1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "EhFrame.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
52 #include "ObjC.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
56 #include "Symbols.h"
57 #include "SyntheticSections.h"
58 #include "Target.h"
59
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/LEB128.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/TarWriter.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/TextAPI/Architecture.h"
74 #include "llvm/TextAPI/InterfaceFile.h"
75
76 #include <optional>
77 #include <type_traits>
78
79 using namespace llvm;
80 using namespace llvm::MachO;
81 using namespace llvm::support::endian;
82 using namespace llvm::sys;
83 using namespace lld;
84 using namespace lld::macho;
85
86 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
toString(const InputFile * f)87 std::string lld::toString(const InputFile *f) {
88 if (!f)
89 return "<internal>";
90
91 // Multiple dylibs can be defined in one .tbd file.
92 if (const auto *dylibFile = dyn_cast<DylibFile>(f))
93 if (f->getName().ends_with(".tbd"))
94 return (f->getName() + "(" + dylibFile->installName + ")").str();
95
96 if (f->archiveName.empty())
97 return std::string(f->getName());
98 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
99 }
100
toString(const Section & sec)101 std::string lld::toString(const Section &sec) {
102 return (toString(sec.file) + ":(" + sec.name + ")").str();
103 }
104
105 SetVector<InputFile *> macho::inputFiles;
106 std::unique_ptr<TarWriter> macho::tar;
107 int InputFile::idCount = 0;
108
decodeVersion(uint32_t version)109 static VersionTuple decodeVersion(uint32_t version) {
110 unsigned major = version >> 16;
111 unsigned minor = (version >> 8) & 0xffu;
112 unsigned subMinor = version & 0xffu;
113 return VersionTuple(major, minor, subMinor);
114 }
115
getPlatformInfos(const InputFile * input)116 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
117 if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
118 return {};
119
120 const char *hdr = input->mb.getBufferStart();
121
122 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
123 std::vector<PlatformInfo> platformInfos;
124 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
125 PlatformInfo info;
126 info.target.Platform = static_cast<PlatformType>(cmd->platform);
127 info.target.MinDeployment = decodeVersion(cmd->minos);
128 platformInfos.emplace_back(std::move(info));
129 }
130 for (auto *cmd : findCommands<version_min_command>(
131 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
132 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
133 PlatformInfo info;
134 switch (cmd->cmd) {
135 case LC_VERSION_MIN_MACOSX:
136 info.target.Platform = PLATFORM_MACOS;
137 break;
138 case LC_VERSION_MIN_IPHONEOS:
139 info.target.Platform = PLATFORM_IOS;
140 break;
141 case LC_VERSION_MIN_TVOS:
142 info.target.Platform = PLATFORM_TVOS;
143 break;
144 case LC_VERSION_MIN_WATCHOS:
145 info.target.Platform = PLATFORM_WATCHOS;
146 break;
147 }
148 info.target.MinDeployment = decodeVersion(cmd->version);
149 platformInfos.emplace_back(std::move(info));
150 }
151
152 return platformInfos;
153 }
154
checkCompatibility(const InputFile * input)155 static bool checkCompatibility(const InputFile *input) {
156 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
157 if (platformInfos.empty())
158 return true;
159
160 auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
161 return removeSimulator(info.target.Platform) ==
162 removeSimulator(config->platform());
163 });
164 if (it == platformInfos.end()) {
165 std::string platformNames;
166 raw_string_ostream os(platformNames);
167 interleave(
168 platformInfos, os,
169 [&](const PlatformInfo &info) {
170 os << getPlatformName(info.target.Platform);
171 },
172 "/");
173 error(toString(input) + " has platform " + platformNames +
174 Twine(", which is different from target platform ") +
175 getPlatformName(config->platform()));
176 return false;
177 }
178
179 if (it->target.MinDeployment > config->platformInfo.target.MinDeployment)
180 warn(toString(input) + " has version " +
181 it->target.MinDeployment.getAsString() +
182 ", which is newer than target minimum of " +
183 config->platformInfo.target.MinDeployment.getAsString());
184
185 return true;
186 }
187
188 template <class Header>
compatWithTargetArch(const InputFile * file,const Header * hdr)189 static bool compatWithTargetArch(const InputFile *file, const Header *hdr) {
190 uint32_t cpuType;
191 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch());
192
193 if (hdr->cputype != cpuType) {
194 Architecture arch =
195 getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
196 auto msg = config->errorForArchMismatch
197 ? static_cast<void (*)(const Twine &)>(error)
198 : warn;
199
200 msg(toString(file) + " has architecture " + getArchitectureName(arch) +
201 " which is incompatible with target architecture " +
202 getArchitectureName(config->arch()));
203 return false;
204 }
205
206 return checkCompatibility(file);
207 }
208
209 // This cache mostly exists to store system libraries (and .tbds) as they're
210 // loaded, rather than the input archives, which are already cached at a higher
211 // level, and other files like the filelist that are only read once.
212 // Theoretically this caching could be more efficient by hoisting it, but that
213 // would require altering many callers to track the state.
214 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
215 // Open a given file path and return it as a memory-mapped file.
readFile(StringRef path)216 std::optional<MemoryBufferRef> macho::readFile(StringRef path) {
217 CachedHashStringRef key(path);
218 auto entry = cachedReads.find(key);
219 if (entry != cachedReads.end())
220 return entry->second;
221
222 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
223 if (std::error_code ec = mbOrErr.getError()) {
224 error("cannot open " + path + ": " + ec.message());
225 return std::nullopt;
226 }
227
228 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
229 MemoryBufferRef mbref = mb->getMemBufferRef();
230 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
231
232 // If this is a regular non-fat file, return it.
233 const char *buf = mbref.getBufferStart();
234 const auto *hdr = reinterpret_cast<const fat_header *>(buf);
235 if (mbref.getBufferSize() < sizeof(uint32_t) ||
236 read32be(&hdr->magic) != FAT_MAGIC) {
237 if (tar)
238 tar->append(relativeToRoot(path), mbref.getBuffer());
239 return cachedReads[key] = mbref;
240 }
241
242 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
243
244 // Object files and archive files may be fat files, which contain multiple
245 // real files for different CPU ISAs. Here, we search for a file that matches
246 // with the current link target and returns it as a MemoryBufferRef.
247 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
248 auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) {
249 return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype));
250 };
251
252 std::vector<StringRef> archs;
253 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
254 if (reinterpret_cast<const char *>(arch + i + 1) >
255 buf + mbref.getBufferSize()) {
256 error(path + ": fat_arch struct extends beyond end of file");
257 return std::nullopt;
258 }
259
260 uint32_t cpuType = read32be(&arch[i].cputype);
261 uint32_t cpuSubtype =
262 read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK;
263
264 // FIXME: LD64 has a more complex fallback logic here.
265 // Consider implementing that as well?
266 if (cpuType != static_cast<uint32_t>(target->cpuType) ||
267 cpuSubtype != target->cpuSubtype) {
268 archs.emplace_back(getArchName(cpuType, cpuSubtype));
269 continue;
270 }
271
272 uint32_t offset = read32be(&arch[i].offset);
273 uint32_t size = read32be(&arch[i].size);
274 if (offset + size > mbref.getBufferSize())
275 error(path + ": slice extends beyond end of file");
276 if (tar)
277 tar->append(relativeToRoot(path), mbref.getBuffer());
278 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
279 path.copy(bAlloc));
280 }
281
282 auto targetArchName = getArchName(target->cpuType, target->cpuSubtype);
283 warn(path + ": ignoring file because it is universal (" + join(archs, ",") +
284 ") but does not contain the " + targetArchName + " architecture");
285 return std::nullopt;
286 }
287
InputFile(Kind kind,const InterfaceFile & interface)288 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
289 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
290
291 // Some sections comprise of fixed-size records, so instead of splitting them at
292 // symbol boundaries, we split them based on size. Records are distinct from
293 // literals in that they may contain references to other sections, instead of
294 // being leaf nodes in the InputSection graph.
295 //
296 // Note that "record" is a term I came up with. In contrast, "literal" is a term
297 // used by the Mach-O format.
getRecordSize(StringRef segname,StringRef name)298 static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) {
299 if (name == section_names::compactUnwind) {
300 if (segname == segment_names::ld)
301 return target->wordSize == 8 ? 32 : 20;
302 }
303 if (!config->dedupStrings)
304 return {};
305
306 if (name == section_names::cfString && segname == segment_names::data)
307 return target->wordSize == 8 ? 32 : 16;
308
309 if (config->icfLevel == ICFLevel::none)
310 return {};
311
312 if (name == section_names::objcClassRefs && segname == segment_names::data)
313 return target->wordSize;
314
315 if (name == section_names::objcSelrefs && segname == segment_names::data)
316 return target->wordSize;
317 return {};
318 }
319
parseCallGraph(ArrayRef<uint8_t> data,std::vector<CallGraphEntry> & callGraph)320 static Error parseCallGraph(ArrayRef<uint8_t> data,
321 std::vector<CallGraphEntry> &callGraph) {
322 TimeTraceScope timeScope("Parsing call graph section");
323 BinaryStreamReader reader(data, llvm::endianness::little);
324 while (!reader.empty()) {
325 uint32_t fromIndex, toIndex;
326 uint64_t count;
327 if (Error err = reader.readInteger(fromIndex))
328 return err;
329 if (Error err = reader.readInteger(toIndex))
330 return err;
331 if (Error err = reader.readInteger(count))
332 return err;
333 callGraph.emplace_back(fromIndex, toIndex, count);
334 }
335 return Error::success();
336 }
337
338 // Parse the sequence of sections within a single LC_SEGMENT(_64).
339 // Split each section into subsections.
340 template <class SectionHeader>
parseSections(ArrayRef<SectionHeader> sectionHeaders)341 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
342 sections.reserve(sectionHeaders.size());
343 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
344
345 for (const SectionHeader &sec : sectionHeaders) {
346 StringRef name =
347 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
348 StringRef segname =
349 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
350 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
351 if (sec.align >= 32) {
352 error("alignment " + std::to_string(sec.align) + " of section " + name +
353 " is too large");
354 continue;
355 }
356 Section §ion = *sections.back();
357 uint32_t align = 1 << sec.align;
358 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
359 : buf + sec.offset,
360 static_cast<size_t>(sec.size)};
361
362 auto splitRecords = [&](size_t recordSize) -> void {
363 if (data.empty())
364 return;
365 Subsections &subsections = section.subsections;
366 subsections.reserve(data.size() / recordSize);
367 for (uint64_t off = 0; off < data.size(); off += recordSize) {
368 auto *isec = make<ConcatInputSection>(
369 section, data.slice(off, std::min(data.size(), recordSize)), align);
370 subsections.push_back({off, isec});
371 }
372 section.doneSplitting = true;
373 };
374
375 if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
376 if (sec.nreloc)
377 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
378 " contains relocations, which is unsupported");
379 bool dedupLiterals =
380 name == section_names::objcMethname || config->dedupStrings;
381 InputSection *isec =
382 make<CStringInputSection>(section, data, align, dedupLiterals);
383 // FIXME: parallelize this?
384 cast<CStringInputSection>(isec)->splitIntoPieces();
385 section.subsections.push_back({0, isec});
386 } else if (isWordLiteralSection(sec.flags)) {
387 if (sec.nreloc)
388 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
389 " contains relocations, which is unsupported");
390 InputSection *isec = make<WordLiteralInputSection>(section, data, align);
391 section.subsections.push_back({0, isec});
392 } else if (auto recordSize = getRecordSize(segname, name)) {
393 splitRecords(*recordSize);
394 } else if (name == section_names::ehFrame &&
395 segname == segment_names::text) {
396 splitEhFrames(data, *sections.back());
397 } else if (segname == segment_names::llvm) {
398 if (config->callGraphProfileSort && name == section_names::cgProfile)
399 checkError(parseCallGraph(data, callGraph));
400 // ld64 does not appear to emit contents from sections within the __LLVM
401 // segment. Symbols within those sections point to bitcode metadata
402 // instead of actual symbols. Global symbols within those sections could
403 // have the same name without causing duplicate symbol errors. To avoid
404 // spurious duplicate symbol errors, we do not parse these sections.
405 // TODO: Evaluate whether the bitcode metadata is needed.
406 } else if (name == section_names::objCImageInfo &&
407 segname == segment_names::data) {
408 objCImageInfo = data;
409 } else {
410 if (name == section_names::addrSig)
411 addrSigSection = sections.back();
412
413 auto *isec = make<ConcatInputSection>(section, data, align);
414 if (isDebugSection(isec->getFlags()) &&
415 isec->getSegName() == segment_names::dwarf) {
416 // Instead of emitting DWARF sections, we emit STABS symbols to the
417 // object files that contain them. We filter them out early to avoid
418 // parsing their relocations unnecessarily.
419 debugSections.push_back(isec);
420 } else {
421 section.subsections.push_back({0, isec});
422 }
423 }
424 }
425 }
426
splitEhFrames(ArrayRef<uint8_t> data,Section & ehFrameSection)427 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
428 EhReader reader(this, data, /*dataOff=*/0);
429 size_t off = 0;
430 while (off < reader.size()) {
431 uint64_t frameOff = off;
432 uint64_t length = reader.readLength(&off);
433 if (length == 0)
434 break;
435 uint64_t fullLength = length + (off - frameOff);
436 off += length;
437 // We hard-code an alignment of 1 here because we don't actually want our
438 // EH frames to be aligned to the section alignment. EH frame decoders don't
439 // expect this alignment. Moreover, each EH frame must start where the
440 // previous one ends, and where it ends is indicated by the length field.
441 // Unless we update the length field (troublesome), we should keep the
442 // alignment to 1.
443 // Note that we still want to preserve the alignment of the overall section,
444 // just not of the individual EH frames.
445 ehFrameSection.subsections.push_back(
446 {frameOff, make<ConcatInputSection>(ehFrameSection,
447 data.slice(frameOff, fullLength),
448 /*align=*/1)});
449 }
450 ehFrameSection.doneSplitting = true;
451 }
452
453 template <class T>
findContainingSection(const std::vector<Section * > & sections,T * offset)454 static Section *findContainingSection(const std::vector<Section *> §ions,
455 T *offset) {
456 static_assert(std::is_same<uint64_t, T>::value ||
457 std::is_same<uint32_t, T>::value,
458 "unexpected type for offset");
459 auto it = std::prev(llvm::upper_bound(
460 sections, *offset,
461 [](uint64_t value, const Section *sec) { return value < sec->addr; }));
462 *offset -= (*it)->addr;
463 return *it;
464 }
465
466 // Find the subsection corresponding to the greatest section offset that is <=
467 // that of the given offset.
468 //
469 // offset: an offset relative to the start of the original InputSection (before
470 // any subsection splitting has occurred). It will be updated to represent the
471 // same location as an offset relative to the start of the containing
472 // subsection.
473 template <class T>
findContainingSubsection(const Section & section,T * offset)474 static InputSection *findContainingSubsection(const Section §ion,
475 T *offset) {
476 static_assert(std::is_same<uint64_t, T>::value ||
477 std::is_same<uint32_t, T>::value,
478 "unexpected type for offset");
479 auto it = std::prev(llvm::upper_bound(
480 section.subsections, *offset,
481 [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
482 *offset -= it->offset;
483 return it->isec;
484 }
485
486 // Find a symbol at offset `off` within `isec`.
findSymbolAtOffset(const ConcatInputSection * isec,uint64_t off)487 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
488 uint64_t off) {
489 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
490 return d->value < off;
491 });
492 // The offset should point at the exact address of a symbol (with no addend.)
493 if (it == isec->symbols.end() || (*it)->value != off) {
494 assert(isec->wasCoalesced);
495 return nullptr;
496 }
497 return *it;
498 }
499
500 template <class SectionHeader>
validateRelocationInfo(InputFile * file,const SectionHeader & sec,relocation_info rel)501 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
502 relocation_info rel) {
503 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
504 bool valid = true;
505 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
506 valid = false;
507 return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
508 std::to_string(rel.r_address) + " of " + sec.segname + "," +
509 sec.sectname + " in " + toString(file))
510 .str();
511 };
512
513 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
514 error(message("must be extern"));
515 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
516 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
517 "be PC-relative"));
518 if (isThreadLocalVariables(sec.flags) &&
519 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
520 error(message("not allowed in thread-local section, must be UNSIGNED"));
521 if (rel.r_length < 2 || rel.r_length > 3 ||
522 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
523 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
524 error(message("has width " + std::to_string(1 << rel.r_length) +
525 " bytes, but must be " +
526 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
527 " bytes"));
528 }
529 return valid;
530 }
531
532 template <class SectionHeader>
parseRelocations(ArrayRef<SectionHeader> sectionHeaders,const SectionHeader & sec,Section & section)533 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
534 const SectionHeader &sec, Section §ion) {
535 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
536 ArrayRef<relocation_info> relInfos(
537 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
538
539 Subsections &subsections = section.subsections;
540 auto subsecIt = subsections.rbegin();
541 for (size_t i = 0; i < relInfos.size(); i++) {
542 // Paired relocations serve as Mach-O's method for attaching a
543 // supplemental datum to a primary relocation record. ELF does not
544 // need them because the *_RELOC_RELA records contain the extra
545 // addend field, vs. *_RELOC_REL which omit the addend.
546 //
547 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
548 // and the paired *_RELOC_UNSIGNED record holds the minuend. The
549 // datum for each is a symbolic address. The result is the offset
550 // between two addresses.
551 //
552 // The ARM64_RELOC_ADDEND record holds the addend, and the paired
553 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
554 // base symbolic address.
555 //
556 // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into
557 // the instruction stream. On X86, a relocatable address field always
558 // occupies an entire contiguous sequence of byte(s), so there is no need to
559 // merge opcode bits with address bits. Therefore, it's easy and convenient
560 // to store addends in the instruction-stream bytes that would otherwise
561 // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with
562 // address bits so that bitwise arithmetic is necessary to extract and
563 // insert them. Storing addends in the instruction stream is possible, but
564 // inconvenient and more costly at link time.
565
566 relocation_info relInfo = relInfos[i];
567 bool isSubtrahend =
568 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
569 int64_t pairedAddend = 0;
570 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
571 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
572 relInfo = relInfos[++i];
573 }
574 assert(i < relInfos.size());
575 if (!validateRelocationInfo(this, sec, relInfo))
576 continue;
577 if (relInfo.r_address & R_SCATTERED)
578 fatal("TODO: Scattered relocations not supported");
579
580 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
581 assert(!(embeddedAddend && pairedAddend));
582 int64_t totalAddend = pairedAddend + embeddedAddend;
583 Reloc r;
584 r.type = relInfo.r_type;
585 r.pcrel = relInfo.r_pcrel;
586 r.length = relInfo.r_length;
587 r.offset = relInfo.r_address;
588 if (relInfo.r_extern) {
589 r.referent = symbols[relInfo.r_symbolnum];
590 r.addend = isSubtrahend ? 0 : totalAddend;
591 } else {
592 assert(!isSubtrahend);
593 const SectionHeader &referentSecHead =
594 sectionHeaders[relInfo.r_symbolnum - 1];
595 uint64_t referentOffset;
596 if (relInfo.r_pcrel) {
597 // The implicit addend for pcrel section relocations is the pcrel offset
598 // in terms of the addresses in the input file. Here we adjust it so
599 // that it describes the offset from the start of the referent section.
600 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
601 // have pcrel section relocations. We may want to factor this out into
602 // the arch-specific .cpp file.
603 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
604 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
605 referentSecHead.addr;
606 } else {
607 // The addend for a non-pcrel relocation is its absolute address.
608 referentOffset = totalAddend - referentSecHead.addr;
609 }
610 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
611 &referentOffset);
612 r.addend = referentOffset;
613 }
614
615 // Find the subsection that this relocation belongs to.
616 // Though not required by the Mach-O format, clang and gcc seem to emit
617 // relocations in order, so let's take advantage of it. However, ld64 emits
618 // unsorted relocations (in `-r` mode), so we have a fallback for that
619 // uncommon case.
620 InputSection *subsec;
621 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
622 ++subsecIt;
623 if (subsecIt == subsections.rend() ||
624 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
625 subsec = findContainingSubsection(section, &r.offset);
626 // Now that we know the relocs are unsorted, avoid trying the 'fast path'
627 // for the other relocations.
628 subsecIt = subsections.rend();
629 } else {
630 subsec = subsecIt->isec;
631 r.offset -= subsecIt->offset;
632 }
633 subsec->relocs.push_back(r);
634
635 if (isSubtrahend) {
636 relocation_info minuendInfo = relInfos[++i];
637 // SUBTRACTOR relocations should always be followed by an UNSIGNED one
638 // attached to the same address.
639 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
640 relInfo.r_address == minuendInfo.r_address);
641 Reloc p;
642 p.type = minuendInfo.r_type;
643 if (minuendInfo.r_extern) {
644 p.referent = symbols[minuendInfo.r_symbolnum];
645 p.addend = totalAddend;
646 } else {
647 uint64_t referentOffset =
648 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
649 p.referent = findContainingSubsection(
650 *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
651 p.addend = referentOffset;
652 }
653 subsec->relocs.push_back(p);
654 }
655 }
656 }
657
658 template <class NList>
createDefined(const NList & sym,StringRef name,InputSection * isec,uint64_t value,uint64_t size,bool forceHidden)659 static macho::Symbol *createDefined(const NList &sym, StringRef name,
660 InputSection *isec, uint64_t value,
661 uint64_t size, bool forceHidden) {
662 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
663 // N_EXT: Global symbols. These go in the symbol table during the link,
664 // and also in the export table of the output so that the dynamic
665 // linker sees them.
666 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
667 // symbol table during the link so that duplicates are
668 // either reported (for non-weak symbols) or merged
669 // (for weak symbols), but they do not go in the export
670 // table of the output.
671 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
672 // object files) may produce them. LLD does not yet support -r.
673 // These are translation-unit scoped, identical to the `0` case.
674 // 0: Translation-unit scoped. These are not in the symbol table during
675 // link, and not in the export table of the output either.
676 bool isWeakDefCanBeHidden =
677 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
678
679 assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
680
681 if (sym.n_type & N_EXT) {
682 // -load_hidden makes us treat global symbols as linkage unit scoped.
683 // Duplicates are reported but the symbol does not go in the export trie.
684 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
685
686 // lld's behavior for merging symbols is slightly different from ld64:
687 // ld64 picks the winning symbol based on several criteria (see
688 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
689 // just merges metadata and keeps the contents of the first symbol
690 // with that name (see SymbolTable::addDefined). For:
691 // * inline function F in a TU built with -fvisibility-inlines-hidden
692 // * and inline function F in another TU built without that flag
693 // ld64 will pick the one from the file built without
694 // -fvisibility-inlines-hidden.
695 // lld will instead pick the one listed first on the link command line and
696 // give it visibility as if the function was built without
697 // -fvisibility-inlines-hidden.
698 // If both functions have the same contents, this will have the same
699 // behavior. If not, it won't, but the input had an ODR violation in
700 // that case.
701 //
702 // Similarly, merging a symbol
703 // that's isPrivateExtern and not isWeakDefCanBeHidden with one
704 // that's not isPrivateExtern but isWeakDefCanBeHidden technically
705 // should produce one
706 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
707 // with ld64's semantics, because it means the non-private-extern
708 // definition will continue to take priority if more private extern
709 // definitions are encountered. With lld's semantics there's no observable
710 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
711 // that's privateExtern -- neither makes it into the dynamic symbol table,
712 // unless the autohide symbol is explicitly exported.
713 // But if a symbol is both privateExtern and autohide then it can't
714 // be exported.
715 // So we nullify the autohide flag when privateExtern is present
716 // and promote the symbol to privateExtern when it is not already.
717 if (isWeakDefCanBeHidden && isPrivateExtern)
718 isWeakDefCanBeHidden = false;
719 else if (isWeakDefCanBeHidden)
720 isPrivateExtern = true;
721 return symtab->addDefined(
722 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
723 isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY,
724 sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden);
725 }
726 bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec);
727 return make<Defined>(
728 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
729 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
730 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
731 }
732
733 // Absolute symbols are defined symbols that do not have an associated
734 // InputSection. They cannot be weak.
735 template <class NList>
createAbsolute(const NList & sym,InputFile * file,StringRef name,bool forceHidden)736 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
737 StringRef name, bool forceHidden) {
738 assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
739
740 if (sym.n_type & N_EXT) {
741 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
742 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0,
743 /*isWeakDef=*/false, isPrivateExtern,
744 /*isReferencedDynamically=*/false,
745 sym.n_desc & N_NO_DEAD_STRIP,
746 /*isWeakDefCanBeHidden=*/false);
747 }
748 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
749 /*isWeakDef=*/false,
750 /*isExternal=*/false, /*isPrivateExtern=*/false,
751 /*includeInSymtab=*/true,
752 /*isReferencedDynamically=*/false,
753 sym.n_desc & N_NO_DEAD_STRIP);
754 }
755
756 template <class NList>
parseNonSectionSymbol(const NList & sym,const char * strtab)757 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
758 const char *strtab) {
759 StringRef name = StringRef(strtab + sym.n_strx);
760 uint8_t type = sym.n_type & N_TYPE;
761 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
762 switch (type) {
763 case N_UNDF:
764 return sym.n_value == 0
765 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
766 : symtab->addCommon(name, this, sym.n_value,
767 1 << GET_COMM_ALIGN(sym.n_desc),
768 isPrivateExtern);
769 case N_ABS:
770 return createAbsolute(sym, this, name, forceHidden);
771 case N_INDR: {
772 // Not much point in making local aliases -- relocs in the current file can
773 // just refer to the actual symbol itself. ld64 ignores these symbols too.
774 if (!(sym.n_type & N_EXT))
775 return nullptr;
776 StringRef aliasedName = StringRef(strtab + sym.n_value);
777 // isPrivateExtern is the only symbol flag that has an impact on the final
778 // aliased symbol.
779 auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern);
780 aliases.push_back(alias);
781 return alias;
782 }
783 case N_PBUD:
784 error("TODO: support symbols of type N_PBUD");
785 return nullptr;
786 case N_SECT:
787 llvm_unreachable(
788 "N_SECT symbols should not be passed to parseNonSectionSymbol");
789 default:
790 llvm_unreachable("invalid symbol type");
791 }
792 }
793
isUndef(const NList & sym)794 template <class NList> static bool isUndef(const NList &sym) {
795 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
796 }
797
798 template <class LP>
parseSymbols(ArrayRef<typename LP::section> sectionHeaders,ArrayRef<typename LP::nlist> nList,const char * strtab,bool subsectionsViaSymbols)799 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
800 ArrayRef<typename LP::nlist> nList,
801 const char *strtab, bool subsectionsViaSymbols) {
802 using NList = typename LP::nlist;
803
804 // Groups indices of the symbols by the sections that contain them.
805 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
806 symbols.resize(nList.size());
807 SmallVector<unsigned, 32> undefineds;
808 for (uint32_t i = 0; i < nList.size(); ++i) {
809 const NList &sym = nList[i];
810
811 // Ignore debug symbols for now.
812 // FIXME: may need special handling.
813 if (sym.n_type & N_STAB)
814 continue;
815
816 if ((sym.n_type & N_TYPE) == N_SECT) {
817 Subsections &subsections = sections[sym.n_sect - 1]->subsections;
818 // parseSections() may have chosen not to parse this section.
819 if (subsections.empty())
820 continue;
821 symbolsBySection[sym.n_sect - 1].push_back(i);
822 } else if (isUndef(sym)) {
823 undefineds.push_back(i);
824 } else {
825 symbols[i] = parseNonSectionSymbol(sym, strtab);
826 }
827 }
828
829 for (size_t i = 0; i < sections.size(); ++i) {
830 Subsections &subsections = sections[i]->subsections;
831 if (subsections.empty())
832 continue;
833 std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
834 uint64_t sectionAddr = sectionHeaders[i].addr;
835 uint32_t sectionAlign = 1u << sectionHeaders[i].align;
836
837 // Some sections have already been split into subsections during
838 // parseSections(), so we simply need to match Symbols to the corresponding
839 // subsection here.
840 if (sections[i]->doneSplitting) {
841 for (size_t j = 0; j < symbolIndices.size(); ++j) {
842 const uint32_t symIndex = symbolIndices[j];
843 const NList &sym = nList[symIndex];
844 StringRef name = strtab + sym.n_strx;
845 uint64_t symbolOffset = sym.n_value - sectionAddr;
846 InputSection *isec =
847 findContainingSubsection(*sections[i], &symbolOffset);
848 if (symbolOffset != 0) {
849 error(toString(*sections[i]) + ": symbol " + name +
850 " at misaligned offset");
851 continue;
852 }
853 symbols[symIndex] =
854 createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
855 }
856 continue;
857 }
858 sections[i]->doneSplitting = true;
859
860 auto getSymName = [strtab](const NList& sym) -> StringRef {
861 return StringRef(strtab + sym.n_strx);
862 };
863
864 // Calculate symbol sizes and create subsections by splitting the sections
865 // along symbol boundaries.
866 // We populate subsections by repeatedly splitting the last (highest
867 // address) subsection.
868 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
869 // Put extern weak symbols after other symbols at the same address so
870 // that weak symbol coalescing works correctly. See
871 // SymbolTable::addDefined() for details.
872 if (nList[lhs].n_value == nList[rhs].n_value &&
873 nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT)
874 return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF);
875 return nList[lhs].n_value < nList[rhs].n_value;
876 });
877 for (size_t j = 0; j < symbolIndices.size(); ++j) {
878 const uint32_t symIndex = symbolIndices[j];
879 const NList &sym = nList[symIndex];
880 StringRef name = getSymName(sym);
881 Subsection &subsec = subsections.back();
882 InputSection *isec = subsec.isec;
883
884 uint64_t subsecAddr = sectionAddr + subsec.offset;
885 size_t symbolOffset = sym.n_value - subsecAddr;
886 uint64_t symbolSize =
887 j + 1 < symbolIndices.size()
888 ? nList[symbolIndices[j + 1]].n_value - sym.n_value
889 : isec->data.size() - symbolOffset;
890 // There are 4 cases where we do not need to create a new subsection:
891 // 1. If the input file does not use subsections-via-symbols.
892 // 2. Multiple symbols at the same address only induce one subsection.
893 // (The symbolOffset == 0 check covers both this case as well as
894 // the first loop iteration.)
895 // 3. Alternative entry points do not induce new subsections.
896 // 4. If we have a literal section (e.g. __cstring and __literal4).
897 if (!subsectionsViaSymbols || symbolOffset == 0 ||
898 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
899 isec->hasAltEntry = symbolOffset != 0;
900 symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
901 symbolSize, forceHidden);
902 continue;
903 }
904 auto *concatIsec = cast<ConcatInputSection>(isec);
905
906 auto *nextIsec = make<ConcatInputSection>(*concatIsec);
907 nextIsec->wasCoalesced = false;
908 if (isZeroFill(isec->getFlags())) {
909 // Zero-fill sections have NULL data.data() non-zero data.size()
910 nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
911 isec->data = {nullptr, symbolOffset};
912 } else {
913 nextIsec->data = isec->data.slice(symbolOffset);
914 isec->data = isec->data.slice(0, symbolOffset);
915 }
916
917 // By construction, the symbol will be at offset zero in the new
918 // subsection.
919 symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
920 symbolSize, forceHidden);
921 // TODO: ld64 appears to preserve the original alignment as well as each
922 // subsection's offset from the last aligned address. We should consider
923 // emulating that behavior.
924 nextIsec->align = MinAlign(sectionAlign, sym.n_value);
925 subsections.push_back({sym.n_value - sectionAddr, nextIsec});
926 }
927 }
928
929 // Undefined symbols can trigger recursive fetch from Archives due to
930 // LazySymbols. Process defined symbols first so that the relative order
931 // between a defined symbol and an undefined symbol does not change the
932 // symbol resolution behavior. In addition, a set of interconnected symbols
933 // will all be resolved to the same file, instead of being resolved to
934 // different files.
935 for (unsigned i : undefineds)
936 symbols[i] = parseNonSectionSymbol(nList[i], strtab);
937 }
938
OpaqueFile(MemoryBufferRef mb,StringRef segName,StringRef sectName)939 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
940 StringRef sectName)
941 : InputFile(OpaqueKind, mb) {
942 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
943 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
944 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
945 sectName.take_front(16),
946 /*flags=*/0, /*addr=*/0));
947 Section §ion = *sections.back();
948 ConcatInputSection *isec = make<ConcatInputSection>(section, data);
949 isec->live = true;
950 section.subsections.push_back({0, isec});
951 }
952
953 template <class LP>
parseLinkerOptions(SmallVectorImpl<StringRef> & LCLinkerOptions)954 void ObjFile::parseLinkerOptions(SmallVectorImpl<StringRef> &LCLinkerOptions) {
955 using Header = typename LP::mach_header;
956 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
957
958 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
959 StringRef data{reinterpret_cast<const char *>(cmd + 1),
960 cmd->cmdsize - sizeof(linker_option_command)};
961 parseLCLinkerOption(LCLinkerOptions, this, cmd->count, data);
962 }
963 }
964
965 SmallVector<StringRef> macho::unprocessedLCLinkerOptions;
ObjFile(MemoryBufferRef mb,uint32_t modTime,StringRef archiveName,bool lazy,bool forceHidden,bool compatArch,bool builtFromBitcode)966 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
967 bool lazy, bool forceHidden, bool compatArch,
968 bool builtFromBitcode)
969 : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden),
970 builtFromBitcode(builtFromBitcode) {
971 this->archiveName = std::string(archiveName);
972 this->compatArch = compatArch;
973 if (lazy) {
974 if (target->wordSize == 8)
975 parseLazy<LP64>();
976 else
977 parseLazy<ILP32>();
978 } else {
979 if (target->wordSize == 8)
980 parse<LP64>();
981 else
982 parse<ILP32>();
983 }
984 }
985
parse()986 template <class LP> void ObjFile::parse() {
987 using Header = typename LP::mach_header;
988 using SegmentCommand = typename LP::segment_command;
989 using SectionHeader = typename LP::section;
990 using NList = typename LP::nlist;
991
992 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
993 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
994
995 // If we've already checked the arch, then don't need to check again.
996 if (!compatArch)
997 return;
998 if (!(compatArch = compatWithTargetArch(this, hdr)))
999 return;
1000
1001 // We will resolve LC linker options once all native objects are loaded after
1002 // LTO is finished.
1003 SmallVector<StringRef, 4> LCLinkerOptions;
1004 parseLinkerOptions<LP>(LCLinkerOptions);
1005 unprocessedLCLinkerOptions.append(LCLinkerOptions);
1006
1007 ArrayRef<SectionHeader> sectionHeaders;
1008 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
1009 auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
1010 sectionHeaders = ArrayRef<SectionHeader>{
1011 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1012 parseSections(sectionHeaders);
1013 }
1014
1015 // TODO: Error on missing LC_SYMTAB?
1016 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1017 auto *c = reinterpret_cast<const symtab_command *>(cmd);
1018 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1019 c->nsyms);
1020 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1021 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1022 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1023 }
1024
1025 // The relocations may refer to the symbols, so we parse them after we have
1026 // parsed all the symbols.
1027 for (size_t i = 0, n = sections.size(); i < n; ++i)
1028 if (!sections[i]->subsections.empty())
1029 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1030
1031 parseDebugInfo();
1032
1033 Section *ehFrameSection = nullptr;
1034 Section *compactUnwindSection = nullptr;
1035 for (Section *sec : sections) {
1036 Section **s = StringSwitch<Section **>(sec->name)
1037 .Case(section_names::compactUnwind, &compactUnwindSection)
1038 .Case(section_names::ehFrame, &ehFrameSection)
1039 .Default(nullptr);
1040 if (s)
1041 *s = sec;
1042 }
1043 if (compactUnwindSection)
1044 registerCompactUnwind(*compactUnwindSection);
1045 if (ehFrameSection)
1046 registerEhFrames(*ehFrameSection);
1047 }
1048
parseLazy()1049 template <class LP> void ObjFile::parseLazy() {
1050 using Header = typename LP::mach_header;
1051 using NList = typename LP::nlist;
1052
1053 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1054 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1055
1056 if (!compatArch)
1057 return;
1058 if (!(compatArch = compatWithTargetArch(this, hdr)))
1059 return;
1060
1061 const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1062 if (!cmd)
1063 return;
1064 auto *c = reinterpret_cast<const symtab_command *>(cmd);
1065 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1066 c->nsyms);
1067 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1068 symbols.resize(nList.size());
1069 for (const auto &[i, sym] : llvm::enumerate(nList)) {
1070 if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1071 // TODO: Bound checking
1072 StringRef name = strtab + sym.n_strx;
1073 symbols[i] = symtab->addLazyObject(name, *this);
1074 if (!lazy)
1075 break;
1076 }
1077 }
1078 }
1079
parseDebugInfo()1080 void ObjFile::parseDebugInfo() {
1081 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1082 if (!dObj)
1083 return;
1084
1085 // We do not re-use the context from getDwarf() here as that function
1086 // constructs an expensive DWARFCache object.
1087 auto *ctx = make<DWARFContext>(
1088 std::move(dObj), "",
1089 [&](Error err) {
1090 warn(toString(this) + ": " + toString(std::move(err)));
1091 },
1092 [&](Error warning) {
1093 warn(toString(this) + ": " + toString(std::move(warning)));
1094 });
1095
1096 // TODO: Since object files can contain a lot of DWARF info, we should verify
1097 // that we are parsing just the info we need
1098 const DWARFContext::compile_unit_range &units = ctx->compile_units();
1099 // FIXME: There can be more than one compile unit per object file. See
1100 // PR48637.
1101 auto it = units.begin();
1102 compileUnit = it != units.end() ? it->get() : nullptr;
1103 }
1104
getDataInCode() const1105 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1106 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1107 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1108 if (!cmd)
1109 return {};
1110 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1111 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1112 c->datasize / sizeof(data_in_code_entry)};
1113 }
1114
getOptimizationHints() const1115 ArrayRef<uint8_t> ObjFile::getOptimizationHints() const {
1116 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1117 if (auto *cmd =
1118 findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT))
1119 return {buf + cmd->dataoff, cmd->datasize};
1120 return {};
1121 }
1122
1123 // Create pointers from symbols to their associated compact unwind entries.
registerCompactUnwind(Section & compactUnwindSection)1124 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1125 for (const Subsection &subsection : compactUnwindSection.subsections) {
1126 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1127 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1128 // their addends in its data. Thus if ICF operated naively and compared the
1129 // entire contents of each CUE, entries with identical unwind info but e.g.
1130 // belonging to different functions would never be considered equivalent. To
1131 // work around this problem, we remove some parts of the data containing the
1132 // embedded addends. In particular, we remove the function address and LSDA
1133 // pointers. Since these locations are at the start and end of the entry,
1134 // we can do this using a simple, efficient slice rather than performing a
1135 // copy. We are not losing any information here because the embedded
1136 // addends have already been parsed in the corresponding Reloc structs.
1137 //
1138 // Removing these pointers would not be safe if they were pointers to
1139 // absolute symbols. In that case, there would be no corresponding
1140 // relocation. However, (AFAIK) MC cannot emit references to absolute
1141 // symbols for either the function address or the LSDA. However, it *can* do
1142 // so for the personality pointer, so we are not slicing that field away.
1143 //
1144 // Note that we do not adjust the offsets of the corresponding relocations;
1145 // instead, we rely on `relocateCompactUnwind()` to correctly handle these
1146 // truncated input sections.
1147 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1148 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1149 // llvm-mc omits CU entries for functions that need DWARF encoding, but
1150 // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1151 // CU entries from the DWARF info during the output phase.
1152 if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) ==
1153 target->modeDwarfEncoding)
1154 continue;
1155
1156 ConcatInputSection *referentIsec;
1157 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1158 Reloc &r = *it;
1159 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1160 if (r.offset != 0) {
1161 ++it;
1162 continue;
1163 }
1164 uint64_t add = r.addend;
1165 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1166 // Check whether the symbol defined in this file is the prevailing one.
1167 // Skip if it is e.g. a weak def that didn't prevail.
1168 if (sym->getFile() != this) {
1169 ++it;
1170 continue;
1171 }
1172 add += sym->value;
1173 referentIsec = cast<ConcatInputSection>(sym->isec());
1174 } else {
1175 referentIsec =
1176 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1177 }
1178 // Unwind info lives in __DATA, and finalization of __TEXT will occur
1179 // before finalization of __DATA. Moreover, the finalization of unwind
1180 // info depends on the exact addresses that it references. So it is safe
1181 // for compact unwind to reference addresses in __TEXT, but not addresses
1182 // in any other segment.
1183 if (referentIsec->getSegName() != segment_names::text)
1184 error(isec->getLocation(r.offset) + " references section " +
1185 referentIsec->getName() + " which is not in segment __TEXT");
1186 // The functionAddress relocations are typically section relocations.
1187 // However, unwind info operates on a per-symbol basis, so we search for
1188 // the function symbol here.
1189 Defined *d = findSymbolAtOffset(referentIsec, add);
1190 if (!d) {
1191 ++it;
1192 continue;
1193 }
1194 d->originalUnwindEntry = isec;
1195 // Now that the symbol points to the unwind entry, we can remove the reloc
1196 // that points from the unwind entry back to the symbol.
1197 //
1198 // First, the symbol keeps the unwind entry alive (and not vice versa), so
1199 // this keeps dead-stripping simple.
1200 //
1201 // Moreover, it reduces the work that ICF needs to do to figure out if
1202 // functions with unwind info are foldable.
1203 //
1204 // However, this does make it possible for ICF to fold CUEs that point to
1205 // distinct functions (if the CUEs are otherwise identical).
1206 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1207 // each one can hold a distinct functionAddress value.
1208 //
1209 // Given that clang emits relocations in reverse order of address, this
1210 // relocation should be at the end of the vector for most of our input
1211 // object files, so this erase() is typically an O(1) operation.
1212 it = isec->relocs.erase(it);
1213 }
1214 }
1215 }
1216
1217 struct CIE {
1218 macho::Symbol *personalitySymbol = nullptr;
1219 bool fdesHaveAug = false;
1220 uint8_t lsdaPtrSize = 0; // 0 => no LSDA
1221 uint8_t funcPtrSize = 0;
1222 };
1223
pointerEncodingToSize(uint8_t enc)1224 static uint8_t pointerEncodingToSize(uint8_t enc) {
1225 switch (enc & 0xf) {
1226 case dwarf::DW_EH_PE_absptr:
1227 return target->wordSize;
1228 case dwarf::DW_EH_PE_sdata4:
1229 return 4;
1230 case dwarf::DW_EH_PE_sdata8:
1231 // ld64 doesn't actually support sdata8, but this seems simple enough...
1232 return 8;
1233 default:
1234 return 0;
1235 };
1236 }
1237
parseCIE(const InputSection * isec,const EhReader & reader,size_t off)1238 static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1239 size_t off) {
1240 // Handling the full generality of possible DWARF encodings would be a major
1241 // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1242 // DWARF and handle just that.
1243 constexpr uint8_t expectedPersonalityEnc =
1244 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1245
1246 CIE cie;
1247 uint8_t version = reader.readByte(&off);
1248 if (version != 1 && version != 3)
1249 fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1250 StringRef aug = reader.readString(&off);
1251 reader.skipLeb128(&off); // skip code alignment
1252 reader.skipLeb128(&off); // skip data alignment
1253 reader.skipLeb128(&off); // skip return address register
1254 reader.skipLeb128(&off); // skip aug data length
1255 uint64_t personalityAddrOff = 0;
1256 for (char c : aug) {
1257 switch (c) {
1258 case 'z':
1259 cie.fdesHaveAug = true;
1260 break;
1261 case 'P': {
1262 uint8_t personalityEnc = reader.readByte(&off);
1263 if (personalityEnc != expectedPersonalityEnc)
1264 reader.failOn(off, "unexpected personality encoding 0x" +
1265 Twine::utohexstr(personalityEnc));
1266 personalityAddrOff = off;
1267 off += 4;
1268 break;
1269 }
1270 case 'L': {
1271 uint8_t lsdaEnc = reader.readByte(&off);
1272 cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
1273 if (cie.lsdaPtrSize == 0)
1274 reader.failOn(off, "unexpected LSDA encoding 0x" +
1275 Twine::utohexstr(lsdaEnc));
1276 break;
1277 }
1278 case 'R': {
1279 uint8_t pointerEnc = reader.readByte(&off);
1280 cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
1281 if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
1282 reader.failOn(off, "unexpected pointer encoding 0x" +
1283 Twine::utohexstr(pointerEnc));
1284 break;
1285 }
1286 default:
1287 break;
1288 }
1289 }
1290 if (personalityAddrOff != 0) {
1291 const auto *personalityReloc = isec->getRelocAt(personalityAddrOff);
1292 if (!personalityReloc)
1293 reader.failOn(off, "Failed to locate relocation for personality symbol");
1294 cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>();
1295 }
1296 return cie;
1297 }
1298
1299 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1300 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1301 // This function recovers the target address from the subtractors, essentially
1302 // performing the inverse operation of EhRelocator.
1303 //
1304 // Concretely, we expect our relocations to write the value of `PC -
1305 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1306 // points to a symbol plus an addend.
1307 //
1308 // It is important that the minuend relocation point to a symbol within the
1309 // same section as the fixup value, since sections may get moved around.
1310 //
1311 // For example, for arm64, llvm-mc emits relocations for the target function
1312 // address like so:
1313 //
1314 // ltmp:
1315 // <CIE start>
1316 // ...
1317 // <CIE end>
1318 // ... multiple FDEs ...
1319 // <FDE start>
1320 // <target function address - (ltmp + pcrel offset)>
1321 // ...
1322 //
1323 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1324 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1325 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1326 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1327 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1328 //
1329 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1330 // to `PC`.
1331 template <bool Invert = false>
1332 Defined *
targetSymFromCanonicalSubtractor(const InputSection * isec,std::vector<macho::Reloc>::iterator relocIt)1333 targetSymFromCanonicalSubtractor(const InputSection *isec,
1334 std::vector<macho::Reloc>::iterator relocIt) {
1335 macho::Reloc &subtrahend = *relocIt;
1336 macho::Reloc &minuend = *std::next(relocIt);
1337 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1338 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1339 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1340 // addend.
1341 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1342 Defined *target =
1343 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1344 if (!pcSym) {
1345 auto *targetIsec =
1346 cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1347 target = findSymbolAtOffset(targetIsec, minuend.addend);
1348 }
1349 if (Invert)
1350 std::swap(pcSym, target);
1351 if (pcSym->isec() == isec) {
1352 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1353 fatal("invalid FDE relocation in __eh_frame");
1354 } else {
1355 // Ensure the pcReloc points to a symbol within the current EH frame.
1356 // HACK: we should really verify that the original relocation's semantics
1357 // are preserved. In particular, we should have
1358 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1359 // have an easy way to access the offsets from this point in the code; some
1360 // refactoring is needed for that.
1361 macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1362 pcReloc.referent = isec->symbols[0];
1363 assert(isec->symbols[0]->value == 0);
1364 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1365 }
1366 return target;
1367 }
1368
findSymbolAtAddress(const std::vector<Section * > & sections,uint64_t addr)1369 Defined *findSymbolAtAddress(const std::vector<Section *> §ions,
1370 uint64_t addr) {
1371 Section *sec = findContainingSection(sections, &addr);
1372 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1373 return findSymbolAtOffset(isec, addr);
1374 }
1375
1376 // For symbols that don't have compact unwind info, associate them with the more
1377 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1378 //
1379 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1380 // description of its format.
1381 //
1382 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1383 // are relocations which are implicitly encoded as offsets in the section data.
1384 // We convert them into explicit Reloc structs so that the EH frames can be
1385 // handled just like a regular ConcatInputSection later in our output phase.
1386 //
1387 // We also need to handle the case where our input object file has explicit
1388 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1389 // look for the "abs-ified" relocation if an explicit relocation is absent.
registerEhFrames(Section & ehFrameSection)1390 void ObjFile::registerEhFrames(Section &ehFrameSection) {
1391 DenseMap<const InputSection *, CIE> cieMap;
1392 for (const Subsection &subsec : ehFrameSection.subsections) {
1393 auto *isec = cast<ConcatInputSection>(subsec.isec);
1394 uint64_t isecOff = subsec.offset;
1395
1396 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1397 // that all EH frames have an associated symbol so that we can generate
1398 // subtractor relocs that reference them.
1399 if (isec->symbols.size() == 0)
1400 make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0,
1401 isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false,
1402 /*isPrivateExtern=*/false, /*includeInSymtab=*/false,
1403 /*isReferencedDynamically=*/false,
1404 /*noDeadStrip=*/false);
1405 else if (isec->symbols[0]->value != 0)
1406 fatal("found symbol at unexpected offset in __eh_frame");
1407
1408 EhReader reader(this, isec->data, subsec.offset);
1409 size_t dataOff = 0; // Offset from the start of the EH frame.
1410 reader.skipValidLength(&dataOff); // readLength() already validated this.
1411 // cieOffOff is the offset from the start of the EH frame to the cieOff
1412 // value, which is itself an offset from the current PC to a CIE.
1413 const size_t cieOffOff = dataOff;
1414
1415 EhRelocator ehRelocator(isec);
1416 auto cieOffRelocIt = llvm::find_if(
1417 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1418 InputSection *cieIsec = nullptr;
1419 if (cieOffRelocIt != isec->relocs.end()) {
1420 // We already have an explicit relocation for the CIE offset.
1421 cieIsec =
1422 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1423 ->isec();
1424 dataOff += sizeof(uint32_t);
1425 } else {
1426 // If we haven't found a relocation, then the CIE offset is most likely
1427 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1428 // and generate a Reloc struct.
1429 uint32_t cieMinuend = reader.readU32(&dataOff);
1430 if (cieMinuend == 0) {
1431 cieIsec = isec;
1432 } else {
1433 uint32_t cieOff = isecOff + dataOff - cieMinuend;
1434 cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1435 if (cieIsec == nullptr)
1436 fatal("failed to find CIE");
1437 }
1438 if (cieIsec != isec)
1439 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1440 /*length=*/2);
1441 }
1442 if (cieIsec == isec) {
1443 cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1444 continue;
1445 }
1446
1447 assert(cieMap.count(cieIsec));
1448 const CIE &cie = cieMap[cieIsec];
1449 // Offset of the function address within the EH frame.
1450 const size_t funcAddrOff = dataOff;
1451 uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
1452 ehFrameSection.addr + isecOff + funcAddrOff;
1453 uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
1454 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1455 std::optional<uint64_t> lsdaAddrOpt;
1456 if (cie.fdesHaveAug) {
1457 reader.skipLeb128(&dataOff);
1458 lsdaAddrOff = dataOff;
1459 if (cie.lsdaPtrSize != 0) {
1460 uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
1461 if (lsdaOff != 0) // FIXME possible to test this?
1462 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1463 }
1464 }
1465
1466 auto funcAddrRelocIt = isec->relocs.end();
1467 auto lsdaAddrRelocIt = isec->relocs.end();
1468 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1469 if (it->offset == funcAddrOff)
1470 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1471 else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1472 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1473 }
1474
1475 Defined *funcSym;
1476 if (funcAddrRelocIt != isec->relocs.end()) {
1477 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1478 // Canonicalize the symbol. If there are multiple symbols at the same
1479 // address, we want both `registerEhFrame` and `registerCompactUnwind`
1480 // to register the unwind entry under same symbol.
1481 // This is not particularly efficient, but we should run into this case
1482 // infrequently (only when handling the output of `ld -r`).
1483 if (funcSym->isec())
1484 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec()),
1485 funcSym->value);
1486 } else {
1487 funcSym = findSymbolAtAddress(sections, funcAddr);
1488 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1489 }
1490 // The symbol has been coalesced, or already has a compact unwind entry.
1491 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry()) {
1492 // We must prune unused FDEs for correctness, so we cannot rely on
1493 // -dead_strip being enabled.
1494 isec->live = false;
1495 continue;
1496 }
1497
1498 InputSection *lsdaIsec = nullptr;
1499 if (lsdaAddrRelocIt != isec->relocs.end()) {
1500 lsdaIsec =
1501 targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec();
1502 } else if (lsdaAddrOpt) {
1503 uint64_t lsdaAddr = *lsdaAddrOpt;
1504 Section *sec = findContainingSection(sections, &lsdaAddr);
1505 lsdaIsec =
1506 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1507 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1508 }
1509
1510 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1511 funcSym->originalUnwindEntry = isec;
1512 ehRelocator.commit();
1513 }
1514
1515 // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
1516 // are normally required to be kept alive if they reference a live symbol.
1517 // However, we've explicitly created a dependency from a symbol to its FDE, so
1518 // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
1519 // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
1520 // live symbol (e.g. if there were multiple weak copies). Remove this flag to
1521 // let dead-stripping proceed correctly.
1522 ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
1523 }
1524
sourceFile() const1525 std::string ObjFile::sourceFile() const {
1526 const char *unitName = compileUnit->getUnitDIE().getShortName();
1527 // DWARF allows DW_AT_name to be absolute, in which case nothing should be
1528 // prepended. As for the styles, debug info can contain paths from any OS, not
1529 // necessarily an OS we're currently running on. Moreover different
1530 // compilation units can be compiled on different operating systems and linked
1531 // together later.
1532 if (sys::path::is_absolute(unitName, llvm::sys::path::Style::posix) ||
1533 sys::path::is_absolute(unitName, llvm::sys::path::Style::windows))
1534 return unitName;
1535 SmallString<261> dir(compileUnit->getCompilationDir());
1536 StringRef sep = sys::path::get_separator();
1537 // We don't use `path::append` here because we want an empty `dir` to result
1538 // in an absolute path. `append` would give us a relative path for that case.
1539 if (!dir.ends_with(sep))
1540 dir += sep;
1541 return (dir + unitName).str();
1542 }
1543
getDwarf()1544 lld::DWARFCache *ObjFile::getDwarf() {
1545 llvm::call_once(initDwarf, [this]() {
1546 auto dwObj = DwarfObject::create(this);
1547 if (!dwObj)
1548 return;
1549 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1550 std::move(dwObj), "",
1551 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1552 [&](Error warning) {
1553 warn(getName() + ": " + toString(std::move(warning)));
1554 }));
1555 });
1556
1557 return dwarfCache.get();
1558 }
1559 // The path can point to either a dylib or a .tbd file.
loadDylib(StringRef path,DylibFile * umbrella)1560 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1561 std::optional<MemoryBufferRef> mbref = readFile(path);
1562 if (!mbref) {
1563 error("could not read dylib file at " + path);
1564 return nullptr;
1565 }
1566 return loadDylib(*mbref, umbrella);
1567 }
1568
1569 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1570 // the first document storing child pointers to the rest of them. When we are
1571 // processing a given TBD file, we store that top-level document in
1572 // currentTopLevelTapi. When processing re-exports, we search its children for
1573 // potentially matching documents in the same TBD file. Note that the children
1574 // themselves don't point to further documents, i.e. this is a two-level tree.
1575 //
1576 // Re-exports can either refer to on-disk files, or to documents within .tbd
1577 // files.
findDylib(StringRef path,DylibFile * umbrella,const InterfaceFile * currentTopLevelTapi)1578 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1579 const InterfaceFile *currentTopLevelTapi) {
1580 // Search order:
1581 // 1. Install name basename in -F / -L directories.
1582 {
1583 StringRef stem = path::stem(path);
1584 SmallString<128> frameworkName;
1585 path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1586 bool isFramework = path.ends_with(frameworkName);
1587 if (isFramework) {
1588 for (StringRef dir : config->frameworkSearchPaths) {
1589 SmallString<128> candidate = dir;
1590 path::append(candidate, frameworkName);
1591 if (std::optional<StringRef> dylibPath =
1592 resolveDylibPath(candidate.str()))
1593 return loadDylib(*dylibPath, umbrella);
1594 }
1595 } else if (std::optional<StringRef> dylibPath = findPathCombination(
1596 stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"}))
1597 return loadDylib(*dylibPath, umbrella);
1598 }
1599
1600 // 2. As absolute path.
1601 if (path::is_absolute(path, path::Style::posix))
1602 for (StringRef root : config->systemLibraryRoots)
1603 if (std::optional<StringRef> dylibPath =
1604 resolveDylibPath((root + path).str()))
1605 return loadDylib(*dylibPath, umbrella);
1606
1607 // 3. As relative path.
1608
1609 // TODO: Handle -dylib_file
1610
1611 // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1612 SmallString<128> newPath;
1613 if (config->outputType == MH_EXECUTE &&
1614 path.consume_front("@executable_path/")) {
1615 // ld64 allows overriding this with the undocumented flag -executable_path.
1616 // lld doesn't currently implement that flag.
1617 // FIXME: Consider using finalOutput instead of outputFile.
1618 path::append(newPath, path::parent_path(config->outputFile), path);
1619 path = newPath;
1620 } else if (path.consume_front("@loader_path/")) {
1621 fs::real_path(umbrella->getName(), newPath);
1622 path::remove_filename(newPath);
1623 path::append(newPath, path);
1624 path = newPath;
1625 } else if (path.starts_with("@rpath/")) {
1626 for (StringRef rpath : umbrella->rpaths) {
1627 newPath.clear();
1628 if (rpath.consume_front("@loader_path/")) {
1629 fs::real_path(umbrella->getName(), newPath);
1630 path::remove_filename(newPath);
1631 }
1632 path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1633 if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1634 return loadDylib(*dylibPath, umbrella);
1635 }
1636 }
1637
1638 // FIXME: Should this be further up?
1639 if (currentTopLevelTapi) {
1640 for (InterfaceFile &child :
1641 make_pointee_range(currentTopLevelTapi->documents())) {
1642 assert(child.documents().empty());
1643 if (path == child.getInstallName()) {
1644 auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1645 /*explicitlyLinked=*/false);
1646 file->parseReexports(child);
1647 return file;
1648 }
1649 }
1650 }
1651
1652 if (std::optional<StringRef> dylibPath = resolveDylibPath(path))
1653 return loadDylib(*dylibPath, umbrella);
1654
1655 return nullptr;
1656 }
1657
1658 // If a re-exported dylib is public (lives in /usr/lib or
1659 // /System/Library/Frameworks), then it is considered implicitly linked: we
1660 // should bind to its symbols directly instead of via the re-exporting umbrella
1661 // library.
isImplicitlyLinked(StringRef path)1662 static bool isImplicitlyLinked(StringRef path) {
1663 if (!config->implicitDylibs)
1664 return false;
1665
1666 if (path::parent_path(path) == "/usr/lib")
1667 return true;
1668
1669 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1670 if (path.consume_front("/System/Library/Frameworks/")) {
1671 StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1672 return path::filename(path) == frameworkName;
1673 }
1674
1675 return false;
1676 }
1677
loadReexport(StringRef path,DylibFile * umbrella,const InterfaceFile * currentTopLevelTapi)1678 void DylibFile::loadReexport(StringRef path, DylibFile *umbrella,
1679 const InterfaceFile *currentTopLevelTapi) {
1680 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1681 if (!reexport)
1682 error(toString(this) + ": unable to locate re-export with install name " +
1683 path);
1684 }
1685
DylibFile(MemoryBufferRef mb,DylibFile * umbrella,bool isBundleLoader,bool explicitlyLinked)1686 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1687 bool isBundleLoader, bool explicitlyLinked)
1688 : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1689 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1690 assert(!isBundleLoader || !umbrella);
1691 if (umbrella == nullptr)
1692 umbrella = this;
1693 this->umbrella = umbrella;
1694
1695 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1696
1697 // Initialize installName.
1698 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1699 auto *c = reinterpret_cast<const dylib_command *>(cmd);
1700 currentVersion = read32le(&c->dylib.current_version);
1701 compatibilityVersion = read32le(&c->dylib.compatibility_version);
1702 installName =
1703 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1704 } else if (!isBundleLoader) {
1705 // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1706 // so it's OK.
1707 error(toString(this) + ": dylib missing LC_ID_DYLIB load command");
1708 return;
1709 }
1710
1711 if (config->printEachFile)
1712 message(toString(this));
1713 inputFiles.insert(this);
1714
1715 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1716
1717 if (!checkCompatibility(this))
1718 return;
1719
1720 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1721
1722 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1723 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1724 rpaths.push_back(rpath);
1725 }
1726
1727 // Initialize symbols.
1728 bool canBeImplicitlyLinked = findCommand(hdr, LC_SUB_CLIENT) == nullptr;
1729 exportingFile = (canBeImplicitlyLinked && isImplicitlyLinked(installName))
1730 ? this
1731 : this->umbrella;
1732
1733 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1734 const auto *exportsTrie =
1735 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1736 if (dyldInfo && exportsTrie) {
1737 // It's unclear what should happen in this case. Maybe we should only error
1738 // out if the two load commands refer to different data?
1739 error(toString(this) +
1740 ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1741 return;
1742 }
1743
1744 if (dyldInfo) {
1745 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1746 } else if (exportsTrie) {
1747 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1748 } else {
1749 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1750 toString(this));
1751 }
1752 }
1753
parseExportedSymbols(uint32_t offset,uint32_t size)1754 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1755 struct TrieEntry {
1756 StringRef name;
1757 uint64_t flags;
1758 };
1759
1760 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1761 std::vector<TrieEntry> entries;
1762 // Find all the $ld$* symbols to process first.
1763 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1764 StringRef savedName = saver().save(name);
1765 if (handleLDSymbol(savedName))
1766 return;
1767 entries.push_back({savedName, flags});
1768 });
1769
1770 // Process the "normal" symbols.
1771 for (TrieEntry &entry : entries) {
1772 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1773 continue;
1774
1775 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1776 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1777
1778 symbols.push_back(
1779 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1780 }
1781 }
1782
parseLoadCommands(MemoryBufferRef mb)1783 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1784 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1785 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1786 target->headerSize;
1787 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1788 auto *cmd = reinterpret_cast<const load_command *>(p);
1789 p += cmd->cmdsize;
1790
1791 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1792 cmd->cmd == LC_REEXPORT_DYLIB) {
1793 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1794 StringRef reexportPath =
1795 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1796 loadReexport(reexportPath, exportingFile, nullptr);
1797 }
1798
1799 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1800 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1801 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1802 if (config->namespaceKind == NamespaceKind::flat &&
1803 cmd->cmd == LC_LOAD_DYLIB) {
1804 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1805 StringRef dylibPath =
1806 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1807 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1808 if (!dylib)
1809 error(Twine("unable to locate library '") + dylibPath +
1810 "' loaded from '" + toString(this) + "' for -flat_namespace");
1811 }
1812 }
1813 }
1814
1815 // Some versions of Xcode ship with .tbd files that don't have the right
1816 // platform settings.
1817 constexpr std::array<StringRef, 3> skipPlatformChecks{
1818 "/usr/lib/system/libsystem_kernel.dylib",
1819 "/usr/lib/system/libsystem_platform.dylib",
1820 "/usr/lib/system/libsystem_pthread.dylib"};
1821
skipPlatformCheckForCatalyst(const InterfaceFile & interface,bool explicitlyLinked)1822 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1823 bool explicitlyLinked) {
1824 // Catalyst outputs can link against implicitly linked macOS-only libraries.
1825 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1826 return false;
1827 return is_contained(interface.targets(),
1828 MachO::Target(config->arch(), PLATFORM_MACOS));
1829 }
1830
isArchABICompatible(ArchitectureSet archSet,Architecture targetArch)1831 static bool isArchABICompatible(ArchitectureSet archSet,
1832 Architecture targetArch) {
1833 uint32_t cpuType;
1834 uint32_t targetCpuType;
1835 std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch);
1836
1837 return llvm::any_of(archSet, [&](const auto &p) {
1838 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p);
1839 return cpuType == targetCpuType;
1840 });
1841 }
1842
isTargetPlatformArchCompatible(InterfaceFile::const_target_range interfaceTargets,Target target)1843 static bool isTargetPlatformArchCompatible(
1844 InterfaceFile::const_target_range interfaceTargets, Target target) {
1845 if (is_contained(interfaceTargets, target))
1846 return true;
1847
1848 if (config->forceExactCpuSubtypeMatch)
1849 return false;
1850
1851 ArchitectureSet archSet;
1852 for (const auto &p : interfaceTargets)
1853 if (p.Platform == target.Platform)
1854 archSet.set(p.Arch);
1855 if (archSet.empty())
1856 return false;
1857
1858 return isArchABICompatible(archSet, target.Arch);
1859 }
1860
DylibFile(const InterfaceFile & interface,DylibFile * umbrella,bool isBundleLoader,bool explicitlyLinked)1861 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1862 bool isBundleLoader, bool explicitlyLinked)
1863 : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1864 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1865 // FIXME: Add test for the missing TBD code path.
1866
1867 if (umbrella == nullptr)
1868 umbrella = this;
1869 this->umbrella = umbrella;
1870
1871 installName = saver().save(interface.getInstallName());
1872 compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1873 currentVersion = interface.getCurrentVersion().rawValue();
1874
1875 if (config->printEachFile)
1876 message(toString(this));
1877 inputFiles.insert(this);
1878
1879 if (!is_contained(skipPlatformChecks, installName) &&
1880 !isTargetPlatformArchCompatible(interface.targets(),
1881 config->platformInfo.target) &&
1882 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1883 error(toString(this) + " is incompatible with " +
1884 std::string(config->platformInfo.target));
1885 return;
1886 }
1887
1888 checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1889
1890 bool canBeImplicitlyLinked = interface.allowableClients().size() == 0;
1891 exportingFile = (canBeImplicitlyLinked && isImplicitlyLinked(installName))
1892 ? this
1893 : umbrella;
1894 auto addSymbol = [&](const llvm::MachO::Symbol &symbol,
1895 const Twine &name) -> void {
1896 StringRef savedName = saver().save(name);
1897 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1898 return;
1899
1900 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1901 symbol.isWeakDefined(),
1902 symbol.isThreadLocalValue()));
1903 };
1904
1905 std::vector<const llvm::MachO::Symbol *> normalSymbols;
1906 normalSymbols.reserve(interface.symbolsCount());
1907 for (const auto *symbol : interface.symbols()) {
1908 if (!isArchABICompatible(symbol->getArchitectures(), config->arch()))
1909 continue;
1910 if (handleLDSymbol(symbol->getName()))
1911 continue;
1912
1913 switch (symbol->getKind()) {
1914 case EncodeKind::GlobalSymbol:
1915 case EncodeKind::ObjectiveCClass:
1916 case EncodeKind::ObjectiveCClassEHType:
1917 case EncodeKind::ObjectiveCInstanceVariable:
1918 normalSymbols.push_back(symbol);
1919 }
1920 }
1921 // interface.symbols() order is non-deterministic.
1922 llvm::sort(normalSymbols,
1923 [](auto *l, auto *r) { return l->getName() < r->getName(); });
1924
1925 // TODO(compnerd) filter out symbols based on the target platform
1926 for (const auto *symbol : normalSymbols) {
1927 switch (symbol->getKind()) {
1928 case EncodeKind::GlobalSymbol:
1929 addSymbol(*symbol, symbol->getName());
1930 break;
1931 case EncodeKind::ObjectiveCClass:
1932 // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1933 // want to emulate that.
1934 addSymbol(*symbol, objc::symbol_names::klass + symbol->getName());
1935 addSymbol(*symbol, objc::symbol_names::metaclass + symbol->getName());
1936 break;
1937 case EncodeKind::ObjectiveCClassEHType:
1938 addSymbol(*symbol, objc::symbol_names::ehtype + symbol->getName());
1939 break;
1940 case EncodeKind::ObjectiveCInstanceVariable:
1941 addSymbol(*symbol, objc::symbol_names::ivar + symbol->getName());
1942 break;
1943 }
1944 }
1945 }
1946
DylibFile(DylibFile * umbrella)1947 DylibFile::DylibFile(DylibFile *umbrella)
1948 : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
1949 explicitlyLinked(false), isBundleLoader(false) {
1950 if (umbrella == nullptr)
1951 umbrella = this;
1952 this->umbrella = umbrella;
1953 }
1954
parseReexports(const InterfaceFile & interface)1955 void DylibFile::parseReexports(const InterfaceFile &interface) {
1956 const InterfaceFile *topLevel =
1957 interface.getParent() == nullptr ? &interface : interface.getParent();
1958 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1959 InterfaceFile::const_target_range targets = intfRef.targets();
1960 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1961 isTargetPlatformArchCompatible(targets, config->platformInfo.target))
1962 loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1963 }
1964 }
1965
isExplicitlyLinked() const1966 bool DylibFile::isExplicitlyLinked() const {
1967 if (!explicitlyLinked)
1968 return false;
1969
1970 // If this dylib was explicitly linked, but at least one of the symbols
1971 // of the synthetic dylibs it created via $ld$previous symbols is
1972 // referenced, then that synthetic dylib fulfils the explicit linkedness
1973 // and we can deadstrip this dylib if it's unreferenced.
1974 for (const auto *dylib : extraDylibs)
1975 if (dylib->isReferenced())
1976 return false;
1977
1978 return true;
1979 }
1980
getSyntheticDylib(StringRef installName,uint32_t currentVersion,uint32_t compatVersion)1981 DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
1982 uint32_t currentVersion,
1983 uint32_t compatVersion) {
1984 for (DylibFile *dylib : extraDylibs)
1985 if (dylib->installName == installName) {
1986 // FIXME: Check what to do if different $ld$previous symbols
1987 // request the same dylib, but with different versions.
1988 return dylib;
1989 }
1990
1991 auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
1992 dylib->installName = saver().save(installName);
1993 dylib->currentVersion = currentVersion;
1994 dylib->compatibilityVersion = compatVersion;
1995 extraDylibs.push_back(dylib);
1996 return dylib;
1997 }
1998
1999 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
2000 // name, compatibility version or hide/add symbols) for specific target
2001 // versions.
handleLDSymbol(StringRef originalName)2002 bool DylibFile::handleLDSymbol(StringRef originalName) {
2003 if (!originalName.starts_with("$ld$"))
2004 return false;
2005
2006 StringRef action;
2007 StringRef name;
2008 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
2009 if (action == "previous")
2010 handleLDPreviousSymbol(name, originalName);
2011 else if (action == "install_name")
2012 handleLDInstallNameSymbol(name, originalName);
2013 else if (action == "hide")
2014 handleLDHideSymbol(name, originalName);
2015 return true;
2016 }
2017
handleLDPreviousSymbol(StringRef name,StringRef originalName)2018 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
2019 // originalName: $ld$ previous $ <installname> $ <compatversion> $
2020 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
2021 StringRef installName;
2022 StringRef compatVersion;
2023 StringRef platformStr;
2024 StringRef startVersion;
2025 StringRef endVersion;
2026 StringRef symbolName;
2027 StringRef rest;
2028
2029 std::tie(installName, name) = name.split('$');
2030 std::tie(compatVersion, name) = name.split('$');
2031 std::tie(platformStr, name) = name.split('$');
2032 std::tie(startVersion, name) = name.split('$');
2033 std::tie(endVersion, name) = name.split('$');
2034 std::tie(symbolName, rest) = name.rsplit('$');
2035
2036 // FIXME: Does this do the right thing for zippered files?
2037 unsigned platform;
2038 if (platformStr.getAsInteger(10, platform) ||
2039 platform != static_cast<unsigned>(config->platform()))
2040 return;
2041
2042 VersionTuple start;
2043 if (start.tryParse(startVersion)) {
2044 warn(toString(this) + ": failed to parse start version, symbol '" +
2045 originalName + "' ignored");
2046 return;
2047 }
2048 VersionTuple end;
2049 if (end.tryParse(endVersion)) {
2050 warn(toString(this) + ": failed to parse end version, symbol '" +
2051 originalName + "' ignored");
2052 return;
2053 }
2054 if (config->platformInfo.target.MinDeployment < start ||
2055 config->platformInfo.target.MinDeployment >= end)
2056 return;
2057
2058 // Initialized to compatibilityVersion for the symbolName branch below.
2059 uint32_t newCompatibilityVersion = compatibilityVersion;
2060 uint32_t newCurrentVersionForSymbol = currentVersion;
2061 if (!compatVersion.empty()) {
2062 VersionTuple cVersion;
2063 if (cVersion.tryParse(compatVersion)) {
2064 warn(toString(this) +
2065 ": failed to parse compatibility version, symbol '" + originalName +
2066 "' ignored");
2067 return;
2068 }
2069 newCompatibilityVersion = encodeVersion(cVersion);
2070 newCurrentVersionForSymbol = newCompatibilityVersion;
2071 }
2072
2073 if (!symbolName.empty()) {
2074 // A $ld$previous$ symbol with symbol name adds a symbol with that name to
2075 // a dylib with given name and version.
2076 auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
2077 newCompatibilityVersion);
2078
2079 // The tbd file usually contains the $ld$previous symbol for an old version,
2080 // and then the symbol itself later, for newer deployment targets, like so:
2081 // symbols: [
2082 // '$ld$previous$/Another$$1$3.0$14.0$_zzz$',
2083 // _zzz,
2084 // ]
2085 // Since the symbols are sorted, adding them to the symtab in the given
2086 // order means the $ld$previous version of _zzz will prevail, as desired.
2087 dylib->symbols.push_back(symtab->addDylib(
2088 saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
2089 return;
2090 }
2091
2092 // A $ld$previous$ symbol without symbol name modifies the dylib it's in.
2093 this->installName = saver().save(installName);
2094 this->compatibilityVersion = newCompatibilityVersion;
2095 }
2096
handleLDInstallNameSymbol(StringRef name,StringRef originalName)2097 void DylibFile::handleLDInstallNameSymbol(StringRef name,
2098 StringRef originalName) {
2099 // originalName: $ld$ install_name $ os<version> $ install_name
2100 StringRef condition, installName;
2101 std::tie(condition, installName) = name.split('$');
2102 VersionTuple version;
2103 if (!condition.consume_front("os") || version.tryParse(condition))
2104 warn(toString(this) + ": failed to parse os version, symbol '" +
2105 originalName + "' ignored");
2106 else if (version == config->platformInfo.target.MinDeployment)
2107 this->installName = saver().save(installName);
2108 }
2109
handleLDHideSymbol(StringRef name,StringRef originalName)2110 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2111 StringRef symbolName;
2112 bool shouldHide = true;
2113 if (name.starts_with("os")) {
2114 // If it's hidden based on versions.
2115 name = name.drop_front(2);
2116 StringRef minVersion;
2117 std::tie(minVersion, symbolName) = name.split('$');
2118 VersionTuple versionTup;
2119 if (versionTup.tryParse(minVersion)) {
2120 warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName +
2121 "` ignored.");
2122 return;
2123 }
2124 shouldHide = versionTup == config->platformInfo.target.MinDeployment;
2125 } else {
2126 symbolName = name;
2127 }
2128
2129 if (shouldHide)
2130 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2131 }
2132
checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const2133 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2134 if (config->applicationExtension && !dylibIsAppExtensionSafe)
2135 warn("using '-application_extension' with unsafe dylib: " + toString(this));
2136 }
2137
ArchiveFile(std::unique_ptr<object::Archive> && f,bool forceHidden)2138 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
2139 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
2140 forceHidden(forceHidden) {}
2141
addLazySymbols()2142 void ArchiveFile::addLazySymbols() {
2143 // Avoid calling getMemoryBufferRef() on zero-symbol archive
2144 // since that crashes.
2145 if (file->isEmpty() || file->getNumberOfSymbols() == 0)
2146 return;
2147
2148 Error err = Error::success();
2149 auto child = file->child_begin(err);
2150 // Ignore the I/O error here - will be reported later.
2151 if (!err) {
2152 Expected<MemoryBufferRef> mbOrErr = child->getMemoryBufferRef();
2153 if (!mbOrErr) {
2154 llvm::consumeError(mbOrErr.takeError());
2155 } else {
2156 if (identify_magic(mbOrErr->getBuffer()) == file_magic::macho_object) {
2157 if (target->wordSize == 8)
2158 compatArch = compatWithTargetArch(
2159 this, reinterpret_cast<const LP64::mach_header *>(
2160 mbOrErr->getBufferStart()));
2161 else
2162 compatArch = compatWithTargetArch(
2163 this, reinterpret_cast<const ILP32::mach_header *>(
2164 mbOrErr->getBufferStart()));
2165 if (!compatArch)
2166 return;
2167 }
2168 }
2169 }
2170
2171 for (const object::Archive::Symbol &sym : file->symbols())
2172 symtab->addLazyArchive(sym.getName(), this, sym);
2173 }
2174
2175 static Expected<InputFile *>
loadArchiveMember(MemoryBufferRef mb,uint32_t modTime,StringRef archiveName,uint64_t offsetInArchive,bool forceHidden,bool compatArch)2176 loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
2177 uint64_t offsetInArchive, bool forceHidden, bool compatArch) {
2178 if (config->zeroModTime)
2179 modTime = 0;
2180
2181 switch (identify_magic(mb.getBuffer())) {
2182 case file_magic::macho_object:
2183 return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden,
2184 compatArch);
2185 case file_magic::bitcode:
2186 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
2187 forceHidden, compatArch);
2188 default:
2189 return createStringError(inconvertibleErrorCode(),
2190 mb.getBufferIdentifier() +
2191 " has unhandled file type");
2192 }
2193 }
2194
fetch(const object::Archive::Child & c,StringRef reason)2195 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2196 if (!seen.insert(c.getChildOffset()).second)
2197 return Error::success();
2198
2199 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2200 if (!mb)
2201 return mb.takeError();
2202
2203 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2204 if (!modTime)
2205 return modTime.takeError();
2206
2207 Expected<InputFile *> file =
2208 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset(),
2209 forceHidden, compatArch);
2210
2211 if (!file)
2212 return file.takeError();
2213
2214 inputFiles.insert(*file);
2215 printArchiveMemberLoad(reason, *file);
2216 return Error::success();
2217 }
2218
fetch(const object::Archive::Symbol & sym)2219 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2220 object::Archive::Child c =
2221 CHECK(sym.getMember(), toString(this) +
2222 ": could not get the member defining symbol " +
2223 toMachOString(sym));
2224
2225 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2226 // and become invalid after that call. Copy it to the stack so we can refer
2227 // to it later.
2228 const object::Archive::Symbol symCopy = sym;
2229
2230 // ld64 doesn't demangle sym here even with -demangle.
2231 // Match that: intentionally don't call toMachOString().
2232 if (Error e = fetch(c, symCopy.getName()))
2233 error(toString(this) + ": could not get the member defining symbol " +
2234 toMachOString(symCopy) + ": " + toString(std::move(e)));
2235 }
2236
createBitcodeSymbol(const lto::InputFile::Symbol & objSym,BitcodeFile & file)2237 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2238 BitcodeFile &file) {
2239 StringRef name = saver().save(objSym.getName());
2240
2241 if (objSym.isUndefined())
2242 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2243
2244 // TODO: Write a test demonstrating why computing isPrivateExtern before
2245 // LTO compilation is important.
2246 bool isPrivateExtern = false;
2247 switch (objSym.getVisibility()) {
2248 case GlobalValue::HiddenVisibility:
2249 isPrivateExtern = true;
2250 break;
2251 case GlobalValue::ProtectedVisibility:
2252 error(name + " has protected visibility, which is not supported by Mach-O");
2253 break;
2254 case GlobalValue::DefaultVisibility:
2255 break;
2256 }
2257 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
2258 file.forceHidden;
2259
2260 if (objSym.isCommon())
2261 return symtab->addCommon(name, &file, objSym.getCommonSize(),
2262 objSym.getCommonAlignment(), isPrivateExtern);
2263
2264 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2265 /*size=*/0, objSym.isWeak(), isPrivateExtern,
2266 /*isReferencedDynamically=*/false,
2267 /*noDeadStrip=*/false,
2268 /*isWeakDefCanBeHidden=*/false);
2269 }
2270
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive,bool lazy,bool forceHidden,bool compatArch)2271 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2272 uint64_t offsetInArchive, bool lazy, bool forceHidden,
2273 bool compatArch)
2274 : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
2275 this->archiveName = std::string(archiveName);
2276 this->compatArch = compatArch;
2277 std::string path = mb.getBufferIdentifier().str();
2278 if (config->thinLTOIndexOnly)
2279 path = replaceThinLTOSuffix(mb.getBufferIdentifier());
2280
2281 // If the parent archive already determines that the arch is not compat with
2282 // target, then just return.
2283 if (!compatArch)
2284 return;
2285
2286 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2287 // name. If two members with the same name are provided, this causes a
2288 // collision and ThinLTO can't proceed.
2289 // So, we append the archive name to disambiguate two members with the same
2290 // name from multiple different archives, and offset within the archive to
2291 // disambiguate two members of the same name from a single archive.
2292 MemoryBufferRef mbref(mb.getBuffer(),
2293 saver().save(archiveName.empty()
2294 ? path
2295 : archiveName + "(" +
2296 sys::path::filename(path) + ")" +
2297 utostr(offsetInArchive)));
2298 obj = check(lto::InputFile::create(mbref));
2299 if (lazy)
2300 parseLazy();
2301 else
2302 parse();
2303 }
2304
parse()2305 void BitcodeFile::parse() {
2306 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2307 // "winning" symbol will then be marked as Prevailing at LTO compilation
2308 // time.
2309 symbols.resize(obj->symbols().size());
2310
2311 // Process defined symbols first. See the comment at the end of
2312 // ObjFile<>::parseSymbols.
2313 for (auto it : llvm::enumerate(obj->symbols()))
2314 if (!it.value().isUndefined())
2315 symbols[it.index()] = createBitcodeSymbol(it.value(), *this);
2316 for (auto it : llvm::enumerate(obj->symbols()))
2317 if (it.value().isUndefined())
2318 symbols[it.index()] = createBitcodeSymbol(it.value(), *this);
2319 }
2320
parseLazy()2321 void BitcodeFile::parseLazy() {
2322 symbols.resize(obj->symbols().size());
2323 for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) {
2324 if (!objSym.isUndefined()) {
2325 symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this);
2326 if (!lazy)
2327 break;
2328 }
2329 }
2330 }
2331
replaceThinLTOSuffix(StringRef path)2332 std::string macho::replaceThinLTOSuffix(StringRef path) {
2333 auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
2334 if (path.consume_back(suffix))
2335 return (path + repl).str();
2336 return std::string(path);
2337 }
2338
extract(InputFile & file,StringRef reason)2339 void macho::extract(InputFile &file, StringRef reason) {
2340 if (!file.lazy)
2341 return;
2342 file.lazy = false;
2343
2344 printArchiveMemberLoad(reason, &file);
2345 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2346 bitcode->parse();
2347 } else {
2348 auto &f = cast<ObjFile>(file);
2349 if (target->wordSize == 8)
2350 f.parse<LP64>();
2351 else
2352 f.parse<ILP32>();
2353 }
2354 }
2355
2356 template void ObjFile::parse<LP64>();
2357