1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a configuration header for soft-float routines in compiler-rt. 10 // This file does not provide any part of the compiler-rt interface, but defines 11 // many useful constants and utility routines that are used in the 12 // implementation of the soft-float routines in compiler-rt. 13 // 14 // Assumes that float, double and long double correspond to the IEEE-754 15 // binary32, binary64 and binary 128 types, respectively, and that integer 16 // endianness matches floating point endianness on the target platform. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef FP_LIB_HEADER 21 #define FP_LIB_HEADER 22 23 #include "int_lib.h" 24 #include "int_math.h" 25 #include <limits.h> 26 #include <stdbool.h> 27 #include <stdint.h> 28 29 // x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in 30 // 32-bit mode. 31 #if defined(__FreeBSD__) && defined(__i386__) 32 #include <sys/param.h> 33 #if __FreeBSD_version < 903000 // v9.3 34 #define uint64_t unsigned long long 35 #define int64_t long long 36 #undef UINT64_C 37 #define UINT64_C(c) (c##ULL) 38 #endif 39 #endif 40 41 #if defined SINGLE_PRECISION 42 43 typedef uint16_t half_rep_t; 44 typedef uint32_t rep_t; 45 typedef uint64_t twice_rep_t; 46 typedef int32_t srep_t; 47 typedef float fp_t; 48 #define HALF_REP_C UINT16_C 49 #define REP_C UINT32_C 50 #define significandBits 23 51 52 static __inline int rep_clz(rep_t a) { return clzsi(a); } 53 54 // 32x32 --> 64 bit multiply 55 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 56 const uint64_t product = (uint64_t)a * b; 57 *hi = product >> 32; 58 *lo = product; 59 } 60 COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b); 61 62 #elif defined DOUBLE_PRECISION 63 64 typedef uint32_t half_rep_t; 65 typedef uint64_t rep_t; 66 typedef int64_t srep_t; 67 typedef double fp_t; 68 #define HALF_REP_C UINT32_C 69 #define REP_C UINT64_C 70 #define significandBits 52 71 72 static __inline int rep_clz(rep_t a) { 73 #if defined __LP64__ 74 return __builtin_clzl(a); 75 #else 76 if (a & REP_C(0xffffffff00000000)) 77 return clzsi(a >> 32); 78 else 79 return 32 + clzsi(a & REP_C(0xffffffff)); 80 #endif 81 } 82 83 #define loWord(a) (a & 0xffffffffU) 84 #define hiWord(a) (a >> 32) 85 86 // 64x64 -> 128 wide multiply for platforms that don't have such an operation; 87 // many 64-bit platforms have this operation, but they tend to have hardware 88 // floating-point, so we don't bother with a special case for them here. 89 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 90 // Each of the component 32x32 -> 64 products 91 const uint64_t plolo = loWord(a) * loWord(b); 92 const uint64_t plohi = loWord(a) * hiWord(b); 93 const uint64_t philo = hiWord(a) * loWord(b); 94 const uint64_t phihi = hiWord(a) * hiWord(b); 95 // Sum terms that contribute to lo in a way that allows us to get the carry 96 const uint64_t r0 = loWord(plolo); 97 const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo); 98 *lo = r0 + (r1 << 32); 99 // Sum terms contributing to hi with the carry from lo 100 *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi; 101 } 102 #undef loWord 103 #undef hiWord 104 105 COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b); 106 107 #elif defined QUAD_PRECISION 108 #if __LDBL_MANT_DIG__ == 113 && defined(__SIZEOF_INT128__) 109 #define CRT_LDBL_128BIT 110 typedef uint64_t half_rep_t; 111 typedef __uint128_t rep_t; 112 typedef __int128_t srep_t; 113 typedef long double fp_t; 114 #define HALF_REP_C UINT64_C 115 #define REP_C (__uint128_t) 116 // Note: Since there is no explicit way to tell compiler the constant is a 117 // 128-bit integer, we let the constant be casted to 128-bit integer 118 #define significandBits 112 119 120 static __inline int rep_clz(rep_t a) { 121 const union { 122 __uint128_t ll; 123 #if _YUGA_BIG_ENDIAN 124 struct { 125 uint64_t high, low; 126 } s; 127 #else 128 struct { 129 uint64_t low, high; 130 } s; 131 #endif 132 } uu = {.ll = a}; 133 134 uint64_t word; 135 uint64_t add; 136 137 if (uu.s.high) { 138 word = uu.s.high; 139 add = 0; 140 } else { 141 word = uu.s.low; 142 add = 64; 143 } 144 return __builtin_clzll(word) + add; 145 } 146 147 #define Word_LoMask UINT64_C(0x00000000ffffffff) 148 #define Word_HiMask UINT64_C(0xffffffff00000000) 149 #define Word_FullMask UINT64_C(0xffffffffffffffff) 150 #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask) 151 #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask) 152 #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask) 153 #define Word_4(a) (uint64_t)(a & Word_LoMask) 154 155 // 128x128 -> 256 wide multiply for platforms that don't have such an operation; 156 // many 64-bit platforms have this operation, but they tend to have hardware 157 // floating-point, so we don't bother with a special case for them here. 158 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 159 160 const uint64_t product11 = Word_1(a) * Word_1(b); 161 const uint64_t product12 = Word_1(a) * Word_2(b); 162 const uint64_t product13 = Word_1(a) * Word_3(b); 163 const uint64_t product14 = Word_1(a) * Word_4(b); 164 const uint64_t product21 = Word_2(a) * Word_1(b); 165 const uint64_t product22 = Word_2(a) * Word_2(b); 166 const uint64_t product23 = Word_2(a) * Word_3(b); 167 const uint64_t product24 = Word_2(a) * Word_4(b); 168 const uint64_t product31 = Word_3(a) * Word_1(b); 169 const uint64_t product32 = Word_3(a) * Word_2(b); 170 const uint64_t product33 = Word_3(a) * Word_3(b); 171 const uint64_t product34 = Word_3(a) * Word_4(b); 172 const uint64_t product41 = Word_4(a) * Word_1(b); 173 const uint64_t product42 = Word_4(a) * Word_2(b); 174 const uint64_t product43 = Word_4(a) * Word_3(b); 175 const uint64_t product44 = Word_4(a) * Word_4(b); 176 177 const __uint128_t sum0 = (__uint128_t)product44; 178 const __uint128_t sum1 = (__uint128_t)product34 + (__uint128_t)product43; 179 const __uint128_t sum2 = 180 (__uint128_t)product24 + (__uint128_t)product33 + (__uint128_t)product42; 181 const __uint128_t sum3 = (__uint128_t)product14 + (__uint128_t)product23 + 182 (__uint128_t)product32 + (__uint128_t)product41; 183 const __uint128_t sum4 = 184 (__uint128_t)product13 + (__uint128_t)product22 + (__uint128_t)product31; 185 const __uint128_t sum5 = (__uint128_t)product12 + (__uint128_t)product21; 186 const __uint128_t sum6 = (__uint128_t)product11; 187 188 const __uint128_t r0 = (sum0 & Word_FullMask) + ((sum1 & Word_LoMask) << 32); 189 const __uint128_t r1 = (sum0 >> 64) + ((sum1 >> 32) & Word_FullMask) + 190 (sum2 & Word_FullMask) + ((sum3 << 32) & Word_HiMask); 191 192 *lo = r0 + (r1 << 64); 193 *hi = (r1 >> 64) + (sum1 >> 96) + (sum2 >> 64) + (sum3 >> 32) + sum4 + 194 (sum5 << 32) + (sum6 << 64); 195 } 196 #undef Word_1 197 #undef Word_2 198 #undef Word_3 199 #undef Word_4 200 #undef Word_HiMask 201 #undef Word_LoMask 202 #undef Word_FullMask 203 #endif // __LDBL_MANT_DIG__ == 113 && __SIZEOF_INT128__ 204 #else 205 #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined. 206 #endif 207 208 #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \ 209 defined(CRT_LDBL_128BIT) 210 #define typeWidth (sizeof(rep_t) * CHAR_BIT) 211 #define exponentBits (typeWidth - significandBits - 1) 212 #define maxExponent ((1 << exponentBits) - 1) 213 #define exponentBias (maxExponent >> 1) 214 215 #define implicitBit (REP_C(1) << significandBits) 216 #define significandMask (implicitBit - 1U) 217 #define signBit (REP_C(1) << (significandBits + exponentBits)) 218 #define absMask (signBit - 1U) 219 #define exponentMask (absMask ^ significandMask) 220 #define oneRep ((rep_t)exponentBias << significandBits) 221 #define infRep exponentMask 222 #define quietBit (implicitBit >> 1) 223 #define qnanRep (exponentMask | quietBit) 224 225 static __inline rep_t toRep(fp_t x) { 226 const union { 227 fp_t f; 228 rep_t i; 229 } rep = {.f = x}; 230 return rep.i; 231 } 232 233 static __inline fp_t fromRep(rep_t x) { 234 const union { 235 fp_t f; 236 rep_t i; 237 } rep = {.i = x}; 238 return rep.f; 239 } 240 241 static __inline int normalize(rep_t *significand) { 242 const int shift = rep_clz(*significand) - rep_clz(implicitBit); 243 *significand <<= shift; 244 return 1 - shift; 245 } 246 247 static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) { 248 *hi = *hi << count | *lo >> (typeWidth - count); 249 *lo = *lo << count; 250 } 251 252 static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, 253 unsigned int count) { 254 if (count < typeWidth) { 255 const bool sticky = (*lo << (typeWidth - count)) != 0; 256 *lo = *hi << (typeWidth - count) | *lo >> count | sticky; 257 *hi = *hi >> count; 258 } else if (count < 2 * typeWidth) { 259 const bool sticky = *hi << (2 * typeWidth - count) | *lo; 260 *lo = *hi >> (count - typeWidth) | sticky; 261 *hi = 0; 262 } else { 263 const bool sticky = *hi | *lo; 264 *lo = sticky; 265 *hi = 0; 266 } 267 } 268 269 // Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids 270 // pulling in a libm dependency from compiler-rt, but is not meant to replace 271 // it (i.e. code calling logb() should get the one from libm, not this), hence 272 // the __compiler_rt prefix. 273 static __inline fp_t __compiler_rt_logbX(fp_t x) { 274 rep_t rep = toRep(x); 275 int exp = (rep & exponentMask) >> significandBits; 276 277 // Abnormal cases: 278 // 1) +/- inf returns +inf; NaN returns NaN 279 // 2) 0.0 returns -inf 280 if (exp == maxExponent) { 281 if (((rep & signBit) == 0) || (x != x)) { 282 return x; // NaN or +inf: return x 283 } else { 284 return -x; // -inf: return -x 285 } 286 } else if (x == 0.0) { 287 // 0.0: return -inf 288 return fromRep(infRep | signBit); 289 } 290 291 if (exp != 0) { 292 // Normal number 293 return exp - exponentBias; // Unbias exponent 294 } else { 295 // Subnormal number; normalize and repeat 296 rep &= absMask; 297 const int shift = 1 - normalize(&rep); 298 exp = (rep & exponentMask) >> significandBits; 299 return exp - exponentBias - shift; // Unbias exponent 300 } 301 } 302 303 // Avoid using scalbn from libm. Unlike libc/libm scalbn, this function never 304 // sets errno on underflow/overflow. 305 static __inline fp_t __compiler_rt_scalbnX(fp_t x, int y) { 306 const rep_t rep = toRep(x); 307 int exp = (rep & exponentMask) >> significandBits; 308 309 if (x == 0.0 || exp == maxExponent) 310 return x; // +/- 0.0, NaN, or inf: return x 311 312 // Normalize subnormal input. 313 rep_t sig = rep & significandMask; 314 if (exp == 0) { 315 exp += normalize(&sig); 316 sig &= ~implicitBit; // clear the implicit bit again 317 } 318 319 if (__builtin_sadd_overflow(exp, y, &exp)) { 320 // Saturate the exponent, which will guarantee an underflow/overflow below. 321 exp = (y >= 0) ? INT_MAX : INT_MIN; 322 } 323 324 // Return this value: [+/-] 1.sig * 2 ** (exp - exponentBias). 325 const rep_t sign = rep & signBit; 326 if (exp >= maxExponent) { 327 // Overflow, which could produce infinity or the largest-magnitude value, 328 // depending on the rounding mode. 329 return fromRep(sign | ((rep_t)(maxExponent - 1) << significandBits)) * 2.0f; 330 } else if (exp <= 0) { 331 // Subnormal or underflow. Use floating-point multiply to handle truncation 332 // correctly. 333 fp_t tmp = fromRep(sign | (REP_C(1) << significandBits) | sig); 334 exp += exponentBias - 1; 335 if (exp < 1) 336 exp = 1; 337 tmp *= fromRep((rep_t)exp << significandBits); 338 return tmp; 339 } else 340 return fromRep(sign | ((rep_t)exp << significandBits) | sig); 341 } 342 343 // Avoid using fmax from libm. 344 static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) { 345 // If either argument is NaN, return the other argument. If both are NaN, 346 // arbitrarily return the second one. Otherwise, if both arguments are +/-0, 347 // arbitrarily return the first one. 348 return (crt_isnan(x) || x < y) ? y : x; 349 } 350 351 #endif 352 353 #if defined(SINGLE_PRECISION) 354 355 static __inline fp_t __compiler_rt_logbf(fp_t x) { 356 return __compiler_rt_logbX(x); 357 } 358 static __inline fp_t __compiler_rt_scalbnf(fp_t x, int y) { 359 return __compiler_rt_scalbnX(x, y); 360 } 361 static __inline fp_t __compiler_rt_fmaxf(fp_t x, fp_t y) { 362 #if defined(__aarch64__) 363 // Use __builtin_fmaxf which turns into an fmaxnm instruction on AArch64. 364 return __builtin_fmaxf(x, y); 365 #else 366 // __builtin_fmaxf frequently turns into a libm call, so inline the function. 367 return __compiler_rt_fmaxX(x, y); 368 #endif 369 } 370 371 #elif defined(DOUBLE_PRECISION) 372 373 static __inline fp_t __compiler_rt_logb(fp_t x) { 374 return __compiler_rt_logbX(x); 375 } 376 static __inline fp_t __compiler_rt_scalbn(fp_t x, int y) { 377 return __compiler_rt_scalbnX(x, y); 378 } 379 static __inline fp_t __compiler_rt_fmax(fp_t x, fp_t y) { 380 #if defined(__aarch64__) 381 // Use __builtin_fmax which turns into an fmaxnm instruction on AArch64. 382 return __builtin_fmax(x, y); 383 #else 384 // __builtin_fmax frequently turns into a libm call, so inline the function. 385 return __compiler_rt_fmaxX(x, y); 386 #endif 387 } 388 389 #elif defined(QUAD_PRECISION) 390 391 #if defined(CRT_LDBL_128BIT) 392 static __inline fp_t __compiler_rt_logbl(fp_t x) { 393 return __compiler_rt_logbX(x); 394 } 395 static __inline fp_t __compiler_rt_scalbnl(fp_t x, int y) { 396 return __compiler_rt_scalbnX(x, y); 397 } 398 static __inline fp_t __compiler_rt_fmaxl(fp_t x, fp_t y) { 399 return __compiler_rt_fmaxX(x, y); 400 } 401 #else 402 // The generic implementation only works for ieee754 floating point. For other 403 // floating point types, continue to rely on the libm implementation for now. 404 static __inline long double __compiler_rt_logbl(long double x) { 405 return crt_logbl(x); 406 } 407 static __inline long double __compiler_rt_scalbnl(long double x, int y) { 408 return crt_scalbnl(x, y); 409 } 410 static __inline long double __compiler_rt_fmaxl(long double x, long double y) { 411 return crt_fmaxl(x, y); 412 } 413 #endif // CRT_LDBL_128BIT 414 415 #endif // *_PRECISION 416 417 #endif // FP_LIB_HEADER 418