1 //===- ConcatOutputSection.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ConcatOutputSection.h" 10 #include "Config.h" 11 #include "OutputSegment.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "lld/Common/CommonLinkerContext.h" 17 #include "llvm/BinaryFormat/MachO.h" 18 #include "llvm/Support/ScopedPrinter.h" 19 #include "llvm/Support/TimeProfiler.h" 20 21 using namespace llvm; 22 using namespace llvm::MachO; 23 using namespace lld; 24 using namespace lld::macho; 25 26 MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections; 27 28 void ConcatOutputSection::addInput(ConcatInputSection *input) { 29 assert(input->parent == this); 30 if (inputs.empty()) { 31 align = input->align; 32 flags = input->getFlags(); 33 } else { 34 align = std::max(align, input->align); 35 finalizeFlags(input); 36 } 37 inputs.push_back(input); 38 } 39 40 // Branch-range extension can be implemented in two ways, either through ... 41 // 42 // (1) Branch islands: Single branch instructions (also of limited range), 43 // that might be chained in multiple hops to reach the desired 44 // destination. On ARM64, as 16 branch islands are needed to hop between 45 // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively, 46 // even when it needs excessive hops. 47 // 48 // (2) Thunks: Instruction(s) to load the destination address into a scratch 49 // register, followed by a register-indirect branch. Thunks are 50 // constructed to reach any arbitrary address, so need not be 51 // chained. Although thunks need not be chained, a program might need 52 // multiple thunks to the same destination distributed throughout a large 53 // program so that all call sites can have one within range. 54 // 55 // The optimal approach is to mix islands for destinations within two hops, 56 // and use thunks for destinations at greater distance. For now, we only 57 // implement thunks. TODO: Adding support for branch islands! 58 // 59 // Internally -- as expressed in LLD's data structures -- a 60 // branch-range-extension thunk consists of: 61 // 62 // (1) new Defined symbol for the thunk named 63 // <FUNCTION>.thunk.<SEQUENCE>, which references ... 64 // (2) new InputSection, which contains ... 65 // (3.1) new data for the instructions to load & branch to the far address + 66 // (3.2) new Relocs on instructions to load the far address, which reference ... 67 // (4.1) existing Defined symbol for the real function in __text, or 68 // (4.2) existing DylibSymbol for the real function in a dylib 69 // 70 // Nearly-optimal thunk-placement algorithm features: 71 // 72 // * Single pass: O(n) on the number of call sites. 73 // 74 // * Accounts for the exact space overhead of thunks - no heuristics 75 // 76 // * Exploits the full range of call instructions - forward & backward 77 // 78 // Data: 79 // 80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol 81 // to its thunk bookkeeper. 82 // 83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and 84 // distant call sites might be unable to reach the same thunk, so multiple 85 // thunks are necessary to serve all call sites in a very large program. A 86 // thunkInfo stores state for all thunks associated with a particular 87 // function: 88 // (a) thunk symbol 89 // (b) input section containing stub code, and 90 // (c) sequence number for the active thunk incarnation. 91 // When an old thunk goes out of range, we increment the sequence number and 92 // create a new thunk named <FUNCTION>.thunk.<SEQUENCE>. 93 // 94 // * A thunk consists of 95 // (a) a Defined symbol pointing to 96 // (b) an InputSection holding machine code (similar to a MachO stub), and 97 // (c) relocs referencing the real function for fixing up the stub code. 98 // 99 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel 100 // to the inputs vector. We store new thunks via cheap vector append, rather 101 // than costly insertion into the inputs vector. 102 // 103 // Control Flow: 104 // 105 // * During address assignment, MergedInputSection::finalize() examines call 106 // sites by ascending address and creates thunks. When a function is beyond 107 // the range of a call site, we need a thunk. Place it at the largest 108 // available forward address from the call site. Call sites increase 109 // monotonically and thunks are always placed as far forward as possible; 110 // thus, we place thunks at monotonically increasing addresses. Once a thunk 111 // is placed, it and all previous input-section addresses are final. 112 // 113 // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge 114 // the inputs and thunks vectors (both ordered by ascending address), which 115 // is simple and cheap. 116 117 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap; 118 119 // Determine whether we need thunks, which depends on the target arch -- RISC 120 // (i.e., ARM) generally does because it has limited-range branch/call 121 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs 122 // thunks for programs so large that branch source & destination addresses 123 // might differ more than the range of branch instruction(s). 124 bool TextOutputSection::needsThunks() const { 125 if (!target->usesThunks()) 126 return false; 127 uint64_t isecAddr = addr; 128 for (ConcatInputSection *isec : inputs) 129 isecAddr = alignTo(isecAddr, isec->align) + isec->getSize(); 130 if (isecAddr - addr + in.stubs->getSize() <= 131 std::min(target->backwardBranchRange, target->forwardBranchRange)) 132 return false; 133 // Yes, this program is large enough to need thunks. 134 for (ConcatInputSection *isec : inputs) { 135 for (Reloc &r : isec->relocs) { 136 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH)) 137 continue; 138 auto *sym = r.referent.get<Symbol *>(); 139 // Pre-populate the thunkMap and memoize call site counts for every 140 // InputSection and ThunkInfo. We do this for the benefit of 141 // estimateStubsInRangeVA(). 142 ThunkInfo &thunkInfo = thunkMap[sym]; 143 // Knowing ThunkInfo call site count will help us know whether or not we 144 // might need to create more for this referent at the time we are 145 // estimating distance to __stubs in estimateStubsInRangeVA(). 146 ++thunkInfo.callSiteCount; 147 // We can avoid work on InputSections that have no BRANCH relocs. 148 isec->hasCallSites = true; 149 } 150 } 151 return true; 152 } 153 154 // Since __stubs is placed after __text, we must estimate the address 155 // beyond which stubs are within range of a simple forward branch. 156 // This is called exactly once, when the last input section has been finalized. 157 uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx) const { 158 // Tally the functions which still have call sites remaining to process, 159 // which yields the maximum number of thunks we might yet place. 160 size_t maxPotentialThunks = 0; 161 for (auto &tp : thunkMap) { 162 ThunkInfo &ti = tp.second; 163 // This overcounts: Only sections that are in forward jump range from the 164 // currently-active section get finalized, and all input sections are 165 // finalized when estimateStubsInRangeVA() is called. So only backward 166 // jumps will need thunks, but we count all jumps. 167 if (ti.callSitesUsed < ti.callSiteCount) 168 maxPotentialThunks += 1; 169 } 170 // Tally the total size of input sections remaining to process. 171 uint64_t isecVA = inputs[callIdx]->getVA(); 172 uint64_t isecEnd = isecVA; 173 for (size_t i = callIdx; i < inputs.size(); i++) { 174 InputSection *isec = inputs[i]; 175 isecEnd = alignTo(isecEnd, isec->align) + isec->getSize(); 176 } 177 // Estimate the address after which call sites can safely call stubs 178 // directly rather than through intermediary thunks. 179 uint64_t forwardBranchRange = target->forwardBranchRange; 180 assert(isecEnd > forwardBranchRange && 181 "should not run thunk insertion if all code fits in jump range"); 182 assert(isecEnd - isecVA <= forwardBranchRange && 183 "should only finalize sections in jump range"); 184 uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize + 185 in.stubs->getSize() - forwardBranchRange; 186 log("thunks = " + std::to_string(thunkMap.size()) + 187 ", potential = " + std::to_string(maxPotentialThunks) + 188 ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " + 189 utohexstr(isecVA) + ", threshold = " + utohexstr(stubsInRangeVA) + 190 ", isecEnd = " + utohexstr(isecEnd) + 191 ", tail = " + utohexstr(isecEnd - isecVA) + 192 ", slop = " + utohexstr(forwardBranchRange - (isecEnd - isecVA))); 193 return stubsInRangeVA; 194 } 195 196 void ConcatOutputSection::finalizeOne(ConcatInputSection *isec) { 197 size = alignTo(size, isec->align); 198 fileSize = alignTo(fileSize, isec->align); 199 isec->outSecOff = size; 200 isec->isFinal = true; 201 size += isec->getSize(); 202 fileSize += isec->getFileSize(); 203 } 204 205 void ConcatOutputSection::finalizeContents() { 206 for (ConcatInputSection *isec : inputs) 207 finalizeOne(isec); 208 } 209 210 void TextOutputSection::finalize() { 211 if (!needsThunks()) { 212 for (ConcatInputSection *isec : inputs) 213 finalizeOne(isec); 214 return; 215 } 216 217 uint64_t forwardBranchRange = target->forwardBranchRange; 218 uint64_t backwardBranchRange = target->backwardBranchRange; 219 uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA; 220 size_t thunkSize = target->thunkSize; 221 size_t relocCount = 0; 222 size_t callSiteCount = 0; 223 size_t thunkCallCount = 0; 224 size_t thunkCount = 0; 225 226 // Walk all sections in order. Finalize all sections that are less than 227 // forwardBranchRange in front of it. 228 // isecVA is the address of the current section. 229 // addr + size is the start address of the first non-finalized section. 230 231 // inputs[finalIdx] is for finalization (address-assignment) 232 size_t finalIdx = 0; 233 // Kick-off by ensuring that the first input section has an address 234 for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx; 235 ++callIdx) { 236 if (finalIdx == callIdx) 237 finalizeOne(inputs[finalIdx++]); 238 ConcatInputSection *isec = inputs[callIdx]; 239 assert(isec->isFinal); 240 uint64_t isecVA = isec->getVA(); 241 242 // Assign addresses up-to the forward branch-range limit. 243 // Every call instruction needs a small number of bytes (on Arm64: 4), 244 // and each inserted thunk needs a slightly larger number of bytes 245 // (on Arm64: 12). If a section starts with a branch instruction and 246 // contains several branch instructions in succession, then the distance 247 // from the current position to the position where the thunks are inserted 248 // grows. So leave room for a bunch of thunks. 249 unsigned slop = 256 * thunkSize; 250 while (finalIdx < endIdx && addr + size + inputs[finalIdx]->getSize() < 251 isecVA + forwardBranchRange - slop) 252 finalizeOne(inputs[finalIdx++]); 253 254 if (!isec->hasCallSites) 255 continue; 256 257 if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) { 258 // When we have finalized all input sections, __stubs (destined 259 // to follow __text) comes within range of forward branches and 260 // we can estimate the threshold address after which we can 261 // reach any stub with a forward branch. Note that although it 262 // sits in the middle of a loop, this code executes only once. 263 // It is in the loop because we need to call it at the proper 264 // time: the earliest call site from which the end of __text 265 // (and start of __stubs) comes within range of a forward branch. 266 stubsInRangeVA = estimateStubsInRangeVA(callIdx); 267 } 268 // Process relocs by ascending address, i.e., ascending offset within isec 269 std::vector<Reloc> &relocs = isec->relocs; 270 // FIXME: This property does not hold for object files produced by ld64's 271 // `-r` mode. 272 assert(is_sorted(relocs, 273 [](Reloc &a, Reloc &b) { return a.offset > b.offset; })); 274 for (Reloc &r : reverse(relocs)) { 275 ++relocCount; 276 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH)) 277 continue; 278 ++callSiteCount; 279 // Calculate branch reachability boundaries 280 uint64_t callVA = isecVA + r.offset; 281 uint64_t lowVA = 282 backwardBranchRange < callVA ? callVA - backwardBranchRange : 0; 283 uint64_t highVA = callVA + forwardBranchRange; 284 // Calculate our call referent address 285 auto *funcSym = r.referent.get<Symbol *>(); 286 ThunkInfo &thunkInfo = thunkMap[funcSym]; 287 // The referent is not reachable, so we need to use a thunk ... 288 if (funcSym->isInStubs() && callVA >= stubsInRangeVA) { 289 assert(callVA != TargetInfo::outOfRangeVA); 290 // ... Oh, wait! We are close enough to the end that __stubs 291 // are now within range of a simple forward branch. 292 continue; 293 } 294 uint64_t funcVA = funcSym->resolveBranchVA(); 295 ++thunkInfo.callSitesUsed; 296 if (lowVA <= funcVA && funcVA <= highVA) { 297 // The referent is reachable with a simple call instruction. 298 continue; 299 } 300 ++thunkInfo.thunkCallCount; 301 ++thunkCallCount; 302 // If an existing thunk is reachable, use it ... 303 if (thunkInfo.sym) { 304 uint64_t thunkVA = thunkInfo.isec->getVA(); 305 if (lowVA <= thunkVA && thunkVA <= highVA) { 306 r.referent = thunkInfo.sym; 307 continue; 308 } 309 } 310 // ... otherwise, create a new thunk. 311 if (addr + size > highVA) { 312 // There were too many consecutive branch instructions for `slop` 313 // above. If you hit this: For the current algorithm, just bumping up 314 // slop above and trying again is probably simplest. (See also PR51578 315 // comment 5). 316 fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun"); 317 } 318 thunkInfo.isec = 319 makeSyntheticInputSection(isec->getSegName(), isec->getName()); 320 thunkInfo.isec->parent = this; 321 322 // This code runs after dead code removal. Need to set the `live` bit 323 // on the thunk isec so that asserts that check that only live sections 324 // get written are happy. 325 thunkInfo.isec->live = true; 326 327 StringRef thunkName = saver().save(funcSym->getName() + ".thunk." + 328 std::to_string(thunkInfo.sequence++)); 329 if (!isa<Defined>(funcSym) || cast<Defined>(funcSym)->isExternal()) { 330 r.referent = thunkInfo.sym = symtab->addDefined( 331 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize, 332 /*isWeakDef=*/false, /*isPrivateExtern=*/true, 333 /*isThumb=*/false, /*isReferencedDynamically=*/false, 334 /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false); 335 } else { 336 r.referent = thunkInfo.sym = make<Defined>( 337 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize, 338 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/true, 339 /*includeInSymtab=*/true, /*isThumb=*/false, 340 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false, 341 /*isWeakDefCanBeHidden=*/false); 342 } 343 thunkInfo.sym->used = true; 344 target->populateThunk(thunkInfo.isec, funcSym); 345 finalizeOne(thunkInfo.isec); 346 thunks.push_back(thunkInfo.isec); 347 ++thunkCount; 348 } 349 } 350 351 log("thunks for " + parent->name + "," + name + 352 ": funcs = " + std::to_string(thunkMap.size()) + 353 ", relocs = " + std::to_string(relocCount) + 354 ", all calls = " + std::to_string(callSiteCount) + 355 ", thunk calls = " + std::to_string(thunkCallCount) + 356 ", thunks = " + std::to_string(thunkCount)); 357 } 358 359 void ConcatOutputSection::writeTo(uint8_t *buf) const { 360 for (ConcatInputSection *isec : inputs) 361 isec->writeTo(buf + isec->outSecOff); 362 } 363 364 void TextOutputSection::writeTo(uint8_t *buf) const { 365 // Merge input sections from thunk & ordinary vectors 366 size_t i = 0, ie = inputs.size(); 367 size_t t = 0, te = thunks.size(); 368 while (i < ie || t < te) { 369 while (i < ie && (t == te || inputs[i]->empty() || 370 inputs[i]->outSecOff < thunks[t]->outSecOff)) { 371 inputs[i]->writeTo(buf + inputs[i]->outSecOff); 372 ++i; 373 } 374 while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) { 375 thunks[t]->writeTo(buf + thunks[t]->outSecOff); 376 ++t; 377 } 378 } 379 } 380 381 void ConcatOutputSection::finalizeFlags(InputSection *input) { 382 switch (sectionType(input->getFlags())) { 383 default /*type-unspec'ed*/: 384 // FIXME: Add additional logic here when supporting emitting obj files. 385 break; 386 case S_4BYTE_LITERALS: 387 case S_8BYTE_LITERALS: 388 case S_16BYTE_LITERALS: 389 case S_CSTRING_LITERALS: 390 case S_ZEROFILL: 391 case S_LAZY_SYMBOL_POINTERS: 392 case S_MOD_TERM_FUNC_POINTERS: 393 case S_THREAD_LOCAL_REGULAR: 394 case S_THREAD_LOCAL_ZEROFILL: 395 case S_THREAD_LOCAL_VARIABLES: 396 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS: 397 case S_THREAD_LOCAL_VARIABLE_POINTERS: 398 case S_NON_LAZY_SYMBOL_POINTERS: 399 case S_SYMBOL_STUBS: 400 flags |= input->getFlags(); 401 break; 402 } 403 } 404 405 ConcatOutputSection * 406 ConcatOutputSection::getOrCreateForInput(const InputSection *isec) { 407 NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()}); 408 ConcatOutputSection *&osec = concatOutputSections[names]; 409 if (!osec) { 410 if (isec->getSegName() == segment_names::text && 411 isec->getName() != section_names::gccExceptTab && 412 isec->getName() != section_names::ehFrame) 413 osec = make<TextOutputSection>(names.second); 414 else 415 osec = make<ConcatOutputSection>(names.second); 416 } 417 return osec; 418 } 419 420 NamePair macho::maybeRenameSection(NamePair key) { 421 auto newNames = config->sectionRenameMap.find(key); 422 if (newNames != config->sectionRenameMap.end()) 423 return newNames->second; 424 return key; 425 } 426