xref: /freebsd/contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp (revision a50d73d5782a351ad83e8d1f84d11720a12e70d3)
1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/IgnoreExpr.h"
17 #include "clang/AST/OperationKinds.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/AST/TypeLocVisitor.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/Specifiers.h"
26 #include "clang/Basic/TokenKinds.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Tooling/Syntax/Nodes.h"
30 #include "clang/Tooling/Syntax/TokenBufferTokenManager.h"
31 #include "clang/Tooling/Syntax/Tokens.h"
32 #include "clang/Tooling/Syntax/Tree.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/PointerUnion.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/ScopeExit.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/FormatVariadic.h"
43 #include "llvm/Support/MemoryBuffer.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cstddef>
46 #include <map>
47 
48 using namespace clang;
49 
50 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
51 // generated by the compiler, as well as in implicit conversions like the one
52 // wrapping `1` in `X x = 1;`.
53 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
54   if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
55     auto NumArgs = C->getNumArgs();
56     if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
57       Expr *A = C->getArg(0);
58       if (C->getParenOrBraceRange().isInvalid())
59         return A;
60     }
61   }
62   return E;
63 }
64 
65 // In:
66 // struct X {
67 //   X(int)
68 // };
69 // X x = X(1);
70 // Ignores the implicit `CXXFunctionalCastExpr` that wraps
71 // `CXXConstructExpr X(1)`.
72 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
73   if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
74     if (F->getCastKind() == CK_ConstructorConversion)
75       return F->getSubExpr();
76   }
77   return E;
78 }
79 
80 static Expr *IgnoreImplicit(Expr *E) {
81   return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
82                          IgnoreImplicitConstructorSingleStep,
83                          IgnoreCXXFunctionalCastExprWrappingConstructor);
84 }
85 
86 LLVM_ATTRIBUTE_UNUSED
87 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
88 
89 namespace {
90 /// Get start location of the Declarator from the TypeLoc.
91 /// E.g.:
92 ///   loc of `(` in `int (a)`
93 ///   loc of `*` in `int *(a)`
94 ///   loc of the first `(` in `int (*a)(int)`
95 ///   loc of the `*` in `int *(a)(int)`
96 ///   loc of the first `*` in `const int *const *volatile a;`
97 ///
98 /// It is non-trivial to get the start location because TypeLocs are stored
99 /// inside out. In the example above `*volatile` is the TypeLoc returned
100 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
101 /// returns.
102 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
103   SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
104     auto L = Visit(T.getInnerLoc());
105     if (L.isValid())
106       return L;
107     return T.getLParenLoc();
108   }
109 
110   // Types spelled in the prefix part of the declarator.
111   SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
112     return HandlePointer(T);
113   }
114 
115   SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
116     return HandlePointer(T);
117   }
118 
119   SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
120     return HandlePointer(T);
121   }
122 
123   SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
124     return HandlePointer(T);
125   }
126 
127   SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
128     return HandlePointer(T);
129   }
130 
131   // All other cases are not important, as they are either part of declaration
132   // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
133   // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
134   // declarator themselves, but their underlying type can.
135   SourceLocation VisitTypeLoc(TypeLoc T) {
136     auto N = T.getNextTypeLoc();
137     if (!N)
138       return SourceLocation();
139     return Visit(N);
140   }
141 
142   SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
143     if (T.getTypePtr()->hasTrailingReturn())
144       return SourceLocation(); // avoid recursing into the suffix of declarator.
145     return VisitTypeLoc(T);
146   }
147 
148 private:
149   template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
150     auto L = Visit(T.getPointeeLoc());
151     if (L.isValid())
152       return L;
153     return T.getLocalSourceRange().getBegin();
154   }
155 };
156 } // namespace
157 
158 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
159   auto FirstDefaultArg =
160       llvm::find_if(Args, [](auto It) { return isa<CXXDefaultArgExpr>(It); });
161   return llvm::make_range(Args.begin(), FirstDefaultArg);
162 }
163 
164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165   switch (E.getOperator()) {
166   // Comparison
167   case OO_EqualEqual:
168   case OO_ExclaimEqual:
169   case OO_Greater:
170   case OO_GreaterEqual:
171   case OO_Less:
172   case OO_LessEqual:
173   case OO_Spaceship:
174   // Assignment
175   case OO_Equal:
176   case OO_SlashEqual:
177   case OO_PercentEqual:
178   case OO_CaretEqual:
179   case OO_PipeEqual:
180   case OO_LessLessEqual:
181   case OO_GreaterGreaterEqual:
182   case OO_PlusEqual:
183   case OO_MinusEqual:
184   case OO_StarEqual:
185   case OO_AmpEqual:
186   // Binary computation
187   case OO_Slash:
188   case OO_Percent:
189   case OO_Caret:
190   case OO_Pipe:
191   case OO_LessLess:
192   case OO_GreaterGreater:
193   case OO_AmpAmp:
194   case OO_PipePipe:
195   case OO_ArrowStar:
196   case OO_Comma:
197     return syntax::NodeKind::BinaryOperatorExpression;
198   case OO_Tilde:
199   case OO_Exclaim:
200     return syntax::NodeKind::PrefixUnaryOperatorExpression;
201   // Prefix/Postfix increment/decrement
202   case OO_PlusPlus:
203   case OO_MinusMinus:
204     switch (E.getNumArgs()) {
205     case 1:
206       return syntax::NodeKind::PrefixUnaryOperatorExpression;
207     case 2:
208       return syntax::NodeKind::PostfixUnaryOperatorExpression;
209     default:
210       llvm_unreachable("Invalid number of arguments for operator");
211     }
212   // Operators that can be unary or binary
213   case OO_Plus:
214   case OO_Minus:
215   case OO_Star:
216   case OO_Amp:
217     switch (E.getNumArgs()) {
218     case 1:
219       return syntax::NodeKind::PrefixUnaryOperatorExpression;
220     case 2:
221       return syntax::NodeKind::BinaryOperatorExpression;
222     default:
223       llvm_unreachable("Invalid number of arguments for operator");
224     }
225     return syntax::NodeKind::BinaryOperatorExpression;
226   // Not yet supported by SyntaxTree
227   case OO_New:
228   case OO_Delete:
229   case OO_Array_New:
230   case OO_Array_Delete:
231   case OO_Coawait:
232   case OO_Subscript:
233   case OO_Arrow:
234     return syntax::NodeKind::UnknownExpression;
235   case OO_Call:
236     return syntax::NodeKind::CallExpression;
237   case OO_Conditional: // not overloadable
238   case NUM_OVERLOADED_OPERATORS:
239   case OO_None:
240     llvm_unreachable("Not an overloadable operator");
241   }
242   llvm_unreachable("Unknown OverloadedOperatorKind enum");
243 }
244 
245 /// Get the start of the qualified name. In the examples below it gives the
246 /// location of the `^`:
247 ///     `int ^a;`
248 ///     `int *^a;`
249 ///     `int ^a::S::f(){}`
250 static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251   assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252          "only DeclaratorDecl and TypedefNameDecl are supported.");
253 
254   auto DN = D->getDeclName();
255   bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256   if (IsAnonymous)
257     return SourceLocation();
258 
259   if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
260     if (DD->getQualifierLoc()) {
261       return DD->getQualifierLoc().getBeginLoc();
262     }
263   }
264 
265   return D->getLocation();
266 }
267 
268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269 ///     `int a;` -> range of ``,
270 ///     `int *a = nullptr` -> range of `= nullptr`.
271 ///     `int a{}` -> range of `{}`.
272 ///     `int a()` -> range of `()`.
273 static SourceRange getInitializerRange(Decl *D) {
274   if (auto *V = dyn_cast<VarDecl>(D)) {
275     auto *I = V->getInit();
276     // Initializers in range-based-for are not part of the declarator
277     if (I && !V->isCXXForRangeDecl())
278       return I->getSourceRange();
279   }
280 
281   return SourceRange();
282 }
283 
284 /// Gets the range of declarator as defined by the C++ grammar. E.g.
285 ///     `int a;` -> range of `a`,
286 ///     `int *a;` -> range of `*a`,
287 ///     `int a[10];` -> range of `a[10]`,
288 ///     `int a[1][2][3];` -> range of `a[1][2][3]`,
289 ///     `int *a = nullptr` -> range of `*a = nullptr`.
290 ///     `int S::f(){}` -> range of `S::f()`.
291 /// FIXME: \p Name must be a source range.
292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293                                       SourceLocation Name,
294                                       SourceRange Initializer) {
295   SourceLocation Start = GetStartLoc().Visit(T);
296   SourceLocation End = T.getEndLoc();
297   if (Name.isValid()) {
298     if (Start.isInvalid())
299       Start = Name;
300     // End of TypeLoc could be invalid if the type is invalid, fallback to the
301     // NameLoc.
302     if (End.isInvalid() || SM.isBeforeInTranslationUnit(End, Name))
303       End = Name;
304   }
305   if (Initializer.isValid()) {
306     auto InitializerEnd = Initializer.getEnd();
307     assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
308            End == InitializerEnd);
309     End = InitializerEnd;
310   }
311   return SourceRange(Start, End);
312 }
313 
314 namespace {
315 /// All AST hierarchy roots that can be represented as pointers.
316 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
317 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
318 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
319 /// FIXME: expose this as public API.
320 class ASTToSyntaxMapping {
321 public:
322   void add(ASTPtr From, syntax::Tree *To) {
323     assert(To != nullptr);
324     assert(!From.isNull());
325 
326     bool Added = Nodes.insert({From, To}).second;
327     (void)Added;
328     assert(Added && "mapping added twice");
329   }
330 
331   void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
332     assert(To != nullptr);
333     assert(From.hasQualifier());
334 
335     bool Added = NNSNodes.insert({From, To}).second;
336     (void)Added;
337     assert(Added && "mapping added twice");
338   }
339 
340   syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
341 
342   syntax::Tree *find(NestedNameSpecifierLoc P) const {
343     return NNSNodes.lookup(P);
344   }
345 
346 private:
347   llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
348   llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
349 };
350 } // namespace
351 
352 /// A helper class for constructing the syntax tree while traversing a clang
353 /// AST.
354 ///
355 /// At each point of the traversal we maintain a list of pending nodes.
356 /// Initially all tokens are added as pending nodes. When processing a clang AST
357 /// node, the clients need to:
358 ///   - create a corresponding syntax node,
359 ///   - assign roles to all pending child nodes with 'markChild' and
360 ///     'markChildToken',
361 ///   - replace the child nodes with the new syntax node in the pending list
362 ///     with 'foldNode'.
363 ///
364 /// Note that all children are expected to be processed when building a node.
365 ///
366 /// Call finalize() to finish building the tree and consume the root node.
367 class syntax::TreeBuilder {
368 public:
369   TreeBuilder(syntax::Arena &Arena, TokenBufferTokenManager& TBTM)
370       : Arena(Arena),
371         TBTM(TBTM),
372         Pending(Arena, TBTM.tokenBuffer()) {
373     for (const auto &T : TBTM.tokenBuffer().expandedTokens())
374       LocationToToken.insert({T.location(), &T});
375   }
376 
377   llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
378   const SourceManager &sourceManager() const {
379     return TBTM.sourceManager();
380   }
381 
382   /// Populate children for \p New node, assuming it covers tokens from \p
383   /// Range.
384   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
385     assert(New);
386     Pending.foldChildren(TBTM.tokenBuffer(), Range, New);
387     if (From)
388       Mapping.add(From, New);
389   }
390 
391   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
392     // FIXME: add mapping for TypeLocs
393     foldNode(Range, New, nullptr);
394   }
395 
396   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
397                 NestedNameSpecifierLoc From) {
398     assert(New);
399     Pending.foldChildren(TBTM.tokenBuffer(), Range, New);
400     if (From)
401       Mapping.add(From, New);
402   }
403 
404   /// Populate children for \p New list, assuming it covers tokens from a
405   /// subrange of \p SuperRange.
406   void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
407                 ASTPtr From) {
408     assert(New);
409     auto ListRange = Pending.shrinkToFitList(SuperRange);
410     Pending.foldChildren(TBTM.tokenBuffer(), ListRange, New);
411     if (From)
412       Mapping.add(From, New);
413   }
414 
415   /// Notifies that we should not consume trailing semicolon when computing
416   /// token range of \p D.
417   void noticeDeclWithoutSemicolon(Decl *D);
418 
419   /// Mark the \p Child node with a corresponding \p Role. All marked children
420   /// should be consumed by foldNode.
421   /// When called on expressions (clang::Expr is derived from clang::Stmt),
422   /// wraps expressions into expression statement.
423   void markStmtChild(Stmt *Child, NodeRole Role);
424   /// Should be called for expressions in non-statement position to avoid
425   /// wrapping into expression statement.
426   void markExprChild(Expr *Child, NodeRole Role);
427   /// Set role for a token starting at \p Loc.
428   void markChildToken(SourceLocation Loc, NodeRole R);
429   /// Set role for \p T.
430   void markChildToken(const syntax::Token *T, NodeRole R);
431 
432   /// Set role for \p N.
433   void markChild(syntax::Node *N, NodeRole R);
434   /// Set role for the syntax node matching \p N.
435   void markChild(ASTPtr N, NodeRole R);
436   /// Set role for the syntax node matching \p N.
437   void markChild(NestedNameSpecifierLoc N, NodeRole R);
438 
439   /// Finish building the tree and consume the root node.
440   syntax::TranslationUnit *finalize() && {
441     auto Tokens = TBTM.tokenBuffer().expandedTokens();
442     assert(!Tokens.empty());
443     assert(Tokens.back().kind() == tok::eof);
444 
445     // Build the root of the tree, consuming all the children.
446     Pending.foldChildren(TBTM.tokenBuffer(), Tokens.drop_back(),
447                          new (Arena.getAllocator()) syntax::TranslationUnit);
448 
449     auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
450     TU->assertInvariantsRecursive();
451     return TU;
452   }
453 
454   /// Finds a token starting at \p L. The token must exist if \p L is valid.
455   const syntax::Token *findToken(SourceLocation L) const;
456 
457   /// Finds the syntax tokens corresponding to the \p SourceRange.
458   ArrayRef<syntax::Token> getRange(SourceRange Range) const {
459     assert(Range.isValid());
460     return getRange(Range.getBegin(), Range.getEnd());
461   }
462 
463   /// Finds the syntax tokens corresponding to the passed source locations.
464   /// \p First is the start position of the first token and \p Last is the start
465   /// position of the last token.
466   ArrayRef<syntax::Token> getRange(SourceLocation First,
467                                    SourceLocation Last) const {
468     assert(First.isValid());
469     assert(Last.isValid());
470     assert(First == Last ||
471            TBTM.sourceManager().isBeforeInTranslationUnit(First, Last));
472     return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
473   }
474 
475   ArrayRef<syntax::Token>
476   getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
477     auto Tokens = getRange(D->getSourceRange());
478     return maybeAppendSemicolon(Tokens, D);
479   }
480 
481   /// Returns true if \p D is the last declarator in a chain and is thus
482   /// reponsible for creating SimpleDeclaration for the whole chain.
483   bool isResponsibleForCreatingDeclaration(const Decl *D) const {
484     assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
485            "only DeclaratorDecl and TypedefNameDecl are supported.");
486 
487     const Decl *Next = D->getNextDeclInContext();
488 
489     // There's no next sibling, this one is responsible.
490     if (Next == nullptr) {
491       return true;
492     }
493 
494     // Next sibling is not the same type, this one is responsible.
495     if (D->getKind() != Next->getKind()) {
496       return true;
497     }
498     // Next sibling doesn't begin at the same loc, it must be a different
499     // declaration, so this declarator is responsible.
500     if (Next->getBeginLoc() != D->getBeginLoc()) {
501       return true;
502     }
503 
504     // NextT is a member of the same declaration, and we need the last member to
505     // create declaration. This one is not responsible.
506     return false;
507   }
508 
509   ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
510     ArrayRef<syntax::Token> Tokens;
511     // We want to drop the template parameters for specializations.
512     if (const auto *S = dyn_cast<TagDecl>(D))
513       Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
514     else
515       Tokens = getRange(D->getSourceRange());
516     return maybeAppendSemicolon(Tokens, D);
517   }
518 
519   ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
520     return getRange(E->getSourceRange());
521   }
522 
523   /// Find the adjusted range for the statement, consuming the trailing
524   /// semicolon when needed.
525   ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
526     auto Tokens = getRange(S->getSourceRange());
527     if (isa<CompoundStmt>(S))
528       return Tokens;
529 
530     // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
531     // all statements that end with those. Consume this semicolon here.
532     if (Tokens.back().kind() == tok::semi)
533       return Tokens;
534     return withTrailingSemicolon(Tokens);
535   }
536 
537 private:
538   ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
539                                                const Decl *D) const {
540     if (isa<NamespaceDecl>(D))
541       return Tokens;
542     if (DeclsWithoutSemicolons.count(D))
543       return Tokens;
544     // FIXME: do not consume trailing semicolon on function definitions.
545     // Most declarations own a semicolon in syntax trees, but not in clang AST.
546     return withTrailingSemicolon(Tokens);
547   }
548 
549   ArrayRef<syntax::Token>
550   withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
551     assert(!Tokens.empty());
552     assert(Tokens.back().kind() != tok::eof);
553     // We never consume 'eof', so looking at the next token is ok.
554     if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
555       return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
556     return Tokens;
557   }
558 
559   void setRole(syntax::Node *N, NodeRole R) {
560     assert(N->getRole() == NodeRole::Detached);
561     N->setRole(R);
562   }
563 
564   /// A collection of trees covering the input tokens.
565   /// When created, each tree corresponds to a single token in the file.
566   /// Clients call 'foldChildren' to attach one or more subtrees to a parent
567   /// node and update the list of trees accordingly.
568   ///
569   /// Ensures that added nodes properly nest and cover the whole token stream.
570   struct Forest {
571     Forest(syntax::Arena &A, const syntax::TokenBuffer &TB) {
572       assert(!TB.expandedTokens().empty());
573       assert(TB.expandedTokens().back().kind() == tok::eof);
574       // Create all leaf nodes.
575       // Note that we do not have 'eof' in the tree.
576       for (const auto &T : TB.expandedTokens().drop_back()) {
577         auto *L = new (A.getAllocator())
578             syntax::Leaf(reinterpret_cast<TokenManager::Key>(&T));
579         L->Original = true;
580         L->CanModify = TB.spelledForExpanded(T).has_value();
581         Trees.insert(Trees.end(), {&T, L});
582       }
583     }
584 
585     void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
586       assert(!Range.empty());
587       auto It = Trees.lower_bound(Range.begin());
588       assert(It != Trees.end() && "no node found");
589       assert(It->first == Range.begin() && "no child with the specified range");
590       assert((std::next(It) == Trees.end() ||
591               std::next(It)->first == Range.end()) &&
592              "no child with the specified range");
593       assert(It->second->getRole() == NodeRole::Detached &&
594              "re-assigning role for a child");
595       It->second->setRole(Role);
596     }
597 
598     /// Shrink \p Range to a subrange that only contains tokens of a list.
599     /// List elements and delimiters should already have correct roles.
600     ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
601       auto BeginChildren = Trees.lower_bound(Range.begin());
602       assert((BeginChildren == Trees.end() ||
603               BeginChildren->first == Range.begin()) &&
604              "Range crosses boundaries of existing subtrees");
605 
606       auto EndChildren = Trees.lower_bound(Range.end());
607       assert(
608           (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
609           "Range crosses boundaries of existing subtrees");
610 
611       auto BelongsToList = [](decltype(Trees)::value_type KV) {
612         auto Role = KV.second->getRole();
613         return Role == syntax::NodeRole::ListElement ||
614                Role == syntax::NodeRole::ListDelimiter;
615       };
616 
617       auto BeginListChildren =
618           std::find_if(BeginChildren, EndChildren, BelongsToList);
619 
620       auto EndListChildren =
621           std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
622 
623       return ArrayRef<syntax::Token>(BeginListChildren->first,
624                                      EndListChildren->first);
625     }
626 
627     /// Add \p Node to the forest and attach child nodes based on \p Tokens.
628     void foldChildren(const syntax::TokenBuffer &TB,
629                       ArrayRef<syntax::Token> Tokens, syntax::Tree *Node) {
630       // Attach children to `Node`.
631       assert(Node->getFirstChild() == nullptr && "node already has children");
632 
633       auto *FirstToken = Tokens.begin();
634       auto BeginChildren = Trees.lower_bound(FirstToken);
635 
636       assert((BeginChildren == Trees.end() ||
637               BeginChildren->first == FirstToken) &&
638              "fold crosses boundaries of existing subtrees");
639       auto EndChildren = Trees.lower_bound(Tokens.end());
640       assert(
641           (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
642           "fold crosses boundaries of existing subtrees");
643 
644       for (auto It = BeginChildren; It != EndChildren; ++It) {
645         auto *C = It->second;
646         if (C->getRole() == NodeRole::Detached)
647           C->setRole(NodeRole::Unknown);
648         Node->appendChildLowLevel(C);
649       }
650 
651       // Mark that this node came from the AST and is backed by the source code.
652       Node->Original = true;
653       Node->CanModify =
654           TB.spelledForExpanded(Tokens).has_value();
655 
656       Trees.erase(BeginChildren, EndChildren);
657       Trees.insert({FirstToken, Node});
658     }
659 
660     // EXPECTS: all tokens were consumed and are owned by a single root node.
661     syntax::Node *finalize() && {
662       assert(Trees.size() == 1);
663       auto *Root = Trees.begin()->second;
664       Trees = {};
665       return Root;
666     }
667 
668     std::string str(const syntax::TokenBufferTokenManager &STM) const {
669       std::string R;
670       for (auto It = Trees.begin(); It != Trees.end(); ++It) {
671         unsigned CoveredTokens =
672             It != Trees.end()
673                 ? (std::next(It)->first - It->first)
674                 : STM.tokenBuffer().expandedTokens().end() - It->first;
675 
676         R += std::string(
677             formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
678                     It->first->text(STM.sourceManager()), CoveredTokens));
679         R += It->second->dump(STM);
680       }
681       return R;
682     }
683 
684   private:
685     /// Maps from the start token to a subtree starting at that token.
686     /// Keys in the map are pointers into the array of expanded tokens, so
687     /// pointer order corresponds to the order of preprocessor tokens.
688     std::map<const syntax::Token *, syntax::Node *> Trees;
689   };
690 
691   /// For debugging purposes.
692   std::string str() { return Pending.str(TBTM); }
693 
694   syntax::Arena &Arena;
695   TokenBufferTokenManager& TBTM;
696   /// To quickly find tokens by their start location.
697   llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
698   Forest Pending;
699   llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
700   ASTToSyntaxMapping Mapping;
701 };
702 
703 namespace {
704 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
705 public:
706   explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
707       : Builder(Builder), Context(Context) {}
708 
709   bool shouldTraversePostOrder() const { return true; }
710 
711   bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
712     return processDeclaratorAndDeclaration(DD);
713   }
714 
715   bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
716     return processDeclaratorAndDeclaration(TD);
717   }
718 
719   bool VisitDecl(Decl *D) {
720     assert(!D->isImplicit());
721     Builder.foldNode(Builder.getDeclarationRange(D),
722                      new (allocator()) syntax::UnknownDeclaration(), D);
723     return true;
724   }
725 
726   // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
727   // override Traverse.
728   // FIXME: make RAV call WalkUpFrom* instead.
729   bool
730   TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
731     if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
732       return false;
733     if (C->isExplicitSpecialization())
734       return true; // we are only interested in explicit instantiations.
735     auto *Declaration =
736         cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
737     foldExplicitTemplateInstantiation(
738         Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
739         Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
740     return true;
741   }
742 
743   bool WalkUpFromTemplateDecl(TemplateDecl *S) {
744     foldTemplateDeclaration(
745         Builder.getDeclarationRange(S),
746         Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
747         Builder.getDeclarationRange(S->getTemplatedDecl()), S);
748     return true;
749   }
750 
751   bool WalkUpFromTagDecl(TagDecl *C) {
752     // FIXME: build the ClassSpecifier node.
753     if (!C->isFreeStanding()) {
754       assert(C->getNumTemplateParameterLists() == 0);
755       return true;
756     }
757     handleFreeStandingTagDecl(C);
758     return true;
759   }
760 
761   syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
762     assert(C->isFreeStanding());
763     // Class is a declaration specifier and needs a spanning declaration node.
764     auto DeclarationRange = Builder.getDeclarationRange(C);
765     syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
766     Builder.foldNode(DeclarationRange, Result, nullptr);
767 
768     // Build TemplateDeclaration nodes if we had template parameters.
769     auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
770       const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
771       auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
772       Result =
773           foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
774       DeclarationRange = R;
775     };
776     if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
777       ConsumeTemplateParameters(*S->getTemplateParameters());
778     for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
779       ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
780     return Result;
781   }
782 
783   bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
784     // We do not want to call VisitDecl(), the declaration for translation
785     // unit is built by finalize().
786     return true;
787   }
788 
789   bool WalkUpFromCompoundStmt(CompoundStmt *S) {
790     using NodeRole = syntax::NodeRole;
791 
792     Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
793     for (auto *Child : S->body())
794       Builder.markStmtChild(Child, NodeRole::Statement);
795     Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
796 
797     Builder.foldNode(Builder.getStmtRange(S),
798                      new (allocator()) syntax::CompoundStatement, S);
799     return true;
800   }
801 
802   // Some statements are not yet handled by syntax trees.
803   bool WalkUpFromStmt(Stmt *S) {
804     Builder.foldNode(Builder.getStmtRange(S),
805                      new (allocator()) syntax::UnknownStatement, S);
806     return true;
807   }
808 
809   bool TraverseIfStmt(IfStmt *S) {
810     bool Result = [&, this]() {
811       if (S->getInit() && !TraverseStmt(S->getInit())) {
812         return false;
813       }
814       // In cases where the condition is an initialized declaration in a
815       // statement, we want to preserve the declaration and ignore the
816       // implicit condition expression in the syntax tree.
817       if (S->hasVarStorage()) {
818         if (!TraverseStmt(S->getConditionVariableDeclStmt()))
819           return false;
820       } else if (S->getCond() && !TraverseStmt(S->getCond()))
821         return false;
822 
823       if (S->getThen() && !TraverseStmt(S->getThen()))
824         return false;
825       if (S->getElse() && !TraverseStmt(S->getElse()))
826         return false;
827       return true;
828     }();
829     WalkUpFromIfStmt(S);
830     return Result;
831   }
832 
833   bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
834     // We override to traverse range initializer as VarDecl.
835     // RAV traverses it as a statement, we produce invalid node kinds in that
836     // case.
837     // FIXME: should do this in RAV instead?
838     bool Result = [&, this]() {
839       if (S->getInit() && !TraverseStmt(S->getInit()))
840         return false;
841       if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
842         return false;
843       if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
844         return false;
845       if (S->getBody() && !TraverseStmt(S->getBody()))
846         return false;
847       return true;
848     }();
849     WalkUpFromCXXForRangeStmt(S);
850     return Result;
851   }
852 
853   bool TraverseStmt(Stmt *S) {
854     if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
855       // We want to consume the semicolon, make sure SimpleDeclaration does not.
856       for (auto *D : DS->decls())
857         Builder.noticeDeclWithoutSemicolon(D);
858     } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
859       return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
860     }
861     return RecursiveASTVisitor::TraverseStmt(S);
862   }
863 
864   bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) {
865     // OpaqueValue doesn't correspond to concrete syntax, ignore it.
866     return true;
867   }
868 
869   // Some expressions are not yet handled by syntax trees.
870   bool WalkUpFromExpr(Expr *E) {
871     assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
872     Builder.foldNode(Builder.getExprRange(E),
873                      new (allocator()) syntax::UnknownExpression, E);
874     return true;
875   }
876 
877   bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
878     // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
879     // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
880     // UDL suffix location does not point to the beginning of a token, so we
881     // can't represent the UDL suffix as a separate syntax tree node.
882 
883     return WalkUpFromUserDefinedLiteral(S);
884   }
885 
886   syntax::UserDefinedLiteralExpression *
887   buildUserDefinedLiteral(UserDefinedLiteral *S) {
888     switch (S->getLiteralOperatorKind()) {
889     case UserDefinedLiteral::LOK_Integer:
890       return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
891     case UserDefinedLiteral::LOK_Floating:
892       return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
893     case UserDefinedLiteral::LOK_Character:
894       return new (allocator()) syntax::CharUserDefinedLiteralExpression;
895     case UserDefinedLiteral::LOK_String:
896       return new (allocator()) syntax::StringUserDefinedLiteralExpression;
897     case UserDefinedLiteral::LOK_Raw:
898     case UserDefinedLiteral::LOK_Template:
899       // For raw literal operator and numeric literal operator template we
900       // cannot get the type of the operand in the semantic AST. We get this
901       // information from the token. As integer and floating point have the same
902       // token kind, we run `NumericLiteralParser` again to distinguish them.
903       auto TokLoc = S->getBeginLoc();
904       auto TokSpelling =
905           Builder.findToken(TokLoc)->text(Context.getSourceManager());
906       auto Literal =
907           NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
908                                Context.getLangOpts(), Context.getTargetInfo(),
909                                Context.getDiagnostics());
910       if (Literal.isIntegerLiteral())
911         return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
912       else {
913         assert(Literal.isFloatingLiteral());
914         return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
915       }
916     }
917     llvm_unreachable("Unknown literal operator kind.");
918   }
919 
920   bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
921     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
922     Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
923     return true;
924   }
925 
926   // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
927   // `DependentTemplateSpecializationType` case.
928   /// Given a nested-name-specifier return the range for the last name
929   /// specifier.
930   ///
931   /// e.g. `std::T::template X<U>::` => `template X<U>::`
932   SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
933     auto SR = NNSLoc.getLocalSourceRange();
934 
935     // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
936     // return the desired `SourceRange`, but there is a corner case. For a
937     // `DependentTemplateSpecializationType` this method returns its
938     // qualifiers as well, in other words in the example above this method
939     // returns `T::template X<U>::` instead of only `template X<U>::`
940     if (auto TL = NNSLoc.getTypeLoc()) {
941       if (auto DependentTL =
942               TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
943         // The 'template' keyword is always present in dependent template
944         // specializations. Except in the case of incorrect code
945         // TODO: Treat the case of incorrect code.
946         SR.setBegin(DependentTL.getTemplateKeywordLoc());
947       }
948     }
949 
950     return SR;
951   }
952 
953   syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
954     switch (NNS.getKind()) {
955     case NestedNameSpecifier::Global:
956       return syntax::NodeKind::GlobalNameSpecifier;
957     case NestedNameSpecifier::Namespace:
958     case NestedNameSpecifier::NamespaceAlias:
959     case NestedNameSpecifier::Identifier:
960       return syntax::NodeKind::IdentifierNameSpecifier;
961     case NestedNameSpecifier::TypeSpecWithTemplate:
962       return syntax::NodeKind::SimpleTemplateNameSpecifier;
963     case NestedNameSpecifier::TypeSpec: {
964       const auto *NNSType = NNS.getAsType();
965       assert(NNSType);
966       if (isa<DecltypeType>(NNSType))
967         return syntax::NodeKind::DecltypeNameSpecifier;
968       if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
969               NNSType))
970         return syntax::NodeKind::SimpleTemplateNameSpecifier;
971       return syntax::NodeKind::IdentifierNameSpecifier;
972     }
973     default:
974       // FIXME: Support Microsoft's __super
975       llvm::report_fatal_error("We don't yet support the __super specifier",
976                                true);
977     }
978   }
979 
980   syntax::NameSpecifier *
981   buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
982     assert(NNSLoc.hasQualifier());
983     auto NameSpecifierTokens =
984         Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
985     switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
986     case syntax::NodeKind::GlobalNameSpecifier:
987       return new (allocator()) syntax::GlobalNameSpecifier;
988     case syntax::NodeKind::IdentifierNameSpecifier: {
989       assert(NameSpecifierTokens.size() == 1);
990       Builder.markChildToken(NameSpecifierTokens.begin(),
991                              syntax::NodeRole::Unknown);
992       auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
993       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
994       return NS;
995     }
996     case syntax::NodeKind::SimpleTemplateNameSpecifier: {
997       // TODO: Build `SimpleTemplateNameSpecifier` children and implement
998       // accessors to them.
999       // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
1000       // some `TypeLoc`s have inside them the previous name specifier and
1001       // we want to treat them independently.
1002       auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
1003       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1004       return NS;
1005     }
1006     case syntax::NodeKind::DecltypeNameSpecifier: {
1007       const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
1008       if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
1009         return nullptr;
1010       auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
1011       // TODO: Implement accessor to `DecltypeNameSpecifier` inner
1012       // `DecltypeTypeLoc`.
1013       // For that add mapping from `TypeLoc` to `syntax::Node*` then:
1014       // Builder.markChild(TypeLoc, syntax::NodeRole);
1015       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1016       return NS;
1017     }
1018     default:
1019       llvm_unreachable("getChildKind() does not return this value");
1020     }
1021   }
1022 
1023   // To build syntax tree nodes for NestedNameSpecifierLoc we override
1024   // Traverse instead of WalkUpFrom because we want to traverse the children
1025   // ourselves and build a list instead of a nested tree of name specifier
1026   // prefixes.
1027   bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
1028     if (!QualifierLoc)
1029       return true;
1030     for (auto It = QualifierLoc; It; It = It.getPrefix()) {
1031       auto *NS = buildNameSpecifier(It);
1032       if (!NS)
1033         return false;
1034       Builder.markChild(NS, syntax::NodeRole::ListElement);
1035       Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
1036     }
1037     Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
1038                      new (allocator()) syntax::NestedNameSpecifier,
1039                      QualifierLoc);
1040     return true;
1041   }
1042 
1043   syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
1044                                           SourceLocation TemplateKeywordLoc,
1045                                           SourceRange UnqualifiedIdLoc,
1046                                           ASTPtr From) {
1047     if (QualifierLoc) {
1048       Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
1049       if (TemplateKeywordLoc.isValid())
1050         Builder.markChildToken(TemplateKeywordLoc,
1051                                syntax::NodeRole::TemplateKeyword);
1052     }
1053 
1054     auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
1055     Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
1056                      nullptr);
1057     Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
1058 
1059     auto IdExpressionBeginLoc =
1060         QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
1061 
1062     auto *TheIdExpression = new (allocator()) syntax::IdExpression;
1063     Builder.foldNode(
1064         Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
1065         TheIdExpression, From);
1066 
1067     return TheIdExpression;
1068   }
1069 
1070   bool WalkUpFromMemberExpr(MemberExpr *S) {
1071     // For `MemberExpr` with implicit `this->` we generate a simple
1072     // `id-expression` syntax node, beacuse an implicit `member-expression` is
1073     // syntactically undistinguishable from an `id-expression`
1074     if (S->isImplicitAccess()) {
1075       buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1076                         SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1077       return true;
1078     }
1079 
1080     auto *TheIdExpression = buildIdExpression(
1081         S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1082         SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1083 
1084     Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1085 
1086     Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
1087     Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
1088 
1089     Builder.foldNode(Builder.getExprRange(S),
1090                      new (allocator()) syntax::MemberExpression, S);
1091     return true;
1092   }
1093 
1094   bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1095     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1096                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1097 
1098     return true;
1099   }
1100 
1101   // Same logic as DeclRefExpr.
1102   bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1103     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1104                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1105 
1106     return true;
1107   }
1108 
1109   bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1110     if (!S->isImplicit()) {
1111       Builder.markChildToken(S->getLocation(),
1112                              syntax::NodeRole::IntroducerKeyword);
1113       Builder.foldNode(Builder.getExprRange(S),
1114                        new (allocator()) syntax::ThisExpression, S);
1115     }
1116     return true;
1117   }
1118 
1119   bool WalkUpFromParenExpr(ParenExpr *S) {
1120     Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
1121     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
1122     Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
1123     Builder.foldNode(Builder.getExprRange(S),
1124                      new (allocator()) syntax::ParenExpression, S);
1125     return true;
1126   }
1127 
1128   bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1129     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1130     Builder.foldNode(Builder.getExprRange(S),
1131                      new (allocator()) syntax::IntegerLiteralExpression, S);
1132     return true;
1133   }
1134 
1135   bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1136     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1137     Builder.foldNode(Builder.getExprRange(S),
1138                      new (allocator()) syntax::CharacterLiteralExpression, S);
1139     return true;
1140   }
1141 
1142   bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1143     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1144     Builder.foldNode(Builder.getExprRange(S),
1145                      new (allocator()) syntax::FloatingLiteralExpression, S);
1146     return true;
1147   }
1148 
1149   bool WalkUpFromStringLiteral(StringLiteral *S) {
1150     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
1151     Builder.foldNode(Builder.getExprRange(S),
1152                      new (allocator()) syntax::StringLiteralExpression, S);
1153     return true;
1154   }
1155 
1156   bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1157     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1158     Builder.foldNode(Builder.getExprRange(S),
1159                      new (allocator()) syntax::BoolLiteralExpression, S);
1160     return true;
1161   }
1162 
1163   bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1164     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1165     Builder.foldNode(Builder.getExprRange(S),
1166                      new (allocator()) syntax::CxxNullPtrExpression, S);
1167     return true;
1168   }
1169 
1170   bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1171     Builder.markChildToken(S->getOperatorLoc(),
1172                            syntax::NodeRole::OperatorToken);
1173     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
1174 
1175     if (S->isPostfix())
1176       Builder.foldNode(Builder.getExprRange(S),
1177                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1178                        S);
1179     else
1180       Builder.foldNode(Builder.getExprRange(S),
1181                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1182                        S);
1183 
1184     return true;
1185   }
1186 
1187   bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1188     Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
1189     Builder.markChildToken(S->getOperatorLoc(),
1190                            syntax::NodeRole::OperatorToken);
1191     Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
1192     Builder.foldNode(Builder.getExprRange(S),
1193                      new (allocator()) syntax::BinaryOperatorExpression, S);
1194     return true;
1195   }
1196 
1197   /// Builds `CallArguments` syntax node from arguments that appear in source
1198   /// code, i.e. not default arguments.
1199   syntax::CallArguments *
1200   buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1201     auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
1202     for (auto *Arg : Args) {
1203       Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1204       const auto *DelimiterToken =
1205           std::next(Builder.findToken(Arg->getEndLoc()));
1206       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1207         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1208     }
1209 
1210     auto *Arguments = new (allocator()) syntax::CallArguments;
1211     if (!Args.empty())
1212       Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1213                                         (*(Args.end() - 1))->getEndLoc()),
1214                        Arguments, nullptr);
1215 
1216     return Arguments;
1217   }
1218 
1219   bool WalkUpFromCallExpr(CallExpr *S) {
1220     Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
1221 
1222     const auto *LParenToken =
1223         std::next(Builder.findToken(S->getCallee()->getEndLoc()));
1224     // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1225     // the test on decltype desctructors.
1226     if (LParenToken->kind() == clang::tok::l_paren)
1227       Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1228 
1229     Builder.markChild(buildCallArguments(S->arguments()),
1230                       syntax::NodeRole::Arguments);
1231 
1232     Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1233 
1234     Builder.foldNode(Builder.getRange(S->getSourceRange()),
1235                      new (allocator()) syntax::CallExpression, S);
1236     return true;
1237   }
1238 
1239   bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1240     // Ignore the implicit calls to default constructors.
1241     if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
1242         S->getParenOrBraceRange().isInvalid())
1243       return true;
1244     return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1245   }
1246 
1247   bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1248     // To construct a syntax tree of the same shape for calls to built-in and
1249     // user-defined operators, ignore the `DeclRefExpr` that refers to the
1250     // operator and treat it as a simple token. Do that by traversing
1251     // arguments instead of children.
1252     for (auto *child : S->arguments()) {
1253       // A postfix unary operator is declared as taking two operands. The
1254       // second operand is used to distinguish from its prefix counterpart. In
1255       // the semantic AST this "phantom" operand is represented as a
1256       // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1257       // operand because it does not correspond to anything written in source
1258       // code.
1259       if (child->getSourceRange().isInvalid()) {
1260         assert(getOperatorNodeKind(*S) ==
1261                syntax::NodeKind::PostfixUnaryOperatorExpression);
1262         continue;
1263       }
1264       if (!TraverseStmt(child))
1265         return false;
1266     }
1267     return WalkUpFromCXXOperatorCallExpr(S);
1268   }
1269 
1270   bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1271     switch (getOperatorNodeKind(*S)) {
1272     case syntax::NodeKind::BinaryOperatorExpression:
1273       Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
1274       Builder.markChildToken(S->getOperatorLoc(),
1275                              syntax::NodeRole::OperatorToken);
1276       Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
1277       Builder.foldNode(Builder.getExprRange(S),
1278                        new (allocator()) syntax::BinaryOperatorExpression, S);
1279       return true;
1280     case syntax::NodeKind::PrefixUnaryOperatorExpression:
1281       Builder.markChildToken(S->getOperatorLoc(),
1282                              syntax::NodeRole::OperatorToken);
1283       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1284       Builder.foldNode(Builder.getExprRange(S),
1285                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1286                        S);
1287       return true;
1288     case syntax::NodeKind::PostfixUnaryOperatorExpression:
1289       Builder.markChildToken(S->getOperatorLoc(),
1290                              syntax::NodeRole::OperatorToken);
1291       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1292       Builder.foldNode(Builder.getExprRange(S),
1293                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1294                        S);
1295       return true;
1296     case syntax::NodeKind::CallExpression: {
1297       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
1298 
1299       const auto *LParenToken =
1300           std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
1301       // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1302       // fixed the test on decltype desctructors.
1303       if (LParenToken->kind() == clang::tok::l_paren)
1304         Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1305 
1306       Builder.markChild(buildCallArguments(CallExpr::arg_range(
1307                             S->arg_begin() + 1, S->arg_end())),
1308                         syntax::NodeRole::Arguments);
1309 
1310       Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1311 
1312       Builder.foldNode(Builder.getRange(S->getSourceRange()),
1313                        new (allocator()) syntax::CallExpression, S);
1314       return true;
1315     }
1316     case syntax::NodeKind::UnknownExpression:
1317       return WalkUpFromExpr(S);
1318     default:
1319       llvm_unreachable("getOperatorNodeKind() does not return this value");
1320     }
1321   }
1322 
1323   bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1324 
1325   bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1326     auto Tokens = Builder.getDeclarationRange(S);
1327     if (Tokens.front().kind() == tok::coloncolon) {
1328       // Handle nested namespace definitions. Those start at '::' token, e.g.
1329       // namespace a^::b {}
1330       // FIXME: build corresponding nodes for the name of this namespace.
1331       return true;
1332     }
1333     Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1334     return true;
1335   }
1336 
1337   // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1338   // results. Find test coverage or remove it.
1339   bool TraverseParenTypeLoc(ParenTypeLoc L) {
1340     // We reverse order of traversal to get the proper syntax structure.
1341     if (!WalkUpFromParenTypeLoc(L))
1342       return false;
1343     return TraverseTypeLoc(L.getInnerLoc());
1344   }
1345 
1346   bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1347     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1348     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1349     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
1350                      new (allocator()) syntax::ParenDeclarator, L);
1351     return true;
1352   }
1353 
1354   // Declarator chunks, they are produced by type locs and some clang::Decls.
1355   bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1356     Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
1357     Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
1358     Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
1359     Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
1360                      new (allocator()) syntax::ArraySubscript, L);
1361     return true;
1362   }
1363 
1364   syntax::ParameterDeclarationList *
1365   buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1366     for (auto *P : Params) {
1367       Builder.markChild(P, syntax::NodeRole::ListElement);
1368       const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
1369       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1370         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1371     }
1372     auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1373     if (!Params.empty())
1374       Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1375                                         Params.back()->getEndLoc()),
1376                        Parameters, nullptr);
1377     return Parameters;
1378   }
1379 
1380   bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1381     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1382 
1383     Builder.markChild(buildParameterDeclarationList(L.getParams()),
1384                       syntax::NodeRole::Parameters);
1385 
1386     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1387     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1388                      new (allocator()) syntax::ParametersAndQualifiers, L);
1389     return true;
1390   }
1391 
1392   bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1393     if (!L.getTypePtr()->hasTrailingReturn())
1394       return WalkUpFromFunctionTypeLoc(L);
1395 
1396     auto *TrailingReturnTokens = buildTrailingReturn(L);
1397     // Finish building the node for parameters.
1398     Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
1399     return WalkUpFromFunctionTypeLoc(L);
1400   }
1401 
1402   bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1403     // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1404     // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1405     // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1406     // syntax structure.
1407     if (!WalkUpFromMemberPointerTypeLoc(L))
1408       return false;
1409     return TraverseTypeLoc(L.getPointeeLoc());
1410   }
1411 
1412   bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1413     auto SR = L.getLocalSourceRange();
1414     Builder.foldNode(Builder.getRange(SR),
1415                      new (allocator()) syntax::MemberPointer, L);
1416     return true;
1417   }
1418 
1419   // The code below is very regular, it could even be generated with some
1420   // preprocessor magic. We merely assign roles to the corresponding children
1421   // and fold resulting nodes.
1422   bool WalkUpFromDeclStmt(DeclStmt *S) {
1423     Builder.foldNode(Builder.getStmtRange(S),
1424                      new (allocator()) syntax::DeclarationStatement, S);
1425     return true;
1426   }
1427 
1428   bool WalkUpFromNullStmt(NullStmt *S) {
1429     Builder.foldNode(Builder.getStmtRange(S),
1430                      new (allocator()) syntax::EmptyStatement, S);
1431     return true;
1432   }
1433 
1434   bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1435     Builder.markChildToken(S->getSwitchLoc(),
1436                            syntax::NodeRole::IntroducerKeyword);
1437     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1438     Builder.foldNode(Builder.getStmtRange(S),
1439                      new (allocator()) syntax::SwitchStatement, S);
1440     return true;
1441   }
1442 
1443   bool WalkUpFromCaseStmt(CaseStmt *S) {
1444     Builder.markChildToken(S->getKeywordLoc(),
1445                            syntax::NodeRole::IntroducerKeyword);
1446     Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
1447     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1448     Builder.foldNode(Builder.getStmtRange(S),
1449                      new (allocator()) syntax::CaseStatement, S);
1450     return true;
1451   }
1452 
1453   bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1454     Builder.markChildToken(S->getKeywordLoc(),
1455                            syntax::NodeRole::IntroducerKeyword);
1456     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1457     Builder.foldNode(Builder.getStmtRange(S),
1458                      new (allocator()) syntax::DefaultStatement, S);
1459     return true;
1460   }
1461 
1462   bool WalkUpFromIfStmt(IfStmt *S) {
1463     Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
1464     Stmt *ConditionStatement = S->getCond();
1465     if (S->hasVarStorage())
1466       ConditionStatement = S->getConditionVariableDeclStmt();
1467     Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition);
1468     Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
1469     Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
1470     Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
1471     Builder.foldNode(Builder.getStmtRange(S),
1472                      new (allocator()) syntax::IfStatement, S);
1473     return true;
1474   }
1475 
1476   bool WalkUpFromForStmt(ForStmt *S) {
1477     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1478     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1479     Builder.foldNode(Builder.getStmtRange(S),
1480                      new (allocator()) syntax::ForStatement, S);
1481     return true;
1482   }
1483 
1484   bool WalkUpFromWhileStmt(WhileStmt *S) {
1485     Builder.markChildToken(S->getWhileLoc(),
1486                            syntax::NodeRole::IntroducerKeyword);
1487     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1488     Builder.foldNode(Builder.getStmtRange(S),
1489                      new (allocator()) syntax::WhileStatement, S);
1490     return true;
1491   }
1492 
1493   bool WalkUpFromContinueStmt(ContinueStmt *S) {
1494     Builder.markChildToken(S->getContinueLoc(),
1495                            syntax::NodeRole::IntroducerKeyword);
1496     Builder.foldNode(Builder.getStmtRange(S),
1497                      new (allocator()) syntax::ContinueStatement, S);
1498     return true;
1499   }
1500 
1501   bool WalkUpFromBreakStmt(BreakStmt *S) {
1502     Builder.markChildToken(S->getBreakLoc(),
1503                            syntax::NodeRole::IntroducerKeyword);
1504     Builder.foldNode(Builder.getStmtRange(S),
1505                      new (allocator()) syntax::BreakStatement, S);
1506     return true;
1507   }
1508 
1509   bool WalkUpFromReturnStmt(ReturnStmt *S) {
1510     Builder.markChildToken(S->getReturnLoc(),
1511                            syntax::NodeRole::IntroducerKeyword);
1512     Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
1513     Builder.foldNode(Builder.getStmtRange(S),
1514                      new (allocator()) syntax::ReturnStatement, S);
1515     return true;
1516   }
1517 
1518   bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1519     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1520     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1521     Builder.foldNode(Builder.getStmtRange(S),
1522                      new (allocator()) syntax::RangeBasedForStatement, S);
1523     return true;
1524   }
1525 
1526   bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1527     Builder.foldNode(Builder.getDeclarationRange(S),
1528                      new (allocator()) syntax::EmptyDeclaration, S);
1529     return true;
1530   }
1531 
1532   bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1533     Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
1534     Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
1535     Builder.foldNode(Builder.getDeclarationRange(S),
1536                      new (allocator()) syntax::StaticAssertDeclaration, S);
1537     return true;
1538   }
1539 
1540   bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1541     Builder.foldNode(Builder.getDeclarationRange(S),
1542                      new (allocator()) syntax::LinkageSpecificationDeclaration,
1543                      S);
1544     return true;
1545   }
1546 
1547   bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1548     Builder.foldNode(Builder.getDeclarationRange(S),
1549                      new (allocator()) syntax::NamespaceAliasDefinition, S);
1550     return true;
1551   }
1552 
1553   bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1554     Builder.foldNode(Builder.getDeclarationRange(S),
1555                      new (allocator()) syntax::UsingNamespaceDirective, S);
1556     return true;
1557   }
1558 
1559   bool WalkUpFromUsingDecl(UsingDecl *S) {
1560     Builder.foldNode(Builder.getDeclarationRange(S),
1561                      new (allocator()) syntax::UsingDeclaration, S);
1562     return true;
1563   }
1564 
1565   bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1566     Builder.foldNode(Builder.getDeclarationRange(S),
1567                      new (allocator()) syntax::UsingDeclaration, S);
1568     return true;
1569   }
1570 
1571   bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1572     Builder.foldNode(Builder.getDeclarationRange(S),
1573                      new (allocator()) syntax::UsingDeclaration, S);
1574     return true;
1575   }
1576 
1577   bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1578     Builder.foldNode(Builder.getDeclarationRange(S),
1579                      new (allocator()) syntax::TypeAliasDeclaration, S);
1580     return true;
1581   }
1582 
1583 private:
1584   /// Folds SimpleDeclarator node (if present) and in case this is the last
1585   /// declarator in the chain it also folds SimpleDeclaration node.
1586   template <class T> bool processDeclaratorAndDeclaration(T *D) {
1587     auto Range = getDeclaratorRange(
1588         Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1589         getQualifiedNameStart(D), getInitializerRange(D));
1590 
1591     // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1592     // declaration, but no declarator).
1593     if (!Range.getBegin().isValid()) {
1594       Builder.markChild(new (allocator()) syntax::DeclaratorList,
1595                         syntax::NodeRole::Declarators);
1596       Builder.foldNode(Builder.getDeclarationRange(D),
1597                        new (allocator()) syntax::SimpleDeclaration, D);
1598       return true;
1599     }
1600 
1601     auto *N = new (allocator()) syntax::SimpleDeclarator;
1602     Builder.foldNode(Builder.getRange(Range), N, nullptr);
1603     Builder.markChild(N, syntax::NodeRole::ListElement);
1604 
1605     if (!Builder.isResponsibleForCreatingDeclaration(D)) {
1606       // If this is not the last declarator in the declaration we expect a
1607       // delimiter after it.
1608       const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
1609       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1610         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1611     } else {
1612       auto *DL = new (allocator()) syntax::DeclaratorList;
1613       auto DeclarationRange = Builder.getDeclarationRange(D);
1614       Builder.foldList(DeclarationRange, DL, nullptr);
1615 
1616       Builder.markChild(DL, syntax::NodeRole::Declarators);
1617       Builder.foldNode(DeclarationRange,
1618                        new (allocator()) syntax::SimpleDeclaration, D);
1619     }
1620     return true;
1621   }
1622 
1623   /// Returns the range of the built node.
1624   syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1625     assert(L.getTypePtr()->hasTrailingReturn());
1626 
1627     auto ReturnedType = L.getReturnLoc();
1628     // Build node for the declarator, if any.
1629     auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1630                                              ReturnedType.getEndLoc());
1631     syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1632     if (ReturnDeclaratorRange.isValid()) {
1633       ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1634       Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1635                        ReturnDeclarator, nullptr);
1636     }
1637 
1638     // Build node for trailing return type.
1639     auto Return = Builder.getRange(ReturnedType.getSourceRange());
1640     const auto *Arrow = Return.begin() - 1;
1641     assert(Arrow->kind() == tok::arrow);
1642     auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
1643     Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1644     if (ReturnDeclarator)
1645       Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
1646     auto *R = new (allocator()) syntax::TrailingReturnType;
1647     Builder.foldNode(Tokens, R, L);
1648     return R;
1649   }
1650 
1651   void foldExplicitTemplateInstantiation(
1652       ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1653       const syntax::Token *TemplateKW,
1654       syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1655     assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1656     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1657     Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
1658     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1659     Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
1660     Builder.foldNode(
1661         Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1662   }
1663 
1664   syntax::TemplateDeclaration *foldTemplateDeclaration(
1665       ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1666       ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1667     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1668     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1669 
1670     auto *N = new (allocator()) syntax::TemplateDeclaration;
1671     Builder.foldNode(Range, N, From);
1672     Builder.markChild(N, syntax::NodeRole::Declaration);
1673     return N;
1674   }
1675 
1676   /// A small helper to save some typing.
1677   llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1678 
1679   syntax::TreeBuilder &Builder;
1680   const ASTContext &Context;
1681 };
1682 } // namespace
1683 
1684 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1685   DeclsWithoutSemicolons.insert(D);
1686 }
1687 
1688 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1689   if (Loc.isInvalid())
1690     return;
1691   Pending.assignRole(*findToken(Loc), Role);
1692 }
1693 
1694 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1695   if (!T)
1696     return;
1697   Pending.assignRole(*T, R);
1698 }
1699 
1700 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1701   assert(N);
1702   setRole(N, R);
1703 }
1704 
1705 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1706   auto *SN = Mapping.find(N);
1707   assert(SN != nullptr);
1708   setRole(SN, R);
1709 }
1710 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1711   auto *SN = Mapping.find(NNSLoc);
1712   assert(SN != nullptr);
1713   setRole(SN, R);
1714 }
1715 
1716 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1717   if (!Child)
1718     return;
1719 
1720   syntax::Tree *ChildNode;
1721   if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1722     // This is an expression in a statement position, consume the trailing
1723     // semicolon and form an 'ExpressionStatement' node.
1724     markExprChild(ChildExpr, NodeRole::Expression);
1725     ChildNode = new (allocator()) syntax::ExpressionStatement;
1726     // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1727     Pending.foldChildren(TBTM.tokenBuffer(), getStmtRange(Child), ChildNode);
1728   } else {
1729     ChildNode = Mapping.find(Child);
1730   }
1731   assert(ChildNode != nullptr);
1732   setRole(ChildNode, Role);
1733 }
1734 
1735 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1736   if (!Child)
1737     return;
1738   Child = IgnoreImplicit(Child);
1739 
1740   syntax::Tree *ChildNode = Mapping.find(Child);
1741   assert(ChildNode != nullptr);
1742   setRole(ChildNode, Role);
1743 }
1744 
1745 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1746   if (L.isInvalid())
1747     return nullptr;
1748   auto It = LocationToToken.find(L);
1749   assert(It != LocationToToken.end());
1750   return It->second;
1751 }
1752 
1753 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
1754                                                  TokenBufferTokenManager& TBTM,
1755                                                  ASTContext &Context) {
1756   TreeBuilder Builder(A, TBTM);
1757   BuildTreeVisitor(Context, Builder).TraverseAST(Context);
1758   return std::move(Builder).finalize();
1759 }
1760