1 //===-- Hexagon.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Symbols.h" 11 #include "SyntheticSections.h" 12 #include "Target.h" 13 #include "lld/Common/ErrorHandler.h" 14 #include "llvm/BinaryFormat/ELF.h" 15 #include "llvm/Object/ELF.h" 16 #include "llvm/Support/Endian.h" 17 18 using namespace llvm; 19 using namespace llvm::object; 20 using namespace llvm::support::endian; 21 using namespace llvm::ELF; 22 using namespace lld; 23 using namespace lld::elf; 24 25 namespace { 26 class Hexagon final : public TargetInfo { 27 public: 28 Hexagon(); 29 uint32_t calcEFlags() const override; 30 RelExpr getRelExpr(RelType type, const Symbol &s, 31 const uint8_t *loc) const override; 32 RelType getDynRel(RelType type) const override; 33 void relocate(uint8_t *loc, const Relocation &rel, 34 uint64_t val) const override; 35 void writePltHeader(uint8_t *buf) const override; 36 void writePlt(uint8_t *buf, const Symbol &sym, 37 uint64_t pltEntryAddr) const override; 38 }; 39 } // namespace 40 41 Hexagon::Hexagon() { 42 pltRel = R_HEX_JMP_SLOT; 43 relativeRel = R_HEX_RELATIVE; 44 gotRel = R_HEX_GLOB_DAT; 45 symbolicRel = R_HEX_32; 46 47 // The zero'th GOT entry is reserved for the address of _DYNAMIC. The 48 // next 3 are reserved for the dynamic loader. 49 gotPltHeaderEntriesNum = 4; 50 51 pltEntrySize = 16; 52 pltHeaderSize = 32; 53 54 // Hexagon Linux uses 64K pages by default. 55 defaultMaxPageSize = 0x10000; 56 noneRel = R_HEX_NONE; 57 tlsGotRel = R_HEX_TPREL_32; 58 tlsModuleIndexRel = R_HEX_DTPMOD_32; 59 tlsOffsetRel = R_HEX_DTPREL_32; 60 } 61 62 uint32_t Hexagon::calcEFlags() const { 63 assert(!objectFiles.empty()); 64 65 // The architecture revision must always be equal to or greater than 66 // greatest revision in the list of inputs. 67 uint32_t ret = 0; 68 for (InputFile *f : objectFiles) { 69 uint32_t eflags = cast<ObjFile<ELF32LE>>(f)->getObj().getHeader().e_flags; 70 if (eflags > ret) 71 ret = eflags; 72 } 73 return ret; 74 } 75 76 static uint32_t applyMask(uint32_t mask, uint32_t data) { 77 uint32_t result = 0; 78 size_t off = 0; 79 80 for (size_t bit = 0; bit != 32; ++bit) { 81 uint32_t valBit = (data >> off) & 1; 82 uint32_t maskBit = (mask >> bit) & 1; 83 if (maskBit) { 84 result |= (valBit << bit); 85 ++off; 86 } 87 } 88 return result; 89 } 90 91 RelExpr Hexagon::getRelExpr(RelType type, const Symbol &s, 92 const uint8_t *loc) const { 93 switch (type) { 94 case R_HEX_NONE: 95 return R_NONE; 96 case R_HEX_6_X: 97 case R_HEX_8_X: 98 case R_HEX_9_X: 99 case R_HEX_10_X: 100 case R_HEX_11_X: 101 case R_HEX_12_X: 102 case R_HEX_16_X: 103 case R_HEX_32: 104 case R_HEX_32_6_X: 105 case R_HEX_HI16: 106 case R_HEX_LO16: 107 case R_HEX_DTPREL_32: 108 return R_ABS; 109 case R_HEX_B9_PCREL: 110 case R_HEX_B13_PCREL: 111 case R_HEX_B15_PCREL: 112 case R_HEX_6_PCREL_X: 113 case R_HEX_32_PCREL: 114 return R_PC; 115 case R_HEX_B9_PCREL_X: 116 case R_HEX_B15_PCREL_X: 117 case R_HEX_B22_PCREL: 118 case R_HEX_PLT_B22_PCREL: 119 case R_HEX_B22_PCREL_X: 120 case R_HEX_B32_PCREL_X: 121 case R_HEX_GD_PLT_B22_PCREL: 122 case R_HEX_GD_PLT_B22_PCREL_X: 123 case R_HEX_GD_PLT_B32_PCREL_X: 124 return R_PLT_PC; 125 case R_HEX_IE_32_6_X: 126 case R_HEX_IE_16_X: 127 case R_HEX_IE_HI16: 128 case R_HEX_IE_LO16: 129 return R_GOT; 130 case R_HEX_GD_GOT_11_X: 131 case R_HEX_GD_GOT_16_X: 132 case R_HEX_GD_GOT_32_6_X: 133 return R_TLSGD_GOTPLT; 134 case R_HEX_GOTREL_11_X: 135 case R_HEX_GOTREL_16_X: 136 case R_HEX_GOTREL_32_6_X: 137 case R_HEX_GOTREL_HI16: 138 case R_HEX_GOTREL_LO16: 139 return R_GOTPLTREL; 140 case R_HEX_GOT_11_X: 141 case R_HEX_GOT_16_X: 142 case R_HEX_GOT_32_6_X: 143 return R_GOTPLT; 144 case R_HEX_IE_GOT_11_X: 145 case R_HEX_IE_GOT_16_X: 146 case R_HEX_IE_GOT_32_6_X: 147 case R_HEX_IE_GOT_HI16: 148 case R_HEX_IE_GOT_LO16: 149 config->hasStaticTlsModel = true; 150 return R_GOTPLT; 151 case R_HEX_TPREL_11_X: 152 case R_HEX_TPREL_16: 153 case R_HEX_TPREL_16_X: 154 case R_HEX_TPREL_32_6_X: 155 case R_HEX_TPREL_HI16: 156 case R_HEX_TPREL_LO16: 157 return R_TPREL; 158 default: 159 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 160 ") against symbol " + toString(s)); 161 return R_NONE; 162 } 163 } 164 165 static bool isDuplex(uint32_t insn) { 166 // Duplex forms have a fixed mask and parse bits 15:14 are always 167 // zero. Non-duplex insns will always have at least one bit set in the 168 // parse field. 169 return (0xC000 & insn) == 0; 170 } 171 172 static uint32_t findMaskR6(uint32_t insn) { 173 // There are (arguably too) many relocation masks for the DSP's 174 // R_HEX_6_X type. The table below is used to select the correct mask 175 // for the given instruction. 176 struct InstructionMask { 177 uint32_t cmpMask; 178 uint32_t relocMask; 179 }; 180 181 static const InstructionMask r6[] = { 182 {0x38000000, 0x0000201f}, {0x39000000, 0x0000201f}, 183 {0x3e000000, 0x00001f80}, {0x3f000000, 0x00001f80}, 184 {0x40000000, 0x000020f8}, {0x41000000, 0x000007e0}, 185 {0x42000000, 0x000020f8}, {0x43000000, 0x000007e0}, 186 {0x44000000, 0x000020f8}, {0x45000000, 0x000007e0}, 187 {0x46000000, 0x000020f8}, {0x47000000, 0x000007e0}, 188 {0x6a000000, 0x00001f80}, {0x7c000000, 0x001f2000}, 189 {0x9a000000, 0x00000f60}, {0x9b000000, 0x00000f60}, 190 {0x9c000000, 0x00000f60}, {0x9d000000, 0x00000f60}, 191 {0x9f000000, 0x001f0100}, {0xab000000, 0x0000003f}, 192 {0xad000000, 0x0000003f}, {0xaf000000, 0x00030078}, 193 {0xd7000000, 0x006020e0}, {0xd8000000, 0x006020e0}, 194 {0xdb000000, 0x006020e0}, {0xdf000000, 0x006020e0}}; 195 196 if (isDuplex(insn)) 197 return 0x03f00000; 198 199 for (InstructionMask i : r6) 200 if ((0xff000000 & insn) == i.cmpMask) 201 return i.relocMask; 202 203 error("unrecognized instruction for R_HEX_6 relocation: 0x" + 204 utohexstr(insn)); 205 return 0; 206 } 207 208 static uint32_t findMaskR8(uint32_t insn) { 209 if ((0xff000000 & insn) == 0xde000000) 210 return 0x00e020e8; 211 if ((0xff000000 & insn) == 0x3c000000) 212 return 0x0000207f; 213 return 0x00001fe0; 214 } 215 216 static uint32_t findMaskR11(uint32_t insn) { 217 if ((0xff000000 & insn) == 0xa1000000) 218 return 0x060020ff; 219 return 0x06003fe0; 220 } 221 222 static uint32_t findMaskR16(uint32_t insn) { 223 if ((0xff000000 & insn) == 0x48000000) 224 return 0x061f20ff; 225 if ((0xff000000 & insn) == 0x49000000) 226 return 0x061f3fe0; 227 if ((0xff000000 & insn) == 0x78000000) 228 return 0x00df3fe0; 229 if ((0xff000000 & insn) == 0xb0000000) 230 return 0x0fe03fe0; 231 232 if (isDuplex(insn)) 233 return 0x03f00000; 234 235 error("unrecognized instruction for R_HEX_16_X relocation: 0x" + 236 utohexstr(insn)); 237 return 0; 238 } 239 240 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); } 241 242 void Hexagon::relocate(uint8_t *loc, const Relocation &rel, 243 uint64_t val) const { 244 switch (rel.type) { 245 case R_HEX_NONE: 246 break; 247 case R_HEX_6_PCREL_X: 248 case R_HEX_6_X: 249 or32le(loc, applyMask(findMaskR6(read32le(loc)), val)); 250 break; 251 case R_HEX_8_X: 252 or32le(loc, applyMask(findMaskR8(read32le(loc)), val)); 253 break; 254 case R_HEX_9_X: 255 or32le(loc, applyMask(0x00003fe0, val & 0x3f)); 256 break; 257 case R_HEX_10_X: 258 or32le(loc, applyMask(0x00203fe0, val & 0x3f)); 259 break; 260 case R_HEX_11_X: 261 case R_HEX_GD_GOT_11_X: 262 case R_HEX_IE_GOT_11_X: 263 case R_HEX_GOT_11_X: 264 case R_HEX_GOTREL_11_X: 265 case R_HEX_TPREL_11_X: 266 or32le(loc, applyMask(findMaskR11(read32le(loc)), val & 0x3f)); 267 break; 268 case R_HEX_12_X: 269 or32le(loc, applyMask(0x000007e0, val)); 270 break; 271 case R_HEX_16_X: // These relocs only have 6 effective bits. 272 case R_HEX_IE_16_X: 273 case R_HEX_IE_GOT_16_X: 274 case R_HEX_GD_GOT_16_X: 275 case R_HEX_GOT_16_X: 276 case R_HEX_GOTREL_16_X: 277 case R_HEX_TPREL_16_X: 278 or32le(loc, applyMask(findMaskR16(read32le(loc)), val & 0x3f)); 279 break; 280 case R_HEX_TPREL_16: 281 or32le(loc, applyMask(findMaskR16(read32le(loc)), val & 0xffff)); 282 break; 283 case R_HEX_32: 284 case R_HEX_32_PCREL: 285 case R_HEX_DTPREL_32: 286 or32le(loc, val); 287 break; 288 case R_HEX_32_6_X: 289 case R_HEX_GD_GOT_32_6_X: 290 case R_HEX_GOT_32_6_X: 291 case R_HEX_GOTREL_32_6_X: 292 case R_HEX_IE_GOT_32_6_X: 293 case R_HEX_IE_32_6_X: 294 case R_HEX_TPREL_32_6_X: 295 or32le(loc, applyMask(0x0fff3fff, val >> 6)); 296 break; 297 case R_HEX_B9_PCREL: 298 checkInt(loc, val, 11, rel); 299 or32le(loc, applyMask(0x003000fe, val >> 2)); 300 break; 301 case R_HEX_B9_PCREL_X: 302 or32le(loc, applyMask(0x003000fe, val & 0x3f)); 303 break; 304 case R_HEX_B13_PCREL: 305 checkInt(loc, val, 15, rel); 306 or32le(loc, applyMask(0x00202ffe, val >> 2)); 307 break; 308 case R_HEX_B15_PCREL: 309 checkInt(loc, val, 17, rel); 310 or32le(loc, applyMask(0x00df20fe, val >> 2)); 311 break; 312 case R_HEX_B15_PCREL_X: 313 or32le(loc, applyMask(0x00df20fe, val & 0x3f)); 314 break; 315 case R_HEX_B22_PCREL: 316 case R_HEX_GD_PLT_B22_PCREL: 317 case R_HEX_PLT_B22_PCREL: 318 checkInt(loc, val, 22, rel); 319 or32le(loc, applyMask(0x1ff3ffe, val >> 2)); 320 break; 321 case R_HEX_B22_PCREL_X: 322 case R_HEX_GD_PLT_B22_PCREL_X: 323 or32le(loc, applyMask(0x1ff3ffe, val & 0x3f)); 324 break; 325 case R_HEX_B32_PCREL_X: 326 case R_HEX_GD_PLT_B32_PCREL_X: 327 or32le(loc, applyMask(0x0fff3fff, val >> 6)); 328 break; 329 case R_HEX_GOTREL_HI16: 330 case R_HEX_HI16: 331 case R_HEX_IE_GOT_HI16: 332 case R_HEX_IE_HI16: 333 case R_HEX_TPREL_HI16: 334 or32le(loc, applyMask(0x00c03fff, val >> 16)); 335 break; 336 case R_HEX_GOTREL_LO16: 337 case R_HEX_LO16: 338 case R_HEX_IE_GOT_LO16: 339 case R_HEX_IE_LO16: 340 case R_HEX_TPREL_LO16: 341 or32le(loc, applyMask(0x00c03fff, val)); 342 break; 343 default: 344 llvm_unreachable("unknown relocation"); 345 } 346 } 347 348 void Hexagon::writePltHeader(uint8_t *buf) const { 349 const uint8_t pltData[] = { 350 0x00, 0x40, 0x00, 0x00, // { immext (#0) 351 0x1c, 0xc0, 0x49, 0x6a, // r28 = add (pc, ##GOT0@PCREL) } # @GOT0 352 0x0e, 0x42, 0x9c, 0xe2, // { r14 -= add (r28, #16) # offset of GOTn 353 0x4f, 0x40, 0x9c, 0x91, // r15 = memw (r28 + #8) # object ID at GOT2 354 0x3c, 0xc0, 0x9c, 0x91, // r28 = memw (r28 + #4) }# dynamic link at GOT1 355 0x0e, 0x42, 0x0e, 0x8c, // { r14 = asr (r14, #2) # index of PLTn 356 0x00, 0xc0, 0x9c, 0x52, // jumpr r28 } # call dynamic linker 357 0x0c, 0xdb, 0x00, 0x54, // trap0(#0xdb) # bring plt0 into 16byte alignment 358 }; 359 memcpy(buf, pltData, sizeof(pltData)); 360 361 // Offset from PLT0 to the GOT. 362 uint64_t off = in.gotPlt->getVA() - in.plt->getVA(); 363 relocateNoSym(buf, R_HEX_B32_PCREL_X, off); 364 relocateNoSym(buf + 4, R_HEX_6_PCREL_X, off); 365 } 366 367 void Hexagon::writePlt(uint8_t *buf, const Symbol &sym, 368 uint64_t pltEntryAddr) const { 369 const uint8_t inst[] = { 370 0x00, 0x40, 0x00, 0x00, // { immext (#0) 371 0x0e, 0xc0, 0x49, 0x6a, // r14 = add (pc, ##GOTn@PCREL) } 372 0x1c, 0xc0, 0x8e, 0x91, // r28 = memw (r14) 373 0x00, 0xc0, 0x9c, 0x52, // jumpr r28 374 }; 375 memcpy(buf, inst, sizeof(inst)); 376 377 uint64_t gotPltEntryAddr = sym.getGotPltVA(); 378 relocateNoSym(buf, R_HEX_B32_PCREL_X, gotPltEntryAddr - pltEntryAddr); 379 relocateNoSym(buf + 4, R_HEX_6_PCREL_X, gotPltEntryAddr - pltEntryAddr); 380 } 381 382 RelType Hexagon::getDynRel(RelType type) const { 383 if (type == R_HEX_32) 384 return type; 385 return R_HEX_NONE; 386 } 387 388 TargetInfo *elf::getHexagonTargetInfo() { 389 static Hexagon target; 390 return ⌖ 391 } 392