1 //===-- Symtab.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <map> 10 #include <set> 11 12 #include "lldb/Core/DataFileCache.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/RichManglingContext.h" 15 #include "lldb/Core/Section.h" 16 #include "lldb/Symbol/ObjectFile.h" 17 #include "lldb/Symbol/Symbol.h" 18 #include "lldb/Symbol/SymbolContext.h" 19 #include "lldb/Symbol/Symtab.h" 20 #include "lldb/Target/Language.h" 21 #include "lldb/Utility/DataEncoder.h" 22 #include "lldb/Utility/Endian.h" 23 #include "lldb/Utility/RegularExpression.h" 24 #include "lldb/Utility/Stream.h" 25 #include "lldb/Utility/Timer.h" 26 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Support/DJB.h" 30 31 using namespace lldb; 32 using namespace lldb_private; 33 34 Symtab::Symtab(ObjectFile *objfile) 35 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), 36 m_name_to_symbol_indices(), m_mutex(), 37 m_file_addr_to_index_computed(false), m_name_indexes_computed(false), 38 m_loaded_from_cache(false), m_saved_to_cache(false) { 39 m_name_to_symbol_indices.emplace(std::make_pair( 40 lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>())); 41 m_name_to_symbol_indices.emplace(std::make_pair( 42 lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>())); 43 m_name_to_symbol_indices.emplace(std::make_pair( 44 lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>())); 45 m_name_to_symbol_indices.emplace(std::make_pair( 46 lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>())); 47 } 48 49 Symtab::~Symtab() = default; 50 51 void Symtab::Reserve(size_t count) { 52 // Clients should grab the mutex from this symbol table and lock it manually 53 // when calling this function to avoid performance issues. 54 m_symbols.reserve(count); 55 } 56 57 Symbol *Symtab::Resize(size_t count) { 58 // Clients should grab the mutex from this symbol table and lock it manually 59 // when calling this function to avoid performance issues. 60 m_symbols.resize(count); 61 return m_symbols.empty() ? nullptr : &m_symbols[0]; 62 } 63 64 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 65 // Clients should grab the mutex from this symbol table and lock it manually 66 // when calling this function to avoid performance issues. 67 uint32_t symbol_idx = m_symbols.size(); 68 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 69 name_to_index.Clear(); 70 m_file_addr_to_index.Clear(); 71 m_symbols.push_back(symbol); 72 m_file_addr_to_index_computed = false; 73 m_name_indexes_computed = false; 74 return symbol_idx; 75 } 76 77 size_t Symtab::GetNumSymbols() const { 78 std::lock_guard<std::recursive_mutex> guard(m_mutex); 79 return m_symbols.size(); 80 } 81 82 void Symtab::SectionFileAddressesChanged() { 83 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 84 name_to_index.Clear(); 85 m_file_addr_to_index_computed = false; 86 } 87 88 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, 89 Mangled::NamePreference name_preference) { 90 std::lock_guard<std::recursive_mutex> guard(m_mutex); 91 92 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 93 s->Indent(); 94 const FileSpec &file_spec = m_objfile->GetFileSpec(); 95 const char *object_name = nullptr; 96 if (m_objfile->GetModule()) 97 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 98 99 if (file_spec) 100 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 101 file_spec.GetPath().c_str(), object_name ? "(" : "", 102 object_name ? object_name : "", object_name ? ")" : "", 103 (uint64_t)m_symbols.size()); 104 else 105 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 106 107 if (!m_symbols.empty()) { 108 switch (sort_order) { 109 case eSortOrderNone: { 110 s->PutCString(":\n"); 111 DumpSymbolHeader(s); 112 const_iterator begin = m_symbols.begin(); 113 const_iterator end = m_symbols.end(); 114 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 115 s->Indent(); 116 pos->Dump(s, target, std::distance(begin, pos), name_preference); 117 } 118 } 119 break; 120 121 case eSortOrderByName: { 122 // Although we maintain a lookup by exact name map, the table isn't 123 // sorted by name. So we must make the ordered symbol list up ourselves. 124 s->PutCString(" (sorted by name):\n"); 125 DumpSymbolHeader(s); 126 127 std::multimap<llvm::StringRef, const Symbol *> name_map; 128 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 129 pos != end; ++pos) { 130 const char *name = pos->GetName().AsCString(); 131 if (name && name[0]) 132 name_map.insert(std::make_pair(name, &(*pos))); 133 } 134 135 for (const auto &name_to_symbol : name_map) { 136 const Symbol *symbol = name_to_symbol.second; 137 s->Indent(); 138 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); 139 } 140 } break; 141 142 case eSortOrderByAddress: 143 s->PutCString(" (sorted by address):\n"); 144 DumpSymbolHeader(s); 145 if (!m_file_addr_to_index_computed) 146 InitAddressIndexes(); 147 const size_t num_entries = m_file_addr_to_index.GetSize(); 148 for (size_t i = 0; i < num_entries; ++i) { 149 s->Indent(); 150 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 151 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); 152 } 153 break; 154 } 155 } else { 156 s->PutCString("\n"); 157 } 158 } 159 160 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, 161 Mangled::NamePreference name_preference) const { 162 std::lock_guard<std::recursive_mutex> guard(m_mutex); 163 164 const size_t num_symbols = GetNumSymbols(); 165 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 166 s->Indent(); 167 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 168 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 169 s->IndentMore(); 170 171 if (!indexes.empty()) { 172 std::vector<uint32_t>::const_iterator pos; 173 std::vector<uint32_t>::const_iterator end = indexes.end(); 174 DumpSymbolHeader(s); 175 for (pos = indexes.begin(); pos != end; ++pos) { 176 size_t idx = *pos; 177 if (idx < num_symbols) { 178 s->Indent(); 179 m_symbols[idx].Dump(s, target, idx, name_preference); 180 } 181 } 182 } 183 s->IndentLess(); 184 } 185 186 void Symtab::DumpSymbolHeader(Stream *s) { 187 s->Indent(" Debug symbol\n"); 188 s->Indent(" |Synthetic symbol\n"); 189 s->Indent(" ||Externally Visible\n"); 190 s->Indent(" |||\n"); 191 s->Indent("Index UserID DSX Type File Address/Value Load " 192 "Address Size Flags Name\n"); 193 s->Indent("------- ------ --- --------------- ------------------ " 194 "------------------ ------------------ ---------- " 195 "----------------------------------\n"); 196 } 197 198 static int CompareSymbolID(const void *key, const void *p) { 199 const user_id_t match_uid = *(const user_id_t *)key; 200 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 201 if (match_uid < symbol_uid) 202 return -1; 203 if (match_uid > symbol_uid) 204 return 1; 205 return 0; 206 } 207 208 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 209 std::lock_guard<std::recursive_mutex> guard(m_mutex); 210 211 Symbol *symbol = 212 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 213 sizeof(m_symbols[0]), CompareSymbolID); 214 return symbol; 215 } 216 217 Symbol *Symtab::SymbolAtIndex(size_t idx) { 218 // Clients should grab the mutex from this symbol table and lock it manually 219 // when calling this function to avoid performance issues. 220 if (idx < m_symbols.size()) 221 return &m_symbols[idx]; 222 return nullptr; 223 } 224 225 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 226 // Clients should grab the mutex from this symbol table and lock it manually 227 // when calling this function to avoid performance issues. 228 if (idx < m_symbols.size()) 229 return &m_symbols[idx]; 230 return nullptr; 231 } 232 233 static bool lldb_skip_name(llvm::StringRef mangled, 234 Mangled::ManglingScheme scheme) { 235 switch (scheme) { 236 case Mangled::eManglingSchemeItanium: { 237 if (mangled.size() < 3 || !mangled.startswith("_Z")) 238 return true; 239 240 // Avoid the following types of symbols in the index. 241 switch (mangled[2]) { 242 case 'G': // guard variables 243 case 'T': // virtual tables, VTT structures, typeinfo structures + names 244 case 'Z': // named local entities (if we eventually handle 245 // eSymbolTypeData, we will want this back) 246 return true; 247 248 default: 249 break; 250 } 251 252 // Include this name in the index. 253 return false; 254 } 255 256 // No filters for this scheme yet. Include all names in indexing. 257 case Mangled::eManglingSchemeMSVC: 258 case Mangled::eManglingSchemeRustV0: 259 case Mangled::eManglingSchemeD: 260 return false; 261 262 // Don't try and demangle things we can't categorize. 263 case Mangled::eManglingSchemeNone: 264 return true; 265 } 266 llvm_unreachable("unknown scheme!"); 267 } 268 269 void Symtab::InitNameIndexes() { 270 // Protected function, no need to lock mutex... 271 if (!m_name_indexes_computed) { 272 m_name_indexes_computed = true; 273 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); 274 LLDB_SCOPED_TIMER(); 275 276 // Collect all loaded language plugins. 277 std::vector<Language *> languages; 278 Language::ForEach([&languages](Language *l) { 279 languages.push_back(l); 280 return true; 281 }); 282 283 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 284 auto &basename_to_index = 285 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 286 auto &method_to_index = 287 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 288 auto &selector_to_index = 289 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector); 290 // Create the name index vector to be able to quickly search by name 291 const size_t num_symbols = m_symbols.size(); 292 name_to_index.Reserve(num_symbols); 293 294 // The "const char *" in "class_contexts" and backlog::value_type::second 295 // must come from a ConstString::GetCString() 296 std::set<const char *> class_contexts; 297 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 298 backlog.reserve(num_symbols / 2); 299 300 // Instantiation of the demangler is expensive, so better use a single one 301 // for all entries during batch processing. 302 RichManglingContext rmc; 303 for (uint32_t value = 0; value < num_symbols; ++value) { 304 Symbol *symbol = &m_symbols[value]; 305 306 // Don't let trampolines get into the lookup by name map If we ever need 307 // the trampoline symbols to be searchable by name we can remove this and 308 // then possibly add a new bool to any of the Symtab functions that 309 // lookup symbols by name to indicate if they want trampolines. We also 310 // don't want any synthetic symbols with auto generated names in the 311 // name lookups. 312 if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName()) 313 continue; 314 315 // If the symbol's name string matched a Mangled::ManglingScheme, it is 316 // stored in the mangled field. 317 Mangled &mangled = symbol->GetMangled(); 318 if (ConstString name = mangled.GetMangledName()) { 319 name_to_index.Append(name, value); 320 321 if (symbol->ContainsLinkerAnnotations()) { 322 // If the symbol has linker annotations, also add the version without 323 // the annotations. 324 ConstString stripped = ConstString( 325 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 326 name_to_index.Append(stripped, value); 327 } 328 329 const SymbolType type = symbol->GetType(); 330 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 331 if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) { 332 RegisterMangledNameEntry(value, class_contexts, backlog, rmc); 333 continue; 334 } 335 } 336 } 337 338 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 339 // stored in the demangled field. 340 if (ConstString name = mangled.GetDemangledName()) { 341 name_to_index.Append(name, value); 342 343 if (symbol->ContainsLinkerAnnotations()) { 344 // If the symbol has linker annotations, also add the version without 345 // the annotations. 346 name = ConstString( 347 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 348 name_to_index.Append(name, value); 349 } 350 351 // If the demangled name turns out to be an ObjC name, and is a category 352 // name, add the version without categories to the index too. 353 for (Language *lang : languages) { 354 for (auto variant : lang->GetMethodNameVariants(name)) { 355 if (variant.GetType() & lldb::eFunctionNameTypeSelector) 356 selector_to_index.Append(variant.GetName(), value); 357 else if (variant.GetType() & lldb::eFunctionNameTypeFull) 358 name_to_index.Append(variant.GetName(), value); 359 else if (variant.GetType() & lldb::eFunctionNameTypeMethod) 360 method_to_index.Append(variant.GetName(), value); 361 else if (variant.GetType() & lldb::eFunctionNameTypeBase) 362 basename_to_index.Append(variant.GetName(), value); 363 } 364 } 365 } 366 } 367 368 for (const auto &record : backlog) { 369 RegisterBacklogEntry(record.first, record.second, class_contexts); 370 } 371 372 name_to_index.Sort(); 373 name_to_index.SizeToFit(); 374 selector_to_index.Sort(); 375 selector_to_index.SizeToFit(); 376 basename_to_index.Sort(); 377 basename_to_index.SizeToFit(); 378 method_to_index.Sort(); 379 method_to_index.SizeToFit(); 380 } 381 } 382 383 void Symtab::RegisterMangledNameEntry( 384 uint32_t value, std::set<const char *> &class_contexts, 385 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 386 RichManglingContext &rmc) { 387 // Only register functions that have a base name. 388 llvm::StringRef base_name = rmc.ParseFunctionBaseName(); 389 if (base_name.empty()) 390 return; 391 392 // The base name will be our entry's name. 393 NameToIndexMap::Entry entry(ConstString(base_name), value); 394 llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName(); 395 396 // Register functions with no context. 397 if (decl_context.empty()) { 398 // This has to be a basename 399 auto &basename_to_index = 400 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 401 basename_to_index.Append(entry); 402 // If there is no context (no namespaces or class scopes that come before 403 // the function name) then this also could be a fullname. 404 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 405 name_to_index.Append(entry); 406 return; 407 } 408 409 // Make sure we have a pool-string pointer and see if we already know the 410 // context name. 411 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 412 auto it = class_contexts.find(decl_context_ccstr); 413 414 auto &method_to_index = 415 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 416 // Register constructors and destructors. They are methods and create 417 // declaration contexts. 418 if (rmc.IsCtorOrDtor()) { 419 method_to_index.Append(entry); 420 if (it == class_contexts.end()) 421 class_contexts.insert(it, decl_context_ccstr); 422 return; 423 } 424 425 // Register regular methods with a known declaration context. 426 if (it != class_contexts.end()) { 427 method_to_index.Append(entry); 428 return; 429 } 430 431 // Regular methods in unknown declaration contexts are put to the backlog. We 432 // will revisit them once we processed all remaining symbols. 433 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 434 } 435 436 void Symtab::RegisterBacklogEntry( 437 const NameToIndexMap::Entry &entry, const char *decl_context, 438 const std::set<const char *> &class_contexts) { 439 auto &method_to_index = 440 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 441 auto it = class_contexts.find(decl_context); 442 if (it != class_contexts.end()) { 443 method_to_index.Append(entry); 444 } else { 445 // If we got here, we have something that had a context (was inside 446 // a namespace or class) yet we don't know the entry 447 method_to_index.Append(entry); 448 auto &basename_to_index = 449 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 450 basename_to_index.Append(entry); 451 } 452 } 453 454 void Symtab::PreloadSymbols() { 455 std::lock_guard<std::recursive_mutex> guard(m_mutex); 456 InitNameIndexes(); 457 } 458 459 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 460 bool add_demangled, bool add_mangled, 461 NameToIndexMap &name_to_index_map) const { 462 LLDB_SCOPED_TIMER(); 463 if (add_demangled || add_mangled) { 464 std::lock_guard<std::recursive_mutex> guard(m_mutex); 465 466 // Create the name index vector to be able to quickly search by name 467 const size_t num_indexes = indexes.size(); 468 for (size_t i = 0; i < num_indexes; ++i) { 469 uint32_t value = indexes[i]; 470 assert(i < m_symbols.size()); 471 const Symbol *symbol = &m_symbols[value]; 472 473 const Mangled &mangled = symbol->GetMangled(); 474 if (add_demangled) { 475 if (ConstString name = mangled.GetDemangledName()) 476 name_to_index_map.Append(name, value); 477 } 478 479 if (add_mangled) { 480 if (ConstString name = mangled.GetMangledName()) 481 name_to_index_map.Append(name, value); 482 } 483 } 484 } 485 } 486 487 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 488 std::vector<uint32_t> &indexes, 489 uint32_t start_idx, 490 uint32_t end_index) const { 491 std::lock_guard<std::recursive_mutex> guard(m_mutex); 492 493 uint32_t prev_size = indexes.size(); 494 495 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 496 497 for (uint32_t i = start_idx; i < count; ++i) { 498 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 499 indexes.push_back(i); 500 } 501 502 return indexes.size() - prev_size; 503 } 504 505 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 506 SymbolType symbol_type, uint32_t flags_value, 507 std::vector<uint32_t> &indexes, uint32_t start_idx, 508 uint32_t end_index) const { 509 std::lock_guard<std::recursive_mutex> guard(m_mutex); 510 511 uint32_t prev_size = indexes.size(); 512 513 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 514 515 for (uint32_t i = start_idx; i < count; ++i) { 516 if ((symbol_type == eSymbolTypeAny || 517 m_symbols[i].GetType() == symbol_type) && 518 m_symbols[i].GetFlags() == flags_value) 519 indexes.push_back(i); 520 } 521 522 return indexes.size() - prev_size; 523 } 524 525 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 526 Debug symbol_debug_type, 527 Visibility symbol_visibility, 528 std::vector<uint32_t> &indexes, 529 uint32_t start_idx, 530 uint32_t end_index) const { 531 std::lock_guard<std::recursive_mutex> guard(m_mutex); 532 533 uint32_t prev_size = indexes.size(); 534 535 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 536 537 for (uint32_t i = start_idx; i < count; ++i) { 538 if (symbol_type == eSymbolTypeAny || 539 m_symbols[i].GetType() == symbol_type) { 540 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 541 indexes.push_back(i); 542 } 543 } 544 545 return indexes.size() - prev_size; 546 } 547 548 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 549 if (!m_symbols.empty()) { 550 const Symbol *first_symbol = &m_symbols[0]; 551 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 552 return symbol - first_symbol; 553 } 554 return UINT32_MAX; 555 } 556 557 struct SymbolSortInfo { 558 const bool sort_by_load_addr; 559 const Symbol *symbols; 560 }; 561 562 namespace { 563 struct SymbolIndexComparator { 564 const std::vector<Symbol> &symbols; 565 std::vector<lldb::addr_t> &addr_cache; 566 567 // Getting from the symbol to the Address to the File Address involves some 568 // work. Since there are potentially many symbols here, and we're using this 569 // for sorting so we're going to be computing the address many times, cache 570 // that in addr_cache. The array passed in has to be the same size as the 571 // symbols array passed into the member variable symbols, and should be 572 // initialized with LLDB_INVALID_ADDRESS. 573 // NOTE: You have to make addr_cache externally and pass it in because 574 // std::stable_sort 575 // makes copies of the comparator it is initially passed in, and you end up 576 // spending huge amounts of time copying this array... 577 578 SymbolIndexComparator(const std::vector<Symbol> &s, 579 std::vector<lldb::addr_t> &a) 580 : symbols(s), addr_cache(a) { 581 assert(symbols.size() == addr_cache.size()); 582 } 583 bool operator()(uint32_t index_a, uint32_t index_b) { 584 addr_t value_a = addr_cache[index_a]; 585 if (value_a == LLDB_INVALID_ADDRESS) { 586 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 587 addr_cache[index_a] = value_a; 588 } 589 590 addr_t value_b = addr_cache[index_b]; 591 if (value_b == LLDB_INVALID_ADDRESS) { 592 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 593 addr_cache[index_b] = value_b; 594 } 595 596 if (value_a == value_b) { 597 // The if the values are equal, use the original symbol user ID 598 lldb::user_id_t uid_a = symbols[index_a].GetID(); 599 lldb::user_id_t uid_b = symbols[index_b].GetID(); 600 if (uid_a < uid_b) 601 return true; 602 if (uid_a > uid_b) 603 return false; 604 return false; 605 } else if (value_a < value_b) 606 return true; 607 608 return false; 609 } 610 }; 611 } 612 613 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 614 bool remove_duplicates) const { 615 std::lock_guard<std::recursive_mutex> guard(m_mutex); 616 LLDB_SCOPED_TIMER(); 617 // No need to sort if we have zero or one items... 618 if (indexes.size() <= 1) 619 return; 620 621 // Sort the indexes in place using std::stable_sort. 622 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly 623 // for performance, not correctness. The indexes vector tends to be "close" 624 // to sorted, which the stable sort handles better. 625 626 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 627 628 SymbolIndexComparator comparator(m_symbols, addr_cache); 629 std::stable_sort(indexes.begin(), indexes.end(), comparator); 630 631 // Remove any duplicates if requested 632 if (remove_duplicates) { 633 auto last = std::unique(indexes.begin(), indexes.end()); 634 indexes.erase(last, indexes.end()); 635 } 636 } 637 638 uint32_t Symtab::GetNameIndexes(ConstString symbol_name, 639 std::vector<uint32_t> &indexes) { 640 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 641 const uint32_t count = name_to_index.GetValues(symbol_name, indexes); 642 if (count) 643 return count; 644 // Synthetic symbol names are not added to the name indexes, but they start 645 // with a prefix and end with a the symbol UserID. This allows users to find 646 // these symbols without having to add them to the name indexes. These 647 // queries will not happen very often since the names don't mean anything, so 648 // performance is not paramount in this case. 649 llvm::StringRef name = symbol_name.GetStringRef(); 650 // String the synthetic prefix if the name starts with it. 651 if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix())) 652 return 0; // Not a synthetic symbol name 653 654 // Extract the user ID from the symbol name 655 unsigned long long uid = 0; 656 if (getAsUnsignedInteger(name, /*Radix=*/10, uid)) 657 return 0; // Failed to extract the user ID as an integer 658 Symbol *symbol = FindSymbolByID(uid); 659 if (symbol == nullptr) 660 return 0; 661 const uint32_t symbol_idx = GetIndexForSymbol(symbol); 662 if (symbol_idx == UINT32_MAX) 663 return 0; 664 indexes.push_back(symbol_idx); 665 return 1; 666 } 667 668 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 669 std::vector<uint32_t> &indexes) { 670 std::lock_guard<std::recursive_mutex> guard(m_mutex); 671 672 if (symbol_name) { 673 if (!m_name_indexes_computed) 674 InitNameIndexes(); 675 676 return GetNameIndexes(symbol_name, indexes); 677 } 678 return 0; 679 } 680 681 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 682 Debug symbol_debug_type, 683 Visibility symbol_visibility, 684 std::vector<uint32_t> &indexes) { 685 std::lock_guard<std::recursive_mutex> guard(m_mutex); 686 687 LLDB_SCOPED_TIMER(); 688 if (symbol_name) { 689 const size_t old_size = indexes.size(); 690 if (!m_name_indexes_computed) 691 InitNameIndexes(); 692 693 std::vector<uint32_t> all_name_indexes; 694 const size_t name_match_count = 695 GetNameIndexes(symbol_name, all_name_indexes); 696 for (size_t i = 0; i < name_match_count; ++i) { 697 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 698 symbol_visibility)) 699 indexes.push_back(all_name_indexes[i]); 700 } 701 return indexes.size() - old_size; 702 } 703 return 0; 704 } 705 706 uint32_t 707 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, 708 SymbolType symbol_type, 709 std::vector<uint32_t> &indexes) { 710 std::lock_guard<std::recursive_mutex> guard(m_mutex); 711 712 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 713 std::vector<uint32_t>::iterator pos = indexes.begin(); 714 while (pos != indexes.end()) { 715 if (symbol_type == eSymbolTypeAny || 716 m_symbols[*pos].GetType() == symbol_type) 717 ++pos; 718 else 719 pos = indexes.erase(pos); 720 } 721 } 722 return indexes.size(); 723 } 724 725 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 726 ConstString symbol_name, SymbolType symbol_type, 727 Debug symbol_debug_type, Visibility symbol_visibility, 728 std::vector<uint32_t> &indexes) { 729 std::lock_guard<std::recursive_mutex> guard(m_mutex); 730 731 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 732 symbol_visibility, indexes) > 0) { 733 std::vector<uint32_t>::iterator pos = indexes.begin(); 734 while (pos != indexes.end()) { 735 if (symbol_type == eSymbolTypeAny || 736 m_symbols[*pos].GetType() == symbol_type) 737 ++pos; 738 else 739 pos = indexes.erase(pos); 740 } 741 } 742 return indexes.size(); 743 } 744 745 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 746 const RegularExpression ®exp, SymbolType symbol_type, 747 std::vector<uint32_t> &indexes) { 748 std::lock_guard<std::recursive_mutex> guard(m_mutex); 749 750 uint32_t prev_size = indexes.size(); 751 uint32_t sym_end = m_symbols.size(); 752 753 for (uint32_t i = 0; i < sym_end; i++) { 754 if (symbol_type == eSymbolTypeAny || 755 m_symbols[i].GetType() == symbol_type) { 756 const char *name = m_symbols[i].GetName().AsCString(); 757 if (name) { 758 if (regexp.Execute(name)) 759 indexes.push_back(i); 760 } 761 } 762 } 763 return indexes.size() - prev_size; 764 } 765 766 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 767 const RegularExpression ®exp, SymbolType symbol_type, 768 Debug symbol_debug_type, Visibility symbol_visibility, 769 std::vector<uint32_t> &indexes) { 770 std::lock_guard<std::recursive_mutex> guard(m_mutex); 771 772 uint32_t prev_size = indexes.size(); 773 uint32_t sym_end = m_symbols.size(); 774 775 for (uint32_t i = 0; i < sym_end; i++) { 776 if (symbol_type == eSymbolTypeAny || 777 m_symbols[i].GetType() == symbol_type) { 778 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 779 continue; 780 781 const char *name = m_symbols[i].GetName().AsCString(); 782 if (name) { 783 if (regexp.Execute(name)) 784 indexes.push_back(i); 785 } 786 } 787 } 788 return indexes.size() - prev_size; 789 } 790 791 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 792 Debug symbol_debug_type, 793 Visibility symbol_visibility, 794 uint32_t &start_idx) { 795 std::lock_guard<std::recursive_mutex> guard(m_mutex); 796 797 const size_t count = m_symbols.size(); 798 for (size_t idx = start_idx; idx < count; ++idx) { 799 if (symbol_type == eSymbolTypeAny || 800 m_symbols[idx].GetType() == symbol_type) { 801 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 802 start_idx = idx; 803 return &m_symbols[idx]; 804 } 805 } 806 } 807 return nullptr; 808 } 809 810 void 811 Symtab::FindAllSymbolsWithNameAndType(ConstString name, 812 SymbolType symbol_type, 813 std::vector<uint32_t> &symbol_indexes) { 814 std::lock_guard<std::recursive_mutex> guard(m_mutex); 815 816 // Initialize all of the lookup by name indexes before converting NAME to a 817 // uniqued string NAME_STR below. 818 if (!m_name_indexes_computed) 819 InitNameIndexes(); 820 821 if (name) { 822 // The string table did have a string that matched, but we need to check 823 // the symbols and match the symbol_type if any was given. 824 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 825 } 826 } 827 828 void Symtab::FindAllSymbolsWithNameAndType( 829 ConstString name, SymbolType symbol_type, Debug symbol_debug_type, 830 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 831 std::lock_guard<std::recursive_mutex> guard(m_mutex); 832 833 LLDB_SCOPED_TIMER(); 834 // Initialize all of the lookup by name indexes before converting NAME to a 835 // uniqued string NAME_STR below. 836 if (!m_name_indexes_computed) 837 InitNameIndexes(); 838 839 if (name) { 840 // The string table did have a string that matched, but we need to check 841 // the symbols and match the symbol_type if any was given. 842 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 843 symbol_visibility, symbol_indexes); 844 } 845 } 846 847 void Symtab::FindAllSymbolsMatchingRexExAndType( 848 const RegularExpression ®ex, SymbolType symbol_type, 849 Debug symbol_debug_type, Visibility symbol_visibility, 850 std::vector<uint32_t> &symbol_indexes) { 851 std::lock_guard<std::recursive_mutex> guard(m_mutex); 852 853 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 854 symbol_visibility, symbol_indexes); 855 } 856 857 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, 858 SymbolType symbol_type, 859 Debug symbol_debug_type, 860 Visibility symbol_visibility) { 861 std::lock_guard<std::recursive_mutex> guard(m_mutex); 862 LLDB_SCOPED_TIMER(); 863 if (!m_name_indexes_computed) 864 InitNameIndexes(); 865 866 if (name) { 867 std::vector<uint32_t> matching_indexes; 868 // The string table did have a string that matched, but we need to check 869 // the symbols and match the symbol_type if any was given. 870 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 871 symbol_visibility, 872 matching_indexes)) { 873 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 874 for (pos = matching_indexes.begin(); pos != end; ++pos) { 875 Symbol *symbol = SymbolAtIndex(*pos); 876 877 if (symbol->Compare(name, symbol_type)) 878 return symbol; 879 } 880 } 881 } 882 return nullptr; 883 } 884 885 typedef struct { 886 const Symtab *symtab; 887 const addr_t file_addr; 888 Symbol *match_symbol; 889 const uint32_t *match_index_ptr; 890 addr_t match_offset; 891 } SymbolSearchInfo; 892 893 // Add all the section file start address & size to the RangeVector, recusively 894 // adding any children sections. 895 static void AddSectionsToRangeMap(SectionList *sectlist, 896 RangeVector<addr_t, addr_t> §ion_ranges) { 897 const int num_sections = sectlist->GetNumSections(0); 898 for (int i = 0; i < num_sections; i++) { 899 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 900 if (sect_sp) { 901 SectionList &child_sectlist = sect_sp->GetChildren(); 902 903 // If this section has children, add the children to the RangeVector. 904 // Else add this section to the RangeVector. 905 if (child_sectlist.GetNumSections(0) > 0) { 906 AddSectionsToRangeMap(&child_sectlist, section_ranges); 907 } else { 908 size_t size = sect_sp->GetByteSize(); 909 if (size > 0) { 910 addr_t base_addr = sect_sp->GetFileAddress(); 911 RangeVector<addr_t, addr_t>::Entry entry; 912 entry.SetRangeBase(base_addr); 913 entry.SetByteSize(size); 914 section_ranges.Append(entry); 915 } 916 } 917 } 918 } 919 } 920 921 void Symtab::InitAddressIndexes() { 922 // Protected function, no need to lock mutex... 923 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 924 m_file_addr_to_index_computed = true; 925 926 FileRangeToIndexMap::Entry entry; 927 const_iterator begin = m_symbols.begin(); 928 const_iterator end = m_symbols.end(); 929 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 930 if (pos->ValueIsAddress()) { 931 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 932 entry.SetByteSize(pos->GetByteSize()); 933 entry.data = std::distance(begin, pos); 934 m_file_addr_to_index.Append(entry); 935 } 936 } 937 const size_t num_entries = m_file_addr_to_index.GetSize(); 938 if (num_entries > 0) { 939 m_file_addr_to_index.Sort(); 940 941 // Create a RangeVector with the start & size of all the sections for 942 // this objfile. We'll need to check this for any FileRangeToIndexMap 943 // entries with an uninitialized size, which could potentially be a large 944 // number so reconstituting the weak pointer is busywork when it is 945 // invariant information. 946 SectionList *sectlist = m_objfile->GetSectionList(); 947 RangeVector<addr_t, addr_t> section_ranges; 948 if (sectlist) { 949 AddSectionsToRangeMap(sectlist, section_ranges); 950 section_ranges.Sort(); 951 } 952 953 // Iterate through the FileRangeToIndexMap and fill in the size for any 954 // entries that didn't already have a size from the Symbol (e.g. if we 955 // have a plain linker symbol with an address only, instead of debug info 956 // where we get an address and a size and a type, etc.) 957 for (size_t i = 0; i < num_entries; i++) { 958 FileRangeToIndexMap::Entry *entry = 959 m_file_addr_to_index.GetMutableEntryAtIndex(i); 960 if (entry->GetByteSize() == 0) { 961 addr_t curr_base_addr = entry->GetRangeBase(); 962 const RangeVector<addr_t, addr_t>::Entry *containing_section = 963 section_ranges.FindEntryThatContains(curr_base_addr); 964 965 // Use the end of the section as the default max size of the symbol 966 addr_t sym_size = 0; 967 if (containing_section) { 968 sym_size = 969 containing_section->GetByteSize() - 970 (entry->GetRangeBase() - containing_section->GetRangeBase()); 971 } 972 973 for (size_t j = i; j < num_entries; j++) { 974 FileRangeToIndexMap::Entry *next_entry = 975 m_file_addr_to_index.GetMutableEntryAtIndex(j); 976 addr_t next_base_addr = next_entry->GetRangeBase(); 977 if (next_base_addr > curr_base_addr) { 978 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 979 980 // Take the difference between this symbol and the next one as 981 // its size, if it is less than the size of the section. 982 if (sym_size == 0 || size_to_next_symbol < sym_size) { 983 sym_size = size_to_next_symbol; 984 } 985 break; 986 } 987 } 988 989 if (sym_size > 0) { 990 entry->SetByteSize(sym_size); 991 Symbol &symbol = m_symbols[entry->data]; 992 symbol.SetByteSize(sym_size); 993 symbol.SetSizeIsSynthesized(true); 994 } 995 } 996 } 997 998 // Sort again in case the range size changes the ordering 999 m_file_addr_to_index.Sort(); 1000 } 1001 } 1002 } 1003 1004 void Symtab::Finalize() { 1005 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1006 // Calculate the size of symbols inside InitAddressIndexes. 1007 InitAddressIndexes(); 1008 // Shrink to fit the symbols so we don't waste memory 1009 if (m_symbols.capacity() > m_symbols.size()) { 1010 collection new_symbols(m_symbols.begin(), m_symbols.end()); 1011 m_symbols.swap(new_symbols); 1012 } 1013 SaveToCache(); 1014 } 1015 1016 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 1017 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1018 if (!m_file_addr_to_index_computed) 1019 InitAddressIndexes(); 1020 1021 const FileRangeToIndexMap::Entry *entry = 1022 m_file_addr_to_index.FindEntryStartsAt(file_addr); 1023 if (entry) { 1024 Symbol *symbol = SymbolAtIndex(entry->data); 1025 if (symbol->GetFileAddress() == file_addr) 1026 return symbol; 1027 } 1028 return nullptr; 1029 } 1030 1031 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 1032 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1033 1034 if (!m_file_addr_to_index_computed) 1035 InitAddressIndexes(); 1036 1037 const FileRangeToIndexMap::Entry *entry = 1038 m_file_addr_to_index.FindEntryThatContains(file_addr); 1039 if (entry) { 1040 Symbol *symbol = SymbolAtIndex(entry->data); 1041 if (symbol->ContainsFileAddress(file_addr)) 1042 return symbol; 1043 } 1044 return nullptr; 1045 } 1046 1047 void Symtab::ForEachSymbolContainingFileAddress( 1048 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 1049 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1050 1051 if (!m_file_addr_to_index_computed) 1052 InitAddressIndexes(); 1053 1054 std::vector<uint32_t> all_addr_indexes; 1055 1056 // Get all symbols with file_addr 1057 const size_t addr_match_count = 1058 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1059 all_addr_indexes); 1060 1061 for (size_t i = 0; i < addr_match_count; ++i) { 1062 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1063 if (symbol->ContainsFileAddress(file_addr)) { 1064 if (!callback(symbol)) 1065 break; 1066 } 1067 } 1068 } 1069 1070 void Symtab::SymbolIndicesToSymbolContextList( 1071 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1072 // No need to protect this call using m_mutex all other method calls are 1073 // already thread safe. 1074 1075 const bool merge_symbol_into_function = true; 1076 size_t num_indices = symbol_indexes.size(); 1077 if (num_indices > 0) { 1078 SymbolContext sc; 1079 sc.module_sp = m_objfile->GetModule(); 1080 for (size_t i = 0; i < num_indices; i++) { 1081 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1082 if (sc.symbol) 1083 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1084 } 1085 } 1086 } 1087 1088 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, 1089 SymbolContextList &sc_list) { 1090 std::vector<uint32_t> symbol_indexes; 1091 1092 // eFunctionNameTypeAuto should be pre-resolved by a call to 1093 // Module::LookupInfo::LookupInfo() 1094 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1095 1096 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1097 std::vector<uint32_t> temp_symbol_indexes; 1098 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1099 1100 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1101 if (temp_symbol_indexes_size > 0) { 1102 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1103 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1104 SymbolContext sym_ctx; 1105 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1106 if (sym_ctx.symbol) { 1107 switch (sym_ctx.symbol->GetType()) { 1108 case eSymbolTypeCode: 1109 case eSymbolTypeResolver: 1110 case eSymbolTypeReExported: 1111 case eSymbolTypeAbsolute: 1112 symbol_indexes.push_back(temp_symbol_indexes[i]); 1113 break; 1114 default: 1115 break; 1116 } 1117 } 1118 } 1119 } 1120 } 1121 1122 if (!m_name_indexes_computed) 1123 InitNameIndexes(); 1124 1125 for (lldb::FunctionNameType type : 1126 {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, 1127 lldb::eFunctionNameTypeSelector}) { 1128 if (name_type_mask & type) { 1129 auto map = GetNameToSymbolIndexMap(type); 1130 1131 const UniqueCStringMap<uint32_t>::Entry *match; 1132 for (match = map.FindFirstValueForName(name); match != nullptr; 1133 match = map.FindNextValueForName(match)) { 1134 symbol_indexes.push_back(match->value); 1135 } 1136 } 1137 } 1138 1139 if (!symbol_indexes.empty()) { 1140 llvm::sort(symbol_indexes); 1141 symbol_indexes.erase( 1142 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1143 symbol_indexes.end()); 1144 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1145 } 1146 } 1147 1148 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1149 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1150 if (child_idx != UINT32_MAX && child_idx > 0) { 1151 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1152 const Symbol *symbol = SymbolAtIndex(idx); 1153 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1154 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1155 return symbol; 1156 } 1157 } 1158 return nullptr; 1159 } 1160 1161 std::string Symtab::GetCacheKey() { 1162 std::string key; 1163 llvm::raw_string_ostream strm(key); 1164 // Symbol table can come from different object files for the same module. A 1165 // module can have one object file as the main executable and might have 1166 // another object file in a separate symbol file. 1167 strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-" 1168 << llvm::format_hex(m_objfile->GetCacheHash(), 10); 1169 return strm.str(); 1170 } 1171 1172 void Symtab::SaveToCache() { 1173 DataFileCache *cache = Module::GetIndexCache(); 1174 if (!cache) 1175 return; // Caching is not enabled. 1176 InitNameIndexes(); // Init the name indexes so we can cache them as well. 1177 const auto byte_order = endian::InlHostByteOrder(); 1178 DataEncoder file(byte_order, /*addr_size=*/8); 1179 // Encode will return false if the symbol table's object file doesn't have 1180 // anything to make a signature from. 1181 if (Encode(file)) 1182 if (cache->SetCachedData(GetCacheKey(), file.GetData())) 1183 SetWasSavedToCache(); 1184 } 1185 1186 constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP"); 1187 1188 static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab, 1189 const UniqueCStringMap<uint32_t> &cstr_map) { 1190 encoder.AppendData(kIdentifierCStrMap); 1191 encoder.AppendU32(cstr_map.GetSize()); 1192 for (const auto &entry: cstr_map) { 1193 // Make sure there are no empty strings. 1194 assert((bool)entry.cstring); 1195 encoder.AppendU32(strtab.Add(entry.cstring)); 1196 encoder.AppendU32(entry.value); 1197 } 1198 } 1199 1200 bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr, 1201 const StringTableReader &strtab, 1202 UniqueCStringMap<uint32_t> &cstr_map) { 1203 llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); 1204 if (identifier != kIdentifierCStrMap) 1205 return false; 1206 const uint32_t count = data.GetU32(offset_ptr); 1207 cstr_map.Reserve(count); 1208 for (uint32_t i=0; i<count; ++i) 1209 { 1210 llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr))); 1211 uint32_t value = data.GetU32(offset_ptr); 1212 // No empty strings in the name indexes in Symtab 1213 if (str.empty()) 1214 return false; 1215 cstr_map.Append(ConstString(str), value); 1216 } 1217 // We must sort the UniqueCStringMap after decoding it since it is a vector 1218 // of UniqueCStringMap::Entry objects which contain a ConstString and type T. 1219 // ConstString objects are sorted by "const char *" and then type T and 1220 // the "const char *" are point values that will depend on the order in which 1221 // ConstString objects are created and in which of the 256 string pools they 1222 // are created in. So after we decode all of the entries, we must sort the 1223 // name map to ensure name lookups succeed. If we encode and decode within 1224 // the same process we wouldn't need to sort, so unit testing didn't catch 1225 // this issue when first checked in. 1226 cstr_map.Sort(); 1227 return true; 1228 } 1229 1230 constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB"); 1231 constexpr uint32_t CURRENT_CACHE_VERSION = 1; 1232 1233 /// The encoding format for the symbol table is as follows: 1234 /// 1235 /// Signature signature; 1236 /// ConstStringTable strtab; 1237 /// Identifier four character code: 'SYMB' 1238 /// uint32_t version; 1239 /// uint32_t num_symbols; 1240 /// Symbol symbols[num_symbols]; 1241 /// uint8_t num_cstr_maps; 1242 /// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps] 1243 bool Symtab::Encode(DataEncoder &encoder) const { 1244 // Name indexes must be computed before calling this function. 1245 assert(m_name_indexes_computed); 1246 1247 // Encode the object file's signature 1248 CacheSignature signature(m_objfile); 1249 if (!signature.Encode(encoder)) 1250 return false; 1251 ConstStringTable strtab; 1252 1253 // Encoder the symbol table into a separate encoder first. This allows us 1254 // gather all of the strings we willl need in "strtab" as we will need to 1255 // write the string table out before the symbol table. 1256 DataEncoder symtab_encoder(encoder.GetByteOrder(), 1257 encoder.GetAddressByteSize()); 1258 symtab_encoder.AppendData(kIdentifierSymbolTable); 1259 // Encode the symtab data version. 1260 symtab_encoder.AppendU32(CURRENT_CACHE_VERSION); 1261 // Encode the number of symbols. 1262 symtab_encoder.AppendU32(m_symbols.size()); 1263 // Encode the symbol data for all symbols. 1264 for (const auto &symbol: m_symbols) 1265 symbol.Encode(symtab_encoder, strtab); 1266 1267 // Emit a byte for how many C string maps we emit. We will fix this up after 1268 // we emit the C string maps since we skip emitting C string maps if they are 1269 // empty. 1270 size_t num_cmaps_offset = symtab_encoder.GetByteSize(); 1271 uint8_t num_cmaps = 0; 1272 symtab_encoder.AppendU8(0); 1273 for (const auto &pair: m_name_to_symbol_indices) { 1274 if (pair.second.IsEmpty()) 1275 continue; 1276 ++num_cmaps; 1277 symtab_encoder.AppendU8(pair.first); 1278 EncodeCStrMap(symtab_encoder, strtab, pair.second); 1279 } 1280 if (num_cmaps > 0) 1281 symtab_encoder.PutU8(num_cmaps_offset, num_cmaps); 1282 1283 // Now that all strings have been gathered, we will emit the string table. 1284 strtab.Encode(encoder); 1285 // Followed the the symbol table data. 1286 encoder.AppendData(symtab_encoder.GetData()); 1287 return true; 1288 } 1289 1290 bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr, 1291 bool &signature_mismatch) { 1292 signature_mismatch = false; 1293 CacheSignature signature; 1294 StringTableReader strtab; 1295 { // Scope for "elapsed" object below so it can measure the time parse. 1296 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime()); 1297 if (!signature.Decode(data, offset_ptr)) 1298 return false; 1299 if (CacheSignature(m_objfile) != signature) { 1300 signature_mismatch = true; 1301 return false; 1302 } 1303 // We now decode the string table for all strings in the data cache file. 1304 if (!strtab.Decode(data, offset_ptr)) 1305 return false; 1306 1307 // And now we can decode the symbol table with string table we just decoded. 1308 llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); 1309 if (identifier != kIdentifierSymbolTable) 1310 return false; 1311 const uint32_t version = data.GetU32(offset_ptr); 1312 if (version != CURRENT_CACHE_VERSION) 1313 return false; 1314 const uint32_t num_symbols = data.GetU32(offset_ptr); 1315 if (num_symbols == 0) 1316 return true; 1317 m_symbols.resize(num_symbols); 1318 SectionList *sections = m_objfile->GetModule()->GetSectionList(); 1319 for (uint32_t i=0; i<num_symbols; ++i) { 1320 if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab)) 1321 return false; 1322 } 1323 } 1324 1325 { // Scope for "elapsed" object below so it can measure the time to index. 1326 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); 1327 const uint8_t num_cstr_maps = data.GetU8(offset_ptr); 1328 for (uint8_t i=0; i<num_cstr_maps; ++i) { 1329 uint8_t type = data.GetU8(offset_ptr); 1330 UniqueCStringMap<uint32_t> &cstr_map = 1331 GetNameToSymbolIndexMap((lldb::FunctionNameType)type); 1332 if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map)) 1333 return false; 1334 } 1335 m_name_indexes_computed = true; 1336 } 1337 return true; 1338 } 1339 1340 bool Symtab::LoadFromCache() { 1341 DataFileCache *cache = Module::GetIndexCache(); 1342 if (!cache) 1343 return false; 1344 1345 std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up = 1346 cache->GetCachedData(GetCacheKey()); 1347 if (!mem_buffer_up) 1348 return false; 1349 DataExtractor data(mem_buffer_up->getBufferStart(), 1350 mem_buffer_up->getBufferSize(), 1351 m_objfile->GetByteOrder(), 1352 m_objfile->GetAddressByteSize()); 1353 bool signature_mismatch = false; 1354 lldb::offset_t offset = 0; 1355 const bool result = Decode(data, &offset, signature_mismatch); 1356 if (signature_mismatch) 1357 cache->RemoveCacheFile(GetCacheKey()); 1358 if (result) 1359 SetWasLoadedFromCache(); 1360 return result; 1361 } 1362