1 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 2 // See https://llvm.org/LICENSE.txt for license information. 3 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 4 5 #include "../int_math.h" 6 #include "DD.h" 7 // Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper 8 // half of the long doubles), even though this file defines complex division for 9 // 128-bit floats. 10 #define DOUBLE_PRECISION 11 #include "../fp_lib.h" 12 13 #if !defined(CRT_INFINITY) && defined(HUGE_VAL) 14 #define CRT_INFINITY HUGE_VAL 15 #endif // CRT_INFINITY 16 17 #define makeFinite(x) \ 18 { \ 19 (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \ 20 (x).s.lo = 0.0; \ 21 } 22 23 long double _Complex __divtc3(long double a, long double b, long double c, 24 long double d) { 25 DD cDD = {.ld = c}; 26 DD dDD = {.ld = d}; 27 28 int ilogbw = 0; 29 const double logbw = 30 __compiler_rt_logb(__compiler_rt_fmax(crt_fabs(cDD.s.hi), 31 crt_fabs(dDD.s.hi))); 32 33 if (crt_isfinite(logbw)) { 34 ilogbw = (int)logbw; 35 36 cDD.s.hi = __compiler_rt_scalbn(cDD.s.hi, -ilogbw); 37 cDD.s.lo = __compiler_rt_scalbn(cDD.s.lo, -ilogbw); 38 dDD.s.hi = __compiler_rt_scalbn(dDD.s.hi, -ilogbw); 39 dDD.s.lo = __compiler_rt_scalbn(dDD.s.lo, -ilogbw); 40 } 41 42 const long double denom = 43 __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld)); 44 const long double realNumerator = 45 __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld)); 46 const long double imagNumerator = 47 __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld)); 48 49 DD real = {.ld = __gcc_qdiv(realNumerator, denom)}; 50 DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)}; 51 52 real.s.hi = __compiler_rt_scalbn(real.s.hi, -ilogbw); 53 real.s.lo = __compiler_rt_scalbn(real.s.lo, -ilogbw); 54 imag.s.hi = __compiler_rt_scalbn(imag.s.hi, -ilogbw); 55 imag.s.lo = __compiler_rt_scalbn(imag.s.lo, -ilogbw); 56 57 if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) { 58 DD aDD = {.ld = a}; 59 DD bDD = {.ld = b}; 60 DD rDD = {.ld = denom}; 61 62 if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) { 63 real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi; 64 real.s.lo = 0.0; 65 imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi; 66 imag.s.lo = 0.0; 67 } 68 69 else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) && 70 crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) { 71 makeFinite(aDD); 72 makeFinite(bDD); 73 real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi); 74 real.s.lo = 0.0; 75 imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi); 76 imag.s.lo = 0.0; 77 } 78 79 else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) && 80 crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) { 81 makeFinite(cDD); 82 makeFinite(dDD); 83 real.s.hi = 84 crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi)); 85 real.s.lo = 0.0; 86 imag.s.hi = 87 crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi)); 88 imag.s.lo = 0.0; 89 } 90 } 91 92 long double _Complex z; 93 __real__ z = real.ld; 94 __imag__ z = imag.ld; 95 96 return z; 97 } 98