block. 552 int SingleBBBonus = 0; 553 554 /// Tunable parameters that control the analysis. 555 const InlineParams &Params; 556 557 // This DenseMap stores the delta change in cost and threshold after 558 // accounting for the given instruction. The map is filled only with the 559 // flag PrintInstructionComments on. 560 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 561 562 /// Upper bound for the inlining cost. Bonuses are being applied to account 563 /// for speculative "expected profit" of the inlining decision. 564 int Threshold = 0; 565 566 /// The amount of StaticBonus applied. 567 int StaticBonusApplied = 0; 568 569 /// Attempt to evaluate indirect calls to boost its inline cost. 570 const bool BoostIndirectCalls; 571 572 /// Ignore the threshold when finalizing analysis. 573 const bool IgnoreThreshold; 574 575 // True if the cost-benefit-analysis-based inliner is enabled. 576 const bool CostBenefitAnalysisEnabled; 577 578 /// Inlining cost measured in abstract units, accounts for all the 579 /// instructions expected to be executed for a given function invocation. 580 /// Instructions that are statically proven to be dead based on call-site 581 /// arguments are not counted here. 582 int Cost = 0; 583 584 // The cumulative cost at the beginning of the basic block being analyzed. At 585 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 586 // the size of that basic block. 587 int CostAtBBStart = 0; 588 589 // The static size of live but cold basic blocks. This is "static" in the 590 // sense that it's not weighted by profile counts at all. 591 int ColdSize = 0; 592 593 // Whether inlining is decided by cost-threshold analysis. 594 bool DecidedByCostThreshold = false; 595 596 // Whether inlining is decided by cost-benefit analysis. 597 bool DecidedByCostBenefit = false; 598 599 // The cost-benefit pair computed by cost-benefit analysis. 600 std::optional<CostBenefitPair> CostBenefit; 601 602 bool SingleBB = true; 603 604 unsigned SROACostSavings = 0; 605 unsigned SROACostSavingsLost = 0; 606 607 /// The mapping of caller Alloca values to their accumulated cost savings. If 608 /// we have to disable SROA for one of the allocas, this tells us how much 609 /// cost must be added. 610 DenseMap<AllocaInst *, int> SROAArgCosts; 611 612 /// Return true if \p Call is a cold callsite. 613 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 614 615 /// Update Threshold based on callsite properties such as callee 616 /// attributes and callee hotness for PGO builds. The Callee is explicitly 617 /// passed to support analyzing indirect calls whose target is inferred by 618 /// analysis. 619 void updateThreshold(CallBase &Call, Function &Callee); 620 /// Return a higher threshold if \p Call is a hot callsite. 621 std::optional<int> getHotCallSiteThreshold(CallBase &Call, 622 BlockFrequencyInfo *CallerBFI); 623 624 /// Handle a capped 'int' increment for Cost. 625 void addCost(int64_t Inc) { 626 Inc = std::clamp<int64_t>(Inc, INT_MIN, INT_MAX); 627 Cost = std::clamp<int64_t>(Inc + Cost, INT_MIN, INT_MAX); 628 } 629 630 void onDisableSROA(AllocaInst *Arg) override { 631 auto CostIt = SROAArgCosts.find(Arg); 632 if (CostIt == SROAArgCosts.end()) 633 return; 634 addCost(CostIt->second); 635 SROACostSavings -= CostIt->second; 636 SROACostSavingsLost += CostIt->second; 637 SROAArgCosts.erase(CostIt); 638 } 639 640 void onDisableLoadElimination() override { 641 addCost(LoadEliminationCost); 642 LoadEliminationCost = 0; 643 } 644 645 bool onCallBaseVisitStart(CallBase &Call) override { 646 if (std::optional<int> AttrCallThresholdBonus = 647 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 648 Threshold += *AttrCallThresholdBonus; 649 650 if (std::optional<int> AttrCallCost = 651 getStringFnAttrAsInt(Call, "call-inline-cost")) { 652 addCost(*AttrCallCost); 653 // Prevent further processing of the call since we want to override its 654 // inline cost, not just add to it. 655 return false; 656 } 657 return true; 658 } 659 660 void onCallPenalty() override { addCost(CallPenalty); } 661 662 void onMemAccess() override { addCost(MemAccessCost); } 663 664 void onCallArgumentSetup(const CallBase &Call) override { 665 // Pay the price of the argument setup. We account for the average 1 666 // instruction per call argument setup here. 667 addCost(Call.arg_size() * InstrCost); 668 } 669 void onLoadRelativeIntrinsic() override { 670 // This is normally lowered to 4 LLVM instructions. 671 addCost(3 * InstrCost); 672 } 673 void onLoweredCall(Function *F, CallBase &Call, 674 bool IsIndirectCall) override { 675 // We account for the average 1 instruction per call argument setup here. 676 addCost(Call.arg_size() * InstrCost); 677 678 // If we have a constant that we are calling as a function, we can peer 679 // through it and see the function target. This happens not infrequently 680 // during devirtualization and so we want to give it a hefty bonus for 681 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 682 // Pretend to inline the function, with a custom threshold. 683 if (IsIndirectCall && BoostIndirectCalls) { 684 auto IndirectCallParams = Params; 685 IndirectCallParams.DefaultThreshold = 686 InlineConstants::IndirectCallThreshold; 687 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 688 /// to instantiate the derived class. 689 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 690 GetAssumptionCache, GetBFI, PSI, ORE, false); 691 if (CA.analyze().isSuccess()) { 692 // We were able to inline the indirect call! Subtract the cost from the 693 // threshold to get the bonus we want to apply, but don't go below zero. 694 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 695 } 696 } else 697 // Otherwise simply add the cost for merely making the call. 698 addCost(TTI.getInlineCallPenalty(CandidateCall.getCaller(), Call, 699 CallPenalty)); 700 } 701 702 void onFinalizeSwitch(unsigned JumpTableSize, 703 unsigned NumCaseCluster) override { 704 // If suitable for a jump table, consider the cost for the table size and 705 // branch to destination. 706 // Maximum valid cost increased in this function. 707 if (JumpTableSize) { 708 int64_t JTCost = 709 static_cast<int64_t>(JumpTableSize) * InstrCost + 4 * InstrCost; 710 711 addCost(JTCost); 712 return; 713 } 714 715 if (NumCaseCluster <= 3) { 716 // Suppose a comparison includes one compare and one conditional branch. 717 addCost(NumCaseCluster * 2 * InstrCost); 718 return; 719 } 720 721 int64_t ExpectedNumberOfCompare = 722 getExpectedNumberOfCompare(NumCaseCluster); 723 int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost; 724 725 addCost(SwitchCost); 726 } 727 void onMissedSimplification() override { addCost(InstrCost); } 728 729 void onInitializeSROAArg(AllocaInst *Arg) override { 730 assert(Arg != nullptr && 731 "Should not initialize SROA costs for null value."); 732 auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg); 733 SROACostSavings += SROAArgCost; 734 SROAArgCosts[Arg] = SROAArgCost; 735 } 736 737 void onAggregateSROAUse(AllocaInst *SROAArg) override { 738 auto CostIt = SROAArgCosts.find(SROAArg); 739 assert(CostIt != SROAArgCosts.end() && 740 "expected this argument to have a cost"); 741 CostIt->second += InstrCost; 742 SROACostSavings += InstrCost; 743 } 744 745 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 746 747 void onBlockAnalyzed(const BasicBlock *BB) override { 748 if (CostBenefitAnalysisEnabled) { 749 // Keep track of the static size of live but cold basic blocks. For now, 750 // we define a cold basic block to be one that's never executed. 751 assert(GetBFI && "GetBFI must be available"); 752 BlockFrequencyInfo *BFI = &(GetBFI(F)); 753 assert(BFI && "BFI must be available"); 754 auto ProfileCount = BFI->getBlockProfileCount(BB); 755 if (*ProfileCount == 0) 756 ColdSize += Cost - CostAtBBStart; 757 } 758 759 auto *TI = BB->getTerminator(); 760 // If we had any successors at this point, than post-inlining is likely to 761 // have them as well. Note that we assume any basic blocks which existed 762 // due to branches or switches which folded above will also fold after 763 // inlining. 764 if (SingleBB && TI->getNumSuccessors() > 1) { 765 // Take off the bonus we applied to the threshold. 766 Threshold -= SingleBBBonus; 767 SingleBB = false; 768 } 769 } 770 771 void onInstructionAnalysisStart(const Instruction *I) override { 772 // This function is called to store the initial cost of inlining before 773 // the given instruction was assessed. 774 if (!PrintInstructionComments) 775 return; 776 InstructionCostDetailMap[I].CostBefore = Cost; 777 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 778 } 779 780 void onInstructionAnalysisFinish(const Instruction *I) override { 781 // This function is called to find new values of cost and threshold after 782 // the instruction has been assessed. 783 if (!PrintInstructionComments) 784 return; 785 InstructionCostDetailMap[I].CostAfter = Cost; 786 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 787 } 788 789 bool isCostBenefitAnalysisEnabled() { 790 if (!PSI || !PSI->hasProfileSummary()) 791 return false; 792 793 if (!GetBFI) 794 return false; 795 796 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 797 // Honor the explicit request from the user. 798 if (!InlineEnableCostBenefitAnalysis) 799 return false; 800 } else { 801 // Otherwise, require instrumentation profile. 802 if (!(PSI->hasInstrumentationProfile() || PSI->hasSampleProfile())) 803 return false; 804 } 805 806 auto *Caller = CandidateCall.getParent()->getParent(); 807 if (!Caller->getEntryCount()) 808 return false; 809 810 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 811 if (!CallerBFI) 812 return false; 813 814 // For now, limit to hot call site. 815 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 816 return false; 817 818 // Make sure we have a nonzero entry count. 819 auto EntryCount = F.getEntryCount(); 820 if (!EntryCount || !EntryCount->getCount()) 821 return false; 822 823 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 824 if (!CalleeBFI) 825 return false; 826 827 return true; 828 } 829 830 // A helper function to choose between command line override and default. 831 unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const { 832 if (InlineSavingsMultiplier.getNumOccurrences()) 833 return InlineSavingsMultiplier; 834 return TTI.getInliningCostBenefitAnalysisSavingsMultiplier(); 835 } 836 837 // A helper function to choose between command line override and default. 838 unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const { 839 if (InlineSavingsProfitableMultiplier.getNumOccurrences()) 840 return InlineSavingsProfitableMultiplier; 841 return TTI.getInliningCostBenefitAnalysisProfitableMultiplier(); 842 } 843 844 void OverrideCycleSavingsAndSizeForTesting(APInt &CycleSavings, int &Size) { 845 if (std::optional<int> AttrCycleSavings = getStringFnAttrAsInt( 846 CandidateCall, "inline-cycle-savings-for-test")) { 847 CycleSavings = *AttrCycleSavings; 848 } 849 850 if (std::optional<int> AttrRuntimeCost = getStringFnAttrAsInt( 851 CandidateCall, "inline-runtime-cost-for-test")) { 852 Size = *AttrRuntimeCost; 853 } 854 } 855 856 // Determine whether we should inline the given call site, taking into account 857 // both the size cost and the cycle savings. Return std::nullopt if we don't 858 // have sufficient profiling information to determine. 859 std::optional<bool> costBenefitAnalysis() { 860 if (!CostBenefitAnalysisEnabled) 861 return std::nullopt; 862 863 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 864 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 865 // falling back to the cost-based metric. 866 // TODO: Improve this hacky condition. 867 if (Threshold == 0) 868 return std::nullopt; 869 870 assert(GetBFI); 871 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 872 assert(CalleeBFI); 873 874 // The cycle savings expressed as the sum of InstrCost 875 // multiplied by the estimated dynamic count of each instruction we can 876 // avoid. Savings come from the call site cost, such as argument setup and 877 // the call instruction, as well as the instructions that are folded. 878 // 879 // We use 128-bit APInt here to avoid potential overflow. This variable 880 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 881 // assumes that we can avoid or fold a billion instructions, each with a 882 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 883 // period on a 4GHz machine. 884 APInt CycleSavings(128, 0); 885 886 for (auto &BB : F) { 887 APInt CurrentSavings(128, 0); 888 for (auto &I : BB) { 889 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 890 // Count a conditional branch as savings if it becomes unconditional. 891 if (BI->isConditional() && 892 isa_and_nonnull<ConstantInt>( 893 SimplifiedValues.lookup(BI->getCondition()))) { 894 CurrentSavings += InstrCost; 895 } 896 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) { 897 if (isa_and_present<ConstantInt>(SimplifiedValues.lookup(SI->getCondition()))) 898 CurrentSavings += InstrCost; 899 } else if (Value *V = dyn_cast<Value>(&I)) { 900 // Count an instruction as savings if we can fold it. 901 if (SimplifiedValues.count(V)) { 902 CurrentSavings += InstrCost; 903 } 904 } 905 } 906 907 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 908 CurrentSavings *= *ProfileCount; 909 CycleSavings += CurrentSavings; 910 } 911 912 // Compute the cycle savings per call. 913 auto EntryProfileCount = F.getEntryCount(); 914 assert(EntryProfileCount && EntryProfileCount->getCount()); 915 auto EntryCount = EntryProfileCount->getCount(); 916 CycleSavings += EntryCount / 2; 917 CycleSavings = CycleSavings.udiv(EntryCount); 918 919 // Compute the total savings for the call site. 920 auto *CallerBB = CandidateCall.getParent(); 921 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 922 CycleSavings += getCallsiteCost(TTI, this->CandidateCall, DL); 923 CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB); 924 925 // Remove the cost of the cold basic blocks to model the runtime cost more 926 // accurately. Both machine block placement and function splitting could 927 // place cold blocks further from hot blocks. 928 int Size = Cost - ColdSize; 929 930 // Allow tiny callees to be inlined regardless of whether they meet the 931 // savings threshold. 932 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 933 934 OverrideCycleSavingsAndSizeForTesting(CycleSavings, Size); 935 CostBenefit.emplace(APInt(128, Size), CycleSavings); 936 937 // Let R be the ratio of CycleSavings to Size. We accept the inlining 938 // opportunity if R is really high and reject if R is really low. If R is 939 // somewhere in the middle, we fall back to the cost-based analysis. 940 // 941 // Specifically, let R = CycleSavings / Size, we accept the inlining 942 // opportunity if: 943 // 944 // PSI->getOrCompHotCountThreshold() 945 // R > ------------------------------------------------- 946 // getInliningCostBenefitAnalysisSavingsMultiplier() 947 // 948 // and reject the inlining opportunity if: 949 // 950 // PSI->getOrCompHotCountThreshold() 951 // R <= ---------------------------------------------------- 952 // getInliningCostBenefitAnalysisProfitableMultiplier() 953 // 954 // Otherwise, we fall back to the cost-based analysis. 955 // 956 // Implementation-wise, use multiplication (CycleSavings * Multiplier, 957 // HotCountThreshold * Size) rather than division to avoid precision loss. 958 APInt Threshold(128, PSI->getOrCompHotCountThreshold()); 959 Threshold *= Size; 960 961 APInt UpperBoundCycleSavings = CycleSavings; 962 UpperBoundCycleSavings *= getInliningCostBenefitAnalysisSavingsMultiplier(); 963 if (UpperBoundCycleSavings.uge(Threshold)) 964 return true; 965 966 APInt LowerBoundCycleSavings = CycleSavings; 967 LowerBoundCycleSavings *= 968 getInliningCostBenefitAnalysisProfitableMultiplier(); 969 if (LowerBoundCycleSavings.ult(Threshold)) 970 return false; 971 972 // Otherwise, fall back to the cost-based analysis. 973 return std::nullopt; 974 } 975 976 InlineResult finalizeAnalysis() override { 977 // Loops generally act a lot like calls in that they act like barriers to 978 // movement, require a certain amount of setup, etc. So when optimising for 979 // size, we penalise any call sites that perform loops. We do this after all 980 // other costs here, so will likely only be dealing with relatively small 981 // functions (and hence DT and LI will hopefully be cheap). 982 auto *Caller = CandidateCall.getFunction(); 983 if (Caller->hasMinSize()) { 984 DominatorTree DT(F); 985 LoopInfo LI(DT); 986 int NumLoops = 0; 987 for (Loop *L : LI) { 988 // Ignore loops that will not be executed 989 if (DeadBlocks.count(L->getHeader())) 990 continue; 991 NumLoops++; 992 } 993 addCost(NumLoops * InlineConstants::LoopPenalty); 994 } 995 996 // We applied the maximum possible vector bonus at the beginning. Now, 997 // subtract the excess bonus, if any, from the Threshold before 998 // comparing against Cost. 999 if (NumVectorInstructions <= NumInstructions / 10) 1000 Threshold -= VectorBonus; 1001 else if (NumVectorInstructions <= NumInstructions / 2) 1002 Threshold -= VectorBonus / 2; 1003 1004 if (std::optional<int> AttrCost = 1005 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 1006 Cost = *AttrCost; 1007 1008 if (std::optional<int> AttrCostMult = getStringFnAttrAsInt( 1009 CandidateCall, 1010 InlineConstants::FunctionInlineCostMultiplierAttributeName)) 1011 Cost *= *AttrCostMult; 1012 1013 if (std::optional<int> AttrThreshold = 1014 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 1015 Threshold = *AttrThreshold; 1016 1017 if (auto Result = costBenefitAnalysis()) { 1018 DecidedByCostBenefit = true; 1019 if (*Result) 1020 return InlineResult::success(); 1021 else 1022 return InlineResult::failure("Cost over threshold."); 1023 } 1024 1025 if (IgnoreThreshold) 1026 return InlineResult::success(); 1027 1028 DecidedByCostThreshold = true; 1029 return Cost < std::max(1, Threshold) 1030 ? InlineResult::success() 1031 : InlineResult::failure("Cost over threshold."); 1032 } 1033 1034 bool shouldStop() override { 1035 if (IgnoreThreshold || ComputeFullInlineCost) 1036 return false; 1037 // Bail out the moment we cross the threshold. This means we'll under-count 1038 // the cost, but only when undercounting doesn't matter. 1039 if (Cost < Threshold) 1040 return false; 1041 DecidedByCostThreshold = true; 1042 return true; 1043 } 1044 1045 void onLoadEliminationOpportunity() override { 1046 LoadEliminationCost += InstrCost; 1047 } 1048 1049 InlineResult onAnalysisStart() override { 1050 // Perform some tweaks to the cost and threshold based on the direct 1051 // callsite information. 1052 1053 // We want to more aggressively inline vector-dense kernels, so up the 1054 // threshold, and we'll lower it if the % of vector instructions gets too 1055 // low. Note that these bonuses are some what arbitrary and evolved over 1056 // time by accident as much as because they are principled bonuses. 1057 // 1058 // FIXME: It would be nice to remove all such bonuses. At least it would be 1059 // nice to base the bonus values on something more scientific. 1060 assert(NumInstructions == 0); 1061 assert(NumVectorInstructions == 0); 1062 1063 // Update the threshold based on callsite properties 1064 updateThreshold(CandidateCall, F); 1065 1066 // While Threshold depends on commandline options that can take negative 1067 // values, we want to enforce the invariant that the computed threshold and 1068 // bonuses are non-negative. 1069 assert(Threshold >= 0); 1070 assert(SingleBBBonus >= 0); 1071 assert(VectorBonus >= 0); 1072 1073 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 1074 // this Threshold any time, and cost cannot decrease, we can stop processing 1075 // the rest of the function body. 1076 Threshold += (SingleBBBonus + VectorBonus); 1077 1078 // Give out bonuses for the callsite, as the instructions setting them up 1079 // will be gone after inlining. 1080 addCost(-getCallsiteCost(TTI, this->CandidateCall, DL)); 1081 1082 // If this function uses the coldcc calling convention, prefer not to inline 1083 // it. 1084 if (F.getCallingConv() == CallingConv::Cold) 1085 Cost += InlineConstants::ColdccPenalty; 1086 1087 LLVM_DEBUG(dbgs() << " Initial cost: " << Cost << "\n"); 1088 1089 // Check if we're done. This can happen due to bonuses and penalties. 1090 if (Cost >= Threshold && !ComputeFullInlineCost) 1091 return InlineResult::failure("high cost"); 1092 1093 return InlineResult::success(); 1094 } 1095 1096 public: 1097 InlineCostCallAnalyzer( 1098 Function &Callee, CallBase &Call, const InlineParams &Params, 1099 const TargetTransformInfo &TTI, 1100 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 1101 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 1102 ProfileSummaryInfo *PSI = nullptr, 1103 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 1104 bool IgnoreThreshold = false) 1105 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 1106 ComputeFullInlineCost(OptComputeFullInlineCost || 1107 Params.ComputeFullInlineCost || ORE || 1108 isCostBenefitAnalysisEnabled()), 1109 Params(Params), Threshold(Params.DefaultThreshold), 1110 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 1111 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 1112 Writer(this) { 1113 AllowRecursiveCall = *Params.AllowRecursiveCall; 1114 } 1115 1116 /// Annotation Writer for instruction details 1117 InlineCostAnnotationWriter Writer; 1118 1119 void dump(); 1120 1121 // Prints the same analysis as dump(), but its definition is not dependent 1122 // on the build. 1123 void print(raw_ostream &OS); 1124 1125 std::optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1126 if (InstructionCostDetailMap.contains(I)) 1127 return InstructionCostDetailMap[I]; 1128 return std::nullopt; 1129 } 1130 1131 virtual ~InlineCostCallAnalyzer() = default; 1132 int getThreshold() const { return Threshold; } 1133 int getCost() const { return Cost; } 1134 int getStaticBonusApplied() const { return StaticBonusApplied; } 1135 std::optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1136 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1137 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } 1138 }; 1139 1140 // Return true if CB is the sole call to local function Callee. 1141 static bool isSoleCallToLocalFunction(const CallBase &CB, 1142 const Function &Callee) { 1143 return Callee.hasLocalLinkage() && Callee.hasOneLiveUse() && 1144 &Callee == CB.getCalledFunction(); 1145 } 1146 1147 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1148 private: 1149 InlineCostFeatures Cost = {}; 1150 1151 // FIXME: These constants are taken from the heuristic-based cost visitor. 1152 // These should be removed entirely in a later revision to avoid reliance on 1153 // heuristics in the ML inliner. 1154 static constexpr int JTCostMultiplier = 4; 1155 static constexpr int CaseClusterCostMultiplier = 2; 1156 static constexpr int SwitchCostMultiplier = 2; 1157 1158 // FIXME: These are taken from the heuristic-based cost visitor: we should 1159 // eventually abstract these to the CallAnalyzer to avoid duplication. 1160 unsigned SROACostSavingOpportunities = 0; 1161 int VectorBonus = 0; 1162 int SingleBBBonus = 0; 1163 int Threshold = 5; 1164 1165 DenseMap<AllocaInst *, unsigned> SROACosts; 1166 1167 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1168 Cost[static_cast<size_t>(Feature)] += Delta; 1169 } 1170 1171 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1172 Cost[static_cast<size_t>(Feature)] = Value; 1173 } 1174 1175 void onDisableSROA(AllocaInst *Arg) override { 1176 auto CostIt = SROACosts.find(Arg); 1177 if (CostIt == SROACosts.end()) 1178 return; 1179 1180 increment(InlineCostFeatureIndex::sroa_losses, CostIt->second); 1181 SROACostSavingOpportunities -= CostIt->second; 1182 SROACosts.erase(CostIt); 1183 } 1184 1185 void onDisableLoadElimination() override { 1186 set(InlineCostFeatureIndex::load_elimination, 1); 1187 } 1188 1189 void onCallPenalty() override { 1190 increment(InlineCostFeatureIndex::call_penalty, CallPenalty); 1191 } 1192 1193 void onCallArgumentSetup(const CallBase &Call) override { 1194 increment(InlineCostFeatureIndex::call_argument_setup, 1195 Call.arg_size() * InstrCost); 1196 } 1197 1198 void onLoadRelativeIntrinsic() override { 1199 increment(InlineCostFeatureIndex::load_relative_intrinsic, 3 * InstrCost); 1200 } 1201 1202 void onLoweredCall(Function *F, CallBase &Call, 1203 bool IsIndirectCall) override { 1204 increment(InlineCostFeatureIndex::lowered_call_arg_setup, 1205 Call.arg_size() * InstrCost); 1206 1207 if (IsIndirectCall) { 1208 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1209 /*HintThreshold*/ {}, 1210 /*ColdThreshold*/ {}, 1211 /*OptSizeThreshold*/ {}, 1212 /*OptMinSizeThreshold*/ {}, 1213 /*HotCallSiteThreshold*/ {}, 1214 /*LocallyHotCallSiteThreshold*/ {}, 1215 /*ColdCallSiteThreshold*/ {}, 1216 /*ComputeFullInlineCost*/ true, 1217 /*EnableDeferral*/ true}; 1218 IndirectCallParams.DefaultThreshold = 1219 InlineConstants::IndirectCallThreshold; 1220 1221 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1222 GetAssumptionCache, GetBFI, PSI, ORE, false, 1223 true); 1224 if (CA.analyze().isSuccess()) { 1225 increment(InlineCostFeatureIndex::nested_inline_cost_estimate, 1226 CA.getCost()); 1227 increment(InlineCostFeatureIndex::nested_inlines, 1); 1228 } 1229 } else { 1230 onCallPenalty(); 1231 } 1232 } 1233 1234 void onFinalizeSwitch(unsigned JumpTableSize, 1235 unsigned NumCaseCluster) override { 1236 1237 if (JumpTableSize) { 1238 int64_t JTCost = static_cast<int64_t>(JumpTableSize) * InstrCost + 1239 JTCostMultiplier * InstrCost; 1240 increment(InlineCostFeatureIndex::jump_table_penalty, JTCost); 1241 return; 1242 } 1243 1244 if (NumCaseCluster <= 3) { 1245 increment(InlineCostFeatureIndex::case_cluster_penalty, 1246 NumCaseCluster * CaseClusterCostMultiplier * InstrCost); 1247 return; 1248 } 1249 1250 int64_t ExpectedNumberOfCompare = 1251 getExpectedNumberOfCompare(NumCaseCluster); 1252 1253 int64_t SwitchCost = 1254 ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost; 1255 increment(InlineCostFeatureIndex::switch_penalty, SwitchCost); 1256 } 1257 1258 void onMissedSimplification() override { 1259 increment(InlineCostFeatureIndex::unsimplified_common_instructions, 1260 InstrCost); 1261 } 1262 1263 void onInitializeSROAArg(AllocaInst *Arg) override { 1264 auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg); 1265 SROACosts[Arg] = SROAArgCost; 1266 SROACostSavingOpportunities += SROAArgCost; 1267 } 1268 1269 void onAggregateSROAUse(AllocaInst *Arg) override { 1270 SROACosts.find(Arg)->second += InstrCost; 1271 SROACostSavingOpportunities += InstrCost; 1272 } 1273 1274 void onBlockAnalyzed(const BasicBlock *BB) override { 1275 if (BB->getTerminator()->getNumSuccessors() > 1) 1276 set(InlineCostFeatureIndex::is_multiple_blocks, 1); 1277 Threshold -= SingleBBBonus; 1278 } 1279 1280 InlineResult finalizeAnalysis() override { 1281 auto *Caller = CandidateCall.getFunction(); 1282 if (Caller->hasMinSize()) { 1283 DominatorTree DT(F); 1284 LoopInfo LI(DT); 1285 for (Loop *L : LI) { 1286 // Ignore loops that will not be executed 1287 if (DeadBlocks.count(L->getHeader())) 1288 continue; 1289 increment(InlineCostFeatureIndex::num_loops, 1290 InlineConstants::LoopPenalty); 1291 } 1292 } 1293 set(InlineCostFeatureIndex::dead_blocks, DeadBlocks.size()); 1294 set(InlineCostFeatureIndex::simplified_instructions, 1295 NumInstructionsSimplified); 1296 set(InlineCostFeatureIndex::constant_args, NumConstantArgs); 1297 set(InlineCostFeatureIndex::constant_offset_ptr_args, 1298 NumConstantOffsetPtrArgs); 1299 set(InlineCostFeatureIndex::sroa_savings, SROACostSavingOpportunities); 1300 1301 if (NumVectorInstructions <= NumInstructions / 10) 1302 Threshold -= VectorBonus; 1303 else if (NumVectorInstructions <= NumInstructions / 2) 1304 Threshold -= VectorBonus / 2; 1305 1306 set(InlineCostFeatureIndex::threshold, Threshold); 1307 1308 return InlineResult::success(); 1309 } 1310 1311 bool shouldStop() override { return false; } 1312 1313 void onLoadEliminationOpportunity() override { 1314 increment(InlineCostFeatureIndex::load_elimination, 1); 1315 } 1316 1317 InlineResult onAnalysisStart() override { 1318 increment(InlineCostFeatureIndex::callsite_cost, 1319 -1 * getCallsiteCost(TTI, this->CandidateCall, DL)); 1320 1321 set(InlineCostFeatureIndex::cold_cc_penalty, 1322 (F.getCallingConv() == CallingConv::Cold)); 1323 1324 set(InlineCostFeatureIndex::last_call_to_static_bonus, 1325 isSoleCallToLocalFunction(CandidateCall, F)); 1326 1327 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1328 // analyzer - instead, we should abstract it to a common method in the 1329 // CallAnalyzer 1330 int SingleBBBonusPercent = 50; 1331 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1332 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1333 Threshold *= TTI.getInliningThresholdMultiplier(); 1334 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1335 VectorBonus = Threshold * VectorBonusPercent / 100; 1336 Threshold += (SingleBBBonus + VectorBonus); 1337 1338 return InlineResult::success(); 1339 } 1340 1341 public: 1342 InlineCostFeaturesAnalyzer( 1343 const TargetTransformInfo &TTI, 1344 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1345 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1346 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1347 CallBase &Call) 1348 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1349 1350 const InlineCostFeatures &features() const { return Cost; } 1351 }; 1352 1353 } // namespace 1354 1355 /// Test whether the given value is an Alloca-derived function argument. 1356 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1357 return SROAArgValues.count(V); 1358 } 1359 1360 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1361 onDisableSROA(SROAArg); 1362 EnabledSROAAllocas.erase(SROAArg); 1363 disableLoadElimination(); 1364 } 1365 1366 void InlineCostAnnotationWriter::emitInstructionAnnot( 1367 const Instruction *I, formatted_raw_ostream &OS) { 1368 // The cost of inlining of the given instruction is printed always. 1369 // The threshold delta is printed only when it is non-zero. It happens 1370 // when we decided to give a bonus at a particular instruction. 1371 std::optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1372 if (!Record) 1373 OS << "; No analysis for the instruction"; 1374 else { 1375 OS << "; cost before = " << Record->CostBefore 1376 << ", cost after = " << Record->CostAfter 1377 << ", threshold before = " << Record->ThresholdBefore 1378 << ", threshold after = " << Record->ThresholdAfter << ", "; 1379 OS << "cost delta = " << Record->getCostDelta(); 1380 if (Record->hasThresholdChanged()) 1381 OS << ", threshold delta = " << Record->getThresholdDelta(); 1382 } 1383 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1384 if (C) { 1385 OS << ", simplified to "; 1386 (*C)->print(OS, true); 1387 } 1388 OS << "\n"; 1389 } 1390 1391 /// If 'V' maps to a SROA candidate, disable SROA for it. 1392 void CallAnalyzer::disableSROA(Value *V) { 1393 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1394 disableSROAForArg(SROAArg); 1395 } 1396 } 1397 1398 void CallAnalyzer::disableLoadElimination() { 1399 if (EnableLoadElimination) { 1400 onDisableLoadElimination(); 1401 EnableLoadElimination = false; 1402 } 1403 } 1404 1405 /// Accumulate a constant GEP offset into an APInt if possible. 1406 /// 1407 /// Returns false if unable to compute the offset for any reason. Respects any 1408 /// simplified values known during the analysis of this callsite. 1409 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1410 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1411 assert(IntPtrWidth == Offset.getBitWidth()); 1412 1413 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1414 GTI != GTE; ++GTI) { 1415 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1416 if (!OpC) 1417 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1418 OpC = dyn_cast<ConstantInt>(SimpleOp); 1419 if (!OpC) 1420 return false; 1421 if (OpC->isZero()) 1422 continue; 1423 1424 // Handle a struct index, which adds its field offset to the pointer. 1425 if (StructType *STy = GTI.getStructTypeOrNull()) { 1426 unsigned ElementIdx = OpC->getZExtValue(); 1427 const StructLayout *SL = DL.getStructLayout(STy); 1428 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1429 continue; 1430 } 1431 1432 APInt TypeSize(IntPtrWidth, GTI.getSequentialElementStride(DL)); 1433 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1434 } 1435 return true; 1436 } 1437 1438 /// Use TTI to check whether a GEP is free. 1439 /// 1440 /// Respects any simplified values known during the analysis of this callsite. 1441 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1442 SmallVector<Value *, 4> Operands; 1443 Operands.push_back(GEP.getOperand(0)); 1444 for (const Use &Op : GEP.indices()) 1445 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1446 Operands.push_back(SimpleOp); 1447 else 1448 Operands.push_back(Op); 1449 return TTI.getInstructionCost(&GEP, Operands, 1450 TargetTransformInfo::TCK_SizeAndLatency) == 1451 TargetTransformInfo::TCC_Free; 1452 } 1453 1454 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1455 disableSROA(I.getOperand(0)); 1456 1457 // Check whether inlining will turn a dynamic alloca into a static 1458 // alloca and handle that case. 1459 if (I.isArrayAllocation()) { 1460 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1461 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1462 // Sometimes a dynamic alloca could be converted into a static alloca 1463 // after this constant prop, and become a huge static alloca on an 1464 // unconditional CFG path. Avoid inlining if this is going to happen above 1465 // a threshold. 1466 // FIXME: If the threshold is removed or lowered too much, we could end up 1467 // being too pessimistic and prevent inlining non-problematic code. This 1468 // could result in unintended perf regressions. A better overall strategy 1469 // is needed to track stack usage during inlining. 1470 Type *Ty = I.getAllocatedType(); 1471 AllocatedSize = SaturatingMultiplyAdd( 1472 AllocSize->getLimitedValue(), 1473 DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize); 1474 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1475 HasDynamicAlloca = true; 1476 return false; 1477 } 1478 } 1479 1480 // Accumulate the allocated size. 1481 if (I.isStaticAlloca()) { 1482 Type *Ty = I.getAllocatedType(); 1483 AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinValue(), 1484 AllocatedSize); 1485 } 1486 1487 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1488 // a variety of reasons, and so we would like to not inline them into 1489 // functions which don't currently have a dynamic alloca. This simply 1490 // disables inlining altogether in the presence of a dynamic alloca. 1491 if (!I.isStaticAlloca()) 1492 HasDynamicAlloca = true; 1493 1494 return false; 1495 } 1496 1497 bool CallAnalyzer::visitPHI(PHINode &I) { 1498 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1499 // though we don't want to propagate it's bonuses. The idea is to disable 1500 // SROA if it *might* be used in an inappropriate manner. 1501 1502 // Phi nodes are always zero-cost. 1503 // FIXME: Pointer sizes may differ between different address spaces, so do we 1504 // need to use correct address space in the call to getPointerSizeInBits here? 1505 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1506 // see the ZeroOffset is used as a dummy value, so we can probably use any 1507 // bit width for the ZeroOffset? 1508 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1509 bool CheckSROA = I.getType()->isPointerTy(); 1510 1511 // Track the constant or pointer with constant offset we've seen so far. 1512 Constant *FirstC = nullptr; 1513 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1514 Value *FirstV = nullptr; 1515 1516 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1517 BasicBlock *Pred = I.getIncomingBlock(i); 1518 // If the incoming block is dead, skip the incoming block. 1519 if (DeadBlocks.count(Pred)) 1520 continue; 1521 // If the parent block of phi is not the known successor of the incoming 1522 // block, skip the incoming block. 1523 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1524 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1525 continue; 1526 1527 Value *V = I.getIncomingValue(i); 1528 // If the incoming value is this phi itself, skip the incoming value. 1529 if (&I == V) 1530 continue; 1531 1532 Constant *C = dyn_cast<Constant>(V); 1533 if (!C) 1534 C = SimplifiedValues.lookup(V); 1535 1536 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1537 if (!C && CheckSROA) 1538 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1539 1540 if (!C && !BaseAndOffset.first) 1541 // The incoming value is neither a constant nor a pointer with constant 1542 // offset, exit early. 1543 return true; 1544 1545 if (FirstC) { 1546 if (FirstC == C) 1547 // If we've seen a constant incoming value before and it is the same 1548 // constant we see this time, continue checking the next incoming value. 1549 continue; 1550 // Otherwise early exit because we either see a different constant or saw 1551 // a constant before but we have a pointer with constant offset this time. 1552 return true; 1553 } 1554 1555 if (FirstV) { 1556 // The same logic as above, but check pointer with constant offset here. 1557 if (FirstBaseAndOffset == BaseAndOffset) 1558 continue; 1559 return true; 1560 } 1561 1562 if (C) { 1563 // This is the 1st time we've seen a constant, record it. 1564 FirstC = C; 1565 continue; 1566 } 1567 1568 // The remaining case is that this is the 1st time we've seen a pointer with 1569 // constant offset, record it. 1570 FirstV = V; 1571 FirstBaseAndOffset = BaseAndOffset; 1572 } 1573 1574 // Check if we can map phi to a constant. 1575 if (FirstC) { 1576 SimplifiedValues[&I] = FirstC; 1577 return true; 1578 } 1579 1580 // Check if we can map phi to a pointer with constant offset. 1581 if (FirstBaseAndOffset.first) { 1582 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1583 1584 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1585 SROAArgValues[&I] = SROAArg; 1586 } 1587 1588 return true; 1589 } 1590 1591 /// Check we can fold GEPs of constant-offset call site argument pointers. 1592 /// This requires target data and inbounds GEPs. 1593 /// 1594 /// \return true if the specified GEP can be folded. 1595 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1596 // Check if we have a base + offset for the pointer. 1597 std::pair<Value *, APInt> BaseAndOffset = 1598 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1599 if (!BaseAndOffset.first) 1600 return false; 1601 1602 // Check if the offset of this GEP is constant, and if so accumulate it 1603 // into Offset. 1604 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1605 return false; 1606 1607 // Add the result as a new mapping to Base + Offset. 1608 ConstantOffsetPtrs[&I] = BaseAndOffset; 1609 1610 return true; 1611 } 1612 1613 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1614 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1615 1616 // Lambda to check whether a GEP's indices are all constant. 1617 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1618 for (const Use &Op : GEP.indices()) 1619 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1620 return false; 1621 return true; 1622 }; 1623 1624 if (!DisableGEPConstOperand) 1625 if (simplifyInstruction(I)) 1626 return true; 1627 1628 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1629 if (SROAArg) 1630 SROAArgValues[&I] = SROAArg; 1631 1632 // Constant GEPs are modeled as free. 1633 return true; 1634 } 1635 1636 // Variable GEPs will require math and will disable SROA. 1637 if (SROAArg) 1638 disableSROAForArg(SROAArg); 1639 return isGEPFree(I); 1640 } 1641 1642 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1643 bool CallAnalyzer::simplifyInstruction(Instruction &I) { 1644 SmallVector<Constant *> COps; 1645 for (Value *Op : I.operands()) { 1646 Constant *COp = dyn_cast<Constant>(Op); 1647 if (!COp) 1648 COp = SimplifiedValues.lookup(Op); 1649 if (!COp) 1650 return false; 1651 COps.push_back(COp); 1652 } 1653 auto *C = ConstantFoldInstOperands(&I, COps, DL); 1654 if (!C) 1655 return false; 1656 SimplifiedValues[&I] = C; 1657 return true; 1658 } 1659 1660 /// Try to simplify a call to llvm.is.constant. 1661 /// 1662 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1663 /// we expect calls of this specific intrinsic to be infrequent. 1664 /// 1665 /// FIXME: Given that we know CB's parent (F) caller 1666 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1667 /// whether inlining F into F's caller would change how the call to 1668 /// llvm.is.constant would evaluate. 1669 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1670 Value *Arg = CB.getArgOperand(0); 1671 auto *C = dyn_cast<Constant>(Arg); 1672 1673 if (!C) 1674 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1675 1676 Type *RT = CB.getFunctionType()->getReturnType(); 1677 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1678 return true; 1679 } 1680 1681 bool CallAnalyzer::simplifyIntrinsicCallObjectSize(CallBase &CB) { 1682 // As per the langref, "The fourth argument to llvm.objectsize determines if 1683 // the value should be evaluated at runtime." 1684 if (cast<ConstantInt>(CB.getArgOperand(3))->isOne()) 1685 return false; 1686 1687 Value *V = lowerObjectSizeCall(&cast<IntrinsicInst>(CB), DL, nullptr, 1688 /*MustSucceed=*/true); 1689 Constant *C = dyn_cast_or_null<Constant>(V); 1690 if (C) 1691 SimplifiedValues[&CB] = C; 1692 return C; 1693 } 1694 1695 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1696 // Propagate constants through bitcasts. 1697 if (simplifyInstruction(I)) 1698 return true; 1699 1700 // Track base/offsets through casts 1701 std::pair<Value *, APInt> BaseAndOffset = 1702 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1703 // Casts don't change the offset, just wrap it up. 1704 if (BaseAndOffset.first) 1705 ConstantOffsetPtrs[&I] = BaseAndOffset; 1706 1707 // Also look for SROA candidates here. 1708 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1709 SROAArgValues[&I] = SROAArg; 1710 1711 // Bitcasts are always zero cost. 1712 return true; 1713 } 1714 1715 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1716 // Propagate constants through ptrtoint. 1717 if (simplifyInstruction(I)) 1718 return true; 1719 1720 // Track base/offset pairs when converted to a plain integer provided the 1721 // integer is large enough to represent the pointer. 1722 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1723 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1724 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1725 std::pair<Value *, APInt> BaseAndOffset = 1726 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1727 if (BaseAndOffset.first) 1728 ConstantOffsetPtrs[&I] = BaseAndOffset; 1729 } 1730 1731 // This is really weird. Technically, ptrtoint will disable SROA. However, 1732 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1733 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1734 // would block SROA would also block SROA if applied directly to a pointer, 1735 // and so we can just add the integer in here. The only places where SROA is 1736 // preserved either cannot fire on an integer, or won't in-and-of themselves 1737 // disable SROA (ext) w/o some later use that we would see and disable. 1738 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1739 SROAArgValues[&I] = SROAArg; 1740 1741 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1742 TargetTransformInfo::TCC_Free; 1743 } 1744 1745 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1746 // Propagate constants through ptrtoint. 1747 if (simplifyInstruction(I)) 1748 return true; 1749 1750 // Track base/offset pairs when round-tripped through a pointer without 1751 // modifications provided the integer is not too large. 1752 Value *Op = I.getOperand(0); 1753 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1754 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1755 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1756 if (BaseAndOffset.first) 1757 ConstantOffsetPtrs[&I] = BaseAndOffset; 1758 } 1759 1760 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1761 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1762 SROAArgValues[&I] = SROAArg; 1763 1764 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1765 TargetTransformInfo::TCC_Free; 1766 } 1767 1768 bool CallAnalyzer::visitCastInst(CastInst &I) { 1769 // Propagate constants through casts. 1770 if (simplifyInstruction(I)) 1771 return true; 1772 1773 // Disable SROA in the face of arbitrary casts we don't explicitly list 1774 // elsewhere. 1775 disableSROA(I.getOperand(0)); 1776 1777 // If this is a floating-point cast, and the target says this operation 1778 // is expensive, this may eventually become a library call. Treat the cost 1779 // as such. 1780 switch (I.getOpcode()) { 1781 case Instruction::FPTrunc: 1782 case Instruction::FPExt: 1783 case Instruction::UIToFP: 1784 case Instruction::SIToFP: 1785 case Instruction::FPToUI: 1786 case Instruction::FPToSI: 1787 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1788 onCallPenalty(); 1789 break; 1790 default: 1791 break; 1792 } 1793 1794 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1795 TargetTransformInfo::TCC_Free; 1796 } 1797 1798 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1799 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1800 } 1801 1802 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1803 // Does the *call site* have the NonNull attribute set on an argument? We 1804 // use the attribute on the call site to memoize any analysis done in the 1805 // caller. This will also trip if the callee function has a non-null 1806 // parameter attribute, but that's a less interesting case because hopefully 1807 // the callee would already have been simplified based on that. 1808 if (Argument *A = dyn_cast<Argument>(V)) 1809 if (paramHasAttr(A, Attribute::NonNull)) 1810 return true; 1811 1812 // Is this an alloca in the caller? This is distinct from the attribute case 1813 // above because attributes aren't updated within the inliner itself and we 1814 // always want to catch the alloca derived case. 1815 if (isAllocaDerivedArg(V)) 1816 // We can actually predict the result of comparisons between an 1817 // alloca-derived value and null. Note that this fires regardless of 1818 // SROA firing. 1819 return true; 1820 1821 return false; 1822 } 1823 1824 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1825 // If the normal destination of the invoke or the parent block of the call 1826 // site is unreachable-terminated, there is little point in inlining this 1827 // unless there is literally zero cost. 1828 // FIXME: Note that it is possible that an unreachable-terminated block has a 1829 // hot entry. For example, in below scenario inlining hot_call_X() may be 1830 // beneficial : 1831 // main() { 1832 // hot_call_1(); 1833 // ... 1834 // hot_call_N() 1835 // exit(0); 1836 // } 1837 // For now, we are not handling this corner case here as it is rare in real 1838 // code. In future, we should elaborate this based on BPI and BFI in more 1839 // general threshold adjusting heuristics in updateThreshold(). 1840 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1841 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1842 return false; 1843 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1844 return false; 1845 1846 return true; 1847 } 1848 1849 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1850 BlockFrequencyInfo *CallerBFI) { 1851 // If global profile summary is available, then callsite's coldness is 1852 // determined based on that. 1853 if (PSI && PSI->hasProfileSummary()) 1854 return PSI->isColdCallSite(Call, CallerBFI); 1855 1856 // Otherwise we need BFI to be available. 1857 if (!CallerBFI) 1858 return false; 1859 1860 // Determine if the callsite is cold relative to caller's entry. We could 1861 // potentially cache the computation of scaled entry frequency, but the added 1862 // complexity is not worth it unless this scaling shows up high in the 1863 // profiles. 1864 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1865 auto CallSiteBB = Call.getParent(); 1866 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1867 auto CallerEntryFreq = 1868 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1869 return CallSiteFreq < CallerEntryFreq * ColdProb; 1870 } 1871 1872 std::optional<int> 1873 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1874 BlockFrequencyInfo *CallerBFI) { 1875 1876 // If global profile summary is available, then callsite's hotness is 1877 // determined based on that. 1878 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1879 return Params.HotCallSiteThreshold; 1880 1881 // Otherwise we need BFI to be available and to have a locally hot callsite 1882 // threshold. 1883 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1884 return std::nullopt; 1885 1886 // Determine if the callsite is hot relative to caller's entry. We could 1887 // potentially cache the computation of scaled entry frequency, but the added 1888 // complexity is not worth it unless this scaling shows up high in the 1889 // profiles. 1890 const BasicBlock *CallSiteBB = Call.getParent(); 1891 BlockFrequency CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1892 BlockFrequency CallerEntryFreq = CallerBFI->getEntryFreq(); 1893 std::optional<BlockFrequency> Limit = CallerEntryFreq.mul(HotCallSiteRelFreq); 1894 if (Limit && CallSiteFreq >= *Limit) 1895 return Params.LocallyHotCallSiteThreshold; 1896 1897 // Otherwise treat it normally. 1898 return std::nullopt; 1899 } 1900 1901 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1902 // If no size growth is allowed for this inlining, set Threshold to 0. 1903 if (!allowSizeGrowth(Call)) { 1904 Threshold = 0; 1905 return; 1906 } 1907 1908 Function *Caller = Call.getCaller(); 1909 1910 // return min(A, B) if B is valid. 1911 auto MinIfValid = [](int A, std::optional<int> B) { 1912 return B ? std::min(A, *B) : A; 1913 }; 1914 1915 // return max(A, B) if B is valid. 1916 auto MaxIfValid = [](int A, std::optional<int> B) { 1917 return B ? std::max(A, *B) : A; 1918 }; 1919 1920 // Various bonus percentages. These are multiplied by Threshold to get the 1921 // bonus values. 1922 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1923 // basic block at the given callsite context. This is speculatively applied 1924 // and withdrawn if more than one basic block is seen. 1925 // 1926 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1927 // of the last call to a static function as inlining such functions is 1928 // guaranteed to reduce code size. 1929 // 1930 // These bonus percentages may be set to 0 based on properties of the caller 1931 // and the callsite. 1932 int SingleBBBonusPercent = 50; 1933 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1934 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1935 1936 // Lambda to set all the above bonus and bonus percentages to 0. 1937 auto DisallowAllBonuses = [&]() { 1938 SingleBBBonusPercent = 0; 1939 VectorBonusPercent = 0; 1940 LastCallToStaticBonus = 0; 1941 }; 1942 1943 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1944 // and reduce the threshold if the caller has the necessary attribute. 1945 if (Caller->hasMinSize()) { 1946 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1947 // For minsize, we want to disable the single BB bonus and the vector 1948 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1949 // a static function will, at the minimum, eliminate the parameter setup and 1950 // call/return instructions. 1951 SingleBBBonusPercent = 0; 1952 VectorBonusPercent = 0; 1953 } else if (Caller->hasOptSize()) 1954 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1955 1956 // Adjust the threshold based on inlinehint attribute and profile based 1957 // hotness information if the caller does not have MinSize attribute. 1958 if (!Caller->hasMinSize()) { 1959 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1960 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1961 1962 // FIXME: After switching to the new passmanager, simplify the logic below 1963 // by checking only the callsite hotness/coldness as we will reliably 1964 // have local profile information. 1965 // 1966 // Callsite hotness and coldness can be determined if sample profile is 1967 // used (which adds hotness metadata to calls) or if caller's 1968 // BlockFrequencyInfo is available. 1969 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1970 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1971 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1972 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1973 // FIXME: This should update the threshold only if it exceeds the 1974 // current threshold, but AutoFDO + ThinLTO currently relies on this 1975 // behavior to prevent inlining of hot callsites during ThinLTO 1976 // compile phase. 1977 Threshold = *HotCallSiteThreshold; 1978 } else if (isColdCallSite(Call, CallerBFI)) { 1979 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1980 // Do not apply bonuses for a cold callsite including the 1981 // LastCallToStatic bonus. While this bonus might result in code size 1982 // reduction, it can cause the size of a non-cold caller to increase 1983 // preventing it from being inlined. 1984 DisallowAllBonuses(); 1985 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1986 } else if (PSI) { 1987 // Use callee's global profile information only if we have no way of 1988 // determining this via callsite information. 1989 if (PSI->isFunctionEntryHot(&Callee)) { 1990 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1991 // If callsite hotness can not be determined, we may still know 1992 // that the callee is hot and treat it as a weaker hint for threshold 1993 // increase. 1994 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1995 } else if (PSI->isFunctionEntryCold(&Callee)) { 1996 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1997 // Do not apply bonuses for a cold callee including the 1998 // LastCallToStatic bonus. While this bonus might result in code size 1999 // reduction, it can cause the size of a non-cold caller to increase 2000 // preventing it from being inlined. 2001 DisallowAllBonuses(); 2002 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 2003 } 2004 } 2005 } 2006 2007 Threshold += TTI.adjustInliningThreshold(&Call); 2008 2009 // Finally, take the target-specific inlining threshold multiplier into 2010 // account. 2011 Threshold *= TTI.getInliningThresholdMultiplier(); 2012 2013 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 2014 VectorBonus = Threshold * VectorBonusPercent / 100; 2015 2016 // If there is only one call of the function, and it has internal linkage, 2017 // the cost of inlining it drops dramatically. It may seem odd to update 2018 // Cost in updateThreshold, but the bonus depends on the logic in this method. 2019 if (isSoleCallToLocalFunction(Call, F)) { 2020 Cost -= LastCallToStaticBonus; 2021 StaticBonusApplied = LastCallToStaticBonus; 2022 } 2023 } 2024 2025 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 2026 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2027 // First try to handle simplified comparisons. 2028 if (simplifyInstruction(I)) 2029 return true; 2030 2031 if (I.getOpcode() == Instruction::FCmp) 2032 return false; 2033 2034 // Otherwise look for a comparison between constant offset pointers with 2035 // a common base. 2036 Value *LHSBase, *RHSBase; 2037 APInt LHSOffset, RHSOffset; 2038 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 2039 if (LHSBase) { 2040 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 2041 if (RHSBase && LHSBase == RHSBase) { 2042 // We have common bases, fold the icmp to a constant based on the 2043 // offsets. 2044 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 2045 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 2046 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 2047 SimplifiedValues[&I] = C; 2048 ++NumConstantPtrCmps; 2049 return true; 2050 } 2051 } 2052 } 2053 2054 auto isImplicitNullCheckCmp = [](const CmpInst &I) { 2055 for (auto *User : I.users()) 2056 if (auto *Instr = dyn_cast<Instruction>(User)) 2057 if (!Instr->getMetadata(LLVMContext::MD_make_implicit)) 2058 return false; 2059 return true; 2060 }; 2061 2062 // If the comparison is an equality comparison with null, we can simplify it 2063 // if we know the value (argument) can't be null 2064 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) { 2065 if (isKnownNonNullInCallee(I.getOperand(0))) { 2066 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 2067 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 2068 : ConstantInt::getFalse(I.getType()); 2069 return true; 2070 } 2071 // Implicit null checks act as unconditional branches and their comparisons 2072 // should be treated as simplified and free of cost. 2073 if (isImplicitNullCheckCmp(I)) 2074 return true; 2075 } 2076 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 2077 } 2078 2079 bool CallAnalyzer::visitSub(BinaryOperator &I) { 2080 // Try to handle a special case: we can fold computing the difference of two 2081 // constant-related pointers. 2082 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2083 Value *LHSBase, *RHSBase; 2084 APInt LHSOffset, RHSOffset; 2085 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 2086 if (LHSBase) { 2087 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 2088 if (RHSBase && LHSBase == RHSBase) { 2089 // We have common bases, fold the subtract to a constant based on the 2090 // offsets. 2091 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 2092 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 2093 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 2094 SimplifiedValues[&I] = C; 2095 ++NumConstantPtrDiffs; 2096 return true; 2097 } 2098 } 2099 } 2100 2101 // Otherwise, fall back to the generic logic for simplifying and handling 2102 // instructions. 2103 return Base::visitSub(I); 2104 } 2105 2106 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 2107 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2108 Constant *CLHS = dyn_cast<Constant>(LHS); 2109 if (!CLHS) 2110 CLHS = SimplifiedValues.lookup(LHS); 2111 Constant *CRHS = dyn_cast<Constant>(RHS); 2112 if (!CRHS) 2113 CRHS = SimplifiedValues.lookup(RHS); 2114 2115 Value *SimpleV = nullptr; 2116 if (auto FI = dyn_cast<FPMathOperator>(&I)) 2117 SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 2118 FI->getFastMathFlags(), DL); 2119 else 2120 SimpleV = 2121 simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 2122 2123 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2124 SimplifiedValues[&I] = C; 2125 2126 if (SimpleV) 2127 return true; 2128 2129 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 2130 disableSROA(LHS); 2131 disableSROA(RHS); 2132 2133 // If the instruction is floating point, and the target says this operation 2134 // is expensive, this may eventually become a library call. Treat the cost 2135 // as such. Unless it's fneg which can be implemented with an xor. 2136 using namespace llvm::PatternMatch; 2137 if (I.getType()->isFloatingPointTy() && 2138 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 2139 !match(&I, m_FNeg(m_Value()))) 2140 onCallPenalty(); 2141 2142 return false; 2143 } 2144 2145 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2146 Value *Op = I.getOperand(0); 2147 Constant *COp = dyn_cast<Constant>(Op); 2148 if (!COp) 2149 COp = SimplifiedValues.lookup(Op); 2150 2151 Value *SimpleV = simplifyFNegInst( 2152 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2153 2154 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2155 SimplifiedValues[&I] = C; 2156 2157 if (SimpleV) 2158 return true; 2159 2160 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2161 disableSROA(Op); 2162 2163 return false; 2164 } 2165 2166 bool CallAnalyzer::visitLoad(LoadInst &I) { 2167 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2168 return true; 2169 2170 // If the data is already loaded from this address and hasn't been clobbered 2171 // by any stores or calls, this load is likely to be redundant and can be 2172 // eliminated. 2173 if (EnableLoadElimination && 2174 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2175 onLoadEliminationOpportunity(); 2176 return true; 2177 } 2178 2179 onMemAccess(); 2180 return false; 2181 } 2182 2183 bool CallAnalyzer::visitStore(StoreInst &I) { 2184 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2185 return true; 2186 2187 // The store can potentially clobber loads and prevent repeated loads from 2188 // being eliminated. 2189 // FIXME: 2190 // 1. We can probably keep an initial set of eliminatable loads substracted 2191 // from the cost even when we finally see a store. We just need to disable 2192 // *further* accumulation of elimination savings. 2193 // 2. We should probably at some point thread MemorySSA for the callee into 2194 // this and then use that to actually compute *really* precise savings. 2195 disableLoadElimination(); 2196 2197 onMemAccess(); 2198 return false; 2199 } 2200 2201 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2202 // Constant folding for extract value is trivial. 2203 if (simplifyInstruction(I)) 2204 return true; 2205 2206 // SROA can't look through these, but they may be free. 2207 return Base::visitExtractValue(I); 2208 } 2209 2210 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2211 // Constant folding for insert value is trivial. 2212 if (simplifyInstruction(I)) 2213 return true; 2214 2215 // SROA can't look through these, but they may be free. 2216 return Base::visitInsertValue(I); 2217 } 2218 2219 /// Try to simplify a call site. 2220 /// 2221 /// Takes a concrete function and callsite and tries to actually simplify it by 2222 /// analyzing the arguments and call itself with instsimplify. Returns true if 2223 /// it has simplified the callsite to some other entity (a constant), making it 2224 /// free. 2225 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2226 // FIXME: Using the instsimplify logic directly for this is inefficient 2227 // because we have to continually rebuild the argument list even when no 2228 // simplifications can be performed. Until that is fixed with remapping 2229 // inside of instsimplify, directly constant fold calls here. 2230 if (!canConstantFoldCallTo(&Call, F)) 2231 return false; 2232 2233 // Try to re-map the arguments to constants. 2234 SmallVector<Constant *, 4> ConstantArgs; 2235 ConstantArgs.reserve(Call.arg_size()); 2236 for (Value *I : Call.args()) { 2237 Constant *C = dyn_cast<Constant>(I); 2238 if (!C) 2239 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2240 if (!C) 2241 return false; // This argument doesn't map to a constant. 2242 2243 ConstantArgs.push_back(C); 2244 } 2245 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2246 SimplifiedValues[&Call] = C; 2247 return true; 2248 } 2249 2250 return false; 2251 } 2252 2253 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2254 if (!onCallBaseVisitStart(Call)) 2255 return true; 2256 2257 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2258 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2259 // This aborts the entire analysis. 2260 ExposesReturnsTwice = true; 2261 return false; 2262 } 2263 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2264 ContainsNoDuplicateCall = true; 2265 2266 Function *F = Call.getCalledFunction(); 2267 bool IsIndirectCall = !F; 2268 if (IsIndirectCall) { 2269 // Check if this happens to be an indirect function call to a known function 2270 // in this inline context. If not, we've done all we can. 2271 Value *Callee = Call.getCalledOperand(); 2272 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2273 if (!F || F->getFunctionType() != Call.getFunctionType()) { 2274 onCallArgumentSetup(Call); 2275 2276 if (!Call.onlyReadsMemory()) 2277 disableLoadElimination(); 2278 return Base::visitCallBase(Call); 2279 } 2280 } 2281 2282 assert(F && "Expected a call to a known function"); 2283 2284 // When we have a concrete function, first try to simplify it directly. 2285 if (simplifyCallSite(F, Call)) 2286 return true; 2287 2288 // Next check if it is an intrinsic we know about. 2289 // FIXME: Lift this into part of the InstVisitor. 2290 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2291 switch (II->getIntrinsicID()) { 2292 default: 2293 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2294 disableLoadElimination(); 2295 return Base::visitCallBase(Call); 2296 2297 case Intrinsic::load_relative: 2298 onLoadRelativeIntrinsic(); 2299 return false; 2300 2301 case Intrinsic::memset: 2302 case Intrinsic::memcpy: 2303 case Intrinsic::memmove: 2304 disableLoadElimination(); 2305 // SROA can usually chew through these intrinsics, but they aren't free. 2306 return false; 2307 case Intrinsic::icall_branch_funnel: 2308 case Intrinsic::localescape: 2309 HasUninlineableIntrinsic = true; 2310 return false; 2311 case Intrinsic::vastart: 2312 InitsVargArgs = true; 2313 return false; 2314 case Intrinsic::launder_invariant_group: 2315 case Intrinsic::strip_invariant_group: 2316 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2317 SROAArgValues[II] = SROAArg; 2318 return true; 2319 case Intrinsic::is_constant: 2320 return simplifyIntrinsicCallIsConstant(Call); 2321 case Intrinsic::objectsize: 2322 return simplifyIntrinsicCallObjectSize(Call); 2323 } 2324 } 2325 2326 if (F == Call.getFunction()) { 2327 // This flag will fully abort the analysis, so don't bother with anything 2328 // else. 2329 IsRecursiveCall = true; 2330 if (!AllowRecursiveCall) 2331 return false; 2332 } 2333 2334 if (TTI.isLoweredToCall(F)) { 2335 onLoweredCall(F, Call, IsIndirectCall); 2336 } 2337 2338 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2339 disableLoadElimination(); 2340 return Base::visitCallBase(Call); 2341 } 2342 2343 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2344 // At least one return instruction will be free after inlining. 2345 bool Free = !HasReturn; 2346 HasReturn = true; 2347 return Free; 2348 } 2349 2350 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2351 // We model unconditional branches as essentially free -- they really 2352 // shouldn't exist at all, but handling them makes the behavior of the 2353 // inliner more regular and predictable. Interestingly, conditional branches 2354 // which will fold away are also free. 2355 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2356 BI.getMetadata(LLVMContext::MD_make_implicit) || 2357 isa_and_nonnull<ConstantInt>( 2358 SimplifiedValues.lookup(BI.getCondition())); 2359 } 2360 2361 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2362 bool CheckSROA = SI.getType()->isPointerTy(); 2363 Value *TrueVal = SI.getTrueValue(); 2364 Value *FalseVal = SI.getFalseValue(); 2365 2366 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2367 if (!TrueC) 2368 TrueC = SimplifiedValues.lookup(TrueVal); 2369 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2370 if (!FalseC) 2371 FalseC = SimplifiedValues.lookup(FalseVal); 2372 Constant *CondC = 2373 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2374 2375 if (!CondC) { 2376 // Select C, X, X => X 2377 if (TrueC == FalseC && TrueC) { 2378 SimplifiedValues[&SI] = TrueC; 2379 return true; 2380 } 2381 2382 if (!CheckSROA) 2383 return Base::visitSelectInst(SI); 2384 2385 std::pair<Value *, APInt> TrueBaseAndOffset = 2386 ConstantOffsetPtrs.lookup(TrueVal); 2387 std::pair<Value *, APInt> FalseBaseAndOffset = 2388 ConstantOffsetPtrs.lookup(FalseVal); 2389 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2390 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2391 2392 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2393 SROAArgValues[&SI] = SROAArg; 2394 return true; 2395 } 2396 2397 return Base::visitSelectInst(SI); 2398 } 2399 2400 // Select condition is a constant. 2401 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2402 : (CondC->isNullValue()) ? FalseVal 2403 : nullptr; 2404 if (!SelectedV) { 2405 // Condition is a vector constant that is not all 1s or all 0s. If all 2406 // operands are constants, ConstantFoldSelectInstruction() can handle the 2407 // cases such as select vectors. 2408 if (TrueC && FalseC) { 2409 if (auto *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) { 2410 SimplifiedValues[&SI] = C; 2411 return true; 2412 } 2413 } 2414 return Base::visitSelectInst(SI); 2415 } 2416 2417 // Condition is either all 1s or all 0s. SI can be simplified. 2418 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2419 SimplifiedValues[&SI] = SelectedC; 2420 return true; 2421 } 2422 2423 if (!CheckSROA) 2424 return true; 2425 2426 std::pair<Value *, APInt> BaseAndOffset = 2427 ConstantOffsetPtrs.lookup(SelectedV); 2428 if (BaseAndOffset.first) { 2429 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2430 2431 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2432 SROAArgValues[&SI] = SROAArg; 2433 } 2434 2435 return true; 2436 } 2437 2438 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2439 // We model unconditional switches as free, see the comments on handling 2440 // branches. 2441 if (isa<ConstantInt>(SI.getCondition())) 2442 return true; 2443 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2444 if (isa<ConstantInt>(V)) 2445 return true; 2446 2447 // Assume the most general case where the switch is lowered into 2448 // either a jump table, bit test, or a balanced binary tree consisting of 2449 // case clusters without merging adjacent clusters with the same 2450 // destination. We do not consider the switches that are lowered with a mix 2451 // of jump table/bit test/binary search tree. The cost of the switch is 2452 // proportional to the size of the tree or the size of jump table range. 2453 // 2454 // NB: We convert large switches which are just used to initialize large phi 2455 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2456 // inlining those. It will prevent inlining in cases where the optimization 2457 // does not (yet) fire. 2458 2459 unsigned JumpTableSize = 0; 2460 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2461 unsigned NumCaseCluster = 2462 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2463 2464 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2465 return false; 2466 } 2467 2468 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2469 // We never want to inline functions that contain an indirectbr. This is 2470 // incorrect because all the blockaddress's (in static global initializers 2471 // for example) would be referring to the original function, and this 2472 // indirect jump would jump from the inlined copy of the function into the 2473 // original function which is extremely undefined behavior. 2474 // FIXME: This logic isn't really right; we can safely inline functions with 2475 // indirectbr's as long as no other function or global references the 2476 // blockaddress of a block within the current function. 2477 HasIndirectBr = true; 2478 return false; 2479 } 2480 2481 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2482 // FIXME: It's not clear that a single instruction is an accurate model for 2483 // the inline cost of a resume instruction. 2484 return false; 2485 } 2486 2487 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2488 // FIXME: It's not clear that a single instruction is an accurate model for 2489 // the inline cost of a cleanupret instruction. 2490 return false; 2491 } 2492 2493 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2494 // FIXME: It's not clear that a single instruction is an accurate model for 2495 // the inline cost of a catchret instruction. 2496 return false; 2497 } 2498 2499 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2500 // FIXME: It might be reasonably to discount the cost of instructions leading 2501 // to unreachable as they have the lowest possible impact on both runtime and 2502 // code size. 2503 return true; // No actual code is needed for unreachable. 2504 } 2505 2506 bool CallAnalyzer::visitInstruction(Instruction &I) { 2507 // Some instructions are free. All of the free intrinsics can also be 2508 // handled by SROA, etc. 2509 if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2510 TargetTransformInfo::TCC_Free) 2511 return true; 2512 2513 // We found something we don't understand or can't handle. Mark any SROA-able 2514 // values in the operand list as no longer viable. 2515 for (const Use &Op : I.operands()) 2516 disableSROA(Op); 2517 2518 return false; 2519 } 2520 2521 /// Analyze a basic block for its contribution to the inline cost. 2522 /// 2523 /// This method walks the analyzer over every instruction in the given basic 2524 /// block and accounts for their cost during inlining at this callsite. It 2525 /// aborts early if the threshold has been exceeded or an impossible to inline 2526 /// construct has been detected. It returns false if inlining is no longer 2527 /// viable, and true if inlining remains viable. 2528 InlineResult 2529 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2530 SmallPtrSetImpl<const Value *> &EphValues) { 2531 for (Instruction &I : *BB) { 2532 // FIXME: Currently, the number of instructions in a function regardless of 2533 // our ability to simplify them during inline to constants or dead code, 2534 // are actually used by the vector bonus heuristic. As long as that's true, 2535 // we have to special case debug intrinsics here to prevent differences in 2536 // inlining due to debug symbols. Eventually, the number of unsimplified 2537 // instructions shouldn't factor into the cost computation, but until then, 2538 // hack around it here. 2539 // Similarly, skip pseudo-probes. 2540 if (I.isDebugOrPseudoInst()) 2541 continue; 2542 2543 // Skip ephemeral values. 2544 if (EphValues.count(&I)) 2545 continue; 2546 2547 ++NumInstructions; 2548 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2549 ++NumVectorInstructions; 2550 2551 // If the instruction simplified to a constant, there is no cost to this 2552 // instruction. Visit the instructions using our InstVisitor to account for 2553 // all of the per-instruction logic. The visit tree returns true if we 2554 // consumed the instruction in any way, and false if the instruction's base 2555 // cost should count against inlining. 2556 onInstructionAnalysisStart(&I); 2557 2558 if (Base::visit(&I)) 2559 ++NumInstructionsSimplified; 2560 else 2561 onMissedSimplification(); 2562 2563 onInstructionAnalysisFinish(&I); 2564 using namespace ore; 2565 // If the visit this instruction detected an uninlinable pattern, abort. 2566 InlineResult IR = InlineResult::success(); 2567 if (IsRecursiveCall && !AllowRecursiveCall) 2568 IR = InlineResult::failure("recursive"); 2569 else if (ExposesReturnsTwice) 2570 IR = InlineResult::failure("exposes returns twice"); 2571 else if (HasDynamicAlloca) 2572 IR = InlineResult::failure("dynamic alloca"); 2573 else if (HasIndirectBr) 2574 IR = InlineResult::failure("indirect branch"); 2575 else if (HasUninlineableIntrinsic) 2576 IR = InlineResult::failure("uninlinable intrinsic"); 2577 else if (InitsVargArgs) 2578 IR = InlineResult::failure("varargs"); 2579 if (!IR.isSuccess()) { 2580 if (ORE) 2581 ORE->emit([&]() { 2582 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2583 &CandidateCall) 2584 << NV("Callee", &F) << " has uninlinable pattern (" 2585 << NV("InlineResult", IR.getFailureReason()) 2586 << ") and cost is not fully computed"; 2587 }); 2588 return IR; 2589 } 2590 2591 // If the caller is a recursive function then we don't want to inline 2592 // functions which allocate a lot of stack space because it would increase 2593 // the caller stack usage dramatically. 2594 if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) { 2595 auto IR = 2596 InlineResult::failure("recursive and allocates too much stack space"); 2597 if (ORE) 2598 ORE->emit([&]() { 2599 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2600 &CandidateCall) 2601 << NV("Callee", &F) << " is " 2602 << NV("InlineResult", IR.getFailureReason()) 2603 << ". Cost is not fully computed"; 2604 }); 2605 return IR; 2606 } 2607 2608 if (shouldStop()) 2609 return InlineResult::failure( 2610 "Call site analysis is not favorable to inlining."); 2611 } 2612 2613 return InlineResult::success(); 2614 } 2615 2616 /// Compute the base pointer and cumulative constant offsets for V. 2617 /// 2618 /// This strips all constant offsets off of V, leaving it the base pointer, and 2619 /// accumulates the total constant offset applied in the returned constant. It 2620 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2621 /// no constant offsets applied. 2622 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2623 if (!V->getType()->isPointerTy()) 2624 return nullptr; 2625 2626 unsigned AS = V->getType()->getPointerAddressSpace(); 2627 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2628 APInt Offset = APInt::getZero(IntPtrWidth); 2629 2630 // Even though we don't look through PHI nodes, we could be called on an 2631 // instruction in an unreachable block, which may be on a cycle. 2632 SmallPtrSet<Value *, 4> Visited; 2633 Visited.insert(V); 2634 do { 2635 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2636 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2637 return nullptr; 2638 V = GEP->getPointerOperand(); 2639 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2640 V = cast<Operator>(V)->getOperand(0); 2641 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2642 if (GA->isInterposable()) 2643 break; 2644 V = GA->getAliasee(); 2645 } else { 2646 break; 2647 } 2648 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2649 } while (Visited.insert(V).second); 2650 2651 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2652 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2653 } 2654 2655 /// Find dead blocks due to deleted CFG edges during inlining. 2656 /// 2657 /// If we know the successor of the current block, \p CurrBB, has to be \p 2658 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2659 /// no live incoming CFG edges. If one block is found to be dead, we can 2660 /// continue growing the dead block list by checking the successors of the dead 2661 /// blocks to see if all their incoming edges are dead or not. 2662 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2663 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2664 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2665 // known successor which is not the one under exam. 2666 return (DeadBlocks.count(Pred) || 2667 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2668 }; 2669 2670 auto IsNewlyDead = [&](BasicBlock *BB) { 2671 // If all the edges to a block are dead, the block is also dead. 2672 return (!DeadBlocks.count(BB) && 2673 llvm::all_of(predecessors(BB), 2674 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2675 }; 2676 2677 for (BasicBlock *Succ : successors(CurrBB)) { 2678 if (Succ == NextBB || !IsNewlyDead(Succ)) 2679 continue; 2680 SmallVector<BasicBlock *, 4> NewDead; 2681 NewDead.push_back(Succ); 2682 while (!NewDead.empty()) { 2683 BasicBlock *Dead = NewDead.pop_back_val(); 2684 if (DeadBlocks.insert(Dead).second) 2685 // Continue growing the dead block lists. 2686 for (BasicBlock *S : successors(Dead)) 2687 if (IsNewlyDead(S)) 2688 NewDead.push_back(S); 2689 } 2690 } 2691 } 2692 2693 /// Analyze a call site for potential inlining. 2694 /// 2695 /// Returns true if inlining this call is viable, and false if it is not 2696 /// viable. It computes the cost and adjusts the threshold based on numerous 2697 /// factors and heuristics. If this method returns false but the computed cost 2698 /// is below the computed threshold, then inlining was forcibly disabled by 2699 /// some artifact of the routine. 2700 InlineResult CallAnalyzer::analyze() { 2701 ++NumCallsAnalyzed; 2702 2703 auto Result = onAnalysisStart(); 2704 if (!Result.isSuccess()) 2705 return Result; 2706 2707 if (F.empty()) 2708 return InlineResult::success(); 2709 2710 Function *Caller = CandidateCall.getFunction(); 2711 // Check if the caller function is recursive itself. 2712 for (User *U : Caller->users()) { 2713 CallBase *Call = dyn_cast<CallBase>(U); 2714 if (Call && Call->getFunction() == Caller) { 2715 IsCallerRecursive = true; 2716 break; 2717 } 2718 } 2719 2720 // Populate our simplified values by mapping from function arguments to call 2721 // arguments with known important simplifications. 2722 auto CAI = CandidateCall.arg_begin(); 2723 for (Argument &FAI : F.args()) { 2724 assert(CAI != CandidateCall.arg_end()); 2725 if (Constant *C = dyn_cast<Constant>(CAI)) 2726 SimplifiedValues[&FAI] = C; 2727 2728 Value *PtrArg = *CAI; 2729 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2730 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2731 2732 // We can SROA any pointer arguments derived from alloca instructions. 2733 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2734 SROAArgValues[&FAI] = SROAArg; 2735 onInitializeSROAArg(SROAArg); 2736 EnabledSROAAllocas.insert(SROAArg); 2737 } 2738 } 2739 ++CAI; 2740 } 2741 NumConstantArgs = SimplifiedValues.size(); 2742 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2743 NumAllocaArgs = SROAArgValues.size(); 2744 2745 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2746 // the ephemeral values multiple times (and they're completely determined by 2747 // the callee, so this is purely duplicate work). 2748 SmallPtrSet<const Value *, 32> EphValues; 2749 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2750 2751 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2752 // adding basic blocks of the callee which can be proven to be dead for this 2753 // particular call site in order to get more accurate cost estimates. This 2754 // requires a somewhat heavyweight iteration pattern: we need to walk the 2755 // basic blocks in a breadth-first order as we insert live successors. To 2756 // accomplish this, prioritizing for small iterations because we exit after 2757 // crossing our threshold, we use a small-size optimized SetVector. 2758 typedef SmallSetVector<BasicBlock *, 16> BBSetVector; 2759 BBSetVector BBWorklist; 2760 BBWorklist.insert(&F.getEntryBlock()); 2761 2762 // Note that we *must not* cache the size, this loop grows the worklist. 2763 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2764 if (shouldStop()) 2765 break; 2766 2767 BasicBlock *BB = BBWorklist[Idx]; 2768 if (BB->empty()) 2769 continue; 2770 2771 onBlockStart(BB); 2772 2773 // Disallow inlining a blockaddress with uses other than strictly callbr. 2774 // A blockaddress only has defined behavior for an indirect branch in the 2775 // same function, and we do not currently support inlining indirect 2776 // branches. But, the inliner may not see an indirect branch that ends up 2777 // being dead code at a particular call site. If the blockaddress escapes 2778 // the function, e.g., via a global variable, inlining may lead to an 2779 // invalid cross-function reference. 2780 // FIXME: pr/39560: continue relaxing this overt restriction. 2781 if (BB->hasAddressTaken()) 2782 for (User *U : BlockAddress::get(&*BB)->users()) 2783 if (!isa<CallBrInst>(*U)) 2784 return InlineResult::failure("blockaddress used outside of callbr"); 2785 2786 // Analyze the cost of this block. If we blow through the threshold, this 2787 // returns false, and we can bail on out. 2788 InlineResult IR = analyzeBlock(BB, EphValues); 2789 if (!IR.isSuccess()) 2790 return IR; 2791 2792 Instruction *TI = BB->getTerminator(); 2793 2794 // Add in the live successors by first checking whether we have terminator 2795 // that may be simplified based on the values simplified by this call. 2796 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2797 if (BI->isConditional()) { 2798 Value *Cond = BI->getCondition(); 2799 if (ConstantInt *SimpleCond = 2800 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2801 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2802 BBWorklist.insert(NextBB); 2803 KnownSuccessors[BB] = NextBB; 2804 findDeadBlocks(BB, NextBB); 2805 continue; 2806 } 2807 } 2808 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2809 Value *Cond = SI->getCondition(); 2810 if (ConstantInt *SimpleCond = 2811 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2812 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2813 BBWorklist.insert(NextBB); 2814 KnownSuccessors[BB] = NextBB; 2815 findDeadBlocks(BB, NextBB); 2816 continue; 2817 } 2818 } 2819 2820 // If we're unable to select a particular successor, just count all of 2821 // them. 2822 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2823 ++TIdx) 2824 BBWorklist.insert(TI->getSuccessor(TIdx)); 2825 2826 onBlockAnalyzed(BB); 2827 } 2828 2829 // If this is a noduplicate call, we can still inline as long as 2830 // inlining this would cause the removal of the caller (so the instruction 2831 // is not actually duplicated, just moved). 2832 if (!isSoleCallToLocalFunction(CandidateCall, F) && ContainsNoDuplicateCall) 2833 return InlineResult::failure("noduplicate"); 2834 2835 // If the callee's stack size exceeds the user-specified threshold, 2836 // do not let it be inlined. 2837 // The command line option overrides a limit set in the function attributes. 2838 size_t FinalStackSizeThreshold = StackSizeThreshold; 2839 if (!StackSizeThreshold.getNumOccurrences()) 2840 if (std::optional<int> AttrMaxStackSize = getStringFnAttrAsInt( 2841 Caller, InlineConstants::MaxInlineStackSizeAttributeName)) 2842 FinalStackSizeThreshold = *AttrMaxStackSize; 2843 if (AllocatedSize > FinalStackSizeThreshold) 2844 return InlineResult::failure("stacksize"); 2845 2846 return finalizeAnalysis(); 2847 } 2848 2849 void InlineCostCallAnalyzer::print(raw_ostream &OS) { 2850 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" 2851 if (PrintInstructionComments) 2852 F.print(OS, &Writer); 2853 DEBUG_PRINT_STAT(NumConstantArgs); 2854 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2855 DEBUG_PRINT_STAT(NumAllocaArgs); 2856 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2857 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2858 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2859 DEBUG_PRINT_STAT(NumInstructions); 2860 DEBUG_PRINT_STAT(SROACostSavings); 2861 DEBUG_PRINT_STAT(SROACostSavingsLost); 2862 DEBUG_PRINT_STAT(LoadEliminationCost); 2863 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2864 DEBUG_PRINT_STAT(Cost); 2865 DEBUG_PRINT_STAT(Threshold); 2866 #undef DEBUG_PRINT_STAT 2867 } 2868 2869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2870 /// Dump stats about this call's analysis. 2871 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } 2872 #endif 2873 2874 /// Test that there are no attribute conflicts between Caller and Callee 2875 /// that prevent inlining. 2876 static bool functionsHaveCompatibleAttributes( 2877 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2878 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2879 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2880 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2881 // object, and always returns the same object (which is overwritten on each 2882 // GetTLI call). Therefore we copy the first result. 2883 auto CalleeTLI = GetTLI(*Callee); 2884 return (IgnoreTTIInlineCompatible || 2885 TTI.areInlineCompatible(Caller, Callee)) && 2886 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2887 InlineCallerSupersetNoBuiltin) && 2888 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2889 } 2890 2891 int llvm::getCallsiteCost(const TargetTransformInfo &TTI, const CallBase &Call, 2892 const DataLayout &DL) { 2893 int64_t Cost = 0; 2894 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2895 if (Call.isByValArgument(I)) { 2896 // We approximate the number of loads and stores needed by dividing the 2897 // size of the byval type by the target's pointer size. 2898 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2899 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2900 unsigned AS = PTy->getAddressSpace(); 2901 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2902 // Ceiling division. 2903 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2904 2905 // If it generates more than 8 stores it is likely to be expanded as an 2906 // inline memcpy so we take that as an upper bound. Otherwise we assume 2907 // one load and one store per word copied. 2908 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2909 // here instead of a magic number of 8, but it's not available via 2910 // DataLayout. 2911 NumStores = std::min(NumStores, 8U); 2912 2913 Cost += 2 * NumStores * InstrCost; 2914 } else { 2915 // For non-byval arguments subtract off one instruction per call 2916 // argument. 2917 Cost += InstrCost; 2918 } 2919 } 2920 // The call instruction also disappears after inlining. 2921 Cost += InstrCost; 2922 Cost += TTI.getInlineCallPenalty(Call.getCaller(), Call, CallPenalty); 2923 2924 return std::min<int64_t>(Cost, INT_MAX); 2925 } 2926 2927 InlineCost llvm::getInlineCost( 2928 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2929 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2930 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2931 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2932 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2933 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2934 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2935 } 2936 2937 std::optional<int> llvm::getInliningCostEstimate( 2938 CallBase &Call, TargetTransformInfo &CalleeTTI, 2939 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2940 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2941 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2942 const InlineParams Params = {/* DefaultThreshold*/ 0, 2943 /*HintThreshold*/ {}, 2944 /*ColdThreshold*/ {}, 2945 /*OptSizeThreshold*/ {}, 2946 /*OptMinSizeThreshold*/ {}, 2947 /*HotCallSiteThreshold*/ {}, 2948 /*LocallyHotCallSiteThreshold*/ {}, 2949 /*ColdCallSiteThreshold*/ {}, 2950 /*ComputeFullInlineCost*/ true, 2951 /*EnableDeferral*/ true}; 2952 2953 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2954 GetAssumptionCache, GetBFI, PSI, ORE, true, 2955 /*IgnoreThreshold*/ true); 2956 auto R = CA.analyze(); 2957 if (!R.isSuccess()) 2958 return std::nullopt; 2959 return CA.getCost(); 2960 } 2961 2962 std::optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2963 CallBase &Call, TargetTransformInfo &CalleeTTI, 2964 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2965 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2966 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2967 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2968 ORE, *Call.getCalledFunction(), Call); 2969 auto R = CFA.analyze(); 2970 if (!R.isSuccess()) 2971 return std::nullopt; 2972 return CFA.features(); 2973 } 2974 2975 std::optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2976 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2977 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2978 2979 // Cannot inline indirect calls. 2980 if (!Callee) 2981 return InlineResult::failure("indirect call"); 2982 2983 // When callee coroutine function is inlined into caller coroutine function 2984 // before coro-split pass, 2985 // coro-early pass can not handle this quiet well. 2986 // So we won't inline the coroutine function if it have not been unsplited 2987 if (Callee->isPresplitCoroutine()) 2988 return InlineResult::failure("unsplited coroutine call"); 2989 2990 // Never inline calls with byval arguments that does not have the alloca 2991 // address space. Since byval arguments can be replaced with a copy to an 2992 // alloca, the inlined code would need to be adjusted to handle that the 2993 // argument is in the alloca address space (so it is a little bit complicated 2994 // to solve). 2995 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2996 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2997 if (Call.isByValArgument(I)) { 2998 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2999 if (PTy->getAddressSpace() != AllocaAS) 3000 return InlineResult::failure("byval arguments without alloca" 3001 " address space"); 3002 } 3003 3004 // Calls to functions with always-inline attributes should be inlined 3005 // whenever possible. 3006 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 3007 if (Call.getAttributes().hasFnAttr(Attribute::NoInline)) 3008 return InlineResult::failure("noinline call site attribute"); 3009 3010 auto IsViable = isInlineViable(*Callee); 3011 if (IsViable.isSuccess()) 3012 return InlineResult::success(); 3013 return InlineResult::failure(IsViable.getFailureReason()); 3014 } 3015 3016 // Never inline functions with conflicting attributes (unless callee has 3017 // always-inline attribute). 3018 Function *Caller = Call.getCaller(); 3019 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 3020 return InlineResult::failure("conflicting attributes"); 3021 3022 // Don't inline this call if the caller has the optnone attribute. 3023 if (Caller->hasOptNone()) 3024 return InlineResult::failure("optnone attribute"); 3025 3026 // Don't inline a function that treats null pointer as valid into a caller 3027 // that does not have this attribute. 3028 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 3029 return InlineResult::failure("nullptr definitions incompatible"); 3030 3031 // Don't inline functions which can be interposed at link-time. 3032 if (Callee->isInterposable()) 3033 return InlineResult::failure("interposable"); 3034 3035 // Don't inline functions marked noinline. 3036 if (Callee->hasFnAttribute(Attribute::NoInline)) 3037 return InlineResult::failure("noinline function attribute"); 3038 3039 // Don't inline call sites marked noinline. 3040 if (Call.isNoInline()) 3041 return InlineResult::failure("noinline call site attribute"); 3042 3043 return std::nullopt; 3044 } 3045 3046 InlineCost llvm::getInlineCost( 3047 CallBase &Call, Function *Callee, const InlineParams &Params, 3048 TargetTransformInfo &CalleeTTI, 3049 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 3050 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 3051 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 3052 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 3053 3054 auto UserDecision = 3055 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 3056 3057 if (UserDecision) { 3058 if (UserDecision->isSuccess()) 3059 return llvm::InlineCost::getAlways("always inline attribute"); 3060 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 3061 } 3062 3063 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 3064 << "... (caller:" << Call.getCaller()->getName() 3065 << ")\n"); 3066 3067 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 3068 GetAssumptionCache, GetBFI, PSI, ORE); 3069 InlineResult ShouldInline = CA.analyze(); 3070 3071 LLVM_DEBUG(CA.dump()); 3072 3073 // Always make cost benefit based decision explicit. 3074 // We use always/never here since threshold is not meaningful, 3075 // as it's not what drives cost-benefit analysis. 3076 if (CA.wasDecidedByCostBenefit()) { 3077 if (ShouldInline.isSuccess()) 3078 return InlineCost::getAlways("benefit over cost", 3079 CA.getCostBenefitPair()); 3080 else 3081 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 3082 } 3083 3084 if (CA.wasDecidedByCostThreshold()) 3085 return InlineCost::get(CA.getCost(), CA.getThreshold(), 3086 CA.getStaticBonusApplied()); 3087 3088 // No details on how the decision was made, simply return always or never. 3089 return ShouldInline.isSuccess() 3090 ? InlineCost::getAlways("empty function") 3091 : InlineCost::getNever(ShouldInline.getFailureReason()); 3092 } 3093 3094 InlineResult llvm::isInlineViable(Function &F) { 3095 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 3096 for (BasicBlock &BB : F) { 3097 // Disallow inlining of functions which contain indirect branches. 3098 if (isa<IndirectBrInst>(BB.getTerminator())) 3099 return InlineResult::failure("contains indirect branches"); 3100 3101 // Disallow inlining of blockaddresses which are used by non-callbr 3102 // instructions. 3103 if (BB.hasAddressTaken()) 3104 for (User *U : BlockAddress::get(&BB)->users()) 3105 if (!isa<CallBrInst>(*U)) 3106 return InlineResult::failure("blockaddress used outside of callbr"); 3107 3108 for (auto &II : BB) { 3109 CallBase *Call = dyn_cast<CallBase>(&II); 3110 if (!Call) 3111 continue; 3112 3113 // Disallow recursive calls. 3114 Function *Callee = Call->getCalledFunction(); 3115 if (&F == Callee) 3116 return InlineResult::failure("recursive call"); 3117 3118 // Disallow calls which expose returns-twice to a function not previously 3119 // attributed as such. 3120 if (!ReturnsTwice && isa<CallInst>(Call) && 3121 cast<CallInst>(Call)->canReturnTwice()) 3122 return InlineResult::failure("exposes returns-twice attribute"); 3123 3124 if (Callee) 3125 switch (Callee->getIntrinsicID()) { 3126 default: 3127 break; 3128 case llvm::Intrinsic::icall_branch_funnel: 3129 // Disallow inlining of @llvm.icall.branch.funnel because current 3130 // backend can't separate call targets from call arguments. 3131 return InlineResult::failure( 3132 "disallowed inlining of @llvm.icall.branch.funnel"); 3133 case llvm::Intrinsic::localescape: 3134 // Disallow inlining functions that call @llvm.localescape. Doing this 3135 // correctly would require major changes to the inliner. 3136 return InlineResult::failure( 3137 "disallowed inlining of @llvm.localescape"); 3138 case llvm::Intrinsic::vastart: 3139 // Disallow inlining of functions that initialize VarArgs with 3140 // va_start. 3141 return InlineResult::failure( 3142 "contains VarArgs initialized with va_start"); 3143 } 3144 } 3145 } 3146 3147 return InlineResult::success(); 3148 } 3149 3150 // APIs to create InlineParams based on command line flags and/or other 3151 // parameters. 3152 3153 InlineParams llvm::getInlineParams(int Threshold) { 3154 InlineParams Params; 3155 3156 // This field is the threshold to use for a callee by default. This is 3157 // derived from one or more of: 3158 // * optimization or size-optimization levels, 3159 // * a value passed to createFunctionInliningPass function, or 3160 // * the -inline-threshold flag. 3161 // If the -inline-threshold flag is explicitly specified, that is used 3162 // irrespective of anything else. 3163 if (InlineThreshold.getNumOccurrences() > 0) 3164 Params.DefaultThreshold = InlineThreshold; 3165 else 3166 Params.DefaultThreshold = Threshold; 3167 3168 // Set the HintThreshold knob from the -inlinehint-threshold. 3169 Params.HintThreshold = HintThreshold; 3170 3171 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3172 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3173 3174 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3175 // populate LocallyHotCallSiteThreshold. Later, we populate 3176 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3177 // we know that optimization level is O3 (in the getInlineParams variant that 3178 // takes the opt and size levels). 3179 // FIXME: Remove this check (and make the assignment unconditional) after 3180 // addressing size regression issues at O2. 3181 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3182 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3183 3184 // Set the ColdCallSiteThreshold knob from the 3185 // -inline-cold-callsite-threshold. 3186 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3187 3188 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3189 // -inlinehint-threshold commandline option is not explicitly given. If that 3190 // option is present, then its value applies even for callees with size and 3191 // minsize attributes. 3192 // If the -inline-threshold is not specified, set the ColdThreshold from the 3193 // -inlinecold-threshold even if it is not explicitly passed. If 3194 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3195 // explicitly specified to set the ColdThreshold knob 3196 if (InlineThreshold.getNumOccurrences() == 0) { 3197 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3198 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3199 Params.ColdThreshold = ColdThreshold; 3200 } else if (ColdThreshold.getNumOccurrences() > 0) { 3201 Params.ColdThreshold = ColdThreshold; 3202 } 3203 return Params; 3204 } 3205 3206 InlineParams llvm::getInlineParams() { 3207 return getInlineParams(DefaultThreshold); 3208 } 3209 3210 // Compute the default threshold for inlining based on the opt level and the 3211 // size opt level. 3212 static int computeThresholdFromOptLevels(unsigned OptLevel, 3213 unsigned SizeOptLevel) { 3214 if (OptLevel > 2) 3215 return InlineConstants::OptAggressiveThreshold; 3216 if (SizeOptLevel == 1) // -Os 3217 return InlineConstants::OptSizeThreshold; 3218 if (SizeOptLevel == 2) // -Oz 3219 return InlineConstants::OptMinSizeThreshold; 3220 return DefaultThreshold; 3221 } 3222 3223 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3224 auto Params = 3225 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3226 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3227 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3228 // when it is specified explicitly. 3229 if (OptLevel > 2) 3230 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3231 return Params; 3232 } 3233 3234 PreservedAnalyses 3235 InlineCostAnnotationPrinterPass::run(Function &F, 3236 FunctionAnalysisManager &FAM) { 3237 PrintInstructionComments = true; 3238 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3239 [&](Function &F) -> AssumptionCache & { 3240 return FAM.getResult<AssumptionAnalysis>(F); 3241 }; 3242 Module *M = F.getParent(); 3243 ProfileSummaryInfo PSI(*M); 3244 DataLayout DL(M); 3245 TargetTransformInfo TTI(DL); 3246 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3247 // In the current implementation, the type of InlineParams doesn't matter as 3248 // the pass serves only for verification of inliner's decisions. 3249 // We can add a flag which determines InlineParams for this run. Right now, 3250 // the default InlineParams are used. 3251 const InlineParams Params = llvm::getInlineParams(); 3252 for (BasicBlock &BB : F) { 3253 for (Instruction &I : BB) { 3254 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3255 Function *CalledFunction = CI->getCalledFunction(); 3256 if (!CalledFunction || CalledFunction->isDeclaration()) 3257 continue; 3258 OptimizationRemarkEmitter ORE(CalledFunction); 3259 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3260 GetAssumptionCache, nullptr, &PSI, &ORE); 3261 ICCA.analyze(); 3262 OS << " Analyzing call of " << CalledFunction->getName() 3263 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3264 ICCA.print(OS); 3265 OS << "\n"; 3266 } 3267 } 3268 } 3269 return PreservedAnalyses::all(); 3270 } 3271