1 //===- PDB.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "PDB.h"
10 #include "COFFLinkerContext.h"
11 #include "Chunks.h"
12 #include "Config.h"
13 #include "DebugTypes.h"
14 #include "Driver.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "TypeMerger.h"
18 #include "Writer.h"
19 #include "lld/Common/Timer.h"
20 #include "llvm/DebugInfo/CodeView/DebugFrameDataSubsection.h"
21 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
22 #include "llvm/DebugInfo/CodeView/DebugLinesSubsection.h"
23 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
24 #include "llvm/DebugInfo/CodeView/GlobalTypeTableBuilder.h"
25 #include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
26 #include "llvm/DebugInfo/CodeView/MergingTypeTableBuilder.h"
27 #include "llvm/DebugInfo/CodeView/RecordName.h"
28 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
29 #include "llvm/DebugInfo/CodeView/SymbolRecordHelpers.h"
30 #include "llvm/DebugInfo/CodeView/SymbolSerializer.h"
31 #include "llvm/DebugInfo/CodeView/TypeIndexDiscovery.h"
32 #include "llvm/DebugInfo/MSF/MSFBuilder.h"
33 #include "llvm/DebugInfo/MSF/MSFCommon.h"
34 #include "llvm/DebugInfo/MSF/MSFError.h"
35 #include "llvm/DebugInfo/PDB/GenericError.h"
36 #include "llvm/DebugInfo/PDB/Native/DbiModuleDescriptorBuilder.h"
37 #include "llvm/DebugInfo/PDB/Native/DbiStream.h"
38 #include "llvm/DebugInfo/PDB/Native/DbiStreamBuilder.h"
39 #include "llvm/DebugInfo/PDB/Native/GSIStreamBuilder.h"
40 #include "llvm/DebugInfo/PDB/Native/InfoStream.h"
41 #include "llvm/DebugInfo/PDB/Native/InfoStreamBuilder.h"
42 #include "llvm/DebugInfo/PDB/Native/NativeSession.h"
43 #include "llvm/DebugInfo/PDB/Native/PDBFile.h"
44 #include "llvm/DebugInfo/PDB/Native/PDBFileBuilder.h"
45 #include "llvm/DebugInfo/PDB/Native/PDBStringTableBuilder.h"
46 #include "llvm/DebugInfo/PDB/Native/TpiHashing.h"
47 #include "llvm/DebugInfo/PDB/Native/TpiStream.h"
48 #include "llvm/DebugInfo/PDB/Native/TpiStreamBuilder.h"
49 #include "llvm/DebugInfo/PDB/PDB.h"
50 #include "llvm/Object/COFF.h"
51 #include "llvm/Object/CVDebugRecord.h"
52 #include "llvm/Support/BinaryByteStream.h"
53 #include "llvm/Support/CRC.h"
54 #include "llvm/Support/Endian.h"
55 #include "llvm/Support/Errc.h"
56 #include "llvm/Support/FormatAdapters.h"
57 #include "llvm/Support/FormatVariadic.h"
58 #include "llvm/Support/Path.h"
59 #include "llvm/Support/ScopedPrinter.h"
60 #include "llvm/Support/TimeProfiler.h"
61 #include <memory>
62 #include <optional>
63
64 using namespace llvm;
65 using namespace llvm::codeview;
66 using namespace lld;
67 using namespace lld::coff;
68
69 using llvm::object::coff_section;
70 using llvm::pdb::StringTableFixup;
71
72 namespace {
73 class DebugSHandler;
74
75 class PDBLinker {
76 friend DebugSHandler;
77
78 public:
PDBLinker(COFFLinkerContext & ctx)79 PDBLinker(COFFLinkerContext &ctx)
80 : builder(bAlloc()), tMerger(ctx, bAlloc()), ctx(ctx) {
81 // This isn't strictly necessary, but link.exe usually puts an empty string
82 // as the first "valid" string in the string table, so we do the same in
83 // order to maintain as much byte-for-byte compatibility as possible.
84 pdbStrTab.insert("");
85 }
86
87 /// Emit the basic PDB structure: initial streams, headers, etc.
88 void initialize(llvm::codeview::DebugInfo *buildId);
89
90 /// Add natvis files specified on the command line.
91 void addNatvisFiles();
92
93 /// Add named streams specified on the command line.
94 void addNamedStreams();
95
96 /// Link CodeView from each object file in the symbol table into the PDB.
97 void addObjectsToPDB();
98
99 /// Add every live, defined public symbol to the PDB.
100 void addPublicsToPDB();
101
102 /// Link info for each import file in the symbol table into the PDB.
103 void addImportFilesToPDB();
104
105 void createModuleDBI(ObjFile *file);
106
107 /// Link CodeView from a single object file into the target (output) PDB.
108 /// When a precompiled headers object is linked, its TPI map might be provided
109 /// externally.
110 void addDebug(TpiSource *source);
111
112 void addDebugSymbols(TpiSource *source);
113
114 // Analyze the symbol records to separate module symbols from global symbols,
115 // find string references, and calculate how large the symbol stream will be
116 // in the PDB.
117 void analyzeSymbolSubsection(SectionChunk *debugChunk,
118 uint32_t &moduleSymOffset,
119 uint32_t &nextRelocIndex,
120 std::vector<StringTableFixup> &stringTableFixups,
121 BinaryStreamRef symData);
122
123 // Write all module symbols from all live debug symbol subsections of the
124 // given object file into the given stream writer.
125 Error writeAllModuleSymbolRecords(ObjFile *file, BinaryStreamWriter &writer);
126
127 // Callback to copy and relocate debug symbols during PDB file writing.
128 static Error commitSymbolsForObject(void *ctx, void *obj,
129 BinaryStreamWriter &writer);
130
131 // Copy the symbol record, relocate it, and fix the alignment if necessary.
132 // Rewrite type indices in the record. Replace unrecognized symbol records
133 // with S_SKIP records.
134 void writeSymbolRecord(SectionChunk *debugChunk,
135 ArrayRef<uint8_t> sectionContents, CVSymbol sym,
136 size_t alignedSize, uint32_t &nextRelocIndex,
137 std::vector<uint8_t> &storage);
138
139 /// Add the section map and section contributions to the PDB.
140 void addSections(ArrayRef<uint8_t> sectionTable);
141
142 /// Write the PDB to disk and store the Guid generated for it in *Guid.
143 void commit(codeview::GUID *guid);
144
145 // Print statistics regarding the final PDB
146 void printStats();
147
148 private:
149 void pdbMakeAbsolute(SmallVectorImpl<char> &fileName);
150 void translateIdSymbols(MutableArrayRef<uint8_t> &recordData,
151 TpiSource *source);
152 void addCommonLinkerModuleSymbols(StringRef path,
153 pdb::DbiModuleDescriptorBuilder &mod);
154
155 pdb::PDBFileBuilder builder;
156
157 TypeMerger tMerger;
158
159 COFFLinkerContext &ctx;
160
161 /// PDBs use a single global string table for filenames in the file checksum
162 /// table.
163 DebugStringTableSubsection pdbStrTab;
164
165 llvm::SmallString<128> nativePath;
166
167 // For statistics
168 uint64_t globalSymbols = 0;
169 uint64_t moduleSymbols = 0;
170 uint64_t publicSymbols = 0;
171 uint64_t nbTypeRecords = 0;
172 uint64_t nbTypeRecordsBytes = 0;
173 };
174
175 /// Represents an unrelocated DEBUG_S_FRAMEDATA subsection.
176 struct UnrelocatedFpoData {
177 SectionChunk *debugChunk = nullptr;
178 ArrayRef<uint8_t> subsecData;
179 uint32_t relocIndex = 0;
180 };
181
182 /// The size of the magic bytes at the beginning of a symbol section or stream.
183 enum : uint32_t { kSymbolStreamMagicSize = 4 };
184
185 class DebugSHandler {
186 PDBLinker &linker;
187
188 /// The object file whose .debug$S sections we're processing.
189 ObjFile &file;
190
191 /// The DEBUG_S_STRINGTABLE subsection. These strings are referred to by
192 /// index from other records in the .debug$S section. All of these strings
193 /// need to be added to the global PDB string table, and all references to
194 /// these strings need to have their indices re-written to refer to the
195 /// global PDB string table.
196 DebugStringTableSubsectionRef cvStrTab;
197
198 /// The DEBUG_S_FILECHKSMS subsection. As above, these are referred to
199 /// by other records in the .debug$S section and need to be merged into the
200 /// PDB.
201 DebugChecksumsSubsectionRef checksums;
202
203 /// The DEBUG_S_FRAMEDATA subsection(s). There can be more than one of
204 /// these and they need not appear in any specific order. However, they
205 /// contain string table references which need to be re-written, so we
206 /// collect them all here and re-write them after all subsections have been
207 /// discovered and processed.
208 std::vector<UnrelocatedFpoData> frameDataSubsecs;
209
210 /// List of string table references in symbol records. Later they will be
211 /// applied to the symbols during PDB writing.
212 std::vector<StringTableFixup> stringTableFixups;
213
214 /// Sum of the size of all module symbol records across all .debug$S sections.
215 /// Includes record realignment and the size of the symbol stream magic
216 /// prefix.
217 uint32_t moduleStreamSize = kSymbolStreamMagicSize;
218
219 /// Next relocation index in the current .debug$S section. Resets every
220 /// handleDebugS call.
221 uint32_t nextRelocIndex = 0;
222
223 void advanceRelocIndex(SectionChunk *debugChunk, ArrayRef<uint8_t> subsec);
224
225 void addUnrelocatedSubsection(SectionChunk *debugChunk,
226 const DebugSubsectionRecord &ss);
227
228 void addFrameDataSubsection(SectionChunk *debugChunk,
229 const DebugSubsectionRecord &ss);
230
231 public:
DebugSHandler(PDBLinker & linker,ObjFile & file)232 DebugSHandler(PDBLinker &linker, ObjFile &file)
233 : linker(linker), file(file) {}
234
235 void handleDebugS(SectionChunk *debugChunk);
236
237 void finish();
238 };
239 }
240
241 // Visual Studio's debugger requires absolute paths in various places in the
242 // PDB to work without additional configuration:
243 // https://docs.microsoft.com/en-us/visualstudio/debugger/debug-source-files-common-properties-solution-property-pages-dialog-box
pdbMakeAbsolute(SmallVectorImpl<char> & fileName)244 void PDBLinker::pdbMakeAbsolute(SmallVectorImpl<char> &fileName) {
245 // The default behavior is to produce paths that are valid within the context
246 // of the machine that you perform the link on. If the linker is running on
247 // a POSIX system, we will output absolute POSIX paths. If the linker is
248 // running on a Windows system, we will output absolute Windows paths. If the
249 // user desires any other kind of behavior, they should explicitly pass
250 // /pdbsourcepath, in which case we will treat the exact string the user
251 // passed in as the gospel and not normalize, canonicalize it.
252 if (sys::path::is_absolute(fileName, sys::path::Style::windows) ||
253 sys::path::is_absolute(fileName, sys::path::Style::posix))
254 return;
255
256 // It's not absolute in any path syntax. Relative paths necessarily refer to
257 // the local file system, so we can make it native without ending up with a
258 // nonsensical path.
259 if (ctx.config.pdbSourcePath.empty()) {
260 sys::path::native(fileName);
261 sys::fs::make_absolute(fileName);
262 sys::path::remove_dots(fileName, true);
263 return;
264 }
265
266 // Try to guess whether /PDBSOURCEPATH is a unix path or a windows path.
267 // Since PDB's are more of a Windows thing, we make this conservative and only
268 // decide that it's a unix path if we're fairly certain. Specifically, if
269 // it starts with a forward slash.
270 SmallString<128> absoluteFileName = ctx.config.pdbSourcePath;
271 sys::path::Style guessedStyle = absoluteFileName.starts_with("/")
272 ? sys::path::Style::posix
273 : sys::path::Style::windows;
274 sys::path::append(absoluteFileName, guessedStyle, fileName);
275 sys::path::native(absoluteFileName, guessedStyle);
276 sys::path::remove_dots(absoluteFileName, true, guessedStyle);
277
278 fileName = std::move(absoluteFileName);
279 }
280
addTypeInfo(pdb::TpiStreamBuilder & tpiBuilder,TypeCollection & typeTable)281 static void addTypeInfo(pdb::TpiStreamBuilder &tpiBuilder,
282 TypeCollection &typeTable) {
283 // Start the TPI or IPI stream header.
284 tpiBuilder.setVersionHeader(pdb::PdbTpiV80);
285
286 // Flatten the in memory type table and hash each type.
287 typeTable.ForEachRecord([&](TypeIndex ti, const CVType &type) {
288 auto hash = pdb::hashTypeRecord(type);
289 if (auto e = hash.takeError())
290 fatal("type hashing error");
291 tpiBuilder.addTypeRecord(type.RecordData, *hash);
292 });
293 }
294
addGHashTypeInfo(COFFLinkerContext & ctx,pdb::PDBFileBuilder & builder)295 static void addGHashTypeInfo(COFFLinkerContext &ctx,
296 pdb::PDBFileBuilder &builder) {
297 // Start the TPI or IPI stream header.
298 builder.getTpiBuilder().setVersionHeader(pdb::PdbTpiV80);
299 builder.getIpiBuilder().setVersionHeader(pdb::PdbTpiV80);
300 for (TpiSource *source : ctx.tpiSourceList) {
301 builder.getTpiBuilder().addTypeRecords(source->mergedTpi.recs,
302 source->mergedTpi.recSizes,
303 source->mergedTpi.recHashes);
304 builder.getIpiBuilder().addTypeRecords(source->mergedIpi.recs,
305 source->mergedIpi.recSizes,
306 source->mergedIpi.recHashes);
307 }
308 }
309
310 static void
recordStringTableReferences(CVSymbol sym,uint32_t symOffset,std::vector<StringTableFixup> & stringTableFixups)311 recordStringTableReferences(CVSymbol sym, uint32_t symOffset,
312 std::vector<StringTableFixup> &stringTableFixups) {
313 // For now we only handle S_FILESTATIC, but we may need the same logic for
314 // S_DEFRANGE and S_DEFRANGE_SUBFIELD. However, I cannot seem to generate any
315 // PDBs that contain these types of records, so because of the uncertainty
316 // they are omitted here until we can prove that it's necessary.
317 switch (sym.kind()) {
318 case SymbolKind::S_FILESTATIC: {
319 // FileStaticSym::ModFileOffset
320 uint32_t ref = *reinterpret_cast<const ulittle32_t *>(&sym.data()[8]);
321 stringTableFixups.push_back({ref, symOffset + 8});
322 break;
323 }
324 case SymbolKind::S_DEFRANGE:
325 case SymbolKind::S_DEFRANGE_SUBFIELD:
326 log("Not fixing up string table reference in S_DEFRANGE / "
327 "S_DEFRANGE_SUBFIELD record");
328 break;
329 default:
330 break;
331 }
332 }
333
symbolKind(ArrayRef<uint8_t> recordData)334 static SymbolKind symbolKind(ArrayRef<uint8_t> recordData) {
335 const RecordPrefix *prefix =
336 reinterpret_cast<const RecordPrefix *>(recordData.data());
337 return static_cast<SymbolKind>(uint16_t(prefix->RecordKind));
338 }
339
340 /// MSVC translates S_PROC_ID_END to S_END, and S_[LG]PROC32_ID to S_[LG]PROC32
translateIdSymbols(MutableArrayRef<uint8_t> & recordData,TpiSource * source)341 void PDBLinker::translateIdSymbols(MutableArrayRef<uint8_t> &recordData,
342 TpiSource *source) {
343 RecordPrefix *prefix = reinterpret_cast<RecordPrefix *>(recordData.data());
344
345 SymbolKind kind = symbolKind(recordData);
346
347 if (kind == SymbolKind::S_PROC_ID_END) {
348 prefix->RecordKind = SymbolKind::S_END;
349 return;
350 }
351
352 // In an object file, GPROC32_ID has an embedded reference which refers to the
353 // single object file type index namespace. This has already been translated
354 // to the PDB file's ID stream index space, but we need to convert this to a
355 // symbol that refers to the type stream index space. So we remap again from
356 // ID index space to type index space.
357 if (kind == SymbolKind::S_GPROC32_ID || kind == SymbolKind::S_LPROC32_ID) {
358 SmallVector<TiReference, 1> refs;
359 auto content = recordData.drop_front(sizeof(RecordPrefix));
360 CVSymbol sym(recordData);
361 discoverTypeIndicesInSymbol(sym, refs);
362 assert(refs.size() == 1);
363 assert(refs.front().Count == 1);
364
365 TypeIndex *ti =
366 reinterpret_cast<TypeIndex *>(content.data() + refs[0].Offset);
367 // `ti` is the index of a FuncIdRecord or MemberFuncIdRecord which lives in
368 // the IPI stream, whose `FunctionType` member refers to the TPI stream.
369 // Note that LF_FUNC_ID and LF_MFUNC_ID have the same record layout, and
370 // in both cases we just need the second type index.
371 if (!ti->isSimple() && !ti->isNoneType()) {
372 TypeIndex newType = TypeIndex(SimpleTypeKind::NotTranslated);
373 if (ctx.config.debugGHashes) {
374 auto idToType = tMerger.funcIdToType.find(*ti);
375 if (idToType != tMerger.funcIdToType.end())
376 newType = idToType->second;
377 } else {
378 if (tMerger.getIDTable().contains(*ti)) {
379 CVType funcIdData = tMerger.getIDTable().getType(*ti);
380 if (funcIdData.length() >= 8 && (funcIdData.kind() == LF_FUNC_ID ||
381 funcIdData.kind() == LF_MFUNC_ID)) {
382 newType = *reinterpret_cast<const TypeIndex *>(&funcIdData.data()[8]);
383 }
384 }
385 }
386 if (newType == TypeIndex(SimpleTypeKind::NotTranslated)) {
387 warn(formatv("procedure symbol record for `{0}` in {1} refers to PDB "
388 "item index {2:X} which is not a valid function ID record",
389 getSymbolName(CVSymbol(recordData)),
390 source->file->getName(), ti->getIndex()));
391 }
392 *ti = newType;
393 }
394
395 kind = (kind == SymbolKind::S_GPROC32_ID) ? SymbolKind::S_GPROC32
396 : SymbolKind::S_LPROC32;
397 prefix->RecordKind = uint16_t(kind);
398 }
399 }
400
401 namespace {
402 struct ScopeRecord {
403 ulittle32_t ptrParent;
404 ulittle32_t ptrEnd;
405 };
406 } // namespace
407
408 /// Given a pointer to a symbol record that opens a scope, return a pointer to
409 /// the scope fields.
getSymbolScopeFields(void * sym)410 static ScopeRecord *getSymbolScopeFields(void *sym) {
411 return reinterpret_cast<ScopeRecord *>(reinterpret_cast<char *>(sym) +
412 sizeof(RecordPrefix));
413 }
414
415 // To open a scope, push the offset of the current symbol record onto the
416 // stack.
scopeStackOpen(SmallVectorImpl<uint32_t> & stack,std::vector<uint8_t> & storage)417 static void scopeStackOpen(SmallVectorImpl<uint32_t> &stack,
418 std::vector<uint8_t> &storage) {
419 stack.push_back(storage.size());
420 }
421
422 // To close a scope, update the record that opened the scope.
scopeStackClose(SmallVectorImpl<uint32_t> & stack,std::vector<uint8_t> & storage,uint32_t storageBaseOffset,ObjFile * file)423 static void scopeStackClose(SmallVectorImpl<uint32_t> &stack,
424 std::vector<uint8_t> &storage,
425 uint32_t storageBaseOffset, ObjFile *file) {
426 if (stack.empty()) {
427 warn("symbol scopes are not balanced in " + file->getName());
428 return;
429 }
430
431 // Update ptrEnd of the record that opened the scope to point to the
432 // current record, if we are writing into the module symbol stream.
433 uint32_t offOpen = stack.pop_back_val();
434 uint32_t offEnd = storageBaseOffset + storage.size();
435 uint32_t offParent = stack.empty() ? 0 : (stack.back() + storageBaseOffset);
436 ScopeRecord *scopeRec = getSymbolScopeFields(&(storage)[offOpen]);
437 scopeRec->ptrParent = offParent;
438 scopeRec->ptrEnd = offEnd;
439 }
440
symbolGoesInModuleStream(const CVSymbol & sym,unsigned symbolScopeDepth)441 static bool symbolGoesInModuleStream(const CVSymbol &sym,
442 unsigned symbolScopeDepth) {
443 switch (sym.kind()) {
444 case SymbolKind::S_GDATA32:
445 case SymbolKind::S_GTHREAD32:
446 // We really should not be seeing S_PROCREF and S_LPROCREF in the first place
447 // since they are synthesized by the linker in response to S_GPROC32 and
448 // S_LPROC32, but if we do see them, don't put them in the module stream I
449 // guess.
450 case SymbolKind::S_PROCREF:
451 case SymbolKind::S_LPROCREF:
452 return false;
453 // S_UDT and S_CONSTANT records go in the module stream if it is not a global record.
454 case SymbolKind::S_UDT:
455 case SymbolKind::S_CONSTANT:
456 return symbolScopeDepth > 0;
457 // S_GDATA32 does not go in the module stream, but S_LDATA32 does.
458 case SymbolKind::S_LDATA32:
459 case SymbolKind::S_LTHREAD32:
460 default:
461 return true;
462 }
463 }
464
symbolGoesInGlobalsStream(const CVSymbol & sym,unsigned symbolScopeDepth)465 static bool symbolGoesInGlobalsStream(const CVSymbol &sym,
466 unsigned symbolScopeDepth) {
467 switch (sym.kind()) {
468 case SymbolKind::S_GDATA32:
469 case SymbolKind::S_GTHREAD32:
470 case SymbolKind::S_GPROC32:
471 case SymbolKind::S_LPROC32:
472 case SymbolKind::S_GPROC32_ID:
473 case SymbolKind::S_LPROC32_ID:
474 // We really should not be seeing S_PROCREF and S_LPROCREF in the first place
475 // since they are synthesized by the linker in response to S_GPROC32 and
476 // S_LPROC32, but if we do see them, copy them straight through.
477 case SymbolKind::S_PROCREF:
478 case SymbolKind::S_LPROCREF:
479 return true;
480 // Records that go in the globals stream, unless they are function-local.
481 case SymbolKind::S_UDT:
482 case SymbolKind::S_LDATA32:
483 case SymbolKind::S_LTHREAD32:
484 case SymbolKind::S_CONSTANT:
485 return symbolScopeDepth == 0;
486 default:
487 return false;
488 }
489 }
490
addGlobalSymbol(pdb::GSIStreamBuilder & builder,uint16_t modIndex,unsigned symOffset,std::vector<uint8_t> & symStorage)491 static void addGlobalSymbol(pdb::GSIStreamBuilder &builder, uint16_t modIndex,
492 unsigned symOffset,
493 std::vector<uint8_t> &symStorage) {
494 CVSymbol sym{ArrayRef(symStorage)};
495 switch (sym.kind()) {
496 case SymbolKind::S_CONSTANT:
497 case SymbolKind::S_UDT:
498 case SymbolKind::S_GDATA32:
499 case SymbolKind::S_GTHREAD32:
500 case SymbolKind::S_LTHREAD32:
501 case SymbolKind::S_LDATA32:
502 case SymbolKind::S_PROCREF:
503 case SymbolKind::S_LPROCREF: {
504 // sym is a temporary object, so we have to copy and reallocate the record
505 // to stabilize it.
506 uint8_t *mem = bAlloc().Allocate<uint8_t>(sym.length());
507 memcpy(mem, sym.data().data(), sym.length());
508 builder.addGlobalSymbol(CVSymbol(ArrayRef(mem, sym.length())));
509 break;
510 }
511 case SymbolKind::S_GPROC32:
512 case SymbolKind::S_LPROC32: {
513 SymbolRecordKind k = SymbolRecordKind::ProcRefSym;
514 if (sym.kind() == SymbolKind::S_LPROC32)
515 k = SymbolRecordKind::LocalProcRef;
516 ProcRefSym ps(k);
517 ps.Module = modIndex;
518 // For some reason, MSVC seems to add one to this value.
519 ++ps.Module;
520 ps.Name = getSymbolName(sym);
521 ps.SumName = 0;
522 ps.SymOffset = symOffset;
523 builder.addGlobalSymbol(ps);
524 break;
525 }
526 default:
527 llvm_unreachable("Invalid symbol kind!");
528 }
529 }
530
531 // Check if the given symbol record was padded for alignment. If so, zero out
532 // the padding bytes and update the record prefix with the new size.
fixRecordAlignment(MutableArrayRef<uint8_t> recordBytes,size_t oldSize)533 static void fixRecordAlignment(MutableArrayRef<uint8_t> recordBytes,
534 size_t oldSize) {
535 size_t alignedSize = recordBytes.size();
536 if (oldSize == alignedSize)
537 return;
538 reinterpret_cast<RecordPrefix *>(recordBytes.data())->RecordLen =
539 alignedSize - 2;
540 memset(recordBytes.data() + oldSize, 0, alignedSize - oldSize);
541 }
542
543 // Replace any record with a skip record of the same size. This is useful when
544 // we have reserved size for a symbol record, but type index remapping fails.
replaceWithSkipRecord(MutableArrayRef<uint8_t> recordBytes)545 static void replaceWithSkipRecord(MutableArrayRef<uint8_t> recordBytes) {
546 memset(recordBytes.data(), 0, recordBytes.size());
547 auto *prefix = reinterpret_cast<RecordPrefix *>(recordBytes.data());
548 prefix->RecordKind = SymbolKind::S_SKIP;
549 prefix->RecordLen = recordBytes.size() - 2;
550 }
551
552 // Copy the symbol record, relocate it, and fix the alignment if necessary.
553 // Rewrite type indices in the record. Replace unrecognized symbol records with
554 // S_SKIP records.
writeSymbolRecord(SectionChunk * debugChunk,ArrayRef<uint8_t> sectionContents,CVSymbol sym,size_t alignedSize,uint32_t & nextRelocIndex,std::vector<uint8_t> & storage)555 void PDBLinker::writeSymbolRecord(SectionChunk *debugChunk,
556 ArrayRef<uint8_t> sectionContents,
557 CVSymbol sym, size_t alignedSize,
558 uint32_t &nextRelocIndex,
559 std::vector<uint8_t> &storage) {
560 // Allocate space for the new record at the end of the storage.
561 storage.resize(storage.size() + alignedSize);
562 auto recordBytes = MutableArrayRef<uint8_t>(storage).take_back(alignedSize);
563
564 // Copy the symbol record and relocate it.
565 debugChunk->writeAndRelocateSubsection(sectionContents, sym.data(),
566 nextRelocIndex, recordBytes.data());
567 fixRecordAlignment(recordBytes, sym.length());
568
569 // Re-map all the type index references.
570 TpiSource *source = debugChunk->file->debugTypesObj;
571 if (!source->remapTypesInSymbolRecord(recordBytes)) {
572 log("ignoring unknown symbol record with kind 0x" + utohexstr(sym.kind()));
573 replaceWithSkipRecord(recordBytes);
574 }
575
576 // An object file may have S_xxx_ID symbols, but these get converted to
577 // "real" symbols in a PDB.
578 translateIdSymbols(recordBytes, source);
579 }
580
analyzeSymbolSubsection(SectionChunk * debugChunk,uint32_t & moduleSymOffset,uint32_t & nextRelocIndex,std::vector<StringTableFixup> & stringTableFixups,BinaryStreamRef symData)581 void PDBLinker::analyzeSymbolSubsection(
582 SectionChunk *debugChunk, uint32_t &moduleSymOffset,
583 uint32_t &nextRelocIndex, std::vector<StringTableFixup> &stringTableFixups,
584 BinaryStreamRef symData) {
585 ObjFile *file = debugChunk->file;
586 uint32_t moduleSymStart = moduleSymOffset;
587
588 uint32_t scopeLevel = 0;
589 std::vector<uint8_t> storage;
590 ArrayRef<uint8_t> sectionContents = debugChunk->getContents();
591
592 ArrayRef<uint8_t> symsBuffer;
593 cantFail(symData.readBytes(0, symData.getLength(), symsBuffer));
594
595 if (symsBuffer.empty())
596 warn("empty symbols subsection in " + file->getName());
597
598 Error ec = forEachCodeViewRecord<CVSymbol>(
599 symsBuffer, [&](CVSymbol sym) -> llvm::Error {
600 // Track the current scope.
601 if (symbolOpensScope(sym.kind()))
602 ++scopeLevel;
603 else if (symbolEndsScope(sym.kind()))
604 --scopeLevel;
605
606 uint32_t alignedSize =
607 alignTo(sym.length(), alignOf(CodeViewContainer::Pdb));
608
609 // Copy global records. Some global records (mainly procedures)
610 // reference the current offset into the module stream.
611 if (symbolGoesInGlobalsStream(sym, scopeLevel)) {
612 storage.clear();
613 writeSymbolRecord(debugChunk, sectionContents, sym, alignedSize,
614 nextRelocIndex, storage);
615 addGlobalSymbol(builder.getGsiBuilder(),
616 file->moduleDBI->getModuleIndex(), moduleSymOffset,
617 storage);
618 ++globalSymbols;
619 }
620
621 // Update the module stream offset and record any string table index
622 // references. There are very few of these and they will be rewritten
623 // later during PDB writing.
624 if (symbolGoesInModuleStream(sym, scopeLevel)) {
625 recordStringTableReferences(sym, moduleSymOffset, stringTableFixups);
626 moduleSymOffset += alignedSize;
627 ++moduleSymbols;
628 }
629
630 return Error::success();
631 });
632
633 // If we encountered corrupt records, ignore the whole subsection. If we wrote
634 // any partial records, undo that. For globals, we just keep what we have and
635 // continue.
636 if (ec) {
637 warn("corrupt symbol records in " + file->getName());
638 moduleSymOffset = moduleSymStart;
639 consumeError(std::move(ec));
640 }
641 }
642
writeAllModuleSymbolRecords(ObjFile * file,BinaryStreamWriter & writer)643 Error PDBLinker::writeAllModuleSymbolRecords(ObjFile *file,
644 BinaryStreamWriter &writer) {
645 ExitOnError exitOnErr;
646 std::vector<uint8_t> storage;
647 SmallVector<uint32_t, 4> scopes;
648
649 // Visit all live .debug$S sections a second time, and write them to the PDB.
650 for (SectionChunk *debugChunk : file->getDebugChunks()) {
651 if (!debugChunk->live || debugChunk->getSize() == 0 ||
652 debugChunk->getSectionName() != ".debug$S")
653 continue;
654
655 ArrayRef<uint8_t> sectionContents = debugChunk->getContents();
656 auto contents =
657 SectionChunk::consumeDebugMagic(sectionContents, ".debug$S");
658 DebugSubsectionArray subsections;
659 BinaryStreamReader reader(contents, llvm::endianness::little);
660 exitOnErr(reader.readArray(subsections, contents.size()));
661
662 uint32_t nextRelocIndex = 0;
663 for (const DebugSubsectionRecord &ss : subsections) {
664 if (ss.kind() != DebugSubsectionKind::Symbols)
665 continue;
666
667 uint32_t moduleSymStart = writer.getOffset();
668 scopes.clear();
669 storage.clear();
670 ArrayRef<uint8_t> symsBuffer;
671 BinaryStreamRef sr = ss.getRecordData();
672 cantFail(sr.readBytes(0, sr.getLength(), symsBuffer));
673 auto ec = forEachCodeViewRecord<CVSymbol>(
674 symsBuffer, [&](CVSymbol sym) -> llvm::Error {
675 // Track the current scope. Only update records in the postmerge
676 // pass.
677 if (symbolOpensScope(sym.kind()))
678 scopeStackOpen(scopes, storage);
679 else if (symbolEndsScope(sym.kind()))
680 scopeStackClose(scopes, storage, moduleSymStart, file);
681
682 // Copy, relocate, and rewrite each module symbol.
683 if (symbolGoesInModuleStream(sym, scopes.size())) {
684 uint32_t alignedSize =
685 alignTo(sym.length(), alignOf(CodeViewContainer::Pdb));
686 writeSymbolRecord(debugChunk, sectionContents, sym, alignedSize,
687 nextRelocIndex, storage);
688 }
689 return Error::success();
690 });
691
692 // If we encounter corrupt records in the second pass, ignore them. We
693 // already warned about them in the first analysis pass.
694 if (ec) {
695 consumeError(std::move(ec));
696 storage.clear();
697 }
698
699 // Writing bytes has a very high overhead, so write the entire subsection
700 // at once.
701 // TODO: Consider buffering symbols for the entire object file to reduce
702 // overhead even further.
703 if (Error e = writer.writeBytes(storage))
704 return e;
705 }
706 }
707
708 return Error::success();
709 }
710
commitSymbolsForObject(void * ctx,void * obj,BinaryStreamWriter & writer)711 Error PDBLinker::commitSymbolsForObject(void *ctx, void *obj,
712 BinaryStreamWriter &writer) {
713 return static_cast<PDBLinker *>(ctx)->writeAllModuleSymbolRecords(
714 static_cast<ObjFile *>(obj), writer);
715 }
716
createSectionContrib(COFFLinkerContext & ctx,const Chunk * c,uint32_t modi)717 static pdb::SectionContrib createSectionContrib(COFFLinkerContext &ctx,
718 const Chunk *c, uint32_t modi) {
719 OutputSection *os = c ? ctx.getOutputSection(c) : nullptr;
720 pdb::SectionContrib sc;
721 memset(&sc, 0, sizeof(sc));
722 sc.ISect = os ? os->sectionIndex : llvm::pdb::kInvalidStreamIndex;
723 sc.Off = c && os ? c->getRVA() - os->getRVA() : 0;
724 sc.Size = c ? c->getSize() : -1;
725 if (auto *secChunk = dyn_cast_or_null<SectionChunk>(c)) {
726 sc.Characteristics = secChunk->header->Characteristics;
727 sc.Imod = secChunk->file->moduleDBI->getModuleIndex();
728 ArrayRef<uint8_t> contents = secChunk->getContents();
729 JamCRC crc(0);
730 crc.update(contents);
731 sc.DataCrc = crc.getCRC();
732 } else {
733 sc.Characteristics = os ? os->header.Characteristics : 0;
734 sc.Imod = modi;
735 }
736 sc.RelocCrc = 0; // FIXME
737
738 return sc;
739 }
740
741 static uint32_t
translateStringTableIndex(uint32_t objIndex,const DebugStringTableSubsectionRef & objStrTable,DebugStringTableSubsection & pdbStrTable)742 translateStringTableIndex(uint32_t objIndex,
743 const DebugStringTableSubsectionRef &objStrTable,
744 DebugStringTableSubsection &pdbStrTable) {
745 auto expectedString = objStrTable.getString(objIndex);
746 if (!expectedString) {
747 warn("Invalid string table reference");
748 consumeError(expectedString.takeError());
749 return 0;
750 }
751
752 return pdbStrTable.insert(*expectedString);
753 }
754
handleDebugS(SectionChunk * debugChunk)755 void DebugSHandler::handleDebugS(SectionChunk *debugChunk) {
756 // Note that we are processing the *unrelocated* section contents. They will
757 // be relocated later during PDB writing.
758 ArrayRef<uint8_t> contents = debugChunk->getContents();
759 contents = SectionChunk::consumeDebugMagic(contents, ".debug$S");
760 DebugSubsectionArray subsections;
761 BinaryStreamReader reader(contents, llvm::endianness::little);
762 ExitOnError exitOnErr;
763 exitOnErr(reader.readArray(subsections, contents.size()));
764 debugChunk->sortRelocations();
765
766 // Reset the relocation index, since this is a new section.
767 nextRelocIndex = 0;
768
769 for (const DebugSubsectionRecord &ss : subsections) {
770 // Ignore subsections with the 'ignore' bit. Some versions of the Visual C++
771 // runtime have subsections with this bit set.
772 if (uint32_t(ss.kind()) & codeview::SubsectionIgnoreFlag)
773 continue;
774
775 switch (ss.kind()) {
776 case DebugSubsectionKind::StringTable: {
777 assert(!cvStrTab.valid() &&
778 "Encountered multiple string table subsections!");
779 exitOnErr(cvStrTab.initialize(ss.getRecordData()));
780 break;
781 }
782 case DebugSubsectionKind::FileChecksums:
783 assert(!checksums.valid() &&
784 "Encountered multiple checksum subsections!");
785 exitOnErr(checksums.initialize(ss.getRecordData()));
786 break;
787 case DebugSubsectionKind::Lines:
788 case DebugSubsectionKind::InlineeLines:
789 addUnrelocatedSubsection(debugChunk, ss);
790 break;
791 case DebugSubsectionKind::FrameData:
792 addFrameDataSubsection(debugChunk, ss);
793 break;
794 case DebugSubsectionKind::Symbols:
795 linker.analyzeSymbolSubsection(debugChunk, moduleStreamSize,
796 nextRelocIndex, stringTableFixups,
797 ss.getRecordData());
798 break;
799
800 case DebugSubsectionKind::CrossScopeImports:
801 case DebugSubsectionKind::CrossScopeExports:
802 // These appear to relate to cross-module optimization, so we might use
803 // these for ThinLTO.
804 break;
805
806 case DebugSubsectionKind::ILLines:
807 case DebugSubsectionKind::FuncMDTokenMap:
808 case DebugSubsectionKind::TypeMDTokenMap:
809 case DebugSubsectionKind::MergedAssemblyInput:
810 // These appear to relate to .Net assembly info.
811 break;
812
813 case DebugSubsectionKind::CoffSymbolRVA:
814 // Unclear what this is for.
815 break;
816
817 case DebugSubsectionKind::XfgHashType:
818 case DebugSubsectionKind::XfgHashVirtual:
819 break;
820
821 default:
822 warn("ignoring unknown debug$S subsection kind 0x" +
823 utohexstr(uint32_t(ss.kind())) + " in file " + toString(&file));
824 break;
825 }
826 }
827 }
828
advanceRelocIndex(SectionChunk * sc,ArrayRef<uint8_t> subsec)829 void DebugSHandler::advanceRelocIndex(SectionChunk *sc,
830 ArrayRef<uint8_t> subsec) {
831 ptrdiff_t vaBegin = subsec.data() - sc->getContents().data();
832 assert(vaBegin > 0);
833 auto relocs = sc->getRelocs();
834 for (; nextRelocIndex < relocs.size(); ++nextRelocIndex) {
835 if (relocs[nextRelocIndex].VirtualAddress >= (uint32_t)vaBegin)
836 break;
837 }
838 }
839
840 namespace {
841 /// Wrapper class for unrelocated line and inlinee line subsections, which
842 /// require only relocation and type index remapping to add to the PDB.
843 class UnrelocatedDebugSubsection : public DebugSubsection {
844 public:
UnrelocatedDebugSubsection(DebugSubsectionKind k,SectionChunk * debugChunk,ArrayRef<uint8_t> subsec,uint32_t relocIndex)845 UnrelocatedDebugSubsection(DebugSubsectionKind k, SectionChunk *debugChunk,
846 ArrayRef<uint8_t> subsec, uint32_t relocIndex)
847 : DebugSubsection(k), debugChunk(debugChunk), subsec(subsec),
848 relocIndex(relocIndex) {}
849
850 Error commit(BinaryStreamWriter &writer) const override;
calculateSerializedSize() const851 uint32_t calculateSerializedSize() const override { return subsec.size(); }
852
853 SectionChunk *debugChunk;
854 ArrayRef<uint8_t> subsec;
855 uint32_t relocIndex;
856 };
857 } // namespace
858
commit(BinaryStreamWriter & writer) const859 Error UnrelocatedDebugSubsection::commit(BinaryStreamWriter &writer) const {
860 std::vector<uint8_t> relocatedBytes(subsec.size());
861 uint32_t tmpRelocIndex = relocIndex;
862 debugChunk->writeAndRelocateSubsection(debugChunk->getContents(), subsec,
863 tmpRelocIndex, relocatedBytes.data());
864
865 // Remap type indices in inlinee line records in place. Skip the remapping if
866 // there is no type source info.
867 if (kind() == DebugSubsectionKind::InlineeLines &&
868 debugChunk->file->debugTypesObj) {
869 TpiSource *source = debugChunk->file->debugTypesObj;
870 DebugInlineeLinesSubsectionRef inlineeLines;
871 BinaryStreamReader storageReader(relocatedBytes, llvm::endianness::little);
872 ExitOnError exitOnErr;
873 exitOnErr(inlineeLines.initialize(storageReader));
874 for (const InlineeSourceLine &line : inlineeLines) {
875 TypeIndex &inlinee = *const_cast<TypeIndex *>(&line.Header->Inlinee);
876 if (!source->remapTypeIndex(inlinee, TiRefKind::IndexRef)) {
877 log("bad inlinee line record in " + debugChunk->file->getName() +
878 " with bad inlinee index 0x" + utohexstr(inlinee.getIndex()));
879 }
880 }
881 }
882
883 return writer.writeBytes(relocatedBytes);
884 }
885
addUnrelocatedSubsection(SectionChunk * debugChunk,const DebugSubsectionRecord & ss)886 void DebugSHandler::addUnrelocatedSubsection(SectionChunk *debugChunk,
887 const DebugSubsectionRecord &ss) {
888 ArrayRef<uint8_t> subsec;
889 BinaryStreamRef sr = ss.getRecordData();
890 cantFail(sr.readBytes(0, sr.getLength(), subsec));
891 advanceRelocIndex(debugChunk, subsec);
892 file.moduleDBI->addDebugSubsection(
893 std::make_shared<UnrelocatedDebugSubsection>(ss.kind(), debugChunk,
894 subsec, nextRelocIndex));
895 }
896
addFrameDataSubsection(SectionChunk * debugChunk,const DebugSubsectionRecord & ss)897 void DebugSHandler::addFrameDataSubsection(SectionChunk *debugChunk,
898 const DebugSubsectionRecord &ss) {
899 // We need to re-write string table indices here, so save off all
900 // frame data subsections until we've processed the entire list of
901 // subsections so that we can be sure we have the string table.
902 ArrayRef<uint8_t> subsec;
903 BinaryStreamRef sr = ss.getRecordData();
904 cantFail(sr.readBytes(0, sr.getLength(), subsec));
905 advanceRelocIndex(debugChunk, subsec);
906 frameDataSubsecs.push_back({debugChunk, subsec, nextRelocIndex});
907 }
908
909 static Expected<StringRef>
getFileName(const DebugStringTableSubsectionRef & strings,const DebugChecksumsSubsectionRef & checksums,uint32_t fileID)910 getFileName(const DebugStringTableSubsectionRef &strings,
911 const DebugChecksumsSubsectionRef &checksums, uint32_t fileID) {
912 auto iter = checksums.getArray().at(fileID);
913 if (iter == checksums.getArray().end())
914 return make_error<CodeViewError>(cv_error_code::no_records);
915 uint32_t offset = iter->FileNameOffset;
916 return strings.getString(offset);
917 }
918
finish()919 void DebugSHandler::finish() {
920 pdb::DbiStreamBuilder &dbiBuilder = linker.builder.getDbiBuilder();
921
922 // If we found any symbol records for the module symbol stream, defer them.
923 if (moduleStreamSize > kSymbolStreamMagicSize)
924 file.moduleDBI->addUnmergedSymbols(&file, moduleStreamSize -
925 kSymbolStreamMagicSize);
926
927 // We should have seen all debug subsections across the entire object file now
928 // which means that if a StringTable subsection and Checksums subsection were
929 // present, now is the time to handle them.
930 if (!cvStrTab.valid()) {
931 if (checksums.valid())
932 fatal(".debug$S sections with a checksums subsection must also contain a "
933 "string table subsection");
934
935 if (!stringTableFixups.empty())
936 warn("No StringTable subsection was encountered, but there are string "
937 "table references");
938 return;
939 }
940
941 ExitOnError exitOnErr;
942
943 // Handle FPO data. Each subsection begins with a single image base
944 // relocation, which is then added to the RvaStart of each frame data record
945 // when it is added to the PDB. The string table indices for the FPO program
946 // must also be rewritten to use the PDB string table.
947 for (const UnrelocatedFpoData &subsec : frameDataSubsecs) {
948 // Relocate the first four bytes of the subection and reinterpret them as a
949 // 32 bit little-endian integer.
950 SectionChunk *debugChunk = subsec.debugChunk;
951 ArrayRef<uint8_t> subsecData = subsec.subsecData;
952 uint32_t relocIndex = subsec.relocIndex;
953 auto unrelocatedRvaStart = subsecData.take_front(sizeof(uint32_t));
954 uint8_t relocatedRvaStart[sizeof(uint32_t)];
955 debugChunk->writeAndRelocateSubsection(debugChunk->getContents(),
956 unrelocatedRvaStart, relocIndex,
957 &relocatedRvaStart[0]);
958 // Use of memcpy here avoids violating type-based aliasing rules.
959 support::ulittle32_t rvaStart;
960 memcpy(&rvaStart, &relocatedRvaStart[0], sizeof(support::ulittle32_t));
961
962 // Copy each frame data record, add in rvaStart, translate string table
963 // indices, and add the record to the PDB.
964 DebugFrameDataSubsectionRef fds;
965 BinaryStreamReader reader(subsecData, llvm::endianness::little);
966 exitOnErr(fds.initialize(reader));
967 for (codeview::FrameData fd : fds) {
968 fd.RvaStart += rvaStart;
969 fd.FrameFunc =
970 translateStringTableIndex(fd.FrameFunc, cvStrTab, linker.pdbStrTab);
971 dbiBuilder.addNewFpoData(fd);
972 }
973 }
974
975 // Translate the fixups and pass them off to the module builder so they will
976 // be applied during writing.
977 for (StringTableFixup &ref : stringTableFixups) {
978 ref.StrTabOffset =
979 translateStringTableIndex(ref.StrTabOffset, cvStrTab, linker.pdbStrTab);
980 }
981 file.moduleDBI->setStringTableFixups(std::move(stringTableFixups));
982
983 // Make a new file checksum table that refers to offsets in the PDB-wide
984 // string table. Generally the string table subsection appears after the
985 // checksum table, so we have to do this after looping over all the
986 // subsections. The new checksum table must have the exact same layout and
987 // size as the original. Otherwise, the file references in the line and
988 // inlinee line tables will be incorrect.
989 auto newChecksums = std::make_unique<DebugChecksumsSubsection>(linker.pdbStrTab);
990 for (const FileChecksumEntry &fc : checksums) {
991 SmallString<128> filename =
992 exitOnErr(cvStrTab.getString(fc.FileNameOffset));
993 linker.pdbMakeAbsolute(filename);
994 exitOnErr(dbiBuilder.addModuleSourceFile(*file.moduleDBI, filename));
995 newChecksums->addChecksum(filename, fc.Kind, fc.Checksum);
996 }
997 assert(checksums.getArray().getUnderlyingStream().getLength() ==
998 newChecksums->calculateSerializedSize() &&
999 "file checksum table must have same layout");
1000
1001 file.moduleDBI->addDebugSubsection(std::move(newChecksums));
1002 }
1003
warnUnusable(InputFile * f,Error e,bool shouldWarn)1004 static void warnUnusable(InputFile *f, Error e, bool shouldWarn) {
1005 if (!shouldWarn) {
1006 consumeError(std::move(e));
1007 return;
1008 }
1009 auto msg = "Cannot use debug info for '" + toString(f) + "' [LNK4099]";
1010 if (e)
1011 warn(msg + "\n>>> failed to load reference " + toString(std::move(e)));
1012 else
1013 warn(msg);
1014 }
1015
1016 // Allocate memory for a .debug$S / .debug$F section and relocate it.
relocateDebugChunk(SectionChunk & debugChunk)1017 static ArrayRef<uint8_t> relocateDebugChunk(SectionChunk &debugChunk) {
1018 uint8_t *buffer = bAlloc().Allocate<uint8_t>(debugChunk.getSize());
1019 assert(debugChunk.getOutputSectionIdx() == 0 &&
1020 "debug sections should not be in output sections");
1021 debugChunk.writeTo(buffer);
1022 return ArrayRef(buffer, debugChunk.getSize());
1023 }
1024
addDebugSymbols(TpiSource * source)1025 void PDBLinker::addDebugSymbols(TpiSource *source) {
1026 // If this TpiSource doesn't have an object file, it must be from a type
1027 // server PDB. Type server PDBs do not contain symbols, so stop here.
1028 if (!source->file)
1029 return;
1030
1031 llvm::TimeTraceScope timeScope("Merge symbols");
1032 ScopedTimer t(ctx.symbolMergingTimer);
1033 ExitOnError exitOnErr;
1034 pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1035 DebugSHandler dsh(*this, *source->file);
1036 // Now do all live .debug$S and .debug$F sections.
1037 for (SectionChunk *debugChunk : source->file->getDebugChunks()) {
1038 if (!debugChunk->live || debugChunk->getSize() == 0)
1039 continue;
1040
1041 bool isDebugS = debugChunk->getSectionName() == ".debug$S";
1042 bool isDebugF = debugChunk->getSectionName() == ".debug$F";
1043 if (!isDebugS && !isDebugF)
1044 continue;
1045
1046 if (isDebugS) {
1047 dsh.handleDebugS(debugChunk);
1048 } else if (isDebugF) {
1049 // Handle old FPO data .debug$F sections. These are relatively rare.
1050 ArrayRef<uint8_t> relocatedDebugContents =
1051 relocateDebugChunk(*debugChunk);
1052 FixedStreamArray<object::FpoData> fpoRecords;
1053 BinaryStreamReader reader(relocatedDebugContents,
1054 llvm::endianness::little);
1055 uint32_t count = relocatedDebugContents.size() / sizeof(object::FpoData);
1056 exitOnErr(reader.readArray(fpoRecords, count));
1057
1058 // These are already relocated and don't refer to the string table, so we
1059 // can just copy it.
1060 for (const object::FpoData &fd : fpoRecords)
1061 dbiBuilder.addOldFpoData(fd);
1062 }
1063 }
1064
1065 // Do any post-processing now that all .debug$S sections have been processed.
1066 dsh.finish();
1067 }
1068
1069 // Add a module descriptor for every object file. We need to put an absolute
1070 // path to the object into the PDB. If this is a plain object, we make its
1071 // path absolute. If it's an object in an archive, we make the archive path
1072 // absolute.
createModuleDBI(ObjFile * file)1073 void PDBLinker::createModuleDBI(ObjFile *file) {
1074 pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1075 SmallString<128> objName;
1076 ExitOnError exitOnErr;
1077
1078 bool inArchive = !file->parentName.empty();
1079 objName = inArchive ? file->parentName : file->getName();
1080 pdbMakeAbsolute(objName);
1081 StringRef modName = inArchive ? file->getName() : objName.str();
1082
1083 file->moduleDBI = &exitOnErr(dbiBuilder.addModuleInfo(modName));
1084 file->moduleDBI->setObjFileName(objName);
1085 file->moduleDBI->setMergeSymbolsCallback(this, &commitSymbolsForObject);
1086
1087 ArrayRef<Chunk *> chunks = file->getChunks();
1088 uint32_t modi = file->moduleDBI->getModuleIndex();
1089
1090 for (Chunk *c : chunks) {
1091 auto *secChunk = dyn_cast<SectionChunk>(c);
1092 if (!secChunk || !secChunk->live)
1093 continue;
1094 pdb::SectionContrib sc = createSectionContrib(ctx, secChunk, modi);
1095 file->moduleDBI->setFirstSectionContrib(sc);
1096 break;
1097 }
1098 }
1099
addDebug(TpiSource * source)1100 void PDBLinker::addDebug(TpiSource *source) {
1101 // Before we can process symbol substreams from .debug$S, we need to process
1102 // type information, file checksums, and the string table. Add type info to
1103 // the PDB first, so that we can get the map from object file type and item
1104 // indices to PDB type and item indices. If we are using ghashes, types have
1105 // already been merged.
1106 if (!ctx.config.debugGHashes) {
1107 llvm::TimeTraceScope timeScope("Merge types (Non-GHASH)");
1108 ScopedTimer t(ctx.typeMergingTimer);
1109 if (Error e = source->mergeDebugT(&tMerger)) {
1110 // If type merging failed, ignore the symbols.
1111 warnUnusable(source->file, std::move(e),
1112 ctx.config.warnDebugInfoUnusable);
1113 return;
1114 }
1115 }
1116
1117 // If type merging failed, ignore the symbols.
1118 Error typeError = std::move(source->typeMergingError);
1119 if (typeError) {
1120 warnUnusable(source->file, std::move(typeError),
1121 ctx.config.warnDebugInfoUnusable);
1122 return;
1123 }
1124
1125 addDebugSymbols(source);
1126 }
1127
createPublic(COFFLinkerContext & ctx,Defined * def)1128 static pdb::BulkPublic createPublic(COFFLinkerContext &ctx, Defined *def) {
1129 pdb::BulkPublic pub;
1130 pub.Name = def->getName().data();
1131 pub.NameLen = def->getName().size();
1132
1133 PublicSymFlags flags = PublicSymFlags::None;
1134 if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1135 if (d->getCOFFSymbol().isFunctionDefinition())
1136 flags = PublicSymFlags::Function;
1137 } else if (isa<DefinedImportThunk>(def)) {
1138 flags = PublicSymFlags::Function;
1139 }
1140 pub.setFlags(flags);
1141
1142 OutputSection *os = ctx.getOutputSection(def->getChunk());
1143 assert(os && "all publics should be in final image");
1144 pub.Offset = def->getRVA() - os->getRVA();
1145 pub.Segment = os->sectionIndex;
1146 return pub;
1147 }
1148
1149 // Add all object files to the PDB. Merge .debug$T sections into IpiData and
1150 // TpiData.
addObjectsToPDB()1151 void PDBLinker::addObjectsToPDB() {
1152 {
1153 llvm::TimeTraceScope timeScope("Add objects to PDB");
1154 ScopedTimer t1(ctx.addObjectsTimer);
1155
1156 // Create module descriptors
1157 for (ObjFile *obj : ctx.objFileInstances)
1158 createModuleDBI(obj);
1159
1160 // Reorder dependency type sources to come first.
1161 tMerger.sortDependencies();
1162
1163 // Merge type information from input files using global type hashing.
1164 if (ctx.config.debugGHashes)
1165 tMerger.mergeTypesWithGHash();
1166
1167 // Merge dependencies and then regular objects.
1168 {
1169 llvm::TimeTraceScope timeScope("Merge debug info (dependencies)");
1170 for (TpiSource *source : tMerger.dependencySources)
1171 addDebug(source);
1172 }
1173 {
1174 llvm::TimeTraceScope timeScope("Merge debug info (objects)");
1175 for (TpiSource *source : tMerger.objectSources)
1176 addDebug(source);
1177 }
1178
1179 builder.getStringTableBuilder().setStrings(pdbStrTab);
1180 }
1181
1182 // Construct TPI and IPI stream contents.
1183 {
1184 llvm::TimeTraceScope timeScope("TPI/IPI stream layout");
1185 ScopedTimer t2(ctx.tpiStreamLayoutTimer);
1186
1187 // Collect all the merged types.
1188 if (ctx.config.debugGHashes) {
1189 addGHashTypeInfo(ctx, builder);
1190 } else {
1191 addTypeInfo(builder.getTpiBuilder(), tMerger.getTypeTable());
1192 addTypeInfo(builder.getIpiBuilder(), tMerger.getIDTable());
1193 }
1194 }
1195
1196 if (ctx.config.showSummary) {
1197 for (TpiSource *source : ctx.tpiSourceList) {
1198 nbTypeRecords += source->nbTypeRecords;
1199 nbTypeRecordsBytes += source->nbTypeRecordsBytes;
1200 }
1201 }
1202 }
1203
addPublicsToPDB()1204 void PDBLinker::addPublicsToPDB() {
1205 llvm::TimeTraceScope timeScope("Publics layout");
1206 ScopedTimer t3(ctx.publicsLayoutTimer);
1207 // Compute the public symbols.
1208 auto &gsiBuilder = builder.getGsiBuilder();
1209 std::vector<pdb::BulkPublic> publics;
1210 ctx.symtab.forEachSymbol([&publics, this](Symbol *s) {
1211 // Only emit external, defined, live symbols that have a chunk. Static,
1212 // non-external symbols do not appear in the symbol table.
1213 auto *def = dyn_cast<Defined>(s);
1214 if (def && def->isLive() && def->getChunk()) {
1215 // Don't emit a public symbol for coverage data symbols. LLVM code
1216 // coverage (and PGO) create a __profd_ and __profc_ symbol for every
1217 // function. C++ mangled names are long, and tend to dominate symbol size.
1218 // Including these names triples the size of the public stream, which
1219 // results in bloated PDB files. These symbols generally are not helpful
1220 // for debugging, so suppress them.
1221 StringRef name = def->getName();
1222 if (name.data()[0] == '_' && name.data()[1] == '_') {
1223 // Drop the '_' prefix for x86.
1224 if (ctx.config.machine == I386)
1225 name = name.drop_front(1);
1226 if (name.starts_with("__profd_") || name.starts_with("__profc_") ||
1227 name.starts_with("__covrec_")) {
1228 return;
1229 }
1230 }
1231 publics.push_back(createPublic(ctx, def));
1232 }
1233 });
1234
1235 if (!publics.empty()) {
1236 publicSymbols = publics.size();
1237 gsiBuilder.addPublicSymbols(std::move(publics));
1238 }
1239 }
1240
printStats()1241 void PDBLinker::printStats() {
1242 if (!ctx.config.showSummary)
1243 return;
1244
1245 SmallString<256> buffer;
1246 raw_svector_ostream stream(buffer);
1247
1248 stream << center_justify("Summary", 80) << '\n'
1249 << std::string(80, '-') << '\n';
1250
1251 auto print = [&](uint64_t v, StringRef s) {
1252 stream << format_decimal(v, 15) << " " << s << '\n';
1253 };
1254
1255 print(ctx.objFileInstances.size(),
1256 "Input OBJ files (expanded from all cmd-line inputs)");
1257 print(ctx.typeServerSourceMappings.size(), "PDB type server dependencies");
1258 print(ctx.precompSourceMappings.size(), "Precomp OBJ dependencies");
1259 print(nbTypeRecords, "Input type records");
1260 print(nbTypeRecordsBytes, "Input type records bytes");
1261 print(builder.getTpiBuilder().getRecordCount(), "Merged TPI records");
1262 print(builder.getIpiBuilder().getRecordCount(), "Merged IPI records");
1263 print(pdbStrTab.size(), "Output PDB strings");
1264 print(globalSymbols, "Global symbol records");
1265 print(moduleSymbols, "Module symbol records");
1266 print(publicSymbols, "Public symbol records");
1267
1268 auto printLargeInputTypeRecs = [&](StringRef name,
1269 ArrayRef<uint32_t> recCounts,
1270 TypeCollection &records) {
1271 // Figure out which type indices were responsible for the most duplicate
1272 // bytes in the input files. These should be frequently emitted LF_CLASS and
1273 // LF_FIELDLIST records.
1274 struct TypeSizeInfo {
1275 uint32_t typeSize;
1276 uint32_t dupCount;
1277 TypeIndex typeIndex;
1278 uint64_t totalInputSize() const { return uint64_t(dupCount) * typeSize; }
1279 bool operator<(const TypeSizeInfo &rhs) const {
1280 if (totalInputSize() == rhs.totalInputSize())
1281 return typeIndex < rhs.typeIndex;
1282 return totalInputSize() < rhs.totalInputSize();
1283 }
1284 };
1285 SmallVector<TypeSizeInfo, 0> tsis;
1286 for (auto e : enumerate(recCounts)) {
1287 TypeIndex typeIndex = TypeIndex::fromArrayIndex(e.index());
1288 uint32_t typeSize = records.getType(typeIndex).length();
1289 uint32_t dupCount = e.value();
1290 tsis.push_back({typeSize, dupCount, typeIndex});
1291 }
1292
1293 if (!tsis.empty()) {
1294 stream << "\nTop 10 types responsible for the most " << name
1295 << " input:\n";
1296 stream << " index total bytes count size\n";
1297 llvm::sort(tsis);
1298 unsigned i = 0;
1299 for (const auto &tsi : reverse(tsis)) {
1300 stream << formatv(" {0,10:X}: {1,14:N} = {2,5:N} * {3,6:N}\n",
1301 tsi.typeIndex.getIndex(), tsi.totalInputSize(),
1302 tsi.dupCount, tsi.typeSize);
1303 if (++i >= 10)
1304 break;
1305 }
1306 stream
1307 << "Run llvm-pdbutil to print details about a particular record:\n";
1308 stream << formatv("llvm-pdbutil dump -{0}s -{0}-index {1:X} {2}\n",
1309 (name == "TPI" ? "type" : "id"),
1310 tsis.back().typeIndex.getIndex(), ctx.config.pdbPath);
1311 }
1312 };
1313
1314 if (!ctx.config.debugGHashes) {
1315 // FIXME: Reimplement for ghash.
1316 printLargeInputTypeRecs("TPI", tMerger.tpiCounts, tMerger.getTypeTable());
1317 printLargeInputTypeRecs("IPI", tMerger.ipiCounts, tMerger.getIDTable());
1318 }
1319
1320 message(buffer);
1321 }
1322
addNatvisFiles()1323 void PDBLinker::addNatvisFiles() {
1324 llvm::TimeTraceScope timeScope("Natvis files");
1325 for (StringRef file : ctx.config.natvisFiles) {
1326 ErrorOr<std::unique_ptr<MemoryBuffer>> dataOrErr =
1327 MemoryBuffer::getFile(file);
1328 if (!dataOrErr) {
1329 warn("Cannot open input file: " + file);
1330 continue;
1331 }
1332 std::unique_ptr<MemoryBuffer> data = std::move(*dataOrErr);
1333
1334 // Can't use takeBuffer() here since addInjectedSource() takes ownership.
1335 if (ctx.driver.tar)
1336 ctx.driver.tar->append(relativeToRoot(data->getBufferIdentifier()),
1337 data->getBuffer());
1338
1339 builder.addInjectedSource(file, std::move(data));
1340 }
1341 }
1342
addNamedStreams()1343 void PDBLinker::addNamedStreams() {
1344 llvm::TimeTraceScope timeScope("Named streams");
1345 ExitOnError exitOnErr;
1346 for (const auto &streamFile : ctx.config.namedStreams) {
1347 const StringRef stream = streamFile.getKey(), file = streamFile.getValue();
1348 ErrorOr<std::unique_ptr<MemoryBuffer>> dataOrErr =
1349 MemoryBuffer::getFile(file);
1350 if (!dataOrErr) {
1351 warn("Cannot open input file: " + file);
1352 continue;
1353 }
1354 std::unique_ptr<MemoryBuffer> data = std::move(*dataOrErr);
1355 exitOnErr(builder.addNamedStream(stream, data->getBuffer()));
1356 ctx.driver.takeBuffer(std::move(data));
1357 }
1358 }
1359
toCodeViewMachine(COFF::MachineTypes machine)1360 static codeview::CPUType toCodeViewMachine(COFF::MachineTypes machine) {
1361 switch (machine) {
1362 case COFF::IMAGE_FILE_MACHINE_AMD64:
1363 return codeview::CPUType::X64;
1364 case COFF::IMAGE_FILE_MACHINE_ARM:
1365 return codeview::CPUType::ARM7;
1366 case COFF::IMAGE_FILE_MACHINE_ARM64:
1367 return codeview::CPUType::ARM64;
1368 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1369 return codeview::CPUType::ARMNT;
1370 case COFF::IMAGE_FILE_MACHINE_I386:
1371 return codeview::CPUType::Intel80386;
1372 default:
1373 llvm_unreachable("Unsupported CPU Type");
1374 }
1375 }
1376
1377 // Mimic MSVC which surrounds arguments containing whitespace with quotes.
1378 // Double double-quotes are handled, so that the resulting string can be
1379 // executed again on the cmd-line.
quote(ArrayRef<StringRef> args)1380 static std::string quote(ArrayRef<StringRef> args) {
1381 std::string r;
1382 r.reserve(256);
1383 for (StringRef a : args) {
1384 if (!r.empty())
1385 r.push_back(' ');
1386 bool hasWS = a.contains(' ');
1387 bool hasQ = a.contains('"');
1388 if (hasWS || hasQ)
1389 r.push_back('"');
1390 if (hasQ) {
1391 SmallVector<StringRef, 4> s;
1392 a.split(s, '"');
1393 r.append(join(s, "\"\""));
1394 } else {
1395 r.append(std::string(a));
1396 }
1397 if (hasWS || hasQ)
1398 r.push_back('"');
1399 }
1400 return r;
1401 }
1402
fillLinkerVerRecord(Compile3Sym & cs,MachineTypes machine)1403 static void fillLinkerVerRecord(Compile3Sym &cs, MachineTypes machine) {
1404 cs.Machine = toCodeViewMachine(machine);
1405 // Interestingly, if we set the string to 0.0.0.0, then when trying to view
1406 // local variables WinDbg emits an error that private symbols are not present.
1407 // By setting this to a valid MSVC linker version string, local variables are
1408 // displayed properly. As such, even though it is not representative of
1409 // LLVM's version information, we need this for compatibility.
1410 cs.Flags = CompileSym3Flags::None;
1411 cs.VersionBackendBuild = 25019;
1412 cs.VersionBackendMajor = 14;
1413 cs.VersionBackendMinor = 10;
1414 cs.VersionBackendQFE = 0;
1415
1416 // MSVC also sets the frontend to 0.0.0.0 since this is specifically for the
1417 // linker module (which is by definition a backend), so we don't need to do
1418 // anything here. Also, it seems we can use "LLVM Linker" for the linker name
1419 // without any problems. Only the backend version has to be hardcoded to a
1420 // magic number.
1421 cs.VersionFrontendBuild = 0;
1422 cs.VersionFrontendMajor = 0;
1423 cs.VersionFrontendMinor = 0;
1424 cs.VersionFrontendQFE = 0;
1425 cs.Version = "LLVM Linker";
1426 cs.setLanguage(SourceLanguage::Link);
1427 }
1428
addCommonLinkerModuleSymbols(StringRef path,pdb::DbiModuleDescriptorBuilder & mod)1429 void PDBLinker::addCommonLinkerModuleSymbols(
1430 StringRef path, pdb::DbiModuleDescriptorBuilder &mod) {
1431 ObjNameSym ons(SymbolRecordKind::ObjNameSym);
1432 EnvBlockSym ebs(SymbolRecordKind::EnvBlockSym);
1433 Compile3Sym cs(SymbolRecordKind::Compile3Sym);
1434 fillLinkerVerRecord(cs, ctx.config.machine);
1435
1436 ons.Name = "* Linker *";
1437 ons.Signature = 0;
1438
1439 ArrayRef<StringRef> args = ArrayRef(ctx.config.argv).drop_front();
1440 std::string argStr = quote(args);
1441 ebs.Fields.push_back("cwd");
1442 SmallString<64> cwd;
1443 if (ctx.config.pdbSourcePath.empty())
1444 sys::fs::current_path(cwd);
1445 else
1446 cwd = ctx.config.pdbSourcePath;
1447 ebs.Fields.push_back(cwd);
1448 ebs.Fields.push_back("exe");
1449 SmallString<64> exe = ctx.config.argv[0];
1450 pdbMakeAbsolute(exe);
1451 ebs.Fields.push_back(exe);
1452 ebs.Fields.push_back("pdb");
1453 ebs.Fields.push_back(path);
1454 ebs.Fields.push_back("cmd");
1455 ebs.Fields.push_back(argStr);
1456 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
1457 mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1458 ons, bAlloc, CodeViewContainer::Pdb));
1459 mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1460 cs, bAlloc, CodeViewContainer::Pdb));
1461 mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1462 ebs, bAlloc, CodeViewContainer::Pdb));
1463 }
1464
addLinkerModuleCoffGroup(PartialSection * sec,pdb::DbiModuleDescriptorBuilder & mod,OutputSection & os)1465 static void addLinkerModuleCoffGroup(PartialSection *sec,
1466 pdb::DbiModuleDescriptorBuilder &mod,
1467 OutputSection &os) {
1468 // If there's a section, there's at least one chunk
1469 assert(!sec->chunks.empty());
1470 const Chunk *firstChunk = *sec->chunks.begin();
1471 const Chunk *lastChunk = *sec->chunks.rbegin();
1472
1473 // Emit COFF group
1474 CoffGroupSym cgs(SymbolRecordKind::CoffGroupSym);
1475 cgs.Name = sec->name;
1476 cgs.Segment = os.sectionIndex;
1477 cgs.Offset = firstChunk->getRVA() - os.getRVA();
1478 cgs.Size = lastChunk->getRVA() + lastChunk->getSize() - firstChunk->getRVA();
1479 cgs.Characteristics = sec->characteristics;
1480
1481 // Somehow .idata sections & sections groups in the debug symbol stream have
1482 // the "write" flag set. However the section header for the corresponding
1483 // .idata section doesn't have it.
1484 if (cgs.Name.starts_with(".idata"))
1485 cgs.Characteristics |= llvm::COFF::IMAGE_SCN_MEM_WRITE;
1486
1487 mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1488 cgs, bAlloc(), CodeViewContainer::Pdb));
1489 }
1490
addLinkerModuleSectionSymbol(pdb::DbiModuleDescriptorBuilder & mod,OutputSection & os,bool isMinGW)1491 static void addLinkerModuleSectionSymbol(pdb::DbiModuleDescriptorBuilder &mod,
1492 OutputSection &os, bool isMinGW) {
1493 SectionSym sym(SymbolRecordKind::SectionSym);
1494 sym.Alignment = 12; // 2^12 = 4KB
1495 sym.Characteristics = os.header.Characteristics;
1496 sym.Length = os.getVirtualSize();
1497 sym.Name = os.name;
1498 sym.Rva = os.getRVA();
1499 sym.SectionNumber = os.sectionIndex;
1500 mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1501 sym, bAlloc(), CodeViewContainer::Pdb));
1502
1503 // Skip COFF groups in MinGW because it adds a significant footprint to the
1504 // PDB, due to each function being in its own section
1505 if (isMinGW)
1506 return;
1507
1508 // Output COFF groups for individual chunks of this section.
1509 for (PartialSection *sec : os.contribSections) {
1510 addLinkerModuleCoffGroup(sec, mod, os);
1511 }
1512 }
1513
1514 // Add all import files as modules to the PDB.
addImportFilesToPDB()1515 void PDBLinker::addImportFilesToPDB() {
1516 if (ctx.importFileInstances.empty())
1517 return;
1518
1519 llvm::TimeTraceScope timeScope("Import files");
1520 ExitOnError exitOnErr;
1521 std::map<std::string, llvm::pdb::DbiModuleDescriptorBuilder *> dllToModuleDbi;
1522
1523 for (ImportFile *file : ctx.importFileInstances) {
1524 if (!file->live)
1525 continue;
1526
1527 if (!file->thunkSym)
1528 continue;
1529
1530 if (!file->thunkLive)
1531 continue;
1532
1533 std::string dll = StringRef(file->dllName).lower();
1534 llvm::pdb::DbiModuleDescriptorBuilder *&mod = dllToModuleDbi[dll];
1535 if (!mod) {
1536 pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1537 SmallString<128> libPath = file->parentName;
1538 pdbMakeAbsolute(libPath);
1539 sys::path::native(libPath);
1540
1541 // Name modules similar to MSVC's link.exe.
1542 // The first module is the simple dll filename
1543 llvm::pdb::DbiModuleDescriptorBuilder &firstMod =
1544 exitOnErr(dbiBuilder.addModuleInfo(file->dllName));
1545 firstMod.setObjFileName(libPath);
1546 pdb::SectionContrib sc =
1547 createSectionContrib(ctx, nullptr, llvm::pdb::kInvalidStreamIndex);
1548 firstMod.setFirstSectionContrib(sc);
1549
1550 // The second module is where the import stream goes.
1551 mod = &exitOnErr(dbiBuilder.addModuleInfo("Import:" + file->dllName));
1552 mod->setObjFileName(libPath);
1553 }
1554
1555 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1556 Chunk *thunkChunk = thunk->getChunk();
1557 OutputSection *thunkOS = ctx.getOutputSection(thunkChunk);
1558
1559 ObjNameSym ons(SymbolRecordKind::ObjNameSym);
1560 Compile3Sym cs(SymbolRecordKind::Compile3Sym);
1561 Thunk32Sym ts(SymbolRecordKind::Thunk32Sym);
1562 ScopeEndSym es(SymbolRecordKind::ScopeEndSym);
1563
1564 ons.Name = file->dllName;
1565 ons.Signature = 0;
1566
1567 fillLinkerVerRecord(cs, ctx.config.machine);
1568
1569 ts.Name = thunk->getName();
1570 ts.Parent = 0;
1571 ts.End = 0;
1572 ts.Next = 0;
1573 ts.Thunk = ThunkOrdinal::Standard;
1574 ts.Length = thunkChunk->getSize();
1575 ts.Segment = thunkOS->sectionIndex;
1576 ts.Offset = thunkChunk->getRVA() - thunkOS->getRVA();
1577
1578 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
1579 mod->addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1580 ons, bAlloc, CodeViewContainer::Pdb));
1581 mod->addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1582 cs, bAlloc, CodeViewContainer::Pdb));
1583
1584 CVSymbol newSym = codeview::SymbolSerializer::writeOneSymbol(
1585 ts, bAlloc, CodeViewContainer::Pdb);
1586
1587 // Write ptrEnd for the S_THUNK32.
1588 ScopeRecord *thunkSymScope =
1589 getSymbolScopeFields(const_cast<uint8_t *>(newSym.data().data()));
1590
1591 mod->addSymbol(newSym);
1592
1593 newSym = codeview::SymbolSerializer::writeOneSymbol(es, bAlloc,
1594 CodeViewContainer::Pdb);
1595 thunkSymScope->ptrEnd = mod->getNextSymbolOffset();
1596
1597 mod->addSymbol(newSym);
1598
1599 pdb::SectionContrib sc =
1600 createSectionContrib(ctx, thunk->getChunk(), mod->getModuleIndex());
1601 mod->setFirstSectionContrib(sc);
1602 }
1603 }
1604
1605 // Creates a PDB file.
createPDB(COFFLinkerContext & ctx,ArrayRef<uint8_t> sectionTable,llvm::codeview::DebugInfo * buildId)1606 void lld::coff::createPDB(COFFLinkerContext &ctx,
1607 ArrayRef<uint8_t> sectionTable,
1608 llvm::codeview::DebugInfo *buildId) {
1609 llvm::TimeTraceScope timeScope("PDB file");
1610 ScopedTimer t1(ctx.totalPdbLinkTimer);
1611 {
1612 PDBLinker pdb(ctx);
1613
1614 pdb.initialize(buildId);
1615 pdb.addObjectsToPDB();
1616 pdb.addImportFilesToPDB();
1617 pdb.addSections(sectionTable);
1618 pdb.addNatvisFiles();
1619 pdb.addNamedStreams();
1620 pdb.addPublicsToPDB();
1621
1622 {
1623 llvm::TimeTraceScope timeScope("Commit PDB file to disk");
1624 ScopedTimer t2(ctx.diskCommitTimer);
1625 codeview::GUID guid;
1626 pdb.commit(&guid);
1627 memcpy(&buildId->PDB70.Signature, &guid, 16);
1628 }
1629
1630 t1.stop();
1631 pdb.printStats();
1632
1633 // Manually start this profile point to measure ~PDBLinker().
1634 if (getTimeTraceProfilerInstance() != nullptr)
1635 timeTraceProfilerBegin("PDBLinker destructor", StringRef(""));
1636 }
1637 // Manually end this profile point to measure ~PDBLinker().
1638 if (getTimeTraceProfilerInstance() != nullptr)
1639 timeTraceProfilerEnd();
1640 }
1641
initialize(llvm::codeview::DebugInfo * buildId)1642 void PDBLinker::initialize(llvm::codeview::DebugInfo *buildId) {
1643 ExitOnError exitOnErr;
1644 exitOnErr(builder.initialize(ctx.config.pdbPageSize));
1645
1646 buildId->Signature.CVSignature = OMF::Signature::PDB70;
1647 // Signature is set to a hash of the PDB contents when the PDB is done.
1648 memset(buildId->PDB70.Signature, 0, 16);
1649 buildId->PDB70.Age = 1;
1650
1651 // Create streams in MSF for predefined streams, namely
1652 // PDB, TPI, DBI and IPI.
1653 for (int i = 0; i < (int)pdb::kSpecialStreamCount; ++i)
1654 exitOnErr(builder.getMsfBuilder().addStream(0));
1655
1656 // Add an Info stream.
1657 auto &infoBuilder = builder.getInfoBuilder();
1658 infoBuilder.setVersion(pdb::PdbRaw_ImplVer::PdbImplVC70);
1659 infoBuilder.setHashPDBContentsToGUID(true);
1660
1661 // Add an empty DBI stream.
1662 pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1663 dbiBuilder.setAge(buildId->PDB70.Age);
1664 dbiBuilder.setVersionHeader(pdb::PdbDbiV70);
1665 dbiBuilder.setMachineType(ctx.config.machine);
1666 // Technically we are not link.exe 14.11, but there are known cases where
1667 // debugging tools on Windows expect Microsoft-specific version numbers or
1668 // they fail to work at all. Since we know we produce PDBs that are
1669 // compatible with LINK 14.11, we set that version number here.
1670 dbiBuilder.setBuildNumber(14, 11);
1671 }
1672
addSections(ArrayRef<uint8_t> sectionTable)1673 void PDBLinker::addSections(ArrayRef<uint8_t> sectionTable) {
1674 llvm::TimeTraceScope timeScope("PDB output sections");
1675 ExitOnError exitOnErr;
1676 // It's not entirely clear what this is, but the * Linker * module uses it.
1677 pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1678 nativePath = ctx.config.pdbPath;
1679 pdbMakeAbsolute(nativePath);
1680 uint32_t pdbFilePathNI = dbiBuilder.addECName(nativePath);
1681 auto &linkerModule = exitOnErr(dbiBuilder.addModuleInfo("* Linker *"));
1682 linkerModule.setPdbFilePathNI(pdbFilePathNI);
1683 addCommonLinkerModuleSymbols(nativePath, linkerModule);
1684
1685 // Add section contributions. They must be ordered by ascending RVA.
1686 for (OutputSection *os : ctx.outputSections) {
1687 addLinkerModuleSectionSymbol(linkerModule, *os, ctx.config.mingw);
1688 for (Chunk *c : os->chunks) {
1689 pdb::SectionContrib sc =
1690 createSectionContrib(ctx, c, linkerModule.getModuleIndex());
1691 builder.getDbiBuilder().addSectionContrib(sc);
1692 }
1693 }
1694
1695 // The * Linker * first section contrib is only used along with /INCREMENTAL,
1696 // to provide trampolines thunks for incremental function patching. Set this
1697 // as "unused" because LLD doesn't support /INCREMENTAL link.
1698 pdb::SectionContrib sc =
1699 createSectionContrib(ctx, nullptr, llvm::pdb::kInvalidStreamIndex);
1700 linkerModule.setFirstSectionContrib(sc);
1701
1702 // Add Section Map stream.
1703 ArrayRef<object::coff_section> sections = {
1704 (const object::coff_section *)sectionTable.data(),
1705 sectionTable.size() / sizeof(object::coff_section)};
1706 dbiBuilder.createSectionMap(sections);
1707
1708 // Add COFF section header stream.
1709 exitOnErr(
1710 dbiBuilder.addDbgStream(pdb::DbgHeaderType::SectionHdr, sectionTable));
1711 }
1712
commit(codeview::GUID * guid)1713 void PDBLinker::commit(codeview::GUID *guid) {
1714 // Print an error and continue if PDB writing fails. This is done mainly so
1715 // the user can see the output of /time and /summary, which is very helpful
1716 // when trying to figure out why a PDB file is too large.
1717 if (Error e = builder.commit(ctx.config.pdbPath, guid)) {
1718 e = handleErrors(std::move(e),
1719 [](const llvm::msf::MSFError &me) {
1720 error(me.message());
1721 if (me.isPageOverflow())
1722 error("try setting a larger /pdbpagesize");
1723 });
1724 checkError(std::move(e));
1725 error("failed to write PDB file " + Twine(ctx.config.pdbPath));
1726 }
1727 }
1728
getSecrelReloc(Triple::ArchType arch)1729 static uint32_t getSecrelReloc(Triple::ArchType arch) {
1730 switch (arch) {
1731 case Triple::x86_64:
1732 return COFF::IMAGE_REL_AMD64_SECREL;
1733 case Triple::x86:
1734 return COFF::IMAGE_REL_I386_SECREL;
1735 case Triple::thumb:
1736 return COFF::IMAGE_REL_ARM_SECREL;
1737 case Triple::aarch64:
1738 return COFF::IMAGE_REL_ARM64_SECREL;
1739 default:
1740 llvm_unreachable("unknown machine type");
1741 }
1742 }
1743
1744 // Try to find a line table for the given offset Addr into the given chunk C.
1745 // If a line table was found, the line table, the string and checksum tables
1746 // that are used to interpret the line table, and the offset of Addr in the line
1747 // table are stored in the output arguments. Returns whether a line table was
1748 // found.
findLineTable(const SectionChunk * c,uint32_t addr,DebugStringTableSubsectionRef & cvStrTab,DebugChecksumsSubsectionRef & checksums,DebugLinesSubsectionRef & lines,uint32_t & offsetInLinetable)1749 static bool findLineTable(const SectionChunk *c, uint32_t addr,
1750 DebugStringTableSubsectionRef &cvStrTab,
1751 DebugChecksumsSubsectionRef &checksums,
1752 DebugLinesSubsectionRef &lines,
1753 uint32_t &offsetInLinetable) {
1754 ExitOnError exitOnErr;
1755 const uint32_t secrelReloc = getSecrelReloc(c->getArch());
1756
1757 for (SectionChunk *dbgC : c->file->getDebugChunks()) {
1758 if (dbgC->getSectionName() != ".debug$S")
1759 continue;
1760
1761 // Build a mapping of SECREL relocations in dbgC that refer to `c`.
1762 DenseMap<uint32_t, uint32_t> secrels;
1763 for (const coff_relocation &r : dbgC->getRelocs()) {
1764 if (r.Type != secrelReloc)
1765 continue;
1766
1767 if (auto *s = dyn_cast_or_null<DefinedRegular>(
1768 c->file->getSymbols()[r.SymbolTableIndex]))
1769 if (s->getChunk() == c)
1770 secrels[r.VirtualAddress] = s->getValue();
1771 }
1772
1773 ArrayRef<uint8_t> contents =
1774 SectionChunk::consumeDebugMagic(dbgC->getContents(), ".debug$S");
1775 DebugSubsectionArray subsections;
1776 BinaryStreamReader reader(contents, llvm::endianness::little);
1777 exitOnErr(reader.readArray(subsections, contents.size()));
1778
1779 for (const DebugSubsectionRecord &ss : subsections) {
1780 switch (ss.kind()) {
1781 case DebugSubsectionKind::StringTable: {
1782 assert(!cvStrTab.valid() &&
1783 "Encountered multiple string table subsections!");
1784 exitOnErr(cvStrTab.initialize(ss.getRecordData()));
1785 break;
1786 }
1787 case DebugSubsectionKind::FileChecksums:
1788 assert(!checksums.valid() &&
1789 "Encountered multiple checksum subsections!");
1790 exitOnErr(checksums.initialize(ss.getRecordData()));
1791 break;
1792 case DebugSubsectionKind::Lines: {
1793 ArrayRef<uint8_t> bytes;
1794 auto ref = ss.getRecordData();
1795 exitOnErr(ref.readLongestContiguousChunk(0, bytes));
1796 size_t offsetInDbgC = bytes.data() - dbgC->getContents().data();
1797
1798 // Check whether this line table refers to C.
1799 auto i = secrels.find(offsetInDbgC);
1800 if (i == secrels.end())
1801 break;
1802
1803 // Check whether this line table covers Addr in C.
1804 DebugLinesSubsectionRef linesTmp;
1805 exitOnErr(linesTmp.initialize(BinaryStreamReader(ref)));
1806 uint32_t offsetInC = i->second + linesTmp.header()->RelocOffset;
1807 if (addr < offsetInC || addr >= offsetInC + linesTmp.header()->CodeSize)
1808 break;
1809
1810 assert(!lines.header() &&
1811 "Encountered multiple line tables for function!");
1812 exitOnErr(lines.initialize(BinaryStreamReader(ref)));
1813 offsetInLinetable = addr - offsetInC;
1814 break;
1815 }
1816 default:
1817 break;
1818 }
1819
1820 if (cvStrTab.valid() && checksums.valid() && lines.header())
1821 return true;
1822 }
1823 }
1824
1825 return false;
1826 }
1827
1828 // Use CodeView line tables to resolve a file and line number for the given
1829 // offset into the given chunk and return them, or std::nullopt if a line table
1830 // was not found.
1831 std::optional<std::pair<StringRef, uint32_t>>
getFileLineCodeView(const SectionChunk * c,uint32_t addr)1832 lld::coff::getFileLineCodeView(const SectionChunk *c, uint32_t addr) {
1833 ExitOnError exitOnErr;
1834
1835 DebugStringTableSubsectionRef cvStrTab;
1836 DebugChecksumsSubsectionRef checksums;
1837 DebugLinesSubsectionRef lines;
1838 uint32_t offsetInLinetable;
1839
1840 if (!findLineTable(c, addr, cvStrTab, checksums, lines, offsetInLinetable))
1841 return std::nullopt;
1842
1843 std::optional<uint32_t> nameIndex;
1844 std::optional<uint32_t> lineNumber;
1845 for (const LineColumnEntry &entry : lines) {
1846 for (const LineNumberEntry &ln : entry.LineNumbers) {
1847 LineInfo li(ln.Flags);
1848 if (ln.Offset > offsetInLinetable) {
1849 if (!nameIndex) {
1850 nameIndex = entry.NameIndex;
1851 lineNumber = li.getStartLine();
1852 }
1853 StringRef filename =
1854 exitOnErr(getFileName(cvStrTab, checksums, *nameIndex));
1855 return std::make_pair(filename, *lineNumber);
1856 }
1857 nameIndex = entry.NameIndex;
1858 lineNumber = li.getStartLine();
1859 }
1860 }
1861 if (!nameIndex)
1862 return std::nullopt;
1863 StringRef filename = exitOnErr(getFileName(cvStrTab, checksums, *nameIndex));
1864 return std::make_pair(filename, *lineNumber);
1865 }
1866