1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "clang/Tooling/Syntax/BuildTree.h" 9 #include "clang/AST/ASTFwd.h" 10 #include "clang/AST/Decl.h" 11 #include "clang/AST/DeclBase.h" 12 #include "clang/AST/DeclCXX.h" 13 #include "clang/AST/DeclarationName.h" 14 #include "clang/AST/Expr.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/IgnoreExpr.h" 17 #include "clang/AST/OperationKinds.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/TypeLoc.h" 21 #include "clang/AST/TypeLocVisitor.h" 22 #include "clang/Basic/LLVM.h" 23 #include "clang/Basic/SourceLocation.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/Specifiers.h" 26 #include "clang/Basic/TokenKinds.h" 27 #include "clang/Lex/Lexer.h" 28 #include "clang/Lex/LiteralSupport.h" 29 #include "clang/Tooling/Syntax/Nodes.h" 30 #include "clang/Tooling/Syntax/TokenBufferTokenManager.h" 31 #include "clang/Tooling/Syntax/Tokens.h" 32 #include "clang/Tooling/Syntax/Tree.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/PointerUnion.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/ScopeExit.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/Support/Allocator.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/FormatVariadic.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <cstddef> 46 #include <map> 47 48 using namespace clang; 49 50 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls 51 // generated by the compiler, as well as in implicit conversions like the one 52 // wrapping `1` in `X x = 1;`. 53 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) { 54 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 55 auto NumArgs = C->getNumArgs(); 56 if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 57 Expr *A = C->getArg(0); 58 if (C->getParenOrBraceRange().isInvalid()) 59 return A; 60 } 61 } 62 return E; 63 } 64 65 // In: 66 // struct X { 67 // X(int) 68 // }; 69 // X x = X(1); 70 // Ignores the implicit `CXXFunctionalCastExpr` that wraps 71 // `CXXConstructExpr X(1)`. 72 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) { 73 if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) { 74 if (F->getCastKind() == CK_ConstructorConversion) 75 return F->getSubExpr(); 76 } 77 return E; 78 } 79 80 static Expr *IgnoreImplicit(Expr *E) { 81 return IgnoreExprNodes(E, IgnoreImplicitSingleStep, 82 IgnoreImplicitConstructorSingleStep, 83 IgnoreCXXFunctionalCastExprWrappingConstructor); 84 } 85 86 LLVM_ATTRIBUTE_UNUSED 87 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; } 88 89 namespace { 90 /// Get start location of the Declarator from the TypeLoc. 91 /// E.g.: 92 /// loc of `(` in `int (a)` 93 /// loc of `*` in `int *(a)` 94 /// loc of the first `(` in `int (*a)(int)` 95 /// loc of the `*` in `int *(a)(int)` 96 /// loc of the first `*` in `const int *const *volatile a;` 97 /// 98 /// It is non-trivial to get the start location because TypeLocs are stored 99 /// inside out. In the example above `*volatile` is the TypeLoc returned 100 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()` 101 /// returns. 102 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> { 103 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) { 104 auto L = Visit(T.getInnerLoc()); 105 if (L.isValid()) 106 return L; 107 return T.getLParenLoc(); 108 } 109 110 // Types spelled in the prefix part of the declarator. 111 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) { 112 return HandlePointer(T); 113 } 114 115 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) { 116 return HandlePointer(T); 117 } 118 119 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) { 120 return HandlePointer(T); 121 } 122 123 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) { 124 return HandlePointer(T); 125 } 126 127 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) { 128 return HandlePointer(T); 129 } 130 131 // All other cases are not important, as they are either part of declaration 132 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on 133 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the 134 // declarator themselves, but their underlying type can. 135 SourceLocation VisitTypeLoc(TypeLoc T) { 136 auto N = T.getNextTypeLoc(); 137 if (!N) 138 return SourceLocation(); 139 return Visit(N); 140 } 141 142 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) { 143 if (T.getTypePtr()->hasTrailingReturn()) 144 return SourceLocation(); // avoid recursing into the suffix of declarator. 145 return VisitTypeLoc(T); 146 } 147 148 private: 149 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) { 150 auto L = Visit(T.getPointeeLoc()); 151 if (L.isValid()) 152 return L; 153 return T.getLocalSourceRange().getBegin(); 154 } 155 }; 156 } // namespace 157 158 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) { 159 auto FirstDefaultArg = 160 llvm::find_if(Args, [](auto It) { return isa<CXXDefaultArgExpr>(It); }); 161 return llvm::make_range(Args.begin(), FirstDefaultArg); 162 } 163 164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) { 165 switch (E.getOperator()) { 166 // Comparison 167 case OO_EqualEqual: 168 case OO_ExclaimEqual: 169 case OO_Greater: 170 case OO_GreaterEqual: 171 case OO_Less: 172 case OO_LessEqual: 173 case OO_Spaceship: 174 // Assignment 175 case OO_Equal: 176 case OO_SlashEqual: 177 case OO_PercentEqual: 178 case OO_CaretEqual: 179 case OO_PipeEqual: 180 case OO_LessLessEqual: 181 case OO_GreaterGreaterEqual: 182 case OO_PlusEqual: 183 case OO_MinusEqual: 184 case OO_StarEqual: 185 case OO_AmpEqual: 186 // Binary computation 187 case OO_Slash: 188 case OO_Percent: 189 case OO_Caret: 190 case OO_Pipe: 191 case OO_LessLess: 192 case OO_GreaterGreater: 193 case OO_AmpAmp: 194 case OO_PipePipe: 195 case OO_ArrowStar: 196 case OO_Comma: 197 return syntax::NodeKind::BinaryOperatorExpression; 198 case OO_Tilde: 199 case OO_Exclaim: 200 return syntax::NodeKind::PrefixUnaryOperatorExpression; 201 // Prefix/Postfix increment/decrement 202 case OO_PlusPlus: 203 case OO_MinusMinus: 204 switch (E.getNumArgs()) { 205 case 1: 206 return syntax::NodeKind::PrefixUnaryOperatorExpression; 207 case 2: 208 return syntax::NodeKind::PostfixUnaryOperatorExpression; 209 default: 210 llvm_unreachable("Invalid number of arguments for operator"); 211 } 212 // Operators that can be unary or binary 213 case OO_Plus: 214 case OO_Minus: 215 case OO_Star: 216 case OO_Amp: 217 switch (E.getNumArgs()) { 218 case 1: 219 return syntax::NodeKind::PrefixUnaryOperatorExpression; 220 case 2: 221 return syntax::NodeKind::BinaryOperatorExpression; 222 default: 223 llvm_unreachable("Invalid number of arguments for operator"); 224 } 225 return syntax::NodeKind::BinaryOperatorExpression; 226 // Not yet supported by SyntaxTree 227 case OO_New: 228 case OO_Delete: 229 case OO_Array_New: 230 case OO_Array_Delete: 231 case OO_Coawait: 232 case OO_Subscript: 233 case OO_Arrow: 234 return syntax::NodeKind::UnknownExpression; 235 case OO_Call: 236 return syntax::NodeKind::CallExpression; 237 case OO_Conditional: // not overloadable 238 case NUM_OVERLOADED_OPERATORS: 239 case OO_None: 240 llvm_unreachable("Not an overloadable operator"); 241 } 242 llvm_unreachable("Unknown OverloadedOperatorKind enum"); 243 } 244 245 /// Get the start of the qualified name. In the examples below it gives the 246 /// location of the `^`: 247 /// `int ^a;` 248 /// `int *^a;` 249 /// `int ^a::S::f(){}` 250 static SourceLocation getQualifiedNameStart(NamedDecl *D) { 251 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && 252 "only DeclaratorDecl and TypedefNameDecl are supported."); 253 254 auto DN = D->getDeclName(); 255 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo(); 256 if (IsAnonymous) 257 return SourceLocation(); 258 259 if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) { 260 if (DD->getQualifierLoc()) { 261 return DD->getQualifierLoc().getBeginLoc(); 262 } 263 } 264 265 return D->getLocation(); 266 } 267 268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl]. 269 /// `int a;` -> range of ``, 270 /// `int *a = nullptr` -> range of `= nullptr`. 271 /// `int a{}` -> range of `{}`. 272 /// `int a()` -> range of `()`. 273 static SourceRange getInitializerRange(Decl *D) { 274 if (auto *V = dyn_cast<VarDecl>(D)) { 275 auto *I = V->getInit(); 276 // Initializers in range-based-for are not part of the declarator 277 if (I && !V->isCXXForRangeDecl()) 278 return I->getSourceRange(); 279 } 280 281 return SourceRange(); 282 } 283 284 /// Gets the range of declarator as defined by the C++ grammar. E.g. 285 /// `int a;` -> range of `a`, 286 /// `int *a;` -> range of `*a`, 287 /// `int a[10];` -> range of `a[10]`, 288 /// `int a[1][2][3];` -> range of `a[1][2][3]`, 289 /// `int *a = nullptr` -> range of `*a = nullptr`. 290 /// `int S::f(){}` -> range of `S::f()`. 291 /// FIXME: \p Name must be a source range. 292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T, 293 SourceLocation Name, 294 SourceRange Initializer) { 295 SourceLocation Start = GetStartLoc().Visit(T); 296 SourceLocation End = T.getEndLoc(); 297 if (Name.isValid()) { 298 if (Start.isInvalid()) 299 Start = Name; 300 // End of TypeLoc could be invalid if the type is invalid, fallback to the 301 // NameLoc. 302 if (End.isInvalid() || SM.isBeforeInTranslationUnit(End, Name)) 303 End = Name; 304 } 305 if (Initializer.isValid()) { 306 auto InitializerEnd = Initializer.getEnd(); 307 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || 308 End == InitializerEnd); 309 End = InitializerEnd; 310 } 311 return SourceRange(Start, End); 312 } 313 314 namespace { 315 /// All AST hierarchy roots that can be represented as pointers. 316 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>; 317 /// Maintains a mapping from AST to syntax tree nodes. This class will get more 318 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs. 319 /// FIXME: expose this as public API. 320 class ASTToSyntaxMapping { 321 public: 322 void add(ASTPtr From, syntax::Tree *To) { 323 assert(To != nullptr); 324 assert(!From.isNull()); 325 326 bool Added = Nodes.insert({From, To}).second; 327 (void)Added; 328 assert(Added && "mapping added twice"); 329 } 330 331 void add(NestedNameSpecifierLoc From, syntax::Tree *To) { 332 assert(To != nullptr); 333 assert(From.hasQualifier()); 334 335 bool Added = NNSNodes.insert({From, To}).second; 336 (void)Added; 337 assert(Added && "mapping added twice"); 338 } 339 340 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); } 341 342 syntax::Tree *find(NestedNameSpecifierLoc P) const { 343 return NNSNodes.lookup(P); 344 } 345 346 private: 347 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes; 348 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes; 349 }; 350 } // namespace 351 352 /// A helper class for constructing the syntax tree while traversing a clang 353 /// AST. 354 /// 355 /// At each point of the traversal we maintain a list of pending nodes. 356 /// Initially all tokens are added as pending nodes. When processing a clang AST 357 /// node, the clients need to: 358 /// - create a corresponding syntax node, 359 /// - assign roles to all pending child nodes with 'markChild' and 360 /// 'markChildToken', 361 /// - replace the child nodes with the new syntax node in the pending list 362 /// with 'foldNode'. 363 /// 364 /// Note that all children are expected to be processed when building a node. 365 /// 366 /// Call finalize() to finish building the tree and consume the root node. 367 class syntax::TreeBuilder { 368 public: 369 TreeBuilder(syntax::Arena &Arena, TokenBufferTokenManager& TBTM) 370 : Arena(Arena), 371 TBTM(TBTM), 372 Pending(Arena, TBTM.tokenBuffer()) { 373 for (const auto &T : TBTM.tokenBuffer().expandedTokens()) 374 LocationToToken.insert({T.location(), &T}); 375 } 376 377 llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); } 378 const SourceManager &sourceManager() const { 379 return TBTM.sourceManager(); 380 } 381 382 /// Populate children for \p New node, assuming it covers tokens from \p 383 /// Range. 384 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) { 385 assert(New); 386 Pending.foldChildren(TBTM.tokenBuffer(), Range, New); 387 if (From) 388 Mapping.add(From, New); 389 } 390 391 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) { 392 // FIXME: add mapping for TypeLocs 393 foldNode(Range, New, nullptr); 394 } 395 396 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, 397 NestedNameSpecifierLoc From) { 398 assert(New); 399 Pending.foldChildren(TBTM.tokenBuffer(), Range, New); 400 if (From) 401 Mapping.add(From, New); 402 } 403 404 /// Populate children for \p New list, assuming it covers tokens from a 405 /// subrange of \p SuperRange. 406 void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New, 407 ASTPtr From) { 408 assert(New); 409 auto ListRange = Pending.shrinkToFitList(SuperRange); 410 Pending.foldChildren(TBTM.tokenBuffer(), ListRange, New); 411 if (From) 412 Mapping.add(From, New); 413 } 414 415 /// Notifies that we should not consume trailing semicolon when computing 416 /// token range of \p D. 417 void noticeDeclWithoutSemicolon(Decl *D); 418 419 /// Mark the \p Child node with a corresponding \p Role. All marked children 420 /// should be consumed by foldNode. 421 /// When called on expressions (clang::Expr is derived from clang::Stmt), 422 /// wraps expressions into expression statement. 423 void markStmtChild(Stmt *Child, NodeRole Role); 424 /// Should be called for expressions in non-statement position to avoid 425 /// wrapping into expression statement. 426 void markExprChild(Expr *Child, NodeRole Role); 427 /// Set role for a token starting at \p Loc. 428 void markChildToken(SourceLocation Loc, NodeRole R); 429 /// Set role for \p T. 430 void markChildToken(const syntax::Token *T, NodeRole R); 431 432 /// Set role for \p N. 433 void markChild(syntax::Node *N, NodeRole R); 434 /// Set role for the syntax node matching \p N. 435 void markChild(ASTPtr N, NodeRole R); 436 /// Set role for the syntax node matching \p N. 437 void markChild(NestedNameSpecifierLoc N, NodeRole R); 438 439 /// Finish building the tree and consume the root node. 440 syntax::TranslationUnit *finalize() && { 441 auto Tokens = TBTM.tokenBuffer().expandedTokens(); 442 assert(!Tokens.empty()); 443 assert(Tokens.back().kind() == tok::eof); 444 445 // Build the root of the tree, consuming all the children. 446 Pending.foldChildren(TBTM.tokenBuffer(), Tokens.drop_back(), 447 new (Arena.getAllocator()) syntax::TranslationUnit); 448 449 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize()); 450 TU->assertInvariantsRecursive(); 451 return TU; 452 } 453 454 /// Finds a token starting at \p L. The token must exist if \p L is valid. 455 const syntax::Token *findToken(SourceLocation L) const; 456 457 /// Finds the syntax tokens corresponding to the \p SourceRange. 458 ArrayRef<syntax::Token> getRange(SourceRange Range) const { 459 assert(Range.isValid()); 460 return getRange(Range.getBegin(), Range.getEnd()); 461 } 462 463 /// Finds the syntax tokens corresponding to the passed source locations. 464 /// \p First is the start position of the first token and \p Last is the start 465 /// position of the last token. 466 ArrayRef<syntax::Token> getRange(SourceLocation First, 467 SourceLocation Last) const { 468 assert(First.isValid()); 469 assert(Last.isValid()); 470 assert(First == Last || 471 TBTM.sourceManager().isBeforeInTranslationUnit(First, Last)); 472 return llvm::makeArrayRef(findToken(First), std::next(findToken(Last))); 473 } 474 475 ArrayRef<syntax::Token> 476 getTemplateRange(const ClassTemplateSpecializationDecl *D) const { 477 auto Tokens = getRange(D->getSourceRange()); 478 return maybeAppendSemicolon(Tokens, D); 479 } 480 481 /// Returns true if \p D is the last declarator in a chain and is thus 482 /// reponsible for creating SimpleDeclaration for the whole chain. 483 bool isResponsibleForCreatingDeclaration(const Decl *D) const { 484 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && 485 "only DeclaratorDecl and TypedefNameDecl are supported."); 486 487 const Decl *Next = D->getNextDeclInContext(); 488 489 // There's no next sibling, this one is responsible. 490 if (Next == nullptr) { 491 return true; 492 } 493 494 // Next sibling is not the same type, this one is responsible. 495 if (D->getKind() != Next->getKind()) { 496 return true; 497 } 498 // Next sibling doesn't begin at the same loc, it must be a different 499 // declaration, so this declarator is responsible. 500 if (Next->getBeginLoc() != D->getBeginLoc()) { 501 return true; 502 } 503 504 // NextT is a member of the same declaration, and we need the last member to 505 // create declaration. This one is not responsible. 506 return false; 507 } 508 509 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) { 510 ArrayRef<syntax::Token> Tokens; 511 // We want to drop the template parameters for specializations. 512 if (const auto *S = dyn_cast<TagDecl>(D)) 513 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc()); 514 else 515 Tokens = getRange(D->getSourceRange()); 516 return maybeAppendSemicolon(Tokens, D); 517 } 518 519 ArrayRef<syntax::Token> getExprRange(const Expr *E) const { 520 return getRange(E->getSourceRange()); 521 } 522 523 /// Find the adjusted range for the statement, consuming the trailing 524 /// semicolon when needed. 525 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const { 526 auto Tokens = getRange(S->getSourceRange()); 527 if (isa<CompoundStmt>(S)) 528 return Tokens; 529 530 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and 531 // all statements that end with those. Consume this semicolon here. 532 if (Tokens.back().kind() == tok::semi) 533 return Tokens; 534 return withTrailingSemicolon(Tokens); 535 } 536 537 private: 538 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens, 539 const Decl *D) const { 540 if (isa<NamespaceDecl>(D)) 541 return Tokens; 542 if (DeclsWithoutSemicolons.count(D)) 543 return Tokens; 544 // FIXME: do not consume trailing semicolon on function definitions. 545 // Most declarations own a semicolon in syntax trees, but not in clang AST. 546 return withTrailingSemicolon(Tokens); 547 } 548 549 ArrayRef<syntax::Token> 550 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const { 551 assert(!Tokens.empty()); 552 assert(Tokens.back().kind() != tok::eof); 553 // We never consume 'eof', so looking at the next token is ok. 554 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi) 555 return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1); 556 return Tokens; 557 } 558 559 void setRole(syntax::Node *N, NodeRole R) { 560 assert(N->getRole() == NodeRole::Detached); 561 N->setRole(R); 562 } 563 564 /// A collection of trees covering the input tokens. 565 /// When created, each tree corresponds to a single token in the file. 566 /// Clients call 'foldChildren' to attach one or more subtrees to a parent 567 /// node and update the list of trees accordingly. 568 /// 569 /// Ensures that added nodes properly nest and cover the whole token stream. 570 struct Forest { 571 Forest(syntax::Arena &A, const syntax::TokenBuffer &TB) { 572 assert(!TB.expandedTokens().empty()); 573 assert(TB.expandedTokens().back().kind() == tok::eof); 574 // Create all leaf nodes. 575 // Note that we do not have 'eof' in the tree. 576 for (const auto &T : TB.expandedTokens().drop_back()) { 577 auto *L = new (A.getAllocator()) 578 syntax::Leaf(reinterpret_cast<TokenManager::Key>(&T)); 579 L->Original = true; 580 L->CanModify = TB.spelledForExpanded(T).has_value(); 581 Trees.insert(Trees.end(), {&T, L}); 582 } 583 } 584 585 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) { 586 assert(!Range.empty()); 587 auto It = Trees.lower_bound(Range.begin()); 588 assert(It != Trees.end() && "no node found"); 589 assert(It->first == Range.begin() && "no child with the specified range"); 590 assert((std::next(It) == Trees.end() || 591 std::next(It)->first == Range.end()) && 592 "no child with the specified range"); 593 assert(It->second->getRole() == NodeRole::Detached && 594 "re-assigning role for a child"); 595 It->second->setRole(Role); 596 } 597 598 /// Shrink \p Range to a subrange that only contains tokens of a list. 599 /// List elements and delimiters should already have correct roles. 600 ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) { 601 auto BeginChildren = Trees.lower_bound(Range.begin()); 602 assert((BeginChildren == Trees.end() || 603 BeginChildren->first == Range.begin()) && 604 "Range crosses boundaries of existing subtrees"); 605 606 auto EndChildren = Trees.lower_bound(Range.end()); 607 assert( 608 (EndChildren == Trees.end() || EndChildren->first == Range.end()) && 609 "Range crosses boundaries of existing subtrees"); 610 611 auto BelongsToList = [](decltype(Trees)::value_type KV) { 612 auto Role = KV.second->getRole(); 613 return Role == syntax::NodeRole::ListElement || 614 Role == syntax::NodeRole::ListDelimiter; 615 }; 616 617 auto BeginListChildren = 618 std::find_if(BeginChildren, EndChildren, BelongsToList); 619 620 auto EndListChildren = 621 std::find_if_not(BeginListChildren, EndChildren, BelongsToList); 622 623 return ArrayRef<syntax::Token>(BeginListChildren->first, 624 EndListChildren->first); 625 } 626 627 /// Add \p Node to the forest and attach child nodes based on \p Tokens. 628 void foldChildren(const syntax::TokenBuffer &TB, 629 ArrayRef<syntax::Token> Tokens, syntax::Tree *Node) { 630 // Attach children to `Node`. 631 assert(Node->getFirstChild() == nullptr && "node already has children"); 632 633 auto *FirstToken = Tokens.begin(); 634 auto BeginChildren = Trees.lower_bound(FirstToken); 635 636 assert((BeginChildren == Trees.end() || 637 BeginChildren->first == FirstToken) && 638 "fold crosses boundaries of existing subtrees"); 639 auto EndChildren = Trees.lower_bound(Tokens.end()); 640 assert( 641 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) && 642 "fold crosses boundaries of existing subtrees"); 643 644 for (auto It = BeginChildren; It != EndChildren; ++It) { 645 auto *C = It->second; 646 if (C->getRole() == NodeRole::Detached) 647 C->setRole(NodeRole::Unknown); 648 Node->appendChildLowLevel(C); 649 } 650 651 // Mark that this node came from the AST and is backed by the source code. 652 Node->Original = true; 653 Node->CanModify = 654 TB.spelledForExpanded(Tokens).has_value(); 655 656 Trees.erase(BeginChildren, EndChildren); 657 Trees.insert({FirstToken, Node}); 658 } 659 660 // EXPECTS: all tokens were consumed and are owned by a single root node. 661 syntax::Node *finalize() && { 662 assert(Trees.size() == 1); 663 auto *Root = Trees.begin()->second; 664 Trees = {}; 665 return Root; 666 } 667 668 std::string str(const syntax::TokenBufferTokenManager &STM) const { 669 std::string R; 670 for (auto It = Trees.begin(); It != Trees.end(); ++It) { 671 unsigned CoveredTokens = 672 It != Trees.end() 673 ? (std::next(It)->first - It->first) 674 : STM.tokenBuffer().expandedTokens().end() - It->first; 675 676 R += std::string( 677 formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(), 678 It->first->text(STM.sourceManager()), CoveredTokens)); 679 R += It->second->dump(STM); 680 } 681 return R; 682 } 683 684 private: 685 /// Maps from the start token to a subtree starting at that token. 686 /// Keys in the map are pointers into the array of expanded tokens, so 687 /// pointer order corresponds to the order of preprocessor tokens. 688 std::map<const syntax::Token *, syntax::Node *> Trees; 689 }; 690 691 /// For debugging purposes. 692 std::string str() { return Pending.str(TBTM); } 693 694 syntax::Arena &Arena; 695 TokenBufferTokenManager& TBTM; 696 /// To quickly find tokens by their start location. 697 llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken; 698 Forest Pending; 699 llvm::DenseSet<Decl *> DeclsWithoutSemicolons; 700 ASTToSyntaxMapping Mapping; 701 }; 702 703 namespace { 704 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> { 705 public: 706 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder) 707 : Builder(Builder), Context(Context) {} 708 709 bool shouldTraversePostOrder() const { return true; } 710 711 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) { 712 return processDeclaratorAndDeclaration(DD); 713 } 714 715 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) { 716 return processDeclaratorAndDeclaration(TD); 717 } 718 719 bool VisitDecl(Decl *D) { 720 assert(!D->isImplicit()); 721 Builder.foldNode(Builder.getDeclarationRange(D), 722 new (allocator()) syntax::UnknownDeclaration(), D); 723 return true; 724 } 725 726 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to 727 // override Traverse. 728 // FIXME: make RAV call WalkUpFrom* instead. 729 bool 730 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) { 731 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C)) 732 return false; 733 if (C->isExplicitSpecialization()) 734 return true; // we are only interested in explicit instantiations. 735 auto *Declaration = 736 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C)); 737 foldExplicitTemplateInstantiation( 738 Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()), 739 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C); 740 return true; 741 } 742 743 bool WalkUpFromTemplateDecl(TemplateDecl *S) { 744 foldTemplateDeclaration( 745 Builder.getDeclarationRange(S), 746 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()), 747 Builder.getDeclarationRange(S->getTemplatedDecl()), S); 748 return true; 749 } 750 751 bool WalkUpFromTagDecl(TagDecl *C) { 752 // FIXME: build the ClassSpecifier node. 753 if (!C->isFreeStanding()) { 754 assert(C->getNumTemplateParameterLists() == 0); 755 return true; 756 } 757 handleFreeStandingTagDecl(C); 758 return true; 759 } 760 761 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) { 762 assert(C->isFreeStanding()); 763 // Class is a declaration specifier and needs a spanning declaration node. 764 auto DeclarationRange = Builder.getDeclarationRange(C); 765 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration; 766 Builder.foldNode(DeclarationRange, Result, nullptr); 767 768 // Build TemplateDeclaration nodes if we had template parameters. 769 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) { 770 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc()); 771 auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end()); 772 Result = 773 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr); 774 DeclarationRange = R; 775 }; 776 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C)) 777 ConsumeTemplateParameters(*S->getTemplateParameters()); 778 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I) 779 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1)); 780 return Result; 781 } 782 783 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) { 784 // We do not want to call VisitDecl(), the declaration for translation 785 // unit is built by finalize(). 786 return true; 787 } 788 789 bool WalkUpFromCompoundStmt(CompoundStmt *S) { 790 using NodeRole = syntax::NodeRole; 791 792 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen); 793 for (auto *Child : S->body()) 794 Builder.markStmtChild(Child, NodeRole::Statement); 795 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen); 796 797 Builder.foldNode(Builder.getStmtRange(S), 798 new (allocator()) syntax::CompoundStatement, S); 799 return true; 800 } 801 802 // Some statements are not yet handled by syntax trees. 803 bool WalkUpFromStmt(Stmt *S) { 804 Builder.foldNode(Builder.getStmtRange(S), 805 new (allocator()) syntax::UnknownStatement, S); 806 return true; 807 } 808 809 bool TraverseIfStmt(IfStmt *S) { 810 bool Result = [&, this]() { 811 if (S->getInit() && !TraverseStmt(S->getInit())) { 812 return false; 813 } 814 // In cases where the condition is an initialized declaration in a 815 // statement, we want to preserve the declaration and ignore the 816 // implicit condition expression in the syntax tree. 817 if (S->hasVarStorage()) { 818 if (!TraverseStmt(S->getConditionVariableDeclStmt())) 819 return false; 820 } else if (S->getCond() && !TraverseStmt(S->getCond())) 821 return false; 822 823 if (S->getThen() && !TraverseStmt(S->getThen())) 824 return false; 825 if (S->getElse() && !TraverseStmt(S->getElse())) 826 return false; 827 return true; 828 }(); 829 WalkUpFromIfStmt(S); 830 return Result; 831 } 832 833 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) { 834 // We override to traverse range initializer as VarDecl. 835 // RAV traverses it as a statement, we produce invalid node kinds in that 836 // case. 837 // FIXME: should do this in RAV instead? 838 bool Result = [&, this]() { 839 if (S->getInit() && !TraverseStmt(S->getInit())) 840 return false; 841 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable())) 842 return false; 843 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit())) 844 return false; 845 if (S->getBody() && !TraverseStmt(S->getBody())) 846 return false; 847 return true; 848 }(); 849 WalkUpFromCXXForRangeStmt(S); 850 return Result; 851 } 852 853 bool TraverseStmt(Stmt *S) { 854 if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) { 855 // We want to consume the semicolon, make sure SimpleDeclaration does not. 856 for (auto *D : DS->decls()) 857 Builder.noticeDeclWithoutSemicolon(D); 858 } else if (auto *E = dyn_cast_or_null<Expr>(S)) { 859 return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E)); 860 } 861 return RecursiveASTVisitor::TraverseStmt(S); 862 } 863 864 bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) { 865 // OpaqueValue doesn't correspond to concrete syntax, ignore it. 866 return true; 867 } 868 869 // Some expressions are not yet handled by syntax trees. 870 bool WalkUpFromExpr(Expr *E) { 871 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt"); 872 Builder.foldNode(Builder.getExprRange(E), 873 new (allocator()) syntax::UnknownExpression, E); 874 return true; 875 } 876 877 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) { 878 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node 879 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The 880 // UDL suffix location does not point to the beginning of a token, so we 881 // can't represent the UDL suffix as a separate syntax tree node. 882 883 return WalkUpFromUserDefinedLiteral(S); 884 } 885 886 syntax::UserDefinedLiteralExpression * 887 buildUserDefinedLiteral(UserDefinedLiteral *S) { 888 switch (S->getLiteralOperatorKind()) { 889 case UserDefinedLiteral::LOK_Integer: 890 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 891 case UserDefinedLiteral::LOK_Floating: 892 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 893 case UserDefinedLiteral::LOK_Character: 894 return new (allocator()) syntax::CharUserDefinedLiteralExpression; 895 case UserDefinedLiteral::LOK_String: 896 return new (allocator()) syntax::StringUserDefinedLiteralExpression; 897 case UserDefinedLiteral::LOK_Raw: 898 case UserDefinedLiteral::LOK_Template: 899 // For raw literal operator and numeric literal operator template we 900 // cannot get the type of the operand in the semantic AST. We get this 901 // information from the token. As integer and floating point have the same 902 // token kind, we run `NumericLiteralParser` again to distinguish them. 903 auto TokLoc = S->getBeginLoc(); 904 auto TokSpelling = 905 Builder.findToken(TokLoc)->text(Context.getSourceManager()); 906 auto Literal = 907 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(), 908 Context.getLangOpts(), Context.getTargetInfo(), 909 Context.getDiagnostics()); 910 if (Literal.isIntegerLiteral()) 911 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 912 else { 913 assert(Literal.isFloatingLiteral()); 914 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 915 } 916 } 917 llvm_unreachable("Unknown literal operator kind."); 918 } 919 920 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) { 921 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 922 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S); 923 return true; 924 } 925 926 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the 927 // `DependentTemplateSpecializationType` case. 928 /// Given a nested-name-specifier return the range for the last name 929 /// specifier. 930 /// 931 /// e.g. `std::T::template X<U>::` => `template X<U>::` 932 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) { 933 auto SR = NNSLoc.getLocalSourceRange(); 934 935 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should* 936 // return the desired `SourceRange`, but there is a corner case. For a 937 // `DependentTemplateSpecializationType` this method returns its 938 // qualifiers as well, in other words in the example above this method 939 // returns `T::template X<U>::` instead of only `template X<U>::` 940 if (auto TL = NNSLoc.getTypeLoc()) { 941 if (auto DependentTL = 942 TL.getAs<DependentTemplateSpecializationTypeLoc>()) { 943 // The 'template' keyword is always present in dependent template 944 // specializations. Except in the case of incorrect code 945 // TODO: Treat the case of incorrect code. 946 SR.setBegin(DependentTL.getTemplateKeywordLoc()); 947 } 948 } 949 950 return SR; 951 } 952 953 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) { 954 switch (NNS.getKind()) { 955 case NestedNameSpecifier::Global: 956 return syntax::NodeKind::GlobalNameSpecifier; 957 case NestedNameSpecifier::Namespace: 958 case NestedNameSpecifier::NamespaceAlias: 959 case NestedNameSpecifier::Identifier: 960 return syntax::NodeKind::IdentifierNameSpecifier; 961 case NestedNameSpecifier::TypeSpecWithTemplate: 962 return syntax::NodeKind::SimpleTemplateNameSpecifier; 963 case NestedNameSpecifier::TypeSpec: { 964 const auto *NNSType = NNS.getAsType(); 965 assert(NNSType); 966 if (isa<DecltypeType>(NNSType)) 967 return syntax::NodeKind::DecltypeNameSpecifier; 968 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>( 969 NNSType)) 970 return syntax::NodeKind::SimpleTemplateNameSpecifier; 971 return syntax::NodeKind::IdentifierNameSpecifier; 972 } 973 default: 974 // FIXME: Support Microsoft's __super 975 llvm::report_fatal_error("We don't yet support the __super specifier", 976 true); 977 } 978 } 979 980 syntax::NameSpecifier * 981 buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) { 982 assert(NNSLoc.hasQualifier()); 983 auto NameSpecifierTokens = 984 Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back(); 985 switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) { 986 case syntax::NodeKind::GlobalNameSpecifier: 987 return new (allocator()) syntax::GlobalNameSpecifier; 988 case syntax::NodeKind::IdentifierNameSpecifier: { 989 assert(NameSpecifierTokens.size() == 1); 990 Builder.markChildToken(NameSpecifierTokens.begin(), 991 syntax::NodeRole::Unknown); 992 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier; 993 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 994 return NS; 995 } 996 case syntax::NodeKind::SimpleTemplateNameSpecifier: { 997 // TODO: Build `SimpleTemplateNameSpecifier` children and implement 998 // accessors to them. 999 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`, 1000 // some `TypeLoc`s have inside them the previous name specifier and 1001 // we want to treat them independently. 1002 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier; 1003 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 1004 return NS; 1005 } 1006 case syntax::NodeKind::DecltypeNameSpecifier: { 1007 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>(); 1008 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL)) 1009 return nullptr; 1010 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier; 1011 // TODO: Implement accessor to `DecltypeNameSpecifier` inner 1012 // `DecltypeTypeLoc`. 1013 // For that add mapping from `TypeLoc` to `syntax::Node*` then: 1014 // Builder.markChild(TypeLoc, syntax::NodeRole); 1015 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 1016 return NS; 1017 } 1018 default: 1019 llvm_unreachable("getChildKind() does not return this value"); 1020 } 1021 } 1022 1023 // To build syntax tree nodes for NestedNameSpecifierLoc we override 1024 // Traverse instead of WalkUpFrom because we want to traverse the children 1025 // ourselves and build a list instead of a nested tree of name specifier 1026 // prefixes. 1027 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) { 1028 if (!QualifierLoc) 1029 return true; 1030 for (auto It = QualifierLoc; It; It = It.getPrefix()) { 1031 auto *NS = buildNameSpecifier(It); 1032 if (!NS) 1033 return false; 1034 Builder.markChild(NS, syntax::NodeRole::ListElement); 1035 Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter); 1036 } 1037 Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()), 1038 new (allocator()) syntax::NestedNameSpecifier, 1039 QualifierLoc); 1040 return true; 1041 } 1042 1043 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc, 1044 SourceLocation TemplateKeywordLoc, 1045 SourceRange UnqualifiedIdLoc, 1046 ASTPtr From) { 1047 if (QualifierLoc) { 1048 Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier); 1049 if (TemplateKeywordLoc.isValid()) 1050 Builder.markChildToken(TemplateKeywordLoc, 1051 syntax::NodeRole::TemplateKeyword); 1052 } 1053 1054 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId; 1055 Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId, 1056 nullptr); 1057 Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId); 1058 1059 auto IdExpressionBeginLoc = 1060 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin(); 1061 1062 auto *TheIdExpression = new (allocator()) syntax::IdExpression; 1063 Builder.foldNode( 1064 Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()), 1065 TheIdExpression, From); 1066 1067 return TheIdExpression; 1068 } 1069 1070 bool WalkUpFromMemberExpr(MemberExpr *S) { 1071 // For `MemberExpr` with implicit `this->` we generate a simple 1072 // `id-expression` syntax node, beacuse an implicit `member-expression` is 1073 // syntactically undistinguishable from an `id-expression` 1074 if (S->isImplicitAccess()) { 1075 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1076 SourceRange(S->getMemberLoc(), S->getEndLoc()), S); 1077 return true; 1078 } 1079 1080 auto *TheIdExpression = buildIdExpression( 1081 S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1082 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr); 1083 1084 Builder.markChild(TheIdExpression, syntax::NodeRole::Member); 1085 1086 Builder.markExprChild(S->getBase(), syntax::NodeRole::Object); 1087 Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken); 1088 1089 Builder.foldNode(Builder.getExprRange(S), 1090 new (allocator()) syntax::MemberExpression, S); 1091 return true; 1092 } 1093 1094 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) { 1095 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1096 SourceRange(S->getLocation(), S->getEndLoc()), S); 1097 1098 return true; 1099 } 1100 1101 // Same logic as DeclRefExpr. 1102 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) { 1103 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1104 SourceRange(S->getLocation(), S->getEndLoc()), S); 1105 1106 return true; 1107 } 1108 1109 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) { 1110 if (!S->isImplicit()) { 1111 Builder.markChildToken(S->getLocation(), 1112 syntax::NodeRole::IntroducerKeyword); 1113 Builder.foldNode(Builder.getExprRange(S), 1114 new (allocator()) syntax::ThisExpression, S); 1115 } 1116 return true; 1117 } 1118 1119 bool WalkUpFromParenExpr(ParenExpr *S) { 1120 Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen); 1121 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression); 1122 Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen); 1123 Builder.foldNode(Builder.getExprRange(S), 1124 new (allocator()) syntax::ParenExpression, S); 1125 return true; 1126 } 1127 1128 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) { 1129 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1130 Builder.foldNode(Builder.getExprRange(S), 1131 new (allocator()) syntax::IntegerLiteralExpression, S); 1132 return true; 1133 } 1134 1135 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) { 1136 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1137 Builder.foldNode(Builder.getExprRange(S), 1138 new (allocator()) syntax::CharacterLiteralExpression, S); 1139 return true; 1140 } 1141 1142 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) { 1143 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1144 Builder.foldNode(Builder.getExprRange(S), 1145 new (allocator()) syntax::FloatingLiteralExpression, S); 1146 return true; 1147 } 1148 1149 bool WalkUpFromStringLiteral(StringLiteral *S) { 1150 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 1151 Builder.foldNode(Builder.getExprRange(S), 1152 new (allocator()) syntax::StringLiteralExpression, S); 1153 return true; 1154 } 1155 1156 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) { 1157 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1158 Builder.foldNode(Builder.getExprRange(S), 1159 new (allocator()) syntax::BoolLiteralExpression, S); 1160 return true; 1161 } 1162 1163 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) { 1164 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1165 Builder.foldNode(Builder.getExprRange(S), 1166 new (allocator()) syntax::CxxNullPtrExpression, S); 1167 return true; 1168 } 1169 1170 bool WalkUpFromUnaryOperator(UnaryOperator *S) { 1171 Builder.markChildToken(S->getOperatorLoc(), 1172 syntax::NodeRole::OperatorToken); 1173 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand); 1174 1175 if (S->isPostfix()) 1176 Builder.foldNode(Builder.getExprRange(S), 1177 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1178 S); 1179 else 1180 Builder.foldNode(Builder.getExprRange(S), 1181 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1182 S); 1183 1184 return true; 1185 } 1186 1187 bool WalkUpFromBinaryOperator(BinaryOperator *S) { 1188 Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide); 1189 Builder.markChildToken(S->getOperatorLoc(), 1190 syntax::NodeRole::OperatorToken); 1191 Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide); 1192 Builder.foldNode(Builder.getExprRange(S), 1193 new (allocator()) syntax::BinaryOperatorExpression, S); 1194 return true; 1195 } 1196 1197 /// Builds `CallArguments` syntax node from arguments that appear in source 1198 /// code, i.e. not default arguments. 1199 syntax::CallArguments * 1200 buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) { 1201 auto Args = dropDefaultArgs(ArgsAndDefaultArgs); 1202 for (auto *Arg : Args) { 1203 Builder.markExprChild(Arg, syntax::NodeRole::ListElement); 1204 const auto *DelimiterToken = 1205 std::next(Builder.findToken(Arg->getEndLoc())); 1206 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1207 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1208 } 1209 1210 auto *Arguments = new (allocator()) syntax::CallArguments; 1211 if (!Args.empty()) 1212 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(), 1213 (*(Args.end() - 1))->getEndLoc()), 1214 Arguments, nullptr); 1215 1216 return Arguments; 1217 } 1218 1219 bool WalkUpFromCallExpr(CallExpr *S) { 1220 Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee); 1221 1222 const auto *LParenToken = 1223 std::next(Builder.findToken(S->getCallee()->getEndLoc())); 1224 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed 1225 // the test on decltype desctructors. 1226 if (LParenToken->kind() == clang::tok::l_paren) 1227 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1228 1229 Builder.markChild(buildCallArguments(S->arguments()), 1230 syntax::NodeRole::Arguments); 1231 1232 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1233 1234 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1235 new (allocator()) syntax::CallExpression, S); 1236 return true; 1237 } 1238 1239 bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) { 1240 // Ignore the implicit calls to default constructors. 1241 if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) && 1242 S->getParenOrBraceRange().isInvalid()) 1243 return true; 1244 return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S); 1245 } 1246 1247 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1248 // To construct a syntax tree of the same shape for calls to built-in and 1249 // user-defined operators, ignore the `DeclRefExpr` that refers to the 1250 // operator and treat it as a simple token. Do that by traversing 1251 // arguments instead of children. 1252 for (auto *child : S->arguments()) { 1253 // A postfix unary operator is declared as taking two operands. The 1254 // second operand is used to distinguish from its prefix counterpart. In 1255 // the semantic AST this "phantom" operand is represented as a 1256 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this 1257 // operand because it does not correspond to anything written in source 1258 // code. 1259 if (child->getSourceRange().isInvalid()) { 1260 assert(getOperatorNodeKind(*S) == 1261 syntax::NodeKind::PostfixUnaryOperatorExpression); 1262 continue; 1263 } 1264 if (!TraverseStmt(child)) 1265 return false; 1266 } 1267 return WalkUpFromCXXOperatorCallExpr(S); 1268 } 1269 1270 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1271 switch (getOperatorNodeKind(*S)) { 1272 case syntax::NodeKind::BinaryOperatorExpression: 1273 Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide); 1274 Builder.markChildToken(S->getOperatorLoc(), 1275 syntax::NodeRole::OperatorToken); 1276 Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide); 1277 Builder.foldNode(Builder.getExprRange(S), 1278 new (allocator()) syntax::BinaryOperatorExpression, S); 1279 return true; 1280 case syntax::NodeKind::PrefixUnaryOperatorExpression: 1281 Builder.markChildToken(S->getOperatorLoc(), 1282 syntax::NodeRole::OperatorToken); 1283 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1284 Builder.foldNode(Builder.getExprRange(S), 1285 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1286 S); 1287 return true; 1288 case syntax::NodeKind::PostfixUnaryOperatorExpression: 1289 Builder.markChildToken(S->getOperatorLoc(), 1290 syntax::NodeRole::OperatorToken); 1291 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1292 Builder.foldNode(Builder.getExprRange(S), 1293 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1294 S); 1295 return true; 1296 case syntax::NodeKind::CallExpression: { 1297 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee); 1298 1299 const auto *LParenToken = 1300 std::next(Builder.findToken(S->getArg(0)->getEndLoc())); 1301 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have 1302 // fixed the test on decltype desctructors. 1303 if (LParenToken->kind() == clang::tok::l_paren) 1304 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1305 1306 Builder.markChild(buildCallArguments(CallExpr::arg_range( 1307 S->arg_begin() + 1, S->arg_end())), 1308 syntax::NodeRole::Arguments); 1309 1310 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1311 1312 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1313 new (allocator()) syntax::CallExpression, S); 1314 return true; 1315 } 1316 case syntax::NodeKind::UnknownExpression: 1317 return WalkUpFromExpr(S); 1318 default: 1319 llvm_unreachable("getOperatorNodeKind() does not return this value"); 1320 } 1321 } 1322 1323 bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; } 1324 1325 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) { 1326 auto Tokens = Builder.getDeclarationRange(S); 1327 if (Tokens.front().kind() == tok::coloncolon) { 1328 // Handle nested namespace definitions. Those start at '::' token, e.g. 1329 // namespace a^::b {} 1330 // FIXME: build corresponding nodes for the name of this namespace. 1331 return true; 1332 } 1333 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S); 1334 return true; 1335 } 1336 1337 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test 1338 // results. Find test coverage or remove it. 1339 bool TraverseParenTypeLoc(ParenTypeLoc L) { 1340 // We reverse order of traversal to get the proper syntax structure. 1341 if (!WalkUpFromParenTypeLoc(L)) 1342 return false; 1343 return TraverseTypeLoc(L.getInnerLoc()); 1344 } 1345 1346 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) { 1347 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1348 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1349 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()), 1350 new (allocator()) syntax::ParenDeclarator, L); 1351 return true; 1352 } 1353 1354 // Declarator chunks, they are produced by type locs and some clang::Decls. 1355 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) { 1356 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen); 1357 Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size); 1358 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen); 1359 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()), 1360 new (allocator()) syntax::ArraySubscript, L); 1361 return true; 1362 } 1363 1364 syntax::ParameterDeclarationList * 1365 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) { 1366 for (auto *P : Params) { 1367 Builder.markChild(P, syntax::NodeRole::ListElement); 1368 const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc())); 1369 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1370 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1371 } 1372 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList; 1373 if (!Params.empty()) 1374 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(), 1375 Params.back()->getEndLoc()), 1376 Parameters, nullptr); 1377 return Parameters; 1378 } 1379 1380 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) { 1381 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1382 1383 Builder.markChild(buildParameterDeclarationList(L.getParams()), 1384 syntax::NodeRole::Parameters); 1385 1386 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1387 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()), 1388 new (allocator()) syntax::ParametersAndQualifiers, L); 1389 return true; 1390 } 1391 1392 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) { 1393 if (!L.getTypePtr()->hasTrailingReturn()) 1394 return WalkUpFromFunctionTypeLoc(L); 1395 1396 auto *TrailingReturnTokens = buildTrailingReturn(L); 1397 // Finish building the node for parameters. 1398 Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn); 1399 return WalkUpFromFunctionTypeLoc(L); 1400 } 1401 1402 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1403 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds 1404 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to 1405 // "(Y::*mp)" We thus reverse the order of traversal to get the proper 1406 // syntax structure. 1407 if (!WalkUpFromMemberPointerTypeLoc(L)) 1408 return false; 1409 return TraverseTypeLoc(L.getPointeeLoc()); 1410 } 1411 1412 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1413 auto SR = L.getLocalSourceRange(); 1414 Builder.foldNode(Builder.getRange(SR), 1415 new (allocator()) syntax::MemberPointer, L); 1416 return true; 1417 } 1418 1419 // The code below is very regular, it could even be generated with some 1420 // preprocessor magic. We merely assign roles to the corresponding children 1421 // and fold resulting nodes. 1422 bool WalkUpFromDeclStmt(DeclStmt *S) { 1423 Builder.foldNode(Builder.getStmtRange(S), 1424 new (allocator()) syntax::DeclarationStatement, S); 1425 return true; 1426 } 1427 1428 bool WalkUpFromNullStmt(NullStmt *S) { 1429 Builder.foldNode(Builder.getStmtRange(S), 1430 new (allocator()) syntax::EmptyStatement, S); 1431 return true; 1432 } 1433 1434 bool WalkUpFromSwitchStmt(SwitchStmt *S) { 1435 Builder.markChildToken(S->getSwitchLoc(), 1436 syntax::NodeRole::IntroducerKeyword); 1437 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1438 Builder.foldNode(Builder.getStmtRange(S), 1439 new (allocator()) syntax::SwitchStatement, S); 1440 return true; 1441 } 1442 1443 bool WalkUpFromCaseStmt(CaseStmt *S) { 1444 Builder.markChildToken(S->getKeywordLoc(), 1445 syntax::NodeRole::IntroducerKeyword); 1446 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue); 1447 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1448 Builder.foldNode(Builder.getStmtRange(S), 1449 new (allocator()) syntax::CaseStatement, S); 1450 return true; 1451 } 1452 1453 bool WalkUpFromDefaultStmt(DefaultStmt *S) { 1454 Builder.markChildToken(S->getKeywordLoc(), 1455 syntax::NodeRole::IntroducerKeyword); 1456 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1457 Builder.foldNode(Builder.getStmtRange(S), 1458 new (allocator()) syntax::DefaultStatement, S); 1459 return true; 1460 } 1461 1462 bool WalkUpFromIfStmt(IfStmt *S) { 1463 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword); 1464 Stmt *ConditionStatement = S->getCond(); 1465 if (S->hasVarStorage()) 1466 ConditionStatement = S->getConditionVariableDeclStmt(); 1467 Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition); 1468 Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement); 1469 Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword); 1470 Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement); 1471 Builder.foldNode(Builder.getStmtRange(S), 1472 new (allocator()) syntax::IfStatement, S); 1473 return true; 1474 } 1475 1476 bool WalkUpFromForStmt(ForStmt *S) { 1477 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1478 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1479 Builder.foldNode(Builder.getStmtRange(S), 1480 new (allocator()) syntax::ForStatement, S); 1481 return true; 1482 } 1483 1484 bool WalkUpFromWhileStmt(WhileStmt *S) { 1485 Builder.markChildToken(S->getWhileLoc(), 1486 syntax::NodeRole::IntroducerKeyword); 1487 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1488 Builder.foldNode(Builder.getStmtRange(S), 1489 new (allocator()) syntax::WhileStatement, S); 1490 return true; 1491 } 1492 1493 bool WalkUpFromContinueStmt(ContinueStmt *S) { 1494 Builder.markChildToken(S->getContinueLoc(), 1495 syntax::NodeRole::IntroducerKeyword); 1496 Builder.foldNode(Builder.getStmtRange(S), 1497 new (allocator()) syntax::ContinueStatement, S); 1498 return true; 1499 } 1500 1501 bool WalkUpFromBreakStmt(BreakStmt *S) { 1502 Builder.markChildToken(S->getBreakLoc(), 1503 syntax::NodeRole::IntroducerKeyword); 1504 Builder.foldNode(Builder.getStmtRange(S), 1505 new (allocator()) syntax::BreakStatement, S); 1506 return true; 1507 } 1508 1509 bool WalkUpFromReturnStmt(ReturnStmt *S) { 1510 Builder.markChildToken(S->getReturnLoc(), 1511 syntax::NodeRole::IntroducerKeyword); 1512 Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue); 1513 Builder.foldNode(Builder.getStmtRange(S), 1514 new (allocator()) syntax::ReturnStatement, S); 1515 return true; 1516 } 1517 1518 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) { 1519 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1520 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1521 Builder.foldNode(Builder.getStmtRange(S), 1522 new (allocator()) syntax::RangeBasedForStatement, S); 1523 return true; 1524 } 1525 1526 bool WalkUpFromEmptyDecl(EmptyDecl *S) { 1527 Builder.foldNode(Builder.getDeclarationRange(S), 1528 new (allocator()) syntax::EmptyDeclaration, S); 1529 return true; 1530 } 1531 1532 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) { 1533 Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition); 1534 Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message); 1535 Builder.foldNode(Builder.getDeclarationRange(S), 1536 new (allocator()) syntax::StaticAssertDeclaration, S); 1537 return true; 1538 } 1539 1540 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) { 1541 Builder.foldNode(Builder.getDeclarationRange(S), 1542 new (allocator()) syntax::LinkageSpecificationDeclaration, 1543 S); 1544 return true; 1545 } 1546 1547 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) { 1548 Builder.foldNode(Builder.getDeclarationRange(S), 1549 new (allocator()) syntax::NamespaceAliasDefinition, S); 1550 return true; 1551 } 1552 1553 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) { 1554 Builder.foldNode(Builder.getDeclarationRange(S), 1555 new (allocator()) syntax::UsingNamespaceDirective, S); 1556 return true; 1557 } 1558 1559 bool WalkUpFromUsingDecl(UsingDecl *S) { 1560 Builder.foldNode(Builder.getDeclarationRange(S), 1561 new (allocator()) syntax::UsingDeclaration, S); 1562 return true; 1563 } 1564 1565 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) { 1566 Builder.foldNode(Builder.getDeclarationRange(S), 1567 new (allocator()) syntax::UsingDeclaration, S); 1568 return true; 1569 } 1570 1571 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) { 1572 Builder.foldNode(Builder.getDeclarationRange(S), 1573 new (allocator()) syntax::UsingDeclaration, S); 1574 return true; 1575 } 1576 1577 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) { 1578 Builder.foldNode(Builder.getDeclarationRange(S), 1579 new (allocator()) syntax::TypeAliasDeclaration, S); 1580 return true; 1581 } 1582 1583 private: 1584 /// Folds SimpleDeclarator node (if present) and in case this is the last 1585 /// declarator in the chain it also folds SimpleDeclaration node. 1586 template <class T> bool processDeclaratorAndDeclaration(T *D) { 1587 auto Range = getDeclaratorRange( 1588 Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(), 1589 getQualifiedNameStart(D), getInitializerRange(D)); 1590 1591 // There doesn't have to be a declarator (e.g. `void foo(int)` only has 1592 // declaration, but no declarator). 1593 if (!Range.getBegin().isValid()) { 1594 Builder.markChild(new (allocator()) syntax::DeclaratorList, 1595 syntax::NodeRole::Declarators); 1596 Builder.foldNode(Builder.getDeclarationRange(D), 1597 new (allocator()) syntax::SimpleDeclaration, D); 1598 return true; 1599 } 1600 1601 auto *N = new (allocator()) syntax::SimpleDeclarator; 1602 Builder.foldNode(Builder.getRange(Range), N, nullptr); 1603 Builder.markChild(N, syntax::NodeRole::ListElement); 1604 1605 if (!Builder.isResponsibleForCreatingDeclaration(D)) { 1606 // If this is not the last declarator in the declaration we expect a 1607 // delimiter after it. 1608 const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd())); 1609 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1610 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1611 } else { 1612 auto *DL = new (allocator()) syntax::DeclaratorList; 1613 auto DeclarationRange = Builder.getDeclarationRange(D); 1614 Builder.foldList(DeclarationRange, DL, nullptr); 1615 1616 Builder.markChild(DL, syntax::NodeRole::Declarators); 1617 Builder.foldNode(DeclarationRange, 1618 new (allocator()) syntax::SimpleDeclaration, D); 1619 } 1620 return true; 1621 } 1622 1623 /// Returns the range of the built node. 1624 syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) { 1625 assert(L.getTypePtr()->hasTrailingReturn()); 1626 1627 auto ReturnedType = L.getReturnLoc(); 1628 // Build node for the declarator, if any. 1629 auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType), 1630 ReturnedType.getEndLoc()); 1631 syntax::SimpleDeclarator *ReturnDeclarator = nullptr; 1632 if (ReturnDeclaratorRange.isValid()) { 1633 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator; 1634 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange), 1635 ReturnDeclarator, nullptr); 1636 } 1637 1638 // Build node for trailing return type. 1639 auto Return = Builder.getRange(ReturnedType.getSourceRange()); 1640 const auto *Arrow = Return.begin() - 1; 1641 assert(Arrow->kind() == tok::arrow); 1642 auto Tokens = llvm::makeArrayRef(Arrow, Return.end()); 1643 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken); 1644 if (ReturnDeclarator) 1645 Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator); 1646 auto *R = new (allocator()) syntax::TrailingReturnType; 1647 Builder.foldNode(Tokens, R, L); 1648 return R; 1649 } 1650 1651 void foldExplicitTemplateInstantiation( 1652 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW, 1653 const syntax::Token *TemplateKW, 1654 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) { 1655 assert(!ExternKW || ExternKW->kind() == tok::kw_extern); 1656 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1657 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword); 1658 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1659 Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration); 1660 Builder.foldNode( 1661 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From); 1662 } 1663 1664 syntax::TemplateDeclaration *foldTemplateDeclaration( 1665 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW, 1666 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) { 1667 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1668 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1669 1670 auto *N = new (allocator()) syntax::TemplateDeclaration; 1671 Builder.foldNode(Range, N, From); 1672 Builder.markChild(N, syntax::NodeRole::Declaration); 1673 return N; 1674 } 1675 1676 /// A small helper to save some typing. 1677 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); } 1678 1679 syntax::TreeBuilder &Builder; 1680 const ASTContext &Context; 1681 }; 1682 } // namespace 1683 1684 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) { 1685 DeclsWithoutSemicolons.insert(D); 1686 } 1687 1688 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) { 1689 if (Loc.isInvalid()) 1690 return; 1691 Pending.assignRole(*findToken(Loc), Role); 1692 } 1693 1694 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) { 1695 if (!T) 1696 return; 1697 Pending.assignRole(*T, R); 1698 } 1699 1700 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) { 1701 assert(N); 1702 setRole(N, R); 1703 } 1704 1705 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) { 1706 auto *SN = Mapping.find(N); 1707 assert(SN != nullptr); 1708 setRole(SN, R); 1709 } 1710 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) { 1711 auto *SN = Mapping.find(NNSLoc); 1712 assert(SN != nullptr); 1713 setRole(SN, R); 1714 } 1715 1716 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) { 1717 if (!Child) 1718 return; 1719 1720 syntax::Tree *ChildNode; 1721 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) { 1722 // This is an expression in a statement position, consume the trailing 1723 // semicolon and form an 'ExpressionStatement' node. 1724 markExprChild(ChildExpr, NodeRole::Expression); 1725 ChildNode = new (allocator()) syntax::ExpressionStatement; 1726 // (!) 'getStmtRange()' ensures this covers a trailing semicolon. 1727 Pending.foldChildren(TBTM.tokenBuffer(), getStmtRange(Child), ChildNode); 1728 } else { 1729 ChildNode = Mapping.find(Child); 1730 } 1731 assert(ChildNode != nullptr); 1732 setRole(ChildNode, Role); 1733 } 1734 1735 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) { 1736 if (!Child) 1737 return; 1738 Child = IgnoreImplicit(Child); 1739 1740 syntax::Tree *ChildNode = Mapping.find(Child); 1741 assert(ChildNode != nullptr); 1742 setRole(ChildNode, Role); 1743 } 1744 1745 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const { 1746 if (L.isInvalid()) 1747 return nullptr; 1748 auto It = LocationToToken.find(L); 1749 assert(It != LocationToToken.end()); 1750 return It->second; 1751 } 1752 1753 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A, 1754 TokenBufferTokenManager& TBTM, 1755 ASTContext &Context) { 1756 TreeBuilder Builder(A, TBTM); 1757 BuildTreeVisitor(Context, Builder).TraverseAST(Context); 1758 return std::move(Builder).finalize(); 1759 } 1760