1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loops should be simplified before this analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/BranchProbabilityInfo.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/SCCIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/PostDominators.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/PassManager.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/InitializePasses.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/BranchProbability.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "branch-prob" 50 51 static cl::opt<bool> PrintBranchProb( 52 "print-bpi", cl::init(false), cl::Hidden, 53 cl::desc("Print the branch probability info.")); 54 55 cl::opt<std::string> PrintBranchProbFuncName( 56 "print-bpi-func-name", cl::Hidden, 57 cl::desc("The option to specify the name of the function " 58 "whose branch probability info is printed.")); 59 60 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", 61 "Branch Probability Analysis", false, true) 62 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 63 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 65 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", 66 "Branch Probability Analysis", false, true) 67 68 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass() 69 : FunctionPass(ID) { 70 initializeBranchProbabilityInfoWrapperPassPass( 71 *PassRegistry::getPassRegistry()); 72 } 73 74 char BranchProbabilityInfoWrapperPass::ID = 0; 75 76 // Weights are for internal use only. They are used by heuristics to help to 77 // estimate edges' probability. Example: 78 // 79 // Using "Loop Branch Heuristics" we predict weights of edges for the 80 // block BB2. 81 // ... 82 // | 83 // V 84 // BB1<-+ 85 // | | 86 // | | (Weight = 124) 87 // V | 88 // BB2--+ 89 // | 90 // | (Weight = 4) 91 // V 92 // BB3 93 // 94 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 95 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 96 static const uint32_t LBH_TAKEN_WEIGHT = 124; 97 static const uint32_t LBH_NONTAKEN_WEIGHT = 4; 98 // Unlikely edges within a loop are half as likely as other edges 99 static const uint32_t LBH_UNLIKELY_WEIGHT = 62; 100 101 /// Unreachable-terminating branch taken probability. 102 /// 103 /// This is the probability for a branch being taken to a block that terminates 104 /// (eventually) in unreachable. These are predicted as unlikely as possible. 105 /// All reachable probability will proportionally share the remaining part. 106 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); 107 108 /// Weight for a branch taken going into a cold block. 109 /// 110 /// This is the weight for a branch taken toward a block marked 111 /// cold. A block is marked cold if it's postdominated by a 112 /// block containing a call to a cold function. Cold functions 113 /// are those marked with attribute 'cold'. 114 static const uint32_t CC_TAKEN_WEIGHT = 4; 115 116 /// Weight for a branch not-taken into a cold block. 117 /// 118 /// This is the weight for a branch not taken toward a block marked 119 /// cold. 120 static const uint32_t CC_NONTAKEN_WEIGHT = 64; 121 122 static const uint32_t PH_TAKEN_WEIGHT = 20; 123 static const uint32_t PH_NONTAKEN_WEIGHT = 12; 124 125 static const uint32_t ZH_TAKEN_WEIGHT = 20; 126 static const uint32_t ZH_NONTAKEN_WEIGHT = 12; 127 128 static const uint32_t FPH_TAKEN_WEIGHT = 20; 129 static const uint32_t FPH_NONTAKEN_WEIGHT = 12; 130 131 /// This is the probability for an ordered floating point comparison. 132 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1; 133 /// This is the probability for an unordered floating point comparison, it means 134 /// one or two of the operands are NaN. Usually it is used to test for an 135 /// exceptional case, so the result is unlikely. 136 static const uint32_t FPH_UNO_WEIGHT = 1; 137 138 /// Invoke-terminating normal branch taken weight 139 /// 140 /// This is the weight for branching to the normal destination of an invoke 141 /// instruction. We expect this to happen most of the time. Set the weight to an 142 /// absurdly high value so that nested loops subsume it. 143 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1; 144 145 /// Invoke-terminating normal branch not-taken weight. 146 /// 147 /// This is the weight for branching to the unwind destination of an invoke 148 /// instruction. This is essentially never taken. 149 static const uint32_t IH_NONTAKEN_WEIGHT = 1; 150 151 static void UpdatePDTWorklist(const BasicBlock *BB, PostDominatorTree *PDT, 152 SmallVectorImpl<const BasicBlock *> &WorkList, 153 SmallPtrSetImpl<const BasicBlock *> &TargetSet) { 154 SmallVector<BasicBlock *, 8> Descendants; 155 SmallPtrSet<const BasicBlock *, 16> NewItems; 156 157 PDT->getDescendants(const_cast<BasicBlock *>(BB), Descendants); 158 for (auto *BB : Descendants) 159 if (TargetSet.insert(BB).second) 160 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 161 if (!TargetSet.count(*PI)) 162 NewItems.insert(*PI); 163 WorkList.insert(WorkList.end(), NewItems.begin(), NewItems.end()); 164 } 165 166 /// Compute a set of basic blocks that are post-dominated by unreachables. 167 void BranchProbabilityInfo::computePostDominatedByUnreachable( 168 const Function &F, PostDominatorTree *PDT) { 169 SmallVector<const BasicBlock *, 8> WorkList; 170 for (auto &BB : F) { 171 const Instruction *TI = BB.getTerminator(); 172 if (TI->getNumSuccessors() == 0) { 173 if (isa<UnreachableInst>(TI) || 174 // If this block is terminated by a call to 175 // @llvm.experimental.deoptimize then treat it like an unreachable 176 // since the @llvm.experimental.deoptimize call is expected to 177 // practically never execute. 178 BB.getTerminatingDeoptimizeCall()) 179 UpdatePDTWorklist(&BB, PDT, WorkList, PostDominatedByUnreachable); 180 } 181 } 182 183 while (!WorkList.empty()) { 184 const BasicBlock *BB = WorkList.pop_back_val(); 185 if (PostDominatedByUnreachable.count(BB)) 186 continue; 187 // If the terminator is an InvokeInst, check only the normal destination 188 // block as the unwind edge of InvokeInst is also very unlikely taken. 189 if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 190 if (PostDominatedByUnreachable.count(II->getNormalDest())) 191 UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByUnreachable); 192 } 193 // If all the successors are unreachable, BB is unreachable as well. 194 else if (!successors(BB).empty() && 195 llvm::all_of(successors(BB), [this](const BasicBlock *Succ) { 196 return PostDominatedByUnreachable.count(Succ); 197 })) 198 UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByUnreachable); 199 } 200 } 201 202 /// compute a set of basic blocks that are post-dominated by ColdCalls. 203 void BranchProbabilityInfo::computePostDominatedByColdCall( 204 const Function &F, PostDominatorTree *PDT) { 205 SmallVector<const BasicBlock *, 8> WorkList; 206 for (auto &BB : F) 207 for (auto &I : BB) 208 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 209 if (CI->hasFnAttr(Attribute::Cold)) 210 UpdatePDTWorklist(&BB, PDT, WorkList, PostDominatedByColdCall); 211 212 while (!WorkList.empty()) { 213 const BasicBlock *BB = WorkList.pop_back_val(); 214 215 // If the terminator is an InvokeInst, check only the normal destination 216 // block as the unwind edge of InvokeInst is also very unlikely taken. 217 if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 218 if (PostDominatedByColdCall.count(II->getNormalDest())) 219 UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByColdCall); 220 } 221 // If all of successor are post dominated then BB is also done. 222 else if (!successors(BB).empty() && 223 llvm::all_of(successors(BB), [this](const BasicBlock *Succ) { 224 return PostDominatedByColdCall.count(Succ); 225 })) 226 UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByColdCall); 227 } 228 } 229 230 /// Calculate edge weights for successors lead to unreachable. 231 /// 232 /// Predict that a successor which leads necessarily to an 233 /// unreachable-terminated block as extremely unlikely. 234 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) { 235 const Instruction *TI = BB->getTerminator(); 236 (void) TI; 237 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 238 assert(!isa<InvokeInst>(TI) && 239 "Invokes should have already been handled by calcInvokeHeuristics"); 240 241 SmallVector<unsigned, 4> UnreachableEdges; 242 SmallVector<unsigned, 4> ReachableEdges; 243 244 for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 245 if (PostDominatedByUnreachable.count(*I)) 246 UnreachableEdges.push_back(I.getSuccessorIndex()); 247 else 248 ReachableEdges.push_back(I.getSuccessorIndex()); 249 250 // Skip probabilities if all were reachable. 251 if (UnreachableEdges.empty()) 252 return false; 253 254 SmallVector<BranchProbability, 4> EdgeProbabilities( 255 BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown()); 256 if (ReachableEdges.empty()) { 257 BranchProbability Prob(1, UnreachableEdges.size()); 258 for (unsigned SuccIdx : UnreachableEdges) 259 EdgeProbabilities[SuccIdx] = Prob; 260 setEdgeProbability(BB, EdgeProbabilities); 261 return true; 262 } 263 264 auto UnreachableProb = UR_TAKEN_PROB; 265 auto ReachableProb = 266 (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) / 267 ReachableEdges.size(); 268 269 for (unsigned SuccIdx : UnreachableEdges) 270 EdgeProbabilities[SuccIdx] = UnreachableProb; 271 for (unsigned SuccIdx : ReachableEdges) 272 EdgeProbabilities[SuccIdx] = ReachableProb; 273 274 setEdgeProbability(BB, EdgeProbabilities); 275 return true; 276 } 277 278 // Propagate existing explicit probabilities from either profile data or 279 // 'expect' intrinsic processing. Examine metadata against unreachable 280 // heuristic. The probability of the edge coming to unreachable block is 281 // set to min of metadata and unreachable heuristic. 282 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { 283 const Instruction *TI = BB->getTerminator(); 284 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 285 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) || 286 isa<InvokeInst>(TI))) 287 return false; 288 289 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 290 if (!WeightsNode) 291 return false; 292 293 // Check that the number of successors is manageable. 294 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); 295 296 // Ensure there are weights for all of the successors. Note that the first 297 // operand to the metadata node is a name, not a weight. 298 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) 299 return false; 300 301 // Build up the final weights that will be used in a temporary buffer. 302 // Compute the sum of all weights to later decide whether they need to 303 // be scaled to fit in 32 bits. 304 uint64_t WeightSum = 0; 305 SmallVector<uint32_t, 2> Weights; 306 SmallVector<unsigned, 2> UnreachableIdxs; 307 SmallVector<unsigned, 2> ReachableIdxs; 308 Weights.reserve(TI->getNumSuccessors()); 309 for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) { 310 ConstantInt *Weight = 311 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I)); 312 if (!Weight) 313 return false; 314 assert(Weight->getValue().getActiveBits() <= 32 && 315 "Too many bits for uint32_t"); 316 Weights.push_back(Weight->getZExtValue()); 317 WeightSum += Weights.back(); 318 if (PostDominatedByUnreachable.count(TI->getSuccessor(I - 1))) 319 UnreachableIdxs.push_back(I - 1); 320 else 321 ReachableIdxs.push_back(I - 1); 322 } 323 assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); 324 325 // If the sum of weights does not fit in 32 bits, scale every weight down 326 // accordingly. 327 uint64_t ScalingFactor = 328 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; 329 330 if (ScalingFactor > 1) { 331 WeightSum = 0; 332 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 333 Weights[I] /= ScalingFactor; 334 WeightSum += Weights[I]; 335 } 336 } 337 assert(WeightSum <= UINT32_MAX && 338 "Expected weights to scale down to 32 bits"); 339 340 if (WeightSum == 0 || ReachableIdxs.size() == 0) { 341 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) 342 Weights[I] = 1; 343 WeightSum = TI->getNumSuccessors(); 344 } 345 346 // Set the probability. 347 SmallVector<BranchProbability, 2> BP; 348 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) 349 BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) }); 350 351 // Examine the metadata against unreachable heuristic. 352 // If the unreachable heuristic is more strong then we use it for this edge. 353 if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) { 354 setEdgeProbability(BB, BP); 355 return true; 356 } 357 358 auto UnreachableProb = UR_TAKEN_PROB; 359 for (auto I : UnreachableIdxs) 360 if (UnreachableProb < BP[I]) { 361 BP[I] = UnreachableProb; 362 } 363 364 // Sum of all edge probabilities must be 1.0. If we modified the probability 365 // of some edges then we must distribute the introduced difference over the 366 // reachable blocks. 367 // 368 // Proportional distribution: the relation between probabilities of the 369 // reachable edges is kept unchanged. That is for any reachable edges i and j: 370 // newBP[i] / newBP[j] == oldBP[i] / oldBP[j] => 371 // newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K 372 // Where K is independent of i,j. 373 // newBP[i] == oldBP[i] * K 374 // We need to find K. 375 // Make sum of all reachables of the left and right parts: 376 // sum_of_reachable(newBP) == K * sum_of_reachable(oldBP) 377 // Sum of newBP must be equal to 1.0: 378 // sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 => 379 // sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP) 380 // Where sum_of_unreachable(newBP) is what has been just changed. 381 // Finally: 382 // K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) => 383 // K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP) 384 BranchProbability NewUnreachableSum = BranchProbability::getZero(); 385 for (auto I : UnreachableIdxs) 386 NewUnreachableSum += BP[I]; 387 388 BranchProbability NewReachableSum = 389 BranchProbability::getOne() - NewUnreachableSum; 390 391 BranchProbability OldReachableSum = BranchProbability::getZero(); 392 for (auto I : ReachableIdxs) 393 OldReachableSum += BP[I]; 394 395 if (OldReachableSum != NewReachableSum) { // Anything to dsitribute? 396 if (OldReachableSum.isZero()) { 397 // If all oldBP[i] are zeroes then the proportional distribution results 398 // in all zero probabilities and the error stays big. In this case we 399 // evenly spread NewReachableSum over the reachable edges. 400 BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size(); 401 for (auto I : ReachableIdxs) 402 BP[I] = PerEdge; 403 } else { 404 for (auto I : ReachableIdxs) { 405 // We use uint64_t to avoid double rounding error of the following 406 // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum 407 // The formula is taken from the private constructor 408 // BranchProbability(uint32_t Numerator, uint32_t Denominator) 409 uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) * 410 BP[I].getNumerator(); 411 uint32_t Div = static_cast<uint32_t>( 412 divideNearest(Mul, OldReachableSum.getNumerator())); 413 BP[I] = BranchProbability::getRaw(Div); 414 } 415 } 416 } 417 418 setEdgeProbability(BB, BP); 419 420 return true; 421 } 422 423 /// Calculate edge weights for edges leading to cold blocks. 424 /// 425 /// A cold block is one post-dominated by a block with a call to a 426 /// cold function. Those edges are unlikely to be taken, so we give 427 /// them relatively low weight. 428 /// 429 /// Return true if we could compute the weights for cold edges. 430 /// Return false, otherwise. 431 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) { 432 const Instruction *TI = BB->getTerminator(); 433 (void) TI; 434 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 435 assert(!isa<InvokeInst>(TI) && 436 "Invokes should have already been handled by calcInvokeHeuristics"); 437 438 // Determine which successors are post-dominated by a cold block. 439 SmallVector<unsigned, 4> ColdEdges; 440 SmallVector<unsigned, 4> NormalEdges; 441 for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 442 if (PostDominatedByColdCall.count(*I)) 443 ColdEdges.push_back(I.getSuccessorIndex()); 444 else 445 NormalEdges.push_back(I.getSuccessorIndex()); 446 447 // Skip probabilities if no cold edges. 448 if (ColdEdges.empty()) 449 return false; 450 451 SmallVector<BranchProbability, 4> EdgeProbabilities( 452 BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown()); 453 if (NormalEdges.empty()) { 454 BranchProbability Prob(1, ColdEdges.size()); 455 for (unsigned SuccIdx : ColdEdges) 456 EdgeProbabilities[SuccIdx] = Prob; 457 setEdgeProbability(BB, EdgeProbabilities); 458 return true; 459 } 460 461 auto ColdProb = BranchProbability::getBranchProbability( 462 CC_TAKEN_WEIGHT, 463 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size())); 464 auto NormalProb = BranchProbability::getBranchProbability( 465 CC_NONTAKEN_WEIGHT, 466 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size())); 467 468 for (unsigned SuccIdx : ColdEdges) 469 EdgeProbabilities[SuccIdx] = ColdProb; 470 for (unsigned SuccIdx : NormalEdges) 471 EdgeProbabilities[SuccIdx] = NormalProb; 472 473 setEdgeProbability(BB, EdgeProbabilities); 474 return true; 475 } 476 477 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison 478 // between two pointer or pointer and NULL will fail. 479 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { 480 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 481 if (!BI || !BI->isConditional()) 482 return false; 483 484 Value *Cond = BI->getCondition(); 485 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 486 if (!CI || !CI->isEquality()) 487 return false; 488 489 Value *LHS = CI->getOperand(0); 490 491 if (!LHS->getType()->isPointerTy()) 492 return false; 493 494 assert(CI->getOperand(1)->getType()->isPointerTy()); 495 496 BranchProbability TakenProb(PH_TAKEN_WEIGHT, 497 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 498 BranchProbability UntakenProb(PH_NONTAKEN_WEIGHT, 499 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 500 501 // p != 0 -> isProb = true 502 // p == 0 -> isProb = false 503 // p != q -> isProb = true 504 // p == q -> isProb = false; 505 bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE; 506 if (!isProb) 507 std::swap(TakenProb, UntakenProb); 508 509 setEdgeProbability( 510 BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb})); 511 return true; 512 } 513 514 static int getSCCNum(const BasicBlock *BB, 515 const BranchProbabilityInfo::SccInfo &SccI) { 516 auto SccIt = SccI.SccNums.find(BB); 517 if (SccIt == SccI.SccNums.end()) 518 return -1; 519 return SccIt->second; 520 } 521 522 // Consider any block that is an entry point to the SCC as a header. 523 static bool isSCCHeader(const BasicBlock *BB, int SccNum, 524 BranchProbabilityInfo::SccInfo &SccI) { 525 assert(getSCCNum(BB, SccI) == SccNum); 526 527 // Lazily compute the set of headers for a given SCC and cache the results 528 // in the SccHeaderMap. 529 if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum)) 530 SccI.SccHeaders.resize(SccNum + 1); 531 auto &HeaderMap = SccI.SccHeaders[SccNum]; 532 bool Inserted; 533 BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt; 534 std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false)); 535 if (Inserted) { 536 bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)), 537 [&](const BasicBlock *Pred) { 538 return getSCCNum(Pred, SccI) != SccNum; 539 }); 540 HeaderMapIt->second = IsHeader; 541 return IsHeader; 542 } else 543 return HeaderMapIt->second; 544 } 545 546 // Compute the unlikely successors to the block BB in the loop L, specifically 547 // those that are unlikely because this is a loop, and add them to the 548 // UnlikelyBlocks set. 549 static void 550 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, 551 SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { 552 // Sometimes in a loop we have a branch whose condition is made false by 553 // taking it. This is typically something like 554 // int n = 0; 555 // while (...) { 556 // if (++n >= MAX) { 557 // n = 0; 558 // } 559 // } 560 // In this sort of situation taking the branch means that at the very least it 561 // won't be taken again in the next iteration of the loop, so we should 562 // consider it less likely than a typical branch. 563 // 564 // We detect this by looking back through the graph of PHI nodes that sets the 565 // value that the condition depends on, and seeing if we can reach a successor 566 // block which can be determined to make the condition false. 567 // 568 // FIXME: We currently consider unlikely blocks to be half as likely as other 569 // blocks, but if we consider the example above the likelyhood is actually 570 // 1/MAX. We could therefore be more precise in how unlikely we consider 571 // blocks to be, but it would require more careful examination of the form 572 // of the comparison expression. 573 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 574 if (!BI || !BI->isConditional()) 575 return; 576 577 // Check if the branch is based on an instruction compared with a constant 578 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 579 if (!CI || !isa<Instruction>(CI->getOperand(0)) || 580 !isa<Constant>(CI->getOperand(1))) 581 return; 582 583 // Either the instruction must be a PHI, or a chain of operations involving 584 // constants that ends in a PHI which we can then collapse into a single value 585 // if the PHI value is known. 586 Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); 587 PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); 588 Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); 589 // Collect the instructions until we hit a PHI 590 SmallVector<BinaryOperator *, 1> InstChain; 591 while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && 592 isa<Constant>(CmpLHS->getOperand(1))) { 593 // Stop if the chain extends outside of the loop 594 if (!L->contains(CmpLHS)) 595 return; 596 InstChain.push_back(cast<BinaryOperator>(CmpLHS)); 597 CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); 598 if (CmpLHS) 599 CmpPHI = dyn_cast<PHINode>(CmpLHS); 600 } 601 if (!CmpPHI || !L->contains(CmpPHI)) 602 return; 603 604 // Trace the phi node to find all values that come from successors of BB 605 SmallPtrSet<PHINode*, 8> VisitedInsts; 606 SmallVector<PHINode*, 8> WorkList; 607 WorkList.push_back(CmpPHI); 608 VisitedInsts.insert(CmpPHI); 609 while (!WorkList.empty()) { 610 PHINode *P = WorkList.back(); 611 WorkList.pop_back(); 612 for (BasicBlock *B : P->blocks()) { 613 // Skip blocks that aren't part of the loop 614 if (!L->contains(B)) 615 continue; 616 Value *V = P->getIncomingValueForBlock(B); 617 // If the source is a PHI add it to the work list if we haven't 618 // already visited it. 619 if (PHINode *PN = dyn_cast<PHINode>(V)) { 620 if (VisitedInsts.insert(PN).second) 621 WorkList.push_back(PN); 622 continue; 623 } 624 // If this incoming value is a constant and B is a successor of BB, then 625 // we can constant-evaluate the compare to see if it makes the branch be 626 // taken or not. 627 Constant *CmpLHSConst = dyn_cast<Constant>(V); 628 if (!CmpLHSConst || 629 std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB)) 630 continue; 631 // First collapse InstChain 632 for (Instruction *I : llvm::reverse(InstChain)) { 633 CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst, 634 cast<Constant>(I->getOperand(1)), true); 635 if (!CmpLHSConst) 636 break; 637 } 638 if (!CmpLHSConst) 639 continue; 640 // Now constant-evaluate the compare 641 Constant *Result = ConstantExpr::getCompare(CI->getPredicate(), 642 CmpLHSConst, CmpConst, true); 643 // If the result means we don't branch to the block then that block is 644 // unlikely. 645 if (Result && 646 ((Result->isZeroValue() && B == BI->getSuccessor(0)) || 647 (Result->isOneValue() && B == BI->getSuccessor(1)))) 648 UnlikelyBlocks.insert(B); 649 } 650 } 651 } 652 653 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges 654 // as taken, exiting edges as not-taken. 655 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB, 656 const LoopInfo &LI, 657 SccInfo &SccI) { 658 int SccNum; 659 Loop *L = LI.getLoopFor(BB); 660 if (!L) { 661 SccNum = getSCCNum(BB, SccI); 662 if (SccNum < 0) 663 return false; 664 } 665 666 SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks; 667 if (L) 668 computeUnlikelySuccessors(BB, L, UnlikelyBlocks); 669 670 SmallVector<unsigned, 8> BackEdges; 671 SmallVector<unsigned, 8> ExitingEdges; 672 SmallVector<unsigned, 8> InEdges; // Edges from header to the loop. 673 SmallVector<unsigned, 8> UnlikelyEdges; 674 675 for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 676 // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch 677 // irreducible loops. 678 if (L) { 679 if (UnlikelyBlocks.count(*I) != 0) 680 UnlikelyEdges.push_back(I.getSuccessorIndex()); 681 else if (!L->contains(*I)) 682 ExitingEdges.push_back(I.getSuccessorIndex()); 683 else if (L->getHeader() == *I) 684 BackEdges.push_back(I.getSuccessorIndex()); 685 else 686 InEdges.push_back(I.getSuccessorIndex()); 687 } else { 688 if (getSCCNum(*I, SccI) != SccNum) 689 ExitingEdges.push_back(I.getSuccessorIndex()); 690 else if (isSCCHeader(*I, SccNum, SccI)) 691 BackEdges.push_back(I.getSuccessorIndex()); 692 else 693 InEdges.push_back(I.getSuccessorIndex()); 694 } 695 } 696 697 if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty()) 698 return false; 699 700 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and 701 // normalize them so that they sum up to one. 702 unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + 703 (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + 704 (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) + 705 (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT); 706 707 SmallVector<BranchProbability, 4> EdgeProbabilities( 708 BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown()); 709 if (uint32_t numBackEdges = BackEdges.size()) { 710 BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); 711 auto Prob = TakenProb / numBackEdges; 712 for (unsigned SuccIdx : BackEdges) 713 EdgeProbabilities[SuccIdx] = Prob; 714 } 715 716 if (uint32_t numInEdges = InEdges.size()) { 717 BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); 718 auto Prob = TakenProb / numInEdges; 719 for (unsigned SuccIdx : InEdges) 720 EdgeProbabilities[SuccIdx] = Prob; 721 } 722 723 if (uint32_t numExitingEdges = ExitingEdges.size()) { 724 BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT, 725 Denom); 726 auto Prob = NotTakenProb / numExitingEdges; 727 for (unsigned SuccIdx : ExitingEdges) 728 EdgeProbabilities[SuccIdx] = Prob; 729 } 730 731 if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) { 732 BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT, 733 Denom); 734 auto Prob = UnlikelyProb / numUnlikelyEdges; 735 for (unsigned SuccIdx : UnlikelyEdges) 736 EdgeProbabilities[SuccIdx] = Prob; 737 } 738 739 setEdgeProbability(BB, EdgeProbabilities); 740 return true; 741 } 742 743 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, 744 const TargetLibraryInfo *TLI) { 745 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 746 if (!BI || !BI->isConditional()) 747 return false; 748 749 Value *Cond = BI->getCondition(); 750 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 751 if (!CI) 752 return false; 753 754 auto GetConstantInt = [](Value *V) { 755 if (auto *I = dyn_cast<BitCastInst>(V)) 756 return dyn_cast<ConstantInt>(I->getOperand(0)); 757 return dyn_cast<ConstantInt>(V); 758 }; 759 760 Value *RHS = CI->getOperand(1); 761 ConstantInt *CV = GetConstantInt(RHS); 762 if (!CV) 763 return false; 764 765 // If the LHS is the result of AND'ing a value with a single bit bitmask, 766 // we don't have information about probabilities. 767 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) 768 if (LHS->getOpcode() == Instruction::And) 769 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) 770 if (AndRHS->getValue().isPowerOf2()) 771 return false; 772 773 // Check if the LHS is the return value of a library function 774 LibFunc Func = NumLibFuncs; 775 if (TLI) 776 if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) 777 if (Function *CalledFn = Call->getCalledFunction()) 778 TLI->getLibFunc(*CalledFn, Func); 779 780 bool isProb; 781 if (Func == LibFunc_strcasecmp || 782 Func == LibFunc_strcmp || 783 Func == LibFunc_strncasecmp || 784 Func == LibFunc_strncmp || 785 Func == LibFunc_memcmp) { 786 // strcmp and similar functions return zero, negative, or positive, if the 787 // first string is equal, less, or greater than the second. We consider it 788 // likely that the strings are not equal, so a comparison with zero is 789 // probably false, but also a comparison with any other number is also 790 // probably false given that what exactly is returned for nonzero values is 791 // not specified. Any kind of comparison other than equality we know 792 // nothing about. 793 switch (CI->getPredicate()) { 794 case CmpInst::ICMP_EQ: 795 isProb = false; 796 break; 797 case CmpInst::ICMP_NE: 798 isProb = true; 799 break; 800 default: 801 return false; 802 } 803 } else if (CV->isZero()) { 804 switch (CI->getPredicate()) { 805 case CmpInst::ICMP_EQ: 806 // X == 0 -> Unlikely 807 isProb = false; 808 break; 809 case CmpInst::ICMP_NE: 810 // X != 0 -> Likely 811 isProb = true; 812 break; 813 case CmpInst::ICMP_SLT: 814 // X < 0 -> Unlikely 815 isProb = false; 816 break; 817 case CmpInst::ICMP_SGT: 818 // X > 0 -> Likely 819 isProb = true; 820 break; 821 default: 822 return false; 823 } 824 } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) { 825 // InstCombine canonicalizes X <= 0 into X < 1. 826 // X <= 0 -> Unlikely 827 isProb = false; 828 } else if (CV->isMinusOne()) { 829 switch (CI->getPredicate()) { 830 case CmpInst::ICMP_EQ: 831 // X == -1 -> Unlikely 832 isProb = false; 833 break; 834 case CmpInst::ICMP_NE: 835 // X != -1 -> Likely 836 isProb = true; 837 break; 838 case CmpInst::ICMP_SGT: 839 // InstCombine canonicalizes X >= 0 into X > -1. 840 // X >= 0 -> Likely 841 isProb = true; 842 break; 843 default: 844 return false; 845 } 846 } else { 847 return false; 848 } 849 850 BranchProbability TakenProb(ZH_TAKEN_WEIGHT, 851 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 852 BranchProbability UntakenProb(ZH_NONTAKEN_WEIGHT, 853 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 854 if (!isProb) 855 std::swap(TakenProb, UntakenProb); 856 857 setEdgeProbability( 858 BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb})); 859 return true; 860 } 861 862 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { 863 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 864 if (!BI || !BI->isConditional()) 865 return false; 866 867 Value *Cond = BI->getCondition(); 868 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); 869 if (!FCmp) 870 return false; 871 872 uint32_t TakenWeight = FPH_TAKEN_WEIGHT; 873 uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT; 874 bool isProb; 875 if (FCmp->isEquality()) { 876 // f1 == f2 -> Unlikely 877 // f1 != f2 -> Likely 878 isProb = !FCmp->isTrueWhenEqual(); 879 } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { 880 // !isnan -> Likely 881 isProb = true; 882 TakenWeight = FPH_ORD_WEIGHT; 883 NontakenWeight = FPH_UNO_WEIGHT; 884 } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { 885 // isnan -> Unlikely 886 isProb = false; 887 TakenWeight = FPH_ORD_WEIGHT; 888 NontakenWeight = FPH_UNO_WEIGHT; 889 } else { 890 return false; 891 } 892 893 BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight); 894 BranchProbability UntakenProb(NontakenWeight, TakenWeight + NontakenWeight); 895 if (!isProb) 896 std::swap(TakenProb, UntakenProb); 897 898 setEdgeProbability( 899 BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb})); 900 return true; 901 } 902 903 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) { 904 const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()); 905 if (!II) 906 return false; 907 908 BranchProbability TakenProb(IH_TAKEN_WEIGHT, 909 IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT); 910 setEdgeProbability( 911 BB, SmallVector<BranchProbability, 2>({TakenProb, TakenProb.getCompl()})); 912 return true; 913 } 914 915 void BranchProbabilityInfo::releaseMemory() { 916 Probs.clear(); 917 Handles.clear(); 918 } 919 920 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA, 921 FunctionAnalysisManager::Invalidator &) { 922 // Check whether the analysis, all analyses on functions, or the function's 923 // CFG have been preserved. 924 auto PAC = PA.getChecker<BranchProbabilityAnalysis>(); 925 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 926 PAC.preservedSet<CFGAnalyses>()); 927 } 928 929 void BranchProbabilityInfo::print(raw_ostream &OS) const { 930 OS << "---- Branch Probabilities ----\n"; 931 // We print the probabilities from the last function the analysis ran over, 932 // or the function it is currently running over. 933 assert(LastF && "Cannot print prior to running over a function"); 934 for (const auto &BI : *LastF) { 935 for (const_succ_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE; 936 ++SI) { 937 printEdgeProbability(OS << " ", &BI, *SI); 938 } 939 } 940 } 941 942 bool BranchProbabilityInfo:: 943 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { 944 // Hot probability is at least 4/5 = 80% 945 // FIXME: Compare against a static "hot" BranchProbability. 946 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); 947 } 948 949 const BasicBlock * 950 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const { 951 auto MaxProb = BranchProbability::getZero(); 952 const BasicBlock *MaxSucc = nullptr; 953 954 for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 955 const BasicBlock *Succ = *I; 956 auto Prob = getEdgeProbability(BB, Succ); 957 if (Prob > MaxProb) { 958 MaxProb = Prob; 959 MaxSucc = Succ; 960 } 961 } 962 963 // Hot probability is at least 4/5 = 80% 964 if (MaxProb > BranchProbability(4, 5)) 965 return MaxSucc; 966 967 return nullptr; 968 } 969 970 /// Get the raw edge probability for the edge. If can't find it, return a 971 /// default probability 1/N where N is the number of successors. Here an edge is 972 /// specified using PredBlock and an 973 /// index to the successors. 974 BranchProbability 975 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 976 unsigned IndexInSuccessors) const { 977 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); 978 979 if (I != Probs.end()) 980 return I->second; 981 982 return {1, static_cast<uint32_t>(succ_size(Src))}; 983 } 984 985 BranchProbability 986 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 987 const_succ_iterator Dst) const { 988 return getEdgeProbability(Src, Dst.getSuccessorIndex()); 989 } 990 991 /// Get the raw edge probability calculated for the block pair. This returns the 992 /// sum of all raw edge probabilities from Src to Dst. 993 BranchProbability 994 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 995 const BasicBlock *Dst) const { 996 auto Prob = BranchProbability::getZero(); 997 bool FoundProb = false; 998 uint32_t EdgeCount = 0; 999 for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) 1000 if (*I == Dst) { 1001 ++EdgeCount; 1002 auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex())); 1003 if (MapI != Probs.end()) { 1004 FoundProb = true; 1005 Prob += MapI->second; 1006 } 1007 } 1008 uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src)); 1009 return FoundProb ? Prob : BranchProbability(EdgeCount, succ_num); 1010 } 1011 1012 /// Set the edge probability for a given edge specified by PredBlock and an 1013 /// index to the successors. 1014 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src, 1015 unsigned IndexInSuccessors, 1016 BranchProbability Prob) { 1017 Probs[std::make_pair(Src, IndexInSuccessors)] = Prob; 1018 Handles.insert(BasicBlockCallbackVH(Src, this)); 1019 LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " 1020 << IndexInSuccessors << " successor probability to " << Prob 1021 << "\n"); 1022 } 1023 1024 /// Set the edge probability for all edges at once. 1025 void BranchProbabilityInfo::setEdgeProbability( 1026 const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) { 1027 assert(Src->getTerminator()->getNumSuccessors() == Probs.size()); 1028 if (Probs.size() == 0) 1029 return; // Nothing to set. 1030 1031 uint64_t TotalNumerator = 0; 1032 for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) { 1033 setEdgeProbability(Src, SuccIdx, Probs[SuccIdx]); 1034 TotalNumerator += Probs[SuccIdx].getNumerator(); 1035 } 1036 1037 // Because of rounding errors the total probability cannot be checked to be 1038 // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator. 1039 // Instead, every single probability in Probs must be as accurate as possible. 1040 // This results in error 1/denominator at most, thus the total absolute error 1041 // should be within Probs.size / BranchProbability::getDenominator. 1042 assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size()); 1043 assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size()); 1044 } 1045 1046 raw_ostream & 1047 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, 1048 const BasicBlock *Src, 1049 const BasicBlock *Dst) const { 1050 const BranchProbability Prob = getEdgeProbability(Src, Dst); 1051 OS << "edge " << Src->getName() << " -> " << Dst->getName() 1052 << " probability is " << Prob 1053 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); 1054 1055 return OS; 1056 } 1057 1058 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { 1059 for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 1060 auto MapI = Probs.find(std::make_pair(BB, I.getSuccessorIndex())); 1061 if (MapI != Probs.end()) 1062 Probs.erase(MapI); 1063 } 1064 } 1065 1066 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI, 1067 const TargetLibraryInfo *TLI, 1068 PostDominatorTree *PDT) { 1069 LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() 1070 << " ----\n\n"); 1071 LastF = &F; // Store the last function we ran on for printing. 1072 assert(PostDominatedByUnreachable.empty()); 1073 assert(PostDominatedByColdCall.empty()); 1074 1075 // Record SCC numbers of blocks in the CFG to identify irreducible loops. 1076 // FIXME: We could only calculate this if the CFG is known to be irreducible 1077 // (perhaps cache this info in LoopInfo if we can easily calculate it there?). 1078 int SccNum = 0; 1079 SccInfo SccI; 1080 for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); 1081 ++It, ++SccNum) { 1082 // Ignore single-block SCCs since they either aren't loops or LoopInfo will 1083 // catch them. 1084 const std::vector<const BasicBlock *> &Scc = *It; 1085 if (Scc.size() == 1) 1086 continue; 1087 1088 LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); 1089 for (auto *BB : Scc) { 1090 LLVM_DEBUG(dbgs() << " " << BB->getName()); 1091 SccI.SccNums[BB] = SccNum; 1092 } 1093 LLVM_DEBUG(dbgs() << "\n"); 1094 } 1095 1096 std::unique_ptr<PostDominatorTree> PDTPtr; 1097 1098 if (!PDT) { 1099 PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F)); 1100 PDT = PDTPtr.get(); 1101 } 1102 1103 computePostDominatedByUnreachable(F, PDT); 1104 computePostDominatedByColdCall(F, PDT); 1105 1106 // Walk the basic blocks in post-order so that we can build up state about 1107 // the successors of a block iteratively. 1108 for (auto BB : post_order(&F.getEntryBlock())) { 1109 LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() 1110 << "\n"); 1111 // If there is no at least two successors, no sense to set probability. 1112 if (BB->getTerminator()->getNumSuccessors() < 2) 1113 continue; 1114 if (calcMetadataWeights(BB)) 1115 continue; 1116 if (calcInvokeHeuristics(BB)) 1117 continue; 1118 if (calcUnreachableHeuristics(BB)) 1119 continue; 1120 if (calcColdCallHeuristics(BB)) 1121 continue; 1122 if (calcLoopBranchHeuristics(BB, LI, SccI)) 1123 continue; 1124 if (calcPointerHeuristics(BB)) 1125 continue; 1126 if (calcZeroHeuristics(BB, TLI)) 1127 continue; 1128 if (calcFloatingPointHeuristics(BB)) 1129 continue; 1130 } 1131 1132 PostDominatedByUnreachable.clear(); 1133 PostDominatedByColdCall.clear(); 1134 1135 if (PrintBranchProb && 1136 (PrintBranchProbFuncName.empty() || 1137 F.getName().equals(PrintBranchProbFuncName))) { 1138 print(dbgs()); 1139 } 1140 } 1141 1142 void BranchProbabilityInfoWrapperPass::getAnalysisUsage( 1143 AnalysisUsage &AU) const { 1144 // We require DT so it's available when LI is available. The LI updating code 1145 // asserts that DT is also present so if we don't make sure that we have DT 1146 // here, that assert will trigger. 1147 AU.addRequired<DominatorTreeWrapperPass>(); 1148 AU.addRequired<LoopInfoWrapperPass>(); 1149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1150 AU.addRequired<PostDominatorTreeWrapperPass>(); 1151 AU.setPreservesAll(); 1152 } 1153 1154 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { 1155 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1156 const TargetLibraryInfo &TLI = 1157 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1158 PostDominatorTree &PDT = 1159 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1160 BPI.calculate(F, LI, &TLI, &PDT); 1161 return false; 1162 } 1163 1164 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } 1165 1166 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, 1167 const Module *) const { 1168 BPI.print(OS); 1169 } 1170 1171 AnalysisKey BranchProbabilityAnalysis::Key; 1172 BranchProbabilityInfo 1173 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1174 BranchProbabilityInfo BPI; 1175 BPI.calculate(F, AM.getResult<LoopAnalysis>(F), 1176 &AM.getResult<TargetLibraryAnalysis>(F), 1177 &AM.getResult<PostDominatorTreeAnalysis>(F)); 1178 return BPI; 1179 } 1180 1181 PreservedAnalyses 1182 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 1183 OS << "Printing analysis results of BPI for function " 1184 << "'" << F.getName() << "':" 1185 << "\n"; 1186 AM.getResult<BranchProbabilityAnalysis>(F).print(OS); 1187 return PreservedAnalyses::all(); 1188 } 1189