1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loops should be simplified before this analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SCCIterator.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/Config/llvm-config.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/Support/BlockFrequency.h" 21 #include "llvm/Support/BranchProbability.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/ScaledNumber.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <cstddef> 30 #include <cstdint> 31 #include <iterator> 32 #include <list> 33 #include <numeric> 34 #include <optional> 35 #include <utility> 36 #include <vector> 37 38 using namespace llvm; 39 using namespace llvm::bfi_detail; 40 41 #define DEBUG_TYPE "block-freq" 42 43 namespace llvm { 44 cl::opt<bool> CheckBFIUnknownBlockQueries( 45 "check-bfi-unknown-block-queries", 46 cl::init(false), cl::Hidden, 47 cl::desc("Check if block frequency is queried for an unknown block " 48 "for debugging missed BFI updates")); 49 50 cl::opt<bool> UseIterativeBFIInference( 51 "use-iterative-bfi-inference", cl::Hidden, 52 cl::desc("Apply an iterative post-processing to infer correct BFI counts")); 53 54 cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock( 55 "iterative-bfi-max-iterations-per-block", cl::init(1000), cl::Hidden, 56 cl::desc("Iterative inference: maximum number of update iterations " 57 "per block")); 58 59 cl::opt<double> IterativeBFIPrecision( 60 "iterative-bfi-precision", cl::init(1e-12), cl::Hidden, 61 cl::desc("Iterative inference: delta convergence precision; smaller values " 62 "typically lead to better results at the cost of worsen runtime")); 63 } // namespace llvm 64 65 ScaledNumber<uint64_t> BlockMass::toScaled() const { 66 if (isFull()) 67 return ScaledNumber<uint64_t>(1, 0); 68 return ScaledNumber<uint64_t>(getMass() + 1, -64); 69 } 70 71 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 72 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); } 73 #endif 74 75 static char getHexDigit(int N) { 76 assert(N < 16); 77 if (N < 10) 78 return '0' + N; 79 return 'a' + N - 10; 80 } 81 82 raw_ostream &BlockMass::print(raw_ostream &OS) const { 83 for (int Digits = 0; Digits < 16; ++Digits) 84 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); 85 return OS; 86 } 87 88 namespace { 89 90 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 91 using Distribution = BlockFrequencyInfoImplBase::Distribution; 92 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList; 93 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64; 94 using LoopData = BlockFrequencyInfoImplBase::LoopData; 95 using Weight = BlockFrequencyInfoImplBase::Weight; 96 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData; 97 98 /// Dithering mass distributer. 99 /// 100 /// This class splits up a single mass into portions by weight, dithering to 101 /// spread out error. No mass is lost. The dithering precision depends on the 102 /// precision of the product of \a BlockMass and \a BranchProbability. 103 /// 104 /// The distribution algorithm follows. 105 /// 106 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the 107 /// mass to distribute in \a RemMass. 108 /// 109 /// 2. For each portion: 110 /// 111 /// 1. Construct a branch probability, P, as the portion's weight divided 112 /// by the current value of \a RemWeight. 113 /// 2. Calculate the portion's mass as \a RemMass times P. 114 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting 115 /// the current portion's weight and mass. 116 struct DitheringDistributer { 117 uint32_t RemWeight; 118 BlockMass RemMass; 119 120 DitheringDistributer(Distribution &Dist, const BlockMass &Mass); 121 122 BlockMass takeMass(uint32_t Weight); 123 }; 124 125 } // end anonymous namespace 126 127 DitheringDistributer::DitheringDistributer(Distribution &Dist, 128 const BlockMass &Mass) { 129 Dist.normalize(); 130 RemWeight = Dist.Total; 131 RemMass = Mass; 132 } 133 134 BlockMass DitheringDistributer::takeMass(uint32_t Weight) { 135 assert(Weight && "invalid weight"); 136 assert(Weight <= RemWeight); 137 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); 138 139 // Decrement totals (dither). 140 RemWeight -= Weight; 141 RemMass -= Mass; 142 return Mass; 143 } 144 145 void Distribution::add(const BlockNode &Node, uint64_t Amount, 146 Weight::DistType Type) { 147 assert(Amount && "invalid weight of 0"); 148 uint64_t NewTotal = Total + Amount; 149 150 // Check for overflow. It should be impossible to overflow twice. 151 bool IsOverflow = NewTotal < Total; 152 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); 153 DidOverflow |= IsOverflow; 154 155 // Update the total. 156 Total = NewTotal; 157 158 // Save the weight. 159 Weights.push_back(Weight(Type, Node, Amount)); 160 } 161 162 static void combineWeight(Weight &W, const Weight &OtherW) { 163 assert(OtherW.TargetNode.isValid()); 164 if (!W.Amount) { 165 W = OtherW; 166 return; 167 } 168 assert(W.Type == OtherW.Type); 169 assert(W.TargetNode == OtherW.TargetNode); 170 assert(OtherW.Amount && "Expected non-zero weight"); 171 if (W.Amount > W.Amount + OtherW.Amount) 172 // Saturate on overflow. 173 W.Amount = UINT64_MAX; 174 else 175 W.Amount += OtherW.Amount; 176 } 177 178 static void combineWeightsBySorting(WeightList &Weights) { 179 // Sort so edges to the same node are adjacent. 180 llvm::sort(Weights, [](const Weight &L, const Weight &R) { 181 return L.TargetNode < R.TargetNode; 182 }); 183 184 // Combine adjacent edges. 185 WeightList::iterator O = Weights.begin(); 186 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; 187 ++O, (I = L)) { 188 *O = *I; 189 190 // Find the adjacent weights to the same node. 191 for (++L; L != E && I->TargetNode == L->TargetNode; ++L) 192 combineWeight(*O, *L); 193 } 194 195 // Erase extra entries. 196 Weights.erase(O, Weights.end()); 197 } 198 199 static void combineWeightsByHashing(WeightList &Weights) { 200 // Collect weights into a DenseMap. 201 using HashTable = DenseMap<BlockNode::IndexType, Weight>; 202 203 HashTable Combined(NextPowerOf2(2 * Weights.size())); 204 for (const Weight &W : Weights) 205 combineWeight(Combined[W.TargetNode.Index], W); 206 207 // Check whether anything changed. 208 if (Weights.size() == Combined.size()) 209 return; 210 211 // Fill in the new weights. 212 Weights.clear(); 213 Weights.reserve(Combined.size()); 214 for (const auto &I : Combined) 215 Weights.push_back(I.second); 216 } 217 218 static void combineWeights(WeightList &Weights) { 219 // Use a hash table for many successors to keep this linear. 220 if (Weights.size() > 128) { 221 combineWeightsByHashing(Weights); 222 return; 223 } 224 225 combineWeightsBySorting(Weights); 226 } 227 228 static uint64_t shiftRightAndRound(uint64_t N, int Shift) { 229 assert(Shift >= 0); 230 assert(Shift < 64); 231 if (!Shift) 232 return N; 233 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); 234 } 235 236 void Distribution::normalize() { 237 // Early exit for termination nodes. 238 if (Weights.empty()) 239 return; 240 241 // Only bother if there are multiple successors. 242 if (Weights.size() > 1) 243 combineWeights(Weights); 244 245 // Early exit when combined into a single successor. 246 if (Weights.size() == 1) { 247 Total = 1; 248 Weights.front().Amount = 1; 249 return; 250 } 251 252 // Determine how much to shift right so that the total fits into 32-bits. 253 // 254 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1 255 // for each weight can cause a 32-bit overflow. 256 int Shift = 0; 257 if (DidOverflow) 258 Shift = 33; 259 else if (Total > UINT32_MAX) 260 Shift = 33 - llvm::countl_zero(Total); 261 262 // Early exit if nothing needs to be scaled. 263 if (!Shift) { 264 // If we didn't overflow then combineWeights() shouldn't have changed the 265 // sum of the weights, but let's double-check. 266 assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0), 267 [](uint64_t Sum, const Weight &W) { 268 return Sum + W.Amount; 269 }) && 270 "Expected total to be correct"); 271 return; 272 } 273 274 // Recompute the total through accumulation (rather than shifting it) so that 275 // it's accurate after shifting and any changes combineWeights() made above. 276 Total = 0; 277 278 // Sum the weights to each node and shift right if necessary. 279 for (Weight &W : Weights) { 280 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we 281 // can round here without concern about overflow. 282 assert(W.TargetNode.isValid()); 283 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); 284 assert(W.Amount <= UINT32_MAX); 285 286 // Update the total. 287 Total += W.Amount; 288 } 289 assert(Total <= UINT32_MAX); 290 } 291 292 void BlockFrequencyInfoImplBase::clear() { 293 // Swap with a default-constructed std::vector, since std::vector<>::clear() 294 // does not actually clear heap storage. 295 std::vector<FrequencyData>().swap(Freqs); 296 IsIrrLoopHeader.clear(); 297 std::vector<WorkingData>().swap(Working); 298 Loops.clear(); 299 } 300 301 /// Clear all memory not needed downstream. 302 /// 303 /// Releases all memory not used downstream. In particular, saves Freqs. 304 static void cleanup(BlockFrequencyInfoImplBase &BFI) { 305 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); 306 SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader)); 307 BFI.clear(); 308 BFI.Freqs = std::move(SavedFreqs); 309 BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader); 310 } 311 312 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, 313 const LoopData *OuterLoop, 314 const BlockNode &Pred, 315 const BlockNode &Succ, 316 uint64_t Weight) { 317 if (!Weight) 318 Weight = 1; 319 320 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) { 321 return OuterLoop && OuterLoop->isHeader(Node); 322 }; 323 324 BlockNode Resolved = Working[Succ.Index].getResolvedNode(); 325 326 #ifndef NDEBUG 327 auto debugSuccessor = [&](const char *Type) { 328 dbgs() << " =>" 329 << " [" << Type << "] weight = " << Weight; 330 if (!isLoopHeader(Resolved)) 331 dbgs() << ", succ = " << getBlockName(Succ); 332 if (Resolved != Succ) 333 dbgs() << ", resolved = " << getBlockName(Resolved); 334 dbgs() << "\n"; 335 }; 336 (void)debugSuccessor; 337 #endif 338 339 if (isLoopHeader(Resolved)) { 340 LLVM_DEBUG(debugSuccessor("backedge")); 341 Dist.addBackedge(Resolved, Weight); 342 return true; 343 } 344 345 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { 346 LLVM_DEBUG(debugSuccessor(" exit ")); 347 Dist.addExit(Resolved, Weight); 348 return true; 349 } 350 351 if (Resolved < Pred) { 352 if (!isLoopHeader(Pred)) { 353 // If OuterLoop is an irreducible loop, we can't actually handle this. 354 assert((!OuterLoop || !OuterLoop->isIrreducible()) && 355 "unhandled irreducible control flow"); 356 357 // Irreducible backedge. Abort. 358 LLVM_DEBUG(debugSuccessor("abort!!!")); 359 return false; 360 } 361 362 // If "Pred" is a loop header, then this isn't really a backedge; rather, 363 // OuterLoop must be irreducible. These false backedges can come only from 364 // secondary loop headers. 365 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && 366 "unhandled irreducible control flow"); 367 } 368 369 LLVM_DEBUG(debugSuccessor(" local ")); 370 Dist.addLocal(Resolved, Weight); 371 return true; 372 } 373 374 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( 375 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { 376 // Copy the exit map into Dist. 377 for (const auto &I : Loop.Exits) 378 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, 379 I.second.getMass())) 380 // Irreducible backedge. 381 return false; 382 383 return true; 384 } 385 386 /// Compute the loop scale for a loop. 387 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { 388 // Compute loop scale. 389 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n"); 390 391 // Infinite loops need special handling. If we give the back edge an infinite 392 // mass, they may saturate all the other scales in the function down to 1, 393 // making all the other region temperatures look exactly the same. Choose an 394 // arbitrary scale to avoid these issues. 395 // 396 // FIXME: An alternate way would be to select a symbolic scale which is later 397 // replaced to be the maximum of all computed scales plus 1. This would 398 // appropriately describe the loop as having a large scale, without skewing 399 // the final frequency computation. 400 const Scaled64 InfiniteLoopScale(1, 12); 401 402 // LoopScale == 1 / ExitMass 403 // ExitMass == HeadMass - BackedgeMass 404 BlockMass TotalBackedgeMass; 405 for (auto &Mass : Loop.BackedgeMass) 406 TotalBackedgeMass += Mass; 407 BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass; 408 409 // Block scale stores the inverse of the scale. If this is an infinite loop, 410 // its exit mass will be zero. In this case, use an arbitrary scale for the 411 // loop scale. 412 Loop.Scale = 413 ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse(); 414 415 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" 416 << BlockMass::getFull() << " - " << TotalBackedgeMass 417 << ")\n" 418 << " - scale = " << Loop.Scale << "\n"); 419 } 420 421 /// Package up a loop. 422 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { 423 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n"); 424 425 // Clear the subloop exits to prevent quadratic memory usage. 426 for (const BlockNode &M : Loop.Nodes) { 427 if (auto *Loop = Working[M.Index].getPackagedLoop()) 428 Loop->Exits.clear(); 429 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); 430 } 431 Loop.IsPackaged = true; 432 } 433 434 #ifndef NDEBUG 435 static void debugAssign(const BlockFrequencyInfoImplBase &BFI, 436 const DitheringDistributer &D, const BlockNode &T, 437 const BlockMass &M, const char *Desc) { 438 dbgs() << " => assign " << M << " (" << D.RemMass << ")"; 439 if (Desc) 440 dbgs() << " [" << Desc << "]"; 441 if (T.isValid()) 442 dbgs() << " to " << BFI.getBlockName(T); 443 dbgs() << "\n"; 444 } 445 #endif 446 447 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, 448 LoopData *OuterLoop, 449 Distribution &Dist) { 450 BlockMass Mass = Working[Source.Index].getMass(); 451 LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n"); 452 453 // Distribute mass to successors as laid out in Dist. 454 DitheringDistributer D(Dist, Mass); 455 456 for (const Weight &W : Dist.Weights) { 457 // Check for a local edge (non-backedge and non-exit). 458 BlockMass Taken = D.takeMass(W.Amount); 459 if (W.Type == Weight::Local) { 460 Working[W.TargetNode.Index].getMass() += Taken; 461 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); 462 continue; 463 } 464 465 // Backedges and exits only make sense if we're processing a loop. 466 assert(OuterLoop && "backedge or exit outside of loop"); 467 468 // Check for a backedge. 469 if (W.Type == Weight::Backedge) { 470 OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken; 471 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back")); 472 continue; 473 } 474 475 // This must be an exit. 476 assert(W.Type == Weight::Exit); 477 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken)); 478 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit")); 479 } 480 } 481 482 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, 483 const Scaled64 &Min, const Scaled64 &Max) { 484 // Scale the Factor to a size that creates integers. Ideally, integers would 485 // be scaled so that Max == UINT64_MAX so that they can be best 486 // differentiated. However, in the presence of large frequency values, small 487 // frequencies are scaled down to 1, making it impossible to differentiate 488 // small, unequal numbers. When the spread between Min and Max frequencies 489 // fits well within MaxBits, we make the scale be at least 8. 490 const unsigned MaxBits = 64; 491 const unsigned SpreadBits = (Max / Min).lg(); 492 Scaled64 ScalingFactor; 493 if (SpreadBits <= MaxBits - 3) { 494 // If the values are small enough, make the scaling factor at least 8 to 495 // allow distinguishing small values. 496 ScalingFactor = Min.inverse(); 497 ScalingFactor <<= 3; 498 } else { 499 // If the values need more than MaxBits to be represented, saturate small 500 // frequency values down to 1 by using a scaling factor that benefits large 501 // frequency values. 502 ScalingFactor = Scaled64(1, MaxBits) / Max; 503 } 504 505 // Translate the floats to integers. 506 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max 507 << ", factor = " << ScalingFactor << "\n"); 508 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { 509 Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor; 510 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>()); 511 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " 512 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled 513 << ", int = " << BFI.Freqs[Index].Integer << "\n"); 514 } 515 } 516 517 /// Unwrap a loop package. 518 /// 519 /// Visits all the members of a loop, adjusting their BlockData according to 520 /// the loop's pseudo-node. 521 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { 522 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) 523 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale 524 << "\n"); 525 Loop.Scale *= Loop.Mass.toScaled(); 526 Loop.IsPackaged = false; 527 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n"); 528 529 // Propagate the head scale through the loop. Since members are visited in 530 // RPO, the head scale will be updated by the loop scale first, and then the 531 // final head scale will be used for updated the rest of the members. 532 for (const BlockNode &N : Loop.Nodes) { 533 const auto &Working = BFI.Working[N.Index]; 534 Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale 535 : BFI.Freqs[N.Index].Scaled; 536 Scaled64 New = Loop.Scale * F; 537 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " 538 << New << "\n"); 539 F = New; 540 } 541 } 542 543 void BlockFrequencyInfoImplBase::unwrapLoops() { 544 // Set initial frequencies from loop-local masses. 545 for (size_t Index = 0; Index < Working.size(); ++Index) 546 Freqs[Index].Scaled = Working[Index].Mass.toScaled(); 547 548 for (LoopData &Loop : Loops) 549 unwrapLoop(*this, Loop); 550 } 551 552 void BlockFrequencyInfoImplBase::finalizeMetrics() { 553 // Unwrap loop packages in reverse post-order, tracking min and max 554 // frequencies. 555 auto Min = Scaled64::getLargest(); 556 auto Max = Scaled64::getZero(); 557 for (size_t Index = 0; Index < Working.size(); ++Index) { 558 // Update min/max scale. 559 Min = std::min(Min, Freqs[Index].Scaled); 560 Max = std::max(Max, Freqs[Index].Scaled); 561 } 562 563 // Convert to integers. 564 convertFloatingToInteger(*this, Min, Max); 565 566 // Clean up data structures. 567 cleanup(*this); 568 569 // Print out the final stats. 570 LLVM_DEBUG(dump()); 571 } 572 573 BlockFrequency 574 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { 575 if (!Node.isValid()) { 576 #ifndef NDEBUG 577 if (CheckBFIUnknownBlockQueries) { 578 SmallString<256> Msg; 579 raw_svector_ostream OS(Msg); 580 OS << "*** Detected BFI query for unknown block " << getBlockName(Node); 581 report_fatal_error(OS.str()); 582 } 583 #endif 584 return 0; 585 } 586 return Freqs[Node.Index].Integer; 587 } 588 589 std::optional<uint64_t> 590 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F, 591 const BlockNode &Node, 592 bool AllowSynthetic) const { 593 return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(), 594 AllowSynthetic); 595 } 596 597 std::optional<uint64_t> 598 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F, 599 uint64_t Freq, 600 bool AllowSynthetic) const { 601 auto EntryCount = F.getEntryCount(AllowSynthetic); 602 if (!EntryCount) 603 return std::nullopt; 604 // Use 128 bit APInt to do the arithmetic to avoid overflow. 605 APInt BlockCount(128, EntryCount->getCount()); 606 APInt BlockFreq(128, Freq); 607 APInt EntryFreq(128, getEntryFreq()); 608 BlockCount *= BlockFreq; 609 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned 610 // lshr by 1 gives EntryFreq/2. 611 BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq); 612 return BlockCount.getLimitedValue(); 613 } 614 615 bool 616 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) { 617 if (!Node.isValid()) 618 return false; 619 return IsIrrLoopHeader.test(Node.Index); 620 } 621 622 Scaled64 623 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { 624 if (!Node.isValid()) 625 return Scaled64::getZero(); 626 return Freqs[Node.Index].Scaled; 627 } 628 629 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node, 630 uint64_t Freq) { 631 assert(Node.isValid() && "Expected valid node"); 632 assert(Node.Index < Freqs.size() && "Expected legal index"); 633 Freqs[Node.Index].Integer = Freq; 634 } 635 636 std::string 637 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { 638 return {}; 639 } 640 641 std::string 642 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { 643 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*"); 644 } 645 646 raw_ostream & 647 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, 648 const BlockNode &Node) const { 649 return OS << getFloatingBlockFreq(Node); 650 } 651 652 raw_ostream & 653 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, 654 const BlockFrequency &Freq) const { 655 Scaled64 Block(Freq.getFrequency(), 0); 656 Scaled64 Entry(getEntryFreq(), 0); 657 658 return OS << Block / Entry; 659 } 660 661 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { 662 Start = OuterLoop.getHeader(); 663 Nodes.reserve(OuterLoop.Nodes.size()); 664 for (auto N : OuterLoop.Nodes) 665 addNode(N); 666 indexNodes(); 667 } 668 669 void IrreducibleGraph::addNodesInFunction() { 670 Start = 0; 671 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) 672 if (!BFI.Working[Index].isPackaged()) 673 addNode(Index); 674 indexNodes(); 675 } 676 677 void IrreducibleGraph::indexNodes() { 678 for (auto &I : Nodes) 679 Lookup[I.Node.Index] = &I; 680 } 681 682 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, 683 const BFIBase::LoopData *OuterLoop) { 684 if (OuterLoop && OuterLoop->isHeader(Succ)) 685 return; 686 auto L = Lookup.find(Succ.Index); 687 if (L == Lookup.end()) 688 return; 689 IrrNode &SuccIrr = *L->second; 690 Irr.Edges.push_back(&SuccIrr); 691 SuccIrr.Edges.push_front(&Irr); 692 ++SuccIrr.NumIn; 693 } 694 695 namespace llvm { 696 697 template <> struct GraphTraits<IrreducibleGraph> { 698 using GraphT = bfi_detail::IrreducibleGraph; 699 using NodeRef = const GraphT::IrrNode *; 700 using ChildIteratorType = GraphT::IrrNode::iterator; 701 702 static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; } 703 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 704 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 705 }; 706 707 } // end namespace llvm 708 709 /// Find extra irreducible headers. 710 /// 711 /// Find entry blocks and other blocks with backedges, which exist when \c G 712 /// contains irreducible sub-SCCs. 713 static void findIrreducibleHeaders( 714 const BlockFrequencyInfoImplBase &BFI, 715 const IrreducibleGraph &G, 716 const std::vector<const IrreducibleGraph::IrrNode *> &SCC, 717 LoopData::NodeList &Headers, LoopData::NodeList &Others) { 718 // Map from nodes in the SCC to whether it's an entry block. 719 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC; 720 721 // InSCC also acts the set of nodes in the graph. Seed it. 722 for (const auto *I : SCC) 723 InSCC[I] = false; 724 725 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { 726 auto &Irr = *I->first; 727 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { 728 if (InSCC.count(P)) 729 continue; 730 731 // This is an entry block. 732 I->second = true; 733 Headers.push_back(Irr.Node); 734 LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) 735 << "\n"); 736 break; 737 } 738 } 739 assert(Headers.size() >= 2 && 740 "Expected irreducible CFG; -loop-info is likely invalid"); 741 if (Headers.size() == InSCC.size()) { 742 // Every block is a header. 743 llvm::sort(Headers); 744 return; 745 } 746 747 // Look for extra headers from irreducible sub-SCCs. 748 for (const auto &I : InSCC) { 749 // Entry blocks are already headers. 750 if (I.second) 751 continue; 752 753 auto &Irr = *I.first; 754 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { 755 // Skip forward edges. 756 if (P->Node < Irr.Node) 757 continue; 758 759 // Skip predecessors from entry blocks. These can have inverted 760 // ordering. 761 if (InSCC.lookup(P)) 762 continue; 763 764 // Store the extra header. 765 Headers.push_back(Irr.Node); 766 LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) 767 << "\n"); 768 break; 769 } 770 if (Headers.back() == Irr.Node) 771 // Added this as a header. 772 continue; 773 774 // This is not a header. 775 Others.push_back(Irr.Node); 776 LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n"); 777 } 778 llvm::sort(Headers); 779 llvm::sort(Others); 780 } 781 782 static void createIrreducibleLoop( 783 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, 784 LoopData *OuterLoop, std::list<LoopData>::iterator Insert, 785 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) { 786 // Translate the SCC into RPO. 787 LLVM_DEBUG(dbgs() << " - found-scc\n"); 788 789 LoopData::NodeList Headers; 790 LoopData::NodeList Others; 791 findIrreducibleHeaders(BFI, G, SCC, Headers, Others); 792 793 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(), 794 Headers.end(), Others.begin(), Others.end()); 795 796 // Update loop hierarchy. 797 for (const auto &N : Loop->Nodes) 798 if (BFI.Working[N.Index].isLoopHeader()) 799 BFI.Working[N.Index].Loop->Parent = &*Loop; 800 else 801 BFI.Working[N.Index].Loop = &*Loop; 802 } 803 804 iterator_range<std::list<LoopData>::iterator> 805 BlockFrequencyInfoImplBase::analyzeIrreducible( 806 const IrreducibleGraph &G, LoopData *OuterLoop, 807 std::list<LoopData>::iterator Insert) { 808 assert((OuterLoop == nullptr) == (Insert == Loops.begin())); 809 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end(); 810 811 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { 812 if (I->size() < 2) 813 continue; 814 815 // Translate the SCC into RPO. 816 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I); 817 } 818 819 if (OuterLoop) 820 return make_range(std::next(Prev), Insert); 821 return make_range(Loops.begin(), Insert); 822 } 823 824 void 825 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { 826 OuterLoop.Exits.clear(); 827 for (auto &Mass : OuterLoop.BackedgeMass) 828 Mass = BlockMass::getEmpty(); 829 auto O = OuterLoop.Nodes.begin() + 1; 830 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) 831 if (!Working[I->Index].isPackaged()) 832 *O++ = *I; 833 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end()); 834 } 835 836 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) { 837 assert(Loop.isIrreducible() && "this only makes sense on irreducible loops"); 838 839 // Since the loop has more than one header block, the mass flowing back into 840 // each header will be different. Adjust the mass in each header loop to 841 // reflect the masses flowing through back edges. 842 // 843 // To do this, we distribute the initial mass using the backedge masses 844 // as weights for the distribution. 845 BlockMass LoopMass = BlockMass::getFull(); 846 Distribution Dist; 847 848 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n"); 849 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { 850 auto &HeaderNode = Loop.Nodes[H]; 851 auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)]; 852 LLVM_DEBUG(dbgs() << " - Add back edge mass for node " 853 << getBlockName(HeaderNode) << ": " << BackedgeMass 854 << "\n"); 855 if (BackedgeMass.getMass() > 0) 856 Dist.addLocal(HeaderNode, BackedgeMass.getMass()); 857 else 858 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n"); 859 } 860 861 DitheringDistributer D(Dist, LoopMass); 862 863 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass 864 << " to headers using above weights\n"); 865 for (const Weight &W : Dist.Weights) { 866 BlockMass Taken = D.takeMass(W.Amount); 867 assert(W.Type == Weight::Local && "all weights should be local"); 868 Working[W.TargetNode.Index].getMass() = Taken; 869 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); 870 } 871 } 872 873 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) { 874 BlockMass LoopMass = BlockMass::getFull(); 875 DitheringDistributer D(Dist, LoopMass); 876 for (const Weight &W : Dist.Weights) { 877 BlockMass Taken = D.takeMass(W.Amount); 878 assert(W.Type == Weight::Local && "all weights should be local"); 879 Working[W.TargetNode.Index].getMass() = Taken; 880 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); 881 } 882 } 883