1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <optional> 90 #include <utility> 91 92 using namespace clang; 93 using namespace ento; 94 using namespace std::placeholders; 95 96 //===----------------------------------------------------------------------===// 97 // The types of allocation we're modeling. This is used to check whether a 98 // dynamically allocated object is deallocated with the correct function, like 99 // not using operator delete on an object created by malloc(), or alloca regions 100 // aren't ever deallocated manually. 101 //===----------------------------------------------------------------------===// 102 103 namespace { 104 105 // Used to check correspondence between allocators and deallocators. 106 enum AllocationFamily { 107 AF_None, 108 AF_Malloc, 109 AF_CXXNew, 110 AF_CXXNewArray, 111 AF_IfNameIndex, 112 AF_Alloca, 113 AF_InnerBuffer 114 }; 115 116 } // end of anonymous namespace 117 118 /// Print names of allocators and deallocators. 119 /// 120 /// \returns true on success. 121 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 122 123 /// Print expected name of an allocator based on the deallocator's family 124 /// derived from the DeallocExpr. 125 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 126 127 /// Print expected name of a deallocator based on the allocator's 128 /// family. 129 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 130 131 //===----------------------------------------------------------------------===// 132 // The state of a symbol, in terms of memory management. 133 //===----------------------------------------------------------------------===// 134 135 namespace { 136 137 class RefState { 138 enum Kind { 139 // Reference to allocated memory. 140 Allocated, 141 // Reference to zero-allocated memory. 142 AllocatedOfSizeZero, 143 // Reference to released/freed memory. 144 Released, 145 // The responsibility for freeing resources has transferred from 146 // this reference. A relinquished symbol should not be freed. 147 Relinquished, 148 // We are no longer guaranteed to have observed all manipulations 149 // of this pointer/memory. For example, it could have been 150 // passed as a parameter to an opaque function. 151 Escaped 152 }; 153 154 const Stmt *S; 155 156 Kind K; 157 AllocationFamily Family; 158 159 RefState(Kind k, const Stmt *s, AllocationFamily family) 160 : S(s), K(k), Family(family) { 161 assert(family != AF_None); 162 } 163 164 public: 165 bool isAllocated() const { return K == Allocated; } 166 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 167 bool isReleased() const { return K == Released; } 168 bool isRelinquished() const { return K == Relinquished; } 169 bool isEscaped() const { return K == Escaped; } 170 AllocationFamily getAllocationFamily() const { return Family; } 171 const Stmt *getStmt() const { return S; } 172 173 bool operator==(const RefState &X) const { 174 return K == X.K && S == X.S && Family == X.Family; 175 } 176 177 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 178 return RefState(Allocated, s, family); 179 } 180 static RefState getAllocatedOfSizeZero(const RefState *RS) { 181 return RefState(AllocatedOfSizeZero, RS->getStmt(), 182 RS->getAllocationFamily()); 183 } 184 static RefState getReleased(AllocationFamily family, const Stmt *s) { 185 return RefState(Released, s, family); 186 } 187 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 188 return RefState(Relinquished, s, family); 189 } 190 static RefState getEscaped(const RefState *RS) { 191 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 192 } 193 194 void Profile(llvm::FoldingSetNodeID &ID) const { 195 ID.AddInteger(K); 196 ID.AddPointer(S); 197 ID.AddInteger(Family); 198 } 199 200 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 201 switch (K) { 202 #define CASE(ID) case ID: OS << #ID; break; 203 CASE(Allocated) 204 CASE(AllocatedOfSizeZero) 205 CASE(Released) 206 CASE(Relinquished) 207 CASE(Escaped) 208 } 209 } 210 211 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 212 }; 213 214 } // end of anonymous namespace 215 216 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 217 218 /// Check if the memory associated with this symbol was released. 219 static bool isReleased(SymbolRef Sym, CheckerContext &C); 220 221 /// Update the RefState to reflect the new memory allocation. 222 /// The optional \p RetVal parameter specifies the newly allocated pointer 223 /// value; if unspecified, the value of expression \p E is used. 224 static ProgramStateRef 225 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 226 AllocationFamily Family, 227 std::optional<SVal> RetVal = std::nullopt); 228 229 //===----------------------------------------------------------------------===// 230 // The modeling of memory reallocation. 231 // 232 // The terminology 'toPtr' and 'fromPtr' will be used: 233 // toPtr = realloc(fromPtr, 20); 234 //===----------------------------------------------------------------------===// 235 236 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 237 238 namespace { 239 240 /// The state of 'fromPtr' after reallocation is known to have failed. 241 enum OwnershipAfterReallocKind { 242 // The symbol needs to be freed (e.g.: realloc) 243 OAR_ToBeFreedAfterFailure, 244 // The symbol has been freed (e.g.: reallocf) 245 OAR_FreeOnFailure, 246 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 247 // 'fromPtr' was allocated: 248 // void Haha(int *ptr) { 249 // ptr = realloc(ptr, 67); 250 // // ... 251 // } 252 // ). 253 OAR_DoNotTrackAfterFailure 254 }; 255 256 /// Stores information about the 'fromPtr' symbol after reallocation. 257 /// 258 /// This is important because realloc may fail, and that needs special modeling. 259 /// Whether reallocation failed or not will not be known until later, so we'll 260 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 261 /// later, etc. 262 struct ReallocPair { 263 264 // The 'fromPtr'. 265 SymbolRef ReallocatedSym; 266 OwnershipAfterReallocKind Kind; 267 268 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 269 : ReallocatedSym(S), Kind(K) {} 270 void Profile(llvm::FoldingSetNodeID &ID) const { 271 ID.AddInteger(Kind); 272 ID.AddPointer(ReallocatedSym); 273 } 274 bool operator==(const ReallocPair &X) const { 275 return ReallocatedSym == X.ReallocatedSym && 276 Kind == X.Kind; 277 } 278 }; 279 280 } // end of anonymous namespace 281 282 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 283 284 /// Tells if the callee is one of the builtin new/delete operators, including 285 /// placement operators and other standard overloads. 286 static bool isStandardNewDelete(const FunctionDecl *FD); 287 static bool isStandardNewDelete(const CallEvent &Call) { 288 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 289 return false; 290 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Definition of the MallocChecker class. 295 //===----------------------------------------------------------------------===// 296 297 namespace { 298 299 class MallocChecker 300 : public Checker<check::DeadSymbols, check::PointerEscape, 301 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 302 check::EndFunction, check::PreCall, check::PostCall, 303 check::NewAllocator, check::PostStmt<BlockExpr>, 304 check::PostObjCMessage, check::Location, eval::Assume> { 305 public: 306 /// In pessimistic mode, the checker assumes that it does not know which 307 /// functions might free the memory. 308 /// In optimistic mode, the checker assumes that all user-defined functions 309 /// which might free a pointer are annotated. 310 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 311 312 bool ShouldRegisterNoOwnershipChangeVisitor = false; 313 314 /// Many checkers are essentially built into this one, so enabling them will 315 /// make MallocChecker perform additional modeling and reporting. 316 enum CheckKind { 317 /// When a subchecker is enabled but MallocChecker isn't, model memory 318 /// management but do not emit warnings emitted with MallocChecker only 319 /// enabled. 320 CK_MallocChecker, 321 CK_NewDeleteChecker, 322 CK_NewDeleteLeaksChecker, 323 CK_MismatchedDeallocatorChecker, 324 CK_InnerPointerChecker, 325 CK_NumCheckKinds 326 }; 327 328 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 329 330 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 331 CheckerNameRef CheckNames[CK_NumCheckKinds]; 332 333 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 335 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 336 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 337 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 338 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 339 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 340 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 341 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 342 bool Assumption) const; 343 void checkLocation(SVal l, bool isLoad, const Stmt *S, 344 CheckerContext &C) const; 345 346 ProgramStateRef checkPointerEscape(ProgramStateRef State, 347 const InvalidatedSymbols &Escaped, 348 const CallEvent *Call, 349 PointerEscapeKind Kind) const; 350 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 351 const InvalidatedSymbols &Escaped, 352 const CallEvent *Call, 353 PointerEscapeKind Kind) const; 354 355 void printState(raw_ostream &Out, ProgramStateRef State, 356 const char *NL, const char *Sep) const override; 357 358 private: 359 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 360 mutable std::unique_ptr<BugType> BT_DoubleDelete; 361 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 365 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 366 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 367 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 368 369 #define CHECK_FN(NAME) \ 370 void NAME(const CallEvent &Call, CheckerContext &C) const; 371 372 CHECK_FN(checkFree) 373 CHECK_FN(checkIfNameIndex) 374 CHECK_FN(checkBasicAlloc) 375 CHECK_FN(checkKernelMalloc) 376 CHECK_FN(checkCalloc) 377 CHECK_FN(checkAlloca) 378 CHECK_FN(checkStrdup) 379 CHECK_FN(checkIfFreeNameIndex) 380 CHECK_FN(checkCXXNewOrCXXDelete) 381 CHECK_FN(checkGMalloc0) 382 CHECK_FN(checkGMemdup) 383 CHECK_FN(checkGMallocN) 384 CHECK_FN(checkGMallocN0) 385 CHECK_FN(checkReallocN) 386 CHECK_FN(checkOwnershipAttr) 387 388 void checkRealloc(const CallEvent &Call, CheckerContext &C, 389 bool ShouldFreeOnFail) const; 390 391 using CheckFn = std::function<void(const MallocChecker *, 392 const CallEvent &Call, CheckerContext &C)>; 393 394 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 395 {{{"free"}, 1}, &MallocChecker::checkFree}, 396 {{{"if_freenameindex"}, 1}, &MallocChecker::checkIfFreeNameIndex}, 397 {{{"kfree"}, 1}, &MallocChecker::checkFree}, 398 {{{"g_free"}, 1}, &MallocChecker::checkFree}, 399 }; 400 401 bool isFreeingCall(const CallEvent &Call) const; 402 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 403 404 friend class NoOwnershipChangeVisitor; 405 406 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 407 {{{"alloca"}, 1}, &MallocChecker::checkAlloca}, 408 {{{"_alloca"}, 1}, &MallocChecker::checkAlloca}, 409 {{{"malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 410 {{{"malloc"}, 3}, &MallocChecker::checkKernelMalloc}, 411 {{{"calloc"}, 2}, &MallocChecker::checkCalloc}, 412 {{{"valloc"}, 1}, &MallocChecker::checkBasicAlloc}, 413 {{CDF_MaybeBuiltin, {"strndup"}, 2}, &MallocChecker::checkStrdup}, 414 {{CDF_MaybeBuiltin, {"strdup"}, 1}, &MallocChecker::checkStrdup}, 415 {{{"_strdup"}, 1}, &MallocChecker::checkStrdup}, 416 {{{"kmalloc"}, 2}, &MallocChecker::checkKernelMalloc}, 417 {{{"if_nameindex"}, 1}, &MallocChecker::checkIfNameIndex}, 418 {{CDF_MaybeBuiltin, {"wcsdup"}, 1}, &MallocChecker::checkStrdup}, 419 {{CDF_MaybeBuiltin, {"_wcsdup"}, 1}, &MallocChecker::checkStrdup}, 420 {{{"g_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 421 {{{"g_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 422 {{{"g_try_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 423 {{{"g_try_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 424 {{{"g_memdup"}, 2}, &MallocChecker::checkGMemdup}, 425 {{{"g_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 426 {{{"g_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 427 {{{"g_try_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 428 {{{"g_try_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 429 }; 430 431 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 432 {{{"realloc"}, 2}, 433 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 434 {{{"reallocf"}, 2}, 435 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 436 {{{"g_realloc"}, 2}, 437 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 438 {{{"g_try_realloc"}, 2}, 439 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 440 {{{"g_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 441 {{{"g_try_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 442 }; 443 444 bool isMemCall(const CallEvent &Call) const; 445 446 // TODO: Remove mutable by moving the initializtaion to the registry function. 447 mutable std::optional<uint64_t> KernelZeroFlagVal; 448 449 using KernelZeroSizePtrValueTy = std::optional<int>; 450 /// Store the value of macro called `ZERO_SIZE_PTR`. 451 /// The value is initialized at first use, before first use the outer 452 /// Optional is empty, afterwards it contains another Optional that indicates 453 /// if the macro value could be determined, and if yes the value itself. 454 mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 455 456 /// Process C++ operator new()'s allocation, which is the part of C++ 457 /// new-expression that goes before the constructor. 458 [[nodiscard]] ProgramStateRef 459 processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, 460 AllocationFamily Family) const; 461 462 /// Perform a zero-allocation check. 463 /// 464 /// \param [in] Call The expression that allocates memory. 465 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 466 /// of the memory that needs to be allocated. E.g. for malloc, this would be 467 /// 0. 468 /// \param [in] RetVal Specifies the newly allocated pointer value; 469 /// if unspecified, the value of expression \p E is used. 470 [[nodiscard]] static ProgramStateRef 471 ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg, 472 ProgramStateRef State, 473 std::optional<SVal> RetVal = std::nullopt); 474 475 /// Model functions with the ownership_returns attribute. 476 /// 477 /// User-defined function may have the ownership_returns attribute, which 478 /// annotates that the function returns with an object that was allocated on 479 /// the heap, and passes the ownertship to the callee. 480 /// 481 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 482 /// 483 /// It has two parameters: 484 /// - first: name of the resource (e.g. 'malloc') 485 /// - (OPTIONAL) second: size of the allocated region 486 /// 487 /// \param [in] Call The expression that allocates memory. 488 /// \param [in] Att The ownership_returns attribute. 489 /// \param [in] State The \c ProgramState right before allocation. 490 /// \returns The ProgramState right after allocation. 491 [[nodiscard]] ProgramStateRef 492 MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 493 const OwnershipAttr *Att, ProgramStateRef State) const; 494 495 /// Models memory allocation. 496 /// 497 /// \param [in] Call The expression that allocates memory. 498 /// \param [in] SizeEx Size of the memory that needs to be allocated. 499 /// \param [in] Init The value the allocated memory needs to be initialized. 500 /// with. For example, \c calloc initializes the allocated memory to 0, 501 /// malloc leaves it undefined. 502 /// \param [in] State The \c ProgramState right before allocation. 503 /// \returns The ProgramState right after allocation. 504 [[nodiscard]] static ProgramStateRef 505 MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, 506 SVal Init, ProgramStateRef State, AllocationFamily Family); 507 508 /// Models memory allocation. 509 /// 510 /// \param [in] Call The expression that allocates memory. 511 /// \param [in] Size Size of the memory that needs to be allocated. 512 /// \param [in] Init The value the allocated memory needs to be initialized. 513 /// with. For example, \c calloc initializes the allocated memory to 0, 514 /// malloc leaves it undefined. 515 /// \param [in] State The \c ProgramState right before allocation. 516 /// \returns The ProgramState right after allocation. 517 [[nodiscard]] static ProgramStateRef 518 MallocMemAux(CheckerContext &C, const CallEvent &Call, SVal Size, SVal Init, 519 ProgramStateRef State, AllocationFamily Family); 520 521 // Check if this malloc() for special flags. At present that means M_ZERO or 522 // __GFP_ZERO (in which case, treat it like calloc). 523 [[nodiscard]] std::optional<ProgramStateRef> 524 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 525 const ProgramStateRef &State) const; 526 527 /// Model functions with the ownership_takes and ownership_holds attributes. 528 /// 529 /// User-defined function may have the ownership_takes and/or ownership_holds 530 /// attributes, which annotates that the function frees the memory passed as a 531 /// parameter. 532 /// 533 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 534 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 535 /// 536 /// They have two parameters: 537 /// - first: name of the resource (e.g. 'malloc') 538 /// - second: index of the parameter the attribute applies to 539 /// 540 /// \param [in] Call The expression that frees memory. 541 /// \param [in] Att The ownership_takes or ownership_holds attribute. 542 /// \param [in] State The \c ProgramState right before allocation. 543 /// \returns The ProgramState right after deallocation. 544 [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, 545 const CallEvent &Call, 546 const OwnershipAttr *Att, 547 ProgramStateRef State) const; 548 549 /// Models memory deallocation. 550 /// 551 /// \param [in] Call The expression that frees memory. 552 /// \param [in] State The \c ProgramState right before allocation. 553 /// \param [in] Num Index of the argument that needs to be freed. This is 554 /// normally 0, but for custom free functions it may be different. 555 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 556 /// attribute. 557 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 558 /// to have been allocated, or in other words, the symbol to be freed was 559 /// registered as allocated by this checker. In the following case, \c ptr 560 /// isn't known to be allocated. 561 /// void Haha(int *ptr) { 562 /// ptr = realloc(ptr, 67); 563 /// // ... 564 /// } 565 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 566 /// we're modeling returns with Null on failure. 567 /// \returns The ProgramState right after deallocation. 568 [[nodiscard]] ProgramStateRef 569 FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, 570 unsigned Num, bool Hold, bool &IsKnownToBeAllocated, 571 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 572 573 /// Models memory deallocation. 574 /// 575 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 576 /// \param [in] Call The expression that frees the memory. 577 /// \param [in] State The \c ProgramState right before allocation. 578 /// normally 0, but for custom free functions it may be different. 579 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 580 /// attribute. 581 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 582 /// to have been allocated, or in other words, the symbol to be freed was 583 /// registered as allocated by this checker. In the following case, \c ptr 584 /// isn't known to be allocated. 585 /// void Haha(int *ptr) { 586 /// ptr = realloc(ptr, 67); 587 /// // ... 588 /// } 589 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 590 /// we're modeling returns with Null on failure. 591 /// \returns The ProgramState right after deallocation. 592 [[nodiscard]] ProgramStateRef 593 FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 594 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 595 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 596 597 // TODO: Needs some refactoring, as all other deallocation modeling 598 // functions are suffering from out parameters and messy code due to how 599 // realloc is handled. 600 // 601 /// Models memory reallocation. 602 /// 603 /// \param [in] Call The expression that reallocated memory 604 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 605 /// memory should be freed. 606 /// \param [in] State The \c ProgramState right before reallocation. 607 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 608 /// has an '_n' suffix, such as g_realloc_n. 609 /// \returns The ProgramState right after reallocation. 610 [[nodiscard]] ProgramStateRef 611 ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, 612 ProgramStateRef State, AllocationFamily Family, 613 bool SuffixWithN = false) const; 614 615 /// Evaluates the buffer size that needs to be allocated. 616 /// 617 /// \param [in] Blocks The amount of blocks that needs to be allocated. 618 /// \param [in] BlockBytes The size of a block. 619 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 620 [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, 621 const Expr *Blocks, 622 const Expr *BlockBytes); 623 624 /// Models zero initialized array allocation. 625 /// 626 /// \param [in] Call The expression that reallocated memory 627 /// \param [in] State The \c ProgramState right before reallocation. 628 /// \returns The ProgramState right after allocation. 629 [[nodiscard]] static ProgramStateRef 630 CallocMem(CheckerContext &C, const CallEvent &Call, ProgramStateRef State); 631 632 /// See if deallocation happens in a suspicious context. If so, escape the 633 /// pointers that otherwise would have been deallocated and return true. 634 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 635 CheckerContext &C) const; 636 637 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 638 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 639 640 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 641 /// sized memory region. 642 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 643 const Stmt *S) const; 644 645 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 646 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 647 648 /// Check if the function is known to free memory, or if it is 649 /// "interesting" and should be modeled explicitly. 650 /// 651 /// \param [out] EscapingSymbol A function might not free memory in general, 652 /// but could be known to free a particular symbol. In this case, false is 653 /// returned and the single escaping symbol is returned through the out 654 /// parameter. 655 /// 656 /// We assume that pointers do not escape through calls to system functions 657 /// not handled by this checker. 658 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 659 ProgramStateRef State, 660 SymbolRef &EscapingSymbol) const; 661 662 /// Implementation of the checkPointerEscape callbacks. 663 [[nodiscard]] ProgramStateRef 664 checkPointerEscapeAux(ProgramStateRef State, 665 const InvalidatedSymbols &Escaped, 666 const CallEvent *Call, PointerEscapeKind Kind, 667 bool IsConstPointerEscape) const; 668 669 // Implementation of the checkPreStmt and checkEndFunction callbacks. 670 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 671 672 ///@{ 673 /// Tells if a given family/call/symbol is tracked by the current checker. 674 /// Sets CheckKind to the kind of the checker responsible for this 675 /// family/call/symbol. 676 std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 677 bool IsALeakCheck = false) const; 678 679 std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 680 bool IsALeakCheck = false) const; 681 ///@} 682 static bool SummarizeValue(raw_ostream &os, SVal V); 683 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 684 685 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 686 const Expr *DeallocExpr, 687 AllocationFamily Family) const; 688 689 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 690 SourceRange Range) const; 691 692 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 693 const Expr *DeallocExpr, const RefState *RS, 694 SymbolRef Sym, bool OwnershipTransferred) const; 695 696 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 697 const Expr *DeallocExpr, AllocationFamily Family, 698 const Expr *AllocExpr = nullptr) const; 699 700 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 701 SymbolRef Sym) const; 702 703 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 704 SymbolRef Sym, SymbolRef PrevSym) const; 705 706 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 707 708 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 709 SymbolRef Sym) const; 710 711 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 712 const Expr *FreeExpr, 713 AllocationFamily Family) const; 714 715 /// Find the location of the allocation for Sym on the path leading to the 716 /// exploded node N. 717 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 718 CheckerContext &C); 719 720 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 721 722 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 723 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 724 SVal ArgVal) const; 725 }; 726 } // end anonymous namespace 727 728 //===----------------------------------------------------------------------===// 729 // Definition of NoOwnershipChangeVisitor. 730 //===----------------------------------------------------------------------===// 731 732 namespace { 733 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 734 // The symbol whose (lack of) ownership change we are interested in. 735 SymbolRef Sym; 736 const MallocChecker &Checker; 737 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 738 739 // Collect which entities point to the allocated memory, and could be 740 // responsible for deallocating it. 741 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 742 SymbolRef Sym; 743 OwnerSet &Owners; 744 745 public: 746 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 747 : Sym(Sym), Owners(Owners) {} 748 749 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 750 SVal Val) override { 751 if (Val.getAsSymbol() == Sym) 752 Owners.insert(Region); 753 return true; 754 } 755 756 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 757 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 758 out << "Owners: {\n"; 759 for (const MemRegion *Owner : Owners) { 760 out << " "; 761 Owner->dumpToStream(out); 762 out << ",\n"; 763 } 764 out << "}\n"; 765 } 766 }; 767 768 protected: 769 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 770 OwnerSet Ret; 771 772 ProgramStateRef State = N->getState(); 773 OwnershipBindingsHandler Handler{Sym, Ret}; 774 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 775 Handler); 776 return Ret; 777 } 778 779 LLVM_DUMP_METHOD static std::string 780 getFunctionName(const ExplodedNode *CallEnterN) { 781 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 782 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 783 if (const FunctionDecl *FD = CE->getDirectCallee()) 784 return FD->getQualifiedNameAsString(); 785 return ""; 786 } 787 788 /// Syntactically checks whether the callee is a deallocating function. Since 789 /// we have no path-sensitive information on this call (we would need a 790 /// CallEvent instead of a CallExpr for that), its possible that a 791 /// deallocation function was called indirectly through a function pointer, 792 /// but we are not able to tell, so this is a best effort analysis. 793 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 794 /// clang/test/Analysis/NewDeleteLeaks.cpp. 795 bool isFreeingCallAsWritten(const CallExpr &Call) const { 796 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 797 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 798 return true; 799 800 if (const auto *Func = 801 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 802 return MallocChecker::isFreeingOwnershipAttrCall(Func); 803 804 return false; 805 } 806 807 /// Heuristically guess whether the callee intended to free memory. This is 808 /// done syntactically, because we are trying to argue about alternative 809 /// paths of execution, and as a consequence we don't have path-sensitive 810 /// information. 811 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 812 using namespace clang::ast_matchers; 813 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 814 815 // Given that the stack frame was entered, the body should always be 816 // theoretically obtainable. In case of body farms, the synthesized body 817 // is not attached to declaration, thus triggering the '!FD->hasBody()' 818 // branch. That said, would a synthesized body ever intend to handle 819 // ownership? As of today they don't. And if they did, how would we 820 // put notes inside it, given that it doesn't match any source locations? 821 if (!FD || !FD->hasBody()) 822 return false; 823 824 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 825 callExpr().bind("call")))), 826 *FD->getBody(), ACtx); 827 for (BoundNodes Match : Matches) { 828 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 829 return true; 830 831 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 832 if (isFreeingCallAsWritten(*Call)) 833 return true; 834 } 835 // TODO: Ownership might change with an attempt to store the allocated 836 // memory, not only through deallocation. Check for attempted stores as 837 // well. 838 return false; 839 } 840 841 bool wasModifiedInFunction(const ExplodedNode *CallEnterN, 842 const ExplodedNode *CallExitEndN) override { 843 if (!doesFnIntendToHandleOwnership( 844 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 845 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 846 return true; 847 848 if (CallEnterN->getState()->get<RegionState>(Sym) != 849 CallExitEndN->getState()->get<RegionState>(Sym)) 850 return true; 851 852 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 853 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 854 855 // Owners in the current set may be purged from the analyzer later on. 856 // If a variable is dead (is not referenced directly or indirectly after 857 // some point), it will be removed from the Store before the end of its 858 // actual lifetime. 859 // This means that if the ownership status didn't change, CurrOwners 860 // must be a superset of, but not necessarily equal to ExitOwners. 861 return !llvm::set_is_subset(ExitOwners, CurrOwners); 862 } 863 864 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 865 PathDiagnosticLocation L = PathDiagnosticLocation::create( 866 N->getLocation(), 867 N->getState()->getStateManager().getContext().getSourceManager()); 868 return std::make_shared<PathDiagnosticEventPiece>( 869 L, "Returning without deallocating memory or storing the pointer for " 870 "later deallocation"); 871 } 872 873 PathDiagnosticPieceRef 874 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 875 const ObjCMethodCall &Call, 876 const ExplodedNode *N) override { 877 // TODO: Implement. 878 return nullptr; 879 } 880 881 PathDiagnosticPieceRef 882 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 883 const CXXConstructorCall &Call, 884 const ExplodedNode *N) override { 885 // TODO: Implement. 886 return nullptr; 887 } 888 889 PathDiagnosticPieceRef 890 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 891 const ExplodedNode *N) override { 892 // TODO: Factor the logic of "what constitutes as an entity being passed 893 // into a function call" out by reusing the code in 894 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 895 // the printing technology in UninitializedObject's FieldChainInfo. 896 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 897 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 898 SVal V = Call.getArgSVal(I); 899 if (V.getAsSymbol() == Sym) 900 return emitNote(N); 901 } 902 return nullptr; 903 } 904 905 public: 906 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 907 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 908 Checker(*Checker) {} 909 910 void Profile(llvm::FoldingSetNodeID &ID) const override { 911 static int Tag = 0; 912 ID.AddPointer(&Tag); 913 ID.AddPointer(Sym); 914 } 915 }; 916 917 } // end anonymous namespace 918 919 //===----------------------------------------------------------------------===// 920 // Definition of MallocBugVisitor. 921 //===----------------------------------------------------------------------===// 922 923 namespace { 924 /// The bug visitor which allows us to print extra diagnostics along the 925 /// BugReport path. For example, showing the allocation site of the leaked 926 /// region. 927 class MallocBugVisitor final : public BugReporterVisitor { 928 protected: 929 enum NotificationMode { Normal, ReallocationFailed }; 930 931 // The allocated region symbol tracked by the main analysis. 932 SymbolRef Sym; 933 934 // The mode we are in, i.e. what kind of diagnostics will be emitted. 935 NotificationMode Mode; 936 937 // A symbol from when the primary region should have been reallocated. 938 SymbolRef FailedReallocSymbol; 939 940 // A C++ destructor stack frame in which memory was released. Used for 941 // miscellaneous false positive suppression. 942 const StackFrameContext *ReleaseDestructorLC; 943 944 bool IsLeak; 945 946 public: 947 MallocBugVisitor(SymbolRef S, bool isLeak = false) 948 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 949 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 950 951 static void *getTag() { 952 static int Tag = 0; 953 return &Tag; 954 } 955 956 void Profile(llvm::FoldingSetNodeID &ID) const override { 957 ID.AddPointer(getTag()); 958 ID.AddPointer(Sym); 959 } 960 961 /// Did not track -> allocated. Other state (released) -> allocated. 962 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 963 const Stmt *Stmt) { 964 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 965 (RSCurr && 966 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 967 (!RSPrev || 968 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 969 } 970 971 /// Did not track -> released. Other state (allocated) -> released. 972 /// The statement associated with the release might be missing. 973 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 974 const Stmt *Stmt) { 975 bool IsReleased = 976 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 977 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 978 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 979 return IsReleased; 980 } 981 982 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 983 static inline bool isRelinquished(const RefState *RSCurr, 984 const RefState *RSPrev, const Stmt *Stmt) { 985 return ( 986 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 987 (RSCurr && RSCurr->isRelinquished()) && 988 (!RSPrev || !RSPrev->isRelinquished())); 989 } 990 991 /// If the expression is not a call, and the state change is 992 /// released -> allocated, it must be the realloc return value 993 /// check. If we have to handle more cases here, it might be cleaner just 994 /// to track this extra bit in the state itself. 995 static inline bool hasReallocFailed(const RefState *RSCurr, 996 const RefState *RSPrev, 997 const Stmt *Stmt) { 998 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 999 (RSCurr && 1000 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1001 (RSPrev && 1002 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1003 } 1004 1005 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1006 BugReporterContext &BRC, 1007 PathSensitiveBugReport &BR) override; 1008 1009 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1010 const ExplodedNode *EndPathNode, 1011 PathSensitiveBugReport &BR) override { 1012 if (!IsLeak) 1013 return nullptr; 1014 1015 PathDiagnosticLocation L = BR.getLocation(); 1016 // Do not add the statement itself as a range in case of leak. 1017 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1018 false); 1019 } 1020 1021 private: 1022 class StackHintGeneratorForReallocationFailed 1023 : public StackHintGeneratorForSymbol { 1024 public: 1025 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1026 : StackHintGeneratorForSymbol(S, M) {} 1027 1028 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1029 // Printed parameters start at 1, not 0. 1030 ++ArgIndex; 1031 1032 SmallString<200> buf; 1033 llvm::raw_svector_ostream os(buf); 1034 1035 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1036 << " parameter failed"; 1037 1038 return std::string(os.str()); 1039 } 1040 1041 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1042 return "Reallocation of returned value failed"; 1043 } 1044 }; 1045 }; 1046 } // end anonymous namespace 1047 1048 // A map from the freed symbol to the symbol representing the return value of 1049 // the free function. 1050 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1051 1052 namespace { 1053 class StopTrackingCallback final : public SymbolVisitor { 1054 ProgramStateRef state; 1055 1056 public: 1057 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1058 ProgramStateRef getState() const { return state; } 1059 1060 bool VisitSymbol(SymbolRef sym) override { 1061 state = state->remove<RegionState>(sym); 1062 return true; 1063 } 1064 }; 1065 } // end anonymous namespace 1066 1067 static bool isStandardNewDelete(const FunctionDecl *FD) { 1068 if (!FD) 1069 return false; 1070 1071 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1072 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1073 Kind != OO_Array_Delete) 1074 return false; 1075 1076 // This is standard if and only if it's not defined in a user file. 1077 SourceLocation L = FD->getLocation(); 1078 // If the header for operator delete is not included, it's still defined 1079 // in an invalid source location. Check to make sure we don't crash. 1080 return !L.isValid() || 1081 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1082 } 1083 1084 //===----------------------------------------------------------------------===// 1085 // Methods of MallocChecker and MallocBugVisitor. 1086 //===----------------------------------------------------------------------===// 1087 1088 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1089 if (Func->hasAttrs()) { 1090 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1091 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1092 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1093 return true; 1094 } 1095 } 1096 return false; 1097 } 1098 1099 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1100 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1101 return true; 1102 1103 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1104 return isFreeingOwnershipAttrCall(Func); 1105 1106 return false; 1107 } 1108 1109 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1110 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1111 ReallocatingMemFnMap.lookup(Call)) 1112 return true; 1113 1114 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1115 return false; 1116 1117 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1118 return Func && Func->hasAttr<OwnershipAttr>(); 1119 } 1120 1121 std::optional<ProgramStateRef> 1122 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1123 const ProgramStateRef &State) const { 1124 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1125 // 1126 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1127 // 1128 // One of the possible flags is M_ZERO, which means 'give me back an 1129 // allocation which is already zeroed', like calloc. 1130 1131 // 2-argument kmalloc(), as used in the Linux kernel: 1132 // 1133 // void *kmalloc(size_t size, gfp_t flags); 1134 // 1135 // Has the similar flag value __GFP_ZERO. 1136 1137 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1138 // code could be shared. 1139 1140 ASTContext &Ctx = C.getASTContext(); 1141 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1142 1143 if (!KernelZeroFlagVal) { 1144 switch (OS) { 1145 case llvm::Triple::FreeBSD: 1146 KernelZeroFlagVal = 0x0100; 1147 break; 1148 case llvm::Triple::NetBSD: 1149 KernelZeroFlagVal = 0x0002; 1150 break; 1151 case llvm::Triple::OpenBSD: 1152 KernelZeroFlagVal = 0x0008; 1153 break; 1154 case llvm::Triple::Linux: 1155 // __GFP_ZERO 1156 KernelZeroFlagVal = 0x8000; 1157 break; 1158 default: 1159 // FIXME: We need a more general way of getting the M_ZERO value. 1160 // See also: O_CREAT in UnixAPIChecker.cpp. 1161 1162 // Fall back to normal malloc behavior on platforms where we don't 1163 // know M_ZERO. 1164 return std::nullopt; 1165 } 1166 } 1167 1168 // We treat the last argument as the flags argument, and callers fall-back to 1169 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1170 // as well as Linux kmalloc. 1171 if (Call.getNumArgs() < 2) 1172 return std::nullopt; 1173 1174 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1175 const SVal V = C.getSVal(FlagsEx); 1176 if (!isa<NonLoc>(V)) { 1177 // The case where 'V' can be a location can only be due to a bad header, 1178 // so in this case bail out. 1179 return std::nullopt; 1180 } 1181 1182 NonLoc Flags = V.castAs<NonLoc>(); 1183 NonLoc ZeroFlag = C.getSValBuilder() 1184 .makeIntVal(*KernelZeroFlagVal, FlagsEx->getType()) 1185 .castAs<NonLoc>(); 1186 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1187 Flags, ZeroFlag, 1188 FlagsEx->getType()); 1189 if (MaskedFlagsUC.isUnknownOrUndef()) 1190 return std::nullopt; 1191 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1192 1193 // Check if maskedFlags is non-zero. 1194 ProgramStateRef TrueState, FalseState; 1195 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1196 1197 // If M_ZERO is set, treat this like calloc (initialized). 1198 if (TrueState && !FalseState) { 1199 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1200 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1201 AF_Malloc); 1202 } 1203 1204 return std::nullopt; 1205 } 1206 1207 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1208 const Expr *BlockBytes) { 1209 SValBuilder &SB = C.getSValBuilder(); 1210 SVal BlocksVal = C.getSVal(Blocks); 1211 SVal BlockBytesVal = C.getSVal(BlockBytes); 1212 ProgramStateRef State = C.getState(); 1213 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1214 SB.getContext().getSizeType()); 1215 return TotalSize; 1216 } 1217 1218 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1219 CheckerContext &C) const { 1220 ProgramStateRef State = C.getState(); 1221 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1222 AF_Malloc); 1223 State = ProcessZeroAllocCheck(Call, 0, State); 1224 C.addTransition(State); 1225 } 1226 1227 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1228 CheckerContext &C) const { 1229 ProgramStateRef State = C.getState(); 1230 std::optional<ProgramStateRef> MaybeState = 1231 performKernelMalloc(Call, C, State); 1232 if (MaybeState) 1233 State = *MaybeState; 1234 else 1235 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1236 AF_Malloc); 1237 C.addTransition(State); 1238 } 1239 1240 static bool isStandardRealloc(const CallEvent &Call) { 1241 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1242 assert(FD); 1243 ASTContext &AC = FD->getASTContext(); 1244 1245 if (isa<CXXMethodDecl>(FD)) 1246 return false; 1247 1248 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1249 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1250 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1251 AC.getSizeType(); 1252 } 1253 1254 static bool isGRealloc(const CallEvent &Call) { 1255 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1256 assert(FD); 1257 ASTContext &AC = FD->getASTContext(); 1258 1259 if (isa<CXXMethodDecl>(FD)) 1260 return false; 1261 1262 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1263 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1264 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1265 AC.UnsignedLongTy; 1266 } 1267 1268 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1269 bool ShouldFreeOnFail) const { 1270 // HACK: CallDescription currently recognizes non-standard realloc functions 1271 // as standard because it doesn't check the type, or wether its a non-method 1272 // function. This should be solved by making CallDescription smarter. 1273 // Mind that this came from a bug report, and all other functions suffer from 1274 // this. 1275 // https://bugs.llvm.org/show_bug.cgi?id=46253 1276 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1277 return; 1278 ProgramStateRef State = C.getState(); 1279 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1280 State = ProcessZeroAllocCheck(Call, 1, State); 1281 C.addTransition(State); 1282 } 1283 1284 void MallocChecker::checkCalloc(const CallEvent &Call, 1285 CheckerContext &C) const { 1286 ProgramStateRef State = C.getState(); 1287 State = CallocMem(C, Call, State); 1288 State = ProcessZeroAllocCheck(Call, 0, State); 1289 State = ProcessZeroAllocCheck(Call, 1, State); 1290 C.addTransition(State); 1291 } 1292 1293 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1294 ProgramStateRef State = C.getState(); 1295 bool IsKnownToBeAllocatedMemory = false; 1296 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1297 return; 1298 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1299 AF_Malloc); 1300 C.addTransition(State); 1301 } 1302 1303 void MallocChecker::checkAlloca(const CallEvent &Call, 1304 CheckerContext &C) const { 1305 ProgramStateRef State = C.getState(); 1306 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1307 AF_Alloca); 1308 State = ProcessZeroAllocCheck(Call, 0, State); 1309 C.addTransition(State); 1310 } 1311 1312 void MallocChecker::checkStrdup(const CallEvent &Call, 1313 CheckerContext &C) const { 1314 ProgramStateRef State = C.getState(); 1315 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1316 if (!CE) 1317 return; 1318 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1319 1320 C.addTransition(State); 1321 } 1322 1323 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1324 CheckerContext &C) const { 1325 ProgramStateRef State = C.getState(); 1326 // Should we model this differently? We can allocate a fixed number of 1327 // elements with zeros in the last one. 1328 State = 1329 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1330 1331 C.addTransition(State); 1332 } 1333 1334 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1335 CheckerContext &C) const { 1336 ProgramStateRef State = C.getState(); 1337 bool IsKnownToBeAllocatedMemory = false; 1338 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1339 AF_IfNameIndex); 1340 C.addTransition(State); 1341 } 1342 1343 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1344 CheckerContext &C) const { 1345 ProgramStateRef State = C.getState(); 1346 bool IsKnownToBeAllocatedMemory = false; 1347 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1348 if (!CE) 1349 return; 1350 1351 assert(isStandardNewDelete(Call)); 1352 1353 // Process direct calls to operator new/new[]/delete/delete[] functions 1354 // as distinct from new/new[]/delete/delete[] expressions that are 1355 // processed by the checkPostStmt callbacks for CXXNewExpr and 1356 // CXXDeleteExpr. 1357 const FunctionDecl *FD = C.getCalleeDecl(CE); 1358 switch (FD->getOverloadedOperator()) { 1359 case OO_New: 1360 State = 1361 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1362 State = ProcessZeroAllocCheck(Call, 0, State); 1363 break; 1364 case OO_Array_New: 1365 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1366 AF_CXXNewArray); 1367 State = ProcessZeroAllocCheck(Call, 0, State); 1368 break; 1369 case OO_Delete: 1370 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1371 AF_CXXNew); 1372 break; 1373 case OO_Array_Delete: 1374 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1375 AF_CXXNewArray); 1376 break; 1377 default: 1378 llvm_unreachable("not a new/delete operator"); 1379 } 1380 1381 C.addTransition(State); 1382 } 1383 1384 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1385 CheckerContext &C) const { 1386 ProgramStateRef State = C.getState(); 1387 SValBuilder &svalBuilder = C.getSValBuilder(); 1388 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1389 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1390 State = ProcessZeroAllocCheck(Call, 0, State); 1391 C.addTransition(State); 1392 } 1393 1394 void MallocChecker::checkGMemdup(const CallEvent &Call, 1395 CheckerContext &C) const { 1396 ProgramStateRef State = C.getState(); 1397 State = 1398 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1399 State = ProcessZeroAllocCheck(Call, 1, State); 1400 C.addTransition(State); 1401 } 1402 1403 void MallocChecker::checkGMallocN(const CallEvent &Call, 1404 CheckerContext &C) const { 1405 ProgramStateRef State = C.getState(); 1406 SVal Init = UndefinedVal(); 1407 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1408 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1409 State = ProcessZeroAllocCheck(Call, 0, State); 1410 State = ProcessZeroAllocCheck(Call, 1, State); 1411 C.addTransition(State); 1412 } 1413 1414 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1415 CheckerContext &C) const { 1416 ProgramStateRef State = C.getState(); 1417 SValBuilder &SB = C.getSValBuilder(); 1418 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1419 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1420 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1421 State = ProcessZeroAllocCheck(Call, 0, State); 1422 State = ProcessZeroAllocCheck(Call, 1, State); 1423 C.addTransition(State); 1424 } 1425 1426 void MallocChecker::checkReallocN(const CallEvent &Call, 1427 CheckerContext &C) const { 1428 ProgramStateRef State = C.getState(); 1429 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1430 /*SuffixWithN=*/true); 1431 State = ProcessZeroAllocCheck(Call, 1, State); 1432 State = ProcessZeroAllocCheck(Call, 2, State); 1433 C.addTransition(State); 1434 } 1435 1436 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1437 CheckerContext &C) const { 1438 ProgramStateRef State = C.getState(); 1439 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1440 if (!CE) 1441 return; 1442 const FunctionDecl *FD = C.getCalleeDecl(CE); 1443 if (!FD) 1444 return; 1445 if (ShouldIncludeOwnershipAnnotatedFunctions || 1446 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1447 // Check all the attributes, if there are any. 1448 // There can be multiple of these attributes. 1449 if (FD->hasAttrs()) 1450 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1451 switch (I->getOwnKind()) { 1452 case OwnershipAttr::Returns: 1453 State = MallocMemReturnsAttr(C, Call, I, State); 1454 break; 1455 case OwnershipAttr::Takes: 1456 case OwnershipAttr::Holds: 1457 State = FreeMemAttr(C, Call, I, State); 1458 break; 1459 } 1460 } 1461 } 1462 C.addTransition(State); 1463 } 1464 1465 void MallocChecker::checkPostCall(const CallEvent &Call, 1466 CheckerContext &C) const { 1467 if (C.wasInlined) 1468 return; 1469 if (!Call.getOriginExpr()) 1470 return; 1471 1472 ProgramStateRef State = C.getState(); 1473 1474 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1475 (*Callback)(this, Call, C); 1476 return; 1477 } 1478 1479 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1480 (*Callback)(this, Call, C); 1481 return; 1482 } 1483 1484 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1485 (*Callback)(this, Call, C); 1486 return; 1487 } 1488 1489 if (isStandardNewDelete(Call)) { 1490 checkCXXNewOrCXXDelete(Call, C); 1491 return; 1492 } 1493 1494 checkOwnershipAttr(Call, C); 1495 } 1496 1497 // Performs a 0-sized allocations check. 1498 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1499 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1500 std::optional<SVal> RetVal) { 1501 if (!State) 1502 return nullptr; 1503 1504 if (!RetVal) 1505 RetVal = Call.getReturnValue(); 1506 1507 const Expr *Arg = nullptr; 1508 1509 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1510 Arg = CE->getArg(IndexOfSizeArg); 1511 } else if (const CXXNewExpr *NE = 1512 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1513 if (NE->isArray()) { 1514 Arg = *NE->getArraySize(); 1515 } else { 1516 return State; 1517 } 1518 } else 1519 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1520 1521 assert(Arg); 1522 1523 auto DefArgVal = 1524 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1525 1526 if (!DefArgVal) 1527 return State; 1528 1529 // Check if the allocation size is 0. 1530 ProgramStateRef TrueState, FalseState; 1531 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1532 DefinedSVal Zero = 1533 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1534 1535 std::tie(TrueState, FalseState) = 1536 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1537 1538 if (TrueState && !FalseState) { 1539 SymbolRef Sym = RetVal->getAsLocSymbol(); 1540 if (!Sym) 1541 return State; 1542 1543 const RefState *RS = State->get<RegionState>(Sym); 1544 if (RS) { 1545 if (RS->isAllocated()) 1546 return TrueState->set<RegionState>(Sym, 1547 RefState::getAllocatedOfSizeZero(RS)); 1548 else 1549 return State; 1550 } else { 1551 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1552 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1553 // tracked. Add zero-reallocated Sym to the state to catch references 1554 // to zero-allocated memory. 1555 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1556 } 1557 } 1558 1559 // Assume the value is non-zero going forward. 1560 assert(FalseState); 1561 return FalseState; 1562 } 1563 1564 static QualType getDeepPointeeType(QualType T) { 1565 QualType Result = T, PointeeType = T->getPointeeType(); 1566 while (!PointeeType.isNull()) { 1567 Result = PointeeType; 1568 PointeeType = PointeeType->getPointeeType(); 1569 } 1570 return Result; 1571 } 1572 1573 /// \returns true if the constructor invoked by \p NE has an argument of a 1574 /// pointer/reference to a record type. 1575 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1576 1577 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1578 if (!ConstructE) 1579 return false; 1580 1581 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1582 return false; 1583 1584 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1585 1586 // Iterate over the constructor parameters. 1587 for (const auto *CtorParam : CtorD->parameters()) { 1588 1589 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1590 if (CtorParamPointeeT.isNull()) 1591 continue; 1592 1593 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1594 1595 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1596 return true; 1597 } 1598 1599 return false; 1600 } 1601 1602 ProgramStateRef 1603 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1604 CheckerContext &C, 1605 AllocationFamily Family) const { 1606 if (!isStandardNewDelete(Call)) 1607 return nullptr; 1608 1609 const CXXNewExpr *NE = Call.getOriginExpr(); 1610 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1611 ProgramStateRef State = C.getState(); 1612 1613 // Non-trivial constructors have a chance to escape 'this', but marking all 1614 // invocations of trivial constructors as escaped would cause too great of 1615 // reduction of true positives, so let's just do that for constructors that 1616 // have an argument of a pointer-to-record type. 1617 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1618 return State; 1619 1620 // The return value from operator new is bound to a specified initialization 1621 // value (if any) and we don't want to loose this value. So we call 1622 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1623 // existing binding. 1624 SVal Target = Call.getObjectUnderConstruction(); 1625 State = MallocUpdateRefState(C, NE, State, Family, Target); 1626 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1627 return State; 1628 } 1629 1630 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1631 CheckerContext &C) const { 1632 if (!C.wasInlined) { 1633 ProgramStateRef State = processNewAllocation( 1634 Call, C, 1635 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1636 C.addTransition(State); 1637 } 1638 } 1639 1640 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1641 // If the first selector piece is one of the names below, assume that the 1642 // object takes ownership of the memory, promising to eventually deallocate it 1643 // with free(). 1644 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1645 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1646 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1647 return FirstSlot == "dataWithBytesNoCopy" || 1648 FirstSlot == "initWithBytesNoCopy" || 1649 FirstSlot == "initWithCharactersNoCopy"; 1650 } 1651 1652 static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1653 Selector S = Call.getSelector(); 1654 1655 // FIXME: We should not rely on fully-constrained symbols being folded. 1656 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1657 if (S.getNameForSlot(i).equals("freeWhenDone")) 1658 return !Call.getArgSVal(i).isZeroConstant(); 1659 1660 return std::nullopt; 1661 } 1662 1663 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1664 CheckerContext &C) const { 1665 if (C.wasInlined) 1666 return; 1667 1668 if (!isKnownDeallocObjCMethodName(Call)) 1669 return; 1670 1671 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1672 if (!*FreeWhenDone) 1673 return; 1674 1675 if (Call.hasNonZeroCallbackArg()) 1676 return; 1677 1678 bool IsKnownToBeAllocatedMemory; 1679 ProgramStateRef State = 1680 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1681 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1682 /*ReturnsNullOnFailure=*/true); 1683 1684 C.addTransition(State); 1685 } 1686 1687 ProgramStateRef 1688 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1689 const OwnershipAttr *Att, 1690 ProgramStateRef State) const { 1691 if (!State) 1692 return nullptr; 1693 1694 if (Att->getModule()->getName() != "malloc") 1695 return nullptr; 1696 1697 if (!Att->args().empty()) { 1698 return MallocMemAux(C, Call, 1699 Call.getArgExpr(Att->args_begin()->getASTIndex()), 1700 UndefinedVal(), State, AF_Malloc); 1701 } 1702 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1703 } 1704 1705 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1706 const CallEvent &Call, 1707 const Expr *SizeEx, SVal Init, 1708 ProgramStateRef State, 1709 AllocationFamily Family) { 1710 if (!State) 1711 return nullptr; 1712 1713 assert(SizeEx); 1714 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1715 } 1716 1717 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1718 const CallEvent &Call, SVal Size, 1719 SVal Init, ProgramStateRef State, 1720 AllocationFamily Family) { 1721 if (!State) 1722 return nullptr; 1723 1724 const Expr *CE = Call.getOriginExpr(); 1725 1726 // We expect the malloc functions to return a pointer. 1727 if (!Loc::isLocType(CE->getType())) 1728 return nullptr; 1729 1730 // Bind the return value to the symbolic value from the heap region. 1731 // TODO: move use of this functions to an EvalCall callback, becasue 1732 // BindExpr() should'nt be used elsewhere. 1733 unsigned Count = C.blockCount(); 1734 SValBuilder &SVB = C.getSValBuilder(); 1735 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1736 DefinedSVal RetVal = 1737 ((Family == AF_Alloca) ? SVB.getAllocaRegionVal(CE, LCtx, Count) 1738 : SVB.getConjuredHeapSymbolVal(CE, LCtx, Count) 1739 .castAs<DefinedSVal>()); 1740 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1741 1742 // Fill the region with the initialization value. 1743 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1744 1745 // If Size is somehow undefined at this point, this line prevents a crash. 1746 if (Size.isUndef()) 1747 Size = UnknownVal(); 1748 1749 // Set the region's extent. 1750 State = setDynamicExtent(State, RetVal.getAsRegion(), 1751 Size.castAs<DefinedOrUnknownSVal>(), SVB); 1752 1753 return MallocUpdateRefState(C, CE, State, Family); 1754 } 1755 1756 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1757 ProgramStateRef State, 1758 AllocationFamily Family, 1759 std::optional<SVal> RetVal) { 1760 if (!State) 1761 return nullptr; 1762 1763 // Get the return value. 1764 if (!RetVal) 1765 RetVal = C.getSVal(E); 1766 1767 // We expect the malloc functions to return a pointer. 1768 if (!RetVal->getAs<Loc>()) 1769 return nullptr; 1770 1771 SymbolRef Sym = RetVal->getAsLocSymbol(); 1772 // This is a return value of a function that was not inlined, such as malloc() 1773 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1774 assert(Sym); 1775 1776 // Set the symbol's state to Allocated. 1777 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1778 } 1779 1780 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1781 const CallEvent &Call, 1782 const OwnershipAttr *Att, 1783 ProgramStateRef State) const { 1784 if (!State) 1785 return nullptr; 1786 1787 if (Att->getModule()->getName() != "malloc") 1788 return nullptr; 1789 1790 bool IsKnownToBeAllocated = false; 1791 1792 for (const auto &Arg : Att->args()) { 1793 ProgramStateRef StateI = 1794 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1795 Att->getOwnKind() == OwnershipAttr::Holds, 1796 IsKnownToBeAllocated, AF_Malloc); 1797 if (StateI) 1798 State = StateI; 1799 } 1800 return State; 1801 } 1802 1803 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1804 const CallEvent &Call, 1805 ProgramStateRef State, unsigned Num, 1806 bool Hold, bool &IsKnownToBeAllocated, 1807 AllocationFamily Family, 1808 bool ReturnsNullOnFailure) const { 1809 if (!State) 1810 return nullptr; 1811 1812 if (Call.getNumArgs() < (Num + 1)) 1813 return nullptr; 1814 1815 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1816 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1817 } 1818 1819 /// Checks if the previous call to free on the given symbol failed - if free 1820 /// failed, returns true. Also, returns the corresponding return value symbol. 1821 static bool didPreviousFreeFail(ProgramStateRef State, 1822 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1823 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1824 if (Ret) { 1825 assert(*Ret && "We should not store the null return symbol"); 1826 ConstraintManager &CMgr = State->getConstraintManager(); 1827 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1828 RetStatusSymbol = *Ret; 1829 return FreeFailed.isConstrainedTrue(); 1830 } 1831 return false; 1832 } 1833 1834 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1835 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1836 // FIXME: This doesn't handle indirect calls. 1837 const FunctionDecl *FD = CE->getDirectCallee(); 1838 if (!FD) 1839 return false; 1840 1841 os << *FD; 1842 if (!FD->isOverloadedOperator()) 1843 os << "()"; 1844 return true; 1845 } 1846 1847 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1848 if (Msg->isInstanceMessage()) 1849 os << "-"; 1850 else 1851 os << "+"; 1852 Msg->getSelector().print(os); 1853 return true; 1854 } 1855 1856 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1857 os << "'" 1858 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1859 << "'"; 1860 return true; 1861 } 1862 1863 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1864 os << "'" 1865 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1866 << "'"; 1867 return true; 1868 } 1869 1870 return false; 1871 } 1872 1873 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1874 1875 switch(Family) { 1876 case AF_Malloc: os << "malloc()"; return; 1877 case AF_CXXNew: os << "'new'"; return; 1878 case AF_CXXNewArray: os << "'new[]'"; return; 1879 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1880 case AF_InnerBuffer: os << "container-specific allocator"; return; 1881 case AF_Alloca: 1882 case AF_None: llvm_unreachable("not a deallocation expression"); 1883 } 1884 } 1885 1886 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1887 switch(Family) { 1888 case AF_Malloc: os << "free()"; return; 1889 case AF_CXXNew: os << "'delete'"; return; 1890 case AF_CXXNewArray: os << "'delete[]'"; return; 1891 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1892 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1893 case AF_Alloca: 1894 case AF_None: llvm_unreachable("suspicious argument"); 1895 } 1896 } 1897 1898 ProgramStateRef MallocChecker::FreeMemAux( 1899 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1900 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1901 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1902 1903 if (!State) 1904 return nullptr; 1905 1906 SVal ArgVal = C.getSVal(ArgExpr); 1907 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 1908 return nullptr; 1909 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1910 1911 // Check for null dereferences. 1912 if (!isa<Loc>(location)) 1913 return nullptr; 1914 1915 // The explicit NULL case, no operation is performed. 1916 ProgramStateRef notNullState, nullState; 1917 std::tie(notNullState, nullState) = State->assume(location); 1918 if (nullState && !notNullState) 1919 return nullptr; 1920 1921 // Unknown values could easily be okay 1922 // Undefined values are handled elsewhere 1923 if (ArgVal.isUnknownOrUndef()) 1924 return nullptr; 1925 1926 const MemRegion *R = ArgVal.getAsRegion(); 1927 const Expr *ParentExpr = Call.getOriginExpr(); 1928 1929 // NOTE: We detected a bug, but the checker under whose name we would emit the 1930 // error could be disabled. Generally speaking, the MallocChecker family is an 1931 // integral part of the Static Analyzer, and disabling any part of it should 1932 // only be done under exceptional circumstances, such as frequent false 1933 // positives. If this is the case, we can reasonably believe that there are 1934 // serious faults in our understanding of the source code, and even if we 1935 // don't emit an warning, we should terminate further analysis with a sink 1936 // node. 1937 1938 // Nonlocs can't be freed, of course. 1939 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1940 if (!R) { 1941 // Exception: 1942 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1943 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1944 // zero-sized memory block which is allowed to be freed, despite not being a 1945 // null pointer. 1946 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1947 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1948 Family); 1949 return nullptr; 1950 } 1951 1952 R = R->StripCasts(); 1953 1954 // Blocks might show up as heap data, but should not be free()d 1955 if (isa<BlockDataRegion>(R)) { 1956 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1957 Family); 1958 return nullptr; 1959 } 1960 1961 const MemSpaceRegion *MS = R->getMemorySpace(); 1962 1963 // Parameters, locals, statics, globals, and memory returned by 1964 // __builtin_alloca() shouldn't be freed. 1965 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1966 // Regions returned by malloc() are represented by SymbolicRegion objects 1967 // within HeapSpaceRegion. Of course, free() can work on memory allocated 1968 // outside the current function, so UnknownSpaceRegion is also a 1969 // possibility here. 1970 1971 if (isa<AllocaRegion>(R)) 1972 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1973 else 1974 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1975 Family); 1976 1977 return nullptr; 1978 } 1979 1980 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1981 // Various cases could lead to non-symbol values here. 1982 // For now, ignore them. 1983 if (!SrBase) 1984 return nullptr; 1985 1986 SymbolRef SymBase = SrBase->getSymbol(); 1987 const RefState *RsBase = State->get<RegionState>(SymBase); 1988 SymbolRef PreviousRetStatusSymbol = nullptr; 1989 1990 IsKnownToBeAllocated = 1991 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1992 1993 if (RsBase) { 1994 1995 // Memory returned by alloca() shouldn't be freed. 1996 if (RsBase->getAllocationFamily() == AF_Alloca) { 1997 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1998 return nullptr; 1999 } 2000 2001 // Check for double free first. 2002 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2003 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2004 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2005 SymBase, PreviousRetStatusSymbol); 2006 return nullptr; 2007 2008 // If the pointer is allocated or escaped, but we are now trying to free it, 2009 // check that the call to free is proper. 2010 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2011 RsBase->isEscaped()) { 2012 2013 // Check if an expected deallocation function matches the real one. 2014 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2015 if (!DeallocMatchesAlloc) { 2016 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2017 RsBase, SymBase, Hold); 2018 return nullptr; 2019 } 2020 2021 // Check if the memory location being freed is the actual location 2022 // allocated, or an offset. 2023 RegionOffset Offset = R->getAsOffset(); 2024 if (Offset.isValid() && 2025 !Offset.hasSymbolicOffset() && 2026 Offset.getOffset() != 0) { 2027 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2028 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2029 Family, AllocExpr); 2030 return nullptr; 2031 } 2032 } 2033 } 2034 2035 if (SymBase->getType()->isFunctionPointerType()) { 2036 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2037 Family); 2038 return nullptr; 2039 } 2040 2041 // Clean out the info on previous call to free return info. 2042 State = State->remove<FreeReturnValue>(SymBase); 2043 2044 // Keep track of the return value. If it is NULL, we will know that free 2045 // failed. 2046 if (ReturnsNullOnFailure) { 2047 SVal RetVal = C.getSVal(ParentExpr); 2048 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2049 if (RetStatusSymbol) { 2050 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2051 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2052 } 2053 } 2054 2055 // If we don't know anything about this symbol, a free on it may be totally 2056 // valid. If this is the case, lets assume that the allocation family of the 2057 // freeing function is the same as the symbols allocation family, and go with 2058 // that. 2059 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2060 2061 // Normal free. 2062 if (Hold) 2063 return State->set<RegionState>(SymBase, 2064 RefState::getRelinquished(Family, 2065 ParentExpr)); 2066 2067 return State->set<RegionState>(SymBase, 2068 RefState::getReleased(Family, ParentExpr)); 2069 } 2070 2071 std::optional<MallocChecker::CheckKind> 2072 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2073 bool IsALeakCheck) const { 2074 switch (Family) { 2075 case AF_Malloc: 2076 case AF_Alloca: 2077 case AF_IfNameIndex: { 2078 if (ChecksEnabled[CK_MallocChecker]) 2079 return CK_MallocChecker; 2080 return std::nullopt; 2081 } 2082 case AF_CXXNew: 2083 case AF_CXXNewArray: { 2084 if (IsALeakCheck) { 2085 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2086 return CK_NewDeleteLeaksChecker; 2087 } 2088 else { 2089 if (ChecksEnabled[CK_NewDeleteChecker]) 2090 return CK_NewDeleteChecker; 2091 } 2092 return std::nullopt; 2093 } 2094 case AF_InnerBuffer: { 2095 if (ChecksEnabled[CK_InnerPointerChecker]) 2096 return CK_InnerPointerChecker; 2097 return std::nullopt; 2098 } 2099 case AF_None: { 2100 llvm_unreachable("no family"); 2101 } 2102 } 2103 llvm_unreachable("unhandled family"); 2104 } 2105 2106 std::optional<MallocChecker::CheckKind> 2107 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2108 bool IsALeakCheck) const { 2109 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2110 return CK_MallocChecker; 2111 2112 const RefState *RS = C.getState()->get<RegionState>(Sym); 2113 assert(RS); 2114 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2115 } 2116 2117 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2118 if (std::optional<nonloc::ConcreteInt> IntVal = 2119 V.getAs<nonloc::ConcreteInt>()) 2120 os << "an integer (" << IntVal->getValue() << ")"; 2121 else if (std::optional<loc::ConcreteInt> ConstAddr = 2122 V.getAs<loc::ConcreteInt>()) 2123 os << "a constant address (" << ConstAddr->getValue() << ")"; 2124 else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2125 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2126 else 2127 return false; 2128 2129 return true; 2130 } 2131 2132 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2133 const MemRegion *MR) { 2134 switch (MR->getKind()) { 2135 case MemRegion::FunctionCodeRegionKind: { 2136 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2137 if (FD) 2138 os << "the address of the function '" << *FD << '\''; 2139 else 2140 os << "the address of a function"; 2141 return true; 2142 } 2143 case MemRegion::BlockCodeRegionKind: 2144 os << "block text"; 2145 return true; 2146 case MemRegion::BlockDataRegionKind: 2147 // FIXME: where the block came from? 2148 os << "a block"; 2149 return true; 2150 default: { 2151 const MemSpaceRegion *MS = MR->getMemorySpace(); 2152 2153 if (isa<StackLocalsSpaceRegion>(MS)) { 2154 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2155 const VarDecl *VD; 2156 if (VR) 2157 VD = VR->getDecl(); 2158 else 2159 VD = nullptr; 2160 2161 if (VD) 2162 os << "the address of the local variable '" << VD->getName() << "'"; 2163 else 2164 os << "the address of a local stack variable"; 2165 return true; 2166 } 2167 2168 if (isa<StackArgumentsSpaceRegion>(MS)) { 2169 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2170 const VarDecl *VD; 2171 if (VR) 2172 VD = VR->getDecl(); 2173 else 2174 VD = nullptr; 2175 2176 if (VD) 2177 os << "the address of the parameter '" << VD->getName() << "'"; 2178 else 2179 os << "the address of a parameter"; 2180 return true; 2181 } 2182 2183 if (isa<GlobalsSpaceRegion>(MS)) { 2184 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2185 const VarDecl *VD; 2186 if (VR) 2187 VD = VR->getDecl(); 2188 else 2189 VD = nullptr; 2190 2191 if (VD) { 2192 if (VD->isStaticLocal()) 2193 os << "the address of the static variable '" << VD->getName() << "'"; 2194 else 2195 os << "the address of the global variable '" << VD->getName() << "'"; 2196 } else 2197 os << "the address of a global variable"; 2198 return true; 2199 } 2200 2201 return false; 2202 } 2203 } 2204 } 2205 2206 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2207 SourceRange Range, 2208 const Expr *DeallocExpr, 2209 AllocationFamily Family) const { 2210 2211 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2212 C.addSink(); 2213 return; 2214 } 2215 2216 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2217 if (!CheckKind) 2218 return; 2219 2220 if (ExplodedNode *N = C.generateErrorNode()) { 2221 if (!BT_BadFree[*CheckKind]) 2222 BT_BadFree[*CheckKind].reset(new BugType( 2223 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2224 2225 SmallString<100> buf; 2226 llvm::raw_svector_ostream os(buf); 2227 2228 const MemRegion *MR = ArgVal.getAsRegion(); 2229 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2230 MR = ER->getSuperRegion(); 2231 2232 os << "Argument to "; 2233 if (!printMemFnName(os, C, DeallocExpr)) 2234 os << "deallocator"; 2235 2236 os << " is "; 2237 bool Summarized = MR ? SummarizeRegion(os, MR) 2238 : SummarizeValue(os, ArgVal); 2239 if (Summarized) 2240 os << ", which is not memory allocated by "; 2241 else 2242 os << "not memory allocated by "; 2243 2244 printExpectedAllocName(os, Family); 2245 2246 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2247 os.str(), N); 2248 R->markInteresting(MR); 2249 R->addRange(Range); 2250 C.emitReport(std::move(R)); 2251 } 2252 } 2253 2254 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2255 SourceRange Range) const { 2256 2257 std::optional<MallocChecker::CheckKind> CheckKind; 2258 2259 if (ChecksEnabled[CK_MallocChecker]) 2260 CheckKind = CK_MallocChecker; 2261 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2262 CheckKind = CK_MismatchedDeallocatorChecker; 2263 else { 2264 C.addSink(); 2265 return; 2266 } 2267 2268 if (ExplodedNode *N = C.generateErrorNode()) { 2269 if (!BT_FreeAlloca[*CheckKind]) 2270 BT_FreeAlloca[*CheckKind].reset(new BugType( 2271 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2272 2273 auto R = std::make_unique<PathSensitiveBugReport>( 2274 *BT_FreeAlloca[*CheckKind], 2275 "Memory allocated by alloca() should not be deallocated", N); 2276 R->markInteresting(ArgVal.getAsRegion()); 2277 R->addRange(Range); 2278 C.emitReport(std::move(R)); 2279 } 2280 } 2281 2282 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2283 SourceRange Range, 2284 const Expr *DeallocExpr, 2285 const RefState *RS, SymbolRef Sym, 2286 bool OwnershipTransferred) const { 2287 2288 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2289 C.addSink(); 2290 return; 2291 } 2292 2293 if (ExplodedNode *N = C.generateErrorNode()) { 2294 if (!BT_MismatchedDealloc) 2295 BT_MismatchedDealloc.reset( 2296 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2297 "Bad deallocator", categories::MemoryError)); 2298 2299 SmallString<100> buf; 2300 llvm::raw_svector_ostream os(buf); 2301 2302 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2303 SmallString<20> AllocBuf; 2304 llvm::raw_svector_ostream AllocOs(AllocBuf); 2305 SmallString<20> DeallocBuf; 2306 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2307 2308 if (OwnershipTransferred) { 2309 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2310 os << DeallocOs.str() << " cannot"; 2311 else 2312 os << "Cannot"; 2313 2314 os << " take ownership of memory"; 2315 2316 if (printMemFnName(AllocOs, C, AllocExpr)) 2317 os << " allocated by " << AllocOs.str(); 2318 } else { 2319 os << "Memory"; 2320 if (printMemFnName(AllocOs, C, AllocExpr)) 2321 os << " allocated by " << AllocOs.str(); 2322 2323 os << " should be deallocated by "; 2324 printExpectedDeallocName(os, RS->getAllocationFamily()); 2325 2326 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2327 os << ", not " << DeallocOs.str(); 2328 } 2329 2330 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2331 os.str(), N); 2332 R->markInteresting(Sym); 2333 R->addRange(Range); 2334 R->addVisitor<MallocBugVisitor>(Sym); 2335 C.emitReport(std::move(R)); 2336 } 2337 } 2338 2339 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2340 SourceRange Range, const Expr *DeallocExpr, 2341 AllocationFamily Family, 2342 const Expr *AllocExpr) const { 2343 2344 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2345 C.addSink(); 2346 return; 2347 } 2348 2349 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2350 if (!CheckKind) 2351 return; 2352 2353 ExplodedNode *N = C.generateErrorNode(); 2354 if (!N) 2355 return; 2356 2357 if (!BT_OffsetFree[*CheckKind]) 2358 BT_OffsetFree[*CheckKind].reset(new BugType( 2359 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2360 2361 SmallString<100> buf; 2362 llvm::raw_svector_ostream os(buf); 2363 SmallString<20> AllocNameBuf; 2364 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2365 2366 const MemRegion *MR = ArgVal.getAsRegion(); 2367 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2368 2369 RegionOffset Offset = MR->getAsOffset(); 2370 assert((Offset.isValid() && 2371 !Offset.hasSymbolicOffset() && 2372 Offset.getOffset() != 0) && 2373 "Only symbols with a valid offset can have offset free errors"); 2374 2375 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2376 2377 os << "Argument to "; 2378 if (!printMemFnName(os, C, DeallocExpr)) 2379 os << "deallocator"; 2380 os << " is offset by " 2381 << offsetBytes 2382 << " " 2383 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2384 << " from the start of "; 2385 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2386 os << "memory allocated by " << AllocNameOs.str(); 2387 else 2388 os << "allocated memory"; 2389 2390 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2391 os.str(), N); 2392 R->markInteresting(MR->getBaseRegion()); 2393 R->addRange(Range); 2394 C.emitReport(std::move(R)); 2395 } 2396 2397 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2398 SymbolRef Sym) const { 2399 2400 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2401 !ChecksEnabled[CK_InnerPointerChecker]) { 2402 C.addSink(); 2403 return; 2404 } 2405 2406 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2407 if (!CheckKind) 2408 return; 2409 2410 if (ExplodedNode *N = C.generateErrorNode()) { 2411 if (!BT_UseFree[*CheckKind]) 2412 BT_UseFree[*CheckKind].reset(new BugType( 2413 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2414 2415 AllocationFamily AF = 2416 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2417 2418 auto R = std::make_unique<PathSensitiveBugReport>( 2419 *BT_UseFree[*CheckKind], 2420 AF == AF_InnerBuffer 2421 ? "Inner pointer of container used after re/deallocation" 2422 : "Use of memory after it is freed", 2423 N); 2424 2425 R->markInteresting(Sym); 2426 R->addRange(Range); 2427 R->addVisitor<MallocBugVisitor>(Sym); 2428 2429 if (AF == AF_InnerBuffer) 2430 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2431 2432 C.emitReport(std::move(R)); 2433 } 2434 } 2435 2436 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2437 bool Released, SymbolRef Sym, 2438 SymbolRef PrevSym) const { 2439 2440 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2441 C.addSink(); 2442 return; 2443 } 2444 2445 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2446 if (!CheckKind) 2447 return; 2448 2449 if (ExplodedNode *N = C.generateErrorNode()) { 2450 if (!BT_DoubleFree[*CheckKind]) 2451 BT_DoubleFree[*CheckKind].reset(new BugType( 2452 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2453 2454 auto R = std::make_unique<PathSensitiveBugReport>( 2455 *BT_DoubleFree[*CheckKind], 2456 (Released ? "Attempt to free released memory" 2457 : "Attempt to free non-owned memory"), 2458 N); 2459 R->addRange(Range); 2460 R->markInteresting(Sym); 2461 if (PrevSym) 2462 R->markInteresting(PrevSym); 2463 R->addVisitor<MallocBugVisitor>(Sym); 2464 C.emitReport(std::move(R)); 2465 } 2466 } 2467 2468 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2469 2470 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2471 C.addSink(); 2472 return; 2473 } 2474 2475 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2476 if (!CheckKind) 2477 return; 2478 2479 if (ExplodedNode *N = C.generateErrorNode()) { 2480 if (!BT_DoubleDelete) 2481 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2482 "Double delete", 2483 categories::MemoryError)); 2484 2485 auto R = std::make_unique<PathSensitiveBugReport>( 2486 *BT_DoubleDelete, "Attempt to delete released memory", N); 2487 2488 R->markInteresting(Sym); 2489 R->addVisitor<MallocBugVisitor>(Sym); 2490 C.emitReport(std::move(R)); 2491 } 2492 } 2493 2494 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2495 SymbolRef Sym) const { 2496 2497 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2498 C.addSink(); 2499 return; 2500 } 2501 2502 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2503 2504 if (!CheckKind) 2505 return; 2506 2507 if (ExplodedNode *N = C.generateErrorNode()) { 2508 if (!BT_UseZerroAllocated[*CheckKind]) 2509 BT_UseZerroAllocated[*CheckKind].reset( 2510 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2511 categories::MemoryError)); 2512 2513 auto R = std::make_unique<PathSensitiveBugReport>( 2514 *BT_UseZerroAllocated[*CheckKind], 2515 "Use of memory allocated with size zero", N); 2516 2517 R->addRange(Range); 2518 if (Sym) { 2519 R->markInteresting(Sym); 2520 R->addVisitor<MallocBugVisitor>(Sym); 2521 } 2522 C.emitReport(std::move(R)); 2523 } 2524 } 2525 2526 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2527 SourceRange Range, 2528 const Expr *FreeExpr, 2529 AllocationFamily Family) const { 2530 if (!ChecksEnabled[CK_MallocChecker]) { 2531 C.addSink(); 2532 return; 2533 } 2534 2535 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2536 if (!CheckKind) 2537 return; 2538 2539 if (ExplodedNode *N = C.generateErrorNode()) { 2540 if (!BT_BadFree[*CheckKind]) 2541 BT_BadFree[*CheckKind].reset(new BugType( 2542 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2543 2544 SmallString<100> Buf; 2545 llvm::raw_svector_ostream Os(Buf); 2546 2547 const MemRegion *MR = ArgVal.getAsRegion(); 2548 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2549 MR = ER->getSuperRegion(); 2550 2551 Os << "Argument to "; 2552 if (!printMemFnName(Os, C, FreeExpr)) 2553 Os << "deallocator"; 2554 2555 Os << " is a function pointer"; 2556 2557 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2558 Os.str(), N); 2559 R->markInteresting(MR); 2560 R->addRange(Range); 2561 C.emitReport(std::move(R)); 2562 } 2563 } 2564 2565 ProgramStateRef 2566 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2567 bool ShouldFreeOnFail, ProgramStateRef State, 2568 AllocationFamily Family, bool SuffixWithN) const { 2569 if (!State) 2570 return nullptr; 2571 2572 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2573 2574 if (SuffixWithN && CE->getNumArgs() < 3) 2575 return nullptr; 2576 else if (CE->getNumArgs() < 2) 2577 return nullptr; 2578 2579 const Expr *arg0Expr = CE->getArg(0); 2580 SVal Arg0Val = C.getSVal(arg0Expr); 2581 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2582 return nullptr; 2583 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2584 2585 SValBuilder &svalBuilder = C.getSValBuilder(); 2586 2587 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2588 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2589 2590 // Get the size argument. 2591 const Expr *Arg1 = CE->getArg(1); 2592 2593 // Get the value of the size argument. 2594 SVal TotalSize = C.getSVal(Arg1); 2595 if (SuffixWithN) 2596 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2597 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2598 return nullptr; 2599 2600 // Compare the size argument to 0. 2601 DefinedOrUnknownSVal SizeZero = 2602 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2603 svalBuilder.makeIntValWithWidth( 2604 svalBuilder.getContext().getSizeType(), 0)); 2605 2606 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2607 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2608 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2609 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2610 // We only assume exceptional states if they are definitely true; if the 2611 // state is under-constrained, assume regular realloc behavior. 2612 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2613 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2614 2615 // If the ptr is NULL and the size is not 0, the call is equivalent to 2616 // malloc(size). 2617 if (PrtIsNull && !SizeIsZero) { 2618 ProgramStateRef stateMalloc = MallocMemAux( 2619 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2620 return stateMalloc; 2621 } 2622 2623 if (PrtIsNull && SizeIsZero) 2624 return State; 2625 2626 assert(!PrtIsNull); 2627 2628 bool IsKnownToBeAllocated = false; 2629 2630 // If the size is 0, free the memory. 2631 if (SizeIsZero) 2632 // The semantics of the return value are: 2633 // If size was equal to 0, either NULL or a pointer suitable to be passed 2634 // to free() is returned. We just free the input pointer and do not add 2635 // any constrains on the output pointer. 2636 if (ProgramStateRef stateFree = FreeMemAux( 2637 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2638 return stateFree; 2639 2640 // Default behavior. 2641 if (ProgramStateRef stateFree = 2642 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2643 2644 ProgramStateRef stateRealloc = 2645 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2646 if (!stateRealloc) 2647 return nullptr; 2648 2649 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2650 if (ShouldFreeOnFail) 2651 Kind = OAR_FreeOnFailure; 2652 else if (!IsKnownToBeAllocated) 2653 Kind = OAR_DoNotTrackAfterFailure; 2654 2655 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2656 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2657 SVal RetVal = C.getSVal(CE); 2658 SymbolRef ToPtr = RetVal.getAsSymbol(); 2659 assert(FromPtr && ToPtr && 2660 "By this point, FreeMemAux and MallocMemAux should have checked " 2661 "whether the argument or the return value is symbolic!"); 2662 2663 // Record the info about the reallocated symbol so that we could properly 2664 // process failed reallocation. 2665 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2666 ReallocPair(FromPtr, Kind)); 2667 // The reallocated symbol should stay alive for as long as the new symbol. 2668 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2669 return stateRealloc; 2670 } 2671 return nullptr; 2672 } 2673 2674 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2675 const CallEvent &Call, 2676 ProgramStateRef State) { 2677 if (!State) 2678 return nullptr; 2679 2680 if (Call.getNumArgs() < 2) 2681 return nullptr; 2682 2683 SValBuilder &svalBuilder = C.getSValBuilder(); 2684 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2685 SVal TotalSize = 2686 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2687 2688 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2689 } 2690 2691 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2692 SymbolRef Sym, 2693 CheckerContext &C) { 2694 const LocationContext *LeakContext = N->getLocationContext(); 2695 // Walk the ExplodedGraph backwards and find the first node that referred to 2696 // the tracked symbol. 2697 const ExplodedNode *AllocNode = N; 2698 const MemRegion *ReferenceRegion = nullptr; 2699 2700 while (N) { 2701 ProgramStateRef State = N->getState(); 2702 if (!State->get<RegionState>(Sym)) 2703 break; 2704 2705 // Find the most recent expression bound to the symbol in the current 2706 // context. 2707 if (!ReferenceRegion) { 2708 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2709 SVal Val = State->getSVal(MR); 2710 if (Val.getAsLocSymbol() == Sym) { 2711 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2712 // Do not show local variables belonging to a function other than 2713 // where the error is reported. 2714 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2715 ReferenceRegion = MR; 2716 } 2717 } 2718 } 2719 2720 // Allocation node, is the last node in the current or parent context in 2721 // which the symbol was tracked. 2722 const LocationContext *NContext = N->getLocationContext(); 2723 if (NContext == LeakContext || 2724 NContext->isParentOf(LeakContext)) 2725 AllocNode = N; 2726 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2727 } 2728 2729 return LeakInfo(AllocNode, ReferenceRegion); 2730 } 2731 2732 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2733 CheckerContext &C) const { 2734 2735 if (!ChecksEnabled[CK_MallocChecker] && 2736 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2737 return; 2738 2739 const RefState *RS = C.getState()->get<RegionState>(Sym); 2740 assert(RS && "cannot leak an untracked symbol"); 2741 AllocationFamily Family = RS->getAllocationFamily(); 2742 2743 if (Family == AF_Alloca) 2744 return; 2745 2746 std::optional<MallocChecker::CheckKind> CheckKind = 2747 getCheckIfTracked(Family, true); 2748 2749 if (!CheckKind) 2750 return; 2751 2752 assert(N); 2753 if (!BT_Leak[*CheckKind]) { 2754 // Leaks should not be reported if they are post-dominated by a sink: 2755 // (1) Sinks are higher importance bugs. 2756 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2757 // with __noreturn functions such as assert() or exit(). We choose not 2758 // to report leaks on such paths. 2759 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2760 categories::MemoryError, 2761 /*SuppressOnSink=*/true)); 2762 } 2763 2764 // Most bug reports are cached at the location where they occurred. 2765 // With leaks, we want to unique them by the location where they were 2766 // allocated, and only report a single path. 2767 PathDiagnosticLocation LocUsedForUniqueing; 2768 const ExplodedNode *AllocNode = nullptr; 2769 const MemRegion *Region = nullptr; 2770 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2771 2772 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2773 if (AllocationStmt) 2774 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2775 C.getSourceManager(), 2776 AllocNode->getLocationContext()); 2777 2778 SmallString<200> buf; 2779 llvm::raw_svector_ostream os(buf); 2780 if (Region && Region->canPrintPretty()) { 2781 os << "Potential leak of memory pointed to by "; 2782 Region->printPretty(os); 2783 } else { 2784 os << "Potential memory leak"; 2785 } 2786 2787 auto R = std::make_unique<PathSensitiveBugReport>( 2788 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2789 AllocNode->getLocationContext()->getDecl()); 2790 R->markInteresting(Sym); 2791 R->addVisitor<MallocBugVisitor>(Sym, true); 2792 if (ShouldRegisterNoOwnershipChangeVisitor) 2793 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2794 C.emitReport(std::move(R)); 2795 } 2796 2797 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2798 CheckerContext &C) const 2799 { 2800 ProgramStateRef state = C.getState(); 2801 RegionStateTy OldRS = state->get<RegionState>(); 2802 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2803 2804 RegionStateTy RS = OldRS; 2805 SmallVector<SymbolRef, 2> Errors; 2806 for (auto [Sym, State] : RS) { 2807 if (SymReaper.isDead(Sym)) { 2808 if (State.isAllocated() || State.isAllocatedOfSizeZero()) 2809 Errors.push_back(Sym); 2810 // Remove the dead symbol from the map. 2811 RS = F.remove(RS, Sym); 2812 } 2813 } 2814 2815 if (RS == OldRS) { 2816 // We shouldn't have touched other maps yet. 2817 assert(state->get<ReallocPairs>() == 2818 C.getState()->get<ReallocPairs>()); 2819 assert(state->get<FreeReturnValue>() == 2820 C.getState()->get<FreeReturnValue>()); 2821 return; 2822 } 2823 2824 // Cleanup the Realloc Pairs Map. 2825 ReallocPairsTy RP = state->get<ReallocPairs>(); 2826 for (auto [Sym, ReallocPair] : RP) { 2827 if (SymReaper.isDead(Sym) || SymReaper.isDead(ReallocPair.ReallocatedSym)) { 2828 state = state->remove<ReallocPairs>(Sym); 2829 } 2830 } 2831 2832 // Cleanup the FreeReturnValue Map. 2833 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2834 for (auto [Sym, RetSym] : FR) { 2835 if (SymReaper.isDead(Sym) || SymReaper.isDead(RetSym)) { 2836 state = state->remove<FreeReturnValue>(Sym); 2837 } 2838 } 2839 2840 // Generate leak node. 2841 ExplodedNode *N = C.getPredecessor(); 2842 if (!Errors.empty()) { 2843 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2844 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2845 if (N) { 2846 for (SymbolRef Sym : Errors) { 2847 HandleLeak(Sym, N, C); 2848 } 2849 } 2850 } 2851 2852 C.addTransition(state->set<RegionState>(RS), N); 2853 } 2854 2855 void MallocChecker::checkPreCall(const CallEvent &Call, 2856 CheckerContext &C) const { 2857 2858 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2859 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2860 2861 if (!ChecksEnabled[CK_NewDeleteChecker]) 2862 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2863 checkUseAfterFree(Sym, C, DE->getArgument()); 2864 2865 if (!isStandardNewDelete(DC->getDecl())) 2866 return; 2867 2868 ProgramStateRef State = C.getState(); 2869 bool IsKnownToBeAllocated; 2870 State = FreeMemAux(C, DE->getArgument(), Call, State, 2871 /*Hold*/ false, IsKnownToBeAllocated, 2872 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2873 2874 C.addTransition(State); 2875 return; 2876 } 2877 2878 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2879 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2880 if (!Sym || checkDoubleDelete(Sym, C)) 2881 return; 2882 } 2883 2884 // We will check for double free in the post visit. 2885 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2886 const FunctionDecl *FD = FC->getDecl(); 2887 if (!FD) 2888 return; 2889 2890 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2891 return; 2892 } 2893 2894 // Check if the callee of a method is deleted. 2895 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2896 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2897 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2898 return; 2899 } 2900 2901 // Check arguments for being used after free. 2902 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2903 SVal ArgSVal = Call.getArgSVal(I); 2904 if (isa<Loc>(ArgSVal)) { 2905 SymbolRef Sym = ArgSVal.getAsSymbol(); 2906 if (!Sym) 2907 continue; 2908 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2909 return; 2910 } 2911 } 2912 } 2913 2914 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2915 CheckerContext &C) const { 2916 checkEscapeOnReturn(S, C); 2917 } 2918 2919 // In the CFG, automatic destructors come after the return statement. 2920 // This callback checks for returning memory that is freed by automatic 2921 // destructors, as those cannot be reached in checkPreStmt(). 2922 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2923 CheckerContext &C) const { 2924 checkEscapeOnReturn(S, C); 2925 } 2926 2927 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2928 CheckerContext &C) const { 2929 if (!S) 2930 return; 2931 2932 const Expr *E = S->getRetValue(); 2933 if (!E) 2934 return; 2935 2936 // Check if we are returning a symbol. 2937 ProgramStateRef State = C.getState(); 2938 SVal RetVal = C.getSVal(E); 2939 SymbolRef Sym = RetVal.getAsSymbol(); 2940 if (!Sym) 2941 // If we are returning a field of the allocated struct or an array element, 2942 // the callee could still free the memory. 2943 // TODO: This logic should be a part of generic symbol escape callback. 2944 if (const MemRegion *MR = RetVal.getAsRegion()) 2945 if (isa<FieldRegion, ElementRegion>(MR)) 2946 if (const SymbolicRegion *BMR = 2947 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2948 Sym = BMR->getSymbol(); 2949 2950 // Check if we are returning freed memory. 2951 if (Sym) 2952 checkUseAfterFree(Sym, C, E); 2953 } 2954 2955 // TODO: Blocks should be either inlined or should call invalidate regions 2956 // upon invocation. After that's in place, special casing here will not be 2957 // needed. 2958 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2959 CheckerContext &C) const { 2960 2961 // Scan the BlockDecRefExprs for any object the retain count checker 2962 // may be tracking. 2963 if (!BE->getBlockDecl()->hasCaptures()) 2964 return; 2965 2966 ProgramStateRef state = C.getState(); 2967 const BlockDataRegion *R = 2968 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2969 2970 auto ReferencedVars = R->referenced_vars(); 2971 if (ReferencedVars.empty()) 2972 return; 2973 2974 SmallVector<const MemRegion*, 10> Regions; 2975 const LocationContext *LC = C.getLocationContext(); 2976 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2977 2978 for (const auto &Var : ReferencedVars) { 2979 const VarRegion *VR = Var.getCapturedRegion(); 2980 if (VR->getSuperRegion() == R) { 2981 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2982 } 2983 Regions.push_back(VR); 2984 } 2985 2986 state = 2987 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2988 C.addTransition(state); 2989 } 2990 2991 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2992 assert(Sym); 2993 const RefState *RS = C.getState()->get<RegionState>(Sym); 2994 return (RS && RS->isReleased()); 2995 } 2996 2997 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2998 const CallEvent &Call, CheckerContext &C) const { 2999 if (Call.getNumArgs() == 0) 3000 return false; 3001 3002 StringRef FunctionStr = ""; 3003 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3004 if (const Stmt *Body = FD->getBody()) 3005 if (Body->getBeginLoc().isValid()) 3006 FunctionStr = 3007 Lexer::getSourceText(CharSourceRange::getTokenRange( 3008 {FD->getBeginLoc(), Body->getBeginLoc()}), 3009 C.getSourceManager(), C.getLangOpts()); 3010 3011 // We do not model the Integer Set Library's retain-count based allocation. 3012 if (!FunctionStr.contains("__isl_")) 3013 return false; 3014 3015 ProgramStateRef State = C.getState(); 3016 3017 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3018 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3019 if (const RefState *RS = State->get<RegionState>(Sym)) 3020 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3021 3022 C.addTransition(State); 3023 return true; 3024 } 3025 3026 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3027 const Stmt *S) const { 3028 3029 if (isReleased(Sym, C)) { 3030 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3031 return true; 3032 } 3033 3034 return false; 3035 } 3036 3037 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3038 const Stmt *S) const { 3039 assert(Sym); 3040 3041 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3042 if (RS->isAllocatedOfSizeZero()) 3043 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3044 } 3045 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3046 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3047 } 3048 } 3049 3050 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3051 3052 if (isReleased(Sym, C)) { 3053 HandleDoubleDelete(C, Sym); 3054 return true; 3055 } 3056 return false; 3057 } 3058 3059 // Check if the location is a freed symbolic region. 3060 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3061 CheckerContext &C) const { 3062 SymbolRef Sym = l.getLocSymbolInBase(); 3063 if (Sym) { 3064 checkUseAfterFree(Sym, C, S); 3065 checkUseZeroAllocated(Sym, C, S); 3066 } 3067 } 3068 3069 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3070 // it - assuming that allocation failed on this path. 3071 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3072 SVal Cond, 3073 bool Assumption) const { 3074 RegionStateTy RS = state->get<RegionState>(); 3075 for (SymbolRef Sym : llvm::make_first_range(RS)) { 3076 // If the symbol is assumed to be NULL, remove it from consideration. 3077 ConstraintManager &CMgr = state->getConstraintManager(); 3078 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3079 if (AllocFailed.isConstrainedTrue()) 3080 state = state->remove<RegionState>(Sym); 3081 } 3082 3083 // Realloc returns 0 when reallocation fails, which means that we should 3084 // restore the state of the pointer being reallocated. 3085 ReallocPairsTy RP = state->get<ReallocPairs>(); 3086 for (auto [Sym, ReallocPair] : RP) { 3087 // If the symbol is assumed to be NULL, remove it from consideration. 3088 ConstraintManager &CMgr = state->getConstraintManager(); 3089 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3090 if (!AllocFailed.isConstrainedTrue()) 3091 continue; 3092 3093 SymbolRef ReallocSym = ReallocPair.ReallocatedSym; 3094 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3095 if (RS->isReleased()) { 3096 switch (ReallocPair.Kind) { 3097 case OAR_ToBeFreedAfterFailure: 3098 state = state->set<RegionState>(ReallocSym, 3099 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3100 break; 3101 case OAR_DoNotTrackAfterFailure: 3102 state = state->remove<RegionState>(ReallocSym); 3103 break; 3104 default: 3105 assert(ReallocPair.Kind == OAR_FreeOnFailure); 3106 } 3107 } 3108 } 3109 state = state->remove<ReallocPairs>(Sym); 3110 } 3111 3112 return state; 3113 } 3114 3115 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3116 const CallEvent *Call, 3117 ProgramStateRef State, 3118 SymbolRef &EscapingSymbol) const { 3119 assert(Call); 3120 EscapingSymbol = nullptr; 3121 3122 // For now, assume that any C++ or block call can free memory. 3123 // TODO: If we want to be more optimistic here, we'll need to make sure that 3124 // regions escape to C++ containers. They seem to do that even now, but for 3125 // mysterious reasons. 3126 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3127 return true; 3128 3129 // Check Objective-C messages by selector name. 3130 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3131 // If it's not a framework call, or if it takes a callback, assume it 3132 // can free memory. 3133 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3134 return true; 3135 3136 // If it's a method we know about, handle it explicitly post-call. 3137 // This should happen before the "freeWhenDone" check below. 3138 if (isKnownDeallocObjCMethodName(*Msg)) 3139 return false; 3140 3141 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3142 // about, we can't be sure that the object will use free() to deallocate the 3143 // memory, so we can't model it explicitly. The best we can do is use it to 3144 // decide whether the pointer escapes. 3145 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3146 return *FreeWhenDone; 3147 3148 // If the first selector piece ends with "NoCopy", and there is no 3149 // "freeWhenDone" parameter set to zero, we know ownership is being 3150 // transferred. Again, though, we can't be sure that the object will use 3151 // free() to deallocate the memory, so we can't model it explicitly. 3152 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3153 if (FirstSlot.ends_with("NoCopy")) 3154 return true; 3155 3156 // If the first selector starts with addPointer, insertPointer, 3157 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3158 // This is similar to C++ containers (vector); we still might want to check 3159 // that the pointers get freed by following the container itself. 3160 if (FirstSlot.starts_with("addPointer") || 3161 FirstSlot.starts_with("insertPointer") || 3162 FirstSlot.starts_with("replacePointer") || 3163 FirstSlot.equals("valueWithPointer")) { 3164 return true; 3165 } 3166 3167 // We should escape receiver on call to 'init'. This is especially relevant 3168 // to the receiver, as the corresponding symbol is usually not referenced 3169 // after the call. 3170 if (Msg->getMethodFamily() == OMF_init) { 3171 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3172 return true; 3173 } 3174 3175 // Otherwise, assume that the method does not free memory. 3176 // Most framework methods do not free memory. 3177 return false; 3178 } 3179 3180 // At this point the only thing left to handle is straight function calls. 3181 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3182 if (!FD) 3183 return true; 3184 3185 // If it's one of the allocation functions we can reason about, we model 3186 // its behavior explicitly. 3187 if (isMemCall(*Call)) 3188 return false; 3189 3190 // If it's not a system call, assume it frees memory. 3191 if (!Call->isInSystemHeader()) 3192 return true; 3193 3194 // White list the system functions whose arguments escape. 3195 const IdentifierInfo *II = FD->getIdentifier(); 3196 if (!II) 3197 return true; 3198 StringRef FName = II->getName(); 3199 3200 // White list the 'XXXNoCopy' CoreFoundation functions. 3201 // We specifically check these before 3202 if (FName.ends_with("NoCopy")) { 3203 // Look for the deallocator argument. We know that the memory ownership 3204 // is not transferred only if the deallocator argument is 3205 // 'kCFAllocatorNull'. 3206 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3207 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3208 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3209 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3210 if (DeallocatorName == "kCFAllocatorNull") 3211 return false; 3212 } 3213 } 3214 return true; 3215 } 3216 3217 // Associating streams with malloced buffers. The pointer can escape if 3218 // 'closefn' is specified (and if that function does free memory), 3219 // but it will not if closefn is not specified. 3220 // Currently, we do not inspect the 'closefn' function (PR12101). 3221 if (FName == "funopen") 3222 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3223 return false; 3224 3225 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3226 // these leaks might be intentional when setting the buffer for stdio. 3227 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3228 if (FName == "setbuf" || FName =="setbuffer" || 3229 FName == "setlinebuf" || FName == "setvbuf") { 3230 if (Call->getNumArgs() >= 1) { 3231 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3232 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3233 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3234 if (D->getCanonicalDecl()->getName().contains("std")) 3235 return true; 3236 } 3237 } 3238 3239 // A bunch of other functions which either take ownership of a pointer or 3240 // wrap the result up in a struct or object, meaning it can be freed later. 3241 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3242 // but the Malloc checker cannot differentiate between them. The right way 3243 // of doing this would be to implement a pointer escapes callback. 3244 if (FName == "CGBitmapContextCreate" || 3245 FName == "CGBitmapContextCreateWithData" || 3246 FName == "CVPixelBufferCreateWithBytes" || 3247 FName == "CVPixelBufferCreateWithPlanarBytes" || 3248 FName == "OSAtomicEnqueue") { 3249 return true; 3250 } 3251 3252 if (FName == "postEvent" && 3253 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3254 return true; 3255 } 3256 3257 if (FName == "connectImpl" && 3258 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3259 return true; 3260 } 3261 3262 if (FName == "singleShotImpl" && 3263 FD->getQualifiedNameAsString() == "QTimer::singleShotImpl") { 3264 return true; 3265 } 3266 3267 // Handle cases where we know a buffer's /address/ can escape. 3268 // Note that the above checks handle some special cases where we know that 3269 // even though the address escapes, it's still our responsibility to free the 3270 // buffer. 3271 if (Call->argumentsMayEscape()) 3272 return true; 3273 3274 // Otherwise, assume that the function does not free memory. 3275 // Most system calls do not free the memory. 3276 return false; 3277 } 3278 3279 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3280 const InvalidatedSymbols &Escaped, 3281 const CallEvent *Call, 3282 PointerEscapeKind Kind) const { 3283 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3284 /*IsConstPointerEscape*/ false); 3285 } 3286 3287 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3288 const InvalidatedSymbols &Escaped, 3289 const CallEvent *Call, 3290 PointerEscapeKind Kind) const { 3291 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3292 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3293 /*IsConstPointerEscape*/ true); 3294 } 3295 3296 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3297 return (RS->getAllocationFamily() == AF_CXXNewArray || 3298 RS->getAllocationFamily() == AF_CXXNew); 3299 } 3300 3301 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3302 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3303 const CallEvent *Call, PointerEscapeKind Kind, 3304 bool IsConstPointerEscape) const { 3305 // If we know that the call does not free memory, or we want to process the 3306 // call later, keep tracking the top level arguments. 3307 SymbolRef EscapingSymbol = nullptr; 3308 if (Kind == PSK_DirectEscapeOnCall && 3309 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3310 EscapingSymbol) && 3311 !EscapingSymbol) { 3312 return State; 3313 } 3314 3315 for (SymbolRef sym : Escaped) { 3316 if (EscapingSymbol && EscapingSymbol != sym) 3317 continue; 3318 3319 if (const RefState *RS = State->get<RegionState>(sym)) 3320 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3321 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3322 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3323 } 3324 return State; 3325 } 3326 3327 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3328 SVal ArgVal) const { 3329 if (!KernelZeroSizePtrValue) 3330 KernelZeroSizePtrValue = 3331 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3332 3333 const llvm::APSInt *ArgValKnown = 3334 C.getSValBuilder().getKnownValue(State, ArgVal); 3335 return ArgValKnown && *KernelZeroSizePtrValue && 3336 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3337 } 3338 3339 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3340 ProgramStateRef prevState) { 3341 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3342 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3343 3344 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3345 SymbolRef sym = Pair.first; 3346 if (!currMap.lookup(sym)) 3347 return sym; 3348 } 3349 3350 return nullptr; 3351 } 3352 3353 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3354 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3355 StringRef N = II->getName(); 3356 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3357 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3358 N.contains_insensitive("intrusive") || 3359 N.contains_insensitive("shared")) { 3360 return true; 3361 } 3362 } 3363 } 3364 return false; 3365 } 3366 3367 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3368 BugReporterContext &BRC, 3369 PathSensitiveBugReport &BR) { 3370 ProgramStateRef state = N->getState(); 3371 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3372 3373 const RefState *RSCurr = state->get<RegionState>(Sym); 3374 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3375 3376 const Stmt *S = N->getStmtForDiagnostics(); 3377 // When dealing with containers, we sometimes want to give a note 3378 // even if the statement is missing. 3379 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3380 return nullptr; 3381 3382 const LocationContext *CurrentLC = N->getLocationContext(); 3383 3384 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3385 // the pointer was released (before the release), this is likely a destructor 3386 // of a shared pointer. 3387 // Because we don't model atomics, and also because we don't know that the 3388 // original reference count is positive, we should not report use-after-frees 3389 // on objects deleted in such destructors. This can probably be improved 3390 // through better shared pointer modeling. 3391 if (ReleaseDestructorLC) { 3392 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3393 AtomicExpr::AtomicOp Op = AE->getOp(); 3394 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3395 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3396 if (ReleaseDestructorLC == CurrentLC || 3397 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3398 BR.markInvalid(getTag(), S); 3399 } 3400 } 3401 } 3402 } 3403 3404 // FIXME: We will eventually need to handle non-statement-based events 3405 // (__attribute__((cleanup))). 3406 3407 // Find out if this is an interesting point and what is the kind. 3408 StringRef Msg; 3409 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3410 SmallString<256> Buf; 3411 llvm::raw_svector_ostream OS(Buf); 3412 3413 if (Mode == Normal) { 3414 if (isAllocated(RSCurr, RSPrev, S)) { 3415 Msg = "Memory is allocated"; 3416 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3417 Sym, "Returned allocated memory"); 3418 } else if (isReleased(RSCurr, RSPrev, S)) { 3419 const auto Family = RSCurr->getAllocationFamily(); 3420 switch (Family) { 3421 case AF_Alloca: 3422 case AF_Malloc: 3423 case AF_CXXNew: 3424 case AF_CXXNewArray: 3425 case AF_IfNameIndex: 3426 Msg = "Memory is released"; 3427 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3428 Sym, "Returning; memory was released"); 3429 break; 3430 case AF_InnerBuffer: { 3431 const MemRegion *ObjRegion = 3432 allocation_state::getContainerObjRegion(statePrev, Sym); 3433 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3434 QualType ObjTy = TypedRegion->getValueType(); 3435 OS << "Inner buffer of '" << ObjTy << "' "; 3436 3437 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3438 OS << "deallocated by call to destructor"; 3439 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3440 Sym, "Returning; inner buffer was deallocated"); 3441 } else { 3442 OS << "reallocated by call to '"; 3443 const Stmt *S = RSCurr->getStmt(); 3444 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3445 OS << MemCallE->getMethodDecl()->getDeclName(); 3446 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3447 OS << OpCallE->getDirectCallee()->getDeclName(); 3448 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3449 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3450 CallEventRef<> Call = 3451 CEMgr.getSimpleCall(CallE, state, CurrentLC, {nullptr, 0}); 3452 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3453 OS << D->getDeclName(); 3454 else 3455 OS << "unknown"; 3456 } 3457 OS << "'"; 3458 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3459 Sym, "Returning; inner buffer was reallocated"); 3460 } 3461 Msg = OS.str(); 3462 break; 3463 } 3464 case AF_None: 3465 llvm_unreachable("Unhandled allocation family!"); 3466 } 3467 3468 // See if we're releasing memory while inlining a destructor 3469 // (or one of its callees). This turns on various common 3470 // false positive suppressions. 3471 bool FoundAnyDestructor = false; 3472 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3473 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3474 if (isReferenceCountingPointerDestructor(DD)) { 3475 // This immediately looks like a reference-counting destructor. 3476 // We're bad at guessing the original reference count of the object, 3477 // so suppress the report for now. 3478 BR.markInvalid(getTag(), DD); 3479 } else if (!FoundAnyDestructor) { 3480 assert(!ReleaseDestructorLC && 3481 "There can be only one release point!"); 3482 // Suspect that it's a reference counting pointer destructor. 3483 // On one of the next nodes might find out that it has atomic 3484 // reference counting operations within it (see the code above), 3485 // and if so, we'd conclude that it likely is a reference counting 3486 // pointer destructor. 3487 ReleaseDestructorLC = LC->getStackFrame(); 3488 // It is unlikely that releasing memory is delegated to a destructor 3489 // inside a destructor of a shared pointer, because it's fairly hard 3490 // to pass the information that the pointer indeed needs to be 3491 // released into it. So we're only interested in the innermost 3492 // destructor. 3493 FoundAnyDestructor = true; 3494 } 3495 } 3496 } 3497 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3498 Msg = "Memory ownership is transferred"; 3499 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3500 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3501 Mode = ReallocationFailed; 3502 Msg = "Reallocation failed"; 3503 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3504 Sym, "Reallocation failed"); 3505 3506 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3507 // Is it possible to fail two reallocs WITHOUT testing in between? 3508 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3509 "We only support one failed realloc at a time."); 3510 BR.markInteresting(sym); 3511 FailedReallocSymbol = sym; 3512 } 3513 } 3514 3515 // We are in a special mode if a reallocation failed later in the path. 3516 } else if (Mode == ReallocationFailed) { 3517 assert(FailedReallocSymbol && "No symbol to look for."); 3518 3519 // Is this is the first appearance of the reallocated symbol? 3520 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3521 // We're at the reallocation point. 3522 Msg = "Attempt to reallocate memory"; 3523 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3524 Sym, "Returned reallocated memory"); 3525 FailedReallocSymbol = nullptr; 3526 Mode = Normal; 3527 } 3528 } 3529 3530 if (Msg.empty()) { 3531 assert(!StackHint); 3532 return nullptr; 3533 } 3534 3535 assert(StackHint); 3536 3537 // Generate the extra diagnostic. 3538 PathDiagnosticLocation Pos; 3539 if (!S) { 3540 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3541 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3542 if (!PostImplCall) 3543 return nullptr; 3544 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3545 BRC.getSourceManager()); 3546 } else { 3547 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3548 N->getLocationContext()); 3549 } 3550 3551 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3552 BR.addCallStackHint(P, std::move(StackHint)); 3553 return P; 3554 } 3555 3556 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3557 const char *NL, const char *Sep) const { 3558 3559 RegionStateTy RS = State->get<RegionState>(); 3560 3561 if (!RS.isEmpty()) { 3562 Out << Sep << "MallocChecker :" << NL; 3563 for (auto [Sym, Data] : RS) { 3564 const RefState *RefS = State->get<RegionState>(Sym); 3565 AllocationFamily Family = RefS->getAllocationFamily(); 3566 std::optional<MallocChecker::CheckKind> CheckKind = 3567 getCheckIfTracked(Family); 3568 if (!CheckKind) 3569 CheckKind = getCheckIfTracked(Family, true); 3570 3571 Sym->dumpToStream(Out); 3572 Out << " : "; 3573 Data.dump(Out); 3574 if (CheckKind) 3575 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3576 Out << NL; 3577 } 3578 } 3579 } 3580 3581 namespace clang { 3582 namespace ento { 3583 namespace allocation_state { 3584 3585 ProgramStateRef 3586 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3587 AllocationFamily Family = AF_InnerBuffer; 3588 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3589 } 3590 3591 } // end namespace allocation_state 3592 } // end namespace ento 3593 } // end namespace clang 3594 3595 // Intended to be used in InnerPointerChecker to register the part of 3596 // MallocChecker connected to it. 3597 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3598 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3599 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3600 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3601 mgr.getCurrentCheckerName(); 3602 } 3603 3604 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3605 auto *checker = mgr.registerChecker<MallocChecker>(); 3606 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3607 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3608 checker->ShouldRegisterNoOwnershipChangeVisitor = 3609 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3610 checker, "AddNoOwnershipChangeNotes"); 3611 } 3612 3613 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3614 return true; 3615 } 3616 3617 #define REGISTER_CHECKER(name) \ 3618 void ento::register##name(CheckerManager &mgr) { \ 3619 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3620 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3621 checker->CheckNames[MallocChecker::CK_##name] = \ 3622 mgr.getCurrentCheckerName(); \ 3623 } \ 3624 \ 3625 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3626 3627 REGISTER_CHECKER(MallocChecker) 3628 REGISTER_CHECKER(NewDeleteChecker) 3629 REGISTER_CHECKER(NewDeleteLeaksChecker) 3630 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3631