1 //===-- memprof_allocator.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of MemProfiler, a memory profiler. 10 // 11 // Implementation of MemProf's memory allocator, which uses the allocator 12 // from sanitizer_common. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "memprof_allocator.h" 17 #include "memprof_mapping.h" 18 #include "memprof_mibmap.h" 19 #include "memprof_rawprofile.h" 20 #include "memprof_stack.h" 21 #include "memprof_thread.h" 22 #include "profile/MemProfData.inc" 23 #include "sanitizer_common/sanitizer_allocator_checks.h" 24 #include "sanitizer_common/sanitizer_allocator_interface.h" 25 #include "sanitizer_common/sanitizer_allocator_report.h" 26 #include "sanitizer_common/sanitizer_errno.h" 27 #include "sanitizer_common/sanitizer_file.h" 28 #include "sanitizer_common/sanitizer_flags.h" 29 #include "sanitizer_common/sanitizer_internal_defs.h" 30 #include "sanitizer_common/sanitizer_list.h" 31 #include "sanitizer_common/sanitizer_procmaps.h" 32 #include "sanitizer_common/sanitizer_stackdepot.h" 33 #include "sanitizer_common/sanitizer_vector.h" 34 35 #include <sched.h> 36 #include <time.h> 37 38 namespace __memprof { 39 namespace { 40 using ::llvm::memprof::MemInfoBlock; 41 42 void Print(const MemInfoBlock &M, const u64 id, bool print_terse) { 43 u64 p; 44 45 if (print_terse) { 46 p = M.TotalSize * 100 / M.AllocCount; 47 Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100, 48 M.MinSize, M.MaxSize); 49 p = M.TotalAccessCount * 100 / M.AllocCount; 50 Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount, 51 M.MaxAccessCount); 52 p = M.TotalLifetime * 100 / M.AllocCount; 53 Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime, 54 M.MaxLifetime); 55 Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps, 56 M.NumSameAllocCpu, M.NumSameDeallocCpu); 57 } else { 58 p = M.TotalSize * 100 / M.AllocCount; 59 Printf("Memory allocation stack id = %llu\n", id); 60 Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n", 61 M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize); 62 p = M.TotalAccessCount * 100 / M.AllocCount; 63 Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100, 64 p % 100, M.MinAccessCount, M.MaxAccessCount); 65 p = M.TotalLifetime * 100 / M.AllocCount; 66 Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100, 67 p % 100, M.MinLifetime, M.MaxLifetime); 68 Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc " 69 "cpu: %u, num same dealloc_cpu: %u\n", 70 M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu, 71 M.NumSameDeallocCpu); 72 } 73 } 74 } // namespace 75 76 static int GetCpuId(void) { 77 // _memprof_preinit is called via the preinit_array, which subsequently calls 78 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu 79 // will seg fault as the address of __vdso_getcpu will be null. 80 if (!memprof_init_done) 81 return -1; 82 return sched_getcpu(); 83 } 84 85 // Compute the timestamp in ms. 86 static int GetTimestamp(void) { 87 // timespec_get will segfault if called from dl_init 88 if (!memprof_timestamp_inited) { 89 // By returning 0, this will be effectively treated as being 90 // timestamped at memprof init time (when memprof_init_timestamp_s 91 // is initialized). 92 return 0; 93 } 94 timespec ts; 95 clock_gettime(CLOCK_REALTIME, &ts); 96 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; 97 } 98 99 static MemprofAllocator &get_allocator(); 100 101 // The memory chunk allocated from the underlying allocator looks like this: 102 // H H U U U U U U 103 // H -- ChunkHeader (32 bytes) 104 // U -- user memory. 105 106 // If there is left padding before the ChunkHeader (due to use of memalign), 107 // we store a magic value in the first uptr word of the memory block and 108 // store the address of ChunkHeader in the next uptr. 109 // M B L L L L L L L L L H H U U U U U U 110 // | ^ 111 // ---------------------| 112 // M -- magic value kAllocBegMagic 113 // B -- address of ChunkHeader pointing to the first 'H' 114 115 constexpr uptr kMaxAllowedMallocBits = 40; 116 117 // Should be no more than 32-bytes 118 struct ChunkHeader { 119 // 1-st 4 bytes. 120 u32 alloc_context_id; 121 // 2-nd 4 bytes 122 u32 cpu_id; 123 // 3-rd 4 bytes 124 u32 timestamp_ms; 125 // 4-th 4 bytes 126 // Note only 1 bit is needed for this flag if we need space in the future for 127 // more fields. 128 u32 from_memalign; 129 // 5-th and 6-th 4 bytes 130 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this 131 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for 132 // more fields. 133 atomic_uint64_t user_requested_size; 134 // 23 bits available 135 // 7-th and 8-th 4 bytes 136 u64 data_type_id; // TODO: hash of type name 137 }; 138 139 static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 140 COMPILER_CHECK(kChunkHeaderSize == 32); 141 142 struct MemprofChunk : ChunkHeader { 143 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 144 uptr UsedSize() { 145 return atomic_load(&user_requested_size, memory_order_relaxed); 146 } 147 void *AllocBeg() { 148 if (from_memalign) 149 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 150 return reinterpret_cast<void *>(this); 151 } 152 }; 153 154 class LargeChunkHeader { 155 static constexpr uptr kAllocBegMagic = 156 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 157 atomic_uintptr_t magic; 158 MemprofChunk *chunk_header; 159 160 public: 161 MemprofChunk *Get() const { 162 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 163 ? chunk_header 164 : nullptr; 165 } 166 167 void Set(MemprofChunk *p) { 168 if (p) { 169 chunk_header = p; 170 atomic_store(&magic, kAllocBegMagic, memory_order_release); 171 return; 172 } 173 174 uptr old = kAllocBegMagic; 175 if (!atomic_compare_exchange_strong(&magic, &old, 0, 176 memory_order_release)) { 177 CHECK_EQ(old, kAllocBegMagic); 178 } 179 } 180 }; 181 182 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { 183 // Since memprof's mapping is compacting, the shadow chunk may be 184 // not page-aligned, so we only flush the page-aligned portion. 185 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); 186 } 187 188 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { 189 // Statistics. 190 MemprofStats &thread_stats = GetCurrentThreadStats(); 191 thread_stats.mmaps++; 192 thread_stats.mmaped += size; 193 } 194 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 195 // We are about to unmap a chunk of user memory. 196 // Mark the corresponding shadow memory as not needed. 197 FlushUnneededMemProfShadowMemory(p, size); 198 // Statistics. 199 MemprofStats &thread_stats = GetCurrentThreadStats(); 200 thread_stats.munmaps++; 201 thread_stats.munmaped += size; 202 } 203 204 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { 205 CHECK(ms); 206 return &ms->allocator_cache; 207 } 208 209 // Accumulates the access count from the shadow for the given pointer and size. 210 u64 GetShadowCount(uptr p, u32 size) { 211 u64 *shadow = (u64 *)MEM_TO_SHADOW(p); 212 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); 213 u64 count = 0; 214 for (; shadow <= shadow_end; shadow++) 215 count += *shadow; 216 return count; 217 } 218 219 // Clears the shadow counters (when memory is allocated). 220 void ClearShadow(uptr addr, uptr size) { 221 CHECK(AddrIsAlignedByGranularity(addr)); 222 CHECK(AddrIsInMem(addr)); 223 CHECK(AddrIsAlignedByGranularity(addr + size)); 224 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); 225 CHECK(REAL(memset)); 226 uptr shadow_beg = MEM_TO_SHADOW(addr); 227 uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; 228 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { 229 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 230 } else { 231 uptr page_size = GetPageSizeCached(); 232 uptr page_beg = RoundUpTo(shadow_beg, page_size); 233 uptr page_end = RoundDownTo(shadow_end, page_size); 234 235 if (page_beg >= page_end) { 236 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 237 } else { 238 if (page_beg != shadow_beg) { 239 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); 240 } 241 if (page_end != shadow_end) { 242 REAL(memset)((void *)page_end, 0, shadow_end - page_end); 243 } 244 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); 245 } 246 } 247 } 248 249 struct Allocator { 250 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; 251 252 MemprofAllocator allocator; 253 StaticSpinMutex fallback_mutex; 254 AllocatorCache fallback_allocator_cache; 255 256 uptr max_user_defined_malloc_size; 257 258 // Holds the mapping of stack ids to MemInfoBlocks. 259 MIBMapTy MIBMap; 260 261 atomic_uint8_t destructing; 262 atomic_uint8_t constructed; 263 bool print_text; 264 265 // ------------------- Initialization ------------------------ 266 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { 267 atomic_store_relaxed(&destructing, 0); 268 atomic_store_relaxed(&constructed, 1); 269 } 270 271 ~Allocator() { 272 atomic_store_relaxed(&destructing, 1); 273 FinishAndWrite(); 274 } 275 276 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, 277 void *Arg) { 278 SpinMutexLock(&Value->mutex); 279 Print(Value->mib, Key, bool(Arg)); 280 } 281 282 void FinishAndWrite() { 283 if (print_text && common_flags()->print_module_map) 284 DumpProcessMap(); 285 286 allocator.ForceLock(); 287 288 InsertLiveBlocks(); 289 if (print_text) { 290 if (!flags()->print_terse) 291 Printf("Recorded MIBs (incl. live on exit):\n"); 292 MIBMap.ForEach(PrintCallback, 293 reinterpret_cast<void *>(flags()->print_terse)); 294 StackDepotPrintAll(); 295 } else { 296 // Serialize the contents to a raw profile. Format documented in 297 // memprof_rawprofile.h. 298 char *Buffer = nullptr; 299 300 MemoryMappingLayout Layout(/*cache_enabled=*/true); 301 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Layout, Buffer); 302 CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); 303 report_file.Write(Buffer, BytesSerialized); 304 } 305 306 allocator.ForceUnlock(); 307 } 308 309 // Inserts any blocks which have been allocated but not yet deallocated. 310 void InsertLiveBlocks() { 311 allocator.ForEachChunk( 312 [](uptr chunk, void *alloc) { 313 u64 user_requested_size; 314 Allocator *A = (Allocator *)alloc; 315 MemprofChunk *m = 316 A->GetMemprofChunk((void *)chunk, user_requested_size); 317 if (!m) 318 return; 319 uptr user_beg = ((uptr)m) + kChunkHeaderSize; 320 u64 c = GetShadowCount(user_beg, user_requested_size); 321 long curtime = GetTimestamp(); 322 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 323 m->cpu_id, GetCpuId()); 324 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); 325 }, 326 this); 327 } 328 329 void InitLinkerInitialized() { 330 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 331 allocator.InitLinkerInitialized( 332 common_flags()->allocator_release_to_os_interval_ms); 333 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 334 ? common_flags()->max_allocation_size_mb 335 << 20 336 : kMaxAllowedMallocSize; 337 } 338 339 // -------------------- Allocation/Deallocation routines --------------- 340 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 341 AllocType alloc_type) { 342 if (UNLIKELY(!memprof_inited)) 343 MemprofInitFromRtl(); 344 if (UNLIKELY(IsRssLimitExceeded())) { 345 if (AllocatorMayReturnNull()) 346 return nullptr; 347 ReportRssLimitExceeded(stack); 348 } 349 CHECK(stack); 350 const uptr min_alignment = MEMPROF_ALIGNMENT; 351 if (alignment < min_alignment) 352 alignment = min_alignment; 353 if (size == 0) { 354 // We'd be happy to avoid allocating memory for zero-size requests, but 355 // some programs/tests depend on this behavior and assume that malloc 356 // would not return NULL even for zero-size allocations. Moreover, it 357 // looks like operator new should never return NULL, and results of 358 // consecutive "new" calls must be different even if the allocated size 359 // is zero. 360 size = 1; 361 } 362 CHECK(IsPowerOfTwo(alignment)); 363 uptr rounded_size = RoundUpTo(size, alignment); 364 uptr needed_size = rounded_size + kChunkHeaderSize; 365 if (alignment > min_alignment) 366 needed_size += alignment; 367 CHECK(IsAligned(needed_size, min_alignment)); 368 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 369 size > max_user_defined_malloc_size) { 370 if (AllocatorMayReturnNull()) { 371 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); 372 return nullptr; 373 } 374 uptr malloc_limit = 375 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 376 ReportAllocationSizeTooBig(size, malloc_limit, stack); 377 } 378 379 MemprofThread *t = GetCurrentThread(); 380 void *allocated; 381 if (t) { 382 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 383 allocated = allocator.Allocate(cache, needed_size, 8); 384 } else { 385 SpinMutexLock l(&fallback_mutex); 386 AllocatorCache *cache = &fallback_allocator_cache; 387 allocated = allocator.Allocate(cache, needed_size, 8); 388 } 389 if (UNLIKELY(!allocated)) { 390 SetAllocatorOutOfMemory(); 391 if (AllocatorMayReturnNull()) 392 return nullptr; 393 ReportOutOfMemory(size, stack); 394 } 395 396 uptr alloc_beg = reinterpret_cast<uptr>(allocated); 397 uptr alloc_end = alloc_beg + needed_size; 398 uptr beg_plus_header = alloc_beg + kChunkHeaderSize; 399 uptr user_beg = beg_plus_header; 400 if (!IsAligned(user_beg, alignment)) 401 user_beg = RoundUpTo(user_beg, alignment); 402 uptr user_end = user_beg + size; 403 CHECK_LE(user_end, alloc_end); 404 uptr chunk_beg = user_beg - kChunkHeaderSize; 405 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 406 m->from_memalign = alloc_beg != chunk_beg; 407 CHECK(size); 408 409 m->cpu_id = GetCpuId(); 410 m->timestamp_ms = GetTimestamp(); 411 m->alloc_context_id = StackDepotPut(*stack); 412 413 uptr size_rounded_down_to_granularity = 414 RoundDownTo(size, SHADOW_GRANULARITY); 415 if (size_rounded_down_to_granularity) 416 ClearShadow(user_beg, size_rounded_down_to_granularity); 417 418 MemprofStats &thread_stats = GetCurrentThreadStats(); 419 thread_stats.mallocs++; 420 thread_stats.malloced += size; 421 thread_stats.malloced_overhead += needed_size - size; 422 if (needed_size > SizeClassMap::kMaxSize) 423 thread_stats.malloc_large++; 424 else 425 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 426 427 void *res = reinterpret_cast<void *>(user_beg); 428 atomic_store(&m->user_requested_size, size, memory_order_release); 429 if (alloc_beg != chunk_beg) { 430 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 431 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 432 } 433 RunMallocHooks(res, size); 434 return res; 435 } 436 437 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 438 BufferedStackTrace *stack, AllocType alloc_type) { 439 uptr p = reinterpret_cast<uptr>(ptr); 440 if (p == 0) 441 return; 442 443 RunFreeHooks(ptr); 444 445 uptr chunk_beg = p - kChunkHeaderSize; 446 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 447 448 u64 user_requested_size = 449 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); 450 if (memprof_inited && memprof_init_done && 451 atomic_load_relaxed(&constructed) && 452 !atomic_load_relaxed(&destructing)) { 453 u64 c = GetShadowCount(p, user_requested_size); 454 long curtime = GetTimestamp(); 455 456 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 457 m->cpu_id, GetCpuId()); 458 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); 459 } 460 461 MemprofStats &thread_stats = GetCurrentThreadStats(); 462 thread_stats.frees++; 463 thread_stats.freed += user_requested_size; 464 465 void *alloc_beg = m->AllocBeg(); 466 if (alloc_beg != m) { 467 // Clear the magic value, as allocator internals may overwrite the 468 // contents of deallocated chunk, confusing GetMemprofChunk lookup. 469 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); 470 } 471 472 MemprofThread *t = GetCurrentThread(); 473 if (t) { 474 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 475 allocator.Deallocate(cache, alloc_beg); 476 } else { 477 SpinMutexLock l(&fallback_mutex); 478 AllocatorCache *cache = &fallback_allocator_cache; 479 allocator.Deallocate(cache, alloc_beg); 480 } 481 } 482 483 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 484 CHECK(old_ptr && new_size); 485 uptr p = reinterpret_cast<uptr>(old_ptr); 486 uptr chunk_beg = p - kChunkHeaderSize; 487 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 488 489 MemprofStats &thread_stats = GetCurrentThreadStats(); 490 thread_stats.reallocs++; 491 thread_stats.realloced += new_size; 492 493 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); 494 if (new_ptr) { 495 CHECK_NE(REAL(memcpy), nullptr); 496 uptr memcpy_size = Min(new_size, m->UsedSize()); 497 REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 498 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 499 } 500 return new_ptr; 501 } 502 503 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 504 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 505 if (AllocatorMayReturnNull()) 506 return nullptr; 507 ReportCallocOverflow(nmemb, size, stack); 508 } 509 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); 510 // If the memory comes from the secondary allocator no need to clear it 511 // as it comes directly from mmap. 512 if (ptr && allocator.FromPrimary(ptr)) 513 REAL(memset)(ptr, 0, nmemb * size); 514 return ptr; 515 } 516 517 void CommitBack(MemprofThreadLocalMallocStorage *ms, 518 BufferedStackTrace *stack) { 519 AllocatorCache *ac = GetAllocatorCache(ms); 520 allocator.SwallowCache(ac); 521 } 522 523 // -------------------------- Chunk lookup ---------------------- 524 525 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 526 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { 527 if (!alloc_beg) 528 return nullptr; 529 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 530 if (!p) { 531 if (!allocator.FromPrimary(alloc_beg)) 532 return nullptr; 533 p = reinterpret_cast<MemprofChunk *>(alloc_beg); 534 } 535 // The size is reset to 0 on deallocation (and a min of 1 on 536 // allocation). 537 user_requested_size = 538 atomic_load(&p->user_requested_size, memory_order_acquire); 539 if (user_requested_size) 540 return p; 541 return nullptr; 542 } 543 544 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { 545 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 546 return GetMemprofChunk(alloc_beg, user_requested_size); 547 } 548 549 uptr AllocationSize(uptr p) { 550 u64 user_requested_size; 551 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); 552 if (!m) 553 return 0; 554 if (m->Beg() != p) 555 return 0; 556 return user_requested_size; 557 } 558 559 void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); } 560 561 void PrintStats() { allocator.PrintStats(); } 562 563 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 564 allocator.ForceLock(); 565 fallback_mutex.Lock(); 566 } 567 568 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 569 fallback_mutex.Unlock(); 570 allocator.ForceUnlock(); 571 } 572 }; 573 574 static Allocator instance(LINKER_INITIALIZED); 575 576 static MemprofAllocator &get_allocator() { return instance.allocator; } 577 578 void InitializeAllocator() { instance.InitLinkerInitialized(); } 579 580 void MemprofThreadLocalMallocStorage::CommitBack() { 581 GET_STACK_TRACE_MALLOC; 582 instance.CommitBack(this, &stack); 583 } 584 585 void PrintInternalAllocatorStats() { instance.PrintStats(); } 586 587 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 588 instance.Deallocate(ptr, 0, 0, stack, alloc_type); 589 } 590 591 void memprof_delete(void *ptr, uptr size, uptr alignment, 592 BufferedStackTrace *stack, AllocType alloc_type) { 593 instance.Deallocate(ptr, size, alignment, stack, alloc_type); 594 } 595 596 void *memprof_malloc(uptr size, BufferedStackTrace *stack) { 597 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 598 } 599 600 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 601 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 602 } 603 604 void *memprof_reallocarray(void *p, uptr nmemb, uptr size, 605 BufferedStackTrace *stack) { 606 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 607 errno = errno_ENOMEM; 608 if (AllocatorMayReturnNull()) 609 return nullptr; 610 ReportReallocArrayOverflow(nmemb, size, stack); 611 } 612 return memprof_realloc(p, nmemb * size, stack); 613 } 614 615 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { 616 if (!p) 617 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 618 if (size == 0) { 619 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 620 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 621 return nullptr; 622 } 623 // Allocate a size of 1 if we shouldn't free() on Realloc to 0 624 size = 1; 625 } 626 return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 627 } 628 629 void *memprof_valloc(uptr size, BufferedStackTrace *stack) { 630 return SetErrnoOnNull( 631 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); 632 } 633 634 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { 635 uptr PageSize = GetPageSizeCached(); 636 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 637 errno = errno_ENOMEM; 638 if (AllocatorMayReturnNull()) 639 return nullptr; 640 ReportPvallocOverflow(size, stack); 641 } 642 // pvalloc(0) should allocate one page. 643 size = size ? RoundUpTo(size, PageSize) : PageSize; 644 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); 645 } 646 647 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 648 AllocType alloc_type) { 649 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 650 errno = errno_EINVAL; 651 if (AllocatorMayReturnNull()) 652 return nullptr; 653 ReportInvalidAllocationAlignment(alignment, stack); 654 } 655 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); 656 } 657 658 void *memprof_aligned_alloc(uptr alignment, uptr size, 659 BufferedStackTrace *stack) { 660 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 661 errno = errno_EINVAL; 662 if (AllocatorMayReturnNull()) 663 return nullptr; 664 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 665 } 666 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); 667 } 668 669 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, 670 BufferedStackTrace *stack) { 671 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 672 if (AllocatorMayReturnNull()) 673 return errno_EINVAL; 674 ReportInvalidPosixMemalignAlignment(alignment, stack); 675 } 676 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); 677 if (UNLIKELY(!ptr)) 678 // OOM error is already taken care of by Allocate. 679 return errno_ENOMEM; 680 CHECK(IsAligned((uptr)ptr, alignment)); 681 *memptr = ptr; 682 return 0; 683 } 684 685 uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 686 if (!ptr) 687 return 0; 688 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 689 return usable_size; 690 } 691 692 } // namespace __memprof 693 694 // ---------------------- Interface ---------------- {{{1 695 using namespace __memprof; 696 697 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 698 699 int __sanitizer_get_ownership(const void *p) { 700 return memprof_malloc_usable_size(p, 0, 0) != 0; 701 } 702 703 uptr __sanitizer_get_allocated_size(const void *p) { 704 return memprof_malloc_usable_size(p, 0, 0); 705 } 706 707 int __memprof_profile_dump() { 708 instance.FinishAndWrite(); 709 // In the future we may want to return non-zero if there are any errors 710 // detected during the dumping process. 711 return 0; 712 } 713