1 //===-- Symtab.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <map> 10 #include <set> 11 12 #include "lldb/Core/DataFileCache.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/RichManglingContext.h" 15 #include "lldb/Core/Section.h" 16 #include "lldb/Symbol/ObjectFile.h" 17 #include "lldb/Symbol/Symbol.h" 18 #include "lldb/Symbol/SymbolContext.h" 19 #include "lldb/Symbol/Symtab.h" 20 #include "lldb/Target/Language.h" 21 #include "lldb/Utility/DataEncoder.h" 22 #include "lldb/Utility/Endian.h" 23 #include "lldb/Utility/RegularExpression.h" 24 #include "lldb/Utility/Stream.h" 25 #include "lldb/Utility/Timer.h" 26 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Support/DJB.h" 30 31 using namespace lldb; 32 using namespace lldb_private; 33 34 Symtab::Symtab(ObjectFile *objfile) 35 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), 36 m_name_to_symbol_indices(), m_mutex(), 37 m_file_addr_to_index_computed(false), m_name_indexes_computed(false), 38 m_loaded_from_cache(false), m_saved_to_cache(false) { 39 m_name_to_symbol_indices.emplace(std::make_pair( 40 lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>())); 41 m_name_to_symbol_indices.emplace(std::make_pair( 42 lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>())); 43 m_name_to_symbol_indices.emplace(std::make_pair( 44 lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>())); 45 m_name_to_symbol_indices.emplace(std::make_pair( 46 lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>())); 47 } 48 49 Symtab::~Symtab() = default; 50 51 void Symtab::Reserve(size_t count) { 52 // Clients should grab the mutex from this symbol table and lock it manually 53 // when calling this function to avoid performance issues. 54 m_symbols.reserve(count); 55 } 56 57 Symbol *Symtab::Resize(size_t count) { 58 // Clients should grab the mutex from this symbol table and lock it manually 59 // when calling this function to avoid performance issues. 60 m_symbols.resize(count); 61 return m_symbols.empty() ? nullptr : &m_symbols[0]; 62 } 63 64 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 65 // Clients should grab the mutex from this symbol table and lock it manually 66 // when calling this function to avoid performance issues. 67 uint32_t symbol_idx = m_symbols.size(); 68 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 69 name_to_index.Clear(); 70 m_file_addr_to_index.Clear(); 71 m_symbols.push_back(symbol); 72 m_file_addr_to_index_computed = false; 73 m_name_indexes_computed = false; 74 return symbol_idx; 75 } 76 77 size_t Symtab::GetNumSymbols() const { 78 std::lock_guard<std::recursive_mutex> guard(m_mutex); 79 return m_symbols.size(); 80 } 81 82 void Symtab::SectionFileAddressesChanged() { 83 m_file_addr_to_index.Clear(); 84 m_file_addr_to_index_computed = false; 85 } 86 87 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, 88 Mangled::NamePreference name_preference) { 89 std::lock_guard<std::recursive_mutex> guard(m_mutex); 90 91 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 92 s->Indent(); 93 const FileSpec &file_spec = m_objfile->GetFileSpec(); 94 const char *object_name = nullptr; 95 if (m_objfile->GetModule()) 96 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 97 98 if (file_spec) 99 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 100 file_spec.GetPath().c_str(), object_name ? "(" : "", 101 object_name ? object_name : "", object_name ? ")" : "", 102 (uint64_t)m_symbols.size()); 103 else 104 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 105 106 if (!m_symbols.empty()) { 107 switch (sort_order) { 108 case eSortOrderNone: { 109 s->PutCString(":\n"); 110 DumpSymbolHeader(s); 111 const_iterator begin = m_symbols.begin(); 112 const_iterator end = m_symbols.end(); 113 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 114 s->Indent(); 115 pos->Dump(s, target, std::distance(begin, pos), name_preference); 116 } 117 } 118 break; 119 120 case eSortOrderByName: { 121 // Although we maintain a lookup by exact name map, the table isn't 122 // sorted by name. So we must make the ordered symbol list up ourselves. 123 s->PutCString(" (sorted by name):\n"); 124 DumpSymbolHeader(s); 125 126 std::multimap<llvm::StringRef, const Symbol *> name_map; 127 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 128 pos != end; ++pos) { 129 const char *name = pos->GetName().AsCString(); 130 if (name && name[0]) 131 name_map.insert(std::make_pair(name, &(*pos))); 132 } 133 134 for (const auto &name_to_symbol : name_map) { 135 const Symbol *symbol = name_to_symbol.second; 136 s->Indent(); 137 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); 138 } 139 } break; 140 141 case eSortOrderByAddress: 142 s->PutCString(" (sorted by address):\n"); 143 DumpSymbolHeader(s); 144 if (!m_file_addr_to_index_computed) 145 InitAddressIndexes(); 146 const size_t num_entries = m_file_addr_to_index.GetSize(); 147 for (size_t i = 0; i < num_entries; ++i) { 148 s->Indent(); 149 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 150 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); 151 } 152 break; 153 } 154 } else { 155 s->PutCString("\n"); 156 } 157 } 158 159 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, 160 Mangled::NamePreference name_preference) const { 161 std::lock_guard<std::recursive_mutex> guard(m_mutex); 162 163 const size_t num_symbols = GetNumSymbols(); 164 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 165 s->Indent(); 166 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 167 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 168 s->IndentMore(); 169 170 if (!indexes.empty()) { 171 std::vector<uint32_t>::const_iterator pos; 172 std::vector<uint32_t>::const_iterator end = indexes.end(); 173 DumpSymbolHeader(s); 174 for (pos = indexes.begin(); pos != end; ++pos) { 175 size_t idx = *pos; 176 if (idx < num_symbols) { 177 s->Indent(); 178 m_symbols[idx].Dump(s, target, idx, name_preference); 179 } 180 } 181 } 182 s->IndentLess(); 183 } 184 185 void Symtab::DumpSymbolHeader(Stream *s) { 186 s->Indent(" Debug symbol\n"); 187 s->Indent(" |Synthetic symbol\n"); 188 s->Indent(" ||Externally Visible\n"); 189 s->Indent(" |||\n"); 190 s->Indent("Index UserID DSX Type File Address/Value Load " 191 "Address Size Flags Name\n"); 192 s->Indent("------- ------ --- --------------- ------------------ " 193 "------------------ ------------------ ---------- " 194 "----------------------------------\n"); 195 } 196 197 static int CompareSymbolID(const void *key, const void *p) { 198 const user_id_t match_uid = *(const user_id_t *)key; 199 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 200 if (match_uid < symbol_uid) 201 return -1; 202 if (match_uid > symbol_uid) 203 return 1; 204 return 0; 205 } 206 207 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 208 std::lock_guard<std::recursive_mutex> guard(m_mutex); 209 210 Symbol *symbol = 211 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 212 sizeof(m_symbols[0]), CompareSymbolID); 213 return symbol; 214 } 215 216 Symbol *Symtab::SymbolAtIndex(size_t idx) { 217 // Clients should grab the mutex from this symbol table and lock it manually 218 // when calling this function to avoid performance issues. 219 if (idx < m_symbols.size()) 220 return &m_symbols[idx]; 221 return nullptr; 222 } 223 224 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 225 // Clients should grab the mutex from this symbol table and lock it manually 226 // when calling this function to avoid performance issues. 227 if (idx < m_symbols.size()) 228 return &m_symbols[idx]; 229 return nullptr; 230 } 231 232 static bool lldb_skip_name(llvm::StringRef mangled, 233 Mangled::ManglingScheme scheme) { 234 switch (scheme) { 235 case Mangled::eManglingSchemeItanium: { 236 if (mangled.size() < 3 || !mangled.startswith("_Z")) 237 return true; 238 239 // Avoid the following types of symbols in the index. 240 switch (mangled[2]) { 241 case 'G': // guard variables 242 case 'T': // virtual tables, VTT structures, typeinfo structures + names 243 case 'Z': // named local entities (if we eventually handle 244 // eSymbolTypeData, we will want this back) 245 return true; 246 247 default: 248 break; 249 } 250 251 // Include this name in the index. 252 return false; 253 } 254 255 // No filters for this scheme yet. Include all names in indexing. 256 case Mangled::eManglingSchemeMSVC: 257 case Mangled::eManglingSchemeRustV0: 258 case Mangled::eManglingSchemeD: 259 return false; 260 261 // Don't try and demangle things we can't categorize. 262 case Mangled::eManglingSchemeNone: 263 return true; 264 } 265 llvm_unreachable("unknown scheme!"); 266 } 267 268 void Symtab::InitNameIndexes() { 269 // Protected function, no need to lock mutex... 270 if (!m_name_indexes_computed) { 271 m_name_indexes_computed = true; 272 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); 273 LLDB_SCOPED_TIMER(); 274 275 // Collect all loaded language plugins. 276 std::vector<Language *> languages; 277 Language::ForEach([&languages](Language *l) { 278 languages.push_back(l); 279 return true; 280 }); 281 282 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 283 auto &basename_to_index = 284 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 285 auto &method_to_index = 286 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 287 auto &selector_to_index = 288 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector); 289 // Create the name index vector to be able to quickly search by name 290 const size_t num_symbols = m_symbols.size(); 291 name_to_index.Reserve(num_symbols); 292 293 // The "const char *" in "class_contexts" and backlog::value_type::second 294 // must come from a ConstString::GetCString() 295 std::set<const char *> class_contexts; 296 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 297 backlog.reserve(num_symbols / 2); 298 299 // Instantiation of the demangler is expensive, so better use a single one 300 // for all entries during batch processing. 301 RichManglingContext rmc; 302 for (uint32_t value = 0; value < num_symbols; ++value) { 303 Symbol *symbol = &m_symbols[value]; 304 305 // Don't let trampolines get into the lookup by name map If we ever need 306 // the trampoline symbols to be searchable by name we can remove this and 307 // then possibly add a new bool to any of the Symtab functions that 308 // lookup symbols by name to indicate if they want trampolines. We also 309 // don't want any synthetic symbols with auto generated names in the 310 // name lookups. 311 if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName()) 312 continue; 313 314 // If the symbol's name string matched a Mangled::ManglingScheme, it is 315 // stored in the mangled field. 316 Mangled &mangled = symbol->GetMangled(); 317 if (ConstString name = mangled.GetMangledName()) { 318 name_to_index.Append(name, value); 319 320 if (symbol->ContainsLinkerAnnotations()) { 321 // If the symbol has linker annotations, also add the version without 322 // the annotations. 323 ConstString stripped = ConstString( 324 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 325 name_to_index.Append(stripped, value); 326 } 327 328 const SymbolType type = symbol->GetType(); 329 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 330 if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) { 331 RegisterMangledNameEntry(value, class_contexts, backlog, rmc); 332 continue; 333 } 334 } 335 } 336 337 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 338 // stored in the demangled field. 339 if (ConstString name = mangled.GetDemangledName()) { 340 name_to_index.Append(name, value); 341 342 if (symbol->ContainsLinkerAnnotations()) { 343 // If the symbol has linker annotations, also add the version without 344 // the annotations. 345 name = ConstString( 346 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 347 name_to_index.Append(name, value); 348 } 349 350 // If the demangled name turns out to be an ObjC name, and is a category 351 // name, add the version without categories to the index too. 352 for (Language *lang : languages) { 353 for (auto variant : lang->GetMethodNameVariants(name)) { 354 if (variant.GetType() & lldb::eFunctionNameTypeSelector) 355 selector_to_index.Append(variant.GetName(), value); 356 else if (variant.GetType() & lldb::eFunctionNameTypeFull) 357 name_to_index.Append(variant.GetName(), value); 358 else if (variant.GetType() & lldb::eFunctionNameTypeMethod) 359 method_to_index.Append(variant.GetName(), value); 360 else if (variant.GetType() & lldb::eFunctionNameTypeBase) 361 basename_to_index.Append(variant.GetName(), value); 362 } 363 } 364 } 365 } 366 367 for (const auto &record : backlog) { 368 RegisterBacklogEntry(record.first, record.second, class_contexts); 369 } 370 371 name_to_index.Sort(); 372 name_to_index.SizeToFit(); 373 selector_to_index.Sort(); 374 selector_to_index.SizeToFit(); 375 basename_to_index.Sort(); 376 basename_to_index.SizeToFit(); 377 method_to_index.Sort(); 378 method_to_index.SizeToFit(); 379 } 380 } 381 382 void Symtab::RegisterMangledNameEntry( 383 uint32_t value, std::set<const char *> &class_contexts, 384 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 385 RichManglingContext &rmc) { 386 // Only register functions that have a base name. 387 llvm::StringRef base_name = rmc.ParseFunctionBaseName(); 388 if (base_name.empty()) 389 return; 390 391 // The base name will be our entry's name. 392 NameToIndexMap::Entry entry(ConstString(base_name), value); 393 llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName(); 394 395 // Register functions with no context. 396 if (decl_context.empty()) { 397 // This has to be a basename 398 auto &basename_to_index = 399 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 400 basename_to_index.Append(entry); 401 // If there is no context (no namespaces or class scopes that come before 402 // the function name) then this also could be a fullname. 403 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 404 name_to_index.Append(entry); 405 return; 406 } 407 408 // Make sure we have a pool-string pointer and see if we already know the 409 // context name. 410 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 411 auto it = class_contexts.find(decl_context_ccstr); 412 413 auto &method_to_index = 414 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 415 // Register constructors and destructors. They are methods and create 416 // declaration contexts. 417 if (rmc.IsCtorOrDtor()) { 418 method_to_index.Append(entry); 419 if (it == class_contexts.end()) 420 class_contexts.insert(it, decl_context_ccstr); 421 return; 422 } 423 424 // Register regular methods with a known declaration context. 425 if (it != class_contexts.end()) { 426 method_to_index.Append(entry); 427 return; 428 } 429 430 // Regular methods in unknown declaration contexts are put to the backlog. We 431 // will revisit them once we processed all remaining symbols. 432 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 433 } 434 435 void Symtab::RegisterBacklogEntry( 436 const NameToIndexMap::Entry &entry, const char *decl_context, 437 const std::set<const char *> &class_contexts) { 438 auto &method_to_index = 439 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 440 auto it = class_contexts.find(decl_context); 441 if (it != class_contexts.end()) { 442 method_to_index.Append(entry); 443 } else { 444 // If we got here, we have something that had a context (was inside 445 // a namespace or class) yet we don't know the entry 446 method_to_index.Append(entry); 447 auto &basename_to_index = 448 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 449 basename_to_index.Append(entry); 450 } 451 } 452 453 void Symtab::PreloadSymbols() { 454 std::lock_guard<std::recursive_mutex> guard(m_mutex); 455 InitNameIndexes(); 456 } 457 458 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 459 bool add_demangled, bool add_mangled, 460 NameToIndexMap &name_to_index_map) const { 461 LLDB_SCOPED_TIMER(); 462 if (add_demangled || add_mangled) { 463 std::lock_guard<std::recursive_mutex> guard(m_mutex); 464 465 // Create the name index vector to be able to quickly search by name 466 const size_t num_indexes = indexes.size(); 467 for (size_t i = 0; i < num_indexes; ++i) { 468 uint32_t value = indexes[i]; 469 assert(i < m_symbols.size()); 470 const Symbol *symbol = &m_symbols[value]; 471 472 const Mangled &mangled = symbol->GetMangled(); 473 if (add_demangled) { 474 if (ConstString name = mangled.GetDemangledName()) 475 name_to_index_map.Append(name, value); 476 } 477 478 if (add_mangled) { 479 if (ConstString name = mangled.GetMangledName()) 480 name_to_index_map.Append(name, value); 481 } 482 } 483 } 484 } 485 486 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 487 std::vector<uint32_t> &indexes, 488 uint32_t start_idx, 489 uint32_t end_index) const { 490 std::lock_guard<std::recursive_mutex> guard(m_mutex); 491 492 uint32_t prev_size = indexes.size(); 493 494 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 495 496 for (uint32_t i = start_idx; i < count; ++i) { 497 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 498 indexes.push_back(i); 499 } 500 501 return indexes.size() - prev_size; 502 } 503 504 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 505 SymbolType symbol_type, uint32_t flags_value, 506 std::vector<uint32_t> &indexes, uint32_t start_idx, 507 uint32_t end_index) const { 508 std::lock_guard<std::recursive_mutex> guard(m_mutex); 509 510 uint32_t prev_size = indexes.size(); 511 512 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 513 514 for (uint32_t i = start_idx; i < count; ++i) { 515 if ((symbol_type == eSymbolTypeAny || 516 m_symbols[i].GetType() == symbol_type) && 517 m_symbols[i].GetFlags() == flags_value) 518 indexes.push_back(i); 519 } 520 521 return indexes.size() - prev_size; 522 } 523 524 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 525 Debug symbol_debug_type, 526 Visibility symbol_visibility, 527 std::vector<uint32_t> &indexes, 528 uint32_t start_idx, 529 uint32_t end_index) const { 530 std::lock_guard<std::recursive_mutex> guard(m_mutex); 531 532 uint32_t prev_size = indexes.size(); 533 534 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 535 536 for (uint32_t i = start_idx; i < count; ++i) { 537 if (symbol_type == eSymbolTypeAny || 538 m_symbols[i].GetType() == symbol_type) { 539 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 540 indexes.push_back(i); 541 } 542 } 543 544 return indexes.size() - prev_size; 545 } 546 547 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 548 if (!m_symbols.empty()) { 549 const Symbol *first_symbol = &m_symbols[0]; 550 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 551 return symbol - first_symbol; 552 } 553 return UINT32_MAX; 554 } 555 556 struct SymbolSortInfo { 557 const bool sort_by_load_addr; 558 const Symbol *symbols; 559 }; 560 561 namespace { 562 struct SymbolIndexComparator { 563 const std::vector<Symbol> &symbols; 564 std::vector<lldb::addr_t> &addr_cache; 565 566 // Getting from the symbol to the Address to the File Address involves some 567 // work. Since there are potentially many symbols here, and we're using this 568 // for sorting so we're going to be computing the address many times, cache 569 // that in addr_cache. The array passed in has to be the same size as the 570 // symbols array passed into the member variable symbols, and should be 571 // initialized with LLDB_INVALID_ADDRESS. 572 // NOTE: You have to make addr_cache externally and pass it in because 573 // std::stable_sort 574 // makes copies of the comparator it is initially passed in, and you end up 575 // spending huge amounts of time copying this array... 576 577 SymbolIndexComparator(const std::vector<Symbol> &s, 578 std::vector<lldb::addr_t> &a) 579 : symbols(s), addr_cache(a) { 580 assert(symbols.size() == addr_cache.size()); 581 } 582 bool operator()(uint32_t index_a, uint32_t index_b) { 583 addr_t value_a = addr_cache[index_a]; 584 if (value_a == LLDB_INVALID_ADDRESS) { 585 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 586 addr_cache[index_a] = value_a; 587 } 588 589 addr_t value_b = addr_cache[index_b]; 590 if (value_b == LLDB_INVALID_ADDRESS) { 591 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 592 addr_cache[index_b] = value_b; 593 } 594 595 if (value_a == value_b) { 596 // The if the values are equal, use the original symbol user ID 597 lldb::user_id_t uid_a = symbols[index_a].GetID(); 598 lldb::user_id_t uid_b = symbols[index_b].GetID(); 599 if (uid_a < uid_b) 600 return true; 601 if (uid_a > uid_b) 602 return false; 603 return false; 604 } else if (value_a < value_b) 605 return true; 606 607 return false; 608 } 609 }; 610 } 611 612 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 613 bool remove_duplicates) const { 614 std::lock_guard<std::recursive_mutex> guard(m_mutex); 615 LLDB_SCOPED_TIMER(); 616 // No need to sort if we have zero or one items... 617 if (indexes.size() <= 1) 618 return; 619 620 // Sort the indexes in place using std::stable_sort. 621 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly 622 // for performance, not correctness. The indexes vector tends to be "close" 623 // to sorted, which the stable sort handles better. 624 625 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 626 627 SymbolIndexComparator comparator(m_symbols, addr_cache); 628 std::stable_sort(indexes.begin(), indexes.end(), comparator); 629 630 // Remove any duplicates if requested 631 if (remove_duplicates) { 632 auto last = std::unique(indexes.begin(), indexes.end()); 633 indexes.erase(last, indexes.end()); 634 } 635 } 636 637 uint32_t Symtab::GetNameIndexes(ConstString symbol_name, 638 std::vector<uint32_t> &indexes) { 639 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 640 const uint32_t count = name_to_index.GetValues(symbol_name, indexes); 641 if (count) 642 return count; 643 // Synthetic symbol names are not added to the name indexes, but they start 644 // with a prefix and end with a the symbol UserID. This allows users to find 645 // these symbols without having to add them to the name indexes. These 646 // queries will not happen very often since the names don't mean anything, so 647 // performance is not paramount in this case. 648 llvm::StringRef name = symbol_name.GetStringRef(); 649 // String the synthetic prefix if the name starts with it. 650 if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix())) 651 return 0; // Not a synthetic symbol name 652 653 // Extract the user ID from the symbol name 654 unsigned long long uid = 0; 655 if (getAsUnsignedInteger(name, /*Radix=*/10, uid)) 656 return 0; // Failed to extract the user ID as an integer 657 Symbol *symbol = FindSymbolByID(uid); 658 if (symbol == nullptr) 659 return 0; 660 const uint32_t symbol_idx = GetIndexForSymbol(symbol); 661 if (symbol_idx == UINT32_MAX) 662 return 0; 663 indexes.push_back(symbol_idx); 664 return 1; 665 } 666 667 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 668 std::vector<uint32_t> &indexes) { 669 std::lock_guard<std::recursive_mutex> guard(m_mutex); 670 671 if (symbol_name) { 672 if (!m_name_indexes_computed) 673 InitNameIndexes(); 674 675 return GetNameIndexes(symbol_name, indexes); 676 } 677 return 0; 678 } 679 680 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 681 Debug symbol_debug_type, 682 Visibility symbol_visibility, 683 std::vector<uint32_t> &indexes) { 684 std::lock_guard<std::recursive_mutex> guard(m_mutex); 685 686 LLDB_SCOPED_TIMER(); 687 if (symbol_name) { 688 const size_t old_size = indexes.size(); 689 if (!m_name_indexes_computed) 690 InitNameIndexes(); 691 692 std::vector<uint32_t> all_name_indexes; 693 const size_t name_match_count = 694 GetNameIndexes(symbol_name, all_name_indexes); 695 for (size_t i = 0; i < name_match_count; ++i) { 696 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 697 symbol_visibility)) 698 indexes.push_back(all_name_indexes[i]); 699 } 700 return indexes.size() - old_size; 701 } 702 return 0; 703 } 704 705 uint32_t 706 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, 707 SymbolType symbol_type, 708 std::vector<uint32_t> &indexes) { 709 std::lock_guard<std::recursive_mutex> guard(m_mutex); 710 711 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 712 std::vector<uint32_t>::iterator pos = indexes.begin(); 713 while (pos != indexes.end()) { 714 if (symbol_type == eSymbolTypeAny || 715 m_symbols[*pos].GetType() == symbol_type) 716 ++pos; 717 else 718 pos = indexes.erase(pos); 719 } 720 } 721 return indexes.size(); 722 } 723 724 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 725 ConstString symbol_name, SymbolType symbol_type, 726 Debug symbol_debug_type, Visibility symbol_visibility, 727 std::vector<uint32_t> &indexes) { 728 std::lock_guard<std::recursive_mutex> guard(m_mutex); 729 730 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 731 symbol_visibility, indexes) > 0) { 732 std::vector<uint32_t>::iterator pos = indexes.begin(); 733 while (pos != indexes.end()) { 734 if (symbol_type == eSymbolTypeAny || 735 m_symbols[*pos].GetType() == symbol_type) 736 ++pos; 737 else 738 pos = indexes.erase(pos); 739 } 740 } 741 return indexes.size(); 742 } 743 744 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 745 const RegularExpression ®exp, SymbolType symbol_type, 746 std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) { 747 std::lock_guard<std::recursive_mutex> guard(m_mutex); 748 749 uint32_t prev_size = indexes.size(); 750 uint32_t sym_end = m_symbols.size(); 751 752 for (uint32_t i = 0; i < sym_end; i++) { 753 if (symbol_type == eSymbolTypeAny || 754 m_symbols[i].GetType() == symbol_type) { 755 const char *name = 756 m_symbols[i].GetMangled().GetName(name_preference).AsCString(); 757 if (name) { 758 if (regexp.Execute(name)) 759 indexes.push_back(i); 760 } 761 } 762 } 763 return indexes.size() - prev_size; 764 } 765 766 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 767 const RegularExpression ®exp, SymbolType symbol_type, 768 Debug symbol_debug_type, Visibility symbol_visibility, 769 std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) { 770 std::lock_guard<std::recursive_mutex> guard(m_mutex); 771 772 uint32_t prev_size = indexes.size(); 773 uint32_t sym_end = m_symbols.size(); 774 775 for (uint32_t i = 0; i < sym_end; i++) { 776 if (symbol_type == eSymbolTypeAny || 777 m_symbols[i].GetType() == symbol_type) { 778 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 779 continue; 780 781 const char *name = 782 m_symbols[i].GetMangled().GetName(name_preference).AsCString(); 783 if (name) { 784 if (regexp.Execute(name)) 785 indexes.push_back(i); 786 } 787 } 788 } 789 return indexes.size() - prev_size; 790 } 791 792 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 793 Debug symbol_debug_type, 794 Visibility symbol_visibility, 795 uint32_t &start_idx) { 796 std::lock_guard<std::recursive_mutex> guard(m_mutex); 797 798 const size_t count = m_symbols.size(); 799 for (size_t idx = start_idx; idx < count; ++idx) { 800 if (symbol_type == eSymbolTypeAny || 801 m_symbols[idx].GetType() == symbol_type) { 802 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 803 start_idx = idx; 804 return &m_symbols[idx]; 805 } 806 } 807 } 808 return nullptr; 809 } 810 811 void 812 Symtab::FindAllSymbolsWithNameAndType(ConstString name, 813 SymbolType symbol_type, 814 std::vector<uint32_t> &symbol_indexes) { 815 std::lock_guard<std::recursive_mutex> guard(m_mutex); 816 817 // Initialize all of the lookup by name indexes before converting NAME to a 818 // uniqued string NAME_STR below. 819 if (!m_name_indexes_computed) 820 InitNameIndexes(); 821 822 if (name) { 823 // The string table did have a string that matched, but we need to check 824 // the symbols and match the symbol_type if any was given. 825 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 826 } 827 } 828 829 void Symtab::FindAllSymbolsWithNameAndType( 830 ConstString name, SymbolType symbol_type, Debug symbol_debug_type, 831 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 832 std::lock_guard<std::recursive_mutex> guard(m_mutex); 833 834 LLDB_SCOPED_TIMER(); 835 // Initialize all of the lookup by name indexes before converting NAME to a 836 // uniqued string NAME_STR below. 837 if (!m_name_indexes_computed) 838 InitNameIndexes(); 839 840 if (name) { 841 // The string table did have a string that matched, but we need to check 842 // the symbols and match the symbol_type if any was given. 843 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 844 symbol_visibility, symbol_indexes); 845 } 846 } 847 848 void Symtab::FindAllSymbolsMatchingRexExAndType( 849 const RegularExpression ®ex, SymbolType symbol_type, 850 Debug symbol_debug_type, Visibility symbol_visibility, 851 std::vector<uint32_t> &symbol_indexes, 852 Mangled::NamePreference name_preference) { 853 std::lock_guard<std::recursive_mutex> guard(m_mutex); 854 855 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 856 symbol_visibility, symbol_indexes, 857 name_preference); 858 } 859 860 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, 861 SymbolType symbol_type, 862 Debug symbol_debug_type, 863 Visibility symbol_visibility) { 864 std::lock_guard<std::recursive_mutex> guard(m_mutex); 865 LLDB_SCOPED_TIMER(); 866 if (!m_name_indexes_computed) 867 InitNameIndexes(); 868 869 if (name) { 870 std::vector<uint32_t> matching_indexes; 871 // The string table did have a string that matched, but we need to check 872 // the symbols and match the symbol_type if any was given. 873 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 874 symbol_visibility, 875 matching_indexes)) { 876 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 877 for (pos = matching_indexes.begin(); pos != end; ++pos) { 878 Symbol *symbol = SymbolAtIndex(*pos); 879 880 if (symbol->Compare(name, symbol_type)) 881 return symbol; 882 } 883 } 884 } 885 return nullptr; 886 } 887 888 typedef struct { 889 const Symtab *symtab; 890 const addr_t file_addr; 891 Symbol *match_symbol; 892 const uint32_t *match_index_ptr; 893 addr_t match_offset; 894 } SymbolSearchInfo; 895 896 // Add all the section file start address & size to the RangeVector, recusively 897 // adding any children sections. 898 static void AddSectionsToRangeMap(SectionList *sectlist, 899 RangeVector<addr_t, addr_t> §ion_ranges) { 900 const int num_sections = sectlist->GetNumSections(0); 901 for (int i = 0; i < num_sections; i++) { 902 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 903 if (sect_sp) { 904 SectionList &child_sectlist = sect_sp->GetChildren(); 905 906 // If this section has children, add the children to the RangeVector. 907 // Else add this section to the RangeVector. 908 if (child_sectlist.GetNumSections(0) > 0) { 909 AddSectionsToRangeMap(&child_sectlist, section_ranges); 910 } else { 911 size_t size = sect_sp->GetByteSize(); 912 if (size > 0) { 913 addr_t base_addr = sect_sp->GetFileAddress(); 914 RangeVector<addr_t, addr_t>::Entry entry; 915 entry.SetRangeBase(base_addr); 916 entry.SetByteSize(size); 917 section_ranges.Append(entry); 918 } 919 } 920 } 921 } 922 } 923 924 void Symtab::InitAddressIndexes() { 925 // Protected function, no need to lock mutex... 926 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 927 m_file_addr_to_index_computed = true; 928 929 FileRangeToIndexMap::Entry entry; 930 const_iterator begin = m_symbols.begin(); 931 const_iterator end = m_symbols.end(); 932 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 933 if (pos->ValueIsAddress()) { 934 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 935 entry.SetByteSize(pos->GetByteSize()); 936 entry.data = std::distance(begin, pos); 937 m_file_addr_to_index.Append(entry); 938 } 939 } 940 const size_t num_entries = m_file_addr_to_index.GetSize(); 941 if (num_entries > 0) { 942 m_file_addr_to_index.Sort(); 943 944 // Create a RangeVector with the start & size of all the sections for 945 // this objfile. We'll need to check this for any FileRangeToIndexMap 946 // entries with an uninitialized size, which could potentially be a large 947 // number so reconstituting the weak pointer is busywork when it is 948 // invariant information. 949 SectionList *sectlist = m_objfile->GetSectionList(); 950 RangeVector<addr_t, addr_t> section_ranges; 951 if (sectlist) { 952 AddSectionsToRangeMap(sectlist, section_ranges); 953 section_ranges.Sort(); 954 } 955 956 // Iterate through the FileRangeToIndexMap and fill in the size for any 957 // entries that didn't already have a size from the Symbol (e.g. if we 958 // have a plain linker symbol with an address only, instead of debug info 959 // where we get an address and a size and a type, etc.) 960 for (size_t i = 0; i < num_entries; i++) { 961 FileRangeToIndexMap::Entry *entry = 962 m_file_addr_to_index.GetMutableEntryAtIndex(i); 963 if (entry->GetByteSize() == 0) { 964 addr_t curr_base_addr = entry->GetRangeBase(); 965 const RangeVector<addr_t, addr_t>::Entry *containing_section = 966 section_ranges.FindEntryThatContains(curr_base_addr); 967 968 // Use the end of the section as the default max size of the symbol 969 addr_t sym_size = 0; 970 if (containing_section) { 971 sym_size = 972 containing_section->GetByteSize() - 973 (entry->GetRangeBase() - containing_section->GetRangeBase()); 974 } 975 976 for (size_t j = i; j < num_entries; j++) { 977 FileRangeToIndexMap::Entry *next_entry = 978 m_file_addr_to_index.GetMutableEntryAtIndex(j); 979 addr_t next_base_addr = next_entry->GetRangeBase(); 980 if (next_base_addr > curr_base_addr) { 981 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 982 983 // Take the difference between this symbol and the next one as 984 // its size, if it is less than the size of the section. 985 if (sym_size == 0 || size_to_next_symbol < sym_size) { 986 sym_size = size_to_next_symbol; 987 } 988 break; 989 } 990 } 991 992 if (sym_size > 0) { 993 entry->SetByteSize(sym_size); 994 Symbol &symbol = m_symbols[entry->data]; 995 symbol.SetByteSize(sym_size); 996 symbol.SetSizeIsSynthesized(true); 997 } 998 } 999 } 1000 1001 // Sort again in case the range size changes the ordering 1002 m_file_addr_to_index.Sort(); 1003 } 1004 } 1005 } 1006 1007 void Symtab::Finalize() { 1008 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1009 // Calculate the size of symbols inside InitAddressIndexes. 1010 InitAddressIndexes(); 1011 // Shrink to fit the symbols so we don't waste memory 1012 if (m_symbols.capacity() > m_symbols.size()) { 1013 collection new_symbols(m_symbols.begin(), m_symbols.end()); 1014 m_symbols.swap(new_symbols); 1015 } 1016 SaveToCache(); 1017 } 1018 1019 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 1020 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1021 if (!m_file_addr_to_index_computed) 1022 InitAddressIndexes(); 1023 1024 const FileRangeToIndexMap::Entry *entry = 1025 m_file_addr_to_index.FindEntryStartsAt(file_addr); 1026 if (entry) { 1027 Symbol *symbol = SymbolAtIndex(entry->data); 1028 if (symbol->GetFileAddress() == file_addr) 1029 return symbol; 1030 } 1031 return nullptr; 1032 } 1033 1034 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 1035 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1036 1037 if (!m_file_addr_to_index_computed) 1038 InitAddressIndexes(); 1039 1040 const FileRangeToIndexMap::Entry *entry = 1041 m_file_addr_to_index.FindEntryThatContains(file_addr); 1042 if (entry) { 1043 Symbol *symbol = SymbolAtIndex(entry->data); 1044 if (symbol->ContainsFileAddress(file_addr)) 1045 return symbol; 1046 } 1047 return nullptr; 1048 } 1049 1050 void Symtab::ForEachSymbolContainingFileAddress( 1051 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 1052 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1053 1054 if (!m_file_addr_to_index_computed) 1055 InitAddressIndexes(); 1056 1057 std::vector<uint32_t> all_addr_indexes; 1058 1059 // Get all symbols with file_addr 1060 const size_t addr_match_count = 1061 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1062 all_addr_indexes); 1063 1064 for (size_t i = 0; i < addr_match_count; ++i) { 1065 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1066 if (symbol->ContainsFileAddress(file_addr)) { 1067 if (!callback(symbol)) 1068 break; 1069 } 1070 } 1071 } 1072 1073 void Symtab::SymbolIndicesToSymbolContextList( 1074 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1075 // No need to protect this call using m_mutex all other method calls are 1076 // already thread safe. 1077 1078 const bool merge_symbol_into_function = true; 1079 size_t num_indices = symbol_indexes.size(); 1080 if (num_indices > 0) { 1081 SymbolContext sc; 1082 sc.module_sp = m_objfile->GetModule(); 1083 for (size_t i = 0; i < num_indices; i++) { 1084 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1085 if (sc.symbol) 1086 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1087 } 1088 } 1089 } 1090 1091 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, 1092 SymbolContextList &sc_list) { 1093 std::vector<uint32_t> symbol_indexes; 1094 1095 // eFunctionNameTypeAuto should be pre-resolved by a call to 1096 // Module::LookupInfo::LookupInfo() 1097 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1098 1099 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1100 std::vector<uint32_t> temp_symbol_indexes; 1101 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1102 1103 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1104 if (temp_symbol_indexes_size > 0) { 1105 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1106 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1107 SymbolContext sym_ctx; 1108 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1109 if (sym_ctx.symbol) { 1110 switch (sym_ctx.symbol->GetType()) { 1111 case eSymbolTypeCode: 1112 case eSymbolTypeResolver: 1113 case eSymbolTypeReExported: 1114 case eSymbolTypeAbsolute: 1115 symbol_indexes.push_back(temp_symbol_indexes[i]); 1116 break; 1117 default: 1118 break; 1119 } 1120 } 1121 } 1122 } 1123 } 1124 1125 if (!m_name_indexes_computed) 1126 InitNameIndexes(); 1127 1128 for (lldb::FunctionNameType type : 1129 {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, 1130 lldb::eFunctionNameTypeSelector}) { 1131 if (name_type_mask & type) { 1132 auto map = GetNameToSymbolIndexMap(type); 1133 1134 const UniqueCStringMap<uint32_t>::Entry *match; 1135 for (match = map.FindFirstValueForName(name); match != nullptr; 1136 match = map.FindNextValueForName(match)) { 1137 symbol_indexes.push_back(match->value); 1138 } 1139 } 1140 } 1141 1142 if (!symbol_indexes.empty()) { 1143 llvm::sort(symbol_indexes); 1144 symbol_indexes.erase( 1145 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1146 symbol_indexes.end()); 1147 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1148 } 1149 } 1150 1151 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1152 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1153 if (child_idx != UINT32_MAX && child_idx > 0) { 1154 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1155 const Symbol *symbol = SymbolAtIndex(idx); 1156 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1157 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1158 return symbol; 1159 } 1160 } 1161 return nullptr; 1162 } 1163 1164 std::string Symtab::GetCacheKey() { 1165 std::string key; 1166 llvm::raw_string_ostream strm(key); 1167 // Symbol table can come from different object files for the same module. A 1168 // module can have one object file as the main executable and might have 1169 // another object file in a separate symbol file. 1170 strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-" 1171 << llvm::format_hex(m_objfile->GetCacheHash(), 10); 1172 return strm.str(); 1173 } 1174 1175 void Symtab::SaveToCache() { 1176 DataFileCache *cache = Module::GetIndexCache(); 1177 if (!cache) 1178 return; // Caching is not enabled. 1179 InitNameIndexes(); // Init the name indexes so we can cache them as well. 1180 const auto byte_order = endian::InlHostByteOrder(); 1181 DataEncoder file(byte_order, /*addr_size=*/8); 1182 // Encode will return false if the symbol table's object file doesn't have 1183 // anything to make a signature from. 1184 if (Encode(file)) 1185 if (cache->SetCachedData(GetCacheKey(), file.GetData())) 1186 SetWasSavedToCache(); 1187 } 1188 1189 constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP"); 1190 1191 static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab, 1192 const UniqueCStringMap<uint32_t> &cstr_map) { 1193 encoder.AppendData(kIdentifierCStrMap); 1194 encoder.AppendU32(cstr_map.GetSize()); 1195 for (const auto &entry: cstr_map) { 1196 // Make sure there are no empty strings. 1197 assert((bool)entry.cstring); 1198 encoder.AppendU32(strtab.Add(entry.cstring)); 1199 encoder.AppendU32(entry.value); 1200 } 1201 } 1202 1203 bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr, 1204 const StringTableReader &strtab, 1205 UniqueCStringMap<uint32_t> &cstr_map) { 1206 llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); 1207 if (identifier != kIdentifierCStrMap) 1208 return false; 1209 const uint32_t count = data.GetU32(offset_ptr); 1210 cstr_map.Reserve(count); 1211 for (uint32_t i=0; i<count; ++i) 1212 { 1213 llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr))); 1214 uint32_t value = data.GetU32(offset_ptr); 1215 // No empty strings in the name indexes in Symtab 1216 if (str.empty()) 1217 return false; 1218 cstr_map.Append(ConstString(str), value); 1219 } 1220 // We must sort the UniqueCStringMap after decoding it since it is a vector 1221 // of UniqueCStringMap::Entry objects which contain a ConstString and type T. 1222 // ConstString objects are sorted by "const char *" and then type T and 1223 // the "const char *" are point values that will depend on the order in which 1224 // ConstString objects are created and in which of the 256 string pools they 1225 // are created in. So after we decode all of the entries, we must sort the 1226 // name map to ensure name lookups succeed. If we encode and decode within 1227 // the same process we wouldn't need to sort, so unit testing didn't catch 1228 // this issue when first checked in. 1229 cstr_map.Sort(); 1230 return true; 1231 } 1232 1233 constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB"); 1234 constexpr uint32_t CURRENT_CACHE_VERSION = 1; 1235 1236 /// The encoding format for the symbol table is as follows: 1237 /// 1238 /// Signature signature; 1239 /// ConstStringTable strtab; 1240 /// Identifier four character code: 'SYMB' 1241 /// uint32_t version; 1242 /// uint32_t num_symbols; 1243 /// Symbol symbols[num_symbols]; 1244 /// uint8_t num_cstr_maps; 1245 /// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps] 1246 bool Symtab::Encode(DataEncoder &encoder) const { 1247 // Name indexes must be computed before calling this function. 1248 assert(m_name_indexes_computed); 1249 1250 // Encode the object file's signature 1251 CacheSignature signature(m_objfile); 1252 if (!signature.Encode(encoder)) 1253 return false; 1254 ConstStringTable strtab; 1255 1256 // Encoder the symbol table into a separate encoder first. This allows us 1257 // gather all of the strings we willl need in "strtab" as we will need to 1258 // write the string table out before the symbol table. 1259 DataEncoder symtab_encoder(encoder.GetByteOrder(), 1260 encoder.GetAddressByteSize()); 1261 symtab_encoder.AppendData(kIdentifierSymbolTable); 1262 // Encode the symtab data version. 1263 symtab_encoder.AppendU32(CURRENT_CACHE_VERSION); 1264 // Encode the number of symbols. 1265 symtab_encoder.AppendU32(m_symbols.size()); 1266 // Encode the symbol data for all symbols. 1267 for (const auto &symbol: m_symbols) 1268 symbol.Encode(symtab_encoder, strtab); 1269 1270 // Emit a byte for how many C string maps we emit. We will fix this up after 1271 // we emit the C string maps since we skip emitting C string maps if they are 1272 // empty. 1273 size_t num_cmaps_offset = symtab_encoder.GetByteSize(); 1274 uint8_t num_cmaps = 0; 1275 symtab_encoder.AppendU8(0); 1276 for (const auto &pair: m_name_to_symbol_indices) { 1277 if (pair.second.IsEmpty()) 1278 continue; 1279 ++num_cmaps; 1280 symtab_encoder.AppendU8(pair.first); 1281 EncodeCStrMap(symtab_encoder, strtab, pair.second); 1282 } 1283 if (num_cmaps > 0) 1284 symtab_encoder.PutU8(num_cmaps_offset, num_cmaps); 1285 1286 // Now that all strings have been gathered, we will emit the string table. 1287 strtab.Encode(encoder); 1288 // Followed the the symbol table data. 1289 encoder.AppendData(symtab_encoder.GetData()); 1290 return true; 1291 } 1292 1293 bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr, 1294 bool &signature_mismatch) { 1295 signature_mismatch = false; 1296 CacheSignature signature; 1297 StringTableReader strtab; 1298 { // Scope for "elapsed" object below so it can measure the time parse. 1299 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime()); 1300 if (!signature.Decode(data, offset_ptr)) 1301 return false; 1302 if (CacheSignature(m_objfile) != signature) { 1303 signature_mismatch = true; 1304 return false; 1305 } 1306 // We now decode the string table for all strings in the data cache file. 1307 if (!strtab.Decode(data, offset_ptr)) 1308 return false; 1309 1310 // And now we can decode the symbol table with string table we just decoded. 1311 llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); 1312 if (identifier != kIdentifierSymbolTable) 1313 return false; 1314 const uint32_t version = data.GetU32(offset_ptr); 1315 if (version != CURRENT_CACHE_VERSION) 1316 return false; 1317 const uint32_t num_symbols = data.GetU32(offset_ptr); 1318 if (num_symbols == 0) 1319 return true; 1320 m_symbols.resize(num_symbols); 1321 SectionList *sections = m_objfile->GetModule()->GetSectionList(); 1322 for (uint32_t i=0; i<num_symbols; ++i) { 1323 if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab)) 1324 return false; 1325 } 1326 } 1327 1328 { // Scope for "elapsed" object below so it can measure the time to index. 1329 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); 1330 const uint8_t num_cstr_maps = data.GetU8(offset_ptr); 1331 for (uint8_t i=0; i<num_cstr_maps; ++i) { 1332 uint8_t type = data.GetU8(offset_ptr); 1333 UniqueCStringMap<uint32_t> &cstr_map = 1334 GetNameToSymbolIndexMap((lldb::FunctionNameType)type); 1335 if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map)) 1336 return false; 1337 } 1338 m_name_indexes_computed = true; 1339 } 1340 return true; 1341 } 1342 1343 bool Symtab::LoadFromCache() { 1344 DataFileCache *cache = Module::GetIndexCache(); 1345 if (!cache) 1346 return false; 1347 1348 std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up = 1349 cache->GetCachedData(GetCacheKey()); 1350 if (!mem_buffer_up) 1351 return false; 1352 DataExtractor data(mem_buffer_up->getBufferStart(), 1353 mem_buffer_up->getBufferSize(), 1354 m_objfile->GetByteOrder(), 1355 m_objfile->GetAddressByteSize()); 1356 bool signature_mismatch = false; 1357 lldb::offset_t offset = 0; 1358 const bool result = Decode(data, &offset, signature_mismatch); 1359 if (signature_mismatch) 1360 cache->RemoveCacheFile(GetCacheKey()); 1361 if (result) 1362 SetWasLoadedFromCache(); 1363 return result; 1364 } 1365