xref: /freebsd/contrib/llvm-project/compiler-rt/lib/xray/xray_fdr_logging.cpp (revision b0d29bc47dba79f6f38e67eabadfb4b32ffd9390)
1 //===-- xray_fdr_logging.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of XRay, a dynamic runtime instrumentation system.
10 //
11 // Here we implement the Flight Data Recorder mode for XRay, where we use
12 // compact structures to store records in memory as well as when writing out the
13 // data to files.
14 //
15 //===----------------------------------------------------------------------===//
16 #include "xray_fdr_logging.h"
17 #include <cassert>
18 #include <errno.h>
19 #include <limits>
20 #include <memory>
21 #include <pthread.h>
22 #include <sys/time.h>
23 #include <time.h>
24 #include <unistd.h>
25 
26 #include "sanitizer_common/sanitizer_allocator_internal.h"
27 #include "sanitizer_common/sanitizer_atomic.h"
28 #include "sanitizer_common/sanitizer_common.h"
29 #include "xray/xray_interface.h"
30 #include "xray/xray_records.h"
31 #include "xray_allocator.h"
32 #include "xray_buffer_queue.h"
33 #include "xray_defs.h"
34 #include "xray_fdr_controller.h"
35 #include "xray_fdr_flags.h"
36 #include "xray_fdr_log_writer.h"
37 #include "xray_flags.h"
38 #include "xray_recursion_guard.h"
39 #include "xray_tsc.h"
40 #include "xray_utils.h"
41 
42 namespace __xray {
43 
44 static atomic_sint32_t LoggingStatus = {
45     XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
46 
47 namespace {
48 
49 // Group together thread-local-data in a struct, then hide it behind a function
50 // call so that it can be initialized on first use instead of as a global. We
51 // force the alignment to 64-bytes for x86 cache line alignment, as this
52 // structure is used in the hot path of implementation.
53 struct XRAY_TLS_ALIGNAS(64) ThreadLocalData {
54   BufferQueue::Buffer Buffer{};
55   BufferQueue *BQ = nullptr;
56 
57   using LogWriterStorage =
58       typename std::aligned_storage<sizeof(FDRLogWriter),
59                                     alignof(FDRLogWriter)>::type;
60 
61   LogWriterStorage LWStorage;
62   FDRLogWriter *Writer = nullptr;
63 
64   using ControllerStorage =
65       typename std::aligned_storage<sizeof(FDRController<>),
66                                     alignof(FDRController<>)>::type;
67   ControllerStorage CStorage;
68   FDRController<> *Controller = nullptr;
69 };
70 
71 } // namespace
72 
73 static_assert(std::is_trivially_destructible<ThreadLocalData>::value,
74               "ThreadLocalData must be trivially destructible");
75 
76 // Use a global pthread key to identify thread-local data for logging.
77 static pthread_key_t Key;
78 
79 // Global BufferQueue.
80 static std::aligned_storage<sizeof(BufferQueue)>::type BufferQueueStorage;
81 static BufferQueue *BQ = nullptr;
82 
83 // Global thresholds for function durations.
84 static atomic_uint64_t ThresholdTicks{0};
85 
86 // Global for ticks per second.
87 static atomic_uint64_t TicksPerSec{0};
88 
89 static atomic_sint32_t LogFlushStatus = {
90     XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
91 
92 // This function will initialize the thread-local data structure used by the FDR
93 // logging implementation and return a reference to it. The implementation
94 // details require a bit of care to maintain.
95 //
96 // First, some requirements on the implementation in general:
97 //
98 //   - XRay handlers should not call any memory allocation routines that may
99 //     delegate to an instrumented implementation. This means functions like
100 //     malloc() and free() should not be called while instrumenting.
101 //
102 //   - We would like to use some thread-local data initialized on first-use of
103 //     the XRay instrumentation. These allow us to implement unsynchronized
104 //     routines that access resources associated with the thread.
105 //
106 // The implementation here uses a few mechanisms that allow us to provide both
107 // the requirements listed above. We do this by:
108 //
109 //   1. Using a thread-local aligned storage buffer for representing the
110 //      ThreadLocalData struct. This data will be uninitialized memory by
111 //      design.
112 //
113 //   2. Not requiring a thread exit handler/implementation, keeping the
114 //      thread-local as purely a collection of references/data that do not
115 //      require cleanup.
116 //
117 // We're doing this to avoid using a `thread_local` object that has a
118 // non-trivial destructor, because the C++ runtime might call std::malloc(...)
119 // to register calls to destructors. Deadlocks may arise when, for example, an
120 // externally provided malloc implementation is XRay instrumented, and
121 // initializing the thread-locals involves calling into malloc. A malloc
122 // implementation that does global synchronization might be holding a lock for a
123 // critical section, calling a function that might be XRay instrumented (and
124 // thus in turn calling into malloc by virtue of registration of the
125 // thread_local's destructor).
126 #if XRAY_HAS_TLS_ALIGNAS
127 static_assert(alignof(ThreadLocalData) >= 64,
128               "ThreadLocalData must be cache line aligned.");
129 #endif
130 static ThreadLocalData &getThreadLocalData() {
131   thread_local typename std::aligned_storage<
132       sizeof(ThreadLocalData), alignof(ThreadLocalData)>::type TLDStorage{};
133 
134   if (pthread_getspecific(Key) == NULL) {
135     new (reinterpret_cast<ThreadLocalData *>(&TLDStorage)) ThreadLocalData{};
136     pthread_setspecific(Key, &TLDStorage);
137   }
138 
139   return *reinterpret_cast<ThreadLocalData *>(&TLDStorage);
140 }
141 
142 static XRayFileHeader &fdrCommonHeaderInfo() {
143   static std::aligned_storage<sizeof(XRayFileHeader)>::type HStorage;
144   static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
145   static bool TSCSupported = true;
146   static uint64_t CycleFrequency = NanosecondsPerSecond;
147   pthread_once(
148       &OnceInit, +[] {
149         XRayFileHeader &H = reinterpret_cast<XRayFileHeader &>(HStorage);
150         // Version 2 of the log writes the extents of the buffer, instead of
151         // relying on an end-of-buffer record.
152         // Version 3 includes PID metadata record.
153         // Version 4 includes CPU data in the custom event records.
154         // Version 5 uses relative deltas for custom and typed event records,
155         // and removes the CPU data in custom event records (similar to how
156         // function records use deltas instead of full TSCs and rely on other
157         // metadata records for TSC wraparound and CPU migration).
158         H.Version = 5;
159         H.Type = FileTypes::FDR_LOG;
160 
161         // Test for required CPU features and cache the cycle frequency
162         TSCSupported = probeRequiredCPUFeatures();
163         if (TSCSupported)
164           CycleFrequency = getTSCFrequency();
165         H.CycleFrequency = CycleFrequency;
166 
167         // FIXME: Actually check whether we have 'constant_tsc' and
168         // 'nonstop_tsc' before setting the values in the header.
169         H.ConstantTSC = 1;
170         H.NonstopTSC = 1;
171       });
172   return reinterpret_cast<XRayFileHeader &>(HStorage);
173 }
174 
175 // This is the iterator implementation, which knows how to handle FDR-mode
176 // specific buffers. This is used as an implementation of the iterator function
177 // needed by __xray_set_buffer_iterator(...). It maintains a global state of the
178 // buffer iteration for the currently installed FDR mode buffers. In particular:
179 //
180 //   - If the argument represents the initial state of XRayBuffer ({nullptr, 0})
181 //     then the iterator returns the header information.
182 //   - If the argument represents the header information ({address of header
183 //     info, size of the header info}) then it returns the first FDR buffer's
184 //     address and extents.
185 //   - It will keep returning the next buffer and extents as there are more
186 //     buffers to process. When the input represents the last buffer, it will
187 //     return the initial state to signal completion ({nullptr, 0}).
188 //
189 // See xray/xray_log_interface.h for more details on the requirements for the
190 // implementations of __xray_set_buffer_iterator(...) and
191 // __xray_log_process_buffers(...).
192 XRayBuffer fdrIterator(const XRayBuffer B) {
193   DCHECK(internal_strcmp(__xray_log_get_current_mode(), "xray-fdr") == 0);
194   DCHECK(BQ->finalizing());
195 
196   if (BQ == nullptr || !BQ->finalizing()) {
197     if (Verbosity())
198       Report(
199           "XRay FDR: Failed global buffer queue is null or not finalizing!\n");
200     return {nullptr, 0};
201   }
202 
203   // We use a global scratch-pad for the header information, which only gets
204   // initialized the first time this function is called. We'll update one part
205   // of this information with some relevant data (in particular the number of
206   // buffers to expect).
207   static std::aligned_storage<sizeof(XRayFileHeader)>::type HeaderStorage;
208   static pthread_once_t HeaderOnce = PTHREAD_ONCE_INIT;
209   pthread_once(
210       &HeaderOnce, +[] {
211         reinterpret_cast<XRayFileHeader &>(HeaderStorage) =
212             fdrCommonHeaderInfo();
213       });
214 
215   // We use a convenience alias for code referring to Header from here on out.
216   auto &Header = reinterpret_cast<XRayFileHeader &>(HeaderStorage);
217   if (B.Data == nullptr && B.Size == 0) {
218     Header.FdrData = FdrAdditionalHeaderData{BQ->ConfiguredBufferSize()};
219     return XRayBuffer{static_cast<void *>(&Header), sizeof(Header)};
220   }
221 
222   static BufferQueue::const_iterator It{};
223   static BufferQueue::const_iterator End{};
224   static uint8_t *CurrentBuffer{nullptr};
225   static size_t SerializedBufferSize = 0;
226   if (B.Data == static_cast<void *>(&Header) && B.Size == sizeof(Header)) {
227     // From this point on, we provide raw access to the raw buffer we're getting
228     // from the BufferQueue. We're relying on the iterators from the current
229     // Buffer queue.
230     It = BQ->cbegin();
231     End = BQ->cend();
232   }
233 
234   if (CurrentBuffer != nullptr) {
235     deallocateBuffer(CurrentBuffer, SerializedBufferSize);
236     CurrentBuffer = nullptr;
237   }
238 
239   if (It == End)
240     return {nullptr, 0};
241 
242   // Set up the current buffer to contain the extents like we would when writing
243   // out to disk. The difference here would be that we still write "empty"
244   // buffers, or at least go through the iterators faithfully to let the
245   // handlers see the empty buffers in the queue.
246   //
247   // We need this atomic fence here to ensure that writes happening to the
248   // buffer have been committed before we load the extents atomically. Because
249   // the buffer is not explicitly synchronised across threads, we rely on the
250   // fence ordering to ensure that writes we expect to have been completed
251   // before the fence are fully committed before we read the extents.
252   atomic_thread_fence(memory_order_acquire);
253   auto BufferSize = atomic_load(It->Extents, memory_order_acquire);
254   SerializedBufferSize = BufferSize + sizeof(MetadataRecord);
255   CurrentBuffer = allocateBuffer(SerializedBufferSize);
256   if (CurrentBuffer == nullptr)
257     return {nullptr, 0};
258 
259   // Write out the extents as a Metadata Record into the CurrentBuffer.
260   MetadataRecord ExtentsRecord;
261   ExtentsRecord.Type = uint8_t(RecordType::Metadata);
262   ExtentsRecord.RecordKind =
263       uint8_t(MetadataRecord::RecordKinds::BufferExtents);
264   internal_memcpy(ExtentsRecord.Data, &BufferSize, sizeof(BufferSize));
265   auto AfterExtents =
266       static_cast<char *>(internal_memcpy(CurrentBuffer, &ExtentsRecord,
267                                           sizeof(MetadataRecord))) +
268       sizeof(MetadataRecord);
269   internal_memcpy(AfterExtents, It->Data, BufferSize);
270 
271   XRayBuffer Result;
272   Result.Data = CurrentBuffer;
273   Result.Size = SerializedBufferSize;
274   ++It;
275   return Result;
276 }
277 
278 // Must finalize before flushing.
279 XRayLogFlushStatus fdrLoggingFlush() XRAY_NEVER_INSTRUMENT {
280   if (atomic_load(&LoggingStatus, memory_order_acquire) !=
281       XRayLogInitStatus::XRAY_LOG_FINALIZED) {
282     if (Verbosity())
283       Report("Not flushing log, implementation is not finalized.\n");
284     return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
285   }
286 
287   s32 Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
288   if (!atomic_compare_exchange_strong(&LogFlushStatus, &Result,
289                                       XRayLogFlushStatus::XRAY_LOG_FLUSHING,
290                                       memory_order_release)) {
291     if (Verbosity())
292       Report("Not flushing log, implementation is still finalizing.\n");
293     return static_cast<XRayLogFlushStatus>(Result);
294   }
295 
296   if (BQ == nullptr) {
297     if (Verbosity())
298       Report("Cannot flush when global buffer queue is null.\n");
299     return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
300   }
301 
302   // We wait a number of milliseconds to allow threads to see that we've
303   // finalised before attempting to flush the log.
304   SleepForMillis(fdrFlags()->grace_period_ms);
305 
306   // At this point, we're going to uninstall the iterator implementation, before
307   // we decide to do anything further with the global buffer queue.
308   __xray_log_remove_buffer_iterator();
309 
310   // Once flushed, we should set the global status of the logging implementation
311   // to "uninitialized" to allow for FDR-logging multiple runs.
312   auto ResetToUnitialized = at_scope_exit([] {
313     atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
314                  memory_order_release);
315   });
316 
317   auto CleanupBuffers = at_scope_exit([] {
318     auto &TLD = getThreadLocalData();
319     if (TLD.Controller != nullptr)
320       TLD.Controller->flush();
321   });
322 
323   if (fdrFlags()->no_file_flush) {
324     if (Verbosity())
325       Report("XRay FDR: Not flushing to file, 'no_file_flush=true'.\n");
326 
327     atomic_store(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
328                  memory_order_release);
329     return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
330   }
331 
332   // We write out the file in the following format:
333   //
334   //   1) We write down the XRay file header with version 1, type FDR_LOG.
335   //   2) Then we use the 'apply' member of the BufferQueue that's live, to
336   //      ensure that at this point in time we write down the buffers that have
337   //      been released (and marked "used") -- we dump the full buffer for now
338   //      (fixed-sized) and let the tools reading the buffers deal with the data
339   //      afterwards.
340   //
341   LogWriter *LW = LogWriter::Open();
342   if (LW == nullptr) {
343     auto Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
344     atomic_store(&LogFlushStatus, Result, memory_order_release);
345     return Result;
346   }
347 
348   XRayFileHeader Header = fdrCommonHeaderInfo();
349   Header.FdrData = FdrAdditionalHeaderData{BQ->ConfiguredBufferSize()};
350   LW->WriteAll(reinterpret_cast<char *>(&Header),
351                reinterpret_cast<char *>(&Header) + sizeof(Header));
352 
353   // Release the current thread's buffer before we attempt to write out all the
354   // buffers. This ensures that in case we had only a single thread going, that
355   // we are able to capture the data nonetheless.
356   auto &TLD = getThreadLocalData();
357   if (TLD.Controller != nullptr)
358     TLD.Controller->flush();
359 
360   BQ->apply([&](const BufferQueue::Buffer &B) {
361     // Starting at version 2 of the FDR logging implementation, we only write
362     // the records identified by the extents of the buffer. We use the Extents
363     // from the Buffer and write that out as the first record in the buffer.  We
364     // still use a Metadata record, but fill in the extents instead for the
365     // data.
366     MetadataRecord ExtentsRecord;
367     auto BufferExtents = atomic_load(B.Extents, memory_order_acquire);
368     DCHECK(BufferExtents <= B.Size);
369     ExtentsRecord.Type = uint8_t(RecordType::Metadata);
370     ExtentsRecord.RecordKind =
371         uint8_t(MetadataRecord::RecordKinds::BufferExtents);
372     internal_memcpy(ExtentsRecord.Data, &BufferExtents, sizeof(BufferExtents));
373     if (BufferExtents > 0) {
374       LW->WriteAll(reinterpret_cast<char *>(&ExtentsRecord),
375                    reinterpret_cast<char *>(&ExtentsRecord) +
376                        sizeof(MetadataRecord));
377       LW->WriteAll(reinterpret_cast<char *>(B.Data),
378                    reinterpret_cast<char *>(B.Data) + BufferExtents);
379     }
380   });
381 
382   atomic_store(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
383                memory_order_release);
384   return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
385 }
386 
387 XRayLogInitStatus fdrLoggingFinalize() XRAY_NEVER_INSTRUMENT {
388   s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
389   if (!atomic_compare_exchange_strong(&LoggingStatus, &CurrentStatus,
390                                       XRayLogInitStatus::XRAY_LOG_FINALIZING,
391                                       memory_order_release)) {
392     if (Verbosity())
393       Report("Cannot finalize log, implementation not initialized.\n");
394     return static_cast<XRayLogInitStatus>(CurrentStatus);
395   }
396 
397   // Do special things to make the log finalize itself, and not allow any more
398   // operations to be performed until re-initialized.
399   if (BQ == nullptr) {
400     if (Verbosity())
401       Report("Attempting to finalize an uninitialized global buffer!\n");
402   } else {
403     BQ->finalize();
404   }
405 
406   atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_FINALIZED,
407                memory_order_release);
408   return XRayLogInitStatus::XRAY_LOG_FINALIZED;
409 }
410 
411 struct TSCAndCPU {
412   uint64_t TSC = 0;
413   unsigned char CPU = 0;
414 };
415 
416 static TSCAndCPU getTimestamp() XRAY_NEVER_INSTRUMENT {
417   // We want to get the TSC as early as possible, so that we can check whether
418   // we've seen this CPU before. We also do it before we load anything else,
419   // to allow for forward progress with the scheduling.
420   TSCAndCPU Result;
421 
422   // Test once for required CPU features
423   static pthread_once_t OnceProbe = PTHREAD_ONCE_INIT;
424   static bool TSCSupported = true;
425   pthread_once(
426       &OnceProbe, +[] { TSCSupported = probeRequiredCPUFeatures(); });
427 
428   if (TSCSupported) {
429     Result.TSC = __xray::readTSC(Result.CPU);
430   } else {
431     // FIXME: This code needs refactoring as it appears in multiple locations
432     timespec TS;
433     int result = clock_gettime(CLOCK_REALTIME, &TS);
434     if (result != 0) {
435       Report("clock_gettime(2) return %d, errno=%d", result, int(errno));
436       TS = {0, 0};
437     }
438     Result.CPU = 0;
439     Result.TSC = TS.tv_sec * __xray::NanosecondsPerSecond + TS.tv_nsec;
440   }
441   return Result;
442 }
443 
444 thread_local atomic_uint8_t Running{0};
445 
446 static bool setupTLD(ThreadLocalData &TLD) XRAY_NEVER_INSTRUMENT {
447   // Check if we're finalizing, before proceeding.
448   {
449     auto Status = atomic_load(&LoggingStatus, memory_order_acquire);
450     if (Status == XRayLogInitStatus::XRAY_LOG_FINALIZING ||
451         Status == XRayLogInitStatus::XRAY_LOG_FINALIZED) {
452       if (TLD.Controller != nullptr) {
453         TLD.Controller->flush();
454         TLD.Controller = nullptr;
455       }
456       return false;
457     }
458   }
459 
460   if (UNLIKELY(TLD.Controller == nullptr)) {
461     // Set up the TLD buffer queue.
462     if (UNLIKELY(BQ == nullptr))
463       return false;
464     TLD.BQ = BQ;
465 
466     // Check that we have a valid buffer.
467     if (TLD.Buffer.Generation != BQ->generation() &&
468         TLD.BQ->releaseBuffer(TLD.Buffer) != BufferQueue::ErrorCode::Ok)
469       return false;
470 
471     // Set up a buffer, before setting up the log writer. Bail out on failure.
472     if (TLD.BQ->getBuffer(TLD.Buffer) != BufferQueue::ErrorCode::Ok)
473       return false;
474 
475     // Set up the Log Writer for this thread.
476     if (UNLIKELY(TLD.Writer == nullptr)) {
477       auto *LWStorage = reinterpret_cast<FDRLogWriter *>(&TLD.LWStorage);
478       new (LWStorage) FDRLogWriter(TLD.Buffer);
479       TLD.Writer = LWStorage;
480     } else {
481       TLD.Writer->resetRecord();
482     }
483 
484     auto *CStorage = reinterpret_cast<FDRController<> *>(&TLD.CStorage);
485     new (CStorage)
486         FDRController<>(TLD.BQ, TLD.Buffer, *TLD.Writer, clock_gettime,
487                         atomic_load_relaxed(&ThresholdTicks));
488     TLD.Controller = CStorage;
489   }
490 
491   DCHECK_NE(TLD.Controller, nullptr);
492   return true;
493 }
494 
495 void fdrLoggingHandleArg0(int32_t FuncId,
496                           XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
497   auto TC = getTimestamp();
498   auto &TSC = TC.TSC;
499   auto &CPU = TC.CPU;
500   RecursionGuard Guard{Running};
501   if (!Guard)
502     return;
503 
504   auto &TLD = getThreadLocalData();
505   if (!setupTLD(TLD))
506     return;
507 
508   switch (Entry) {
509   case XRayEntryType::ENTRY:
510   case XRayEntryType::LOG_ARGS_ENTRY:
511     TLD.Controller->functionEnter(FuncId, TSC, CPU);
512     return;
513   case XRayEntryType::EXIT:
514     TLD.Controller->functionExit(FuncId, TSC, CPU);
515     return;
516   case XRayEntryType::TAIL:
517     TLD.Controller->functionTailExit(FuncId, TSC, CPU);
518     return;
519   case XRayEntryType::CUSTOM_EVENT:
520   case XRayEntryType::TYPED_EVENT:
521     break;
522   }
523 }
524 
525 void fdrLoggingHandleArg1(int32_t FuncId, XRayEntryType Entry,
526                           uint64_t Arg) XRAY_NEVER_INSTRUMENT {
527   auto TC = getTimestamp();
528   auto &TSC = TC.TSC;
529   auto &CPU = TC.CPU;
530   RecursionGuard Guard{Running};
531   if (!Guard)
532     return;
533 
534   auto &TLD = getThreadLocalData();
535   if (!setupTLD(TLD))
536     return;
537 
538   switch (Entry) {
539   case XRayEntryType::ENTRY:
540   case XRayEntryType::LOG_ARGS_ENTRY:
541     TLD.Controller->functionEnterArg(FuncId, TSC, CPU, Arg);
542     return;
543   case XRayEntryType::EXIT:
544     TLD.Controller->functionExit(FuncId, TSC, CPU);
545     return;
546   case XRayEntryType::TAIL:
547     TLD.Controller->functionTailExit(FuncId, TSC, CPU);
548     return;
549   case XRayEntryType::CUSTOM_EVENT:
550   case XRayEntryType::TYPED_EVENT:
551     break;
552   }
553 }
554 
555 void fdrLoggingHandleCustomEvent(void *Event,
556                                  std::size_t EventSize) XRAY_NEVER_INSTRUMENT {
557   auto TC = getTimestamp();
558   auto &TSC = TC.TSC;
559   auto &CPU = TC.CPU;
560   RecursionGuard Guard{Running};
561   if (!Guard)
562     return;
563 
564   // Complain when we ever get at least one custom event that's larger than what
565   // we can possibly support.
566   if (EventSize >
567       static_cast<std::size_t>(std::numeric_limits<int32_t>::max())) {
568     static pthread_once_t Once = PTHREAD_ONCE_INIT;
569     pthread_once(
570         &Once, +[] {
571           Report("Custom event size too large; truncating to %d.\n",
572                  std::numeric_limits<int32_t>::max());
573         });
574   }
575 
576   auto &TLD = getThreadLocalData();
577   if (!setupTLD(TLD))
578     return;
579 
580   int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
581   TLD.Controller->customEvent(TSC, CPU, Event, ReducedEventSize);
582 }
583 
584 void fdrLoggingHandleTypedEvent(
585     uint16_t EventType, const void *Event,
586     std::size_t EventSize) noexcept XRAY_NEVER_INSTRUMENT {
587   auto TC = getTimestamp();
588   auto &TSC = TC.TSC;
589   auto &CPU = TC.CPU;
590   RecursionGuard Guard{Running};
591   if (!Guard)
592     return;
593 
594   // Complain when we ever get at least one typed event that's larger than what
595   // we can possibly support.
596   if (EventSize >
597       static_cast<std::size_t>(std::numeric_limits<int32_t>::max())) {
598     static pthread_once_t Once = PTHREAD_ONCE_INIT;
599     pthread_once(
600         &Once, +[] {
601           Report("Typed event size too large; truncating to %d.\n",
602                  std::numeric_limits<int32_t>::max());
603         });
604   }
605 
606   auto &TLD = getThreadLocalData();
607   if (!setupTLD(TLD))
608     return;
609 
610   int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
611   TLD.Controller->typedEvent(TSC, CPU, EventType, Event, ReducedEventSize);
612 }
613 
614 XRayLogInitStatus fdrLoggingInit(size_t, size_t, void *Options,
615                                  size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
616   if (Options == nullptr)
617     return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
618 
619   s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
620   if (!atomic_compare_exchange_strong(&LoggingStatus, &CurrentStatus,
621                                       XRayLogInitStatus::XRAY_LOG_INITIALIZING,
622                                       memory_order_release)) {
623     if (Verbosity())
624       Report("Cannot initialize already initialized implementation.\n");
625     return static_cast<XRayLogInitStatus>(CurrentStatus);
626   }
627 
628   if (Verbosity())
629     Report("Initializing FDR mode with options: %s\n",
630            static_cast<const char *>(Options));
631 
632   // TODO: Factor out the flags specific to the FDR mode implementation. For
633   // now, use the global/single definition of the flags, since the FDR mode
634   // flags are already defined there.
635   FlagParser FDRParser;
636   FDRFlags FDRFlags;
637   registerXRayFDRFlags(&FDRParser, &FDRFlags);
638   FDRFlags.setDefaults();
639 
640   // Override first from the general XRAY_DEFAULT_OPTIONS compiler-provided
641   // options until we migrate everyone to use the XRAY_FDR_OPTIONS
642   // compiler-provided options.
643   FDRParser.ParseString(useCompilerDefinedFlags());
644   FDRParser.ParseString(useCompilerDefinedFDRFlags());
645   auto *EnvOpts = GetEnv("XRAY_FDR_OPTIONS");
646   if (EnvOpts == nullptr)
647     EnvOpts = "";
648   FDRParser.ParseString(EnvOpts);
649 
650   // FIXME: Remove this when we fully remove the deprecated flags.
651   if (internal_strlen(EnvOpts) == 0) {
652     FDRFlags.func_duration_threshold_us =
653         flags()->xray_fdr_log_func_duration_threshold_us;
654     FDRFlags.grace_period_ms = flags()->xray_fdr_log_grace_period_ms;
655   }
656 
657   // The provided options should always override the compiler-provided and
658   // environment-variable defined options.
659   FDRParser.ParseString(static_cast<const char *>(Options));
660   *fdrFlags() = FDRFlags;
661   auto BufferSize = FDRFlags.buffer_size;
662   auto BufferMax = FDRFlags.buffer_max;
663 
664   if (BQ == nullptr) {
665     bool Success = false;
666     BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
667     new (BQ) BufferQueue(BufferSize, BufferMax, Success);
668     if (!Success) {
669       Report("BufferQueue init failed.\n");
670       return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
671     }
672   } else {
673     if (BQ->init(BufferSize, BufferMax) != BufferQueue::ErrorCode::Ok) {
674       if (Verbosity())
675         Report("Failed to re-initialize global buffer queue. Init failed.\n");
676       return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
677     }
678   }
679 
680   static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
681   pthread_once(
682       &OnceInit, +[] {
683         atomic_store(&TicksPerSec,
684                      probeRequiredCPUFeatures() ? getTSCFrequency()
685                                                 : __xray::NanosecondsPerSecond,
686                      memory_order_release);
687         pthread_key_create(
688             &Key, +[](void *TLDPtr) {
689               if (TLDPtr == nullptr)
690                 return;
691               auto &TLD = *reinterpret_cast<ThreadLocalData *>(TLDPtr);
692               if (TLD.BQ == nullptr)
693                 return;
694               if (TLD.Buffer.Data == nullptr)
695                 return;
696               auto EC = TLD.BQ->releaseBuffer(TLD.Buffer);
697               if (EC != BufferQueue::ErrorCode::Ok)
698                 Report("At thread exit, failed to release buffer at %p; "
699                        "error=%s\n",
700                        TLD.Buffer.Data, BufferQueue::getErrorString(EC));
701             });
702       });
703 
704   atomic_store(&ThresholdTicks,
705                atomic_load_relaxed(&TicksPerSec) *
706                    fdrFlags()->func_duration_threshold_us / 1000000,
707                memory_order_release);
708   // Arg1 handler should go in first to avoid concurrent code accidentally
709   // falling back to arg0 when it should have ran arg1.
710   __xray_set_handler_arg1(fdrLoggingHandleArg1);
711   // Install the actual handleArg0 handler after initialising the buffers.
712   __xray_set_handler(fdrLoggingHandleArg0);
713   __xray_set_customevent_handler(fdrLoggingHandleCustomEvent);
714   __xray_set_typedevent_handler(fdrLoggingHandleTypedEvent);
715 
716   // Install the buffer iterator implementation.
717   __xray_log_set_buffer_iterator(fdrIterator);
718 
719   atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZED,
720                memory_order_release);
721 
722   if (Verbosity())
723     Report("XRay FDR init successful.\n");
724   return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
725 }
726 
727 bool fdrLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
728   XRayLogImpl Impl{
729       fdrLoggingInit,
730       fdrLoggingFinalize,
731       fdrLoggingHandleArg0,
732       fdrLoggingFlush,
733   };
734   auto RegistrationResult = __xray_log_register_mode("xray-fdr", Impl);
735   if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
736       Verbosity()) {
737     Report("Cannot register XRay FDR mode to 'xray-fdr'; error = %d\n",
738            RegistrationResult);
739     return false;
740   }
741 
742   if (flags()->xray_fdr_log ||
743       !internal_strcmp(flags()->xray_mode, "xray-fdr")) {
744     auto SelectResult = __xray_log_select_mode("xray-fdr");
745     if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
746         Verbosity()) {
747       Report("Cannot select XRay FDR mode as 'xray-fdr'; error = %d\n",
748              SelectResult);
749       return false;
750     }
751   }
752   return true;
753 }
754 
755 } // namespace __xray
756 
757 static auto UNUSED Unused = __xray::fdrLogDynamicInitializer();
758