1 //===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis 10 // classes used to extract function properties. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/FunctionPropertiesAnalysis.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/IR/CFG.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/Instructions.h" 21 #include <deque> 22 23 using namespace llvm; 24 25 namespace { 26 int64_t getNrBlocksFromCond(const BasicBlock &BB) { 27 int64_t Ret = 0; 28 if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) { 29 if (BI->isConditional()) 30 Ret += BI->getNumSuccessors(); 31 } else if (const auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) { 32 Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest())); 33 } 34 return Ret; 35 } 36 37 int64_t getUses(const Function &F) { 38 return ((!F.hasLocalLinkage()) ? 1 : 0) + F.getNumUses(); 39 } 40 } // namespace 41 42 void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) { 43 updateForBB(BB, +1); 44 } 45 46 void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB, 47 int64_t Direction) { 48 assert(Direction == 1 || Direction == -1); 49 BasicBlockCount += Direction; 50 BlocksReachedFromConditionalInstruction += 51 (Direction * getNrBlocksFromCond(BB)); 52 for (const auto &I : BB) { 53 if (auto *CS = dyn_cast<CallBase>(&I)) { 54 const auto *Callee = CS->getCalledFunction(); 55 if (Callee && !Callee->isIntrinsic() && !Callee->isDeclaration()) 56 DirectCallsToDefinedFunctions += Direction; 57 } 58 if (I.getOpcode() == Instruction::Load) { 59 LoadInstCount += Direction; 60 } else if (I.getOpcode() == Instruction::Store) { 61 StoreInstCount += Direction; 62 } 63 } 64 TotalInstructionCount += Direction * BB.sizeWithoutDebug(); 65 } 66 67 void FunctionPropertiesInfo::updateAggregateStats(const Function &F, 68 const LoopInfo &LI) { 69 70 Uses = getUses(F); 71 TopLevelLoopCount = llvm::size(LI); 72 MaxLoopDepth = 0; 73 std::deque<const Loop *> Worklist; 74 llvm::append_range(Worklist, LI); 75 while (!Worklist.empty()) { 76 const auto *L = Worklist.front(); 77 MaxLoopDepth = 78 std::max(MaxLoopDepth, static_cast<int64_t>(L->getLoopDepth())); 79 Worklist.pop_front(); 80 llvm::append_range(Worklist, L->getSubLoops()); 81 } 82 } 83 84 FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo( 85 const Function &F, FunctionAnalysisManager &FAM) { 86 87 FunctionPropertiesInfo FPI; 88 // The const casts are due to the getResult API - there's no mutation of F. 89 const auto &LI = FAM.getResult<LoopAnalysis>(const_cast<Function &>(F)); 90 const auto &DT = 91 FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(F)); 92 for (const auto &BB : F) 93 if (DT.isReachableFromEntry(&BB)) 94 FPI.reIncludeBB(BB); 95 FPI.updateAggregateStats(F, LI); 96 return FPI; 97 } 98 99 void FunctionPropertiesInfo::print(raw_ostream &OS) const { 100 OS << "BasicBlockCount: " << BasicBlockCount << "\n" 101 << "BlocksReachedFromConditionalInstruction: " 102 << BlocksReachedFromConditionalInstruction << "\n" 103 << "Uses: " << Uses << "\n" 104 << "DirectCallsToDefinedFunctions: " << DirectCallsToDefinedFunctions 105 << "\n" 106 << "LoadInstCount: " << LoadInstCount << "\n" 107 << "StoreInstCount: " << StoreInstCount << "\n" 108 << "MaxLoopDepth: " << MaxLoopDepth << "\n" 109 << "TopLevelLoopCount: " << TopLevelLoopCount << "\n" 110 << "TotalInstructionCount: " << TotalInstructionCount << "\n\n"; 111 } 112 113 AnalysisKey FunctionPropertiesAnalysis::Key; 114 115 FunctionPropertiesInfo 116 FunctionPropertiesAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { 117 return FunctionPropertiesInfo::getFunctionPropertiesInfo(F, FAM); 118 } 119 120 PreservedAnalyses 121 FunctionPropertiesPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 122 OS << "Printing analysis results of CFA for function " 123 << "'" << F.getName() << "':" 124 << "\n"; 125 AM.getResult<FunctionPropertiesAnalysis>(F).print(OS); 126 return PreservedAnalyses::all(); 127 } 128 129 FunctionPropertiesUpdater::FunctionPropertiesUpdater( 130 FunctionPropertiesInfo &FPI, const CallBase &CB) 131 : FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) { 132 assert(isa<CallInst>(CB) || isa<InvokeInst>(CB)); 133 // For BBs that are likely to change, we subtract from feature totals their 134 // contribution. Some features, like max loop counts or depths, are left 135 // invalid, as they will be updated post-inlining. 136 SmallPtrSet<const BasicBlock *, 4> LikelyToChangeBBs; 137 // The CB BB will change - it'll either be split or the callee's body (single 138 // BB) will be pasted in. 139 LikelyToChangeBBs.insert(&CallSiteBB); 140 141 // The caller's entry BB may change due to new alloca instructions. 142 LikelyToChangeBBs.insert(&*Caller.begin()); 143 144 // The successors may become unreachable in the case of `invoke` inlining. 145 // We track successors separately, too, because they form a boundary, together 146 // with the CB BB ('Entry') between which the inlined callee will be pasted. 147 Successors.insert(succ_begin(&CallSiteBB), succ_end(&CallSiteBB)); 148 149 // Inlining only handles invoke and calls. If this is an invoke, and inlining 150 // it pulls another invoke, the original landing pad may get split, so as to 151 // share its content with other potential users. So the edge up to which we 152 // need to invalidate and then re-account BB data is the successors of the 153 // current landing pad. We can leave the current lp, too - if it doesn't get 154 // split, then it will be the place traversal stops. Either way, the 155 // discounted BBs will be checked if reachable and re-added. 156 if (const auto *II = dyn_cast<InvokeInst>(&CB)) { 157 const auto *UnwindDest = II->getUnwindDest(); 158 Successors.insert(succ_begin(UnwindDest), succ_end(UnwindDest)); 159 } 160 161 // Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop). 162 // We are only interested in BBs the graph moves past the callsite BB to 163 // define the frontier past which we don't want to re-process BBs. Including 164 // the callsite BB in this case would prematurely stop the traversal in 165 // finish(). 166 Successors.erase(&CallSiteBB); 167 168 for (const auto *BB : Successors) 169 LikelyToChangeBBs.insert(BB); 170 171 // Commit the change. While some of the BBs accounted for above may play dual 172 // role - e.g. caller's entry BB may be the same as the callsite BB - set 173 // insertion semantics make sure we account them once. This needs to be 174 // followed in `finish`, too. 175 for (const auto *BB : LikelyToChangeBBs) 176 FPI.updateForBB(*BB, -1); 177 } 178 179 void FunctionPropertiesUpdater::finish(FunctionAnalysisManager &FAM) const { 180 // Update feature values from the BBs that were copied from the callee, or 181 // might have been modified because of inlining. The latter have been 182 // subtracted in the FunctionPropertiesUpdater ctor. 183 // There could be successors that were reached before but now are only 184 // reachable from elsewhere in the CFG. 185 // One example is the following diamond CFG (lines are arrows pointing down): 186 // A 187 // / \ 188 // B C 189 // | | 190 // | D 191 // | | 192 // | E 193 // \ / 194 // F 195 // There's a call site in C that is inlined. Upon doing that, it turns out 196 // it expands to 197 // call void @llvm.trap() 198 // unreachable 199 // F isn't reachable from C anymore, but we did discount it when we set up 200 // FunctionPropertiesUpdater, so we need to re-include it here. 201 // At the same time, D and E were reachable before, but now are not anymore, 202 // so we need to leave D out (we discounted it at setup), and explicitly 203 // remove E. 204 SetVector<const BasicBlock *> Reinclude; 205 SetVector<const BasicBlock *> Unreachable; 206 const auto &DT = 207 FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(Caller)); 208 209 if (&CallSiteBB != &*Caller.begin()) 210 Reinclude.insert(&*Caller.begin()); 211 212 // Distribute the successors to the 2 buckets. 213 for (const auto *Succ : Successors) 214 if (DT.isReachableFromEntry(Succ)) 215 Reinclude.insert(Succ); 216 else 217 Unreachable.insert(Succ); 218 219 // For reinclusion, we want to stop at the reachable successors, who are at 220 // the beginning of the worklist; but, starting from the callsite bb and 221 // ending at those successors, we also want to perform a traversal. 222 // IncludeSuccessorsMark is the index after which we include successors. 223 const auto IncludeSuccessorsMark = Reinclude.size(); 224 bool CSInsertion = Reinclude.insert(&CallSiteBB); 225 (void)CSInsertion; 226 assert(CSInsertion); 227 for (size_t I = 0; I < Reinclude.size(); ++I) { 228 const auto *BB = Reinclude[I]; 229 FPI.reIncludeBB(*BB); 230 if (I >= IncludeSuccessorsMark) 231 Reinclude.insert(succ_begin(BB), succ_end(BB)); 232 } 233 234 // For exclusion, we don't need to exclude the set of BBs that were successors 235 // before and are now unreachable, because we already did that at setup. For 236 // the rest, as long as a successor is unreachable, we want to explicitly 237 // exclude it. 238 const auto AlreadyExcludedMark = Unreachable.size(); 239 for (size_t I = 0; I < Unreachable.size(); ++I) { 240 const auto *U = Unreachable[I]; 241 if (I >= AlreadyExcludedMark) 242 FPI.updateForBB(*U, -1); 243 for (const auto *Succ : successors(U)) 244 if (!DT.isReachableFromEntry(Succ)) 245 Unreachable.insert(Succ); 246 } 247 248 const auto &LI = FAM.getResult<LoopAnalysis>(const_cast<Function &>(Caller)); 249 FPI.updateAggregateStats(Caller, LI); 250 assert(FPI == FunctionPropertiesInfo::getFunctionPropertiesInfo(Caller, FAM)); 251 } 252