1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "EhFrame.h" 49 #include "ExportTrie.h" 50 #include "InputSection.h" 51 #include "MachOStructs.h" 52 #include "ObjC.h" 53 #include "OutputSection.h" 54 #include "OutputSegment.h" 55 #include "SymbolTable.h" 56 #include "Symbols.h" 57 #include "SyntheticSections.h" 58 #include "Target.h" 59 60 #include "lld/Common/CommonLinkerContext.h" 61 #include "lld/Common/DWARF.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/BinaryStreamReader.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/LEB128.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/TarWriter.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/TextAPI/Architecture.h" 74 #include "llvm/TextAPI/InterfaceFile.h" 75 76 #include <optional> 77 #include <type_traits> 78 79 using namespace llvm; 80 using namespace llvm::MachO; 81 using namespace llvm::support::endian; 82 using namespace llvm::sys; 83 using namespace lld; 84 using namespace lld::macho; 85 86 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 87 std::string lld::toString(const InputFile *f) { 88 if (!f) 89 return "<internal>"; 90 91 // Multiple dylibs can be defined in one .tbd file. 92 if (const auto *dylibFile = dyn_cast<DylibFile>(f)) 93 if (f->getName().ends_with(".tbd")) 94 return (f->getName() + "(" + dylibFile->installName + ")").str(); 95 96 if (f->archiveName.empty()) 97 return std::string(f->getName()); 98 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 99 } 100 101 std::string lld::toString(const Section &sec) { 102 return (toString(sec.file) + ":(" + sec.name + ")").str(); 103 } 104 105 SetVector<InputFile *> macho::inputFiles; 106 std::unique_ptr<TarWriter> macho::tar; 107 int InputFile::idCount = 0; 108 109 static VersionTuple decodeVersion(uint32_t version) { 110 unsigned major = version >> 16; 111 unsigned minor = (version >> 8) & 0xffu; 112 unsigned subMinor = version & 0xffu; 113 return VersionTuple(major, minor, subMinor); 114 } 115 116 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 117 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 118 return {}; 119 120 const char *hdr = input->mb.getBufferStart(); 121 122 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 123 std::vector<PlatformInfo> platformInfos; 124 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 125 PlatformInfo info; 126 info.target.Platform = static_cast<PlatformType>(cmd->platform); 127 info.target.MinDeployment = decodeVersion(cmd->minos); 128 platformInfos.emplace_back(std::move(info)); 129 } 130 for (auto *cmd : findCommands<version_min_command>( 131 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 132 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 133 PlatformInfo info; 134 switch (cmd->cmd) { 135 case LC_VERSION_MIN_MACOSX: 136 info.target.Platform = PLATFORM_MACOS; 137 break; 138 case LC_VERSION_MIN_IPHONEOS: 139 info.target.Platform = PLATFORM_IOS; 140 break; 141 case LC_VERSION_MIN_TVOS: 142 info.target.Platform = PLATFORM_TVOS; 143 break; 144 case LC_VERSION_MIN_WATCHOS: 145 info.target.Platform = PLATFORM_WATCHOS; 146 break; 147 } 148 info.target.MinDeployment = decodeVersion(cmd->version); 149 platformInfos.emplace_back(std::move(info)); 150 } 151 152 return platformInfos; 153 } 154 155 static bool checkCompatibility(const InputFile *input) { 156 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 157 if (platformInfos.empty()) 158 return true; 159 160 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 161 return removeSimulator(info.target.Platform) == 162 removeSimulator(config->platform()); 163 }); 164 if (it == platformInfos.end()) { 165 std::string platformNames; 166 raw_string_ostream os(platformNames); 167 interleave( 168 platformInfos, os, 169 [&](const PlatformInfo &info) { 170 os << getPlatformName(info.target.Platform); 171 }, 172 "/"); 173 error(toString(input) + " has platform " + platformNames + 174 Twine(", which is different from target platform ") + 175 getPlatformName(config->platform())); 176 return false; 177 } 178 179 if (it->target.MinDeployment > config->platformInfo.target.MinDeployment) 180 warn(toString(input) + " has version " + 181 it->target.MinDeployment.getAsString() + 182 ", which is newer than target minimum of " + 183 config->platformInfo.target.MinDeployment.getAsString()); 184 185 return true; 186 } 187 188 template <class Header> 189 static bool compatWithTargetArch(const InputFile *file, const Header *hdr) { 190 uint32_t cpuType; 191 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch()); 192 193 if (hdr->cputype != cpuType) { 194 Architecture arch = 195 getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 196 auto msg = config->errorForArchMismatch 197 ? static_cast<void (*)(const Twine &)>(error) 198 : warn; 199 200 msg(toString(file) + " has architecture " + getArchitectureName(arch) + 201 " which is incompatible with target architecture " + 202 getArchitectureName(config->arch())); 203 return false; 204 } 205 206 return checkCompatibility(file); 207 } 208 209 // This cache mostly exists to store system libraries (and .tbds) as they're 210 // loaded, rather than the input archives, which are already cached at a higher 211 // level, and other files like the filelist that are only read once. 212 // Theoretically this caching could be more efficient by hoisting it, but that 213 // would require altering many callers to track the state. 214 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 215 // Open a given file path and return it as a memory-mapped file. 216 std::optional<MemoryBufferRef> macho::readFile(StringRef path) { 217 CachedHashStringRef key(path); 218 auto entry = cachedReads.find(key); 219 if (entry != cachedReads.end()) 220 return entry->second; 221 222 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 223 if (std::error_code ec = mbOrErr.getError()) { 224 error("cannot open " + path + ": " + ec.message()); 225 return std::nullopt; 226 } 227 228 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 229 MemoryBufferRef mbref = mb->getMemBufferRef(); 230 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 231 232 // If this is a regular non-fat file, return it. 233 const char *buf = mbref.getBufferStart(); 234 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 235 if (mbref.getBufferSize() < sizeof(uint32_t) || 236 read32be(&hdr->magic) != FAT_MAGIC) { 237 if (tar) 238 tar->append(relativeToRoot(path), mbref.getBuffer()); 239 return cachedReads[key] = mbref; 240 } 241 242 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 243 244 // Object files and archive files may be fat files, which contain multiple 245 // real files for different CPU ISAs. Here, we search for a file that matches 246 // with the current link target and returns it as a MemoryBufferRef. 247 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 248 auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) { 249 return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype)); 250 }; 251 252 std::vector<StringRef> archs; 253 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 254 if (reinterpret_cast<const char *>(arch + i + 1) > 255 buf + mbref.getBufferSize()) { 256 error(path + ": fat_arch struct extends beyond end of file"); 257 return std::nullopt; 258 } 259 260 uint32_t cpuType = read32be(&arch[i].cputype); 261 uint32_t cpuSubtype = 262 read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK; 263 264 // FIXME: LD64 has a more complex fallback logic here. 265 // Consider implementing that as well? 266 if (cpuType != static_cast<uint32_t>(target->cpuType) || 267 cpuSubtype != target->cpuSubtype) { 268 archs.emplace_back(getArchName(cpuType, cpuSubtype)); 269 continue; 270 } 271 272 uint32_t offset = read32be(&arch[i].offset); 273 uint32_t size = read32be(&arch[i].size); 274 if (offset + size > mbref.getBufferSize()) 275 error(path + ": slice extends beyond end of file"); 276 if (tar) 277 tar->append(relativeToRoot(path), mbref.getBuffer()); 278 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 279 path.copy(bAlloc)); 280 } 281 282 auto targetArchName = getArchName(target->cpuType, target->cpuSubtype); 283 warn(path + ": ignoring file because it is universal (" + join(archs, ",") + 284 ") but does not contain the " + targetArchName + " architecture"); 285 return std::nullopt; 286 } 287 288 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 289 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 290 291 // Some sections comprise of fixed-size records, so instead of splitting them at 292 // symbol boundaries, we split them based on size. Records are distinct from 293 // literals in that they may contain references to other sections, instead of 294 // being leaf nodes in the InputSection graph. 295 // 296 // Note that "record" is a term I came up with. In contrast, "literal" is a term 297 // used by the Mach-O format. 298 static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) { 299 if (name == section_names::compactUnwind) { 300 if (segname == segment_names::ld) 301 return target->wordSize == 8 ? 32 : 20; 302 } 303 if (!config->dedupStrings) 304 return {}; 305 306 if (name == section_names::cfString && segname == segment_names::data) 307 return target->wordSize == 8 ? 32 : 16; 308 309 if (config->icfLevel == ICFLevel::none) 310 return {}; 311 312 if (name == section_names::objcClassRefs && segname == segment_names::data) 313 return target->wordSize; 314 315 if (name == section_names::objcSelrefs && segname == segment_names::data) 316 return target->wordSize; 317 return {}; 318 } 319 320 static Error parseCallGraph(ArrayRef<uint8_t> data, 321 std::vector<CallGraphEntry> &callGraph) { 322 TimeTraceScope timeScope("Parsing call graph section"); 323 BinaryStreamReader reader(data, llvm::endianness::little); 324 while (!reader.empty()) { 325 uint32_t fromIndex, toIndex; 326 uint64_t count; 327 if (Error err = reader.readInteger(fromIndex)) 328 return err; 329 if (Error err = reader.readInteger(toIndex)) 330 return err; 331 if (Error err = reader.readInteger(count)) 332 return err; 333 callGraph.emplace_back(fromIndex, toIndex, count); 334 } 335 return Error::success(); 336 } 337 338 // Parse the sequence of sections within a single LC_SEGMENT(_64). 339 // Split each section into subsections. 340 template <class SectionHeader> 341 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 342 sections.reserve(sectionHeaders.size()); 343 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 344 345 for (const SectionHeader &sec : sectionHeaders) { 346 StringRef name = 347 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 348 StringRef segname = 349 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 350 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 351 if (sec.align >= 32) { 352 error("alignment " + std::to_string(sec.align) + " of section " + name + 353 " is too large"); 354 continue; 355 } 356 Section §ion = *sections.back(); 357 uint32_t align = 1 << sec.align; 358 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 359 : buf + sec.offset, 360 static_cast<size_t>(sec.size)}; 361 362 auto splitRecords = [&](size_t recordSize) -> void { 363 if (data.empty()) 364 return; 365 Subsections &subsections = section.subsections; 366 subsections.reserve(data.size() / recordSize); 367 for (uint64_t off = 0; off < data.size(); off += recordSize) { 368 auto *isec = make<ConcatInputSection>( 369 section, data.slice(off, std::min(data.size(), recordSize)), align); 370 subsections.push_back({off, isec}); 371 } 372 section.doneSplitting = true; 373 }; 374 375 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 376 if (sec.nreloc) 377 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + 378 " contains relocations, which is unsupported"); 379 bool dedupLiterals = 380 name == section_names::objcMethname || config->dedupStrings; 381 InputSection *isec = 382 make<CStringInputSection>(section, data, align, dedupLiterals); 383 // FIXME: parallelize this? 384 cast<CStringInputSection>(isec)->splitIntoPieces(); 385 section.subsections.push_back({0, isec}); 386 } else if (isWordLiteralSection(sec.flags)) { 387 if (sec.nreloc) 388 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + 389 " contains relocations, which is unsupported"); 390 InputSection *isec = make<WordLiteralInputSection>(section, data, align); 391 section.subsections.push_back({0, isec}); 392 } else if (auto recordSize = getRecordSize(segname, name)) { 393 splitRecords(*recordSize); 394 } else if (name == section_names::ehFrame && 395 segname == segment_names::text) { 396 splitEhFrames(data, *sections.back()); 397 } else if (segname == segment_names::llvm) { 398 if (config->callGraphProfileSort && name == section_names::cgProfile) 399 checkError(parseCallGraph(data, callGraph)); 400 // ld64 does not appear to emit contents from sections within the __LLVM 401 // segment. Symbols within those sections point to bitcode metadata 402 // instead of actual symbols. Global symbols within those sections could 403 // have the same name without causing duplicate symbol errors. To avoid 404 // spurious duplicate symbol errors, we do not parse these sections. 405 // TODO: Evaluate whether the bitcode metadata is needed. 406 } else if (name == section_names::objCImageInfo && 407 segname == segment_names::data) { 408 objCImageInfo = data; 409 } else { 410 if (name == section_names::addrSig) 411 addrSigSection = sections.back(); 412 413 auto *isec = make<ConcatInputSection>(section, data, align); 414 if (isDebugSection(isec->getFlags()) && 415 isec->getSegName() == segment_names::dwarf) { 416 // Instead of emitting DWARF sections, we emit STABS symbols to the 417 // object files that contain them. We filter them out early to avoid 418 // parsing their relocations unnecessarily. 419 debugSections.push_back(isec); 420 } else { 421 section.subsections.push_back({0, isec}); 422 } 423 } 424 } 425 } 426 427 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { 428 EhReader reader(this, data, /*dataOff=*/0); 429 size_t off = 0; 430 while (off < reader.size()) { 431 uint64_t frameOff = off; 432 uint64_t length = reader.readLength(&off); 433 if (length == 0) 434 break; 435 uint64_t fullLength = length + (off - frameOff); 436 off += length; 437 // We hard-code an alignment of 1 here because we don't actually want our 438 // EH frames to be aligned to the section alignment. EH frame decoders don't 439 // expect this alignment. Moreover, each EH frame must start where the 440 // previous one ends, and where it ends is indicated by the length field. 441 // Unless we update the length field (troublesome), we should keep the 442 // alignment to 1. 443 // Note that we still want to preserve the alignment of the overall section, 444 // just not of the individual EH frames. 445 ehFrameSection.subsections.push_back( 446 {frameOff, make<ConcatInputSection>(ehFrameSection, 447 data.slice(frameOff, fullLength), 448 /*align=*/1)}); 449 } 450 ehFrameSection.doneSplitting = true; 451 } 452 453 template <class T> 454 static Section *findContainingSection(const std::vector<Section *> §ions, 455 T *offset) { 456 static_assert(std::is_same<uint64_t, T>::value || 457 std::is_same<uint32_t, T>::value, 458 "unexpected type for offset"); 459 auto it = std::prev(llvm::upper_bound( 460 sections, *offset, 461 [](uint64_t value, const Section *sec) { return value < sec->addr; })); 462 *offset -= (*it)->addr; 463 return *it; 464 } 465 466 // Find the subsection corresponding to the greatest section offset that is <= 467 // that of the given offset. 468 // 469 // offset: an offset relative to the start of the original InputSection (before 470 // any subsection splitting has occurred). It will be updated to represent the 471 // same location as an offset relative to the start of the containing 472 // subsection. 473 template <class T> 474 static InputSection *findContainingSubsection(const Section §ion, 475 T *offset) { 476 static_assert(std::is_same<uint64_t, T>::value || 477 std::is_same<uint32_t, T>::value, 478 "unexpected type for offset"); 479 auto it = std::prev(llvm::upper_bound( 480 section.subsections, *offset, 481 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 482 *offset -= it->offset; 483 return it->isec; 484 } 485 486 // Find a symbol at offset `off` within `isec`. 487 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 488 uint64_t off) { 489 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 490 return d->value < off; 491 }); 492 // The offset should point at the exact address of a symbol (with no addend.) 493 if (it == isec->symbols.end() || (*it)->value != off) { 494 assert(isec->wasCoalesced); 495 return nullptr; 496 } 497 return *it; 498 } 499 500 template <class SectionHeader> 501 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 502 relocation_info rel) { 503 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 504 bool valid = true; 505 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 506 valid = false; 507 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 508 std::to_string(rel.r_address) + " of " + sec.segname + "," + 509 sec.sectname + " in " + toString(file)) 510 .str(); 511 }; 512 513 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 514 error(message("must be extern")); 515 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 516 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 517 "be PC-relative")); 518 if (isThreadLocalVariables(sec.flags) && 519 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 520 error(message("not allowed in thread-local section, must be UNSIGNED")); 521 if (rel.r_length < 2 || rel.r_length > 3 || 522 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 523 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 524 error(message("has width " + std::to_string(1 << rel.r_length) + 525 " bytes, but must be " + 526 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 527 " bytes")); 528 } 529 return valid; 530 } 531 532 template <class SectionHeader> 533 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 534 const SectionHeader &sec, Section §ion) { 535 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 536 ArrayRef<relocation_info> relInfos( 537 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 538 539 Subsections &subsections = section.subsections; 540 auto subsecIt = subsections.rbegin(); 541 for (size_t i = 0; i < relInfos.size(); i++) { 542 // Paired relocations serve as Mach-O's method for attaching a 543 // supplemental datum to a primary relocation record. ELF does not 544 // need them because the *_RELOC_RELA records contain the extra 545 // addend field, vs. *_RELOC_REL which omit the addend. 546 // 547 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 548 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 549 // datum for each is a symbolic address. The result is the offset 550 // between two addresses. 551 // 552 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 553 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 554 // base symbolic address. 555 // 556 // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into 557 // the instruction stream. On X86, a relocatable address field always 558 // occupies an entire contiguous sequence of byte(s), so there is no need to 559 // merge opcode bits with address bits. Therefore, it's easy and convenient 560 // to store addends in the instruction-stream bytes that would otherwise 561 // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with 562 // address bits so that bitwise arithmetic is necessary to extract and 563 // insert them. Storing addends in the instruction stream is possible, but 564 // inconvenient and more costly at link time. 565 566 relocation_info relInfo = relInfos[i]; 567 bool isSubtrahend = 568 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 569 int64_t pairedAddend = 0; 570 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 571 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 572 relInfo = relInfos[++i]; 573 } 574 assert(i < relInfos.size()); 575 if (!validateRelocationInfo(this, sec, relInfo)) 576 continue; 577 if (relInfo.r_address & R_SCATTERED) 578 fatal("TODO: Scattered relocations not supported"); 579 580 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 581 assert(!(embeddedAddend && pairedAddend)); 582 int64_t totalAddend = pairedAddend + embeddedAddend; 583 Reloc r; 584 r.type = relInfo.r_type; 585 r.pcrel = relInfo.r_pcrel; 586 r.length = relInfo.r_length; 587 r.offset = relInfo.r_address; 588 if (relInfo.r_extern) { 589 r.referent = symbols[relInfo.r_symbolnum]; 590 r.addend = isSubtrahend ? 0 : totalAddend; 591 } else { 592 assert(!isSubtrahend); 593 const SectionHeader &referentSecHead = 594 sectionHeaders[relInfo.r_symbolnum - 1]; 595 uint64_t referentOffset; 596 if (relInfo.r_pcrel) { 597 // The implicit addend for pcrel section relocations is the pcrel offset 598 // in terms of the addresses in the input file. Here we adjust it so 599 // that it describes the offset from the start of the referent section. 600 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 601 // have pcrel section relocations. We may want to factor this out into 602 // the arch-specific .cpp file. 603 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 604 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 605 referentSecHead.addr; 606 } else { 607 // The addend for a non-pcrel relocation is its absolute address. 608 referentOffset = totalAddend - referentSecHead.addr; 609 } 610 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 611 &referentOffset); 612 r.addend = referentOffset; 613 } 614 615 // Find the subsection that this relocation belongs to. 616 // Though not required by the Mach-O format, clang and gcc seem to emit 617 // relocations in order, so let's take advantage of it. However, ld64 emits 618 // unsorted relocations (in `-r` mode), so we have a fallback for that 619 // uncommon case. 620 InputSection *subsec; 621 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 622 ++subsecIt; 623 if (subsecIt == subsections.rend() || 624 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 625 subsec = findContainingSubsection(section, &r.offset); 626 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 627 // for the other relocations. 628 subsecIt = subsections.rend(); 629 } else { 630 subsec = subsecIt->isec; 631 r.offset -= subsecIt->offset; 632 } 633 subsec->relocs.push_back(r); 634 635 if (isSubtrahend) { 636 relocation_info minuendInfo = relInfos[++i]; 637 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 638 // attached to the same address. 639 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 640 relInfo.r_address == minuendInfo.r_address); 641 Reloc p; 642 p.type = minuendInfo.r_type; 643 if (minuendInfo.r_extern) { 644 p.referent = symbols[minuendInfo.r_symbolnum]; 645 p.addend = totalAddend; 646 } else { 647 uint64_t referentOffset = 648 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 649 p.referent = findContainingSubsection( 650 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 651 p.addend = referentOffset; 652 } 653 subsec->relocs.push_back(p); 654 } 655 } 656 } 657 658 template <class NList> 659 static macho::Symbol *createDefined(const NList &sym, StringRef name, 660 InputSection *isec, uint64_t value, 661 uint64_t size, bool forceHidden) { 662 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 663 // N_EXT: Global symbols. These go in the symbol table during the link, 664 // and also in the export table of the output so that the dynamic 665 // linker sees them. 666 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 667 // symbol table during the link so that duplicates are 668 // either reported (for non-weak symbols) or merged 669 // (for weak symbols), but they do not go in the export 670 // table of the output. 671 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 672 // object files) may produce them. LLD does not yet support -r. 673 // These are translation-unit scoped, identical to the `0` case. 674 // 0: Translation-unit scoped. These are not in the symbol table during 675 // link, and not in the export table of the output either. 676 bool isWeakDefCanBeHidden = 677 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 678 679 assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported"); 680 681 if (sym.n_type & N_EXT) { 682 // -load_hidden makes us treat global symbols as linkage unit scoped. 683 // Duplicates are reported but the symbol does not go in the export trie. 684 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 685 686 // lld's behavior for merging symbols is slightly different from ld64: 687 // ld64 picks the winning symbol based on several criteria (see 688 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 689 // just merges metadata and keeps the contents of the first symbol 690 // with that name (see SymbolTable::addDefined). For: 691 // * inline function F in a TU built with -fvisibility-inlines-hidden 692 // * and inline function F in another TU built without that flag 693 // ld64 will pick the one from the file built without 694 // -fvisibility-inlines-hidden. 695 // lld will instead pick the one listed first on the link command line and 696 // give it visibility as if the function was built without 697 // -fvisibility-inlines-hidden. 698 // If both functions have the same contents, this will have the same 699 // behavior. If not, it won't, but the input had an ODR violation in 700 // that case. 701 // 702 // Similarly, merging a symbol 703 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 704 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 705 // should produce one 706 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 707 // with ld64's semantics, because it means the non-private-extern 708 // definition will continue to take priority if more private extern 709 // definitions are encountered. With lld's semantics there's no observable 710 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 711 // that's privateExtern -- neither makes it into the dynamic symbol table, 712 // unless the autohide symbol is explicitly exported. 713 // But if a symbol is both privateExtern and autohide then it can't 714 // be exported. 715 // So we nullify the autohide flag when privateExtern is present 716 // and promote the symbol to privateExtern when it is not already. 717 if (isWeakDefCanBeHidden && isPrivateExtern) 718 isWeakDefCanBeHidden = false; 719 else if (isWeakDefCanBeHidden) 720 isPrivateExtern = true; 721 return symtab->addDefined( 722 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 723 isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY, 724 sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden); 725 } 726 bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec); 727 return make<Defined>( 728 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 729 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 730 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 731 } 732 733 // Absolute symbols are defined symbols that do not have an associated 734 // InputSection. They cannot be weak. 735 template <class NList> 736 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 737 StringRef name, bool forceHidden) { 738 assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported"); 739 740 if (sym.n_type & N_EXT) { 741 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 742 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 743 /*isWeakDef=*/false, isPrivateExtern, 744 /*isReferencedDynamically=*/false, 745 sym.n_desc & N_NO_DEAD_STRIP, 746 /*isWeakDefCanBeHidden=*/false); 747 } 748 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 749 /*isWeakDef=*/false, 750 /*isExternal=*/false, /*isPrivateExtern=*/false, 751 /*includeInSymtab=*/true, 752 /*isReferencedDynamically=*/false, 753 sym.n_desc & N_NO_DEAD_STRIP); 754 } 755 756 template <class NList> 757 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 758 const char *strtab) { 759 StringRef name = StringRef(strtab + sym.n_strx); 760 uint8_t type = sym.n_type & N_TYPE; 761 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 762 switch (type) { 763 case N_UNDF: 764 return sym.n_value == 0 765 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 766 : symtab->addCommon(name, this, sym.n_value, 767 1 << GET_COMM_ALIGN(sym.n_desc), 768 isPrivateExtern); 769 case N_ABS: 770 return createAbsolute(sym, this, name, forceHidden); 771 case N_INDR: { 772 // Not much point in making local aliases -- relocs in the current file can 773 // just refer to the actual symbol itself. ld64 ignores these symbols too. 774 if (!(sym.n_type & N_EXT)) 775 return nullptr; 776 StringRef aliasedName = StringRef(strtab + sym.n_value); 777 // isPrivateExtern is the only symbol flag that has an impact on the final 778 // aliased symbol. 779 auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern); 780 aliases.push_back(alias); 781 return alias; 782 } 783 case N_PBUD: 784 error("TODO: support symbols of type N_PBUD"); 785 return nullptr; 786 case N_SECT: 787 llvm_unreachable( 788 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 789 default: 790 llvm_unreachable("invalid symbol type"); 791 } 792 } 793 794 template <class NList> static bool isUndef(const NList &sym) { 795 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 796 } 797 798 template <class LP> 799 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 800 ArrayRef<typename LP::nlist> nList, 801 const char *strtab, bool subsectionsViaSymbols) { 802 using NList = typename LP::nlist; 803 804 // Groups indices of the symbols by the sections that contain them. 805 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 806 symbols.resize(nList.size()); 807 SmallVector<unsigned, 32> undefineds; 808 for (uint32_t i = 0; i < nList.size(); ++i) { 809 const NList &sym = nList[i]; 810 811 // Ignore debug symbols for now. 812 // FIXME: may need special handling. 813 if (sym.n_type & N_STAB) 814 continue; 815 816 if ((sym.n_type & N_TYPE) == N_SECT) { 817 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 818 // parseSections() may have chosen not to parse this section. 819 if (subsections.empty()) 820 continue; 821 symbolsBySection[sym.n_sect - 1].push_back(i); 822 } else if (isUndef(sym)) { 823 undefineds.push_back(i); 824 } else { 825 symbols[i] = parseNonSectionSymbol(sym, strtab); 826 } 827 } 828 829 for (size_t i = 0; i < sections.size(); ++i) { 830 Subsections &subsections = sections[i]->subsections; 831 if (subsections.empty()) 832 continue; 833 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 834 uint64_t sectionAddr = sectionHeaders[i].addr; 835 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 836 837 // Some sections have already been split into subsections during 838 // parseSections(), so we simply need to match Symbols to the corresponding 839 // subsection here. 840 if (sections[i]->doneSplitting) { 841 for (size_t j = 0; j < symbolIndices.size(); ++j) { 842 const uint32_t symIndex = symbolIndices[j]; 843 const NList &sym = nList[symIndex]; 844 StringRef name = strtab + sym.n_strx; 845 uint64_t symbolOffset = sym.n_value - sectionAddr; 846 InputSection *isec = 847 findContainingSubsection(*sections[i], &symbolOffset); 848 if (symbolOffset != 0) { 849 error(toString(*sections[i]) + ": symbol " + name + 850 " at misaligned offset"); 851 continue; 852 } 853 symbols[symIndex] = 854 createDefined(sym, name, isec, 0, isec->getSize(), forceHidden); 855 } 856 continue; 857 } 858 sections[i]->doneSplitting = true; 859 860 auto getSymName = [strtab](const NList& sym) -> StringRef { 861 return StringRef(strtab + sym.n_strx); 862 }; 863 864 // Calculate symbol sizes and create subsections by splitting the sections 865 // along symbol boundaries. 866 // We populate subsections by repeatedly splitting the last (highest 867 // address) subsection. 868 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 869 // Put extern weak symbols after other symbols at the same address so 870 // that weak symbol coalescing works correctly. See 871 // SymbolTable::addDefined() for details. 872 if (nList[lhs].n_value == nList[rhs].n_value && 873 nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT) 874 return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF); 875 return nList[lhs].n_value < nList[rhs].n_value; 876 }); 877 for (size_t j = 0; j < symbolIndices.size(); ++j) { 878 const uint32_t symIndex = symbolIndices[j]; 879 const NList &sym = nList[symIndex]; 880 StringRef name = getSymName(sym); 881 Subsection &subsec = subsections.back(); 882 InputSection *isec = subsec.isec; 883 884 uint64_t subsecAddr = sectionAddr + subsec.offset; 885 size_t symbolOffset = sym.n_value - subsecAddr; 886 uint64_t symbolSize = 887 j + 1 < symbolIndices.size() 888 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 889 : isec->data.size() - symbolOffset; 890 // There are 4 cases where we do not need to create a new subsection: 891 // 1. If the input file does not use subsections-via-symbols. 892 // 2. Multiple symbols at the same address only induce one subsection. 893 // (The symbolOffset == 0 check covers both this case as well as 894 // the first loop iteration.) 895 // 3. Alternative entry points do not induce new subsections. 896 // 4. If we have a literal section (e.g. __cstring and __literal4). 897 if (!subsectionsViaSymbols || symbolOffset == 0 || 898 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 899 isec->hasAltEntry = symbolOffset != 0; 900 symbols[symIndex] = createDefined(sym, name, isec, symbolOffset, 901 symbolSize, forceHidden); 902 continue; 903 } 904 auto *concatIsec = cast<ConcatInputSection>(isec); 905 906 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 907 nextIsec->wasCoalesced = false; 908 if (isZeroFill(isec->getFlags())) { 909 // Zero-fill sections have NULL data.data() non-zero data.size() 910 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 911 isec->data = {nullptr, symbolOffset}; 912 } else { 913 nextIsec->data = isec->data.slice(symbolOffset); 914 isec->data = isec->data.slice(0, symbolOffset); 915 } 916 917 // By construction, the symbol will be at offset zero in the new 918 // subsection. 919 symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0, 920 symbolSize, forceHidden); 921 // TODO: ld64 appears to preserve the original alignment as well as each 922 // subsection's offset from the last aligned address. We should consider 923 // emulating that behavior. 924 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 925 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 926 } 927 } 928 929 // Undefined symbols can trigger recursive fetch from Archives due to 930 // LazySymbols. Process defined symbols first so that the relative order 931 // between a defined symbol and an undefined symbol does not change the 932 // symbol resolution behavior. In addition, a set of interconnected symbols 933 // will all be resolved to the same file, instead of being resolved to 934 // different files. 935 for (unsigned i : undefineds) 936 symbols[i] = parseNonSectionSymbol(nList[i], strtab); 937 } 938 939 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 940 StringRef sectName) 941 : InputFile(OpaqueKind, mb) { 942 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 943 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 944 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 945 sectName.take_front(16), 946 /*flags=*/0, /*addr=*/0)); 947 Section §ion = *sections.back(); 948 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 949 isec->live = true; 950 section.subsections.push_back({0, isec}); 951 } 952 953 template <class LP> 954 void ObjFile::parseLinkerOptions(SmallVectorImpl<StringRef> &LCLinkerOptions) { 955 using Header = typename LP::mach_header; 956 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 957 958 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 959 StringRef data{reinterpret_cast<const char *>(cmd + 1), 960 cmd->cmdsize - sizeof(linker_option_command)}; 961 parseLCLinkerOption(LCLinkerOptions, this, cmd->count, data); 962 } 963 } 964 965 SmallVector<StringRef> macho::unprocessedLCLinkerOptions; 966 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 967 bool lazy, bool forceHidden, bool compatArch, 968 bool builtFromBitcode) 969 : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden), 970 builtFromBitcode(builtFromBitcode) { 971 this->archiveName = std::string(archiveName); 972 this->compatArch = compatArch; 973 if (lazy) { 974 if (target->wordSize == 8) 975 parseLazy<LP64>(); 976 else 977 parseLazy<ILP32>(); 978 } else { 979 if (target->wordSize == 8) 980 parse<LP64>(); 981 else 982 parse<ILP32>(); 983 } 984 } 985 986 template <class LP> void ObjFile::parse() { 987 using Header = typename LP::mach_header; 988 using SegmentCommand = typename LP::segment_command; 989 using SectionHeader = typename LP::section; 990 using NList = typename LP::nlist; 991 992 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 993 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 994 995 // If we've already checked the arch, then don't need to check again. 996 if (!compatArch) 997 return; 998 if (!(compatArch = compatWithTargetArch(this, hdr))) 999 return; 1000 1001 // We will resolve LC linker options once all native objects are loaded after 1002 // LTO is finished. 1003 SmallVector<StringRef, 4> LCLinkerOptions; 1004 parseLinkerOptions<LP>(LCLinkerOptions); 1005 unprocessedLCLinkerOptions.append(LCLinkerOptions); 1006 1007 ArrayRef<SectionHeader> sectionHeaders; 1008 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 1009 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 1010 sectionHeaders = ArrayRef<SectionHeader>{ 1011 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 1012 parseSections(sectionHeaders); 1013 } 1014 1015 // TODO: Error on missing LC_SYMTAB? 1016 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 1017 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1018 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1019 c->nsyms); 1020 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1021 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 1022 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 1023 } 1024 1025 // The relocations may refer to the symbols, so we parse them after we have 1026 // parsed all the symbols. 1027 for (size_t i = 0, n = sections.size(); i < n; ++i) 1028 if (!sections[i]->subsections.empty()) 1029 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 1030 1031 parseDebugInfo(); 1032 1033 Section *ehFrameSection = nullptr; 1034 Section *compactUnwindSection = nullptr; 1035 for (Section *sec : sections) { 1036 Section **s = StringSwitch<Section **>(sec->name) 1037 .Case(section_names::compactUnwind, &compactUnwindSection) 1038 .Case(section_names::ehFrame, &ehFrameSection) 1039 .Default(nullptr); 1040 if (s) 1041 *s = sec; 1042 } 1043 if (compactUnwindSection) 1044 registerCompactUnwind(*compactUnwindSection); 1045 if (ehFrameSection) 1046 registerEhFrames(*ehFrameSection); 1047 } 1048 1049 template <class LP> void ObjFile::parseLazy() { 1050 using Header = typename LP::mach_header; 1051 using NList = typename LP::nlist; 1052 1053 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1054 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1055 1056 if (!compatArch) 1057 return; 1058 if (!(compatArch = compatWithTargetArch(this, hdr))) 1059 return; 1060 1061 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 1062 if (!cmd) 1063 return; 1064 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1065 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1066 c->nsyms); 1067 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1068 symbols.resize(nList.size()); 1069 for (const auto &[i, sym] : llvm::enumerate(nList)) { 1070 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 1071 // TODO: Bound checking 1072 StringRef name = strtab + sym.n_strx; 1073 symbols[i] = symtab->addLazyObject(name, *this); 1074 if (!lazy) 1075 break; 1076 } 1077 } 1078 } 1079 1080 void ObjFile::parseDebugInfo() { 1081 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 1082 if (!dObj) 1083 return; 1084 1085 // We do not re-use the context from getDwarf() here as that function 1086 // constructs an expensive DWARFCache object. 1087 auto *ctx = make<DWARFContext>( 1088 std::move(dObj), "", 1089 [&](Error err) { 1090 warn(toString(this) + ": " + toString(std::move(err))); 1091 }, 1092 [&](Error warning) { 1093 warn(toString(this) + ": " + toString(std::move(warning))); 1094 }); 1095 1096 // TODO: Since object files can contain a lot of DWARF info, we should verify 1097 // that we are parsing just the info we need 1098 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 1099 // FIXME: There can be more than one compile unit per object file. See 1100 // PR48637. 1101 auto it = units.begin(); 1102 compileUnit = it != units.end() ? it->get() : nullptr; 1103 } 1104 1105 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 1106 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1107 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 1108 if (!cmd) 1109 return {}; 1110 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 1111 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 1112 c->datasize / sizeof(data_in_code_entry)}; 1113 } 1114 1115 ArrayRef<uint8_t> ObjFile::getOptimizationHints() const { 1116 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1117 if (auto *cmd = 1118 findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT)) 1119 return {buf + cmd->dataoff, cmd->datasize}; 1120 return {}; 1121 } 1122 1123 // Create pointers from symbols to their associated compact unwind entries. 1124 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { 1125 for (const Subsection &subsection : compactUnwindSection.subsections) { 1126 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 1127 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed 1128 // their addends in its data. Thus if ICF operated naively and compared the 1129 // entire contents of each CUE, entries with identical unwind info but e.g. 1130 // belonging to different functions would never be considered equivalent. To 1131 // work around this problem, we remove some parts of the data containing the 1132 // embedded addends. In particular, we remove the function address and LSDA 1133 // pointers. Since these locations are at the start and end of the entry, 1134 // we can do this using a simple, efficient slice rather than performing a 1135 // copy. We are not losing any information here because the embedded 1136 // addends have already been parsed in the corresponding Reloc structs. 1137 // 1138 // Removing these pointers would not be safe if they were pointers to 1139 // absolute symbols. In that case, there would be no corresponding 1140 // relocation. However, (AFAIK) MC cannot emit references to absolute 1141 // symbols for either the function address or the LSDA. However, it *can* do 1142 // so for the personality pointer, so we are not slicing that field away. 1143 // 1144 // Note that we do not adjust the offsets of the corresponding relocations; 1145 // instead, we rely on `relocateCompactUnwind()` to correctly handle these 1146 // truncated input sections. 1147 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize); 1148 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); 1149 // llvm-mc omits CU entries for functions that need DWARF encoding, but 1150 // `ld -r` doesn't. We can ignore them because we will re-synthesize these 1151 // CU entries from the DWARF info during the output phase. 1152 if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) == 1153 target->modeDwarfEncoding) 1154 continue; 1155 1156 ConcatInputSection *referentIsec; 1157 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 1158 Reloc &r = *it; 1159 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1160 if (r.offset != 0) { 1161 ++it; 1162 continue; 1163 } 1164 uint64_t add = r.addend; 1165 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1166 // Check whether the symbol defined in this file is the prevailing one. 1167 // Skip if it is e.g. a weak def that didn't prevail. 1168 if (sym->getFile() != this) { 1169 ++it; 1170 continue; 1171 } 1172 add += sym->value; 1173 referentIsec = cast<ConcatInputSection>(sym->isec); 1174 } else { 1175 referentIsec = 1176 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1177 } 1178 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1179 // before finalization of __DATA. Moreover, the finalization of unwind 1180 // info depends on the exact addresses that it references. So it is safe 1181 // for compact unwind to reference addresses in __TEXT, but not addresses 1182 // in any other segment. 1183 if (referentIsec->getSegName() != segment_names::text) 1184 error(isec->getLocation(r.offset) + " references section " + 1185 referentIsec->getName() + " which is not in segment __TEXT"); 1186 // The functionAddress relocations are typically section relocations. 1187 // However, unwind info operates on a per-symbol basis, so we search for 1188 // the function symbol here. 1189 Defined *d = findSymbolAtOffset(referentIsec, add); 1190 if (!d) { 1191 ++it; 1192 continue; 1193 } 1194 d->unwindEntry = isec; 1195 // Now that the symbol points to the unwind entry, we can remove the reloc 1196 // that points from the unwind entry back to the symbol. 1197 // 1198 // First, the symbol keeps the unwind entry alive (and not vice versa), so 1199 // this keeps dead-stripping simple. 1200 // 1201 // Moreover, it reduces the work that ICF needs to do to figure out if 1202 // functions with unwind info are foldable. 1203 // 1204 // However, this does make it possible for ICF to fold CUEs that point to 1205 // distinct functions (if the CUEs are otherwise identical). 1206 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that 1207 // each one can hold a distinct functionAddress value. 1208 // 1209 // Given that clang emits relocations in reverse order of address, this 1210 // relocation should be at the end of the vector for most of our input 1211 // object files, so this erase() is typically an O(1) operation. 1212 it = isec->relocs.erase(it); 1213 } 1214 } 1215 } 1216 1217 struct CIE { 1218 macho::Symbol *personalitySymbol = nullptr; 1219 bool fdesHaveAug = false; 1220 uint8_t lsdaPtrSize = 0; // 0 => no LSDA 1221 uint8_t funcPtrSize = 0; 1222 }; 1223 1224 static uint8_t pointerEncodingToSize(uint8_t enc) { 1225 switch (enc & 0xf) { 1226 case dwarf::DW_EH_PE_absptr: 1227 return target->wordSize; 1228 case dwarf::DW_EH_PE_sdata4: 1229 return 4; 1230 case dwarf::DW_EH_PE_sdata8: 1231 // ld64 doesn't actually support sdata8, but this seems simple enough... 1232 return 8; 1233 default: 1234 return 0; 1235 }; 1236 } 1237 1238 static CIE parseCIE(const InputSection *isec, const EhReader &reader, 1239 size_t off) { 1240 // Handling the full generality of possible DWARF encodings would be a major 1241 // pain. We instead take advantage of our knowledge of how llvm-mc encodes 1242 // DWARF and handle just that. 1243 constexpr uint8_t expectedPersonalityEnc = 1244 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; 1245 1246 CIE cie; 1247 uint8_t version = reader.readByte(&off); 1248 if (version != 1 && version != 3) 1249 fatal("Expected CIE version of 1 or 3, got " + Twine(version)); 1250 StringRef aug = reader.readString(&off); 1251 reader.skipLeb128(&off); // skip code alignment 1252 reader.skipLeb128(&off); // skip data alignment 1253 reader.skipLeb128(&off); // skip return address register 1254 reader.skipLeb128(&off); // skip aug data length 1255 uint64_t personalityAddrOff = 0; 1256 for (char c : aug) { 1257 switch (c) { 1258 case 'z': 1259 cie.fdesHaveAug = true; 1260 break; 1261 case 'P': { 1262 uint8_t personalityEnc = reader.readByte(&off); 1263 if (personalityEnc != expectedPersonalityEnc) 1264 reader.failOn(off, "unexpected personality encoding 0x" + 1265 Twine::utohexstr(personalityEnc)); 1266 personalityAddrOff = off; 1267 off += 4; 1268 break; 1269 } 1270 case 'L': { 1271 uint8_t lsdaEnc = reader.readByte(&off); 1272 cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc); 1273 if (cie.lsdaPtrSize == 0) 1274 reader.failOn(off, "unexpected LSDA encoding 0x" + 1275 Twine::utohexstr(lsdaEnc)); 1276 break; 1277 } 1278 case 'R': { 1279 uint8_t pointerEnc = reader.readByte(&off); 1280 cie.funcPtrSize = pointerEncodingToSize(pointerEnc); 1281 if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel)) 1282 reader.failOn(off, "unexpected pointer encoding 0x" + 1283 Twine::utohexstr(pointerEnc)); 1284 break; 1285 } 1286 default: 1287 break; 1288 } 1289 } 1290 if (personalityAddrOff != 0) { 1291 const auto *personalityReloc = isec->getRelocAt(personalityAddrOff); 1292 if (!personalityReloc) 1293 reader.failOn(off, "Failed to locate relocation for personality symbol"); 1294 cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>(); 1295 } 1296 return cie; 1297 } 1298 1299 // EH frame target addresses may be encoded as pcrel offsets. However, instead 1300 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. 1301 // This function recovers the target address from the subtractors, essentially 1302 // performing the inverse operation of EhRelocator. 1303 // 1304 // Concretely, we expect our relocations to write the value of `PC - 1305 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that 1306 // points to a symbol plus an addend. 1307 // 1308 // It is important that the minuend relocation point to a symbol within the 1309 // same section as the fixup value, since sections may get moved around. 1310 // 1311 // For example, for arm64, llvm-mc emits relocations for the target function 1312 // address like so: 1313 // 1314 // ltmp: 1315 // <CIE start> 1316 // ... 1317 // <CIE end> 1318 // ... multiple FDEs ... 1319 // <FDE start> 1320 // <target function address - (ltmp + pcrel offset)> 1321 // ... 1322 // 1323 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` 1324 // will move to an earlier address, and `ltmp + pcrel offset` will no longer 1325 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" 1326 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating 1327 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. 1328 // 1329 // If `Invert` is set, then we instead expect `target_addr - PC` to be written 1330 // to `PC`. 1331 template <bool Invert = false> 1332 Defined * 1333 targetSymFromCanonicalSubtractor(const InputSection *isec, 1334 std::vector<macho::Reloc>::iterator relocIt) { 1335 macho::Reloc &subtrahend = *relocIt; 1336 macho::Reloc &minuend = *std::next(relocIt); 1337 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); 1338 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); 1339 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero 1340 // addend. 1341 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); 1342 Defined *target = 1343 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); 1344 if (!pcSym) { 1345 auto *targetIsec = 1346 cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); 1347 target = findSymbolAtOffset(targetIsec, minuend.addend); 1348 } 1349 if (Invert) 1350 std::swap(pcSym, target); 1351 if (pcSym->isec == isec) { 1352 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) 1353 fatal("invalid FDE relocation in __eh_frame"); 1354 } else { 1355 // Ensure the pcReloc points to a symbol within the current EH frame. 1356 // HACK: we should really verify that the original relocation's semantics 1357 // are preserved. In particular, we should have 1358 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't 1359 // have an easy way to access the offsets from this point in the code; some 1360 // refactoring is needed for that. 1361 macho::Reloc &pcReloc = Invert ? minuend : subtrahend; 1362 pcReloc.referent = isec->symbols[0]; 1363 assert(isec->symbols[0]->value == 0); 1364 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); 1365 } 1366 return target; 1367 } 1368 1369 Defined *findSymbolAtAddress(const std::vector<Section *> §ions, 1370 uint64_t addr) { 1371 Section *sec = findContainingSection(sections, &addr); 1372 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); 1373 return findSymbolAtOffset(isec, addr); 1374 } 1375 1376 // For symbols that don't have compact unwind info, associate them with the more 1377 // general-purpose (and verbose) DWARF unwind info found in __eh_frame. 1378 // 1379 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a 1380 // description of its format. 1381 // 1382 // While parsing, we also look for what MC calls "abs-ified" relocations -- they 1383 // are relocations which are implicitly encoded as offsets in the section data. 1384 // We convert them into explicit Reloc structs so that the EH frames can be 1385 // handled just like a regular ConcatInputSection later in our output phase. 1386 // 1387 // We also need to handle the case where our input object file has explicit 1388 // relocations. This is the case when e.g. it's the output of `ld -r`. We only 1389 // look for the "abs-ified" relocation if an explicit relocation is absent. 1390 void ObjFile::registerEhFrames(Section &ehFrameSection) { 1391 DenseMap<const InputSection *, CIE> cieMap; 1392 for (const Subsection &subsec : ehFrameSection.subsections) { 1393 auto *isec = cast<ConcatInputSection>(subsec.isec); 1394 uint64_t isecOff = subsec.offset; 1395 1396 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure 1397 // that all EH frames have an associated symbol so that we can generate 1398 // subtractor relocs that reference them. 1399 if (isec->symbols.size() == 0) 1400 make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0, 1401 isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false, 1402 /*isPrivateExtern=*/false, /*includeInSymtab=*/false, 1403 /*isReferencedDynamically=*/false, 1404 /*noDeadStrip=*/false); 1405 else if (isec->symbols[0]->value != 0) 1406 fatal("found symbol at unexpected offset in __eh_frame"); 1407 1408 EhReader reader(this, isec->data, subsec.offset); 1409 size_t dataOff = 0; // Offset from the start of the EH frame. 1410 reader.skipValidLength(&dataOff); // readLength() already validated this. 1411 // cieOffOff is the offset from the start of the EH frame to the cieOff 1412 // value, which is itself an offset from the current PC to a CIE. 1413 const size_t cieOffOff = dataOff; 1414 1415 EhRelocator ehRelocator(isec); 1416 auto cieOffRelocIt = llvm::find_if( 1417 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); 1418 InputSection *cieIsec = nullptr; 1419 if (cieOffRelocIt != isec->relocs.end()) { 1420 // We already have an explicit relocation for the CIE offset. 1421 cieIsec = 1422 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) 1423 ->isec; 1424 dataOff += sizeof(uint32_t); 1425 } else { 1426 // If we haven't found a relocation, then the CIE offset is most likely 1427 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that 1428 // and generate a Reloc struct. 1429 uint32_t cieMinuend = reader.readU32(&dataOff); 1430 if (cieMinuend == 0) { 1431 cieIsec = isec; 1432 } else { 1433 uint32_t cieOff = isecOff + dataOff - cieMinuend; 1434 cieIsec = findContainingSubsection(ehFrameSection, &cieOff); 1435 if (cieIsec == nullptr) 1436 fatal("failed to find CIE"); 1437 } 1438 if (cieIsec != isec) 1439 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], 1440 /*length=*/2); 1441 } 1442 if (cieIsec == isec) { 1443 cieMap[cieIsec] = parseCIE(isec, reader, dataOff); 1444 continue; 1445 } 1446 1447 assert(cieMap.count(cieIsec)); 1448 const CIE &cie = cieMap[cieIsec]; 1449 // Offset of the function address within the EH frame. 1450 const size_t funcAddrOff = dataOff; 1451 uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) + 1452 ehFrameSection.addr + isecOff + funcAddrOff; 1453 uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize); 1454 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. 1455 std::optional<uint64_t> lsdaAddrOpt; 1456 if (cie.fdesHaveAug) { 1457 reader.skipLeb128(&dataOff); 1458 lsdaAddrOff = dataOff; 1459 if (cie.lsdaPtrSize != 0) { 1460 uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize); 1461 if (lsdaOff != 0) // FIXME possible to test this? 1462 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; 1463 } 1464 } 1465 1466 auto funcAddrRelocIt = isec->relocs.end(); 1467 auto lsdaAddrRelocIt = isec->relocs.end(); 1468 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { 1469 if (it->offset == funcAddrOff) 1470 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1471 else if (lsdaAddrOpt && it->offset == lsdaAddrOff) 1472 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1473 } 1474 1475 Defined *funcSym; 1476 if (funcAddrRelocIt != isec->relocs.end()) { 1477 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); 1478 // Canonicalize the symbol. If there are multiple symbols at the same 1479 // address, we want both `registerEhFrame` and `registerCompactUnwind` 1480 // to register the unwind entry under same symbol. 1481 // This is not particularly efficient, but we should run into this case 1482 // infrequently (only when handling the output of `ld -r`). 1483 if (funcSym->isec) 1484 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec), 1485 funcSym->value); 1486 } else { 1487 funcSym = findSymbolAtAddress(sections, funcAddr); 1488 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); 1489 } 1490 // The symbol has been coalesced, or already has a compact unwind entry. 1491 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) { 1492 // We must prune unused FDEs for correctness, so we cannot rely on 1493 // -dead_strip being enabled. 1494 isec->live = false; 1495 continue; 1496 } 1497 1498 InputSection *lsdaIsec = nullptr; 1499 if (lsdaAddrRelocIt != isec->relocs.end()) { 1500 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec; 1501 } else if (lsdaAddrOpt) { 1502 uint64_t lsdaAddr = *lsdaAddrOpt; 1503 Section *sec = findContainingSection(sections, &lsdaAddr); 1504 lsdaIsec = 1505 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); 1506 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); 1507 } 1508 1509 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; 1510 funcSym->unwindEntry = isec; 1511 ehRelocator.commit(); 1512 } 1513 1514 // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs 1515 // are normally required to be kept alive if they reference a live symbol. 1516 // However, we've explicitly created a dependency from a symbol to its FDE, so 1517 // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only 1518 // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a 1519 // live symbol (e.g. if there were multiple weak copies). Remove this flag to 1520 // let dead-stripping proceed correctly. 1521 ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT; 1522 } 1523 1524 std::string ObjFile::sourceFile() const { 1525 const char *unitName = compileUnit->getUnitDIE().getShortName(); 1526 // DWARF allows DW_AT_name to be absolute, in which case nothing should be 1527 // prepended. As for the styles, debug info can contain paths from any OS, not 1528 // necessarily an OS we're currently running on. Moreover different 1529 // compilation units can be compiled on different operating systems and linked 1530 // together later. 1531 if (sys::path::is_absolute(unitName, llvm::sys::path::Style::posix) || 1532 sys::path::is_absolute(unitName, llvm::sys::path::Style::windows)) 1533 return unitName; 1534 SmallString<261> dir(compileUnit->getCompilationDir()); 1535 StringRef sep = sys::path::get_separator(); 1536 // We don't use `path::append` here because we want an empty `dir` to result 1537 // in an absolute path. `append` would give us a relative path for that case. 1538 if (!dir.ends_with(sep)) 1539 dir += sep; 1540 return (dir + unitName).str(); 1541 } 1542 1543 lld::DWARFCache *ObjFile::getDwarf() { 1544 llvm::call_once(initDwarf, [this]() { 1545 auto dwObj = DwarfObject::create(this); 1546 if (!dwObj) 1547 return; 1548 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 1549 std::move(dwObj), "", 1550 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 1551 [&](Error warning) { 1552 warn(getName() + ": " + toString(std::move(warning))); 1553 })); 1554 }); 1555 1556 return dwarfCache.get(); 1557 } 1558 // The path can point to either a dylib or a .tbd file. 1559 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1560 std::optional<MemoryBufferRef> mbref = readFile(path); 1561 if (!mbref) { 1562 error("could not read dylib file at " + path); 1563 return nullptr; 1564 } 1565 return loadDylib(*mbref, umbrella); 1566 } 1567 1568 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1569 // the first document storing child pointers to the rest of them. When we are 1570 // processing a given TBD file, we store that top-level document in 1571 // currentTopLevelTapi. When processing re-exports, we search its children for 1572 // potentially matching documents in the same TBD file. Note that the children 1573 // themselves don't point to further documents, i.e. this is a two-level tree. 1574 // 1575 // Re-exports can either refer to on-disk files, or to documents within .tbd 1576 // files. 1577 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1578 const InterfaceFile *currentTopLevelTapi) { 1579 // Search order: 1580 // 1. Install name basename in -F / -L directories. 1581 { 1582 StringRef stem = path::stem(path); 1583 SmallString<128> frameworkName; 1584 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1585 bool isFramework = path.ends_with(frameworkName); 1586 if (isFramework) { 1587 for (StringRef dir : config->frameworkSearchPaths) { 1588 SmallString<128> candidate = dir; 1589 path::append(candidate, frameworkName); 1590 if (std::optional<StringRef> dylibPath = 1591 resolveDylibPath(candidate.str())) 1592 return loadDylib(*dylibPath, umbrella); 1593 } 1594 } else if (std::optional<StringRef> dylibPath = findPathCombination( 1595 stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"})) 1596 return loadDylib(*dylibPath, umbrella); 1597 } 1598 1599 // 2. As absolute path. 1600 if (path::is_absolute(path, path::Style::posix)) 1601 for (StringRef root : config->systemLibraryRoots) 1602 if (std::optional<StringRef> dylibPath = 1603 resolveDylibPath((root + path).str())) 1604 return loadDylib(*dylibPath, umbrella); 1605 1606 // 3. As relative path. 1607 1608 // TODO: Handle -dylib_file 1609 1610 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1611 SmallString<128> newPath; 1612 if (config->outputType == MH_EXECUTE && 1613 path.consume_front("@executable_path/")) { 1614 // ld64 allows overriding this with the undocumented flag -executable_path. 1615 // lld doesn't currently implement that flag. 1616 // FIXME: Consider using finalOutput instead of outputFile. 1617 path::append(newPath, path::parent_path(config->outputFile), path); 1618 path = newPath; 1619 } else if (path.consume_front("@loader_path/")) { 1620 fs::real_path(umbrella->getName(), newPath); 1621 path::remove_filename(newPath); 1622 path::append(newPath, path); 1623 path = newPath; 1624 } else if (path.starts_with("@rpath/")) { 1625 for (StringRef rpath : umbrella->rpaths) { 1626 newPath.clear(); 1627 if (rpath.consume_front("@loader_path/")) { 1628 fs::real_path(umbrella->getName(), newPath); 1629 path::remove_filename(newPath); 1630 } 1631 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1632 if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1633 return loadDylib(*dylibPath, umbrella); 1634 } 1635 } 1636 1637 // FIXME: Should this be further up? 1638 if (currentTopLevelTapi) { 1639 for (InterfaceFile &child : 1640 make_pointee_range(currentTopLevelTapi->documents())) { 1641 assert(child.documents().empty()); 1642 if (path == child.getInstallName()) { 1643 auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, 1644 /*explicitlyLinked=*/false); 1645 file->parseReexports(child); 1646 return file; 1647 } 1648 } 1649 } 1650 1651 if (std::optional<StringRef> dylibPath = resolveDylibPath(path)) 1652 return loadDylib(*dylibPath, umbrella); 1653 1654 return nullptr; 1655 } 1656 1657 // If a re-exported dylib is public (lives in /usr/lib or 1658 // /System/Library/Frameworks), then it is considered implicitly linked: we 1659 // should bind to its symbols directly instead of via the re-exporting umbrella 1660 // library. 1661 static bool isImplicitlyLinked(StringRef path) { 1662 if (!config->implicitDylibs) 1663 return false; 1664 1665 if (path::parent_path(path) == "/usr/lib") 1666 return true; 1667 1668 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1669 if (path.consume_front("/System/Library/Frameworks/")) { 1670 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1671 return path::filename(path) == frameworkName; 1672 } 1673 1674 return false; 1675 } 1676 1677 void DylibFile::loadReexport(StringRef path, DylibFile *umbrella, 1678 const InterfaceFile *currentTopLevelTapi) { 1679 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1680 if (!reexport) 1681 error(toString(this) + ": unable to locate re-export with install name " + 1682 path); 1683 } 1684 1685 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1686 bool isBundleLoader, bool explicitlyLinked) 1687 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1688 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1689 assert(!isBundleLoader || !umbrella); 1690 if (umbrella == nullptr) 1691 umbrella = this; 1692 this->umbrella = umbrella; 1693 1694 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1695 1696 // Initialize installName. 1697 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1698 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1699 currentVersion = read32le(&c->dylib.current_version); 1700 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1701 installName = 1702 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1703 } else if (!isBundleLoader) { 1704 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1705 // so it's OK. 1706 error(toString(this) + ": dylib missing LC_ID_DYLIB load command"); 1707 return; 1708 } 1709 1710 if (config->printEachFile) 1711 message(toString(this)); 1712 inputFiles.insert(this); 1713 1714 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1715 1716 if (!checkCompatibility(this)) 1717 return; 1718 1719 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1720 1721 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1722 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1723 rpaths.push_back(rpath); 1724 } 1725 1726 // Initialize symbols. 1727 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1728 1729 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY); 1730 const auto *exportsTrie = 1731 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE); 1732 if (dyldInfo && exportsTrie) { 1733 // It's unclear what should happen in this case. Maybe we should only error 1734 // out if the two load commands refer to different data? 1735 error(toString(this) + 1736 ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE"); 1737 return; 1738 } 1739 1740 if (dyldInfo) { 1741 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size); 1742 } else if (exportsTrie) { 1743 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize); 1744 } else { 1745 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " + 1746 toString(this)); 1747 } 1748 } 1749 1750 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) { 1751 struct TrieEntry { 1752 StringRef name; 1753 uint64_t flags; 1754 }; 1755 1756 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1757 std::vector<TrieEntry> entries; 1758 // Find all the $ld$* symbols to process first. 1759 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) { 1760 StringRef savedName = saver().save(name); 1761 if (handleLDSymbol(savedName)) 1762 return; 1763 entries.push_back({savedName, flags}); 1764 }); 1765 1766 // Process the "normal" symbols. 1767 for (TrieEntry &entry : entries) { 1768 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name))) 1769 continue; 1770 1771 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1772 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1773 1774 symbols.push_back( 1775 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1776 } 1777 } 1778 1779 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1780 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1781 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1782 target->headerSize; 1783 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1784 auto *cmd = reinterpret_cast<const load_command *>(p); 1785 p += cmd->cmdsize; 1786 1787 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1788 cmd->cmd == LC_REEXPORT_DYLIB) { 1789 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1790 StringRef reexportPath = 1791 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1792 loadReexport(reexportPath, exportingFile, nullptr); 1793 } 1794 1795 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1796 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1797 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1798 if (config->namespaceKind == NamespaceKind::flat && 1799 cmd->cmd == LC_LOAD_DYLIB) { 1800 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1801 StringRef dylibPath = 1802 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1803 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1804 if (!dylib) 1805 error(Twine("unable to locate library '") + dylibPath + 1806 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1807 } 1808 } 1809 } 1810 1811 // Some versions of Xcode ship with .tbd files that don't have the right 1812 // platform settings. 1813 constexpr std::array<StringRef, 3> skipPlatformChecks{ 1814 "/usr/lib/system/libsystem_kernel.dylib", 1815 "/usr/lib/system/libsystem_platform.dylib", 1816 "/usr/lib/system/libsystem_pthread.dylib"}; 1817 1818 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, 1819 bool explicitlyLinked) { 1820 // Catalyst outputs can link against implicitly linked macOS-only libraries. 1821 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) 1822 return false; 1823 return is_contained(interface.targets(), 1824 MachO::Target(config->arch(), PLATFORM_MACOS)); 1825 } 1826 1827 static bool isArchABICompatible(ArchitectureSet archSet, 1828 Architecture targetArch) { 1829 uint32_t cpuType; 1830 uint32_t targetCpuType; 1831 std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch); 1832 1833 return llvm::any_of(archSet, [&](const auto &p) { 1834 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p); 1835 return cpuType == targetCpuType; 1836 }); 1837 } 1838 1839 static bool isTargetPlatformArchCompatible( 1840 InterfaceFile::const_target_range interfaceTargets, Target target) { 1841 if (is_contained(interfaceTargets, target)) 1842 return true; 1843 1844 if (config->forceExactCpuSubtypeMatch) 1845 return false; 1846 1847 ArchitectureSet archSet; 1848 for (const auto &p : interfaceTargets) 1849 if (p.Platform == target.Platform) 1850 archSet.set(p.Arch); 1851 if (archSet.empty()) 1852 return false; 1853 1854 return isArchABICompatible(archSet, target.Arch); 1855 } 1856 1857 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1858 bool isBundleLoader, bool explicitlyLinked) 1859 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1860 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1861 // FIXME: Add test for the missing TBD code path. 1862 1863 if (umbrella == nullptr) 1864 umbrella = this; 1865 this->umbrella = umbrella; 1866 1867 installName = saver().save(interface.getInstallName()); 1868 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1869 currentVersion = interface.getCurrentVersion().rawValue(); 1870 1871 if (config->printEachFile) 1872 message(toString(this)); 1873 inputFiles.insert(this); 1874 1875 if (!is_contained(skipPlatformChecks, installName) && 1876 !isTargetPlatformArchCompatible(interface.targets(), 1877 config->platformInfo.target) && 1878 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { 1879 error(toString(this) + " is incompatible with " + 1880 std::string(config->platformInfo.target)); 1881 return; 1882 } 1883 1884 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1885 1886 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1887 auto addSymbol = [&](const llvm::MachO::Symbol &symbol, 1888 const Twine &name) -> void { 1889 StringRef savedName = saver().save(name); 1890 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1891 return; 1892 1893 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1894 symbol.isWeakDefined(), 1895 symbol.isThreadLocalValue())); 1896 }; 1897 1898 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1899 normalSymbols.reserve(interface.symbolsCount()); 1900 for (const auto *symbol : interface.symbols()) { 1901 if (!isArchABICompatible(symbol->getArchitectures(), config->arch())) 1902 continue; 1903 if (handleLDSymbol(symbol->getName())) 1904 continue; 1905 1906 switch (symbol->getKind()) { 1907 case SymbolKind::GlobalSymbol: 1908 case SymbolKind::ObjectiveCClass: 1909 case SymbolKind::ObjectiveCClassEHType: 1910 case SymbolKind::ObjectiveCInstanceVariable: 1911 normalSymbols.push_back(symbol); 1912 } 1913 } 1914 1915 // TODO(compnerd) filter out symbols based on the target platform 1916 for (const auto *symbol : normalSymbols) { 1917 switch (symbol->getKind()) { 1918 case SymbolKind::GlobalSymbol: 1919 addSymbol(*symbol, symbol->getName()); 1920 break; 1921 case SymbolKind::ObjectiveCClass: 1922 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1923 // want to emulate that. 1924 addSymbol(*symbol, objc::klass + symbol->getName()); 1925 addSymbol(*symbol, objc::metaclass + symbol->getName()); 1926 break; 1927 case SymbolKind::ObjectiveCClassEHType: 1928 addSymbol(*symbol, objc::ehtype + symbol->getName()); 1929 break; 1930 case SymbolKind::ObjectiveCInstanceVariable: 1931 addSymbol(*symbol, objc::ivar + symbol->getName()); 1932 break; 1933 } 1934 } 1935 } 1936 1937 DylibFile::DylibFile(DylibFile *umbrella) 1938 : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced), 1939 explicitlyLinked(false), isBundleLoader(false) { 1940 if (umbrella == nullptr) 1941 umbrella = this; 1942 this->umbrella = umbrella; 1943 } 1944 1945 void DylibFile::parseReexports(const InterfaceFile &interface) { 1946 const InterfaceFile *topLevel = 1947 interface.getParent() == nullptr ? &interface : interface.getParent(); 1948 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1949 InterfaceFile::const_target_range targets = intfRef.targets(); 1950 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1951 isTargetPlatformArchCompatible(targets, config->platformInfo.target)) 1952 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1953 } 1954 } 1955 1956 bool DylibFile::isExplicitlyLinked() const { 1957 if (!explicitlyLinked) 1958 return false; 1959 1960 // If this dylib was explicitly linked, but at least one of the symbols 1961 // of the synthetic dylibs it created via $ld$previous symbols is 1962 // referenced, then that synthetic dylib fulfils the explicit linkedness 1963 // and we can deadstrip this dylib if it's unreferenced. 1964 for (const auto *dylib : extraDylibs) 1965 if (dylib->isReferenced()) 1966 return false; 1967 1968 return true; 1969 } 1970 1971 DylibFile *DylibFile::getSyntheticDylib(StringRef installName, 1972 uint32_t currentVersion, 1973 uint32_t compatVersion) { 1974 for (DylibFile *dylib : extraDylibs) 1975 if (dylib->installName == installName) { 1976 // FIXME: Check what to do if different $ld$previous symbols 1977 // request the same dylib, but with different versions. 1978 return dylib; 1979 } 1980 1981 auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella); 1982 dylib->installName = saver().save(installName); 1983 dylib->currentVersion = currentVersion; 1984 dylib->compatibilityVersion = compatVersion; 1985 extraDylibs.push_back(dylib); 1986 return dylib; 1987 } 1988 1989 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1990 // name, compatibility version or hide/add symbols) for specific target 1991 // versions. 1992 bool DylibFile::handleLDSymbol(StringRef originalName) { 1993 if (!originalName.starts_with("$ld$")) 1994 return false; 1995 1996 StringRef action; 1997 StringRef name; 1998 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1999 if (action == "previous") 2000 handleLDPreviousSymbol(name, originalName); 2001 else if (action == "install_name") 2002 handleLDInstallNameSymbol(name, originalName); 2003 else if (action == "hide") 2004 handleLDHideSymbol(name, originalName); 2005 return true; 2006 } 2007 2008 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 2009 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 2010 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 2011 StringRef installName; 2012 StringRef compatVersion; 2013 StringRef platformStr; 2014 StringRef startVersion; 2015 StringRef endVersion; 2016 StringRef symbolName; 2017 StringRef rest; 2018 2019 std::tie(installName, name) = name.split('$'); 2020 std::tie(compatVersion, name) = name.split('$'); 2021 std::tie(platformStr, name) = name.split('$'); 2022 std::tie(startVersion, name) = name.split('$'); 2023 std::tie(endVersion, name) = name.split('$'); 2024 std::tie(symbolName, rest) = name.rsplit('$'); 2025 2026 // FIXME: Does this do the right thing for zippered files? 2027 unsigned platform; 2028 if (platformStr.getAsInteger(10, platform) || 2029 platform != static_cast<unsigned>(config->platform())) 2030 return; 2031 2032 VersionTuple start; 2033 if (start.tryParse(startVersion)) { 2034 warn(toString(this) + ": failed to parse start version, symbol '" + 2035 originalName + "' ignored"); 2036 return; 2037 } 2038 VersionTuple end; 2039 if (end.tryParse(endVersion)) { 2040 warn(toString(this) + ": failed to parse end version, symbol '" + 2041 originalName + "' ignored"); 2042 return; 2043 } 2044 if (config->platformInfo.target.MinDeployment < start || 2045 config->platformInfo.target.MinDeployment >= end) 2046 return; 2047 2048 // Initialized to compatibilityVersion for the symbolName branch below. 2049 uint32_t newCompatibilityVersion = compatibilityVersion; 2050 uint32_t newCurrentVersionForSymbol = currentVersion; 2051 if (!compatVersion.empty()) { 2052 VersionTuple cVersion; 2053 if (cVersion.tryParse(compatVersion)) { 2054 warn(toString(this) + 2055 ": failed to parse compatibility version, symbol '" + originalName + 2056 "' ignored"); 2057 return; 2058 } 2059 newCompatibilityVersion = encodeVersion(cVersion); 2060 newCurrentVersionForSymbol = newCompatibilityVersion; 2061 } 2062 2063 if (!symbolName.empty()) { 2064 // A $ld$previous$ symbol with symbol name adds a symbol with that name to 2065 // a dylib with given name and version. 2066 auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol, 2067 newCompatibilityVersion); 2068 2069 // The tbd file usually contains the $ld$previous symbol for an old version, 2070 // and then the symbol itself later, for newer deployment targets, like so: 2071 // symbols: [ 2072 // '$ld$previous$/Another$$1$3.0$14.0$_zzz$', 2073 // _zzz, 2074 // ] 2075 // Since the symbols are sorted, adding them to the symtab in the given 2076 // order means the $ld$previous version of _zzz will prevail, as desired. 2077 dylib->symbols.push_back(symtab->addDylib( 2078 saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false)); 2079 return; 2080 } 2081 2082 // A $ld$previous$ symbol without symbol name modifies the dylib it's in. 2083 this->installName = saver().save(installName); 2084 this->compatibilityVersion = newCompatibilityVersion; 2085 } 2086 2087 void DylibFile::handleLDInstallNameSymbol(StringRef name, 2088 StringRef originalName) { 2089 // originalName: $ld$ install_name $ os<version> $ install_name 2090 StringRef condition, installName; 2091 std::tie(condition, installName) = name.split('$'); 2092 VersionTuple version; 2093 if (!condition.consume_front("os") || version.tryParse(condition)) 2094 warn(toString(this) + ": failed to parse os version, symbol '" + 2095 originalName + "' ignored"); 2096 else if (version == config->platformInfo.target.MinDeployment) 2097 this->installName = saver().save(installName); 2098 } 2099 2100 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 2101 StringRef symbolName; 2102 bool shouldHide = true; 2103 if (name.starts_with("os")) { 2104 // If it's hidden based on versions. 2105 name = name.drop_front(2); 2106 StringRef minVersion; 2107 std::tie(minVersion, symbolName) = name.split('$'); 2108 VersionTuple versionTup; 2109 if (versionTup.tryParse(minVersion)) { 2110 warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName + 2111 "` ignored."); 2112 return; 2113 } 2114 shouldHide = versionTup == config->platformInfo.target.MinDeployment; 2115 } else { 2116 symbolName = name; 2117 } 2118 2119 if (shouldHide) 2120 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 2121 } 2122 2123 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 2124 if (config->applicationExtension && !dylibIsAppExtensionSafe) 2125 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 2126 } 2127 2128 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden) 2129 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)), 2130 forceHidden(forceHidden) {} 2131 2132 void ArchiveFile::addLazySymbols() { 2133 // Avoid calling getMemoryBufferRef() on zero-symbol archive 2134 // since that crashes. 2135 if (file->isEmpty() || file->getNumberOfSymbols() == 0) 2136 return; 2137 2138 Error err = Error::success(); 2139 auto child = file->child_begin(err); 2140 // Ignore the I/O error here - will be reported later. 2141 if (!err) { 2142 Expected<MemoryBufferRef> mbOrErr = child->getMemoryBufferRef(); 2143 if (!mbOrErr) { 2144 llvm::consumeError(mbOrErr.takeError()); 2145 } else { 2146 if (identify_magic(mbOrErr->getBuffer()) == file_magic::macho_object) { 2147 if (target->wordSize == 8) 2148 compatArch = compatWithTargetArch( 2149 this, reinterpret_cast<const LP64::mach_header *>( 2150 mbOrErr->getBufferStart())); 2151 else 2152 compatArch = compatWithTargetArch( 2153 this, reinterpret_cast<const ILP32::mach_header *>( 2154 mbOrErr->getBufferStart())); 2155 if (!compatArch) 2156 return; 2157 } 2158 } 2159 } 2160 2161 for (const object::Archive::Symbol &sym : file->symbols()) 2162 symtab->addLazyArchive(sym.getName(), this, sym); 2163 } 2164 2165 static Expected<InputFile *> 2166 loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 2167 uint64_t offsetInArchive, bool forceHidden, bool compatArch) { 2168 if (config->zeroModTime) 2169 modTime = 0; 2170 2171 switch (identify_magic(mb.getBuffer())) { 2172 case file_magic::macho_object: 2173 return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden, 2174 compatArch); 2175 case file_magic::bitcode: 2176 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false, 2177 forceHidden, compatArch); 2178 default: 2179 return createStringError(inconvertibleErrorCode(), 2180 mb.getBufferIdentifier() + 2181 " has unhandled file type"); 2182 } 2183 } 2184 2185 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 2186 if (!seen.insert(c.getChildOffset()).second) 2187 return Error::success(); 2188 2189 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 2190 if (!mb) 2191 return mb.takeError(); 2192 2193 // Thin archives refer to .o files, so --reproduce needs the .o files too. 2194 if (tar && c.getParent()->isThin()) 2195 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 2196 2197 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 2198 if (!modTime) 2199 return modTime.takeError(); 2200 2201 Expected<InputFile *> file = 2202 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset(), 2203 forceHidden, compatArch); 2204 2205 if (!file) 2206 return file.takeError(); 2207 2208 inputFiles.insert(*file); 2209 printArchiveMemberLoad(reason, *file); 2210 return Error::success(); 2211 } 2212 2213 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 2214 object::Archive::Child c = 2215 CHECK(sym.getMember(), toString(this) + 2216 ": could not get the member defining symbol " + 2217 toMachOString(sym)); 2218 2219 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 2220 // and become invalid after that call. Copy it to the stack so we can refer 2221 // to it later. 2222 const object::Archive::Symbol symCopy = sym; 2223 2224 // ld64 doesn't demangle sym here even with -demangle. 2225 // Match that: intentionally don't call toMachOString(). 2226 if (Error e = fetch(c, symCopy.getName())) 2227 error(toString(this) + ": could not get the member defining symbol " + 2228 toMachOString(symCopy) + ": " + toString(std::move(e))); 2229 } 2230 2231 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 2232 BitcodeFile &file) { 2233 StringRef name = saver().save(objSym.getName()); 2234 2235 if (objSym.isUndefined()) 2236 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 2237 2238 // TODO: Write a test demonstrating why computing isPrivateExtern before 2239 // LTO compilation is important. 2240 bool isPrivateExtern = false; 2241 switch (objSym.getVisibility()) { 2242 case GlobalValue::HiddenVisibility: 2243 isPrivateExtern = true; 2244 break; 2245 case GlobalValue::ProtectedVisibility: 2246 error(name + " has protected visibility, which is not supported by Mach-O"); 2247 break; 2248 case GlobalValue::DefaultVisibility: 2249 break; 2250 } 2251 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() || 2252 file.forceHidden; 2253 2254 if (objSym.isCommon()) 2255 return symtab->addCommon(name, &file, objSym.getCommonSize(), 2256 objSym.getCommonAlignment(), isPrivateExtern); 2257 2258 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 2259 /*size=*/0, objSym.isWeak(), isPrivateExtern, 2260 /*isReferencedDynamically=*/false, 2261 /*noDeadStrip=*/false, 2262 /*isWeakDefCanBeHidden=*/false); 2263 } 2264 2265 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 2266 uint64_t offsetInArchive, bool lazy, bool forceHidden, 2267 bool compatArch) 2268 : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) { 2269 this->archiveName = std::string(archiveName); 2270 this->compatArch = compatArch; 2271 std::string path = mb.getBufferIdentifier().str(); 2272 if (config->thinLTOIndexOnly) 2273 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 2274 2275 // If the parent archive already determines that the arch is not compat with 2276 // target, then just return. 2277 if (!compatArch) 2278 return; 2279 2280 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 2281 // name. If two members with the same name are provided, this causes a 2282 // collision and ThinLTO can't proceed. 2283 // So, we append the archive name to disambiguate two members with the same 2284 // name from multiple different archives, and offset within the archive to 2285 // disambiguate two members of the same name from a single archive. 2286 MemoryBufferRef mbref(mb.getBuffer(), 2287 saver().save(archiveName.empty() 2288 ? path 2289 : archiveName + "(" + 2290 sys::path::filename(path) + ")" + 2291 utostr(offsetInArchive))); 2292 obj = check(lto::InputFile::create(mbref)); 2293 if (lazy) 2294 parseLazy(); 2295 else 2296 parse(); 2297 } 2298 2299 void BitcodeFile::parse() { 2300 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 2301 // "winning" symbol will then be marked as Prevailing at LTO compilation 2302 // time. 2303 symbols.resize(obj->symbols().size()); 2304 2305 // Process defined symbols first. See the comment at the end of 2306 // ObjFile<>::parseSymbols. 2307 for (auto it : llvm::enumerate(obj->symbols())) 2308 if (!it.value().isUndefined()) 2309 symbols[it.index()] = createBitcodeSymbol(it.value(), *this); 2310 for (auto it : llvm::enumerate(obj->symbols())) 2311 if (it.value().isUndefined()) 2312 symbols[it.index()] = createBitcodeSymbol(it.value(), *this); 2313 } 2314 2315 void BitcodeFile::parseLazy() { 2316 symbols.resize(obj->symbols().size()); 2317 for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) { 2318 if (!objSym.isUndefined()) { 2319 symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this); 2320 if (!lazy) 2321 break; 2322 } 2323 } 2324 } 2325 2326 std::string macho::replaceThinLTOSuffix(StringRef path) { 2327 auto [suffix, repl] = config->thinLTOObjectSuffixReplace; 2328 if (path.consume_back(suffix)) 2329 return (path + repl).str(); 2330 return std::string(path); 2331 } 2332 2333 void macho::extract(InputFile &file, StringRef reason) { 2334 if (!file.lazy) 2335 return; 2336 file.lazy = false; 2337 2338 printArchiveMemberLoad(reason, &file); 2339 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 2340 bitcode->parse(); 2341 } else { 2342 auto &f = cast<ObjFile>(file); 2343 if (target->wordSize == 8) 2344 f.parse<LP64>(); 2345 else 2346 f.parse<ILP32>(); 2347 } 2348 } 2349 2350 template void ObjFile::parse<LP64>(); 2351