1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "COFFLinkerContext.h" 11 #include "CallGraphSort.h" 12 #include "Config.h" 13 #include "DLL.h" 14 #include "InputFiles.h" 15 #include "LLDMapFile.h" 16 #include "MapFile.h" 17 #include "PDB.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "lld/Common/ErrorHandler.h" 21 #include "lld/Common/Memory.h" 22 #include "lld/Common/Timer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/Support/BinaryStreamReader.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/FileOutputBuffer.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/RandomNumberGenerator.h" 34 #include "llvm/Support/TimeProfiler.h" 35 #include "llvm/Support/xxhash.h" 36 #include <algorithm> 37 #include <cstdio> 38 #include <map> 39 #include <memory> 40 #include <utility> 41 42 using namespace llvm; 43 using namespace llvm::COFF; 44 using namespace llvm::object; 45 using namespace llvm::support; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::coff; 49 50 /* To re-generate DOSProgram: 51 $ cat > /tmp/DOSProgram.asm 52 org 0 53 ; Copy cs to ds. 54 push cs 55 pop ds 56 ; Point ds:dx at the $-terminated string. 57 mov dx, str 58 ; Int 21/AH=09h: Write string to standard output. 59 mov ah, 0x9 60 int 0x21 61 ; Int 21/AH=4Ch: Exit with return code (in AL). 62 mov ax, 0x4C01 63 int 0x21 64 str: 65 db 'This program cannot be run in DOS mode.$' 66 align 8, db 0 67 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin 68 $ xxd -i /tmp/DOSProgram.bin 69 */ 70 static unsigned char dosProgram[] = { 71 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c, 72 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72, 73 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65, 74 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20, 75 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00 76 }; 77 static_assert(sizeof(dosProgram) % 8 == 0, 78 "DOSProgram size must be multiple of 8"); 79 80 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram); 81 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8"); 82 83 static const int numberOfDataDirectory = 16; 84 85 namespace { 86 87 class DebugDirectoryChunk : public NonSectionChunk { 88 public: 89 DebugDirectoryChunk(const COFFLinkerContext &c, 90 const std::vector<std::pair<COFF::DebugType, Chunk *>> &r, 91 bool writeRepro) 92 : records(r), writeRepro(writeRepro), ctx(c) {} 93 94 size_t getSize() const override { 95 return (records.size() + int(writeRepro)) * sizeof(debug_directory); 96 } 97 98 void writeTo(uint8_t *b) const override { 99 auto *d = reinterpret_cast<debug_directory *>(b); 100 101 for (const std::pair<COFF::DebugType, Chunk *>& record : records) { 102 Chunk *c = record.second; 103 const OutputSection *os = ctx.getOutputSection(c); 104 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA()); 105 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs); 106 ++d; 107 } 108 109 if (writeRepro) { 110 // FIXME: The COFF spec allows either a 0-sized entry to just say 111 // "the timestamp field is really a hash", or a 4-byte size field 112 // followed by that many bytes containing a longer hash (with the 113 // lowest 4 bytes usually being the timestamp in little-endian order). 114 // Consider storing the full 8 bytes computed by xxh3_64bits here. 115 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0); 116 } 117 } 118 119 void setTimeDateStamp(uint32_t timeDateStamp) { 120 for (support::ulittle32_t *tds : timeDateStamps) 121 *tds = timeDateStamp; 122 } 123 124 private: 125 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size, 126 uint64_t rva, uint64_t offs) const { 127 d->Characteristics = 0; 128 d->TimeDateStamp = 0; 129 d->MajorVersion = 0; 130 d->MinorVersion = 0; 131 d->Type = debugType; 132 d->SizeOfData = size; 133 d->AddressOfRawData = rva; 134 d->PointerToRawData = offs; 135 136 timeDateStamps.push_back(&d->TimeDateStamp); 137 } 138 139 mutable std::vector<support::ulittle32_t *> timeDateStamps; 140 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records; 141 bool writeRepro; 142 const COFFLinkerContext &ctx; 143 }; 144 145 class CVDebugRecordChunk : public NonSectionChunk { 146 public: 147 CVDebugRecordChunk(const COFFLinkerContext &c) : ctx(c) {} 148 149 size_t getSize() const override { 150 return sizeof(codeview::DebugInfo) + ctx.config.pdbAltPath.size() + 1; 151 } 152 153 void writeTo(uint8_t *b) const override { 154 // Save off the DebugInfo entry to backfill the file signature (build id) 155 // in Writer::writeBuildId 156 buildId = reinterpret_cast<codeview::DebugInfo *>(b); 157 158 // variable sized field (PDB Path) 159 char *p = reinterpret_cast<char *>(b + sizeof(*buildId)); 160 if (!ctx.config.pdbAltPath.empty()) 161 memcpy(p, ctx.config.pdbAltPath.data(), ctx.config.pdbAltPath.size()); 162 p[ctx.config.pdbAltPath.size()] = '\0'; 163 } 164 165 mutable codeview::DebugInfo *buildId = nullptr; 166 167 private: 168 const COFFLinkerContext &ctx; 169 }; 170 171 class ExtendedDllCharacteristicsChunk : public NonSectionChunk { 172 public: 173 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {} 174 175 size_t getSize() const override { return 4; } 176 177 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); } 178 179 uint32_t characteristics = 0; 180 }; 181 182 // PartialSection represents a group of chunks that contribute to an 183 // OutputSection. Collating a collection of PartialSections of same name and 184 // characteristics constitutes the OutputSection. 185 class PartialSectionKey { 186 public: 187 StringRef name; 188 unsigned characteristics; 189 190 bool operator<(const PartialSectionKey &other) const { 191 int c = name.compare(other.name); 192 if (c > 0) 193 return false; 194 if (c == 0) 195 return characteristics < other.characteristics; 196 return true; 197 } 198 }; 199 200 struct ChunkRange { 201 Chunk *first = nullptr, *last; 202 }; 203 204 // The writer writes a SymbolTable result to a file. 205 class Writer { 206 public: 207 Writer(COFFLinkerContext &c) 208 : buffer(errorHandler().outputBuffer), delayIdata(c), edata(c), ctx(c) {} 209 void run(); 210 211 private: 212 void createSections(); 213 void createMiscChunks(); 214 void createImportTables(); 215 void appendImportThunks(); 216 void locateImportTables(); 217 void createExportTable(); 218 void mergeSections(); 219 void sortECChunks(); 220 void removeUnusedSections(); 221 void assignAddresses(); 222 bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin); 223 std::pair<Defined *, bool> getThunk(DenseMap<uint64_t, Defined *> &lastThunks, 224 Defined *target, uint64_t p, 225 uint16_t type, int margin); 226 bool createThunks(OutputSection *os, int margin); 227 bool verifyRanges(const std::vector<Chunk *> chunks); 228 void createECCodeMap(); 229 void finalizeAddresses(); 230 void removeEmptySections(); 231 void assignOutputSectionIndices(); 232 void createSymbolAndStringTable(); 233 void openFile(StringRef outputPath); 234 template <typename PEHeaderTy> void writeHeader(); 235 void createSEHTable(); 236 void createRuntimePseudoRelocs(); 237 void createECChunks(); 238 void insertCtorDtorSymbols(); 239 void markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols); 240 void createGuardCFTables(); 241 void markSymbolsForRVATable(ObjFile *file, 242 ArrayRef<SectionChunk *> symIdxChunks, 243 SymbolRVASet &tableSymbols); 244 void getSymbolsFromSections(ObjFile *file, 245 ArrayRef<SectionChunk *> symIdxChunks, 246 std::vector<Symbol *> &symbols); 247 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 248 StringRef countSym, bool hasFlag=false); 249 void setSectionPermissions(); 250 void setECSymbols(); 251 void writeSections(); 252 void writeBuildId(); 253 void writePEChecksum(); 254 void sortSections(); 255 template <typename T> void sortExceptionTable(ChunkRange &exceptionTable); 256 void sortExceptionTables(); 257 void sortCRTSectionChunks(std::vector<Chunk *> &chunks); 258 void addSyntheticIdata(); 259 void sortBySectionOrder(std::vector<Chunk *> &chunks); 260 void fixPartialSectionChars(StringRef name, uint32_t chars); 261 bool fixGnuImportChunks(); 262 void fixTlsAlignment(); 263 PartialSection *createPartialSection(StringRef name, uint32_t outChars); 264 PartialSection *findPartialSection(StringRef name, uint32_t outChars); 265 266 std::optional<coff_symbol16> createSymbol(Defined *d); 267 size_t addEntryToStringTable(StringRef str); 268 269 OutputSection *findSection(StringRef name); 270 void addBaserels(); 271 void addBaserelBlocks(std::vector<Baserel> &v); 272 273 uint32_t getSizeOfInitializedData(); 274 275 void prepareLoadConfig(); 276 template <typename T> void prepareLoadConfig(T *loadConfig); 277 template <typename T> void checkLoadConfigGuardData(const T *loadConfig); 278 279 std::unique_ptr<FileOutputBuffer> &buffer; 280 std::map<PartialSectionKey, PartialSection *> partialSections; 281 std::vector<char> strtab; 282 std::vector<llvm::object::coff_symbol16> outputSymtab; 283 std::vector<ECCodeMapEntry> codeMap; 284 IdataContents idata; 285 Chunk *importTableStart = nullptr; 286 uint64_t importTableSize = 0; 287 Chunk *edataStart = nullptr; 288 Chunk *edataEnd = nullptr; 289 Chunk *iatStart = nullptr; 290 uint64_t iatSize = 0; 291 DelayLoadContents delayIdata; 292 EdataContents edata; 293 bool setNoSEHCharacteristic = false; 294 uint32_t tlsAlignment = 0; 295 296 DebugDirectoryChunk *debugDirectory = nullptr; 297 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords; 298 CVDebugRecordChunk *buildId = nullptr; 299 ArrayRef<uint8_t> sectionTable; 300 301 uint64_t fileSize; 302 uint32_t pointerToSymbolTable = 0; 303 uint64_t sizeOfImage; 304 uint64_t sizeOfHeaders; 305 306 OutputSection *textSec; 307 OutputSection *rdataSec; 308 OutputSection *buildidSec; 309 OutputSection *dataSec; 310 OutputSection *pdataSec; 311 OutputSection *idataSec; 312 OutputSection *edataSec; 313 OutputSection *didatSec; 314 OutputSection *rsrcSec; 315 OutputSection *relocSec; 316 OutputSection *ctorsSec; 317 OutputSection *dtorsSec; 318 // Either .rdata section or .buildid section. 319 OutputSection *debugInfoSec; 320 321 // The range of .pdata sections in the output file. 322 // 323 // We need to keep track of the location of .pdata in whichever section it 324 // gets merged into so that we can sort its contents and emit a correct data 325 // directory entry for the exception table. This is also the case for some 326 // other sections (such as .edata) but because the contents of those sections 327 // are entirely linker-generated we can keep track of their locations using 328 // the chunks that the linker creates. All .pdata chunks come from input 329 // files, so we need to keep track of them separately. 330 ChunkRange pdata; 331 332 // x86_64 .pdata sections on ARM64EC/ARM64X targets. 333 ChunkRange hybridPdata; 334 335 COFFLinkerContext &ctx; 336 }; 337 } // anonymous namespace 338 339 void lld::coff::writeResult(COFFLinkerContext &ctx) { 340 llvm::TimeTraceScope timeScope("Write output(s)"); 341 Writer(ctx).run(); 342 } 343 344 void OutputSection::addChunk(Chunk *c) { 345 chunks.push_back(c); 346 } 347 348 void OutputSection::insertChunkAtStart(Chunk *c) { 349 chunks.insert(chunks.begin(), c); 350 } 351 352 void OutputSection::setPermissions(uint32_t c) { 353 header.Characteristics &= ~permMask; 354 header.Characteristics |= c; 355 } 356 357 void OutputSection::merge(OutputSection *other) { 358 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end()); 359 other->chunks.clear(); 360 contribSections.insert(contribSections.end(), other->contribSections.begin(), 361 other->contribSections.end()); 362 other->contribSections.clear(); 363 364 // MS link.exe compatibility: when merging a code section into a data section, 365 // mark the target section as a code section. 366 if (other->header.Characteristics & IMAGE_SCN_CNT_CODE) { 367 header.Characteristics |= IMAGE_SCN_CNT_CODE; 368 header.Characteristics &= 369 ~(IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_CNT_UNINITIALIZED_DATA); 370 } 371 } 372 373 // Write the section header to a given buffer. 374 void OutputSection::writeHeaderTo(uint8_t *buf, bool isDebug) { 375 auto *hdr = reinterpret_cast<coff_section *>(buf); 376 *hdr = header; 377 if (stringTableOff) { 378 // If name is too long, write offset into the string table as a name. 379 encodeSectionName(hdr->Name, stringTableOff); 380 } else { 381 assert(!isDebug || name.size() <= COFF::NameSize || 382 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0); 383 strncpy(hdr->Name, name.data(), 384 std::min(name.size(), (size_t)COFF::NameSize)); 385 } 386 } 387 388 void OutputSection::addContributingPartialSection(PartialSection *sec) { 389 contribSections.push_back(sec); 390 } 391 392 // Check whether the target address S is in range from a relocation 393 // of type relType at address P. 394 bool Writer::isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) { 395 if (ctx.config.machine == ARMNT) { 396 int64_t diff = AbsoluteDifference(s, p + 4) + margin; 397 switch (relType) { 398 case IMAGE_REL_ARM_BRANCH20T: 399 return isInt<21>(diff); 400 case IMAGE_REL_ARM_BRANCH24T: 401 case IMAGE_REL_ARM_BLX23T: 402 return isInt<25>(diff); 403 default: 404 return true; 405 } 406 } else if (ctx.config.machine == ARM64) { 407 int64_t diff = AbsoluteDifference(s, p) + margin; 408 switch (relType) { 409 case IMAGE_REL_ARM64_BRANCH26: 410 return isInt<28>(diff); 411 case IMAGE_REL_ARM64_BRANCH19: 412 return isInt<21>(diff); 413 case IMAGE_REL_ARM64_BRANCH14: 414 return isInt<16>(diff); 415 default: 416 return true; 417 } 418 } else { 419 llvm_unreachable("Unexpected architecture"); 420 } 421 } 422 423 // Return the last thunk for the given target if it is in range, 424 // or create a new one. 425 std::pair<Defined *, bool> 426 Writer::getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, 427 uint64_t p, uint16_t type, int margin) { 428 Defined *&lastThunk = lastThunks[target->getRVA()]; 429 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin)) 430 return {lastThunk, false}; 431 Chunk *c; 432 switch (ctx.config.machine) { 433 case ARMNT: 434 c = make<RangeExtensionThunkARM>(ctx, target); 435 break; 436 case ARM64: 437 c = make<RangeExtensionThunkARM64>(ctx, target); 438 break; 439 default: 440 llvm_unreachable("Unexpected architecture"); 441 } 442 Defined *d = make<DefinedSynthetic>("range_extension_thunk", c); 443 lastThunk = d; 444 return {d, true}; 445 } 446 447 // This checks all relocations, and for any relocation which isn't in range 448 // it adds a thunk after the section chunk that contains the relocation. 449 // If the latest thunk for the specific target is in range, that is used 450 // instead of creating a new thunk. All range checks are done with the 451 // specified margin, to make sure that relocations that originally are in 452 // range, but only barely, also get thunks - in case other added thunks makes 453 // the target go out of range. 454 // 455 // After adding thunks, we verify that all relocations are in range (with 456 // no extra margin requirements). If this failed, we restart (throwing away 457 // the previously created thunks) and retry with a wider margin. 458 bool Writer::createThunks(OutputSection *os, int margin) { 459 bool addressesChanged = false; 460 DenseMap<uint64_t, Defined *> lastThunks; 461 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices; 462 size_t thunksSize = 0; 463 // Recheck Chunks.size() each iteration, since we can insert more 464 // elements into it. 465 for (size_t i = 0; i != os->chunks.size(); ++i) { 466 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]); 467 if (!sc) 468 continue; 469 size_t thunkInsertionSpot = i + 1; 470 471 // Try to get a good enough estimate of where new thunks will be placed. 472 // Offset this by the size of the new thunks added so far, to make the 473 // estimate slightly better. 474 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize; 475 ObjFile *file = sc->file; 476 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements; 477 ArrayRef<coff_relocation> originalRelocs = 478 file->getCOFFObj()->getRelocations(sc->header); 479 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) { 480 const coff_relocation &rel = originalRelocs[j]; 481 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex); 482 483 // The estimate of the source address P should be pretty accurate, 484 // but we don't know whether the target Symbol address should be 485 // offset by thunksSize or not (or by some of thunksSize but not all of 486 // it), giving us some uncertainty once we have added one thunk. 487 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize; 488 489 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 490 if (!sym) 491 continue; 492 493 uint64_t s = sym->getRVA(); 494 495 if (isInRange(rel.Type, s, p, margin)) 496 continue; 497 498 // If the target isn't in range, hook it up to an existing or new thunk. 499 auto [thunk, wasNew] = getThunk(lastThunks, sym, p, rel.Type, margin); 500 if (wasNew) { 501 Chunk *thunkChunk = thunk->getChunk(); 502 thunkChunk->setRVA( 503 thunkInsertionRVA); // Estimate of where it will be located. 504 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk); 505 thunkInsertionSpot++; 506 thunksSize += thunkChunk->getSize(); 507 thunkInsertionRVA += thunkChunk->getSize(); 508 addressesChanged = true; 509 } 510 511 // To redirect the relocation, add a symbol to the parent object file's 512 // symbol table, and replace the relocation symbol table index with the 513 // new index. 514 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U}); 515 uint32_t &thunkSymbolIndex = insertion.first->second; 516 if (insertion.second) 517 thunkSymbolIndex = file->addRangeThunkSymbol(thunk); 518 relocReplacements.emplace_back(j, thunkSymbolIndex); 519 } 520 521 // Get a writable copy of this section's relocations so they can be 522 // modified. If the relocations point into the object file, allocate new 523 // memory. Otherwise, this must be previously allocated memory that can be 524 // modified in place. 525 ArrayRef<coff_relocation> curRelocs = sc->getRelocs(); 526 MutableArrayRef<coff_relocation> newRelocs; 527 if (originalRelocs.data() == curRelocs.data()) { 528 newRelocs = MutableArrayRef( 529 bAlloc().Allocate<coff_relocation>(originalRelocs.size()), 530 originalRelocs.size()); 531 } else { 532 newRelocs = MutableArrayRef( 533 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size()); 534 } 535 536 // Copy each relocation, but replace the symbol table indices which need 537 // thunks. 538 auto nextReplacement = relocReplacements.begin(); 539 auto endReplacement = relocReplacements.end(); 540 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) { 541 newRelocs[i] = originalRelocs[i]; 542 if (nextReplacement != endReplacement && nextReplacement->first == i) { 543 newRelocs[i].SymbolTableIndex = nextReplacement->second; 544 ++nextReplacement; 545 } 546 } 547 548 sc->setRelocs(newRelocs); 549 } 550 return addressesChanged; 551 } 552 553 // Create a code map for CHPE metadata. 554 void Writer::createECCodeMap() { 555 if (!isArm64EC(ctx.config.machine)) 556 return; 557 558 // Clear the map in case we were're recomputing the map after adding 559 // a range extension thunk. 560 codeMap.clear(); 561 562 std::optional<chpe_range_type> lastType; 563 Chunk *first, *last; 564 565 auto closeRange = [&]() { 566 if (lastType) { 567 codeMap.push_back({first, last, *lastType}); 568 lastType.reset(); 569 } 570 }; 571 572 for (OutputSection *sec : ctx.outputSections) { 573 for (Chunk *c : sec->chunks) { 574 // Skip empty section chunks. MS link.exe does not seem to do that and 575 // generates empty code ranges in some cases. 576 if (isa<SectionChunk>(c) && !c->getSize()) 577 continue; 578 579 std::optional<chpe_range_type> chunkType = c->getArm64ECRangeType(); 580 if (chunkType != lastType) { 581 closeRange(); 582 first = c; 583 lastType = chunkType; 584 } 585 last = c; 586 } 587 } 588 589 closeRange(); 590 591 Symbol *tableCountSym = ctx.symtab.findUnderscore("__hybrid_code_map_count"); 592 cast<DefinedAbsolute>(tableCountSym)->setVA(codeMap.size()); 593 } 594 595 // Verify that all relocations are in range, with no extra margin requirements. 596 bool Writer::verifyRanges(const std::vector<Chunk *> chunks) { 597 for (Chunk *c : chunks) { 598 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c); 599 if (!sc) 600 continue; 601 602 ArrayRef<coff_relocation> relocs = sc->getRelocs(); 603 for (const coff_relocation &rel : relocs) { 604 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex); 605 606 Defined *sym = dyn_cast_or_null<Defined>(relocTarget); 607 if (!sym) 608 continue; 609 610 uint64_t p = sc->getRVA() + rel.VirtualAddress; 611 uint64_t s = sym->getRVA(); 612 613 if (!isInRange(rel.Type, s, p, 0)) 614 return false; 615 } 616 } 617 return true; 618 } 619 620 // Assign addresses and add thunks if necessary. 621 void Writer::finalizeAddresses() { 622 assignAddresses(); 623 if (ctx.config.machine != ARMNT && ctx.config.machine != ARM64) 624 return; 625 626 size_t origNumChunks = 0; 627 for (OutputSection *sec : ctx.outputSections) { 628 sec->origChunks = sec->chunks; 629 origNumChunks += sec->chunks.size(); 630 } 631 632 int pass = 0; 633 int margin = 1024 * 100; 634 while (true) { 635 llvm::TimeTraceScope timeScope2("Add thunks pass"); 636 637 // First check whether we need thunks at all, or if the previous pass of 638 // adding them turned out ok. 639 bool rangesOk = true; 640 size_t numChunks = 0; 641 { 642 llvm::TimeTraceScope timeScope3("Verify ranges"); 643 for (OutputSection *sec : ctx.outputSections) { 644 if (!verifyRanges(sec->chunks)) { 645 rangesOk = false; 646 break; 647 } 648 numChunks += sec->chunks.size(); 649 } 650 } 651 if (rangesOk) { 652 if (pass > 0) 653 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " + 654 "margin " + Twine(margin) + " in " + Twine(pass) + " passes"); 655 return; 656 } 657 658 if (pass >= 10) 659 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes"); 660 661 if (pass > 0) { 662 // If the previous pass didn't work out, reset everything back to the 663 // original conditions before retrying with a wider margin. This should 664 // ideally never happen under real circumstances. 665 for (OutputSection *sec : ctx.outputSections) 666 sec->chunks = sec->origChunks; 667 margin *= 2; 668 } 669 670 // Try adding thunks everywhere where it is needed, with a margin 671 // to avoid things going out of range due to the added thunks. 672 bool addressesChanged = false; 673 { 674 llvm::TimeTraceScope timeScope3("Create thunks"); 675 for (OutputSection *sec : ctx.outputSections) 676 addressesChanged |= createThunks(sec, margin); 677 } 678 // If the verification above thought we needed thunks, we should have 679 // added some. 680 assert(addressesChanged); 681 (void)addressesChanged; 682 683 // Recalculate the layout for the whole image (and verify the ranges at 684 // the start of the next round). 685 assignAddresses(); 686 687 pass++; 688 } 689 } 690 691 void Writer::writePEChecksum() { 692 if (!ctx.config.writeCheckSum) { 693 return; 694 } 695 696 llvm::TimeTraceScope timeScope("PE checksum"); 697 698 // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum 699 uint32_t *buf = (uint32_t *)buffer->getBufferStart(); 700 uint32_t size = (uint32_t)(buffer->getBufferSize()); 701 702 coff_file_header *coffHeader = 703 (coff_file_header *)((uint8_t *)buf + dosStubSize + sizeof(PEMagic)); 704 pe32_header *peHeader = 705 (pe32_header *)((uint8_t *)coffHeader + sizeof(coff_file_header)); 706 707 uint64_t sum = 0; 708 uint32_t count = size; 709 ulittle16_t *addr = (ulittle16_t *)buf; 710 711 // The PE checksum algorithm, implemented as suggested in RFC1071 712 while (count > 1) { 713 sum += *addr++; 714 count -= 2; 715 } 716 717 // Add left-over byte, if any 718 if (count > 0) 719 sum += *(unsigned char *)addr; 720 721 // Fold 32-bit sum to 16 bits 722 while (sum >> 16) { 723 sum = (sum & 0xffff) + (sum >> 16); 724 } 725 726 sum += size; 727 peHeader->CheckSum = sum; 728 } 729 730 // The main function of the writer. 731 void Writer::run() { 732 { 733 llvm::TimeTraceScope timeScope("Write PE"); 734 ScopedTimer t1(ctx.codeLayoutTimer); 735 736 createImportTables(); 737 createSections(); 738 appendImportThunks(); 739 // Import thunks must be added before the Control Flow Guard tables are 740 // added. 741 createMiscChunks(); 742 createExportTable(); 743 mergeSections(); 744 sortECChunks(); 745 removeUnusedSections(); 746 finalizeAddresses(); 747 removeEmptySections(); 748 assignOutputSectionIndices(); 749 setSectionPermissions(); 750 setECSymbols(); 751 createSymbolAndStringTable(); 752 753 if (fileSize > UINT32_MAX) 754 fatal("image size (" + Twine(fileSize) + ") " + 755 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")"); 756 757 openFile(ctx.config.outputFile); 758 if (ctx.config.is64()) { 759 writeHeader<pe32plus_header>(); 760 } else { 761 writeHeader<pe32_header>(); 762 } 763 writeSections(); 764 prepareLoadConfig(); 765 sortExceptionTables(); 766 767 // Fix up the alignment in the TLS Directory's characteristic field, 768 // if a specific alignment value is needed 769 if (tlsAlignment) 770 fixTlsAlignment(); 771 } 772 773 if (!ctx.config.pdbPath.empty() && ctx.config.debug) { 774 assert(buildId); 775 createPDB(ctx, sectionTable, buildId->buildId); 776 } 777 writeBuildId(); 778 779 writeLLDMapFile(ctx); 780 writeMapFile(ctx); 781 782 writePEChecksum(); 783 784 if (errorCount()) 785 return; 786 787 llvm::TimeTraceScope timeScope("Commit PE to disk"); 788 ScopedTimer t2(ctx.outputCommitTimer); 789 if (auto e = buffer->commit()) 790 fatal("failed to write output '" + buffer->getPath() + 791 "': " + toString(std::move(e))); 792 } 793 794 static StringRef getOutputSectionName(StringRef name) { 795 StringRef s = name.split('$').first; 796 797 // Treat a later period as a separator for MinGW, for sections like 798 // ".ctors.01234". 799 return s.substr(0, s.find('.', 1)); 800 } 801 802 // For /order. 803 void Writer::sortBySectionOrder(std::vector<Chunk *> &chunks) { 804 auto getPriority = [&ctx = ctx](const Chunk *c) { 805 if (auto *sec = dyn_cast<SectionChunk>(c)) 806 if (sec->sym) 807 return ctx.config.order.lookup(sec->sym->getName()); 808 return 0; 809 }; 810 811 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) { 812 return getPriority(a) < getPriority(b); 813 }); 814 } 815 816 // Change the characteristics of existing PartialSections that belong to the 817 // section Name to Chars. 818 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) { 819 for (auto it : partialSections) { 820 PartialSection *pSec = it.second; 821 StringRef curName = pSec->name; 822 if (!curName.consume_front(name) || 823 (!curName.empty() && !curName.starts_with("$"))) 824 continue; 825 if (pSec->characteristics == chars) 826 continue; 827 PartialSection *destSec = createPartialSection(pSec->name, chars); 828 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(), 829 pSec->chunks.end()); 830 pSec->chunks.clear(); 831 } 832 } 833 834 // Sort concrete section chunks from GNU import libraries. 835 // 836 // GNU binutils doesn't use short import files, but instead produces import 837 // libraries that consist of object files, with section chunks for the .idata$* 838 // sections. These are linked just as regular static libraries. Each import 839 // library consists of one header object, one object file for every imported 840 // symbol, and one trailer object. In order for the .idata tables/lists to 841 // be formed correctly, the section chunks within each .idata$* section need 842 // to be grouped by library, and sorted alphabetically within each library 843 // (which makes sure the header comes first and the trailer last). 844 bool Writer::fixGnuImportChunks() { 845 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 846 847 // Make sure all .idata$* section chunks are mapped as RDATA in order to 848 // be sorted into the same sections as our own synthesized .idata chunks. 849 fixPartialSectionChars(".idata", rdata); 850 851 bool hasIdata = false; 852 // Sort all .idata$* chunks, grouping chunks from the same library, 853 // with alphabetical ordering of the object files within a library. 854 for (auto it : partialSections) { 855 PartialSection *pSec = it.second; 856 if (!pSec->name.starts_with(".idata")) 857 continue; 858 859 if (!pSec->chunks.empty()) 860 hasIdata = true; 861 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) { 862 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s); 863 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t); 864 if (!sc1 || !sc2) { 865 // if SC1, order them ascending. If SC2 or both null, 866 // S is not less than T. 867 return sc1 != nullptr; 868 } 869 // Make a string with "libraryname/objectfile" for sorting, achieving 870 // both grouping by library and sorting of objects within a library, 871 // at once. 872 std::string key1 = 873 (sc1->file->parentName + "/" + sc1->file->getName()).str(); 874 std::string key2 = 875 (sc2->file->parentName + "/" + sc2->file->getName()).str(); 876 return key1 < key2; 877 }); 878 } 879 return hasIdata; 880 } 881 882 // Add generated idata chunks, for imported symbols and DLLs, and a 883 // terminator in .idata$2. 884 void Writer::addSyntheticIdata() { 885 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 886 idata.create(ctx); 887 888 // Add the .idata content in the right section groups, to allow 889 // chunks from other linked in object files to be grouped together. 890 // See Microsoft PE/COFF spec 5.4 for details. 891 auto add = [&](StringRef n, std::vector<Chunk *> &v) { 892 PartialSection *pSec = createPartialSection(n, rdata); 893 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end()); 894 }; 895 896 // The loader assumes a specific order of data. 897 // Add each type in the correct order. 898 add(".idata$2", idata.dirs); 899 add(".idata$4", idata.lookups); 900 add(".idata$5", idata.addresses); 901 if (!idata.hints.empty()) 902 add(".idata$6", idata.hints); 903 add(".idata$7", idata.dllNames); 904 } 905 906 // Locate the first Chunk and size of the import directory list and the 907 // IAT. 908 void Writer::locateImportTables() { 909 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; 910 911 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) { 912 if (!importDirs->chunks.empty()) 913 importTableStart = importDirs->chunks.front(); 914 for (Chunk *c : importDirs->chunks) 915 importTableSize += c->getSize(); 916 } 917 918 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) { 919 if (!importAddresses->chunks.empty()) 920 iatStart = importAddresses->chunks.front(); 921 for (Chunk *c : importAddresses->chunks) 922 iatSize += c->getSize(); 923 } 924 } 925 926 // Return whether a SectionChunk's suffix (the dollar and any trailing 927 // suffix) should be removed and sorted into the main suffixless 928 // PartialSection. 929 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name, 930 bool isMinGW) { 931 // On MinGW, comdat groups are formed by putting the comdat group name 932 // after the '$' in the section name. For .eh_frame$<symbol>, that must 933 // still be sorted before the .eh_frame trailer from crtend.o, thus just 934 // strip the section name trailer. For other sections, such as 935 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in 936 // ".tls$"), they must be strictly sorted after .tls. And for the 937 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the 938 // suffix for sorting. Thus, to play it safe, only strip the suffix for 939 // the standard sections. 940 if (!isMinGW) 941 return false; 942 if (!sc || !sc->isCOMDAT()) 943 return false; 944 return name.starts_with(".text$") || name.starts_with(".data$") || 945 name.starts_with(".rdata$") || name.starts_with(".pdata$") || 946 name.starts_with(".xdata$") || name.starts_with(".eh_frame$"); 947 } 948 949 void Writer::sortSections() { 950 if (!ctx.config.callGraphProfile.empty()) { 951 DenseMap<const SectionChunk *, int> order = 952 computeCallGraphProfileOrder(ctx); 953 for (auto it : order) { 954 if (DefinedRegular *sym = it.first->sym) 955 ctx.config.order[sym->getName()] = it.second; 956 } 957 } 958 if (!ctx.config.order.empty()) 959 for (auto it : partialSections) 960 sortBySectionOrder(it.second->chunks); 961 } 962 963 // Create output section objects and add them to OutputSections. 964 void Writer::createSections() { 965 llvm::TimeTraceScope timeScope("Output sections"); 966 // First, create the builtin sections. 967 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA; 968 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA; 969 const uint32_t code = IMAGE_SCN_CNT_CODE; 970 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE; 971 const uint32_t r = IMAGE_SCN_MEM_READ; 972 const uint32_t w = IMAGE_SCN_MEM_WRITE; 973 const uint32_t x = IMAGE_SCN_MEM_EXECUTE; 974 975 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections; 976 auto createSection = [&](StringRef name, uint32_t outChars) { 977 OutputSection *&sec = sections[{name, outChars}]; 978 if (!sec) { 979 sec = make<OutputSection>(name, outChars); 980 ctx.outputSections.push_back(sec); 981 } 982 return sec; 983 }; 984 985 // Try to match the section order used by link.exe. 986 textSec = createSection(".text", code | r | x); 987 createSection(".bss", bss | r | w); 988 rdataSec = createSection(".rdata", data | r); 989 buildidSec = createSection(".buildid", data | r); 990 dataSec = createSection(".data", data | r | w); 991 pdataSec = createSection(".pdata", data | r); 992 idataSec = createSection(".idata", data | r); 993 edataSec = createSection(".edata", data | r); 994 didatSec = createSection(".didat", data | r); 995 rsrcSec = createSection(".rsrc", data | r); 996 relocSec = createSection(".reloc", data | discardable | r); 997 ctorsSec = createSection(".ctors", data | r | w); 998 dtorsSec = createSection(".dtors", data | r | w); 999 1000 // Then bin chunks by name and output characteristics. 1001 for (Chunk *c : ctx.symtab.getChunks()) { 1002 auto *sc = dyn_cast<SectionChunk>(c); 1003 if (sc && !sc->live) { 1004 if (ctx.config.verbose) 1005 sc->printDiscardedMessage(); 1006 continue; 1007 } 1008 StringRef name = c->getSectionName(); 1009 if (shouldStripSectionSuffix(sc, name, ctx.config.mingw)) 1010 name = name.split('$').first; 1011 1012 if (name.starts_with(".tls")) 1013 tlsAlignment = std::max(tlsAlignment, c->getAlignment()); 1014 1015 PartialSection *pSec = createPartialSection(name, 1016 c->getOutputCharacteristics()); 1017 pSec->chunks.push_back(c); 1018 } 1019 1020 fixPartialSectionChars(".rsrc", data | r); 1021 fixPartialSectionChars(".edata", data | r); 1022 // Even in non MinGW cases, we might need to link against GNU import 1023 // libraries. 1024 bool hasIdata = fixGnuImportChunks(); 1025 if (!idata.empty()) 1026 hasIdata = true; 1027 1028 if (hasIdata) 1029 addSyntheticIdata(); 1030 1031 sortSections(); 1032 1033 if (hasIdata) 1034 locateImportTables(); 1035 1036 // Then create an OutputSection for each section. 1037 // '$' and all following characters in input section names are 1038 // discarded when determining output section. So, .text$foo 1039 // contributes to .text, for example. See PE/COFF spec 3.2. 1040 for (auto it : partialSections) { 1041 PartialSection *pSec = it.second; 1042 StringRef name = getOutputSectionName(pSec->name); 1043 uint32_t outChars = pSec->characteristics; 1044 1045 if (name == ".CRT") { 1046 // In link.exe, there is a special case for the I386 target where .CRT 1047 // sections are treated as if they have output characteristics DATA | R if 1048 // their characteristics are DATA | R | W. This implements the same 1049 // special case for all architectures. 1050 outChars = data | r; 1051 1052 log("Processing section " + pSec->name + " -> " + name); 1053 1054 sortCRTSectionChunks(pSec->chunks); 1055 } 1056 1057 OutputSection *sec = createSection(name, outChars); 1058 for (Chunk *c : pSec->chunks) 1059 sec->addChunk(c); 1060 1061 sec->addContributingPartialSection(pSec); 1062 } 1063 1064 // Finally, move some output sections to the end. 1065 auto sectionOrder = [&](const OutputSection *s) { 1066 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file 1067 // because the loader cannot handle holes. Stripping can remove other 1068 // discardable ones than .reloc, which is first of them (created early). 1069 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) { 1070 // Move discardable sections named .debug_ to the end, after other 1071 // discardable sections. Stripping only removes the sections named 1072 // .debug_* - thus try to avoid leaving holes after stripping. 1073 if (s->name.starts_with(".debug_")) 1074 return 3; 1075 return 2; 1076 } 1077 // .rsrc should come at the end of the non-discardable sections because its 1078 // size may change by the Win32 UpdateResources() function, causing 1079 // subsequent sections to move (see https://crbug.com/827082). 1080 if (s == rsrcSec) 1081 return 1; 1082 return 0; 1083 }; 1084 llvm::stable_sort(ctx.outputSections, 1085 [&](const OutputSection *s, const OutputSection *t) { 1086 return sectionOrder(s) < sectionOrder(t); 1087 }); 1088 } 1089 1090 void Writer::createMiscChunks() { 1091 llvm::TimeTraceScope timeScope("Misc chunks"); 1092 Configuration *config = &ctx.config; 1093 1094 for (MergeChunk *p : ctx.mergeChunkInstances) { 1095 if (p) { 1096 p->finalizeContents(); 1097 rdataSec->addChunk(p); 1098 } 1099 } 1100 1101 // Create thunks for locally-dllimported symbols. 1102 if (!ctx.symtab.localImportChunks.empty()) { 1103 for (Chunk *c : ctx.symtab.localImportChunks) 1104 rdataSec->addChunk(c); 1105 } 1106 1107 // Create Debug Information Chunks 1108 debugInfoSec = config->mingw ? buildidSec : rdataSec; 1109 if (config->buildIDHash != BuildIDHash::None || config->debug || 1110 config->repro || config->cetCompat) { 1111 debugDirectory = 1112 make<DebugDirectoryChunk>(ctx, debugRecords, config->repro); 1113 debugDirectory->setAlignment(4); 1114 debugInfoSec->addChunk(debugDirectory); 1115 } 1116 1117 if (config->debug || config->buildIDHash != BuildIDHash::None) { 1118 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We 1119 // output a PDB no matter what, and this chunk provides the only means of 1120 // allowing a debugger to match a PDB and an executable. So we need it even 1121 // if we're ultimately not going to write CodeView data to the PDB. 1122 buildId = make<CVDebugRecordChunk>(ctx); 1123 debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId); 1124 if (Symbol *buildidSym = ctx.symtab.findUnderscore("__buildid")) 1125 replaceSymbol<DefinedSynthetic>(buildidSym, buildidSym->getName(), 1126 buildId, 4); 1127 } 1128 1129 if (config->cetCompat) { 1130 debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS, 1131 make<ExtendedDllCharacteristicsChunk>( 1132 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)); 1133 } 1134 1135 // Align and add each chunk referenced by the debug data directory. 1136 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) { 1137 r.second->setAlignment(4); 1138 debugInfoSec->addChunk(r.second); 1139 } 1140 1141 // Create SEH table. x86-only. 1142 if (config->safeSEH) 1143 createSEHTable(); 1144 1145 // Create /guard:cf tables if requested. 1146 if (config->guardCF != GuardCFLevel::Off) 1147 createGuardCFTables(); 1148 1149 if (isArm64EC(config->machine)) 1150 createECChunks(); 1151 1152 if (config->autoImport) 1153 createRuntimePseudoRelocs(); 1154 1155 if (config->mingw) 1156 insertCtorDtorSymbols(); 1157 } 1158 1159 // Create .idata section for the DLL-imported symbol table. 1160 // The format of this section is inherently Windows-specific. 1161 // IdataContents class abstracted away the details for us, 1162 // so we just let it create chunks and add them to the section. 1163 void Writer::createImportTables() { 1164 llvm::TimeTraceScope timeScope("Import tables"); 1165 // Initialize DLLOrder so that import entries are ordered in 1166 // the same order as in the command line. (That affects DLL 1167 // initialization order, and this ordering is MSVC-compatible.) 1168 for (ImportFile *file : ctx.importFileInstances) { 1169 if (!file->live) 1170 continue; 1171 1172 std::string dll = StringRef(file->dllName).lower(); 1173 if (ctx.config.dllOrder.count(dll) == 0) 1174 ctx.config.dllOrder[dll] = ctx.config.dllOrder.size(); 1175 1176 if (file->impSym && !isa<DefinedImportData>(file->impSym)) 1177 fatal(toString(ctx, *file->impSym) + " was replaced"); 1178 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym); 1179 if (ctx.config.delayLoads.count(StringRef(file->dllName).lower())) { 1180 if (!file->thunkSym) 1181 fatal("cannot delay-load " + toString(file) + 1182 " due to import of data: " + toString(ctx, *impSym)); 1183 delayIdata.add(impSym); 1184 } else { 1185 idata.add(impSym); 1186 } 1187 } 1188 } 1189 1190 void Writer::appendImportThunks() { 1191 if (ctx.importFileInstances.empty()) 1192 return; 1193 1194 llvm::TimeTraceScope timeScope("Import thunks"); 1195 for (ImportFile *file : ctx.importFileInstances) { 1196 if (!file->live) 1197 continue; 1198 1199 if (!file->thunkSym) 1200 continue; 1201 1202 if (!isa<DefinedImportThunk>(file->thunkSym)) 1203 fatal(toString(ctx, *file->thunkSym) + " was replaced"); 1204 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym); 1205 if (file->thunkLive) 1206 textSec->addChunk(thunk->getChunk()); 1207 } 1208 1209 if (!delayIdata.empty()) { 1210 Defined *helper = cast<Defined>(ctx.config.delayLoadHelper); 1211 delayIdata.create(helper); 1212 for (Chunk *c : delayIdata.getChunks()) 1213 didatSec->addChunk(c); 1214 for (Chunk *c : delayIdata.getDataChunks()) 1215 dataSec->addChunk(c); 1216 for (Chunk *c : delayIdata.getCodeChunks()) 1217 textSec->addChunk(c); 1218 for (Chunk *c : delayIdata.getCodePData()) 1219 pdataSec->addChunk(c); 1220 for (Chunk *c : delayIdata.getCodeUnwindInfo()) 1221 rdataSec->addChunk(c); 1222 } 1223 } 1224 1225 void Writer::createExportTable() { 1226 llvm::TimeTraceScope timeScope("Export table"); 1227 if (!edataSec->chunks.empty()) { 1228 // Allow using a custom built export table from input object files, instead 1229 // of having the linker synthesize the tables. 1230 if (ctx.config.hadExplicitExports) 1231 warn("literal .edata sections override exports"); 1232 } else if (!ctx.config.exports.empty()) { 1233 for (Chunk *c : edata.chunks) 1234 edataSec->addChunk(c); 1235 } 1236 if (!edataSec->chunks.empty()) { 1237 edataStart = edataSec->chunks.front(); 1238 edataEnd = edataSec->chunks.back(); 1239 } 1240 // Warn on exported deleting destructor. 1241 for (auto e : ctx.config.exports) 1242 if (e.sym && e.sym->getName().starts_with("??_G")) 1243 warn("export of deleting dtor: " + toString(ctx, *e.sym)); 1244 } 1245 1246 void Writer::removeUnusedSections() { 1247 llvm::TimeTraceScope timeScope("Remove unused sections"); 1248 // Remove sections that we can be sure won't get content, to avoid 1249 // allocating space for their section headers. 1250 auto isUnused = [this](OutputSection *s) { 1251 if (s == relocSec) 1252 return false; // This section is populated later. 1253 // MergeChunks have zero size at this point, as their size is finalized 1254 // later. Only remove sections that have no Chunks at all. 1255 return s->chunks.empty(); 1256 }; 1257 llvm::erase_if(ctx.outputSections, isUnused); 1258 } 1259 1260 // The Windows loader doesn't seem to like empty sections, 1261 // so we remove them if any. 1262 void Writer::removeEmptySections() { 1263 llvm::TimeTraceScope timeScope("Remove empty sections"); 1264 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; }; 1265 llvm::erase_if(ctx.outputSections, isEmpty); 1266 } 1267 1268 void Writer::assignOutputSectionIndices() { 1269 llvm::TimeTraceScope timeScope("Output sections indices"); 1270 // Assign final output section indices, and assign each chunk to its output 1271 // section. 1272 uint32_t idx = 1; 1273 for (OutputSection *os : ctx.outputSections) { 1274 os->sectionIndex = idx; 1275 for (Chunk *c : os->chunks) 1276 c->setOutputSectionIdx(idx); 1277 ++idx; 1278 } 1279 1280 // Merge chunks are containers of chunks, so assign those an output section 1281 // too. 1282 for (MergeChunk *mc : ctx.mergeChunkInstances) 1283 if (mc) 1284 for (SectionChunk *sc : mc->sections) 1285 if (sc && sc->live) 1286 sc->setOutputSectionIdx(mc->getOutputSectionIdx()); 1287 } 1288 1289 size_t Writer::addEntryToStringTable(StringRef str) { 1290 assert(str.size() > COFF::NameSize); 1291 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field 1292 strtab.insert(strtab.end(), str.begin(), str.end()); 1293 strtab.push_back('\0'); 1294 return offsetOfEntry; 1295 } 1296 1297 std::optional<coff_symbol16> Writer::createSymbol(Defined *def) { 1298 coff_symbol16 sym; 1299 switch (def->kind()) { 1300 case Symbol::DefinedAbsoluteKind: { 1301 auto *da = dyn_cast<DefinedAbsolute>(def); 1302 // Note: COFF symbol can only store 32-bit values, so 64-bit absolute 1303 // values will be truncated. 1304 sym.Value = da->getVA(); 1305 sym.SectionNumber = IMAGE_SYM_ABSOLUTE; 1306 break; 1307 } 1308 default: { 1309 // Don't write symbols that won't be written to the output to the symbol 1310 // table. 1311 // We also try to write DefinedSynthetic as a normal symbol. Some of these 1312 // symbols do point to an actual chunk, like __safe_se_handler_table. Others 1313 // like __ImageBase are outside of sections and thus cannot be represented. 1314 Chunk *c = def->getChunk(); 1315 if (!c) 1316 return std::nullopt; 1317 OutputSection *os = ctx.getOutputSection(c); 1318 if (!os) 1319 return std::nullopt; 1320 1321 sym.Value = def->getRVA() - os->getRVA(); 1322 sym.SectionNumber = os->sectionIndex; 1323 break; 1324 } 1325 } 1326 1327 // Symbols that are runtime pseudo relocations don't point to the actual 1328 // symbol data itself (as they are imported), but points to the IAT entry 1329 // instead. Avoid emitting them to the symbol table, as they can confuse 1330 // debuggers. 1331 if (def->isRuntimePseudoReloc) 1332 return std::nullopt; 1333 1334 StringRef name = def->getName(); 1335 if (name.size() > COFF::NameSize) { 1336 sym.Name.Offset.Zeroes = 0; 1337 sym.Name.Offset.Offset = addEntryToStringTable(name); 1338 } else { 1339 memset(sym.Name.ShortName, 0, COFF::NameSize); 1340 memcpy(sym.Name.ShortName, name.data(), name.size()); 1341 } 1342 1343 if (auto *d = dyn_cast<DefinedCOFF>(def)) { 1344 COFFSymbolRef ref = d->getCOFFSymbol(); 1345 sym.Type = ref.getType(); 1346 sym.StorageClass = ref.getStorageClass(); 1347 } else if (def->kind() == Symbol::DefinedImportThunkKind) { 1348 sym.Type = (IMAGE_SYM_DTYPE_FUNCTION << SCT_COMPLEX_TYPE_SHIFT) | 1349 IMAGE_SYM_TYPE_NULL; 1350 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; 1351 } else { 1352 sym.Type = IMAGE_SYM_TYPE_NULL; 1353 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; 1354 } 1355 sym.NumberOfAuxSymbols = 0; 1356 return sym; 1357 } 1358 1359 void Writer::createSymbolAndStringTable() { 1360 llvm::TimeTraceScope timeScope("Symbol and string table"); 1361 // PE/COFF images are limited to 8 byte section names. Longer names can be 1362 // supported by writing a non-standard string table, but this string table is 1363 // not mapped at runtime and the long names will therefore be inaccessible. 1364 // link.exe always truncates section names to 8 bytes, whereas binutils always 1365 // preserves long section names via the string table. LLD adopts a hybrid 1366 // solution where discardable sections have long names preserved and 1367 // non-discardable sections have their names truncated, to ensure that any 1368 // section which is mapped at runtime also has its name mapped at runtime. 1369 for (OutputSection *sec : ctx.outputSections) { 1370 if (sec->name.size() <= COFF::NameSize) 1371 continue; 1372 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0) 1373 continue; 1374 if (ctx.config.warnLongSectionNames) { 1375 warn("section name " + sec->name + 1376 " is longer than 8 characters and will use a non-standard string " 1377 "table"); 1378 } 1379 sec->setStringTableOff(addEntryToStringTable(sec->name)); 1380 } 1381 1382 if (ctx.config.writeSymtab) { 1383 for (ObjFile *file : ctx.objFileInstances) { 1384 for (Symbol *b : file->getSymbols()) { 1385 auto *d = dyn_cast_or_null<Defined>(b); 1386 if (!d || d->writtenToSymtab) 1387 continue; 1388 d->writtenToSymtab = true; 1389 if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) { 1390 COFFSymbolRef symRef = dc->getCOFFSymbol(); 1391 if (symRef.isSectionDefinition() || 1392 symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL) 1393 continue; 1394 } 1395 1396 if (std::optional<coff_symbol16> sym = createSymbol(d)) 1397 outputSymtab.push_back(*sym); 1398 1399 if (auto *dthunk = dyn_cast<DefinedImportThunk>(d)) { 1400 if (!dthunk->wrappedSym->writtenToSymtab) { 1401 dthunk->wrappedSym->writtenToSymtab = true; 1402 if (std::optional<coff_symbol16> sym = 1403 createSymbol(dthunk->wrappedSym)) 1404 outputSymtab.push_back(*sym); 1405 } 1406 } 1407 } 1408 } 1409 } 1410 1411 if (outputSymtab.empty() && strtab.empty()) 1412 return; 1413 1414 // We position the symbol table to be adjacent to the end of the last section. 1415 uint64_t fileOff = fileSize; 1416 pointerToSymbolTable = fileOff; 1417 fileOff += outputSymtab.size() * sizeof(coff_symbol16); 1418 fileOff += 4 + strtab.size(); 1419 fileSize = alignTo(fileOff, ctx.config.fileAlign); 1420 } 1421 1422 void Writer::mergeSections() { 1423 llvm::TimeTraceScope timeScope("Merge sections"); 1424 if (!pdataSec->chunks.empty()) { 1425 if (isArm64EC(ctx.config.machine)) { 1426 // On ARM64EC .pdata may contain both ARM64 and X64 data. Split them by 1427 // sorting and store their regions separately. 1428 llvm::stable_sort(pdataSec->chunks, [=](const Chunk *a, const Chunk *b) { 1429 return (a->getMachine() == AMD64) < (b->getMachine() == AMD64); 1430 }); 1431 1432 for (auto chunk : pdataSec->chunks) { 1433 if (chunk->getMachine() == AMD64) { 1434 hybridPdata.first = chunk; 1435 hybridPdata.last = pdataSec->chunks.back(); 1436 break; 1437 } 1438 1439 if (!pdata.first) 1440 pdata.first = chunk; 1441 pdata.last = chunk; 1442 } 1443 } else { 1444 pdata.first = pdataSec->chunks.front(); 1445 pdata.last = pdataSec->chunks.back(); 1446 } 1447 } 1448 1449 for (auto &p : ctx.config.merge) { 1450 StringRef toName = p.second; 1451 if (p.first == toName) 1452 continue; 1453 StringSet<> names; 1454 while (true) { 1455 if (!names.insert(toName).second) 1456 fatal("/merge: cycle found for section '" + p.first + "'"); 1457 auto i = ctx.config.merge.find(toName); 1458 if (i == ctx.config.merge.end()) 1459 break; 1460 toName = i->second; 1461 } 1462 OutputSection *from = findSection(p.first); 1463 OutputSection *to = findSection(toName); 1464 if (!from) 1465 continue; 1466 if (!to) { 1467 from->name = toName; 1468 continue; 1469 } 1470 to->merge(from); 1471 } 1472 } 1473 1474 // EC targets may have chunks of various architectures mixed together at this 1475 // point. Group code chunks of the same architecture together by sorting chunks 1476 // by their EC range type. 1477 void Writer::sortECChunks() { 1478 if (!isArm64EC(ctx.config.machine)) 1479 return; 1480 1481 for (OutputSection *sec : ctx.outputSections) { 1482 if (sec->isCodeSection()) 1483 llvm::stable_sort(sec->chunks, [=](const Chunk *a, const Chunk *b) { 1484 std::optional<chpe_range_type> aType = a->getArm64ECRangeType(), 1485 bType = b->getArm64ECRangeType(); 1486 return bType && (!aType || *aType < *bType); 1487 }); 1488 } 1489 } 1490 1491 // Visits all sections to assign incremental, non-overlapping RVAs and 1492 // file offsets. 1493 void Writer::assignAddresses() { 1494 llvm::TimeTraceScope timeScope("Assign addresses"); 1495 Configuration *config = &ctx.config; 1496 1497 // We need to create EC code map so that ECCodeMapChunk knows its size. 1498 // We do it here to make sure that we account for range extension chunks. 1499 createECCodeMap(); 1500 1501 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) + 1502 sizeof(data_directory) * numberOfDataDirectory + 1503 sizeof(coff_section) * ctx.outputSections.size(); 1504 sizeOfHeaders += 1505 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header); 1506 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign); 1507 fileSize = sizeOfHeaders; 1508 1509 // The first page is kept unmapped. 1510 uint64_t rva = alignTo(sizeOfHeaders, config->align); 1511 1512 for (OutputSection *sec : ctx.outputSections) { 1513 llvm::TimeTraceScope timeScope("Section: ", sec->name); 1514 if (sec == relocSec) 1515 addBaserels(); 1516 uint64_t rawSize = 0, virtualSize = 0; 1517 sec->header.VirtualAddress = rva; 1518 1519 // If /FUNCTIONPADMIN is used, functions are padded in order to create a 1520 // hotpatchable image. 1521 uint32_t padding = sec->isCodeSection() ? config->functionPadMin : 0; 1522 std::optional<chpe_range_type> prevECRange; 1523 1524 for (Chunk *c : sec->chunks) { 1525 // Alignment EC code range baudaries. 1526 if (isArm64EC(ctx.config.machine) && sec->isCodeSection()) { 1527 std::optional<chpe_range_type> rangeType = c->getArm64ECRangeType(); 1528 if (rangeType != prevECRange) { 1529 virtualSize = alignTo(virtualSize, 4096); 1530 prevECRange = rangeType; 1531 } 1532 } 1533 if (padding && c->isHotPatchable()) 1534 virtualSize += padding; 1535 virtualSize = alignTo(virtualSize, c->getAlignment()); 1536 c->setRVA(rva + virtualSize); 1537 virtualSize += c->getSize(); 1538 if (c->hasData) 1539 rawSize = alignTo(virtualSize, config->fileAlign); 1540 } 1541 if (virtualSize > UINT32_MAX) 1542 error("section larger than 4 GiB: " + sec->name); 1543 sec->header.VirtualSize = virtualSize; 1544 sec->header.SizeOfRawData = rawSize; 1545 if (rawSize != 0) 1546 sec->header.PointerToRawData = fileSize; 1547 rva += alignTo(virtualSize, config->align); 1548 fileSize += alignTo(rawSize, config->fileAlign); 1549 } 1550 sizeOfImage = alignTo(rva, config->align); 1551 1552 // Assign addresses to sections in MergeChunks. 1553 for (MergeChunk *mc : ctx.mergeChunkInstances) 1554 if (mc) 1555 mc->assignSubsectionRVAs(); 1556 } 1557 1558 template <typename PEHeaderTy> void Writer::writeHeader() { 1559 // Write DOS header. For backwards compatibility, the first part of a PE/COFF 1560 // executable consists of an MS-DOS MZ executable. If the executable is run 1561 // under DOS, that program gets run (usually to just print an error message). 1562 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses 1563 // the PE header instead. 1564 Configuration *config = &ctx.config; 1565 uint8_t *buf = buffer->getBufferStart(); 1566 auto *dos = reinterpret_cast<dos_header *>(buf); 1567 buf += sizeof(dos_header); 1568 dos->Magic[0] = 'M'; 1569 dos->Magic[1] = 'Z'; 1570 dos->UsedBytesInTheLastPage = dosStubSize % 512; 1571 dos->FileSizeInPages = divideCeil(dosStubSize, 512); 1572 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16; 1573 1574 dos->AddressOfRelocationTable = sizeof(dos_header); 1575 dos->AddressOfNewExeHeader = dosStubSize; 1576 1577 // Write DOS program. 1578 memcpy(buf, dosProgram, sizeof(dosProgram)); 1579 buf += sizeof(dosProgram); 1580 1581 // Write PE magic 1582 memcpy(buf, PEMagic, sizeof(PEMagic)); 1583 buf += sizeof(PEMagic); 1584 1585 // Write COFF header 1586 auto *coff = reinterpret_cast<coff_file_header *>(buf); 1587 buf += sizeof(*coff); 1588 switch (config->machine) { 1589 case ARM64EC: 1590 coff->Machine = AMD64; 1591 break; 1592 case ARM64X: 1593 coff->Machine = ARM64; 1594 break; 1595 default: 1596 coff->Machine = config->machine; 1597 } 1598 coff->NumberOfSections = ctx.outputSections.size(); 1599 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE; 1600 if (config->largeAddressAware) 1601 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE; 1602 if (!config->is64()) 1603 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE; 1604 if (config->dll) 1605 coff->Characteristics |= IMAGE_FILE_DLL; 1606 if (config->driverUponly) 1607 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY; 1608 if (!config->relocatable) 1609 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED; 1610 if (config->swaprunCD) 1611 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP; 1612 if (config->swaprunNet) 1613 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP; 1614 coff->SizeOfOptionalHeader = 1615 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory; 1616 1617 // Write PE header 1618 auto *pe = reinterpret_cast<PEHeaderTy *>(buf); 1619 buf += sizeof(*pe); 1620 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32; 1621 1622 // If {Major,Minor}LinkerVersion is left at 0.0, then for some 1623 // reason signing the resulting PE file with Authenticode produces a 1624 // signature that fails to validate on Windows 7 (but is OK on 10). 1625 // Set it to 14.0, which is what VS2015 outputs, and which avoids 1626 // that problem. 1627 pe->MajorLinkerVersion = 14; 1628 pe->MinorLinkerVersion = 0; 1629 1630 pe->ImageBase = config->imageBase; 1631 pe->SectionAlignment = config->align; 1632 pe->FileAlignment = config->fileAlign; 1633 pe->MajorImageVersion = config->majorImageVersion; 1634 pe->MinorImageVersion = config->minorImageVersion; 1635 pe->MajorOperatingSystemVersion = config->majorOSVersion; 1636 pe->MinorOperatingSystemVersion = config->minorOSVersion; 1637 pe->MajorSubsystemVersion = config->majorSubsystemVersion; 1638 pe->MinorSubsystemVersion = config->minorSubsystemVersion; 1639 pe->Subsystem = config->subsystem; 1640 pe->SizeOfImage = sizeOfImage; 1641 pe->SizeOfHeaders = sizeOfHeaders; 1642 if (!config->noEntry) { 1643 Defined *entry = cast<Defined>(config->entry); 1644 pe->AddressOfEntryPoint = entry->getRVA(); 1645 // Pointer to thumb code must have the LSB set, so adjust it. 1646 if (config->machine == ARMNT) 1647 pe->AddressOfEntryPoint |= 1; 1648 } 1649 pe->SizeOfStackReserve = config->stackReserve; 1650 pe->SizeOfStackCommit = config->stackCommit; 1651 pe->SizeOfHeapReserve = config->heapReserve; 1652 pe->SizeOfHeapCommit = config->heapCommit; 1653 if (config->appContainer) 1654 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER; 1655 if (config->driverWdm) 1656 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER; 1657 if (config->dynamicBase) 1658 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE; 1659 if (config->highEntropyVA) 1660 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA; 1661 if (!config->allowBind) 1662 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND; 1663 if (config->nxCompat) 1664 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT; 1665 if (!config->allowIsolation) 1666 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION; 1667 if (config->guardCF != GuardCFLevel::Off) 1668 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF; 1669 if (config->integrityCheck) 1670 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY; 1671 if (setNoSEHCharacteristic || config->noSEH) 1672 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH; 1673 if (config->terminalServerAware) 1674 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE; 1675 pe->NumberOfRvaAndSize = numberOfDataDirectory; 1676 if (textSec->getVirtualSize()) { 1677 pe->BaseOfCode = textSec->getRVA(); 1678 pe->SizeOfCode = textSec->getRawSize(); 1679 } 1680 pe->SizeOfInitializedData = getSizeOfInitializedData(); 1681 1682 // Write data directory 1683 auto *dir = reinterpret_cast<data_directory *>(buf); 1684 buf += sizeof(*dir) * numberOfDataDirectory; 1685 if (edataStart) { 1686 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA(); 1687 dir[EXPORT_TABLE].Size = 1688 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA(); 1689 } 1690 if (importTableStart) { 1691 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA(); 1692 dir[IMPORT_TABLE].Size = importTableSize; 1693 } 1694 if (iatStart) { 1695 dir[IAT].RelativeVirtualAddress = iatStart->getRVA(); 1696 dir[IAT].Size = iatSize; 1697 } 1698 if (rsrcSec->getVirtualSize()) { 1699 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA(); 1700 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize(); 1701 } 1702 // ARM64EC (but not ARM64X) contains x86_64 exception table in data directory. 1703 ChunkRange &exceptionTable = 1704 ctx.config.machine == ARM64EC ? hybridPdata : pdata; 1705 if (exceptionTable.first) { 1706 dir[EXCEPTION_TABLE].RelativeVirtualAddress = 1707 exceptionTable.first->getRVA(); 1708 dir[EXCEPTION_TABLE].Size = exceptionTable.last->getRVA() + 1709 exceptionTable.last->getSize() - 1710 exceptionTable.first->getRVA(); 1711 } 1712 if (relocSec->getVirtualSize()) { 1713 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA(); 1714 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize(); 1715 } 1716 if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) { 1717 if (Defined *b = dyn_cast<Defined>(sym)) { 1718 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA(); 1719 dir[TLS_TABLE].Size = config->is64() 1720 ? sizeof(object::coff_tls_directory64) 1721 : sizeof(object::coff_tls_directory32); 1722 } 1723 } 1724 if (debugDirectory) { 1725 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA(); 1726 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize(); 1727 } 1728 if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) { 1729 if (auto *b = dyn_cast<DefinedRegular>(sym)) { 1730 SectionChunk *sc = b->getChunk(); 1731 assert(b->getRVA() >= sc->getRVA()); 1732 uint64_t offsetInChunk = b->getRVA() - sc->getRVA(); 1733 if (!sc->hasData || offsetInChunk + 4 > sc->getSize()) 1734 fatal("_load_config_used is malformed"); 1735 1736 ArrayRef<uint8_t> secContents = sc->getContents(); 1737 uint32_t loadConfigSize = 1738 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]); 1739 if (offsetInChunk + loadConfigSize > sc->getSize()) 1740 fatal("_load_config_used is too large"); 1741 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA(); 1742 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize; 1743 } 1744 } 1745 if (!delayIdata.empty()) { 1746 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress = 1747 delayIdata.getDirRVA(); 1748 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize(); 1749 } 1750 1751 // Write section table 1752 for (OutputSection *sec : ctx.outputSections) { 1753 sec->writeHeaderTo(buf, config->debug); 1754 buf += sizeof(coff_section); 1755 } 1756 sectionTable = ArrayRef<uint8_t>( 1757 buf - ctx.outputSections.size() * sizeof(coff_section), buf); 1758 1759 if (outputSymtab.empty() && strtab.empty()) 1760 return; 1761 1762 coff->PointerToSymbolTable = pointerToSymbolTable; 1763 uint32_t numberOfSymbols = outputSymtab.size(); 1764 coff->NumberOfSymbols = numberOfSymbols; 1765 auto *symbolTable = reinterpret_cast<coff_symbol16 *>( 1766 buffer->getBufferStart() + coff->PointerToSymbolTable); 1767 for (size_t i = 0; i != numberOfSymbols; ++i) 1768 symbolTable[i] = outputSymtab[i]; 1769 // Create the string table, it follows immediately after the symbol table. 1770 // The first 4 bytes is length including itself. 1771 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]); 1772 write32le(buf, strtab.size() + 4); 1773 if (!strtab.empty()) 1774 memcpy(buf + 4, strtab.data(), strtab.size()); 1775 } 1776 1777 void Writer::openFile(StringRef path) { 1778 buffer = CHECK( 1779 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable), 1780 "failed to open " + path); 1781 } 1782 1783 void Writer::createSEHTable() { 1784 SymbolRVASet handlers; 1785 for (ObjFile *file : ctx.objFileInstances) { 1786 if (!file->hasSafeSEH()) 1787 error("/safeseh: " + file->getName() + " is not compatible with SEH"); 1788 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers); 1789 } 1790 1791 // Set the "no SEH" characteristic if there really were no handlers, or if 1792 // there is no load config object to point to the table of handlers. 1793 setNoSEHCharacteristic = 1794 handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used"); 1795 1796 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table", 1797 "__safe_se_handler_count"); 1798 } 1799 1800 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set 1801 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the 1802 // symbol's offset into that Chunk. 1803 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) { 1804 Chunk *c = s->getChunk(); 1805 if (!c) 1806 return; 1807 if (auto *sc = dyn_cast<SectionChunk>(c)) 1808 c = sc->repl; // Look through ICF replacement. 1809 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0); 1810 rvaSet.insert({c, off}); 1811 } 1812 1813 // Given a symbol, add it to the GFIDs table if it is a live, defined, function 1814 // symbol in an executable section. 1815 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms, 1816 Symbol *s) { 1817 if (!s) 1818 return; 1819 1820 switch (s->kind()) { 1821 case Symbol::DefinedLocalImportKind: 1822 case Symbol::DefinedImportDataKind: 1823 // Defines an __imp_ pointer, so it is data, so it is ignored. 1824 break; 1825 case Symbol::DefinedCommonKind: 1826 // Common is always data, so it is ignored. 1827 break; 1828 case Symbol::DefinedAbsoluteKind: 1829 case Symbol::DefinedSyntheticKind: 1830 // Absolute is never code, synthetic generally isn't and usually isn't 1831 // determinable. 1832 break; 1833 case Symbol::LazyArchiveKind: 1834 case Symbol::LazyObjectKind: 1835 case Symbol::LazyDLLSymbolKind: 1836 case Symbol::UndefinedKind: 1837 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy 1838 // symbols shouldn't have relocations. 1839 break; 1840 1841 case Symbol::DefinedImportThunkKind: 1842 // Thunks are always code, include them. 1843 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s)); 1844 break; 1845 1846 case Symbol::DefinedRegularKind: { 1847 // This is a regular, defined, symbol from a COFF file. Mark the symbol as 1848 // address taken if the symbol type is function and it's in an executable 1849 // section. 1850 auto *d = cast<DefinedRegular>(s); 1851 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) { 1852 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk()); 1853 if (sc && sc->live && 1854 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) 1855 addSymbolToRVASet(addressTakenSyms, d); 1856 } 1857 break; 1858 } 1859 } 1860 } 1861 1862 // Visit all relocations from all section contributions of this object file and 1863 // mark the relocation target as address-taken. 1864 void Writer::markSymbolsWithRelocations(ObjFile *file, 1865 SymbolRVASet &usedSymbols) { 1866 for (Chunk *c : file->getChunks()) { 1867 // We only care about live section chunks. Common chunks and other chunks 1868 // don't generally contain relocations. 1869 SectionChunk *sc = dyn_cast<SectionChunk>(c); 1870 if (!sc || !sc->live) 1871 continue; 1872 1873 for (const coff_relocation &reloc : sc->getRelocs()) { 1874 if (ctx.config.machine == I386 && 1875 reloc.Type == COFF::IMAGE_REL_I386_REL32) 1876 // Ignore relative relocations on x86. On x86_64 they can't be ignored 1877 // since they're also used to compute absolute addresses. 1878 continue; 1879 1880 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex); 1881 maybeAddAddressTakenFunction(usedSymbols, ref); 1882 } 1883 } 1884 } 1885 1886 // Create the guard function id table. This is a table of RVAs of all 1887 // address-taken functions. It is sorted and uniqued, just like the safe SEH 1888 // table. 1889 void Writer::createGuardCFTables() { 1890 Configuration *config = &ctx.config; 1891 1892 SymbolRVASet addressTakenSyms; 1893 SymbolRVASet giatsRVASet; 1894 std::vector<Symbol *> giatsSymbols; 1895 SymbolRVASet longJmpTargets; 1896 SymbolRVASet ehContTargets; 1897 for (ObjFile *file : ctx.objFileInstances) { 1898 // If the object was compiled with /guard:cf, the address taken symbols 1899 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y 1900 // sections. If the object was not compiled with /guard:cf, we assume there 1901 // were no setjmp targets, and that all code symbols with relocations are 1902 // possibly address-taken. 1903 if (file->hasGuardCF()) { 1904 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms); 1905 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet); 1906 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols); 1907 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets); 1908 } else { 1909 markSymbolsWithRelocations(file, addressTakenSyms); 1910 } 1911 // If the object was compiled with /guard:ehcont, the ehcont targets are in 1912 // .gehcont$y sections. 1913 if (file->hasGuardEHCont()) 1914 markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets); 1915 } 1916 1917 // Mark the image entry as address-taken. 1918 if (config->entry) 1919 maybeAddAddressTakenFunction(addressTakenSyms, config->entry); 1920 1921 // Mark exported symbols in executable sections as address-taken. 1922 for (Export &e : config->exports) 1923 maybeAddAddressTakenFunction(addressTakenSyms, e.sym); 1924 1925 // For each entry in the .giats table, check if it has a corresponding load 1926 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if 1927 // so, add the load thunk to the address taken (.gfids) table. 1928 for (Symbol *s : giatsSymbols) { 1929 if (auto *di = dyn_cast<DefinedImportData>(s)) { 1930 if (di->loadThunkSym) 1931 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym); 1932 } 1933 } 1934 1935 // Ensure sections referenced in the gfid table are 16-byte aligned. 1936 for (const ChunkAndOffset &c : addressTakenSyms) 1937 if (c.inputChunk->getAlignment() < 16) 1938 c.inputChunk->setAlignment(16); 1939 1940 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table", 1941 "__guard_fids_count"); 1942 1943 // Add the Guard Address Taken IAT Entry Table (.giats). 1944 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table", 1945 "__guard_iat_count"); 1946 1947 // Add the longjmp target table unless the user told us not to. 1948 if (config->guardCF & GuardCFLevel::LongJmp) 1949 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table", 1950 "__guard_longjmp_count"); 1951 1952 // Add the ehcont target table unless the user told us not to. 1953 if (config->guardCF & GuardCFLevel::EHCont) 1954 maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table", 1955 "__guard_eh_cont_count"); 1956 1957 // Set __guard_flags, which will be used in the load config to indicate that 1958 // /guard:cf was enabled. 1959 uint32_t guardFlags = uint32_t(GuardFlags::CF_INSTRUMENTED) | 1960 uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT); 1961 if (config->guardCF & GuardCFLevel::LongJmp) 1962 guardFlags |= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT); 1963 if (config->guardCF & GuardCFLevel::EHCont) 1964 guardFlags |= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT); 1965 Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags"); 1966 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags); 1967 } 1968 1969 // Take a list of input sections containing symbol table indices and add those 1970 // symbols to a vector. The challenge is that symbol RVAs are not known and 1971 // depend on the table size, so we can't directly build a set of integers. 1972 void Writer::getSymbolsFromSections(ObjFile *file, 1973 ArrayRef<SectionChunk *> symIdxChunks, 1974 std::vector<Symbol *> &symbols) { 1975 for (SectionChunk *c : symIdxChunks) { 1976 // Skip sections discarded by linker GC. This comes up when a .gfids section 1977 // is associated with something like a vtable and the vtable is discarded. 1978 // In this case, the associated gfids section is discarded, and we don't 1979 // mark the virtual member functions as address-taken by the vtable. 1980 if (!c->live) 1981 continue; 1982 1983 // Validate that the contents look like symbol table indices. 1984 ArrayRef<uint8_t> data = c->getContents(); 1985 if (data.size() % 4 != 0) { 1986 warn("ignoring " + c->getSectionName() + 1987 " symbol table index section in object " + toString(file)); 1988 continue; 1989 } 1990 1991 // Read each symbol table index and check if that symbol was included in the 1992 // final link. If so, add it to the vector of symbols. 1993 ArrayRef<ulittle32_t> symIndices( 1994 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4); 1995 ArrayRef<Symbol *> objSymbols = file->getSymbols(); 1996 for (uint32_t symIndex : symIndices) { 1997 if (symIndex >= objSymbols.size()) { 1998 warn("ignoring invalid symbol table index in section " + 1999 c->getSectionName() + " in object " + toString(file)); 2000 continue; 2001 } 2002 if (Symbol *s = objSymbols[symIndex]) { 2003 if (s->isLive()) 2004 symbols.push_back(cast<Symbol>(s)); 2005 } 2006 } 2007 } 2008 } 2009 2010 // Take a list of input sections containing symbol table indices and add those 2011 // symbols to an RVA table. 2012 void Writer::markSymbolsForRVATable(ObjFile *file, 2013 ArrayRef<SectionChunk *> symIdxChunks, 2014 SymbolRVASet &tableSymbols) { 2015 std::vector<Symbol *> syms; 2016 getSymbolsFromSections(file, symIdxChunks, syms); 2017 2018 for (Symbol *s : syms) 2019 addSymbolToRVASet(tableSymbols, cast<Defined>(s)); 2020 } 2021 2022 // Replace the absolute table symbol with a synthetic symbol pointing to 2023 // tableChunk so that we can emit base relocations for it and resolve section 2024 // relative relocations. 2025 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, 2026 StringRef countSym, bool hasFlag) { 2027 if (tableSymbols.empty()) 2028 return; 2029 2030 NonSectionChunk *tableChunk; 2031 if (hasFlag) 2032 tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols)); 2033 else 2034 tableChunk = make<RVATableChunk>(std::move(tableSymbols)); 2035 rdataSec->addChunk(tableChunk); 2036 2037 Symbol *t = ctx.symtab.findUnderscore(tableSym); 2038 Symbol *c = ctx.symtab.findUnderscore(countSym); 2039 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk); 2040 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4)); 2041 } 2042 2043 // Create CHPE metadata chunks. 2044 void Writer::createECChunks() { 2045 auto codeMapChunk = make<ECCodeMapChunk>(codeMap); 2046 rdataSec->addChunk(codeMapChunk); 2047 Symbol *codeMapSym = ctx.symtab.findUnderscore("__hybrid_code_map"); 2048 replaceSymbol<DefinedSynthetic>(codeMapSym, codeMapSym->getName(), 2049 codeMapChunk); 2050 } 2051 2052 // MinGW specific. Gather all relocations that are imported from a DLL even 2053 // though the code didn't expect it to, produce the table that the runtime 2054 // uses for fixing them up, and provide the synthetic symbols that the 2055 // runtime uses for finding the table. 2056 void Writer::createRuntimePseudoRelocs() { 2057 std::vector<RuntimePseudoReloc> rels; 2058 2059 for (Chunk *c : ctx.symtab.getChunks()) { 2060 auto *sc = dyn_cast<SectionChunk>(c); 2061 if (!sc || !sc->live) 2062 continue; 2063 sc->getRuntimePseudoRelocs(rels); 2064 } 2065 2066 if (!ctx.config.pseudoRelocs) { 2067 // Not writing any pseudo relocs; if some were needed, error out and 2068 // indicate what required them. 2069 for (const RuntimePseudoReloc &rpr : rels) 2070 error("automatic dllimport of " + rpr.sym->getName() + " in " + 2071 toString(rpr.target->file) + " requires pseudo relocations"); 2072 return; 2073 } 2074 2075 if (!rels.empty()) 2076 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations"); 2077 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels); 2078 rdataSec->addChunk(table); 2079 EmptyChunk *endOfList = make<EmptyChunk>(); 2080 rdataSec->addChunk(endOfList); 2081 2082 Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__"); 2083 Symbol *endSym = 2084 ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__"); 2085 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table); 2086 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList); 2087 } 2088 2089 // MinGW specific. 2090 // The MinGW .ctors and .dtors lists have sentinels at each end; 2091 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end. 2092 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__ 2093 // and __DTOR_LIST__ respectively. 2094 void Writer::insertCtorDtorSymbols() { 2095 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(ctx, -1); 2096 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(ctx, 0); 2097 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(ctx, -1); 2098 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(ctx, 0); 2099 ctorsSec->insertChunkAtStart(ctorListHead); 2100 ctorsSec->addChunk(ctorListEnd); 2101 dtorsSec->insertChunkAtStart(dtorListHead); 2102 dtorsSec->addChunk(dtorListEnd); 2103 2104 Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__"); 2105 Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__"); 2106 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(), 2107 ctorListHead); 2108 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(), 2109 dtorListHead); 2110 } 2111 2112 // Handles /section options to allow users to overwrite 2113 // section attributes. 2114 void Writer::setSectionPermissions() { 2115 llvm::TimeTraceScope timeScope("Sections permissions"); 2116 for (auto &p : ctx.config.section) { 2117 StringRef name = p.first; 2118 uint32_t perm = p.second; 2119 for (OutputSection *sec : ctx.outputSections) 2120 if (sec->name == name) 2121 sec->setPermissions(perm); 2122 } 2123 } 2124 2125 // Set symbols used by ARM64EC metadata. 2126 void Writer::setECSymbols() { 2127 if (!isArm64EC(ctx.config.machine)) 2128 return; 2129 2130 Symbol *rfeTableSym = ctx.symtab.findUnderscore("__arm64x_extra_rfe_table"); 2131 replaceSymbol<DefinedSynthetic>(rfeTableSym, "__arm64x_extra_rfe_table", 2132 pdata.first); 2133 2134 if (pdata.first) { 2135 Symbol *rfeSizeSym = 2136 ctx.symtab.findUnderscore("__arm64x_extra_rfe_table_size"); 2137 cast<DefinedAbsolute>(rfeSizeSym) 2138 ->setVA(pdata.last->getRVA() + pdata.last->getSize() - 2139 pdata.first->getRVA()); 2140 } 2141 } 2142 2143 // Write section contents to a mmap'ed file. 2144 void Writer::writeSections() { 2145 llvm::TimeTraceScope timeScope("Write sections"); 2146 uint8_t *buf = buffer->getBufferStart(); 2147 for (OutputSection *sec : ctx.outputSections) { 2148 uint8_t *secBuf = buf + sec->getFileOff(); 2149 // Fill gaps between functions in .text with INT3 instructions 2150 // instead of leaving as NUL bytes (which can be interpreted as 2151 // ADD instructions). Only fill the gaps between chunks. Most 2152 // chunks overwrite it anyway, but uninitialized data chunks 2153 // merged into a code section don't. 2154 if ((sec->header.Characteristics & IMAGE_SCN_CNT_CODE) && 2155 (ctx.config.machine == AMD64 || ctx.config.machine == I386)) { 2156 uint32_t prevEnd = 0; 2157 for (Chunk *c : sec->chunks) { 2158 uint32_t off = c->getRVA() - sec->getRVA(); 2159 memset(secBuf + prevEnd, 0xCC, off - prevEnd); 2160 prevEnd = off + c->getSize(); 2161 } 2162 memset(secBuf + prevEnd, 0xCC, sec->getRawSize() - prevEnd); 2163 } 2164 2165 parallelForEach(sec->chunks, [&](Chunk *c) { 2166 c->writeTo(secBuf + c->getRVA() - sec->getRVA()); 2167 }); 2168 } 2169 } 2170 2171 void Writer::writeBuildId() { 2172 llvm::TimeTraceScope timeScope("Write build ID"); 2173 2174 // There are two important parts to the build ID. 2175 // 1) If building with debug info, the COFF debug directory contains a 2176 // timestamp as well as a Guid and Age of the PDB. 2177 // 2) In all cases, the PE COFF file header also contains a timestamp. 2178 // For reproducibility, instead of a timestamp we want to use a hash of the 2179 // PE contents. 2180 Configuration *config = &ctx.config; 2181 bool generateSyntheticBuildId = config->buildIDHash == BuildIDHash::Binary; 2182 if (generateSyntheticBuildId) { 2183 assert(buildId && "BuildId is not set!"); 2184 // BuildId->BuildId was filled in when the PDB was written. 2185 } 2186 2187 // At this point the only fields in the COFF file which remain unset are the 2188 // "timestamp" in the COFF file header, and the ones in the coff debug 2189 // directory. Now we can hash the file and write that hash to the various 2190 // timestamp fields in the file. 2191 StringRef outputFileData( 2192 reinterpret_cast<const char *>(buffer->getBufferStart()), 2193 buffer->getBufferSize()); 2194 2195 uint32_t timestamp = config->timestamp; 2196 uint64_t hash = 0; 2197 2198 if (config->repro || generateSyntheticBuildId) 2199 hash = xxh3_64bits(outputFileData); 2200 2201 if (config->repro) 2202 timestamp = static_cast<uint32_t>(hash); 2203 2204 if (generateSyntheticBuildId) { 2205 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70; 2206 buildId->buildId->PDB70.Age = 1; 2207 memcpy(buildId->buildId->PDB70.Signature, &hash, 8); 2208 // xxhash only gives us 8 bytes, so put some fixed data in the other half. 2209 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8); 2210 } 2211 2212 if (debugDirectory) 2213 debugDirectory->setTimeDateStamp(timestamp); 2214 2215 uint8_t *buf = buffer->getBufferStart(); 2216 buf += dosStubSize + sizeof(PEMagic); 2217 object::coff_file_header *coffHeader = 2218 reinterpret_cast<coff_file_header *>(buf); 2219 coffHeader->TimeDateStamp = timestamp; 2220 } 2221 2222 // Sort .pdata section contents according to PE/COFF spec 5.5. 2223 template <typename T> 2224 void Writer::sortExceptionTable(ChunkRange &exceptionTable) { 2225 if (!exceptionTable.first) 2226 return; 2227 2228 // We assume .pdata contains function table entries only. 2229 auto bufAddr = [&](Chunk *c) { 2230 OutputSection *os = ctx.getOutputSection(c); 2231 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() - 2232 os->getRVA(); 2233 }; 2234 uint8_t *begin = bufAddr(exceptionTable.first); 2235 uint8_t *end = bufAddr(exceptionTable.last) + exceptionTable.last->getSize(); 2236 if ((end - begin) % sizeof(T) != 0) { 2237 fatal("unexpected .pdata size: " + Twine(end - begin) + 2238 " is not a multiple of " + Twine(sizeof(T))); 2239 } 2240 2241 parallelSort(MutableArrayRef<T>(reinterpret_cast<T *>(begin), 2242 reinterpret_cast<T *>(end)), 2243 [](const T &a, const T &b) { return a.begin < b.begin; }); 2244 } 2245 2246 // Sort .pdata section contents according to PE/COFF spec 5.5. 2247 void Writer::sortExceptionTables() { 2248 llvm::TimeTraceScope timeScope("Sort exception table"); 2249 2250 struct EntryX64 { 2251 ulittle32_t begin, end, unwind; 2252 }; 2253 struct EntryArm { 2254 ulittle32_t begin, unwind; 2255 }; 2256 2257 switch (ctx.config.machine) { 2258 case AMD64: 2259 sortExceptionTable<EntryX64>(pdata); 2260 break; 2261 case ARM64EC: 2262 case ARM64X: 2263 sortExceptionTable<EntryX64>(hybridPdata); 2264 [[fallthrough]]; 2265 case ARMNT: 2266 case ARM64: 2267 sortExceptionTable<EntryArm>(pdata); 2268 break; 2269 default: 2270 if (pdata.first) 2271 lld::errs() << "warning: don't know how to handle .pdata.\n"; 2272 break; 2273 } 2274 } 2275 2276 // The CRT section contains, among other things, the array of function 2277 // pointers that initialize every global variable that is not trivially 2278 // constructed. The CRT calls them one after the other prior to invoking 2279 // main(). 2280 // 2281 // As per C++ spec, 3.6.2/2.3, 2282 // "Variables with ordered initialization defined within a single 2283 // translation unit shall be initialized in the order of their definitions 2284 // in the translation unit" 2285 // 2286 // It is therefore critical to sort the chunks containing the function 2287 // pointers in the order that they are listed in the object file (top to 2288 // bottom), otherwise global objects might not be initialized in the 2289 // correct order. 2290 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) { 2291 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) { 2292 auto sa = dyn_cast<SectionChunk>(a); 2293 auto sb = dyn_cast<SectionChunk>(b); 2294 assert(sa && sb && "Non-section chunks in CRT section!"); 2295 2296 StringRef sAObj = sa->file->mb.getBufferIdentifier(); 2297 StringRef sBObj = sb->file->mb.getBufferIdentifier(); 2298 2299 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber(); 2300 }; 2301 llvm::stable_sort(chunks, sectionChunkOrder); 2302 2303 if (ctx.config.verbose) { 2304 for (auto &c : chunks) { 2305 auto sc = dyn_cast<SectionChunk>(c); 2306 log(" " + sc->file->mb.getBufferIdentifier().str() + 2307 ", SectionID: " + Twine(sc->getSectionNumber())); 2308 } 2309 } 2310 } 2311 2312 OutputSection *Writer::findSection(StringRef name) { 2313 for (OutputSection *sec : ctx.outputSections) 2314 if (sec->name == name) 2315 return sec; 2316 return nullptr; 2317 } 2318 2319 uint32_t Writer::getSizeOfInitializedData() { 2320 uint32_t res = 0; 2321 for (OutputSection *s : ctx.outputSections) 2322 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA) 2323 res += s->getRawSize(); 2324 return res; 2325 } 2326 2327 // Add base relocations to .reloc section. 2328 void Writer::addBaserels() { 2329 if (!ctx.config.relocatable) 2330 return; 2331 relocSec->chunks.clear(); 2332 std::vector<Baserel> v; 2333 for (OutputSection *sec : ctx.outputSections) { 2334 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) 2335 continue; 2336 llvm::TimeTraceScope timeScope("Base relocations: ", sec->name); 2337 // Collect all locations for base relocations. 2338 for (Chunk *c : sec->chunks) 2339 c->getBaserels(&v); 2340 // Add the addresses to .reloc section. 2341 if (!v.empty()) 2342 addBaserelBlocks(v); 2343 v.clear(); 2344 } 2345 } 2346 2347 // Add addresses to .reloc section. Note that addresses are grouped by page. 2348 void Writer::addBaserelBlocks(std::vector<Baserel> &v) { 2349 const uint32_t mask = ~uint32_t(pageSize - 1); 2350 uint32_t page = v[0].rva & mask; 2351 size_t i = 0, j = 1; 2352 for (size_t e = v.size(); j < e; ++j) { 2353 uint32_t p = v[j].rva & mask; 2354 if (p == page) 2355 continue; 2356 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 2357 i = j; 2358 page = p; 2359 } 2360 if (i == j) 2361 return; 2362 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j)); 2363 } 2364 2365 PartialSection *Writer::createPartialSection(StringRef name, 2366 uint32_t outChars) { 2367 PartialSection *&pSec = partialSections[{name, outChars}]; 2368 if (pSec) 2369 return pSec; 2370 pSec = make<PartialSection>(name, outChars); 2371 return pSec; 2372 } 2373 2374 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) { 2375 auto it = partialSections.find({name, outChars}); 2376 if (it != partialSections.end()) 2377 return it->second; 2378 return nullptr; 2379 } 2380 2381 void Writer::fixTlsAlignment() { 2382 Defined *tlsSym = 2383 dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used")); 2384 if (!tlsSym) 2385 return; 2386 2387 OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk()); 2388 assert(sec && tlsSym->getRVA() >= sec->getRVA() && 2389 "no output section for _tls_used"); 2390 2391 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff(); 2392 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA(); 2393 uint64_t directorySize = ctx.config.is64() 2394 ? sizeof(object::coff_tls_directory64) 2395 : sizeof(object::coff_tls_directory32); 2396 2397 if (tlsOffset + directorySize > sec->getRawSize()) 2398 fatal("_tls_used sym is malformed"); 2399 2400 if (ctx.config.is64()) { 2401 object::coff_tls_directory64 *tlsDir = 2402 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]); 2403 tlsDir->setAlignment(tlsAlignment); 2404 } else { 2405 object::coff_tls_directory32 *tlsDir = 2406 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]); 2407 tlsDir->setAlignment(tlsAlignment); 2408 } 2409 } 2410 2411 void Writer::prepareLoadConfig() { 2412 Symbol *sym = ctx.symtab.findUnderscore("_load_config_used"); 2413 auto *b = cast_if_present<DefinedRegular>(sym); 2414 if (!b) { 2415 if (ctx.config.guardCF != GuardCFLevel::Off) 2416 warn("Control Flow Guard is enabled but '_load_config_used' is missing"); 2417 return; 2418 } 2419 2420 OutputSection *sec = ctx.getOutputSection(b->getChunk()); 2421 uint8_t *buf = buffer->getBufferStart(); 2422 uint8_t *secBuf = buf + sec->getFileOff(); 2423 uint8_t *symBuf = secBuf + (b->getRVA() - sec->getRVA()); 2424 uint32_t expectedAlign = ctx.config.is64() ? 8 : 4; 2425 if (b->getChunk()->getAlignment() < expectedAlign) 2426 warn("'_load_config_used' is misaligned (expected alignment to be " + 2427 Twine(expectedAlign) + " bytes, got " + 2428 Twine(b->getChunk()->getAlignment()) + " instead)"); 2429 else if (!isAligned(Align(expectedAlign), b->getRVA())) 2430 warn("'_load_config_used' is misaligned (RVA is 0x" + 2431 Twine::utohexstr(b->getRVA()) + " not aligned to " + 2432 Twine(expectedAlign) + " bytes)"); 2433 2434 if (ctx.config.is64()) 2435 prepareLoadConfig(reinterpret_cast<coff_load_configuration64 *>(symBuf)); 2436 else 2437 prepareLoadConfig(reinterpret_cast<coff_load_configuration32 *>(symBuf)); 2438 } 2439 2440 template <typename T> void Writer::prepareLoadConfig(T *loadConfig) { 2441 if (ctx.config.dependentLoadFlags) 2442 loadConfig->DependentLoadFlags = ctx.config.dependentLoadFlags; 2443 2444 checkLoadConfigGuardData(loadConfig); 2445 } 2446 2447 template <typename T> 2448 void Writer::checkLoadConfigGuardData(const T *loadConfig) { 2449 size_t loadConfigSize = loadConfig->Size; 2450 2451 #define RETURN_IF_NOT_CONTAINS(field) \ 2452 if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) { \ 2453 warn("'_load_config_used' structure too small to include " #field); \ 2454 return; \ 2455 } 2456 2457 #define IF_CONTAINS(field) \ 2458 if (loadConfigSize >= offsetof(T, field) + sizeof(T::field)) 2459 2460 #define CHECK_VA(field, sym) \ 2461 if (auto *s = dyn_cast<DefinedSynthetic>(ctx.symtab.findUnderscore(sym))) \ 2462 if (loadConfig->field != ctx.config.imageBase + s->getRVA()) \ 2463 warn(#field " not set correctly in '_load_config_used'"); 2464 2465 #define CHECK_ABSOLUTE(field, sym) \ 2466 if (auto *s = dyn_cast<DefinedAbsolute>(ctx.symtab.findUnderscore(sym))) \ 2467 if (loadConfig->field != s->getVA()) \ 2468 warn(#field " not set correctly in '_load_config_used'"); 2469 2470 if (ctx.config.guardCF == GuardCFLevel::Off) 2471 return; 2472 RETURN_IF_NOT_CONTAINS(GuardFlags) 2473 CHECK_VA(GuardCFFunctionTable, "__guard_fids_table") 2474 CHECK_ABSOLUTE(GuardCFFunctionCount, "__guard_fids_count") 2475 CHECK_ABSOLUTE(GuardFlags, "__guard_flags") 2476 IF_CONTAINS(GuardAddressTakenIatEntryCount) { 2477 CHECK_VA(GuardAddressTakenIatEntryTable, "__guard_iat_table") 2478 CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount, "__guard_iat_count") 2479 } 2480 2481 if (!(ctx.config.guardCF & GuardCFLevel::LongJmp)) 2482 return; 2483 RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount) 2484 CHECK_VA(GuardLongJumpTargetTable, "__guard_longjmp_table") 2485 CHECK_ABSOLUTE(GuardLongJumpTargetCount, "__guard_longjmp_count") 2486 2487 if (!(ctx.config.guardCF & GuardCFLevel::EHCont)) 2488 return; 2489 RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount) 2490 CHECK_VA(GuardEHContinuationTable, "__guard_eh_cont_table") 2491 CHECK_ABSOLUTE(GuardEHContinuationCount, "__guard_eh_cont_count") 2492 2493 #undef RETURN_IF_NOT_CONTAINS 2494 #undef IF_CONTAINS 2495 #undef CHECK_VA 2496 #undef CHECK_ABSOLUTE 2497 } 2498