xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InlineCost.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/AssemblyAnnotationWriter.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/InstVisitor.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/FormattedStream.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <climits>
47 #include <limits>
48 #include <optional>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "inline-cost"
53 
54 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
55 
56 static cl::opt<int>
57     DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
58                      cl::desc("Default amount of inlining to perform"));
59 
60 // We introduce this option since there is a minor compile-time win by avoiding
61 // addition of TTI attributes (target-features in particular) to inline
62 // candidates when they are guaranteed to be the same as top level methods in
63 // some use cases. If we avoid adding the attribute, we need an option to avoid
64 // checking these attributes.
65 static cl::opt<bool> IgnoreTTIInlineCompatible(
66     "ignore-tti-inline-compatible", cl::Hidden, cl::init(false),
67     cl::desc("Ignore TTI attributes compatibility check between callee/caller "
68              "during inline cost calculation"));
69 
70 static cl::opt<bool> PrintInstructionComments(
71     "print-instruction-comments", cl::Hidden, cl::init(false),
72     cl::desc("Prints comments for instruction based on inline cost analysis"));
73 
74 static cl::opt<int> InlineThreshold(
75     "inline-threshold", cl::Hidden, cl::init(225),
76     cl::desc("Control the amount of inlining to perform (default = 225)"));
77 
78 static cl::opt<int> HintThreshold(
79     "inlinehint-threshold", cl::Hidden, cl::init(325),
80     cl::desc("Threshold for inlining functions with inline hint"));
81 
82 static cl::opt<int>
83     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
84                           cl::init(45),
85                           cl::desc("Threshold for inlining cold callsites"));
86 
87 static cl::opt<bool> InlineEnableCostBenefitAnalysis(
88     "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false),
89     cl::desc("Enable the cost-benefit analysis for the inliner"));
90 
91 // InlineSavingsMultiplier overrides per TTI multipliers iff it is
92 // specified explicitly in command line options. This option is exposed
93 // for tuning and testing.
94 static cl::opt<int> InlineSavingsMultiplier(
95     "inline-savings-multiplier", cl::Hidden, cl::init(8),
96     cl::desc("Multiplier to multiply cycle savings by during inlining"));
97 
98 // InlineSavingsProfitableMultiplier overrides per TTI multipliers iff it is
99 // specified explicitly in command line options. This option is exposed
100 // for tuning and testing.
101 static cl::opt<int> InlineSavingsProfitableMultiplier(
102     "inline-savings-profitable-multiplier", cl::Hidden, cl::init(4),
103     cl::desc("A multiplier on top of cycle savings to decide whether the "
104              "savings won't justify the cost"));
105 
106 static cl::opt<int>
107     InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100),
108                         cl::desc("The maximum size of a callee that get's "
109                                  "inlined without sufficient cycle savings"));
110 
111 // We introduce this threshold to help performance of instrumentation based
112 // PGO before we actually hook up inliner with analysis passes such as BPI and
113 // BFI.
114 static cl::opt<int> ColdThreshold(
115     "inlinecold-threshold", cl::Hidden, cl::init(45),
116     cl::desc("Threshold for inlining functions with cold attribute"));
117 
118 static cl::opt<int>
119     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
120                          cl::desc("Threshold for hot callsites "));
121 
122 static cl::opt<int> LocallyHotCallSiteThreshold(
123     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525),
124     cl::desc("Threshold for locally hot callsites "));
125 
126 static cl::opt<int> ColdCallSiteRelFreq(
127     "cold-callsite-rel-freq", cl::Hidden, cl::init(2),
128     cl::desc("Maximum block frequency, expressed as a percentage of caller's "
129              "entry frequency, for a callsite to be cold in the absence of "
130              "profile information."));
131 
132 static cl::opt<uint64_t> HotCallSiteRelFreq(
133     "hot-callsite-rel-freq", cl::Hidden, cl::init(60),
134     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
135              "entry frequency, for a callsite to be hot in the absence of "
136              "profile information."));
137 
138 static cl::opt<int>
139     InstrCost("inline-instr-cost", cl::Hidden, cl::init(5),
140               cl::desc("Cost of a single instruction when inlining"));
141 
142 static cl::opt<int>
143     MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0),
144                   cl::desc("Cost of load/store instruction when inlining"));
145 
146 static cl::opt<int> CallPenalty(
147     "inline-call-penalty", cl::Hidden, cl::init(25),
148     cl::desc("Call penalty that is applied per callsite when inlining"));
149 
150 static cl::opt<size_t>
151     StackSizeThreshold("inline-max-stacksize", cl::Hidden,
152                        cl::init(std::numeric_limits<size_t>::max()),
153                        cl::desc("Do not inline functions with a stack size "
154                                 "that exceeds the specified limit"));
155 
156 static cl::opt<size_t> RecurStackSizeThreshold(
157     "recursive-inline-max-stacksize", cl::Hidden,
158     cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller),
159     cl::desc("Do not inline recursive functions with a stack "
160              "size that exceeds the specified limit"));
161 
162 static cl::opt<bool> OptComputeFullInlineCost(
163     "inline-cost-full", cl::Hidden,
164     cl::desc("Compute the full inline cost of a call site even when the cost "
165              "exceeds the threshold."));
166 
167 static cl::opt<bool> InlineCallerSupersetNoBuiltin(
168     "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
169     cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
170              "attributes."));
171 
172 static cl::opt<bool> DisableGEPConstOperand(
173     "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
174     cl::desc("Disables evaluation of GetElementPtr with constant operands"));
175 
176 namespace llvm {
177 std::optional<int> getStringFnAttrAsInt(const Attribute &Attr) {
178   if (Attr.isValid()) {
179     int AttrValue = 0;
180     if (!Attr.getValueAsString().getAsInteger(10, AttrValue))
181       return AttrValue;
182   }
183   return std::nullopt;
184 }
185 
186 std::optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) {
187   return getStringFnAttrAsInt(CB.getFnAttr(AttrKind));
188 }
189 
190 std::optional<int> getStringFnAttrAsInt(Function *F, StringRef AttrKind) {
191   return getStringFnAttrAsInt(F->getFnAttribute(AttrKind));
192 }
193 
194 namespace InlineConstants {
195 int getInstrCost() { return InstrCost; }
196 
197 } // namespace InlineConstants
198 
199 } // namespace llvm
200 
201 namespace {
202 class InlineCostCallAnalyzer;
203 
204 // This struct is used to store information about inline cost of a
205 // particular instruction
206 struct InstructionCostDetail {
207   int CostBefore = 0;
208   int CostAfter = 0;
209   int ThresholdBefore = 0;
210   int ThresholdAfter = 0;
211 
212   int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }
213 
214   int getCostDelta() const { return CostAfter - CostBefore; }
215 
216   bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
217 };
218 
219 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
220 private:
221   InlineCostCallAnalyzer *const ICCA;
222 
223 public:
224   InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
225   void emitInstructionAnnot(const Instruction *I,
226                             formatted_raw_ostream &OS) override;
227 };
228 
229 /// Carry out call site analysis, in order to evaluate inlinability.
230 /// NOTE: the type is currently used as implementation detail of functions such
231 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the
232 /// expectation is that they come from the outer scope, from the wrapper
233 /// functions. If we want to support constructing CallAnalyzer objects where
234 /// lambdas are provided inline at construction, or where the object needs to
235 /// otherwise survive past the scope of the provided functions, we need to
236 /// revisit the argument types.
237 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
238   typedef InstVisitor<CallAnalyzer, bool> Base;
239   friend class InstVisitor<CallAnalyzer, bool>;
240 
241 protected:
242   virtual ~CallAnalyzer() = default;
243   /// The TargetTransformInfo available for this compilation.
244   const TargetTransformInfo &TTI;
245 
246   /// Getter for the cache of @llvm.assume intrinsics.
247   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
248 
249   /// Getter for BlockFrequencyInfo
250   function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
251 
252   /// Profile summary information.
253   ProfileSummaryInfo *PSI;
254 
255   /// The called function.
256   Function &F;
257 
258   // Cache the DataLayout since we use it a lot.
259   const DataLayout &DL;
260 
261   /// The OptimizationRemarkEmitter available for this compilation.
262   OptimizationRemarkEmitter *ORE;
263 
264   /// The candidate callsite being analyzed. Please do not use this to do
265   /// analysis in the caller function; we want the inline cost query to be
266   /// easily cacheable. Instead, use the cover function paramHasAttr.
267   CallBase &CandidateCall;
268 
269   /// Extension points for handling callsite features.
270   // Called before a basic block was analyzed.
271   virtual void onBlockStart(const BasicBlock *BB) {}
272 
273   /// Called after a basic block was analyzed.
274   virtual void onBlockAnalyzed(const BasicBlock *BB) {}
275 
276   /// Called before an instruction was analyzed
277   virtual void onInstructionAnalysisStart(const Instruction *I) {}
278 
279   /// Called after an instruction was analyzed
280   virtual void onInstructionAnalysisFinish(const Instruction *I) {}
281 
282   /// Called at the end of the analysis of the callsite. Return the outcome of
283   /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
284   /// the reason it can't.
285   virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
286   /// Called when we're about to start processing a basic block, and every time
287   /// we are done processing an instruction. Return true if there is no point in
288   /// continuing the analysis (e.g. we've determined already the call site is
289   /// too expensive to inline)
290   virtual bool shouldStop() { return false; }
291 
292   /// Called before the analysis of the callee body starts (with callsite
293   /// contexts propagated).  It checks callsite-specific information. Return a
294   /// reason analysis can't continue if that's the case, or 'true' if it may
295   /// continue.
296   virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
297   /// Called if the analysis engine decides SROA cannot be done for the given
298   /// alloca.
299   virtual void onDisableSROA(AllocaInst *Arg) {}
300 
301   /// Called the analysis engine determines load elimination won't happen.
302   virtual void onDisableLoadElimination() {}
303 
304   /// Called when we visit a CallBase, before the analysis starts. Return false
305   /// to stop further processing of the instruction.
306   virtual bool onCallBaseVisitStart(CallBase &Call) { return true; }
307 
308   /// Called to account for a call.
309   virtual void onCallPenalty() {}
310 
311   /// Called to account for a load or store.
312   virtual void onMemAccess(){};
313 
314   /// Called to account for the expectation the inlining would result in a load
315   /// elimination.
316   virtual void onLoadEliminationOpportunity() {}
317 
318   /// Called to account for the cost of argument setup for the Call in the
319   /// callee's body (not the callsite currently under analysis).
320   virtual void onCallArgumentSetup(const CallBase &Call) {}
321 
322   /// Called to account for a load relative intrinsic.
323   virtual void onLoadRelativeIntrinsic() {}
324 
325   /// Called to account for a lowered call.
326   virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
327   }
328 
329   /// Account for a jump table of given size. Return false to stop further
330   /// processing the switch instruction
331   virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
332 
333   /// Account for a case cluster of given size. Return false to stop further
334   /// processing of the instruction.
335   virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
336 
337   /// Called at the end of processing a switch instruction, with the given
338   /// number of case clusters.
339   virtual void onFinalizeSwitch(unsigned JumpTableSize,
340                                 unsigned NumCaseCluster) {}
341 
342   /// Called to account for any other instruction not specifically accounted
343   /// for.
344   virtual void onMissedSimplification() {}
345 
346   /// Start accounting potential benefits due to SROA for the given alloca.
347   virtual void onInitializeSROAArg(AllocaInst *Arg) {}
348 
349   /// Account SROA savings for the AllocaInst value.
350   virtual void onAggregateSROAUse(AllocaInst *V) {}
351 
352   bool handleSROA(Value *V, bool DoNotDisable) {
353     // Check for SROA candidates in comparisons.
354     if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
355       if (DoNotDisable) {
356         onAggregateSROAUse(SROAArg);
357         return true;
358       }
359       disableSROAForArg(SROAArg);
360     }
361     return false;
362   }
363 
364   bool IsCallerRecursive = false;
365   bool IsRecursiveCall = false;
366   bool ExposesReturnsTwice = false;
367   bool HasDynamicAlloca = false;
368   bool ContainsNoDuplicateCall = false;
369   bool HasReturn = false;
370   bool HasIndirectBr = false;
371   bool HasUninlineableIntrinsic = false;
372   bool InitsVargArgs = false;
373 
374   /// Number of bytes allocated statically by the callee.
375   uint64_t AllocatedSize = 0;
376   unsigned NumInstructions = 0;
377   unsigned NumVectorInstructions = 0;
378 
379   /// While we walk the potentially-inlined instructions, we build up and
380   /// maintain a mapping of simplified values specific to this callsite. The
381   /// idea is to propagate any special information we have about arguments to
382   /// this call through the inlinable section of the function, and account for
383   /// likely simplifications post-inlining. The most important aspect we track
384   /// is CFG altering simplifications -- when we prove a basic block dead, that
385   /// can cause dramatic shifts in the cost of inlining a function.
386   DenseMap<Value *, Constant *> SimplifiedValues;
387 
388   /// Keep track of the values which map back (through function arguments) to
389   /// allocas on the caller stack which could be simplified through SROA.
390   DenseMap<Value *, AllocaInst *> SROAArgValues;
391 
392   /// Keep track of Allocas for which we believe we may get SROA optimization.
393   DenseSet<AllocaInst *> EnabledSROAAllocas;
394 
395   /// Keep track of values which map to a pointer base and constant offset.
396   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
397 
398   /// Keep track of dead blocks due to the constant arguments.
399   SmallPtrSet<BasicBlock *, 16> DeadBlocks;
400 
401   /// The mapping of the blocks to their known unique successors due to the
402   /// constant arguments.
403   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
404 
405   /// Model the elimination of repeated loads that is expected to happen
406   /// whenever we simplify away the stores that would otherwise cause them to be
407   /// loads.
408   bool EnableLoadElimination = true;
409 
410   /// Whether we allow inlining for recursive call.
411   bool AllowRecursiveCall = false;
412 
413   SmallPtrSet<Value *, 16> LoadAddrSet;
414 
415   AllocaInst *getSROAArgForValueOrNull(Value *V) const {
416     auto It = SROAArgValues.find(V);
417     if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
418       return nullptr;
419     return It->second;
420   }
421 
422   // Custom simplification helper routines.
423   bool isAllocaDerivedArg(Value *V);
424   void disableSROAForArg(AllocaInst *SROAArg);
425   void disableSROA(Value *V);
426   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
427   void disableLoadElimination();
428   bool isGEPFree(GetElementPtrInst &GEP);
429   bool canFoldInboundsGEP(GetElementPtrInst &I);
430   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
431   bool simplifyCallSite(Function *F, CallBase &Call);
432   bool simplifyInstruction(Instruction &I);
433   bool simplifyIntrinsicCallIsConstant(CallBase &CB);
434   bool simplifyIntrinsicCallObjectSize(CallBase &CB);
435   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
436 
437   /// Return true if the given argument to the function being considered for
438   /// inlining has the given attribute set either at the call site or the
439   /// function declaration.  Primarily used to inspect call site specific
440   /// attributes since these can be more precise than the ones on the callee
441   /// itself.
442   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
443 
444   /// Return true if the given value is known non null within the callee if
445   /// inlined through this particular callsite.
446   bool isKnownNonNullInCallee(Value *V);
447 
448   /// Return true if size growth is allowed when inlining the callee at \p Call.
449   bool allowSizeGrowth(CallBase &Call);
450 
451   // Custom analysis routines.
452   InlineResult analyzeBlock(BasicBlock *BB,
453                             SmallPtrSetImpl<const Value *> &EphValues);
454 
455   // Disable several entry points to the visitor so we don't accidentally use
456   // them by declaring but not defining them here.
457   void visit(Module *);
458   void visit(Module &);
459   void visit(Function *);
460   void visit(Function &);
461   void visit(BasicBlock *);
462   void visit(BasicBlock &);
463 
464   // Provide base case for our instruction visit.
465   bool visitInstruction(Instruction &I);
466 
467   // Our visit overrides.
468   bool visitAlloca(AllocaInst &I);
469   bool visitPHI(PHINode &I);
470   bool visitGetElementPtr(GetElementPtrInst &I);
471   bool visitBitCast(BitCastInst &I);
472   bool visitPtrToInt(PtrToIntInst &I);
473   bool visitIntToPtr(IntToPtrInst &I);
474   bool visitCastInst(CastInst &I);
475   bool visitCmpInst(CmpInst &I);
476   bool visitSub(BinaryOperator &I);
477   bool visitBinaryOperator(BinaryOperator &I);
478   bool visitFNeg(UnaryOperator &I);
479   bool visitLoad(LoadInst &I);
480   bool visitStore(StoreInst &I);
481   bool visitExtractValue(ExtractValueInst &I);
482   bool visitInsertValue(InsertValueInst &I);
483   bool visitCallBase(CallBase &Call);
484   bool visitReturnInst(ReturnInst &RI);
485   bool visitBranchInst(BranchInst &BI);
486   bool visitSelectInst(SelectInst &SI);
487   bool visitSwitchInst(SwitchInst &SI);
488   bool visitIndirectBrInst(IndirectBrInst &IBI);
489   bool visitResumeInst(ResumeInst &RI);
490   bool visitCleanupReturnInst(CleanupReturnInst &RI);
491   bool visitCatchReturnInst(CatchReturnInst &RI);
492   bool visitUnreachableInst(UnreachableInst &I);
493 
494 public:
495   CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
496                function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
497                function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
498                ProfileSummaryInfo *PSI = nullptr,
499                OptimizationRemarkEmitter *ORE = nullptr)
500       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
501         PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
502         CandidateCall(Call) {}
503 
504   InlineResult analyze();
505 
506   std::optional<Constant *> getSimplifiedValue(Instruction *I) {
507     if (SimplifiedValues.contains(I))
508       return SimplifiedValues[I];
509     return std::nullopt;
510   }
511 
512   // Keep a bunch of stats about the cost savings found so we can print them
513   // out when debugging.
514   unsigned NumConstantArgs = 0;
515   unsigned NumConstantOffsetPtrArgs = 0;
516   unsigned NumAllocaArgs = 0;
517   unsigned NumConstantPtrCmps = 0;
518   unsigned NumConstantPtrDiffs = 0;
519   unsigned NumInstructionsSimplified = 0;
520 
521   void dump();
522 };
523 
524 // Considering forming a binary search, we should find the number of nodes
525 // which is same as the number of comparisons when lowered. For a given
526 // number of clusters, n, we can define a recursive function, f(n), to find
527 // the number of nodes in the tree. The recursion is :
528 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
529 // and f(n) = n, when n <= 3.
530 // This will lead a binary tree where the leaf should be either f(2) or f(3)
531 // when n > 3.  So, the number of comparisons from leaves should be n, while
532 // the number of non-leaf should be :
533 //   2^(log2(n) - 1) - 1
534 //   = 2^log2(n) * 2^-1 - 1
535 //   = n / 2 - 1.
536 // Considering comparisons from leaf and non-leaf nodes, we can estimate the
537 // number of comparisons in a simple closed form :
538 //   n + n / 2 - 1 = n * 3 / 2 - 1
539 int64_t getExpectedNumberOfCompare(int NumCaseCluster) {
540   return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1;
541 }
542 
543 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
544 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
545 class InlineCostCallAnalyzer final : public CallAnalyzer {
546   const bool ComputeFullInlineCost;
547   int LoadEliminationCost = 0;
548   /// Bonus to be applied when percentage of vector instructions in callee is
549   /// high (see more details in updateThreshold).
550   int VectorBonus = 0;
551   /// Bonus to be applied when the callee has only one reachable basic block.
552   int SingleBBBonus = 0;
553 
554   /// Tunable parameters that control the analysis.
555   const InlineParams &Params;
556 
557   // This DenseMap stores the delta change in cost and threshold after
558   // accounting for the given instruction. The map is filled only with the
559   // flag PrintInstructionComments on.
560   DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;
561 
562   /// Upper bound for the inlining cost. Bonuses are being applied to account
563   /// for speculative "expected profit" of the inlining decision.
564   int Threshold = 0;
565 
566   /// The amount of StaticBonus applied.
567   int StaticBonusApplied = 0;
568 
569   /// Attempt to evaluate indirect calls to boost its inline cost.
570   const bool BoostIndirectCalls;
571 
572   /// Ignore the threshold when finalizing analysis.
573   const bool IgnoreThreshold;
574 
575   // True if the cost-benefit-analysis-based inliner is enabled.
576   const bool CostBenefitAnalysisEnabled;
577 
578   /// Inlining cost measured in abstract units, accounts for all the
579   /// instructions expected to be executed for a given function invocation.
580   /// Instructions that are statically proven to be dead based on call-site
581   /// arguments are not counted here.
582   int Cost = 0;
583 
584   // The cumulative cost at the beginning of the basic block being analyzed.  At
585   // the end of analyzing each basic block, "Cost - CostAtBBStart" represents
586   // the size of that basic block.
587   int CostAtBBStart = 0;
588 
589   // The static size of live but cold basic blocks.  This is "static" in the
590   // sense that it's not weighted by profile counts at all.
591   int ColdSize = 0;
592 
593   // Whether inlining is decided by cost-threshold analysis.
594   bool DecidedByCostThreshold = false;
595 
596   // Whether inlining is decided by cost-benefit analysis.
597   bool DecidedByCostBenefit = false;
598 
599   // The cost-benefit pair computed by cost-benefit analysis.
600   std::optional<CostBenefitPair> CostBenefit;
601 
602   bool SingleBB = true;
603 
604   unsigned SROACostSavings = 0;
605   unsigned SROACostSavingsLost = 0;
606 
607   /// The mapping of caller Alloca values to their accumulated cost savings. If
608   /// we have to disable SROA for one of the allocas, this tells us how much
609   /// cost must be added.
610   DenseMap<AllocaInst *, int> SROAArgCosts;
611 
612   /// Return true if \p Call is a cold callsite.
613   bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
614 
615   /// Update Threshold based on callsite properties such as callee
616   /// attributes and callee hotness for PGO builds. The Callee is explicitly
617   /// passed to support analyzing indirect calls whose target is inferred by
618   /// analysis.
619   void updateThreshold(CallBase &Call, Function &Callee);
620   /// Return a higher threshold if \p Call is a hot callsite.
621   std::optional<int> getHotCallSiteThreshold(CallBase &Call,
622                                              BlockFrequencyInfo *CallerBFI);
623 
624   /// Handle a capped 'int' increment for Cost.
625   void addCost(int64_t Inc) {
626     Inc = std::clamp<int64_t>(Inc, INT_MIN, INT_MAX);
627     Cost = std::clamp<int64_t>(Inc + Cost, INT_MIN, INT_MAX);
628   }
629 
630   void onDisableSROA(AllocaInst *Arg) override {
631     auto CostIt = SROAArgCosts.find(Arg);
632     if (CostIt == SROAArgCosts.end())
633       return;
634     addCost(CostIt->second);
635     SROACostSavings -= CostIt->second;
636     SROACostSavingsLost += CostIt->second;
637     SROAArgCosts.erase(CostIt);
638   }
639 
640   void onDisableLoadElimination() override {
641     addCost(LoadEliminationCost);
642     LoadEliminationCost = 0;
643   }
644 
645   bool onCallBaseVisitStart(CallBase &Call) override {
646     if (std::optional<int> AttrCallThresholdBonus =
647             getStringFnAttrAsInt(Call, "call-threshold-bonus"))
648       Threshold += *AttrCallThresholdBonus;
649 
650     if (std::optional<int> AttrCallCost =
651             getStringFnAttrAsInt(Call, "call-inline-cost")) {
652       addCost(*AttrCallCost);
653       // Prevent further processing of the call since we want to override its
654       // inline cost, not just add to it.
655       return false;
656     }
657     return true;
658   }
659 
660   void onCallPenalty() override { addCost(CallPenalty); }
661 
662   void onMemAccess() override { addCost(MemAccessCost); }
663 
664   void onCallArgumentSetup(const CallBase &Call) override {
665     // Pay the price of the argument setup. We account for the average 1
666     // instruction per call argument setup here.
667     addCost(Call.arg_size() * InstrCost);
668   }
669   void onLoadRelativeIntrinsic() override {
670     // This is normally lowered to 4 LLVM instructions.
671     addCost(3 * InstrCost);
672   }
673   void onLoweredCall(Function *F, CallBase &Call,
674                      bool IsIndirectCall) override {
675     // We account for the average 1 instruction per call argument setup here.
676     addCost(Call.arg_size() * InstrCost);
677 
678     // If we have a constant that we are calling as a function, we can peer
679     // through it and see the function target. This happens not infrequently
680     // during devirtualization and so we want to give it a hefty bonus for
681     // inlining, but cap that bonus in the event that inlining wouldn't pan out.
682     // Pretend to inline the function, with a custom threshold.
683     if (IsIndirectCall && BoostIndirectCalls) {
684       auto IndirectCallParams = Params;
685       IndirectCallParams.DefaultThreshold =
686           InlineConstants::IndirectCallThreshold;
687       /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
688       /// to instantiate the derived class.
689       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
690                                 GetAssumptionCache, GetBFI, PSI, ORE, false);
691       if (CA.analyze().isSuccess()) {
692         // We were able to inline the indirect call! Subtract the cost from the
693         // threshold to get the bonus we want to apply, but don't go below zero.
694         Cost -= std::max(0, CA.getThreshold() - CA.getCost());
695       }
696     } else
697       // Otherwise simply add the cost for merely making the call.
698       addCost(TTI.getInlineCallPenalty(CandidateCall.getCaller(), Call,
699                                        CallPenalty));
700   }
701 
702   void onFinalizeSwitch(unsigned JumpTableSize,
703                         unsigned NumCaseCluster) override {
704     // If suitable for a jump table, consider the cost for the table size and
705     // branch to destination.
706     // Maximum valid cost increased in this function.
707     if (JumpTableSize) {
708       int64_t JTCost =
709           static_cast<int64_t>(JumpTableSize) * InstrCost + 4 * InstrCost;
710 
711       addCost(JTCost);
712       return;
713     }
714 
715     if (NumCaseCluster <= 3) {
716       // Suppose a comparison includes one compare and one conditional branch.
717       addCost(NumCaseCluster * 2 * InstrCost);
718       return;
719     }
720 
721     int64_t ExpectedNumberOfCompare =
722         getExpectedNumberOfCompare(NumCaseCluster);
723     int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost;
724 
725     addCost(SwitchCost);
726   }
727   void onMissedSimplification() override { addCost(InstrCost); }
728 
729   void onInitializeSROAArg(AllocaInst *Arg) override {
730     assert(Arg != nullptr &&
731            "Should not initialize SROA costs for null value.");
732     auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg);
733     SROACostSavings += SROAArgCost;
734     SROAArgCosts[Arg] = SROAArgCost;
735   }
736 
737   void onAggregateSROAUse(AllocaInst *SROAArg) override {
738     auto CostIt = SROAArgCosts.find(SROAArg);
739     assert(CostIt != SROAArgCosts.end() &&
740            "expected this argument to have a cost");
741     CostIt->second += InstrCost;
742     SROACostSavings += InstrCost;
743   }
744 
745   void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; }
746 
747   void onBlockAnalyzed(const BasicBlock *BB) override {
748     if (CostBenefitAnalysisEnabled) {
749       // Keep track of the static size of live but cold basic blocks.  For now,
750       // we define a cold basic block to be one that's never executed.
751       assert(GetBFI && "GetBFI must be available");
752       BlockFrequencyInfo *BFI = &(GetBFI(F));
753       assert(BFI && "BFI must be available");
754       auto ProfileCount = BFI->getBlockProfileCount(BB);
755       if (*ProfileCount == 0)
756         ColdSize += Cost - CostAtBBStart;
757     }
758 
759     auto *TI = BB->getTerminator();
760     // If we had any successors at this point, than post-inlining is likely to
761     // have them as well. Note that we assume any basic blocks which existed
762     // due to branches or switches which folded above will also fold after
763     // inlining.
764     if (SingleBB && TI->getNumSuccessors() > 1) {
765       // Take off the bonus we applied to the threshold.
766       Threshold -= SingleBBBonus;
767       SingleBB = false;
768     }
769   }
770 
771   void onInstructionAnalysisStart(const Instruction *I) override {
772     // This function is called to store the initial cost of inlining before
773     // the given instruction was assessed.
774     if (!PrintInstructionComments)
775       return;
776     InstructionCostDetailMap[I].CostBefore = Cost;
777     InstructionCostDetailMap[I].ThresholdBefore = Threshold;
778   }
779 
780   void onInstructionAnalysisFinish(const Instruction *I) override {
781     // This function is called to find new values of cost and threshold after
782     // the instruction has been assessed.
783     if (!PrintInstructionComments)
784       return;
785     InstructionCostDetailMap[I].CostAfter = Cost;
786     InstructionCostDetailMap[I].ThresholdAfter = Threshold;
787   }
788 
789   bool isCostBenefitAnalysisEnabled() {
790     if (!PSI || !PSI->hasProfileSummary())
791       return false;
792 
793     if (!GetBFI)
794       return false;
795 
796     if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) {
797       // Honor the explicit request from the user.
798       if (!InlineEnableCostBenefitAnalysis)
799         return false;
800     } else {
801       // Otherwise, require instrumentation profile.
802       if (!(PSI->hasInstrumentationProfile() || PSI->hasSampleProfile()))
803         return false;
804     }
805 
806     auto *Caller = CandidateCall.getParent()->getParent();
807     if (!Caller->getEntryCount())
808       return false;
809 
810     BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller));
811     if (!CallerBFI)
812       return false;
813 
814     // For now, limit to hot call site.
815     if (!PSI->isHotCallSite(CandidateCall, CallerBFI))
816       return false;
817 
818     // Make sure we have a nonzero entry count.
819     auto EntryCount = F.getEntryCount();
820     if (!EntryCount || !EntryCount->getCount())
821       return false;
822 
823     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
824     if (!CalleeBFI)
825       return false;
826 
827     return true;
828   }
829 
830   // A helper function to choose between command line override and default.
831   unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const {
832     if (InlineSavingsMultiplier.getNumOccurrences())
833       return InlineSavingsMultiplier;
834     return TTI.getInliningCostBenefitAnalysisSavingsMultiplier();
835   }
836 
837   // A helper function to choose between command line override and default.
838   unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const {
839     if (InlineSavingsProfitableMultiplier.getNumOccurrences())
840       return InlineSavingsProfitableMultiplier;
841     return TTI.getInliningCostBenefitAnalysisProfitableMultiplier();
842   }
843 
844   void OverrideCycleSavingsAndSizeForTesting(APInt &CycleSavings, int &Size) {
845     if (std::optional<int> AttrCycleSavings = getStringFnAttrAsInt(
846             CandidateCall, "inline-cycle-savings-for-test")) {
847       CycleSavings = *AttrCycleSavings;
848     }
849 
850     if (std::optional<int> AttrRuntimeCost = getStringFnAttrAsInt(
851             CandidateCall, "inline-runtime-cost-for-test")) {
852       Size = *AttrRuntimeCost;
853     }
854   }
855 
856   // Determine whether we should inline the given call site, taking into account
857   // both the size cost and the cycle savings.  Return std::nullopt if we don't
858   // have sufficient profiling information to determine.
859   std::optional<bool> costBenefitAnalysis() {
860     if (!CostBenefitAnalysisEnabled)
861       return std::nullopt;
862 
863     // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0
864     // for the prelink phase of the AutoFDO + ThinLTO build.  Honor the logic by
865     // falling back to the cost-based metric.
866     // TODO: Improve this hacky condition.
867     if (Threshold == 0)
868       return std::nullopt;
869 
870     assert(GetBFI);
871     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
872     assert(CalleeBFI);
873 
874     // The cycle savings expressed as the sum of InstrCost
875     // multiplied by the estimated dynamic count of each instruction we can
876     // avoid.  Savings come from the call site cost, such as argument setup and
877     // the call instruction, as well as the instructions that are folded.
878     //
879     // We use 128-bit APInt here to avoid potential overflow.  This variable
880     // should stay well below 10^^24 (or 2^^80) in practice.  This "worst" case
881     // assumes that we can avoid or fold a billion instructions, each with a
882     // profile count of 10^^15 -- roughly the number of cycles for a 24-hour
883     // period on a 4GHz machine.
884     APInt CycleSavings(128, 0);
885 
886     for (auto &BB : F) {
887       APInt CurrentSavings(128, 0);
888       for (auto &I : BB) {
889         if (BranchInst *BI = dyn_cast<BranchInst>(&I)) {
890           // Count a conditional branch as savings if it becomes unconditional.
891           if (BI->isConditional() &&
892               isa_and_nonnull<ConstantInt>(
893                   SimplifiedValues.lookup(BI->getCondition()))) {
894             CurrentSavings += InstrCost;
895           }
896         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
897           if (isa_and_present<ConstantInt>(SimplifiedValues.lookup(SI->getCondition())))
898             CurrentSavings += InstrCost;
899         } else if (Value *V = dyn_cast<Value>(&I)) {
900           // Count an instruction as savings if we can fold it.
901           if (SimplifiedValues.count(V)) {
902             CurrentSavings += InstrCost;
903           }
904         }
905       }
906 
907       auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB);
908       CurrentSavings *= *ProfileCount;
909       CycleSavings += CurrentSavings;
910     }
911 
912     // Compute the cycle savings per call.
913     auto EntryProfileCount = F.getEntryCount();
914     assert(EntryProfileCount && EntryProfileCount->getCount());
915     auto EntryCount = EntryProfileCount->getCount();
916     CycleSavings += EntryCount / 2;
917     CycleSavings = CycleSavings.udiv(EntryCount);
918 
919     // Compute the total savings for the call site.
920     auto *CallerBB = CandidateCall.getParent();
921     BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent())));
922     CycleSavings += getCallsiteCost(TTI, this->CandidateCall, DL);
923     CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB);
924 
925     // Remove the cost of the cold basic blocks to model the runtime cost more
926     // accurately. Both machine block placement and function splitting could
927     // place cold blocks further from hot blocks.
928     int Size = Cost - ColdSize;
929 
930     // Allow tiny callees to be inlined regardless of whether they meet the
931     // savings threshold.
932     Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1;
933 
934     OverrideCycleSavingsAndSizeForTesting(CycleSavings, Size);
935     CostBenefit.emplace(APInt(128, Size), CycleSavings);
936 
937     // Let R be the ratio of CycleSavings to Size.  We accept the inlining
938     // opportunity if R is really high and reject if R is really low.  If R is
939     // somewhere in the middle, we fall back to the cost-based analysis.
940     //
941     // Specifically, let R = CycleSavings / Size, we accept the inlining
942     // opportunity if:
943     //
944     //             PSI->getOrCompHotCountThreshold()
945     // R > -------------------------------------------------
946     //     getInliningCostBenefitAnalysisSavingsMultiplier()
947     //
948     // and reject the inlining opportunity if:
949     //
950     //                PSI->getOrCompHotCountThreshold()
951     // R <= ----------------------------------------------------
952     //      getInliningCostBenefitAnalysisProfitableMultiplier()
953     //
954     // Otherwise, we fall back to the cost-based analysis.
955     //
956     // Implementation-wise, use multiplication (CycleSavings * Multiplier,
957     // HotCountThreshold * Size) rather than division to avoid precision loss.
958     APInt Threshold(128, PSI->getOrCompHotCountThreshold());
959     Threshold *= Size;
960 
961     APInt UpperBoundCycleSavings = CycleSavings;
962     UpperBoundCycleSavings *= getInliningCostBenefitAnalysisSavingsMultiplier();
963     if (UpperBoundCycleSavings.uge(Threshold))
964       return true;
965 
966     APInt LowerBoundCycleSavings = CycleSavings;
967     LowerBoundCycleSavings *=
968         getInliningCostBenefitAnalysisProfitableMultiplier();
969     if (LowerBoundCycleSavings.ult(Threshold))
970       return false;
971 
972     // Otherwise, fall back to the cost-based analysis.
973     return std::nullopt;
974   }
975 
976   InlineResult finalizeAnalysis() override {
977     // Loops generally act a lot like calls in that they act like barriers to
978     // movement, require a certain amount of setup, etc. So when optimising for
979     // size, we penalise any call sites that perform loops. We do this after all
980     // other costs here, so will likely only be dealing with relatively small
981     // functions (and hence DT and LI will hopefully be cheap).
982     auto *Caller = CandidateCall.getFunction();
983     if (Caller->hasMinSize()) {
984       DominatorTree DT(F);
985       LoopInfo LI(DT);
986       int NumLoops = 0;
987       for (Loop *L : LI) {
988         // Ignore loops that will not be executed
989         if (DeadBlocks.count(L->getHeader()))
990           continue;
991         NumLoops++;
992       }
993       addCost(NumLoops * InlineConstants::LoopPenalty);
994     }
995 
996     // We applied the maximum possible vector bonus at the beginning. Now,
997     // subtract the excess bonus, if any, from the Threshold before
998     // comparing against Cost.
999     if (NumVectorInstructions <= NumInstructions / 10)
1000       Threshold -= VectorBonus;
1001     else if (NumVectorInstructions <= NumInstructions / 2)
1002       Threshold -= VectorBonus / 2;
1003 
1004     if (std::optional<int> AttrCost =
1005             getStringFnAttrAsInt(CandidateCall, "function-inline-cost"))
1006       Cost = *AttrCost;
1007 
1008     if (std::optional<int> AttrCostMult = getStringFnAttrAsInt(
1009             CandidateCall,
1010             InlineConstants::FunctionInlineCostMultiplierAttributeName))
1011       Cost *= *AttrCostMult;
1012 
1013     if (std::optional<int> AttrThreshold =
1014             getStringFnAttrAsInt(CandidateCall, "function-inline-threshold"))
1015       Threshold = *AttrThreshold;
1016 
1017     if (auto Result = costBenefitAnalysis()) {
1018       DecidedByCostBenefit = true;
1019       if (*Result)
1020         return InlineResult::success();
1021       else
1022         return InlineResult::failure("Cost over threshold.");
1023     }
1024 
1025     if (IgnoreThreshold)
1026       return InlineResult::success();
1027 
1028     DecidedByCostThreshold = true;
1029     return Cost < std::max(1, Threshold)
1030                ? InlineResult::success()
1031                : InlineResult::failure("Cost over threshold.");
1032   }
1033 
1034   bool shouldStop() override {
1035     if (IgnoreThreshold || ComputeFullInlineCost)
1036       return false;
1037     // Bail out the moment we cross the threshold. This means we'll under-count
1038     // the cost, but only when undercounting doesn't matter.
1039     if (Cost < Threshold)
1040       return false;
1041     DecidedByCostThreshold = true;
1042     return true;
1043   }
1044 
1045   void onLoadEliminationOpportunity() override {
1046     LoadEliminationCost += InstrCost;
1047   }
1048 
1049   InlineResult onAnalysisStart() override {
1050     // Perform some tweaks to the cost and threshold based on the direct
1051     // callsite information.
1052 
1053     // We want to more aggressively inline vector-dense kernels, so up the
1054     // threshold, and we'll lower it if the % of vector instructions gets too
1055     // low. Note that these bonuses are some what arbitrary and evolved over
1056     // time by accident as much as because they are principled bonuses.
1057     //
1058     // FIXME: It would be nice to remove all such bonuses. At least it would be
1059     // nice to base the bonus values on something more scientific.
1060     assert(NumInstructions == 0);
1061     assert(NumVectorInstructions == 0);
1062 
1063     // Update the threshold based on callsite properties
1064     updateThreshold(CandidateCall, F);
1065 
1066     // While Threshold depends on commandline options that can take negative
1067     // values, we want to enforce the invariant that the computed threshold and
1068     // bonuses are non-negative.
1069     assert(Threshold >= 0);
1070     assert(SingleBBBonus >= 0);
1071     assert(VectorBonus >= 0);
1072 
1073     // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1074     // this Threshold any time, and cost cannot decrease, we can stop processing
1075     // the rest of the function body.
1076     Threshold += (SingleBBBonus + VectorBonus);
1077 
1078     // Give out bonuses for the callsite, as the instructions setting them up
1079     // will be gone after inlining.
1080     addCost(-getCallsiteCost(TTI, this->CandidateCall, DL));
1081 
1082     // If this function uses the coldcc calling convention, prefer not to inline
1083     // it.
1084     if (F.getCallingConv() == CallingConv::Cold)
1085       Cost += InlineConstants::ColdccPenalty;
1086 
1087     LLVM_DEBUG(dbgs() << "      Initial cost: " << Cost << "\n");
1088 
1089     // Check if we're done. This can happen due to bonuses and penalties.
1090     if (Cost >= Threshold && !ComputeFullInlineCost)
1091       return InlineResult::failure("high cost");
1092 
1093     return InlineResult::success();
1094   }
1095 
1096 public:
1097   InlineCostCallAnalyzer(
1098       Function &Callee, CallBase &Call, const InlineParams &Params,
1099       const TargetTransformInfo &TTI,
1100       function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
1101       function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
1102       ProfileSummaryInfo *PSI = nullptr,
1103       OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
1104       bool IgnoreThreshold = false)
1105       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
1106         ComputeFullInlineCost(OptComputeFullInlineCost ||
1107                               Params.ComputeFullInlineCost || ORE ||
1108                               isCostBenefitAnalysisEnabled()),
1109         Params(Params), Threshold(Params.DefaultThreshold),
1110         BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
1111         CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()),
1112         Writer(this) {
1113     AllowRecursiveCall = *Params.AllowRecursiveCall;
1114   }
1115 
1116   /// Annotation Writer for instruction details
1117   InlineCostAnnotationWriter Writer;
1118 
1119   void dump();
1120 
1121   // Prints the same analysis as dump(), but its definition is not dependent
1122   // on the build.
1123   void print(raw_ostream &OS);
1124 
1125   std::optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
1126     if (InstructionCostDetailMap.contains(I))
1127       return InstructionCostDetailMap[I];
1128     return std::nullopt;
1129   }
1130 
1131   virtual ~InlineCostCallAnalyzer() = default;
1132   int getThreshold() const { return Threshold; }
1133   int getCost() const { return Cost; }
1134   int getStaticBonusApplied() const { return StaticBonusApplied; }
1135   std::optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; }
1136   bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; }
1137   bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; }
1138 };
1139 
1140 // Return true if CB is the sole call to local function Callee.
1141 static bool isSoleCallToLocalFunction(const CallBase &CB,
1142                                       const Function &Callee) {
1143   return Callee.hasLocalLinkage() && Callee.hasOneLiveUse() &&
1144          &Callee == CB.getCalledFunction();
1145 }
1146 
1147 class InlineCostFeaturesAnalyzer final : public CallAnalyzer {
1148 private:
1149   InlineCostFeatures Cost = {};
1150 
1151   // FIXME: These constants are taken from the heuristic-based cost visitor.
1152   // These should be removed entirely in a later revision to avoid reliance on
1153   // heuristics in the ML inliner.
1154   static constexpr int JTCostMultiplier = 4;
1155   static constexpr int CaseClusterCostMultiplier = 2;
1156   static constexpr int SwitchCostMultiplier = 2;
1157 
1158   // FIXME: These are taken from the heuristic-based cost visitor: we should
1159   // eventually abstract these to the CallAnalyzer to avoid duplication.
1160   unsigned SROACostSavingOpportunities = 0;
1161   int VectorBonus = 0;
1162   int SingleBBBonus = 0;
1163   int Threshold = 5;
1164 
1165   DenseMap<AllocaInst *, unsigned> SROACosts;
1166 
1167   void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) {
1168     Cost[static_cast<size_t>(Feature)] += Delta;
1169   }
1170 
1171   void set(InlineCostFeatureIndex Feature, int64_t Value) {
1172     Cost[static_cast<size_t>(Feature)] = Value;
1173   }
1174 
1175   void onDisableSROA(AllocaInst *Arg) override {
1176     auto CostIt = SROACosts.find(Arg);
1177     if (CostIt == SROACosts.end())
1178       return;
1179 
1180     increment(InlineCostFeatureIndex::sroa_losses, CostIt->second);
1181     SROACostSavingOpportunities -= CostIt->second;
1182     SROACosts.erase(CostIt);
1183   }
1184 
1185   void onDisableLoadElimination() override {
1186     set(InlineCostFeatureIndex::load_elimination, 1);
1187   }
1188 
1189   void onCallPenalty() override {
1190     increment(InlineCostFeatureIndex::call_penalty, CallPenalty);
1191   }
1192 
1193   void onCallArgumentSetup(const CallBase &Call) override {
1194     increment(InlineCostFeatureIndex::call_argument_setup,
1195               Call.arg_size() * InstrCost);
1196   }
1197 
1198   void onLoadRelativeIntrinsic() override {
1199     increment(InlineCostFeatureIndex::load_relative_intrinsic, 3 * InstrCost);
1200   }
1201 
1202   void onLoweredCall(Function *F, CallBase &Call,
1203                      bool IsIndirectCall) override {
1204     increment(InlineCostFeatureIndex::lowered_call_arg_setup,
1205               Call.arg_size() * InstrCost);
1206 
1207     if (IsIndirectCall) {
1208       InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0,
1209                                          /*HintThreshold*/ {},
1210                                          /*ColdThreshold*/ {},
1211                                          /*OptSizeThreshold*/ {},
1212                                          /*OptMinSizeThreshold*/ {},
1213                                          /*HotCallSiteThreshold*/ {},
1214                                          /*LocallyHotCallSiteThreshold*/ {},
1215                                          /*ColdCallSiteThreshold*/ {},
1216                                          /*ComputeFullInlineCost*/ true,
1217                                          /*EnableDeferral*/ true};
1218       IndirectCallParams.DefaultThreshold =
1219           InlineConstants::IndirectCallThreshold;
1220 
1221       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
1222                                 GetAssumptionCache, GetBFI, PSI, ORE, false,
1223                                 true);
1224       if (CA.analyze().isSuccess()) {
1225         increment(InlineCostFeatureIndex::nested_inline_cost_estimate,
1226                   CA.getCost());
1227         increment(InlineCostFeatureIndex::nested_inlines, 1);
1228       }
1229     } else {
1230       onCallPenalty();
1231     }
1232   }
1233 
1234   void onFinalizeSwitch(unsigned JumpTableSize,
1235                         unsigned NumCaseCluster) override {
1236 
1237     if (JumpTableSize) {
1238       int64_t JTCost = static_cast<int64_t>(JumpTableSize) * InstrCost +
1239                        JTCostMultiplier * InstrCost;
1240       increment(InlineCostFeatureIndex::jump_table_penalty, JTCost);
1241       return;
1242     }
1243 
1244     if (NumCaseCluster <= 3) {
1245       increment(InlineCostFeatureIndex::case_cluster_penalty,
1246                 NumCaseCluster * CaseClusterCostMultiplier * InstrCost);
1247       return;
1248     }
1249 
1250     int64_t ExpectedNumberOfCompare =
1251         getExpectedNumberOfCompare(NumCaseCluster);
1252 
1253     int64_t SwitchCost =
1254         ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost;
1255     increment(InlineCostFeatureIndex::switch_penalty, SwitchCost);
1256   }
1257 
1258   void onMissedSimplification() override {
1259     increment(InlineCostFeatureIndex::unsimplified_common_instructions,
1260               InstrCost);
1261   }
1262 
1263   void onInitializeSROAArg(AllocaInst *Arg) override {
1264     auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg);
1265     SROACosts[Arg] = SROAArgCost;
1266     SROACostSavingOpportunities += SROAArgCost;
1267   }
1268 
1269   void onAggregateSROAUse(AllocaInst *Arg) override {
1270     SROACosts.find(Arg)->second += InstrCost;
1271     SROACostSavingOpportunities += InstrCost;
1272   }
1273 
1274   void onBlockAnalyzed(const BasicBlock *BB) override {
1275     if (BB->getTerminator()->getNumSuccessors() > 1)
1276       set(InlineCostFeatureIndex::is_multiple_blocks, 1);
1277     Threshold -= SingleBBBonus;
1278   }
1279 
1280   InlineResult finalizeAnalysis() override {
1281     auto *Caller = CandidateCall.getFunction();
1282     if (Caller->hasMinSize()) {
1283       DominatorTree DT(F);
1284       LoopInfo LI(DT);
1285       for (Loop *L : LI) {
1286         // Ignore loops that will not be executed
1287         if (DeadBlocks.count(L->getHeader()))
1288           continue;
1289         increment(InlineCostFeatureIndex::num_loops,
1290                   InlineConstants::LoopPenalty);
1291       }
1292     }
1293     set(InlineCostFeatureIndex::dead_blocks, DeadBlocks.size());
1294     set(InlineCostFeatureIndex::simplified_instructions,
1295         NumInstructionsSimplified);
1296     set(InlineCostFeatureIndex::constant_args, NumConstantArgs);
1297     set(InlineCostFeatureIndex::constant_offset_ptr_args,
1298         NumConstantOffsetPtrArgs);
1299     set(InlineCostFeatureIndex::sroa_savings, SROACostSavingOpportunities);
1300 
1301     if (NumVectorInstructions <= NumInstructions / 10)
1302       Threshold -= VectorBonus;
1303     else if (NumVectorInstructions <= NumInstructions / 2)
1304       Threshold -= VectorBonus / 2;
1305 
1306     set(InlineCostFeatureIndex::threshold, Threshold);
1307 
1308     return InlineResult::success();
1309   }
1310 
1311   bool shouldStop() override { return false; }
1312 
1313   void onLoadEliminationOpportunity() override {
1314     increment(InlineCostFeatureIndex::load_elimination, 1);
1315   }
1316 
1317   InlineResult onAnalysisStart() override {
1318     increment(InlineCostFeatureIndex::callsite_cost,
1319               -1 * getCallsiteCost(TTI, this->CandidateCall, DL));
1320 
1321     set(InlineCostFeatureIndex::cold_cc_penalty,
1322         (F.getCallingConv() == CallingConv::Cold));
1323 
1324     set(InlineCostFeatureIndex::last_call_to_static_bonus,
1325         isSoleCallToLocalFunction(CandidateCall, F));
1326 
1327     // FIXME: we shouldn't repeat this logic in both the Features and Cost
1328     // analyzer - instead, we should abstract it to a common method in the
1329     // CallAnalyzer
1330     int SingleBBBonusPercent = 50;
1331     int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1332     Threshold += TTI.adjustInliningThreshold(&CandidateCall);
1333     Threshold *= TTI.getInliningThresholdMultiplier();
1334     SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1335     VectorBonus = Threshold * VectorBonusPercent / 100;
1336     Threshold += (SingleBBBonus + VectorBonus);
1337 
1338     return InlineResult::success();
1339   }
1340 
1341 public:
1342   InlineCostFeaturesAnalyzer(
1343       const TargetTransformInfo &TTI,
1344       function_ref<AssumptionCache &(Function &)> &GetAssumptionCache,
1345       function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1346       ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee,
1347       CallBase &Call)
1348       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {}
1349 
1350   const InlineCostFeatures &features() const { return Cost; }
1351 };
1352 
1353 } // namespace
1354 
1355 /// Test whether the given value is an Alloca-derived function argument.
1356 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
1357   return SROAArgValues.count(V);
1358 }
1359 
1360 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
1361   onDisableSROA(SROAArg);
1362   EnabledSROAAllocas.erase(SROAArg);
1363   disableLoadElimination();
1364 }
1365 
1366 void InlineCostAnnotationWriter::emitInstructionAnnot(
1367     const Instruction *I, formatted_raw_ostream &OS) {
1368   // The cost of inlining of the given instruction is printed always.
1369   // The threshold delta is printed only when it is non-zero. It happens
1370   // when we decided to give a bonus at a particular instruction.
1371   std::optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
1372   if (!Record)
1373     OS << "; No analysis for the instruction";
1374   else {
1375     OS << "; cost before = " << Record->CostBefore
1376        << ", cost after = " << Record->CostAfter
1377        << ", threshold before = " << Record->ThresholdBefore
1378        << ", threshold after = " << Record->ThresholdAfter << ", ";
1379     OS << "cost delta = " << Record->getCostDelta();
1380     if (Record->hasThresholdChanged())
1381       OS << ", threshold delta = " << Record->getThresholdDelta();
1382   }
1383   auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
1384   if (C) {
1385     OS << ", simplified to ";
1386     (*C)->print(OS, true);
1387   }
1388   OS << "\n";
1389 }
1390 
1391 /// If 'V' maps to a SROA candidate, disable SROA for it.
1392 void CallAnalyzer::disableSROA(Value *V) {
1393   if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
1394     disableSROAForArg(SROAArg);
1395   }
1396 }
1397 
1398 void CallAnalyzer::disableLoadElimination() {
1399   if (EnableLoadElimination) {
1400     onDisableLoadElimination();
1401     EnableLoadElimination = false;
1402   }
1403 }
1404 
1405 /// Accumulate a constant GEP offset into an APInt if possible.
1406 ///
1407 /// Returns false if unable to compute the offset for any reason. Respects any
1408 /// simplified values known during the analysis of this callsite.
1409 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
1410   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
1411   assert(IntPtrWidth == Offset.getBitWidth());
1412 
1413   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1414        GTI != GTE; ++GTI) {
1415     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1416     if (!OpC)
1417       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
1418         OpC = dyn_cast<ConstantInt>(SimpleOp);
1419     if (!OpC)
1420       return false;
1421     if (OpC->isZero())
1422       continue;
1423 
1424     // Handle a struct index, which adds its field offset to the pointer.
1425     if (StructType *STy = GTI.getStructTypeOrNull()) {
1426       unsigned ElementIdx = OpC->getZExtValue();
1427       const StructLayout *SL = DL.getStructLayout(STy);
1428       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
1429       continue;
1430     }
1431 
1432     APInt TypeSize(IntPtrWidth, GTI.getSequentialElementStride(DL));
1433     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
1434   }
1435   return true;
1436 }
1437 
1438 /// Use TTI to check whether a GEP is free.
1439 ///
1440 /// Respects any simplified values known during the analysis of this callsite.
1441 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
1442   SmallVector<Value *, 4> Operands;
1443   Operands.push_back(GEP.getOperand(0));
1444   for (const Use &Op : GEP.indices())
1445     if (Constant *SimpleOp = SimplifiedValues.lookup(Op))
1446       Operands.push_back(SimpleOp);
1447     else
1448       Operands.push_back(Op);
1449   return TTI.getInstructionCost(&GEP, Operands,
1450                                 TargetTransformInfo::TCK_SizeAndLatency) ==
1451          TargetTransformInfo::TCC_Free;
1452 }
1453 
1454 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
1455   disableSROA(I.getOperand(0));
1456 
1457   // Check whether inlining will turn a dynamic alloca into a static
1458   // alloca and handle that case.
1459   if (I.isArrayAllocation()) {
1460     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
1461     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
1462       // Sometimes a dynamic alloca could be converted into a static alloca
1463       // after this constant prop, and become a huge static alloca on an
1464       // unconditional CFG path. Avoid inlining if this is going to happen above
1465       // a threshold.
1466       // FIXME: If the threshold is removed or lowered too much, we could end up
1467       // being too pessimistic and prevent inlining non-problematic code. This
1468       // could result in unintended perf regressions. A better overall strategy
1469       // is needed to track stack usage during inlining.
1470       Type *Ty = I.getAllocatedType();
1471       AllocatedSize = SaturatingMultiplyAdd(
1472           AllocSize->getLimitedValue(),
1473           DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize);
1474       if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline)
1475         HasDynamicAlloca = true;
1476       return false;
1477     }
1478   }
1479 
1480   // Accumulate the allocated size.
1481   if (I.isStaticAlloca()) {
1482     Type *Ty = I.getAllocatedType();
1483     AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinValue(),
1484                                   AllocatedSize);
1485   }
1486 
1487   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
1488   // a variety of reasons, and so we would like to not inline them into
1489   // functions which don't currently have a dynamic alloca. This simply
1490   // disables inlining altogether in the presence of a dynamic alloca.
1491   if (!I.isStaticAlloca())
1492     HasDynamicAlloca = true;
1493 
1494   return false;
1495 }
1496 
1497 bool CallAnalyzer::visitPHI(PHINode &I) {
1498   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
1499   // though we don't want to propagate it's bonuses. The idea is to disable
1500   // SROA if it *might* be used in an inappropriate manner.
1501 
1502   // Phi nodes are always zero-cost.
1503   // FIXME: Pointer sizes may differ between different address spaces, so do we
1504   // need to use correct address space in the call to getPointerSizeInBits here?
1505   // Or could we skip the getPointerSizeInBits call completely? As far as I can
1506   // see the ZeroOffset is used as a dummy value, so we can probably use any
1507   // bit width for the ZeroOffset?
1508   APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0));
1509   bool CheckSROA = I.getType()->isPointerTy();
1510 
1511   // Track the constant or pointer with constant offset we've seen so far.
1512   Constant *FirstC = nullptr;
1513   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
1514   Value *FirstV = nullptr;
1515 
1516   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
1517     BasicBlock *Pred = I.getIncomingBlock(i);
1518     // If the incoming block is dead, skip the incoming block.
1519     if (DeadBlocks.count(Pred))
1520       continue;
1521     // If the parent block of phi is not the known successor of the incoming
1522     // block, skip the incoming block.
1523     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
1524     if (KnownSuccessor && KnownSuccessor != I.getParent())
1525       continue;
1526 
1527     Value *V = I.getIncomingValue(i);
1528     // If the incoming value is this phi itself, skip the incoming value.
1529     if (&I == V)
1530       continue;
1531 
1532     Constant *C = dyn_cast<Constant>(V);
1533     if (!C)
1534       C = SimplifiedValues.lookup(V);
1535 
1536     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
1537     if (!C && CheckSROA)
1538       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
1539 
1540     if (!C && !BaseAndOffset.first)
1541       // The incoming value is neither a constant nor a pointer with constant
1542       // offset, exit early.
1543       return true;
1544 
1545     if (FirstC) {
1546       if (FirstC == C)
1547         // If we've seen a constant incoming value before and it is the same
1548         // constant we see this time, continue checking the next incoming value.
1549         continue;
1550       // Otherwise early exit because we either see a different constant or saw
1551       // a constant before but we have a pointer with constant offset this time.
1552       return true;
1553     }
1554 
1555     if (FirstV) {
1556       // The same logic as above, but check pointer with constant offset here.
1557       if (FirstBaseAndOffset == BaseAndOffset)
1558         continue;
1559       return true;
1560     }
1561 
1562     if (C) {
1563       // This is the 1st time we've seen a constant, record it.
1564       FirstC = C;
1565       continue;
1566     }
1567 
1568     // The remaining case is that this is the 1st time we've seen a pointer with
1569     // constant offset, record it.
1570     FirstV = V;
1571     FirstBaseAndOffset = BaseAndOffset;
1572   }
1573 
1574   // Check if we can map phi to a constant.
1575   if (FirstC) {
1576     SimplifiedValues[&I] = FirstC;
1577     return true;
1578   }
1579 
1580   // Check if we can map phi to a pointer with constant offset.
1581   if (FirstBaseAndOffset.first) {
1582     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
1583 
1584     if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
1585       SROAArgValues[&I] = SROAArg;
1586   }
1587 
1588   return true;
1589 }
1590 
1591 /// Check we can fold GEPs of constant-offset call site argument pointers.
1592 /// This requires target data and inbounds GEPs.
1593 ///
1594 /// \return true if the specified GEP can be folded.
1595 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
1596   // Check if we have a base + offset for the pointer.
1597   std::pair<Value *, APInt> BaseAndOffset =
1598       ConstantOffsetPtrs.lookup(I.getPointerOperand());
1599   if (!BaseAndOffset.first)
1600     return false;
1601 
1602   // Check if the offset of this GEP is constant, and if so accumulate it
1603   // into Offset.
1604   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
1605     return false;
1606 
1607   // Add the result as a new mapping to Base + Offset.
1608   ConstantOffsetPtrs[&I] = BaseAndOffset;
1609 
1610   return true;
1611 }
1612 
1613 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
1614   auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
1615 
1616   // Lambda to check whether a GEP's indices are all constant.
1617   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
1618     for (const Use &Op : GEP.indices())
1619       if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op))
1620         return false;
1621     return true;
1622   };
1623 
1624   if (!DisableGEPConstOperand)
1625     if (simplifyInstruction(I))
1626       return true;
1627 
1628   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
1629     if (SROAArg)
1630       SROAArgValues[&I] = SROAArg;
1631 
1632     // Constant GEPs are modeled as free.
1633     return true;
1634   }
1635 
1636   // Variable GEPs will require math and will disable SROA.
1637   if (SROAArg)
1638     disableSROAForArg(SROAArg);
1639   return isGEPFree(I);
1640 }
1641 
1642 /// Simplify \p I if its operands are constants and update SimplifiedValues.
1643 bool CallAnalyzer::simplifyInstruction(Instruction &I) {
1644   SmallVector<Constant *> COps;
1645   for (Value *Op : I.operands()) {
1646     Constant *COp = dyn_cast<Constant>(Op);
1647     if (!COp)
1648       COp = SimplifiedValues.lookup(Op);
1649     if (!COp)
1650       return false;
1651     COps.push_back(COp);
1652   }
1653   auto *C = ConstantFoldInstOperands(&I, COps, DL);
1654   if (!C)
1655     return false;
1656   SimplifiedValues[&I] = C;
1657   return true;
1658 }
1659 
1660 /// Try to simplify a call to llvm.is.constant.
1661 ///
1662 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since
1663 /// we expect calls of this specific intrinsic to be infrequent.
1664 ///
1665 /// FIXME: Given that we know CB's parent (F) caller
1666 /// (CandidateCall->getParent()->getParent()), we might be able to determine
1667 /// whether inlining F into F's caller would change how the call to
1668 /// llvm.is.constant would evaluate.
1669 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) {
1670   Value *Arg = CB.getArgOperand(0);
1671   auto *C = dyn_cast<Constant>(Arg);
1672 
1673   if (!C)
1674     C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg));
1675 
1676   Type *RT = CB.getFunctionType()->getReturnType();
1677   SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0);
1678   return true;
1679 }
1680 
1681 bool CallAnalyzer::simplifyIntrinsicCallObjectSize(CallBase &CB) {
1682   // As per the langref, "The fourth argument to llvm.objectsize determines if
1683   // the value should be evaluated at runtime."
1684   if (cast<ConstantInt>(CB.getArgOperand(3))->isOne())
1685     return false;
1686 
1687   Value *V = lowerObjectSizeCall(&cast<IntrinsicInst>(CB), DL, nullptr,
1688                                  /*MustSucceed=*/true);
1689   Constant *C = dyn_cast_or_null<Constant>(V);
1690   if (C)
1691     SimplifiedValues[&CB] = C;
1692   return C;
1693 }
1694 
1695 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
1696   // Propagate constants through bitcasts.
1697   if (simplifyInstruction(I))
1698     return true;
1699 
1700   // Track base/offsets through casts
1701   std::pair<Value *, APInt> BaseAndOffset =
1702       ConstantOffsetPtrs.lookup(I.getOperand(0));
1703   // Casts don't change the offset, just wrap it up.
1704   if (BaseAndOffset.first)
1705     ConstantOffsetPtrs[&I] = BaseAndOffset;
1706 
1707   // Also look for SROA candidates here.
1708   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1709     SROAArgValues[&I] = SROAArg;
1710 
1711   // Bitcasts are always zero cost.
1712   return true;
1713 }
1714 
1715 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
1716   // Propagate constants through ptrtoint.
1717   if (simplifyInstruction(I))
1718     return true;
1719 
1720   // Track base/offset pairs when converted to a plain integer provided the
1721   // integer is large enough to represent the pointer.
1722   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
1723   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
1724   if (IntegerSize == DL.getPointerSizeInBits(AS)) {
1725     std::pair<Value *, APInt> BaseAndOffset =
1726         ConstantOffsetPtrs.lookup(I.getOperand(0));
1727     if (BaseAndOffset.first)
1728       ConstantOffsetPtrs[&I] = BaseAndOffset;
1729   }
1730 
1731   // This is really weird. Technically, ptrtoint will disable SROA. However,
1732   // unless that ptrtoint is *used* somewhere in the live basic blocks after
1733   // inlining, it will be nuked, and SROA should proceed. All of the uses which
1734   // would block SROA would also block SROA if applied directly to a pointer,
1735   // and so we can just add the integer in here. The only places where SROA is
1736   // preserved either cannot fire on an integer, or won't in-and-of themselves
1737   // disable SROA (ext) w/o some later use that we would see and disable.
1738   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1739     SROAArgValues[&I] = SROAArg;
1740 
1741   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1742          TargetTransformInfo::TCC_Free;
1743 }
1744 
1745 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
1746   // Propagate constants through ptrtoint.
1747   if (simplifyInstruction(I))
1748     return true;
1749 
1750   // Track base/offset pairs when round-tripped through a pointer without
1751   // modifications provided the integer is not too large.
1752   Value *Op = I.getOperand(0);
1753   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
1754   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
1755     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
1756     if (BaseAndOffset.first)
1757       ConstantOffsetPtrs[&I] = BaseAndOffset;
1758   }
1759 
1760   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
1761   if (auto *SROAArg = getSROAArgForValueOrNull(Op))
1762     SROAArgValues[&I] = SROAArg;
1763 
1764   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1765          TargetTransformInfo::TCC_Free;
1766 }
1767 
1768 bool CallAnalyzer::visitCastInst(CastInst &I) {
1769   // Propagate constants through casts.
1770   if (simplifyInstruction(I))
1771     return true;
1772 
1773   // Disable SROA in the face of arbitrary casts we don't explicitly list
1774   // elsewhere.
1775   disableSROA(I.getOperand(0));
1776 
1777   // If this is a floating-point cast, and the target says this operation
1778   // is expensive, this may eventually become a library call. Treat the cost
1779   // as such.
1780   switch (I.getOpcode()) {
1781   case Instruction::FPTrunc:
1782   case Instruction::FPExt:
1783   case Instruction::UIToFP:
1784   case Instruction::SIToFP:
1785   case Instruction::FPToUI:
1786   case Instruction::FPToSI:
1787     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1788       onCallPenalty();
1789     break;
1790   default:
1791     break;
1792   }
1793 
1794   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1795          TargetTransformInfo::TCC_Free;
1796 }
1797 
1798 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
1799   return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
1800 }
1801 
1802 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
1803   // Does the *call site* have the NonNull attribute set on an argument?  We
1804   // use the attribute on the call site to memoize any analysis done in the
1805   // caller. This will also trip if the callee function has a non-null
1806   // parameter attribute, but that's a less interesting case because hopefully
1807   // the callee would already have been simplified based on that.
1808   if (Argument *A = dyn_cast<Argument>(V))
1809     if (paramHasAttr(A, Attribute::NonNull))
1810       return true;
1811 
1812   // Is this an alloca in the caller?  This is distinct from the attribute case
1813   // above because attributes aren't updated within the inliner itself and we
1814   // always want to catch the alloca derived case.
1815   if (isAllocaDerivedArg(V))
1816     // We can actually predict the result of comparisons between an
1817     // alloca-derived value and null. Note that this fires regardless of
1818     // SROA firing.
1819     return true;
1820 
1821   return false;
1822 }
1823 
1824 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
1825   // If the normal destination of the invoke or the parent block of the call
1826   // site is unreachable-terminated, there is little point in inlining this
1827   // unless there is literally zero cost.
1828   // FIXME: Note that it is possible that an unreachable-terminated block has a
1829   // hot entry. For example, in below scenario inlining hot_call_X() may be
1830   // beneficial :
1831   // main() {
1832   //   hot_call_1();
1833   //   ...
1834   //   hot_call_N()
1835   //   exit(0);
1836   // }
1837   // For now, we are not handling this corner case here as it is rare in real
1838   // code. In future, we should elaborate this based on BPI and BFI in more
1839   // general threshold adjusting heuristics in updateThreshold().
1840   if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
1841     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
1842       return false;
1843   } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
1844     return false;
1845 
1846   return true;
1847 }
1848 
1849 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
1850                                             BlockFrequencyInfo *CallerBFI) {
1851   // If global profile summary is available, then callsite's coldness is
1852   // determined based on that.
1853   if (PSI && PSI->hasProfileSummary())
1854     return PSI->isColdCallSite(Call, CallerBFI);
1855 
1856   // Otherwise we need BFI to be available.
1857   if (!CallerBFI)
1858     return false;
1859 
1860   // Determine if the callsite is cold relative to caller's entry. We could
1861   // potentially cache the computation of scaled entry frequency, but the added
1862   // complexity is not worth it unless this scaling shows up high in the
1863   // profiles.
1864   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
1865   auto CallSiteBB = Call.getParent();
1866   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1867   auto CallerEntryFreq =
1868       CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
1869   return CallSiteFreq < CallerEntryFreq * ColdProb;
1870 }
1871 
1872 std::optional<int>
1873 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
1874                                                 BlockFrequencyInfo *CallerBFI) {
1875 
1876   // If global profile summary is available, then callsite's hotness is
1877   // determined based on that.
1878   if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
1879     return Params.HotCallSiteThreshold;
1880 
1881   // Otherwise we need BFI to be available and to have a locally hot callsite
1882   // threshold.
1883   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
1884     return std::nullopt;
1885 
1886   // Determine if the callsite is hot relative to caller's entry. We could
1887   // potentially cache the computation of scaled entry frequency, but the added
1888   // complexity is not worth it unless this scaling shows up high in the
1889   // profiles.
1890   const BasicBlock *CallSiteBB = Call.getParent();
1891   BlockFrequency CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1892   BlockFrequency CallerEntryFreq = CallerBFI->getEntryFreq();
1893   std::optional<BlockFrequency> Limit = CallerEntryFreq.mul(HotCallSiteRelFreq);
1894   if (Limit && CallSiteFreq >= *Limit)
1895     return Params.LocallyHotCallSiteThreshold;
1896 
1897   // Otherwise treat it normally.
1898   return std::nullopt;
1899 }
1900 
1901 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
1902   // If no size growth is allowed for this inlining, set Threshold to 0.
1903   if (!allowSizeGrowth(Call)) {
1904     Threshold = 0;
1905     return;
1906   }
1907 
1908   Function *Caller = Call.getCaller();
1909 
1910   // return min(A, B) if B is valid.
1911   auto MinIfValid = [](int A, std::optional<int> B) {
1912     return B ? std::min(A, *B) : A;
1913   };
1914 
1915   // return max(A, B) if B is valid.
1916   auto MaxIfValid = [](int A, std::optional<int> B) {
1917     return B ? std::max(A, *B) : A;
1918   };
1919 
1920   // Various bonus percentages. These are multiplied by Threshold to get the
1921   // bonus values.
1922   // SingleBBBonus: This bonus is applied if the callee has a single reachable
1923   // basic block at the given callsite context. This is speculatively applied
1924   // and withdrawn if more than one basic block is seen.
1925   //
1926   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
1927   // of the last call to a static function as inlining such functions is
1928   // guaranteed to reduce code size.
1929   //
1930   // These bonus percentages may be set to 0 based on properties of the caller
1931   // and the callsite.
1932   int SingleBBBonusPercent = 50;
1933   int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1934   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
1935 
1936   // Lambda to set all the above bonus and bonus percentages to 0.
1937   auto DisallowAllBonuses = [&]() {
1938     SingleBBBonusPercent = 0;
1939     VectorBonusPercent = 0;
1940     LastCallToStaticBonus = 0;
1941   };
1942 
1943   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
1944   // and reduce the threshold if the caller has the necessary attribute.
1945   if (Caller->hasMinSize()) {
1946     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
1947     // For minsize, we want to disable the single BB bonus and the vector
1948     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
1949     // a static function will, at the minimum, eliminate the parameter setup and
1950     // call/return instructions.
1951     SingleBBBonusPercent = 0;
1952     VectorBonusPercent = 0;
1953   } else if (Caller->hasOptSize())
1954     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
1955 
1956   // Adjust the threshold based on inlinehint attribute and profile based
1957   // hotness information if the caller does not have MinSize attribute.
1958   if (!Caller->hasMinSize()) {
1959     if (Callee.hasFnAttribute(Attribute::InlineHint))
1960       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1961 
1962     // FIXME: After switching to the new passmanager, simplify the logic below
1963     // by checking only the callsite hotness/coldness as we will reliably
1964     // have local profile information.
1965     //
1966     // Callsite hotness and coldness can be determined if sample profile is
1967     // used (which adds hotness metadata to calls) or if caller's
1968     // BlockFrequencyInfo is available.
1969     BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
1970     auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
1971     if (!Caller->hasOptSize() && HotCallSiteThreshold) {
1972       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
1973       // FIXME: This should update the threshold only if it exceeds the
1974       // current threshold, but AutoFDO + ThinLTO currently relies on this
1975       // behavior to prevent inlining of hot callsites during ThinLTO
1976       // compile phase.
1977       Threshold = *HotCallSiteThreshold;
1978     } else if (isColdCallSite(Call, CallerBFI)) {
1979       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
1980       // Do not apply bonuses for a cold callsite including the
1981       // LastCallToStatic bonus. While this bonus might result in code size
1982       // reduction, it can cause the size of a non-cold caller to increase
1983       // preventing it from being inlined.
1984       DisallowAllBonuses();
1985       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
1986     } else if (PSI) {
1987       // Use callee's global profile information only if we have no way of
1988       // determining this via callsite information.
1989       if (PSI->isFunctionEntryHot(&Callee)) {
1990         LLVM_DEBUG(dbgs() << "Hot callee.\n");
1991         // If callsite hotness can not be determined, we may still know
1992         // that the callee is hot and treat it as a weaker hint for threshold
1993         // increase.
1994         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1995       } else if (PSI->isFunctionEntryCold(&Callee)) {
1996         LLVM_DEBUG(dbgs() << "Cold callee.\n");
1997         // Do not apply bonuses for a cold callee including the
1998         // LastCallToStatic bonus. While this bonus might result in code size
1999         // reduction, it can cause the size of a non-cold caller to increase
2000         // preventing it from being inlined.
2001         DisallowAllBonuses();
2002         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
2003       }
2004     }
2005   }
2006 
2007   Threshold += TTI.adjustInliningThreshold(&Call);
2008 
2009   // Finally, take the target-specific inlining threshold multiplier into
2010   // account.
2011   Threshold *= TTI.getInliningThresholdMultiplier();
2012 
2013   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
2014   VectorBonus = Threshold * VectorBonusPercent / 100;
2015 
2016   // If there is only one call of the function, and it has internal linkage,
2017   // the cost of inlining it drops dramatically. It may seem odd to update
2018   // Cost in updateThreshold, but the bonus depends on the logic in this method.
2019   if (isSoleCallToLocalFunction(Call, F)) {
2020     Cost -= LastCallToStaticBonus;
2021     StaticBonusApplied = LastCallToStaticBonus;
2022   }
2023 }
2024 
2025 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
2026   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2027   // First try to handle simplified comparisons.
2028   if (simplifyInstruction(I))
2029     return true;
2030 
2031   if (I.getOpcode() == Instruction::FCmp)
2032     return false;
2033 
2034   // Otherwise look for a comparison between constant offset pointers with
2035   // a common base.
2036   Value *LHSBase, *RHSBase;
2037   APInt LHSOffset, RHSOffset;
2038   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
2039   if (LHSBase) {
2040     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
2041     if (RHSBase && LHSBase == RHSBase) {
2042       // We have common bases, fold the icmp to a constant based on the
2043       // offsets.
2044       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
2045       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
2046       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
2047         SimplifiedValues[&I] = C;
2048         ++NumConstantPtrCmps;
2049         return true;
2050       }
2051     }
2052   }
2053 
2054   auto isImplicitNullCheckCmp = [](const CmpInst &I) {
2055     for (auto *User : I.users())
2056       if (auto *Instr = dyn_cast<Instruction>(User))
2057         if (!Instr->getMetadata(LLVMContext::MD_make_implicit))
2058           return false;
2059     return true;
2060   };
2061 
2062   // If the comparison is an equality comparison with null, we can simplify it
2063   // if we know the value (argument) can't be null
2064   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) {
2065     if (isKnownNonNullInCallee(I.getOperand(0))) {
2066       bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
2067       SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
2068                                         : ConstantInt::getFalse(I.getType());
2069       return true;
2070     }
2071     // Implicit null checks act as unconditional branches and their comparisons
2072     // should be treated as simplified and free of cost.
2073     if (isImplicitNullCheckCmp(I))
2074       return true;
2075   }
2076   return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
2077 }
2078 
2079 bool CallAnalyzer::visitSub(BinaryOperator &I) {
2080   // Try to handle a special case: we can fold computing the difference of two
2081   // constant-related pointers.
2082   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2083   Value *LHSBase, *RHSBase;
2084   APInt LHSOffset, RHSOffset;
2085   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
2086   if (LHSBase) {
2087     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
2088     if (RHSBase && LHSBase == RHSBase) {
2089       // We have common bases, fold the subtract to a constant based on the
2090       // offsets.
2091       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
2092       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
2093       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
2094         SimplifiedValues[&I] = C;
2095         ++NumConstantPtrDiffs;
2096         return true;
2097       }
2098     }
2099   }
2100 
2101   // Otherwise, fall back to the generic logic for simplifying and handling
2102   // instructions.
2103   return Base::visitSub(I);
2104 }
2105 
2106 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
2107   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2108   Constant *CLHS = dyn_cast<Constant>(LHS);
2109   if (!CLHS)
2110     CLHS = SimplifiedValues.lookup(LHS);
2111   Constant *CRHS = dyn_cast<Constant>(RHS);
2112   if (!CRHS)
2113     CRHS = SimplifiedValues.lookup(RHS);
2114 
2115   Value *SimpleV = nullptr;
2116   if (auto FI = dyn_cast<FPMathOperator>(&I))
2117     SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
2118                             FI->getFastMathFlags(), DL);
2119   else
2120     SimpleV =
2121         simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
2122 
2123   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
2124     SimplifiedValues[&I] = C;
2125 
2126   if (SimpleV)
2127     return true;
2128 
2129   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
2130   disableSROA(LHS);
2131   disableSROA(RHS);
2132 
2133   // If the instruction is floating point, and the target says this operation
2134   // is expensive, this may eventually become a library call. Treat the cost
2135   // as such. Unless it's fneg which can be implemented with an xor.
2136   using namespace llvm::PatternMatch;
2137   if (I.getType()->isFloatingPointTy() &&
2138       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
2139       !match(&I, m_FNeg(m_Value())))
2140     onCallPenalty();
2141 
2142   return false;
2143 }
2144 
2145 bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
2146   Value *Op = I.getOperand(0);
2147   Constant *COp = dyn_cast<Constant>(Op);
2148   if (!COp)
2149     COp = SimplifiedValues.lookup(Op);
2150 
2151   Value *SimpleV = simplifyFNegInst(
2152       COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
2153 
2154   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
2155     SimplifiedValues[&I] = C;
2156 
2157   if (SimpleV)
2158     return true;
2159 
2160   // Disable any SROA on arguments to arbitrary, unsimplified fneg.
2161   disableSROA(Op);
2162 
2163   return false;
2164 }
2165 
2166 bool CallAnalyzer::visitLoad(LoadInst &I) {
2167   if (handleSROA(I.getPointerOperand(), I.isSimple()))
2168     return true;
2169 
2170   // If the data is already loaded from this address and hasn't been clobbered
2171   // by any stores or calls, this load is likely to be redundant and can be
2172   // eliminated.
2173   if (EnableLoadElimination &&
2174       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
2175     onLoadEliminationOpportunity();
2176     return true;
2177   }
2178 
2179   onMemAccess();
2180   return false;
2181 }
2182 
2183 bool CallAnalyzer::visitStore(StoreInst &I) {
2184   if (handleSROA(I.getPointerOperand(), I.isSimple()))
2185     return true;
2186 
2187   // The store can potentially clobber loads and prevent repeated loads from
2188   // being eliminated.
2189   // FIXME:
2190   // 1. We can probably keep an initial set of eliminatable loads substracted
2191   // from the cost even when we finally see a store. We just need to disable
2192   // *further* accumulation of elimination savings.
2193   // 2. We should probably at some point thread MemorySSA for the callee into
2194   // this and then use that to actually compute *really* precise savings.
2195   disableLoadElimination();
2196 
2197   onMemAccess();
2198   return false;
2199 }
2200 
2201 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
2202   // Constant folding for extract value is trivial.
2203   if (simplifyInstruction(I))
2204     return true;
2205 
2206   // SROA can't look through these, but they may be free.
2207   return Base::visitExtractValue(I);
2208 }
2209 
2210 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
2211   // Constant folding for insert value is trivial.
2212   if (simplifyInstruction(I))
2213     return true;
2214 
2215   // SROA can't look through these, but they may be free.
2216   return Base::visitInsertValue(I);
2217 }
2218 
2219 /// Try to simplify a call site.
2220 ///
2221 /// Takes a concrete function and callsite and tries to actually simplify it by
2222 /// analyzing the arguments and call itself with instsimplify. Returns true if
2223 /// it has simplified the callsite to some other entity (a constant), making it
2224 /// free.
2225 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
2226   // FIXME: Using the instsimplify logic directly for this is inefficient
2227   // because we have to continually rebuild the argument list even when no
2228   // simplifications can be performed. Until that is fixed with remapping
2229   // inside of instsimplify, directly constant fold calls here.
2230   if (!canConstantFoldCallTo(&Call, F))
2231     return false;
2232 
2233   // Try to re-map the arguments to constants.
2234   SmallVector<Constant *, 4> ConstantArgs;
2235   ConstantArgs.reserve(Call.arg_size());
2236   for (Value *I : Call.args()) {
2237     Constant *C = dyn_cast<Constant>(I);
2238     if (!C)
2239       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
2240     if (!C)
2241       return false; // This argument doesn't map to a constant.
2242 
2243     ConstantArgs.push_back(C);
2244   }
2245   if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
2246     SimplifiedValues[&Call] = C;
2247     return true;
2248   }
2249 
2250   return false;
2251 }
2252 
2253 bool CallAnalyzer::visitCallBase(CallBase &Call) {
2254   if (!onCallBaseVisitStart(Call))
2255     return true;
2256 
2257   if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
2258       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
2259     // This aborts the entire analysis.
2260     ExposesReturnsTwice = true;
2261     return false;
2262   }
2263   if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
2264     ContainsNoDuplicateCall = true;
2265 
2266   Function *F = Call.getCalledFunction();
2267   bool IsIndirectCall = !F;
2268   if (IsIndirectCall) {
2269     // Check if this happens to be an indirect function call to a known function
2270     // in this inline context. If not, we've done all we can.
2271     Value *Callee = Call.getCalledOperand();
2272     F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
2273     if (!F || F->getFunctionType() != Call.getFunctionType()) {
2274       onCallArgumentSetup(Call);
2275 
2276       if (!Call.onlyReadsMemory())
2277         disableLoadElimination();
2278       return Base::visitCallBase(Call);
2279     }
2280   }
2281 
2282   assert(F && "Expected a call to a known function");
2283 
2284   // When we have a concrete function, first try to simplify it directly.
2285   if (simplifyCallSite(F, Call))
2286     return true;
2287 
2288   // Next check if it is an intrinsic we know about.
2289   // FIXME: Lift this into part of the InstVisitor.
2290   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
2291     switch (II->getIntrinsicID()) {
2292     default:
2293       if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
2294         disableLoadElimination();
2295       return Base::visitCallBase(Call);
2296 
2297     case Intrinsic::load_relative:
2298       onLoadRelativeIntrinsic();
2299       return false;
2300 
2301     case Intrinsic::memset:
2302     case Intrinsic::memcpy:
2303     case Intrinsic::memmove:
2304       disableLoadElimination();
2305       // SROA can usually chew through these intrinsics, but they aren't free.
2306       return false;
2307     case Intrinsic::icall_branch_funnel:
2308     case Intrinsic::localescape:
2309       HasUninlineableIntrinsic = true;
2310       return false;
2311     case Intrinsic::vastart:
2312       InitsVargArgs = true;
2313       return false;
2314     case Intrinsic::launder_invariant_group:
2315     case Intrinsic::strip_invariant_group:
2316       if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0)))
2317         SROAArgValues[II] = SROAArg;
2318       return true;
2319     case Intrinsic::is_constant:
2320       return simplifyIntrinsicCallIsConstant(Call);
2321     case Intrinsic::objectsize:
2322       return simplifyIntrinsicCallObjectSize(Call);
2323     }
2324   }
2325 
2326   if (F == Call.getFunction()) {
2327     // This flag will fully abort the analysis, so don't bother with anything
2328     // else.
2329     IsRecursiveCall = true;
2330     if (!AllowRecursiveCall)
2331       return false;
2332   }
2333 
2334   if (TTI.isLoweredToCall(F)) {
2335     onLoweredCall(F, Call, IsIndirectCall);
2336   }
2337 
2338   if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
2339     disableLoadElimination();
2340   return Base::visitCallBase(Call);
2341 }
2342 
2343 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
2344   // At least one return instruction will be free after inlining.
2345   bool Free = !HasReturn;
2346   HasReturn = true;
2347   return Free;
2348 }
2349 
2350 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
2351   // We model unconditional branches as essentially free -- they really
2352   // shouldn't exist at all, but handling them makes the behavior of the
2353   // inliner more regular and predictable. Interestingly, conditional branches
2354   // which will fold away are also free.
2355   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
2356          BI.getMetadata(LLVMContext::MD_make_implicit) ||
2357          isa_and_nonnull<ConstantInt>(
2358              SimplifiedValues.lookup(BI.getCondition()));
2359 }
2360 
2361 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
2362   bool CheckSROA = SI.getType()->isPointerTy();
2363   Value *TrueVal = SI.getTrueValue();
2364   Value *FalseVal = SI.getFalseValue();
2365 
2366   Constant *TrueC = dyn_cast<Constant>(TrueVal);
2367   if (!TrueC)
2368     TrueC = SimplifiedValues.lookup(TrueVal);
2369   Constant *FalseC = dyn_cast<Constant>(FalseVal);
2370   if (!FalseC)
2371     FalseC = SimplifiedValues.lookup(FalseVal);
2372   Constant *CondC =
2373       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
2374 
2375   if (!CondC) {
2376     // Select C, X, X => X
2377     if (TrueC == FalseC && TrueC) {
2378       SimplifiedValues[&SI] = TrueC;
2379       return true;
2380     }
2381 
2382     if (!CheckSROA)
2383       return Base::visitSelectInst(SI);
2384 
2385     std::pair<Value *, APInt> TrueBaseAndOffset =
2386         ConstantOffsetPtrs.lookup(TrueVal);
2387     std::pair<Value *, APInt> FalseBaseAndOffset =
2388         ConstantOffsetPtrs.lookup(FalseVal);
2389     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
2390       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
2391 
2392       if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
2393         SROAArgValues[&SI] = SROAArg;
2394       return true;
2395     }
2396 
2397     return Base::visitSelectInst(SI);
2398   }
2399 
2400   // Select condition is a constant.
2401   Value *SelectedV = CondC->isAllOnesValue()  ? TrueVal
2402                      : (CondC->isNullValue()) ? FalseVal
2403                                               : nullptr;
2404   if (!SelectedV) {
2405     // Condition is a vector constant that is not all 1s or all 0s.  If all
2406     // operands are constants, ConstantFoldSelectInstruction() can handle the
2407     // cases such as select vectors.
2408     if (TrueC && FalseC) {
2409       if (auto *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) {
2410         SimplifiedValues[&SI] = C;
2411         return true;
2412       }
2413     }
2414     return Base::visitSelectInst(SI);
2415   }
2416 
2417   // Condition is either all 1s or all 0s. SI can be simplified.
2418   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
2419     SimplifiedValues[&SI] = SelectedC;
2420     return true;
2421   }
2422 
2423   if (!CheckSROA)
2424     return true;
2425 
2426   std::pair<Value *, APInt> BaseAndOffset =
2427       ConstantOffsetPtrs.lookup(SelectedV);
2428   if (BaseAndOffset.first) {
2429     ConstantOffsetPtrs[&SI] = BaseAndOffset;
2430 
2431     if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
2432       SROAArgValues[&SI] = SROAArg;
2433   }
2434 
2435   return true;
2436 }
2437 
2438 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
2439   // We model unconditional switches as free, see the comments on handling
2440   // branches.
2441   if (isa<ConstantInt>(SI.getCondition()))
2442     return true;
2443   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
2444     if (isa<ConstantInt>(V))
2445       return true;
2446 
2447   // Assume the most general case where the switch is lowered into
2448   // either a jump table, bit test, or a balanced binary tree consisting of
2449   // case clusters without merging adjacent clusters with the same
2450   // destination. We do not consider the switches that are lowered with a mix
2451   // of jump table/bit test/binary search tree. The cost of the switch is
2452   // proportional to the size of the tree or the size of jump table range.
2453   //
2454   // NB: We convert large switches which are just used to initialize large phi
2455   // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent
2456   // inlining those. It will prevent inlining in cases where the optimization
2457   // does not (yet) fire.
2458 
2459   unsigned JumpTableSize = 0;
2460   BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
2461   unsigned NumCaseCluster =
2462       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
2463 
2464   onFinalizeSwitch(JumpTableSize, NumCaseCluster);
2465   return false;
2466 }
2467 
2468 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
2469   // We never want to inline functions that contain an indirectbr.  This is
2470   // incorrect because all the blockaddress's (in static global initializers
2471   // for example) would be referring to the original function, and this
2472   // indirect jump would jump from the inlined copy of the function into the
2473   // original function which is extremely undefined behavior.
2474   // FIXME: This logic isn't really right; we can safely inline functions with
2475   // indirectbr's as long as no other function or global references the
2476   // blockaddress of a block within the current function.
2477   HasIndirectBr = true;
2478   return false;
2479 }
2480 
2481 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
2482   // FIXME: It's not clear that a single instruction is an accurate model for
2483   // the inline cost of a resume instruction.
2484   return false;
2485 }
2486 
2487 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
2488   // FIXME: It's not clear that a single instruction is an accurate model for
2489   // the inline cost of a cleanupret instruction.
2490   return false;
2491 }
2492 
2493 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
2494   // FIXME: It's not clear that a single instruction is an accurate model for
2495   // the inline cost of a catchret instruction.
2496   return false;
2497 }
2498 
2499 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
2500   // FIXME: It might be reasonably to discount the cost of instructions leading
2501   // to unreachable as they have the lowest possible impact on both runtime and
2502   // code size.
2503   return true; // No actual code is needed for unreachable.
2504 }
2505 
2506 bool CallAnalyzer::visitInstruction(Instruction &I) {
2507   // Some instructions are free. All of the free intrinsics can also be
2508   // handled by SROA, etc.
2509   if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
2510       TargetTransformInfo::TCC_Free)
2511     return true;
2512 
2513   // We found something we don't understand or can't handle. Mark any SROA-able
2514   // values in the operand list as no longer viable.
2515   for (const Use &Op : I.operands())
2516     disableSROA(Op);
2517 
2518   return false;
2519 }
2520 
2521 /// Analyze a basic block for its contribution to the inline cost.
2522 ///
2523 /// This method walks the analyzer over every instruction in the given basic
2524 /// block and accounts for their cost during inlining at this callsite. It
2525 /// aborts early if the threshold has been exceeded or an impossible to inline
2526 /// construct has been detected. It returns false if inlining is no longer
2527 /// viable, and true if inlining remains viable.
2528 InlineResult
2529 CallAnalyzer::analyzeBlock(BasicBlock *BB,
2530                            SmallPtrSetImpl<const Value *> &EphValues) {
2531   for (Instruction &I : *BB) {
2532     // FIXME: Currently, the number of instructions in a function regardless of
2533     // our ability to simplify them during inline to constants or dead code,
2534     // are actually used by the vector bonus heuristic. As long as that's true,
2535     // we have to special case debug intrinsics here to prevent differences in
2536     // inlining due to debug symbols. Eventually, the number of unsimplified
2537     // instructions shouldn't factor into the cost computation, but until then,
2538     // hack around it here.
2539     // Similarly, skip pseudo-probes.
2540     if (I.isDebugOrPseudoInst())
2541       continue;
2542 
2543     // Skip ephemeral values.
2544     if (EphValues.count(&I))
2545       continue;
2546 
2547     ++NumInstructions;
2548     if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
2549       ++NumVectorInstructions;
2550 
2551     // If the instruction simplified to a constant, there is no cost to this
2552     // instruction. Visit the instructions using our InstVisitor to account for
2553     // all of the per-instruction logic. The visit tree returns true if we
2554     // consumed the instruction in any way, and false if the instruction's base
2555     // cost should count against inlining.
2556     onInstructionAnalysisStart(&I);
2557 
2558     if (Base::visit(&I))
2559       ++NumInstructionsSimplified;
2560     else
2561       onMissedSimplification();
2562 
2563     onInstructionAnalysisFinish(&I);
2564     using namespace ore;
2565     // If the visit this instruction detected an uninlinable pattern, abort.
2566     InlineResult IR = InlineResult::success();
2567     if (IsRecursiveCall && !AllowRecursiveCall)
2568       IR = InlineResult::failure("recursive");
2569     else if (ExposesReturnsTwice)
2570       IR = InlineResult::failure("exposes returns twice");
2571     else if (HasDynamicAlloca)
2572       IR = InlineResult::failure("dynamic alloca");
2573     else if (HasIndirectBr)
2574       IR = InlineResult::failure("indirect branch");
2575     else if (HasUninlineableIntrinsic)
2576       IR = InlineResult::failure("uninlinable intrinsic");
2577     else if (InitsVargArgs)
2578       IR = InlineResult::failure("varargs");
2579     if (!IR.isSuccess()) {
2580       if (ORE)
2581         ORE->emit([&]() {
2582           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2583                                           &CandidateCall)
2584                  << NV("Callee", &F) << " has uninlinable pattern ("
2585                  << NV("InlineResult", IR.getFailureReason())
2586                  << ") and cost is not fully computed";
2587         });
2588       return IR;
2589     }
2590 
2591     // If the caller is a recursive function then we don't want to inline
2592     // functions which allocate a lot of stack space because it would increase
2593     // the caller stack usage dramatically.
2594     if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) {
2595       auto IR =
2596           InlineResult::failure("recursive and allocates too much stack space");
2597       if (ORE)
2598         ORE->emit([&]() {
2599           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2600                                           &CandidateCall)
2601                  << NV("Callee", &F) << " is "
2602                  << NV("InlineResult", IR.getFailureReason())
2603                  << ". Cost is not fully computed";
2604         });
2605       return IR;
2606     }
2607 
2608     if (shouldStop())
2609       return InlineResult::failure(
2610           "Call site analysis is not favorable to inlining.");
2611   }
2612 
2613   return InlineResult::success();
2614 }
2615 
2616 /// Compute the base pointer and cumulative constant offsets for V.
2617 ///
2618 /// This strips all constant offsets off of V, leaving it the base pointer, and
2619 /// accumulates the total constant offset applied in the returned constant. It
2620 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
2621 /// no constant offsets applied.
2622 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
2623   if (!V->getType()->isPointerTy())
2624     return nullptr;
2625 
2626   unsigned AS = V->getType()->getPointerAddressSpace();
2627   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
2628   APInt Offset = APInt::getZero(IntPtrWidth);
2629 
2630   // Even though we don't look through PHI nodes, we could be called on an
2631   // instruction in an unreachable block, which may be on a cycle.
2632   SmallPtrSet<Value *, 4> Visited;
2633   Visited.insert(V);
2634   do {
2635     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2636       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
2637         return nullptr;
2638       V = GEP->getPointerOperand();
2639     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2640       V = cast<Operator>(V)->getOperand(0);
2641     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2642       if (GA->isInterposable())
2643         break;
2644       V = GA->getAliasee();
2645     } else {
2646       break;
2647     }
2648     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2649   } while (Visited.insert(V).second);
2650 
2651   Type *IdxPtrTy = DL.getIndexType(V->getType());
2652   return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
2653 }
2654 
2655 /// Find dead blocks due to deleted CFG edges during inlining.
2656 ///
2657 /// If we know the successor of the current block, \p CurrBB, has to be \p
2658 /// NextBB, the other successors of \p CurrBB are dead if these successors have
2659 /// no live incoming CFG edges.  If one block is found to be dead, we can
2660 /// continue growing the dead block list by checking the successors of the dead
2661 /// blocks to see if all their incoming edges are dead or not.
2662 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
2663   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
2664     // A CFG edge is dead if the predecessor is dead or the predecessor has a
2665     // known successor which is not the one under exam.
2666     return (DeadBlocks.count(Pred) ||
2667             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
2668   };
2669 
2670   auto IsNewlyDead = [&](BasicBlock *BB) {
2671     // If all the edges to a block are dead, the block is also dead.
2672     return (!DeadBlocks.count(BB) &&
2673             llvm::all_of(predecessors(BB),
2674                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
2675   };
2676 
2677   for (BasicBlock *Succ : successors(CurrBB)) {
2678     if (Succ == NextBB || !IsNewlyDead(Succ))
2679       continue;
2680     SmallVector<BasicBlock *, 4> NewDead;
2681     NewDead.push_back(Succ);
2682     while (!NewDead.empty()) {
2683       BasicBlock *Dead = NewDead.pop_back_val();
2684       if (DeadBlocks.insert(Dead).second)
2685         // Continue growing the dead block lists.
2686         for (BasicBlock *S : successors(Dead))
2687           if (IsNewlyDead(S))
2688             NewDead.push_back(S);
2689     }
2690   }
2691 }
2692 
2693 /// Analyze a call site for potential inlining.
2694 ///
2695 /// Returns true if inlining this call is viable, and false if it is not
2696 /// viable. It computes the cost and adjusts the threshold based on numerous
2697 /// factors and heuristics. If this method returns false but the computed cost
2698 /// is below the computed threshold, then inlining was forcibly disabled by
2699 /// some artifact of the routine.
2700 InlineResult CallAnalyzer::analyze() {
2701   ++NumCallsAnalyzed;
2702 
2703   auto Result = onAnalysisStart();
2704   if (!Result.isSuccess())
2705     return Result;
2706 
2707   if (F.empty())
2708     return InlineResult::success();
2709 
2710   Function *Caller = CandidateCall.getFunction();
2711   // Check if the caller function is recursive itself.
2712   for (User *U : Caller->users()) {
2713     CallBase *Call = dyn_cast<CallBase>(U);
2714     if (Call && Call->getFunction() == Caller) {
2715       IsCallerRecursive = true;
2716       break;
2717     }
2718   }
2719 
2720   // Populate our simplified values by mapping from function arguments to call
2721   // arguments with known important simplifications.
2722   auto CAI = CandidateCall.arg_begin();
2723   for (Argument &FAI : F.args()) {
2724     assert(CAI != CandidateCall.arg_end());
2725     if (Constant *C = dyn_cast<Constant>(CAI))
2726       SimplifiedValues[&FAI] = C;
2727 
2728     Value *PtrArg = *CAI;
2729     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
2730       ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue());
2731 
2732       // We can SROA any pointer arguments derived from alloca instructions.
2733       if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
2734         SROAArgValues[&FAI] = SROAArg;
2735         onInitializeSROAArg(SROAArg);
2736         EnabledSROAAllocas.insert(SROAArg);
2737       }
2738     }
2739     ++CAI;
2740   }
2741   NumConstantArgs = SimplifiedValues.size();
2742   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
2743   NumAllocaArgs = SROAArgValues.size();
2744 
2745   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
2746   // the ephemeral values multiple times (and they're completely determined by
2747   // the callee, so this is purely duplicate work).
2748   SmallPtrSet<const Value *, 32> EphValues;
2749   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
2750 
2751   // The worklist of live basic blocks in the callee *after* inlining. We avoid
2752   // adding basic blocks of the callee which can be proven to be dead for this
2753   // particular call site in order to get more accurate cost estimates. This
2754   // requires a somewhat heavyweight iteration pattern: we need to walk the
2755   // basic blocks in a breadth-first order as we insert live successors. To
2756   // accomplish this, prioritizing for small iterations because we exit after
2757   // crossing our threshold, we use a small-size optimized SetVector.
2758   typedef SmallSetVector<BasicBlock *, 16> BBSetVector;
2759   BBSetVector BBWorklist;
2760   BBWorklist.insert(&F.getEntryBlock());
2761 
2762   // Note that we *must not* cache the size, this loop grows the worklist.
2763   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
2764     if (shouldStop())
2765       break;
2766 
2767     BasicBlock *BB = BBWorklist[Idx];
2768     if (BB->empty())
2769       continue;
2770 
2771     onBlockStart(BB);
2772 
2773     // Disallow inlining a blockaddress with uses other than strictly callbr.
2774     // A blockaddress only has defined behavior for an indirect branch in the
2775     // same function, and we do not currently support inlining indirect
2776     // branches.  But, the inliner may not see an indirect branch that ends up
2777     // being dead code at a particular call site. If the blockaddress escapes
2778     // the function, e.g., via a global variable, inlining may lead to an
2779     // invalid cross-function reference.
2780     // FIXME: pr/39560: continue relaxing this overt restriction.
2781     if (BB->hasAddressTaken())
2782       for (User *U : BlockAddress::get(&*BB)->users())
2783         if (!isa<CallBrInst>(*U))
2784           return InlineResult::failure("blockaddress used outside of callbr");
2785 
2786     // Analyze the cost of this block. If we blow through the threshold, this
2787     // returns false, and we can bail on out.
2788     InlineResult IR = analyzeBlock(BB, EphValues);
2789     if (!IR.isSuccess())
2790       return IR;
2791 
2792     Instruction *TI = BB->getTerminator();
2793 
2794     // Add in the live successors by first checking whether we have terminator
2795     // that may be simplified based on the values simplified by this call.
2796     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2797       if (BI->isConditional()) {
2798         Value *Cond = BI->getCondition();
2799         if (ConstantInt *SimpleCond =
2800                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2801           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
2802           BBWorklist.insert(NextBB);
2803           KnownSuccessors[BB] = NextBB;
2804           findDeadBlocks(BB, NextBB);
2805           continue;
2806         }
2807       }
2808     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2809       Value *Cond = SI->getCondition();
2810       if (ConstantInt *SimpleCond =
2811               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2812         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
2813         BBWorklist.insert(NextBB);
2814         KnownSuccessors[BB] = NextBB;
2815         findDeadBlocks(BB, NextBB);
2816         continue;
2817       }
2818     }
2819 
2820     // If we're unable to select a particular successor, just count all of
2821     // them.
2822     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
2823          ++TIdx)
2824       BBWorklist.insert(TI->getSuccessor(TIdx));
2825 
2826     onBlockAnalyzed(BB);
2827   }
2828 
2829   // If this is a noduplicate call, we can still inline as long as
2830   // inlining this would cause the removal of the caller (so the instruction
2831   // is not actually duplicated, just moved).
2832   if (!isSoleCallToLocalFunction(CandidateCall, F) && ContainsNoDuplicateCall)
2833     return InlineResult::failure("noduplicate");
2834 
2835   // If the callee's stack size exceeds the user-specified threshold,
2836   // do not let it be inlined.
2837   // The command line option overrides a limit set in the function attributes.
2838   size_t FinalStackSizeThreshold = StackSizeThreshold;
2839   if (!StackSizeThreshold.getNumOccurrences())
2840     if (std::optional<int> AttrMaxStackSize = getStringFnAttrAsInt(
2841             Caller, InlineConstants::MaxInlineStackSizeAttributeName))
2842       FinalStackSizeThreshold = *AttrMaxStackSize;
2843   if (AllocatedSize > FinalStackSizeThreshold)
2844     return InlineResult::failure("stacksize");
2845 
2846   return finalizeAnalysis();
2847 }
2848 
2849 void InlineCostCallAnalyzer::print(raw_ostream &OS) {
2850 #define DEBUG_PRINT_STAT(x) OS << "      " #x ": " << x << "\n"
2851   if (PrintInstructionComments)
2852     F.print(OS, &Writer);
2853   DEBUG_PRINT_STAT(NumConstantArgs);
2854   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
2855   DEBUG_PRINT_STAT(NumAllocaArgs);
2856   DEBUG_PRINT_STAT(NumConstantPtrCmps);
2857   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
2858   DEBUG_PRINT_STAT(NumInstructionsSimplified);
2859   DEBUG_PRINT_STAT(NumInstructions);
2860   DEBUG_PRINT_STAT(SROACostSavings);
2861   DEBUG_PRINT_STAT(SROACostSavingsLost);
2862   DEBUG_PRINT_STAT(LoadEliminationCost);
2863   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
2864   DEBUG_PRINT_STAT(Cost);
2865   DEBUG_PRINT_STAT(Threshold);
2866 #undef DEBUG_PRINT_STAT
2867 }
2868 
2869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2870 /// Dump stats about this call's analysis.
2871 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); }
2872 #endif
2873 
2874 /// Test that there are no attribute conflicts between Caller and Callee
2875 ///        that prevent inlining.
2876 static bool functionsHaveCompatibleAttributes(
2877     Function *Caller, Function *Callee, TargetTransformInfo &TTI,
2878     function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
2879   // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
2880   // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
2881   // object, and always returns the same object (which is overwritten on each
2882   // GetTLI call). Therefore we copy the first result.
2883   auto CalleeTLI = GetTLI(*Callee);
2884   return (IgnoreTTIInlineCompatible ||
2885           TTI.areInlineCompatible(Caller, Callee)) &&
2886          GetTLI(*Caller).areInlineCompatible(CalleeTLI,
2887                                              InlineCallerSupersetNoBuiltin) &&
2888          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
2889 }
2890 
2891 int llvm::getCallsiteCost(const TargetTransformInfo &TTI, const CallBase &Call,
2892                           const DataLayout &DL) {
2893   int64_t Cost = 0;
2894   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
2895     if (Call.isByValArgument(I)) {
2896       // We approximate the number of loads and stores needed by dividing the
2897       // size of the byval type by the target's pointer size.
2898       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2899       unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I));
2900       unsigned AS = PTy->getAddressSpace();
2901       unsigned PointerSize = DL.getPointerSizeInBits(AS);
2902       // Ceiling division.
2903       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
2904 
2905       // If it generates more than 8 stores it is likely to be expanded as an
2906       // inline memcpy so we take that as an upper bound. Otherwise we assume
2907       // one load and one store per word copied.
2908       // FIXME: The maxStoresPerMemcpy setting from the target should be used
2909       // here instead of a magic number of 8, but it's not available via
2910       // DataLayout.
2911       NumStores = std::min(NumStores, 8U);
2912 
2913       Cost += 2 * NumStores * InstrCost;
2914     } else {
2915       // For non-byval arguments subtract off one instruction per call
2916       // argument.
2917       Cost += InstrCost;
2918     }
2919   }
2920   // The call instruction also disappears after inlining.
2921   Cost += InstrCost;
2922   Cost += TTI.getInlineCallPenalty(Call.getCaller(), Call, CallPenalty);
2923 
2924   return std::min<int64_t>(Cost, INT_MAX);
2925 }
2926 
2927 InlineCost llvm::getInlineCost(
2928     CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2929     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2930     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2931     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2932     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2933   return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2934                        GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
2935 }
2936 
2937 std::optional<int> llvm::getInliningCostEstimate(
2938     CallBase &Call, TargetTransformInfo &CalleeTTI,
2939     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2940     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2941     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2942   const InlineParams Params = {/* DefaultThreshold*/ 0,
2943                                /*HintThreshold*/ {},
2944                                /*ColdThreshold*/ {},
2945                                /*OptSizeThreshold*/ {},
2946                                /*OptMinSizeThreshold*/ {},
2947                                /*HotCallSiteThreshold*/ {},
2948                                /*LocallyHotCallSiteThreshold*/ {},
2949                                /*ColdCallSiteThreshold*/ {},
2950                                /*ComputeFullInlineCost*/ true,
2951                                /*EnableDeferral*/ true};
2952 
2953   InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
2954                             GetAssumptionCache, GetBFI, PSI, ORE, true,
2955                             /*IgnoreThreshold*/ true);
2956   auto R = CA.analyze();
2957   if (!R.isSuccess())
2958     return std::nullopt;
2959   return CA.getCost();
2960 }
2961 
2962 std::optional<InlineCostFeatures> llvm::getInliningCostFeatures(
2963     CallBase &Call, TargetTransformInfo &CalleeTTI,
2964     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2965     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2966     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2967   InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI,
2968                                  ORE, *Call.getCalledFunction(), Call);
2969   auto R = CFA.analyze();
2970   if (!R.isSuccess())
2971     return std::nullopt;
2972   return CFA.features();
2973 }
2974 
2975 std::optional<InlineResult> llvm::getAttributeBasedInliningDecision(
2976     CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
2977     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
2978 
2979   // Cannot inline indirect calls.
2980   if (!Callee)
2981     return InlineResult::failure("indirect call");
2982 
2983   // When callee coroutine function is inlined into caller coroutine function
2984   // before coro-split pass,
2985   // coro-early pass can not handle this quiet well.
2986   // So we won't inline the coroutine function if it have not been unsplited
2987   if (Callee->isPresplitCoroutine())
2988     return InlineResult::failure("unsplited coroutine call");
2989 
2990   // Never inline calls with byval arguments that does not have the alloca
2991   // address space. Since byval arguments can be replaced with a copy to an
2992   // alloca, the inlined code would need to be adjusted to handle that the
2993   // argument is in the alloca address space (so it is a little bit complicated
2994   // to solve).
2995   unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2996   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2997     if (Call.isByValArgument(I)) {
2998       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2999       if (PTy->getAddressSpace() != AllocaAS)
3000         return InlineResult::failure("byval arguments without alloca"
3001                                      " address space");
3002     }
3003 
3004   // Calls to functions with always-inline attributes should be inlined
3005   // whenever possible.
3006   if (Call.hasFnAttr(Attribute::AlwaysInline)) {
3007     if (Call.getAttributes().hasFnAttr(Attribute::NoInline))
3008       return InlineResult::failure("noinline call site attribute");
3009 
3010     auto IsViable = isInlineViable(*Callee);
3011     if (IsViable.isSuccess())
3012       return InlineResult::success();
3013     return InlineResult::failure(IsViable.getFailureReason());
3014   }
3015 
3016   // Never inline functions with conflicting attributes (unless callee has
3017   // always-inline attribute).
3018   Function *Caller = Call.getCaller();
3019   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
3020     return InlineResult::failure("conflicting attributes");
3021 
3022   // Don't inline this call if the caller has the optnone attribute.
3023   if (Caller->hasOptNone())
3024     return InlineResult::failure("optnone attribute");
3025 
3026   // Don't inline a function that treats null pointer as valid into a caller
3027   // that does not have this attribute.
3028   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
3029     return InlineResult::failure("nullptr definitions incompatible");
3030 
3031   // Don't inline functions which can be interposed at link-time.
3032   if (Callee->isInterposable())
3033     return InlineResult::failure("interposable");
3034 
3035   // Don't inline functions marked noinline.
3036   if (Callee->hasFnAttribute(Attribute::NoInline))
3037     return InlineResult::failure("noinline function attribute");
3038 
3039   // Don't inline call sites marked noinline.
3040   if (Call.isNoInline())
3041     return InlineResult::failure("noinline call site attribute");
3042 
3043   return std::nullopt;
3044 }
3045 
3046 InlineCost llvm::getInlineCost(
3047     CallBase &Call, Function *Callee, const InlineParams &Params,
3048     TargetTransformInfo &CalleeTTI,
3049     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
3050     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
3051     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
3052     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
3053 
3054   auto UserDecision =
3055       llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);
3056 
3057   if (UserDecision) {
3058     if (UserDecision->isSuccess())
3059       return llvm::InlineCost::getAlways("always inline attribute");
3060     return llvm::InlineCost::getNever(UserDecision->getFailureReason());
3061   }
3062 
3063   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
3064                           << "... (caller:" << Call.getCaller()->getName()
3065                           << ")\n");
3066 
3067   InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
3068                             GetAssumptionCache, GetBFI, PSI, ORE);
3069   InlineResult ShouldInline = CA.analyze();
3070 
3071   LLVM_DEBUG(CA.dump());
3072 
3073   // Always make cost benefit based decision explicit.
3074   // We use always/never here since threshold is not meaningful,
3075   // as it's not what drives cost-benefit analysis.
3076   if (CA.wasDecidedByCostBenefit()) {
3077     if (ShouldInline.isSuccess())
3078       return InlineCost::getAlways("benefit over cost",
3079                                    CA.getCostBenefitPair());
3080     else
3081       return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair());
3082   }
3083 
3084   if (CA.wasDecidedByCostThreshold())
3085     return InlineCost::get(CA.getCost(), CA.getThreshold(),
3086                            CA.getStaticBonusApplied());
3087 
3088   // No details on how the decision was made, simply return always or never.
3089   return ShouldInline.isSuccess()
3090              ? InlineCost::getAlways("empty function")
3091              : InlineCost::getNever(ShouldInline.getFailureReason());
3092 }
3093 
3094 InlineResult llvm::isInlineViable(Function &F) {
3095   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
3096   for (BasicBlock &BB : F) {
3097     // Disallow inlining of functions which contain indirect branches.
3098     if (isa<IndirectBrInst>(BB.getTerminator()))
3099       return InlineResult::failure("contains indirect branches");
3100 
3101     // Disallow inlining of blockaddresses which are used by non-callbr
3102     // instructions.
3103     if (BB.hasAddressTaken())
3104       for (User *U : BlockAddress::get(&BB)->users())
3105         if (!isa<CallBrInst>(*U))
3106           return InlineResult::failure("blockaddress used outside of callbr");
3107 
3108     for (auto &II : BB) {
3109       CallBase *Call = dyn_cast<CallBase>(&II);
3110       if (!Call)
3111         continue;
3112 
3113       // Disallow recursive calls.
3114       Function *Callee = Call->getCalledFunction();
3115       if (&F == Callee)
3116         return InlineResult::failure("recursive call");
3117 
3118       // Disallow calls which expose returns-twice to a function not previously
3119       // attributed as such.
3120       if (!ReturnsTwice && isa<CallInst>(Call) &&
3121           cast<CallInst>(Call)->canReturnTwice())
3122         return InlineResult::failure("exposes returns-twice attribute");
3123 
3124       if (Callee)
3125         switch (Callee->getIntrinsicID()) {
3126         default:
3127           break;
3128         case llvm::Intrinsic::icall_branch_funnel:
3129           // Disallow inlining of @llvm.icall.branch.funnel because current
3130           // backend can't separate call targets from call arguments.
3131           return InlineResult::failure(
3132               "disallowed inlining of @llvm.icall.branch.funnel");
3133         case llvm::Intrinsic::localescape:
3134           // Disallow inlining functions that call @llvm.localescape. Doing this
3135           // correctly would require major changes to the inliner.
3136           return InlineResult::failure(
3137               "disallowed inlining of @llvm.localescape");
3138         case llvm::Intrinsic::vastart:
3139           // Disallow inlining of functions that initialize VarArgs with
3140           // va_start.
3141           return InlineResult::failure(
3142               "contains VarArgs initialized with va_start");
3143         }
3144     }
3145   }
3146 
3147   return InlineResult::success();
3148 }
3149 
3150 // APIs to create InlineParams based on command line flags and/or other
3151 // parameters.
3152 
3153 InlineParams llvm::getInlineParams(int Threshold) {
3154   InlineParams Params;
3155 
3156   // This field is the threshold to use for a callee by default. This is
3157   // derived from one or more of:
3158   //  * optimization or size-optimization levels,
3159   //  * a value passed to createFunctionInliningPass function, or
3160   //  * the -inline-threshold flag.
3161   //  If the -inline-threshold flag is explicitly specified, that is used
3162   //  irrespective of anything else.
3163   if (InlineThreshold.getNumOccurrences() > 0)
3164     Params.DefaultThreshold = InlineThreshold;
3165   else
3166     Params.DefaultThreshold = Threshold;
3167 
3168   // Set the HintThreshold knob from the -inlinehint-threshold.
3169   Params.HintThreshold = HintThreshold;
3170 
3171   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
3172   Params.HotCallSiteThreshold = HotCallSiteThreshold;
3173 
3174   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
3175   // populate LocallyHotCallSiteThreshold. Later, we populate
3176   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
3177   // we know that optimization level is O3 (in the getInlineParams variant that
3178   // takes the opt and size levels).
3179   // FIXME: Remove this check (and make the assignment unconditional) after
3180   // addressing size regression issues at O2.
3181   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
3182     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
3183 
3184   // Set the ColdCallSiteThreshold knob from the
3185   // -inline-cold-callsite-threshold.
3186   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
3187 
3188   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
3189   // -inlinehint-threshold commandline option is not explicitly given. If that
3190   // option is present, then its value applies even for callees with size and
3191   // minsize attributes.
3192   // If the -inline-threshold is not specified, set the ColdThreshold from the
3193   // -inlinecold-threshold even if it is not explicitly passed. If
3194   // -inline-threshold is specified, then -inlinecold-threshold needs to be
3195   // explicitly specified to set the ColdThreshold knob
3196   if (InlineThreshold.getNumOccurrences() == 0) {
3197     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
3198     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
3199     Params.ColdThreshold = ColdThreshold;
3200   } else if (ColdThreshold.getNumOccurrences() > 0) {
3201     Params.ColdThreshold = ColdThreshold;
3202   }
3203   return Params;
3204 }
3205 
3206 InlineParams llvm::getInlineParams() {
3207   return getInlineParams(DefaultThreshold);
3208 }
3209 
3210 // Compute the default threshold for inlining based on the opt level and the
3211 // size opt level.
3212 static int computeThresholdFromOptLevels(unsigned OptLevel,
3213                                          unsigned SizeOptLevel) {
3214   if (OptLevel > 2)
3215     return InlineConstants::OptAggressiveThreshold;
3216   if (SizeOptLevel == 1) // -Os
3217     return InlineConstants::OptSizeThreshold;
3218   if (SizeOptLevel == 2) // -Oz
3219     return InlineConstants::OptMinSizeThreshold;
3220   return DefaultThreshold;
3221 }
3222 
3223 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
3224   auto Params =
3225       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
3226   // At O3, use the value of -locally-hot-callsite-threshold option to populate
3227   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
3228   // when it is specified explicitly.
3229   if (OptLevel > 2)
3230     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
3231   return Params;
3232 }
3233 
3234 PreservedAnalyses
3235 InlineCostAnnotationPrinterPass::run(Function &F,
3236                                      FunctionAnalysisManager &FAM) {
3237   PrintInstructionComments = true;
3238   std::function<AssumptionCache &(Function &)> GetAssumptionCache =
3239       [&](Function &F) -> AssumptionCache & {
3240     return FAM.getResult<AssumptionAnalysis>(F);
3241   };
3242   Module *M = F.getParent();
3243   ProfileSummaryInfo PSI(*M);
3244   DataLayout DL(M);
3245   TargetTransformInfo TTI(DL);
3246   // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
3247   // In the current implementation, the type of InlineParams doesn't matter as
3248   // the pass serves only for verification of inliner's decisions.
3249   // We can add a flag which determines InlineParams for this run. Right now,
3250   // the default InlineParams are used.
3251   const InlineParams Params = llvm::getInlineParams();
3252   for (BasicBlock &BB : F) {
3253     for (Instruction &I : BB) {
3254       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3255         Function *CalledFunction = CI->getCalledFunction();
3256         if (!CalledFunction || CalledFunction->isDeclaration())
3257           continue;
3258         OptimizationRemarkEmitter ORE(CalledFunction);
3259         InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
3260                                     GetAssumptionCache, nullptr, &PSI, &ORE);
3261         ICCA.analyze();
3262         OS << "      Analyzing call of " << CalledFunction->getName()
3263            << "... (caller:" << CI->getCaller()->getName() << ")\n";
3264         ICCA.print(OS);
3265         OS << "\n";
3266       }
3267     }
3268   }
3269   return PreservedAnalyses::all();
3270 }
3271