1 //===- PPC64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SymbolTable.h" 10 #include "Symbols.h" 11 #include "SyntheticSections.h" 12 #include "Target.h" 13 #include "Thunks.h" 14 #include "lld/Common/CommonLinkerContext.h" 15 #include "llvm/Support/Endian.h" 16 17 using namespace llvm; 18 using namespace llvm::object; 19 using namespace llvm::support::endian; 20 using namespace llvm::ELF; 21 using namespace lld; 22 using namespace lld::elf; 23 24 constexpr uint64_t ppc64TocOffset = 0x8000; 25 constexpr uint64_t dynamicThreadPointerOffset = 0x8000; 26 27 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform 28 // instructions that can be used as part of the initial exec TLS sequence. 29 enum XFormOpcd { 30 LBZX = 87, 31 LHZX = 279, 32 LWZX = 23, 33 LDX = 21, 34 STBX = 215, 35 STHX = 407, 36 STWX = 151, 37 STDX = 149, 38 ADD = 266, 39 }; 40 41 enum DFormOpcd { 42 LBZ = 34, 43 LBZU = 35, 44 LHZ = 40, 45 LHZU = 41, 46 LHAU = 43, 47 LWZ = 32, 48 LWZU = 33, 49 LFSU = 49, 50 LD = 58, 51 LFDU = 51, 52 STB = 38, 53 STBU = 39, 54 STH = 44, 55 STHU = 45, 56 STW = 36, 57 STWU = 37, 58 STFSU = 53, 59 STFDU = 55, 60 STD = 62, 61 ADDI = 14 62 }; 63 64 constexpr uint32_t NOP = 0x60000000; 65 66 enum class PPCLegacyInsn : uint32_t { 67 NOINSN = 0, 68 // Loads. 69 LBZ = 0x88000000, 70 LHZ = 0xa0000000, 71 LWZ = 0x80000000, 72 LHA = 0xa8000000, 73 LWA = 0xe8000002, 74 LD = 0xe8000000, 75 LFS = 0xC0000000, 76 LXSSP = 0xe4000003, 77 LFD = 0xc8000000, 78 LXSD = 0xe4000002, 79 LXV = 0xf4000001, 80 LXVP = 0x18000000, 81 82 // Stores. 83 STB = 0x98000000, 84 STH = 0xb0000000, 85 STW = 0x90000000, 86 STD = 0xf8000000, 87 STFS = 0xd0000000, 88 STXSSP = 0xf4000003, 89 STFD = 0xd8000000, 90 STXSD = 0xf4000002, 91 STXV = 0xf4000005, 92 STXVP = 0x18000001 93 }; 94 enum class PPCPrefixedInsn : uint64_t { 95 NOINSN = 0, 96 PREFIX_MLS = 0x0610000000000000, 97 PREFIX_8LS = 0x0410000000000000, 98 99 // Loads. 100 PLBZ = PREFIX_MLS, 101 PLHZ = PREFIX_MLS, 102 PLWZ = PREFIX_MLS, 103 PLHA = PREFIX_MLS, 104 PLWA = PREFIX_8LS | 0xa4000000, 105 PLD = PREFIX_8LS | 0xe4000000, 106 PLFS = PREFIX_MLS, 107 PLXSSP = PREFIX_8LS | 0xac000000, 108 PLFD = PREFIX_MLS, 109 PLXSD = PREFIX_8LS | 0xa8000000, 110 PLXV = PREFIX_8LS | 0xc8000000, 111 PLXVP = PREFIX_8LS | 0xe8000000, 112 113 // Stores. 114 PSTB = PREFIX_MLS, 115 PSTH = PREFIX_MLS, 116 PSTW = PREFIX_MLS, 117 PSTD = PREFIX_8LS | 0xf4000000, 118 PSTFS = PREFIX_MLS, 119 PSTXSSP = PREFIX_8LS | 0xbc000000, 120 PSTFD = PREFIX_MLS, 121 PSTXSD = PREFIX_8LS | 0xb8000000, 122 PSTXV = PREFIX_8LS | 0xd8000000, 123 PSTXVP = PREFIX_8LS | 0xf8000000 124 }; 125 static bool checkPPCLegacyInsn(uint32_t encoding) { 126 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding); 127 if (insn == PPCLegacyInsn::NOINSN) 128 return false; 129 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 130 if (insn == PPCLegacyInsn::Legacy) \ 131 return true; 132 #include "PPCInsns.def" 133 #undef PCREL_OPT 134 return false; 135 } 136 137 // Masks to apply to legacy instructions when converting them to prefixed, 138 // pc-relative versions. For the most part, the primary opcode is shared 139 // between the legacy instruction and the suffix of its prefixed version. 140 // However, there are some instances where that isn't the case (DS-Form and 141 // DQ-form instructions). 142 enum class LegacyToPrefixMask : uint64_t { 143 NOMASK = 0x0, 144 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10). 145 ONLY_RST = 0x3e00000, // [RS]T (6-10). 146 ST_STX28_TO5 = 147 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5. 148 }; 149 150 uint64_t elf::getPPC64TocBase() { 151 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 152 // TOC starts where the first of these sections starts. We always create a 153 // .got when we see a relocation that uses it, so for us the start is always 154 // the .got. 155 uint64_t tocVA = in.got->getVA(); 156 157 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 158 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 159 // code (crt1.o) assumes that you can get from the TOC base to the 160 // start of the .toc section with only a single (signed) 16-bit relocation. 161 return tocVA + ppc64TocOffset; 162 } 163 164 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { 165 // The offset is encoded into the 3 most significant bits of the st_other 166 // field, with some special values described in section 3.4.1 of the ABI: 167 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use 168 // the TOC pointer (r2). r2 will hold the same value on returning from 169 // the function as it did on entering the function. 170 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a 171 // caller-saved register for all callers. 172 // 2-6 --> The binary logarithm of the offset eg: 173 // 2 --> 2^2 = 4 bytes --> 1 instruction. 174 // 6 --> 2^6 = 64 bytes --> 16 instructions. 175 // 7 --> Reserved. 176 uint8_t gepToLep = (stOther >> 5) & 7; 177 if (gepToLep < 2) 178 return 0; 179 180 // The value encoded in the st_other bits is the 181 // log-base-2(offset). 182 if (gepToLep < 7) 183 return 1 << gepToLep; 184 185 error("reserved value of 7 in the 3 most-significant-bits of st_other"); 186 return 0; 187 } 188 189 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) { 190 insn = config->isLE ? insn << 32 | insn >> 32 : insn; 191 write64(loc, insn); 192 } 193 194 static bool addOptional(StringRef name, uint64_t value, 195 std::vector<Defined *> &defined) { 196 Symbol *sym = symtab->find(name); 197 if (!sym || sym->isDefined()) 198 return false; 199 sym->resolve(Defined{/*file=*/nullptr, saver().save(name), STB_GLOBAL, 200 STV_HIDDEN, STT_FUNC, value, 201 /*size=*/0, /*section=*/nullptr}); 202 defined.push_back(cast<Defined>(sym)); 203 return true; 204 } 205 206 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: 207 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail 208 // The labels are defined only if they exist in the symbol table. 209 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix, 210 int from, uint32_t firstInsn, 211 ArrayRef<uint32_t> tail) { 212 std::vector<Defined *> defined; 213 char name[16]; 214 int first; 215 uint32_t *ptr = buf.data(); 216 for (int r = from; r < 32; ++r) { 217 format("%s%d", prefix, r).snprint(name, sizeof(name)); 218 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1) 219 first = r - from; 220 write32(ptr++, firstInsn + 0x200008 * (r - from)); 221 } 222 for (uint32_t insn : tail) 223 write32(ptr++, insn); 224 assert(ptr == &*buf.end()); 225 226 if (defined.empty()) 227 return; 228 // The full section content has the extent of [begin, end). We drop unused 229 // instructions and write [first,end). 230 auto *sec = make<InputSection>( 231 nullptr, SHF_ALLOC, SHT_PROGBITS, 4, 232 makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first), 233 4 * (buf.size() - first)), 234 ".text"); 235 inputSections.push_back(sec); 236 for (Defined *sym : defined) { 237 sym->section = sec; 238 sym->value -= 4 * first; 239 } 240 } 241 242 // Implements some save and restore functions as described by ELF V2 ABI to be 243 // compatible with GCC. With GCC -Os, when the number of call-saved registers 244 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and 245 // expects the linker to define them. See 246 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and 247 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is 248 // weird because libgcc.a would be the natural place. The linker generation 249 // approach has the advantage that the linker can generate multiple copies to 250 // avoid long branch thunks. However, we don't consider the advantage 251 // significant enough to complicate our trunk implementation, so we take the 252 // simple approach and synthesize .text sections providing the implementation. 253 void elf::addPPC64SaveRestore() { 254 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19]; 255 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; 256 257 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... 258 // Tail: ld 0, 16(1); mtlr 0; blr 259 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70, 260 {0xe8010010, mtlr_0, blr}); 261 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... 262 // Tail: blr 263 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr}); 264 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... 265 // Tail: std 0, 16(1); blr 266 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr}); 267 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... 268 // Tail: blr 269 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr}); 270 } 271 272 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. 273 template <typename ELFT> 274 static std::pair<Defined *, int64_t> 275 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { 276 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by 277 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the 278 // relocation index in most cases. 279 // 280 // In rare cases a TOC entry may store a constant that doesn't need an 281 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 282 // points to a relocation with larger r_offset. Do a linear probe then. 283 // Constants are extremely uncommon in .toc and the extra number of array 284 // accesses can be seen as a small constant. 285 ArrayRef<typename ELFT::Rela> relas = 286 tocSec->template relsOrRelas<ELFT>().relas; 287 if (relas.empty()) 288 return {}; 289 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); 290 for (;;) { 291 if (relas[index].r_offset == offset) { 292 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]); 293 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])}; 294 } 295 if (relas[index].r_offset < offset || index == 0) 296 break; 297 --index; 298 } 299 return {}; 300 } 301 302 // When accessing a symbol defined in another translation unit, compilers 303 // reserve a .toc entry, allocate a local label and generate toc-indirect 304 // instructions: 305 // 306 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA 307 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry 308 // ld/lwa 3, 0(3) # load the value from the address 309 // 310 // .section .toc,"aw",@progbits 311 // .LC0: .tc var[TC],var 312 // 313 // If var is defined, non-preemptable and addressable with a 32-bit signed 314 // offset from the toc base, the address of var can be computed by adding an 315 // offset to the toc base, saving a load. 316 // 317 // addis 3,2,var@toc@ha # this may be relaxed to a nop, 318 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc 319 // ld/lwa 3, 0(3) # load the value from the address 320 // 321 // Returns true if the relaxation is performed. 322 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) { 323 assert(config->tocOptimize); 324 if (rel.addend < 0) 325 return false; 326 327 // If the symbol is not the .toc section, this isn't a toc-indirection. 328 Defined *defSym = dyn_cast<Defined>(rel.sym); 329 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") 330 return false; 331 332 Defined *d; 333 int64_t addend; 334 auto *tocISB = cast<InputSectionBase>(defSym->section); 335 std::tie(d, addend) = 336 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend) 337 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend); 338 339 // Only non-preemptable defined symbols can be relaxed. 340 if (!d || d->isPreemptible) 341 return false; 342 343 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable 344 // ifunc and changed its type to STT_FUNC. 345 assert(!d->isGnuIFunc()); 346 347 // Two instructions can materialize a 32-bit signed offset from the toc base. 348 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); 349 if (!isInt<32>(tocRelative)) 350 return false; 351 352 // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). 353 target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset); 354 return true; 355 } 356 357 namespace { 358 class PPC64 final : public TargetInfo { 359 public: 360 PPC64(); 361 int getTlsGdRelaxSkip(RelType type) const override; 362 uint32_t calcEFlags() const override; 363 RelExpr getRelExpr(RelType type, const Symbol &s, 364 const uint8_t *loc) const override; 365 RelType getDynRel(RelType type) const override; 366 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; 367 void writePltHeader(uint8_t *buf) const override; 368 void writePlt(uint8_t *buf, const Symbol &sym, 369 uint64_t pltEntryAddr) const override; 370 void writeIplt(uint8_t *buf, const Symbol &sym, 371 uint64_t pltEntryAddr) const override; 372 void relocate(uint8_t *loc, const Relocation &rel, 373 uint64_t val) const override; 374 void writeGotHeader(uint8_t *buf) const override; 375 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 376 uint64_t branchAddr, const Symbol &s, 377 int64_t a) const override; 378 uint32_t getThunkSectionSpacing() const override; 379 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 380 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; 381 RelExpr adjustGotPcExpr(RelType type, int64_t addend, 382 const uint8_t *loc) const override; 383 void relaxGot(uint8_t *loc, const Relocation &rel, 384 uint64_t val) const override; 385 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 386 uint64_t val) const override; 387 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 388 uint64_t val) const override; 389 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 390 uint64_t val) const override; 391 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 392 uint64_t val) const override; 393 394 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 395 uint8_t stOther) const override; 396 }; 397 } // namespace 398 399 // Relocation masks following the #lo(value), #hi(value), #ha(value), 400 // #higher(value), #highera(value), #highest(value), and #highesta(value) 401 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 402 // document. 403 static uint16_t lo(uint64_t v) { return v; } 404 static uint16_t hi(uint64_t v) { return v >> 16; } 405 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; } 406 static uint16_t higher(uint64_t v) { return v >> 32; } 407 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } 408 static uint16_t highest(uint64_t v) { return v >> 48; } 409 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } 410 411 // Extracts the 'PO' field of an instruction encoding. 412 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } 413 414 static bool isDQFormInstruction(uint32_t encoding) { 415 switch (getPrimaryOpCode(encoding)) { 416 default: 417 return false; 418 case 6: // Power10 paired loads/stores (lxvp, stxvp). 419 case 56: 420 // The only instruction with a primary opcode of 56 is `lq`. 421 return true; 422 case 61: 423 // There are both DS and DQ instruction forms with this primary opcode. 424 // Namely `lxv` and `stxv` are the DQ-forms that use it. 425 // The DS 'XO' bits being set to 01 is restricted to DQ form. 426 return (encoding & 3) == 0x1; 427 } 428 } 429 430 static bool isDSFormInstruction(PPCLegacyInsn insn) { 431 switch (insn) { 432 default: 433 return false; 434 case PPCLegacyInsn::LWA: 435 case PPCLegacyInsn::LD: 436 case PPCLegacyInsn::LXSD: 437 case PPCLegacyInsn::LXSSP: 438 case PPCLegacyInsn::STD: 439 case PPCLegacyInsn::STXSD: 440 case PPCLegacyInsn::STXSSP: 441 return true; 442 } 443 } 444 445 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) { 446 uint32_t opc = encoding & 0xfc000000; 447 448 // If the primary opcode is shared between multiple instructions, we need to 449 // fix it up to match the actual instruction we are after. 450 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 || 451 opc == 0xf8000000) && 452 !isDQFormInstruction(encoding)) 453 opc = encoding & 0xfc000003; 454 else if (opc == 0xf4000000) 455 opc = encoding & 0xfc000007; 456 else if (opc == 0x18000000) 457 opc = encoding & 0xfc00000f; 458 459 // If the value is not one of the enumerators in PPCLegacyInsn, we want to 460 // return PPCLegacyInsn::NOINSN. 461 if (!checkPPCLegacyInsn(opc)) 462 return PPCLegacyInsn::NOINSN; 463 return static_cast<PPCLegacyInsn>(opc); 464 } 465 466 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) { 467 switch (insn) { 468 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 469 case PPCLegacyInsn::Legacy: \ 470 return PPCPrefixedInsn::PCRel 471 #include "PPCInsns.def" 472 #undef PCREL_OPT 473 } 474 return PPCPrefixedInsn::NOINSN; 475 } 476 477 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) { 478 switch (insn) { 479 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 480 case PPCLegacyInsn::Legacy: \ 481 return LegacyToPrefixMask::InsnMask 482 #include "PPCInsns.def" 483 #undef PCREL_OPT 484 } 485 return LegacyToPrefixMask::NOMASK; 486 } 487 static uint64_t getPCRelativeForm(uint32_t encoding) { 488 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding); 489 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn); 490 if (pcrelInsn == PPCPrefixedInsn::NOINSN) 491 return UINT64_C(-1); 492 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn); 493 uint64_t pcrelEncoding = 494 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask); 495 496 // If the mask requires moving bit 28 to bit 5, do that now. 497 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5) 498 pcrelEncoding |= (encoding & 0x8) << 23; 499 return pcrelEncoding; 500 } 501 502 static bool isInstructionUpdateForm(uint32_t encoding) { 503 switch (getPrimaryOpCode(encoding)) { 504 default: 505 return false; 506 case LBZU: 507 case LHAU: 508 case LHZU: 509 case LWZU: 510 case LFSU: 511 case LFDU: 512 case STBU: 513 case STHU: 514 case STWU: 515 case STFSU: 516 case STFDU: 517 return true; 518 // LWA has the same opcode as LD, and the DS bits is what differentiates 519 // between LD/LDU/LWA 520 case LD: 521 case STD: 522 return (encoding & 3) == 1; 523 } 524 } 525 526 // Compute the total displacement between the prefixed instruction that gets 527 // to the start of the data and the load/store instruction that has the offset 528 // into the data structure. 529 // For example: 530 // paddi 3, 0, 1000, 1 531 // lwz 3, 20(3) 532 // Should add up to 1020 for total displacement. 533 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) { 534 int64_t disp34 = llvm::SignExtend64( 535 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34); 536 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16); 537 // For DS and DQ form instructions, we need to mask out the XO bits. 538 if (isDQFormInstruction(accessInsn)) 539 disp16 &= ~0xf; 540 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn))) 541 disp16 &= ~0x3; 542 return disp34 + disp16; 543 } 544 545 // There are a number of places when we either want to read or write an 546 // instruction when handling a half16 relocation type. On big-endian the buffer 547 // pointer is pointing into the middle of the word we want to extract, and on 548 // little-endian it is pointing to the start of the word. These 2 helpers are to 549 // simplify reading and writing in that context. 550 static void writeFromHalf16(uint8_t *loc, uint32_t insn) { 551 write32(config->isLE ? loc : loc - 2, insn); 552 } 553 554 static uint32_t readFromHalf16(const uint8_t *loc) { 555 return read32(config->isLE ? loc : loc - 2); 556 } 557 558 static uint64_t readPrefixedInstruction(const uint8_t *loc) { 559 uint64_t fullInstr = read64(loc); 560 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; 561 } 562 563 PPC64::PPC64() { 564 copyRel = R_PPC64_COPY; 565 gotRel = R_PPC64_GLOB_DAT; 566 pltRel = R_PPC64_JMP_SLOT; 567 relativeRel = R_PPC64_RELATIVE; 568 iRelativeRel = R_PPC64_IRELATIVE; 569 symbolicRel = R_PPC64_ADDR64; 570 pltHeaderSize = 60; 571 pltEntrySize = 4; 572 ipltEntrySize = 16; // PPC64PltCallStub::size 573 gotHeaderEntriesNum = 1; 574 gotPltHeaderEntriesNum = 2; 575 needsThunks = true; 576 577 tlsModuleIndexRel = R_PPC64_DTPMOD64; 578 tlsOffsetRel = R_PPC64_DTPREL64; 579 580 tlsGotRel = R_PPC64_TPREL64; 581 582 needsMoreStackNonSplit = false; 583 584 // We need 64K pages (at least under glibc/Linux, the loader won't 585 // set different permissions on a finer granularity than that). 586 defaultMaxPageSize = 65536; 587 588 // The PPC64 ELF ABI v1 spec, says: 589 // 590 // It is normally desirable to put segments with different characteristics 591 // in separate 256 Mbyte portions of the address space, to give the 592 // operating system full paging flexibility in the 64-bit address space. 593 // 594 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 595 // use 0x10000000 as the starting address. 596 defaultImageBase = 0x10000000; 597 598 write32(trapInstr.data(), 0x7fe00008); 599 } 600 601 int PPC64::getTlsGdRelaxSkip(RelType type) const { 602 // A __tls_get_addr call instruction is marked with 2 relocations: 603 // 604 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation 605 // R_PPC64_REL24: __tls_get_addr 606 // 607 // After the relaxation we no longer call __tls_get_addr and should skip both 608 // relocations to not create a false dependence on __tls_get_addr being 609 // defined. 610 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) 611 return 2; 612 return 1; 613 } 614 615 static uint32_t getEFlags(InputFile *file) { 616 if (config->ekind == ELF64BEKind) 617 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags; 618 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags; 619 } 620 621 // This file implements v2 ABI. This function makes sure that all 622 // object files have v2 or an unspecified version as an ABI version. 623 uint32_t PPC64::calcEFlags() const { 624 for (InputFile *f : objectFiles) { 625 uint32_t flag = getEFlags(f); 626 if (flag == 1) 627 error(toString(f) + ": ABI version 1 is not supported"); 628 else if (flag > 2) 629 error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); 630 } 631 return 2; 632 } 633 634 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { 635 switch (rel.type) { 636 case R_PPC64_TOC16_HA: 637 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". 638 relocate(loc, rel, val); 639 break; 640 case R_PPC64_TOC16_LO_DS: { 641 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or 642 // "addi reg, 2, var@toc". 643 uint32_t insn = readFromHalf16(loc); 644 if (getPrimaryOpCode(insn) != LD) 645 error("expected a 'ld' for got-indirect to toc-relative relaxing"); 646 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); 647 relocateNoSym(loc, R_PPC64_TOC16_LO, val); 648 break; 649 } 650 case R_PPC64_GOT_PCREL34: { 651 // Clear the first 8 bits of the prefix and the first 6 bits of the 652 // instruction (the primary opcode). 653 uint64_t insn = readPrefixedInstruction(loc); 654 if ((insn & 0xfc000000) != 0xe4000000) 655 error("expected a 'pld' for got-indirect to pc-relative relaxing"); 656 insn &= ~0xff000000fc000000; 657 658 // Replace the cleared bits with the values for PADDI (0x600000038000000); 659 insn |= 0x600000038000000; 660 writePrefixedInstruction(loc, insn); 661 relocate(loc, rel, val); 662 break; 663 } 664 case R_PPC64_PCREL_OPT: { 665 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can 666 // be relaxed. The eligibility for the relaxation needs to be determined 667 // on that relocation since this one does not relocate a symbol. 668 uint64_t insn = readPrefixedInstruction(loc); 669 uint32_t accessInsn = read32(loc + rel.addend); 670 uint64_t pcRelInsn = getPCRelativeForm(accessInsn); 671 672 // This error is not necessary for correctness but is emitted for now 673 // to ensure we don't miss these opportunities in real code. It can be 674 // removed at a later date. 675 if (pcRelInsn == UINT64_C(-1)) { 676 errorOrWarn( 677 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" + 678 Twine::utohexstr(accessInsn)); 679 break; 680 } 681 682 int64_t totalDisp = getTotalDisp(insn, accessInsn); 683 if (!isInt<34>(totalDisp)) 684 break; // Displacement doesn't fit. 685 // Convert the PADDI to the prefixed version of accessInsn and convert 686 // accessInsn to a nop. 687 writePrefixedInstruction(loc, pcRelInsn | 688 ((totalDisp & 0x3ffff0000) << 16) | 689 (totalDisp & 0xffff)); 690 write32(loc + rel.addend, NOP); // nop accessInsn. 691 break; 692 } 693 default: 694 llvm_unreachable("unexpected relocation type"); 695 } 696 } 697 698 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 699 uint64_t val) const { 700 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. 701 // The general dynamic code sequence for a global `x` will look like: 702 // Instruction Relocation Symbol 703 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 704 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 705 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 706 // R_PPC64_REL24 __tls_get_addr 707 // nop None None 708 709 // Relaxing to local exec entails converting: 710 // addis r3, r2, x@got@tlsgd@ha into nop 711 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha 712 // bl __tls_get_addr(x@tlsgd) into nop 713 // nop into addi r3, r3, x@tprel@l 714 715 switch (rel.type) { 716 case R_PPC64_GOT_TLSGD16_HA: 717 writeFromHalf16(loc, NOP); 718 break; 719 case R_PPC64_GOT_TLSGD16: 720 case R_PPC64_GOT_TLSGD16_LO: 721 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 722 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 723 break; 724 case R_PPC64_GOT_TLSGD_PCREL34: 725 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to 726 // paddi r3, r13, x@tprel, 0 727 writePrefixedInstruction(loc, 0x06000000386d0000); 728 relocateNoSym(loc, R_PPC64_TPREL34, val); 729 break; 730 case R_PPC64_TLSGD: { 731 // PC Relative Relaxation: 732 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 733 // nop 734 // TOC Relaxation: 735 // Relax from bl __tls_get_addr(x@tlsgd) 736 // nop 737 // to 738 // nop 739 // addi r3, r3, x@tprel@l 740 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 741 if (locAsInt % 4 == 0) { 742 write32(loc, NOP); // nop 743 write32(loc + 4, 0x38630000); // addi r3, r3 744 // Since we are relocating a half16 type relocation and Loc + 4 points to 745 // the start of an instruction we need to advance the buffer by an extra 746 // 2 bytes on BE. 747 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), 748 R_PPC64_TPREL16_LO, val); 749 } else if (locAsInt % 4 == 1) { 750 write32(loc - 1, NOP); 751 } else { 752 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 753 } 754 break; 755 } 756 default: 757 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 758 } 759 } 760 761 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 762 uint64_t val) const { 763 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. 764 // The local dynamic code sequence for a global `x` will look like: 765 // Instruction Relocation Symbol 766 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x 767 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x 768 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x 769 // R_PPC64_REL24 __tls_get_addr 770 // nop None None 771 772 // Relaxing to local exec entails converting: 773 // addis r3, r2, x@got@tlsld@ha into nop 774 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 775 // bl __tls_get_addr(x@tlsgd) into nop 776 // nop into addi r3, r3, 4096 777 778 switch (rel.type) { 779 case R_PPC64_GOT_TLSLD16_HA: 780 writeFromHalf16(loc, NOP); 781 break; 782 case R_PPC64_GOT_TLSLD16_LO: 783 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 784 break; 785 case R_PPC64_GOT_TLSLD_PCREL34: 786 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to 787 // paddi r3, r13, 0x1000, 0 788 writePrefixedInstruction(loc, 0x06000000386d1000); 789 break; 790 case R_PPC64_TLSLD: { 791 // PC Relative Relaxation: 792 // Relax from bl __tls_get_addr@notoc(x@tlsld) 793 // to 794 // nop 795 // TOC Relaxation: 796 // Relax from bl __tls_get_addr(x@tlsld) 797 // nop 798 // to 799 // nop 800 // addi r3, r3, 4096 801 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 802 if (locAsInt % 4 == 0) { 803 write32(loc, NOP); 804 write32(loc + 4, 0x38631000); // addi r3, r3, 4096 805 } else if (locAsInt % 4 == 1) { 806 write32(loc - 1, NOP); 807 } else { 808 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment"); 809 } 810 break; 811 } 812 case R_PPC64_DTPREL16: 813 case R_PPC64_DTPREL16_HA: 814 case R_PPC64_DTPREL16_HI: 815 case R_PPC64_DTPREL16_DS: 816 case R_PPC64_DTPREL16_LO: 817 case R_PPC64_DTPREL16_LO_DS: 818 case R_PPC64_DTPREL34: 819 relocate(loc, rel, val); 820 break; 821 default: 822 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); 823 } 824 } 825 826 unsigned elf::getPPCDFormOp(unsigned secondaryOp) { 827 switch (secondaryOp) { 828 case LBZX: 829 return LBZ; 830 case LHZX: 831 return LHZ; 832 case LWZX: 833 return LWZ; 834 case LDX: 835 return LD; 836 case STBX: 837 return STB; 838 case STHX: 839 return STH; 840 case STWX: 841 return STW; 842 case STDX: 843 return STD; 844 case ADD: 845 return ADDI; 846 default: 847 return 0; 848 } 849 } 850 851 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 852 uint64_t val) const { 853 // The initial exec code sequence for a global `x` will look like: 854 // Instruction Relocation Symbol 855 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x 856 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x 857 // add r9, r9, x@tls R_PPC64_TLS x 858 859 // Relaxing to local exec entails converting: 860 // addis r9, r2, x@got@tprel@ha into nop 861 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha 862 // add r9, r9, x@tls into addi r9, r9, x@tprel@l 863 864 // x@tls R_PPC64_TLS is a relocation which does not compute anything, 865 // it is replaced with r13 (thread pointer). 866 867 // The add instruction in the initial exec sequence has multiple variations 868 // that need to be handled. If we are building an address it will use an add 869 // instruction, if we are accessing memory it will use any of the X-form 870 // indexed load or store instructions. 871 872 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; 873 switch (rel.type) { 874 case R_PPC64_GOT_TPREL16_HA: 875 write32(loc - offset, NOP); 876 break; 877 case R_PPC64_GOT_TPREL16_LO_DS: 878 case R_PPC64_GOT_TPREL16_DS: { 879 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 880 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 881 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 882 break; 883 } 884 case R_PPC64_GOT_TPREL_PCREL34: { 885 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000; 886 // paddi RT(from pld), r13, symbol@tprel, 0 887 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT); 888 relocateNoSym(loc, R_PPC64_TPREL34, val); 889 break; 890 } 891 case R_PPC64_TLS: { 892 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 893 if (locAsInt % 4 == 0) { 894 uint32_t primaryOp = getPrimaryOpCode(read32(loc)); 895 if (primaryOp != 31) 896 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 897 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 898 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 899 if (dFormOp == 0) 900 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 901 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF))); 902 relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val); 903 } else if (locAsInt % 4 == 1) { 904 // If the offset is not 4 byte aligned then we have a PCRel type reloc. 905 // This version of the relocation is offset by one byte from the 906 // instruction it references. 907 uint32_t tlsInstr = read32(loc - 1); 908 uint32_t primaryOp = getPrimaryOpCode(tlsInstr); 909 if (primaryOp != 31) 910 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 911 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30 912 // The add is a special case and should be turned into a nop. The paddi 913 // that comes before it will already have computed the address of the 914 // symbol. 915 if (secondaryOp == 266) { 916 // Check if the add uses the same result register as the input register. 917 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10 918 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15 919 if (ra == rt) { 920 write32(loc - 1, NOP); 921 } else { 922 // mr rt, ra 923 write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11)); 924 } 925 } else { 926 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 927 if (dFormOp == 0) 928 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 929 write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000))); 930 } 931 } else { 932 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte " 933 "offset from 4 byte aligned"); 934 } 935 break; 936 } 937 default: 938 llvm_unreachable("unknown relocation for IE to LE"); 939 break; 940 } 941 } 942 943 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, 944 const uint8_t *loc) const { 945 switch (type) { 946 case R_PPC64_NONE: 947 return R_NONE; 948 case R_PPC64_ADDR16: 949 case R_PPC64_ADDR16_DS: 950 case R_PPC64_ADDR16_HA: 951 case R_PPC64_ADDR16_HI: 952 case R_PPC64_ADDR16_HIGH: 953 case R_PPC64_ADDR16_HIGHER: 954 case R_PPC64_ADDR16_HIGHERA: 955 case R_PPC64_ADDR16_HIGHEST: 956 case R_PPC64_ADDR16_HIGHESTA: 957 case R_PPC64_ADDR16_LO: 958 case R_PPC64_ADDR16_LO_DS: 959 case R_PPC64_ADDR32: 960 case R_PPC64_ADDR64: 961 return R_ABS; 962 case R_PPC64_GOT16: 963 case R_PPC64_GOT16_DS: 964 case R_PPC64_GOT16_HA: 965 case R_PPC64_GOT16_HI: 966 case R_PPC64_GOT16_LO: 967 case R_PPC64_GOT16_LO_DS: 968 return R_GOT_OFF; 969 case R_PPC64_TOC16: 970 case R_PPC64_TOC16_DS: 971 case R_PPC64_TOC16_HI: 972 case R_PPC64_TOC16_LO: 973 return R_GOTREL; 974 case R_PPC64_GOT_PCREL34: 975 case R_PPC64_GOT_TPREL_PCREL34: 976 case R_PPC64_PCREL_OPT: 977 return R_GOT_PC; 978 case R_PPC64_TOC16_HA: 979 case R_PPC64_TOC16_LO_DS: 980 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; 981 case R_PPC64_TOC: 982 return R_PPC64_TOCBASE; 983 case R_PPC64_REL14: 984 case R_PPC64_REL24: 985 return R_PPC64_CALL_PLT; 986 case R_PPC64_REL24_NOTOC: 987 return R_PLT_PC; 988 case R_PPC64_REL16_LO: 989 case R_PPC64_REL16_HA: 990 case R_PPC64_REL16_HI: 991 case R_PPC64_REL32: 992 case R_PPC64_REL64: 993 case R_PPC64_PCREL34: 994 return R_PC; 995 case R_PPC64_GOT_TLSGD16: 996 case R_PPC64_GOT_TLSGD16_HA: 997 case R_PPC64_GOT_TLSGD16_HI: 998 case R_PPC64_GOT_TLSGD16_LO: 999 return R_TLSGD_GOT; 1000 case R_PPC64_GOT_TLSGD_PCREL34: 1001 return R_TLSGD_PC; 1002 case R_PPC64_GOT_TLSLD16: 1003 case R_PPC64_GOT_TLSLD16_HA: 1004 case R_PPC64_GOT_TLSLD16_HI: 1005 case R_PPC64_GOT_TLSLD16_LO: 1006 return R_TLSLD_GOT; 1007 case R_PPC64_GOT_TLSLD_PCREL34: 1008 return R_TLSLD_PC; 1009 case R_PPC64_GOT_TPREL16_HA: 1010 case R_PPC64_GOT_TPREL16_LO_DS: 1011 case R_PPC64_GOT_TPREL16_DS: 1012 case R_PPC64_GOT_TPREL16_HI: 1013 return R_GOT_OFF; 1014 case R_PPC64_GOT_DTPREL16_HA: 1015 case R_PPC64_GOT_DTPREL16_LO_DS: 1016 case R_PPC64_GOT_DTPREL16_DS: 1017 case R_PPC64_GOT_DTPREL16_HI: 1018 return R_TLSLD_GOT_OFF; 1019 case R_PPC64_TPREL16: 1020 case R_PPC64_TPREL16_HA: 1021 case R_PPC64_TPREL16_LO: 1022 case R_PPC64_TPREL16_HI: 1023 case R_PPC64_TPREL16_DS: 1024 case R_PPC64_TPREL16_LO_DS: 1025 case R_PPC64_TPREL16_HIGHER: 1026 case R_PPC64_TPREL16_HIGHERA: 1027 case R_PPC64_TPREL16_HIGHEST: 1028 case R_PPC64_TPREL16_HIGHESTA: 1029 case R_PPC64_TPREL34: 1030 return R_TPREL; 1031 case R_PPC64_DTPREL16: 1032 case R_PPC64_DTPREL16_DS: 1033 case R_PPC64_DTPREL16_HA: 1034 case R_PPC64_DTPREL16_HI: 1035 case R_PPC64_DTPREL16_HIGHER: 1036 case R_PPC64_DTPREL16_HIGHERA: 1037 case R_PPC64_DTPREL16_HIGHEST: 1038 case R_PPC64_DTPREL16_HIGHESTA: 1039 case R_PPC64_DTPREL16_LO: 1040 case R_PPC64_DTPREL16_LO_DS: 1041 case R_PPC64_DTPREL64: 1042 case R_PPC64_DTPREL34: 1043 return R_DTPREL; 1044 case R_PPC64_TLSGD: 1045 return R_TLSDESC_CALL; 1046 case R_PPC64_TLSLD: 1047 return R_TLSLD_HINT; 1048 case R_PPC64_TLS: 1049 return R_TLSIE_HINT; 1050 default: 1051 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 1052 ") against symbol " + toString(s)); 1053 return R_NONE; 1054 } 1055 } 1056 1057 RelType PPC64::getDynRel(RelType type) const { 1058 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) 1059 return R_PPC64_ADDR64; 1060 return R_PPC64_NONE; 1061 } 1062 1063 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const { 1064 switch (type) { 1065 case R_PPC64_NONE: 1066 return 0; 1067 case R_PPC64_REL32: 1068 return SignExtend64<32>(read32(buf)); 1069 case R_PPC64_ADDR64: 1070 case R_PPC64_REL64: 1071 return read64(buf); 1072 default: 1073 internalLinkerError(getErrorLocation(buf), 1074 "cannot read addend for relocation " + toString(type)); 1075 return 0; 1076 } 1077 } 1078 1079 void PPC64::writeGotHeader(uint8_t *buf) const { 1080 write64(buf, getPPC64TocBase()); 1081 } 1082 1083 void PPC64::writePltHeader(uint8_t *buf) const { 1084 // The generic resolver stub goes first. 1085 write32(buf + 0, 0x7c0802a6); // mflr r0 1086 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> 1087 write32(buf + 8, 0x7d6802a6); // mflr r11 1088 write32(buf + 12, 0x7c0803a6); // mtlr r0 1089 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 1090 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 1091 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 1092 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) 1093 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 1094 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) 1095 write32(buf + 40, 0xe96b0008); // ld r11,8(r11) 1096 write32(buf + 44, 0x7d8903a6); // mtctr r12 1097 write32(buf + 48, 0x4e800420); // bctr 1098 1099 // The 'bcl' instruction will set the link register to the address of the 1100 // following instruction ('mflr r11'). Here we store the offset from that 1101 // instruction to the first entry in the GotPlt section. 1102 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); 1103 write64(buf + 52, gotPltOffset); 1104 } 1105 1106 void PPC64::writePlt(uint8_t *buf, const Symbol &sym, 1107 uint64_t /*pltEntryAddr*/) const { 1108 int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize; 1109 // bl __glink_PLTresolve 1110 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); 1111 } 1112 1113 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, 1114 uint64_t /*pltEntryAddr*/) const { 1115 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase()); 1116 } 1117 1118 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { 1119 // Relocations relative to the toc-base need to be adjusted by the Toc offset. 1120 uint64_t tocBiasedVal = val - ppc64TocOffset; 1121 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. 1122 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; 1123 1124 switch (type) { 1125 // TOC biased relocation. 1126 case R_PPC64_GOT16: 1127 case R_PPC64_GOT_TLSGD16: 1128 case R_PPC64_GOT_TLSLD16: 1129 case R_PPC64_TOC16: 1130 return {R_PPC64_ADDR16, tocBiasedVal}; 1131 case R_PPC64_GOT16_DS: 1132 case R_PPC64_TOC16_DS: 1133 case R_PPC64_GOT_TPREL16_DS: 1134 case R_PPC64_GOT_DTPREL16_DS: 1135 return {R_PPC64_ADDR16_DS, tocBiasedVal}; 1136 case R_PPC64_GOT16_HA: 1137 case R_PPC64_GOT_TLSGD16_HA: 1138 case R_PPC64_GOT_TLSLD16_HA: 1139 case R_PPC64_GOT_TPREL16_HA: 1140 case R_PPC64_GOT_DTPREL16_HA: 1141 case R_PPC64_TOC16_HA: 1142 return {R_PPC64_ADDR16_HA, tocBiasedVal}; 1143 case R_PPC64_GOT16_HI: 1144 case R_PPC64_GOT_TLSGD16_HI: 1145 case R_PPC64_GOT_TLSLD16_HI: 1146 case R_PPC64_GOT_TPREL16_HI: 1147 case R_PPC64_GOT_DTPREL16_HI: 1148 case R_PPC64_TOC16_HI: 1149 return {R_PPC64_ADDR16_HI, tocBiasedVal}; 1150 case R_PPC64_GOT16_LO: 1151 case R_PPC64_GOT_TLSGD16_LO: 1152 case R_PPC64_GOT_TLSLD16_LO: 1153 case R_PPC64_TOC16_LO: 1154 return {R_PPC64_ADDR16_LO, tocBiasedVal}; 1155 case R_PPC64_GOT16_LO_DS: 1156 case R_PPC64_TOC16_LO_DS: 1157 case R_PPC64_GOT_TPREL16_LO_DS: 1158 case R_PPC64_GOT_DTPREL16_LO_DS: 1159 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; 1160 1161 // Dynamic Thread pointer biased relocation types. 1162 case R_PPC64_DTPREL16: 1163 return {R_PPC64_ADDR16, dtpBiasedVal}; 1164 case R_PPC64_DTPREL16_DS: 1165 return {R_PPC64_ADDR16_DS, dtpBiasedVal}; 1166 case R_PPC64_DTPREL16_HA: 1167 return {R_PPC64_ADDR16_HA, dtpBiasedVal}; 1168 case R_PPC64_DTPREL16_HI: 1169 return {R_PPC64_ADDR16_HI, dtpBiasedVal}; 1170 case R_PPC64_DTPREL16_HIGHER: 1171 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; 1172 case R_PPC64_DTPREL16_HIGHERA: 1173 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; 1174 case R_PPC64_DTPREL16_HIGHEST: 1175 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; 1176 case R_PPC64_DTPREL16_HIGHESTA: 1177 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; 1178 case R_PPC64_DTPREL16_LO: 1179 return {R_PPC64_ADDR16_LO, dtpBiasedVal}; 1180 case R_PPC64_DTPREL16_LO_DS: 1181 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; 1182 case R_PPC64_DTPREL64: 1183 return {R_PPC64_ADDR64, dtpBiasedVal}; 1184 1185 default: 1186 return {type, val}; 1187 } 1188 } 1189 1190 static bool isTocOptType(RelType type) { 1191 switch (type) { 1192 case R_PPC64_GOT16_HA: 1193 case R_PPC64_GOT16_LO_DS: 1194 case R_PPC64_TOC16_HA: 1195 case R_PPC64_TOC16_LO_DS: 1196 case R_PPC64_TOC16_LO: 1197 return true; 1198 default: 1199 return false; 1200 } 1201 } 1202 1203 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 1204 RelType type = rel.type; 1205 bool shouldTocOptimize = isTocOptType(type); 1206 // For dynamic thread pointer relative, toc-relative, and got-indirect 1207 // relocations, proceed in terms of the corresponding ADDR16 relocation type. 1208 std::tie(type, val) = toAddr16Rel(type, val); 1209 1210 switch (type) { 1211 case R_PPC64_ADDR14: { 1212 checkAlignment(loc, val, 4, rel); 1213 // Preserve the AA/LK bits in the branch instruction 1214 uint8_t aalk = loc[3]; 1215 write16(loc + 2, (aalk & 3) | (val & 0xfffc)); 1216 break; 1217 } 1218 case R_PPC64_ADDR16: 1219 checkIntUInt(loc, val, 16, rel); 1220 write16(loc, val); 1221 break; 1222 case R_PPC64_ADDR32: 1223 checkIntUInt(loc, val, 32, rel); 1224 write32(loc, val); 1225 break; 1226 case R_PPC64_ADDR16_DS: 1227 case R_PPC64_TPREL16_DS: { 1228 checkInt(loc, val, 16, rel); 1229 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1230 // DS-form instructions only use bits 30-31. 1231 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; 1232 checkAlignment(loc, lo(val), mask + 1, rel); 1233 write16(loc, (read16(loc) & mask) | lo(val)); 1234 } break; 1235 case R_PPC64_ADDR16_HA: 1236 case R_PPC64_REL16_HA: 1237 case R_PPC64_TPREL16_HA: 1238 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) 1239 writeFromHalf16(loc, NOP); 1240 else { 1241 checkInt(loc, val + 0x8000, 32, rel); 1242 write16(loc, ha(val)); 1243 } 1244 break; 1245 case R_PPC64_ADDR16_HI: 1246 case R_PPC64_REL16_HI: 1247 case R_PPC64_TPREL16_HI: 1248 checkInt(loc, val, 32, rel); 1249 write16(loc, hi(val)); 1250 break; 1251 case R_PPC64_ADDR16_HIGH: 1252 write16(loc, hi(val)); 1253 break; 1254 case R_PPC64_ADDR16_HIGHER: 1255 case R_PPC64_TPREL16_HIGHER: 1256 write16(loc, higher(val)); 1257 break; 1258 case R_PPC64_ADDR16_HIGHERA: 1259 case R_PPC64_TPREL16_HIGHERA: 1260 write16(loc, highera(val)); 1261 break; 1262 case R_PPC64_ADDR16_HIGHEST: 1263 case R_PPC64_TPREL16_HIGHEST: 1264 write16(loc, highest(val)); 1265 break; 1266 case R_PPC64_ADDR16_HIGHESTA: 1267 case R_PPC64_TPREL16_HIGHESTA: 1268 write16(loc, highesta(val)); 1269 break; 1270 case R_PPC64_ADDR16_LO: 1271 case R_PPC64_REL16_LO: 1272 case R_PPC64_TPREL16_LO: 1273 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1274 // changed into a nop. The lo part then needs to be updated to use the 1275 // toc-pointer register r2, as the base register. 1276 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1277 uint32_t insn = readFromHalf16(loc); 1278 if (isInstructionUpdateForm(insn)) 1279 error(getErrorLocation(loc) + 1280 "can't toc-optimize an update instruction: 0x" + 1281 utohexstr(insn)); 1282 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); 1283 } else { 1284 write16(loc, lo(val)); 1285 } 1286 break; 1287 case R_PPC64_ADDR16_LO_DS: 1288 case R_PPC64_TPREL16_LO_DS: { 1289 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1290 // DS-form instructions only use bits 30-31. 1291 uint32_t insn = readFromHalf16(loc); 1292 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; 1293 checkAlignment(loc, lo(val), mask + 1, rel); 1294 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1295 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1296 // changed into a nop. The lo part then needs to be updated to use the toc 1297 // pointer register r2, as the base register. 1298 if (isInstructionUpdateForm(insn)) 1299 error(getErrorLocation(loc) + 1300 "Can't toc-optimize an update instruction: 0x" + 1301 Twine::utohexstr(insn)); 1302 insn &= 0xffe00000 | mask; 1303 writeFromHalf16(loc, insn | 0x00020000 | lo(val)); 1304 } else { 1305 write16(loc, (read16(loc) & mask) | lo(val)); 1306 } 1307 } break; 1308 case R_PPC64_TPREL16: 1309 checkInt(loc, val, 16, rel); 1310 write16(loc, val); 1311 break; 1312 case R_PPC64_REL32: 1313 checkInt(loc, val, 32, rel); 1314 write32(loc, val); 1315 break; 1316 case R_PPC64_ADDR64: 1317 case R_PPC64_REL64: 1318 case R_PPC64_TOC: 1319 write64(loc, val); 1320 break; 1321 case R_PPC64_REL14: { 1322 uint32_t mask = 0x0000FFFC; 1323 checkInt(loc, val, 16, rel); 1324 checkAlignment(loc, val, 4, rel); 1325 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1326 break; 1327 } 1328 case R_PPC64_REL24: 1329 case R_PPC64_REL24_NOTOC: { 1330 uint32_t mask = 0x03FFFFFC; 1331 checkInt(loc, val, 26, rel); 1332 checkAlignment(loc, val, 4, rel); 1333 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1334 break; 1335 } 1336 case R_PPC64_DTPREL64: 1337 write64(loc, val - dynamicThreadPointerOffset); 1338 break; 1339 case R_PPC64_DTPREL34: 1340 // The Dynamic Thread Vector actually points 0x8000 bytes past the start 1341 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first 1342 // need to subtract that value then fallthrough to the general case. 1343 val -= dynamicThreadPointerOffset; 1344 LLVM_FALLTHROUGH; 1345 case R_PPC64_PCREL34: 1346 case R_PPC64_GOT_PCREL34: 1347 case R_PPC64_GOT_TLSGD_PCREL34: 1348 case R_PPC64_GOT_TLSLD_PCREL34: 1349 case R_PPC64_GOT_TPREL_PCREL34: 1350 case R_PPC64_TPREL34: { 1351 const uint64_t si0Mask = 0x00000003ffff0000; 1352 const uint64_t si1Mask = 0x000000000000ffff; 1353 const uint64_t fullMask = 0x0003ffff0000ffff; 1354 checkInt(loc, val, 34, rel); 1355 1356 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; 1357 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | 1358 (val & si1Mask)); 1359 break; 1360 } 1361 // If we encounter a PCREL_OPT relocation that we won't optimize. 1362 case R_PPC64_PCREL_OPT: 1363 break; 1364 default: 1365 llvm_unreachable("unknown relocation"); 1366 } 1367 } 1368 1369 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 1370 uint64_t branchAddr, const Symbol &s, int64_t a) const { 1371 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && 1372 type != R_PPC64_REL24_NOTOC) 1373 return false; 1374 1375 // If a function is in the Plt it needs to be called with a call-stub. 1376 if (s.isInPlt()) 1377 return true; 1378 1379 // This check looks at the st_other bits of the callee with relocation 1380 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee 1381 // clobbers the TOC and we need an R2 save stub. 1382 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) 1383 return true; 1384 1385 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) 1386 return true; 1387 1388 // An undefined weak symbol not in a PLT does not need a thunk. If it is 1389 // hidden, its binding has been converted to local, so we just check 1390 // isUndefined() here. A undefined non-weak symbol has been errored. 1391 if (s.isUndefined()) 1392 return false; 1393 1394 // If the offset exceeds the range of the branch type then it will need 1395 // a range-extending thunk. 1396 // See the comment in getRelocTargetVA() about R_PPC64_CALL. 1397 return !inBranchRange(type, branchAddr, 1398 s.getVA(a) + 1399 getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); 1400 } 1401 1402 uint32_t PPC64::getThunkSectionSpacing() const { 1403 // See comment in Arch/ARM.cpp for a more detailed explanation of 1404 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on 1405 // R_PPC64_REL24, which is used by unconditional branch instructions. 1406 // 0x2000000 = (1 << 24-1) * 4 1407 return 0x2000000; 1408 } 1409 1410 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 1411 int64_t offset = dst - src; 1412 if (type == R_PPC64_REL14) 1413 return isInt<16>(offset); 1414 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) 1415 return isInt<26>(offset); 1416 llvm_unreachable("unsupported relocation type used in branch"); 1417 } 1418 1419 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const { 1420 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE) 1421 return R_RELAX_TLS_GD_TO_IE_GOT_OFF; 1422 if (expr == R_RELAX_TLS_LD_TO_LE) 1423 return R_RELAX_TLS_LD_TO_LE_ABS; 1424 return expr; 1425 } 1426 1427 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend, 1428 const uint8_t *loc) const { 1429 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) && 1430 config->pcRelOptimize) { 1431 // It only makes sense to optimize pld since paddi means that the address 1432 // of the object in the GOT is required rather than the object itself. 1433 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000) 1434 return R_PPC64_RELAX_GOT_PC; 1435 } 1436 return R_GOT_PC; 1437 } 1438 1439 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. 1440 // The general dynamic code sequence for a global `x` uses 4 instructions. 1441 // Instruction Relocation Symbol 1442 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 1443 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 1444 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 1445 // R_PPC64_REL24 __tls_get_addr 1446 // nop None None 1447 // 1448 // Relaxing to initial-exec entails: 1449 // 1) Convert the addis/addi pair that builds the address of the tls_index 1450 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. 1451 // 2) Convert the call to __tls_get_addr to a nop. 1452 // 3) Convert the nop following the call to an add of the loaded offset to the 1453 // thread pointer. 1454 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is 1455 // used as the relaxation hint for both steps 2 and 3. 1456 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 1457 uint64_t val) const { 1458 switch (rel.type) { 1459 case R_PPC64_GOT_TLSGD16_HA: 1460 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to 1461 // addis rT, r2, sym@got@tprel@ha. 1462 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val); 1463 return; 1464 case R_PPC64_GOT_TLSGD16: 1465 case R_PPC64_GOT_TLSGD16_LO: { 1466 // Relax from addi r3, rA, sym@got@tlsgd@l to 1467 // ld r3, sym@got@tprel@l(rA) 1468 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); 1469 writeFromHalf16(loc, 0xe8600000 | ra); 1470 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val); 1471 return; 1472 } 1473 case R_PPC64_GOT_TLSGD_PCREL34: { 1474 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to 1475 // pld r3, sym@got@tprel@pcrel 1476 writePrefixedInstruction(loc, 0x04100000e4600000); 1477 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val); 1478 return; 1479 } 1480 case R_PPC64_TLSGD: { 1481 // PC Relative Relaxation: 1482 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 1483 // nop 1484 // TOC Relaxation: 1485 // Relax from bl __tls_get_addr(x@tlsgd) 1486 // nop 1487 // to 1488 // nop 1489 // add r3, r3, r13 1490 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 1491 if (locAsInt % 4 == 0) { 1492 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop 1493 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 1494 } else if (locAsInt % 4 == 1) { 1495 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13 1496 write32(loc - 1, 0x7c636a14); 1497 } else { 1498 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 1499 } 1500 return; 1501 } 1502 default: 1503 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); 1504 } 1505 } 1506 1507 // The prologue for a split-stack function is expected to look roughly 1508 // like this: 1509 // .Lglobal_entry_point: 1510 // # TOC pointer initialization. 1511 // ... 1512 // .Llocal_entry_point: 1513 // # load the __private_ss member of the threads tcbhead. 1514 // ld r0,-0x7000-64(r13) 1515 // # subtract the functions stack size from the stack pointer. 1516 // addis r12, r1, ha(-stack-frame size) 1517 // addi r12, r12, l(-stack-frame size) 1518 // # compare needed to actual and branch to allocate_more_stack if more 1519 // # space is needed, otherwise fallthrough to 'normal' function body. 1520 // cmpld cr7,r12,r0 1521 // blt- cr7, .Lallocate_more_stack 1522 // 1523 // -) The allocate_more_stack block might be placed after the split-stack 1524 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` 1525 // instead. 1526 // -) If either the addis or addi is not needed due to the stack size being 1527 // smaller then 32K or a multiple of 64K they will be replaced with a nop, 1528 // but there will always be 2 instructions the linker can overwrite for the 1529 // adjusted stack size. 1530 // 1531 // The linkers job here is to increase the stack size used in the addis/addi 1532 // pair by split-stack-size-adjust. 1533 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) 1534 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) 1535 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1536 uint8_t stOther) const { 1537 // If the caller has a global entry point adjust the buffer past it. The start 1538 // of the split-stack prologue will be at the local entry point. 1539 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); 1540 1541 // At the very least we expect to see a load of some split-stack data from the 1542 // tcb, and 2 instructions that calculate the ending stack address this 1543 // function will require. If there is not enough room for at least 3 1544 // instructions it can't be a split-stack prologue. 1545 if (loc + 12 >= end) 1546 return false; 1547 1548 // First instruction must be `ld r0, -0x7000-64(r13)` 1549 if (read32(loc) != 0xe80d8fc0) 1550 return false; 1551 1552 int16_t hiImm = 0; 1553 int16_t loImm = 0; 1554 // First instruction can be either an addis if the frame size is larger then 1555 // 32K, or an addi if the size is less then 32K. 1556 int32_t firstInstr = read32(loc + 4); 1557 if (getPrimaryOpCode(firstInstr) == 15) { 1558 hiImm = firstInstr & 0xFFFF; 1559 } else if (getPrimaryOpCode(firstInstr) == 14) { 1560 loImm = firstInstr & 0xFFFF; 1561 } else { 1562 return false; 1563 } 1564 1565 // Second instruction is either an addi or a nop. If the first instruction was 1566 // an addi then LoImm is set and the second instruction must be a nop. 1567 uint32_t secondInstr = read32(loc + 8); 1568 if (!loImm && getPrimaryOpCode(secondInstr) == 14) { 1569 loImm = secondInstr & 0xFFFF; 1570 } else if (secondInstr != NOP) { 1571 return false; 1572 } 1573 1574 // The register operands of the first instruction should be the stack-pointer 1575 // (r1) as the input (RA) and r12 as the output (RT). If the second 1576 // instruction is not a nop, then it should use r12 as both input and output. 1577 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, 1578 uint8_t expectedRA) { 1579 return ((instr & 0x3E00000) >> 21 == expectedRT) && 1580 ((instr & 0x1F0000) >> 16 == expectedRA); 1581 }; 1582 if (!checkRegOperands(firstInstr, 12, 1)) 1583 return false; 1584 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12)) 1585 return false; 1586 1587 int32_t stackFrameSize = (hiImm * 65536) + loImm; 1588 // Check that the adjusted size doesn't overflow what we can represent with 2 1589 // instructions. 1590 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { 1591 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); 1592 return false; 1593 } 1594 1595 int32_t adjustedStackFrameSize = 1596 stackFrameSize - config->splitStackAdjustSize; 1597 1598 loImm = adjustedStackFrameSize & 0xFFFF; 1599 hiImm = (adjustedStackFrameSize + 0x8000) >> 16; 1600 if (hiImm) { 1601 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); 1602 // If the low immediate is zero the second instruction will be a nop. 1603 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP; 1604 write32(loc + 8, secondInstr); 1605 } else { 1606 // addi r12, r1, imm 1607 write32(loc + 4, (0x39810000) | (uint16_t)loImm); 1608 write32(loc + 8, NOP); 1609 } 1610 1611 return true; 1612 } 1613 1614 TargetInfo *elf::getPPC64TargetInfo() { 1615 static PPC64 target; 1616 return ⌖ 1617 } 1618