xref: /freebsd/contrib/llvm-project/lld/ELF/InputSection.h (revision e63d20b70ee1dbee9b075f29de6f30cdcfe1abe1)
1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
11 
12 #include "Config.h"
13 #include "Relocations.h"
14 #include "lld/Common/CommonLinkerContext.h"
15 #include "lld/Common/LLVM.h"
16 #include "lld/Common/Memory.h"
17 #include "llvm/ADT/CachedHashString.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/TinyPtrVector.h"
21 #include "llvm/Object/ELF.h"
22 #include "llvm/Support/Compiler.h"
23 
24 namespace lld {
25 namespace elf {
26 
27 class InputFile;
28 class Symbol;
29 
30 class Defined;
31 struct Partition;
32 class SyntheticSection;
33 template <class ELFT> class ObjFile;
34 class OutputSection;
35 
36 LLVM_LIBRARY_VISIBILITY extern std::vector<Partition> partitions;
37 
38 // Returned by InputSectionBase::relsOrRelas. At least one member is empty.
39 template <class ELFT> struct RelsOrRelas {
40   ArrayRef<typename ELFT::Rel> rels;
41   ArrayRef<typename ELFT::Rela> relas;
42   bool areRelocsRel() const { return rels.size(); }
43 };
44 
45 // This is the base class of all sections that lld handles. Some are sections in
46 // input files, some are sections in the produced output file and some exist
47 // just as a convenience for implementing special ways of combining some
48 // sections.
49 class SectionBase {
50 public:
51   enum Kind { Regular, Synthetic, EHFrame, Merge, Output };
52 
53   Kind kind() const { return (Kind)sectionKind; }
54 
55   uint8_t sectionKind : 3;
56 
57   // The next two bit fields are only used by InputSectionBase, but we
58   // put them here so the struct packs better.
59 
60   uint8_t bss : 1;
61 
62   // Set for sections that should not be folded by ICF.
63   uint8_t keepUnique : 1;
64 
65   uint8_t partition = 1;
66   uint32_t type;
67   StringRef name;
68 
69   // The 1-indexed partition that this section is assigned to by the garbage
70   // collector, or 0 if this section is dead. Normally there is only one
71   // partition, so this will either be 0 or 1.
72   elf::Partition &getPartition() const;
73 
74   // These corresponds to the fields in Elf_Shdr.
75   uint64_t flags;
76   uint32_t addralign;
77   uint32_t entsize;
78   uint32_t link;
79   uint32_t info;
80 
81   OutputSection *getOutputSection();
82   const OutputSection *getOutputSection() const {
83     return const_cast<SectionBase *>(this)->getOutputSection();
84   }
85 
86   // Translate an offset in the input section to an offset in the output
87   // section.
88   uint64_t getOffset(uint64_t offset) const;
89 
90   uint64_t getVA(uint64_t offset = 0) const;
91 
92   bool isLive() const { return partition != 0; }
93   void markLive() { partition = 1; }
94   void markDead() { partition = 0; }
95 
96 protected:
97   constexpr SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
98                         uint32_t entsize, uint32_t addralign, uint32_t type,
99                         uint32_t info, uint32_t link)
100       : sectionKind(sectionKind), bss(false), keepUnique(false), type(type),
101         name(name), flags(flags), addralign(addralign), entsize(entsize),
102         link(link), info(info) {}
103 };
104 
105 struct SymbolAnchor {
106   uint64_t offset;
107   Defined *d;
108   bool end; // true for the anchor of st_value+st_size
109 };
110 
111 struct RelaxAux {
112   // This records symbol start and end offsets which will be adjusted according
113   // to the nearest relocDeltas element.
114   SmallVector<SymbolAnchor, 0> anchors;
115   // For relocations[i], the actual offset is
116   //   r_offset - (i ? relocDeltas[i-1] : 0).
117   std::unique_ptr<uint32_t[]> relocDeltas;
118   // For relocations[i], the actual type is relocTypes[i].
119   std::unique_ptr<RelType[]> relocTypes;
120   SmallVector<uint32_t, 0> writes;
121 };
122 
123 // This corresponds to a section of an input file.
124 class InputSectionBase : public SectionBase {
125 public:
126   template <class ELFT>
127   InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
128                    StringRef name, Kind sectionKind);
129 
130   InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
131                    uint64_t entsize, uint32_t link, uint32_t info,
132                    uint32_t addralign, ArrayRef<uint8_t> data, StringRef name,
133                    Kind sectionKind);
134 
135   static bool classof(const SectionBase *s) { return s->kind() != Output; }
136 
137   // The file which contains this section. Its dynamic type is always
138   // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
139   // its static type.
140   InputFile *file;
141 
142   // Input sections are part of an output section. Special sections
143   // like .eh_frame and merge sections are first combined into a
144   // synthetic section that is then added to an output section. In all
145   // cases this points one level up.
146   SectionBase *parent = nullptr;
147 
148   // Section index of the relocation section if exists.
149   uint32_t relSecIdx = 0;
150 
151   template <class ELFT> ObjFile<ELFT> *getFile() const {
152     return cast_or_null<ObjFile<ELFT>>(file);
153   }
154 
155   // Used by --optimize-bb-jumps and RISC-V linker relaxation temporarily to
156   // indicate the number of bytes which is not counted in the size. This should
157   // be reset to zero after uses.
158   uint32_t bytesDropped = 0;
159 
160   mutable bool compressed = false;
161 
162   // Whether the section needs to be padded with a NOP filler due to
163   // deleteFallThruJmpInsn.
164   bool nopFiller = false;
165 
166   void drop_back(unsigned num) {
167     assert(bytesDropped + num < 256);
168     bytesDropped += num;
169   }
170 
171   void push_back(uint64_t num) {
172     assert(bytesDropped >= num);
173     bytesDropped -= num;
174   }
175 
176   mutable const uint8_t *content_;
177   uint64_t size;
178 
179   void trim() {
180     if (bytesDropped) {
181       size -= bytesDropped;
182       bytesDropped = 0;
183     }
184   }
185 
186   ArrayRef<uint8_t> content() const {
187     return ArrayRef<uint8_t>(content_, size);
188   }
189   ArrayRef<uint8_t> contentMaybeDecompress() const {
190     if (compressed)
191       decompress();
192     return content();
193   }
194 
195   // The next member in the section group if this section is in a group. This is
196   // used by --gc-sections.
197   InputSectionBase *nextInSectionGroup = nullptr;
198 
199   template <class ELFT> RelsOrRelas<ELFT> relsOrRelas() const;
200 
201   // InputSections that are dependent on us (reverse dependency for GC)
202   llvm::TinyPtrVector<InputSection *> dependentSections;
203 
204   // Returns the size of this section (even if this is a common or BSS.)
205   size_t getSize() const;
206 
207   InputSection *getLinkOrderDep() const;
208 
209   // Get a symbol that encloses this offset from within the section. If type is
210   // not zero, return a symbol with the specified type.
211   Defined *getEnclosingSymbol(uint64_t offset, uint8_t type = 0) const;
212   Defined *getEnclosingFunction(uint64_t offset) const {
213     return getEnclosingSymbol(offset, llvm::ELF::STT_FUNC);
214   }
215 
216   // Returns a source location string. Used to construct an error message.
217   std::string getLocation(uint64_t offset) const;
218   std::string getSrcMsg(const Symbol &sym, uint64_t offset) const;
219   std::string getObjMsg(uint64_t offset) const;
220 
221   // Each section knows how to relocate itself. These functions apply
222   // relocations, assuming that Buf points to this section's copy in
223   // the mmap'ed output buffer.
224   template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
225   static uint64_t getRelocTargetVA(const InputFile *File, RelType Type,
226                                    int64_t A, uint64_t P, const Symbol &Sym,
227                                    RelExpr Expr);
228 
229   // The native ELF reloc data type is not very convenient to handle.
230   // So we convert ELF reloc records to our own records in Relocations.cpp.
231   // This vector contains such "cooked" relocations.
232   SmallVector<Relocation, 0> relocations;
233 
234   void addReloc(const Relocation &r) { relocations.push_back(r); }
235   MutableArrayRef<Relocation> relocs() { return relocations; }
236   ArrayRef<Relocation> relocs() const { return relocations; }
237 
238   union {
239     // These are modifiers to jump instructions that are necessary when basic
240     // block sections are enabled.  Basic block sections creates opportunities
241     // to relax jump instructions at basic block boundaries after reordering the
242     // basic blocks.
243     JumpInstrMod *jumpInstrMod = nullptr;
244 
245     // Auxiliary information for RISC-V and LoongArch linker relaxation.
246     // They do not use jumpInstrMod.
247     RelaxAux *relaxAux;
248 
249     // The compressed content size when `compressed` is true.
250     size_t compressedSize;
251   };
252 
253   // A function compiled with -fsplit-stack calling a function
254   // compiled without -fsplit-stack needs its prologue adjusted. Find
255   // such functions and adjust their prologues.  This is very similar
256   // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
257   // information.
258   template <typename ELFT>
259   void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
260 
261 
262   template <typename T> llvm::ArrayRef<T> getDataAs() const {
263     size_t s = content().size();
264     assert(s % sizeof(T) == 0);
265     return llvm::ArrayRef<T>((const T *)content().data(), s / sizeof(T));
266   }
267 
268 protected:
269   template <typename ELFT>
270   void parseCompressedHeader();
271   void decompress() const;
272 };
273 
274 // SectionPiece represents a piece of splittable section contents.
275 // We allocate a lot of these and binary search on them. This means that they
276 // have to be as compact as possible, which is why we don't store the size (can
277 // be found by looking at the next one).
278 struct SectionPiece {
279   SectionPiece() = default;
280   SectionPiece(size_t off, uint32_t hash, bool live)
281       : inputOff(off), live(live), hash(hash >> 1) {}
282 
283   uint32_t inputOff;
284   uint32_t live : 1;
285   uint32_t hash : 31;
286   uint64_t outputOff = 0;
287 };
288 
289 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
290 
291 // This corresponds to a SHF_MERGE section of an input file.
292 class MergeInputSection : public InputSectionBase {
293 public:
294   template <class ELFT>
295   MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
296                     StringRef name);
297   MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
298                     ArrayRef<uint8_t> data, StringRef name);
299 
300   static bool classof(const SectionBase *s) { return s->kind() == Merge; }
301   void splitIntoPieces();
302 
303   // Translate an offset in the input section to an offset in the parent
304   // MergeSyntheticSection.
305   uint64_t getParentOffset(uint64_t offset) const;
306 
307   // Splittable sections are handled as a sequence of data
308   // rather than a single large blob of data.
309   SmallVector<SectionPiece, 0> pieces;
310 
311   // Returns I'th piece's data. This function is very hot when
312   // string merging is enabled, so we want to inline.
313   LLVM_ATTRIBUTE_ALWAYS_INLINE
314   llvm::CachedHashStringRef getData(size_t i) const {
315     size_t begin = pieces[i].inputOff;
316     size_t end =
317         (pieces.size() - 1 == i) ? content().size() : pieces[i + 1].inputOff;
318     return {toStringRef(content().slice(begin, end - begin)), pieces[i].hash};
319   }
320 
321   // Returns the SectionPiece at a given input section offset.
322   SectionPiece &getSectionPiece(uint64_t offset);
323   const SectionPiece &getSectionPiece(uint64_t offset) const {
324     return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
325   }
326 
327   SyntheticSection *getParent() const {
328     return cast_or_null<SyntheticSection>(parent);
329   }
330 
331 private:
332   void splitStrings(StringRef s, size_t size);
333   void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
334 };
335 
336 struct EhSectionPiece {
337   EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
338                  unsigned firstRelocation)
339       : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
340 
341   ArrayRef<uint8_t> data() const {
342     return {sec->content().data() + this->inputOff, size};
343   }
344 
345   size_t inputOff;
346   ssize_t outputOff = -1;
347   InputSectionBase *sec;
348   uint32_t size;
349   unsigned firstRelocation;
350 };
351 
352 // This corresponds to a .eh_frame section of an input file.
353 class EhInputSection : public InputSectionBase {
354 public:
355   template <class ELFT>
356   EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
357                  StringRef name);
358   static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
359   template <class ELFT> void split();
360   template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
361 
362   // Splittable sections are handled as a sequence of data
363   // rather than a single large blob of data.
364   SmallVector<EhSectionPiece, 0> cies, fdes;
365 
366   SyntheticSection *getParent() const;
367   uint64_t getParentOffset(uint64_t offset) const;
368 };
369 
370 // This is a section that is added directly to an output section
371 // instead of needing special combination via a synthetic section. This
372 // includes all input sections with the exceptions of SHF_MERGE and
373 // .eh_frame. It also includes the synthetic sections themselves.
374 class InputSection : public InputSectionBase {
375 public:
376   InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t addralign,
377                ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
378   template <class ELFT>
379   InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
380                StringRef name);
381 
382   static bool classof(const SectionBase *s) {
383     return s->kind() == SectionBase::Regular ||
384            s->kind() == SectionBase::Synthetic;
385   }
386 
387   // Write this section to a mmap'ed file, assuming Buf is pointing to
388   // beginning of the output section.
389   template <class ELFT> void writeTo(uint8_t *buf);
390 
391   OutputSection *getParent() const {
392     return reinterpret_cast<OutputSection *>(parent);
393   }
394 
395   // This variable has two usages. Initially, it represents an index in the
396   // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
397   // sections. After assignAddresses is called, it represents the offset from
398   // the beginning of the output section this section was assigned to.
399   uint64_t outSecOff = 0;
400 
401   InputSectionBase *getRelocatedSection() const;
402 
403   template <class ELFT, class RelTy>
404   void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
405 
406   // Points to the canonical section. If ICF folds two sections, repl pointer of
407   // one section points to the other.
408   InputSection *repl = this;
409 
410   // Used by ICF.
411   uint32_t eqClass[2] = {0, 0};
412 
413   // Called by ICF to merge two input sections.
414   void replace(InputSection *other);
415 
416   static InputSection discarded;
417 
418 private:
419   template <class ELFT, class RelTy> void copyRelocations(uint8_t *buf);
420 
421   template <class ELFT, class RelTy, class RelIt>
422   void copyRelocations(uint8_t *buf, llvm::iterator_range<RelIt> rels);
423 
424   template <class ELFT> void copyShtGroup(uint8_t *buf);
425 };
426 
427 static_assert(sizeof(InputSection) <= 160, "InputSection is too big");
428 
429 class SyntheticSection : public InputSection {
430 public:
431   SyntheticSection(uint64_t flags, uint32_t type, uint32_t addralign,
432                    StringRef name)
433       : InputSection(ctx.internalFile, flags, type, addralign, {}, name,
434                      InputSectionBase::Synthetic) {}
435 
436   virtual ~SyntheticSection() = default;
437   virtual size_t getSize() const = 0;
438   virtual bool updateAllocSize() { return false; }
439   // If the section has the SHF_ALLOC flag and the size may be changed if
440   // thunks are added, update the section size.
441   virtual bool isNeeded() const { return true; }
442   virtual void finalizeContents() {}
443   virtual void writeTo(uint8_t *buf) = 0;
444 
445   static bool classof(const SectionBase *sec) {
446     return sec->kind() == InputSectionBase::Synthetic;
447   }
448 };
449 
450 inline bool isDebugSection(const InputSectionBase &sec) {
451   return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
452          sec.name.starts_with(".debug");
453 }
454 
455 // The set of TOC entries (.toc + addend) for which we should not apply
456 // toc-indirect to toc-relative relaxation. const Symbol * refers to the
457 // STT_SECTION symbol associated to the .toc input section.
458 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax;
459 
460 } // namespace elf
461 
462 std::string toString(const elf::InputSectionBase *);
463 } // namespace lld
464 
465 #endif
466