1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===/ 7 // 8 // This file implements C++ template instantiation for declarations. 9 // 10 //===----------------------------------------------------------------------===/ 11 12 #include "TreeTransform.h" 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/DeclVisitor.h" 18 #include "clang/AST/DependentDiagnostic.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/PrettyDeclStackTrace.h" 22 #include "clang/AST/TypeLoc.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/EnterExpressionEvaluationContext.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/ScopeInfo.h" 29 #include "clang/Sema/SemaInternal.h" 30 #include "clang/Sema/Template.h" 31 #include "clang/Sema/TemplateInstCallback.h" 32 #include "llvm/Support/TimeProfiler.h" 33 #include <optional> 34 35 using namespace clang; 36 37 static bool isDeclWithinFunction(const Decl *D) { 38 const DeclContext *DC = D->getDeclContext(); 39 if (DC->isFunctionOrMethod()) 40 return true; 41 42 if (DC->isRecord()) 43 return cast<CXXRecordDecl>(DC)->isLocalClass(); 44 45 return false; 46 } 47 48 template<typename DeclT> 49 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, 50 const MultiLevelTemplateArgumentList &TemplateArgs) { 51 if (!OldDecl->getQualifierLoc()) 52 return false; 53 54 assert((NewDecl->getFriendObjectKind() || 55 !OldDecl->getLexicalDeclContext()->isDependentContext()) && 56 "non-friend with qualified name defined in dependent context"); 57 Sema::ContextRAII SavedContext( 58 SemaRef, 59 const_cast<DeclContext *>(NewDecl->getFriendObjectKind() 60 ? NewDecl->getLexicalDeclContext() 61 : OldDecl->getLexicalDeclContext())); 62 63 NestedNameSpecifierLoc NewQualifierLoc 64 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), 65 TemplateArgs); 66 67 if (!NewQualifierLoc) 68 return true; 69 70 NewDecl->setQualifierInfo(NewQualifierLoc); 71 return false; 72 } 73 74 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, 75 DeclaratorDecl *NewDecl) { 76 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 77 } 78 79 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, 80 TagDecl *NewDecl) { 81 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 82 } 83 84 // Include attribute instantiation code. 85 #include "clang/Sema/AttrTemplateInstantiate.inc" 86 87 static void instantiateDependentAlignedAttr( 88 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 89 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { 90 if (Aligned->isAlignmentExpr()) { 91 // The alignment expression is a constant expression. 92 EnterExpressionEvaluationContext Unevaluated( 93 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 94 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); 95 if (!Result.isInvalid()) 96 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion); 97 } else { 98 if (TypeSourceInfo *Result = 99 S.SubstType(Aligned->getAlignmentType(), TemplateArgs, 100 Aligned->getLocation(), DeclarationName())) { 101 if (!S.CheckAlignasTypeArgument(Aligned->getSpelling(), Result, 102 Aligned->getLocation(), 103 Result->getTypeLoc().getSourceRange())) 104 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion); 105 } 106 } 107 } 108 109 static void instantiateDependentAlignedAttr( 110 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 111 const AlignedAttr *Aligned, Decl *New) { 112 if (!Aligned->isPackExpansion()) { 113 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 114 return; 115 } 116 117 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 118 if (Aligned->isAlignmentExpr()) 119 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), 120 Unexpanded); 121 else 122 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), 123 Unexpanded); 124 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); 125 126 // Determine whether we can expand this attribute pack yet. 127 bool Expand = true, RetainExpansion = false; 128 std::optional<unsigned> NumExpansions; 129 // FIXME: Use the actual location of the ellipsis. 130 SourceLocation EllipsisLoc = Aligned->getLocation(); 131 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), 132 Unexpanded, TemplateArgs, Expand, 133 RetainExpansion, NumExpansions)) 134 return; 135 136 if (!Expand) { 137 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); 138 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); 139 } else { 140 for (unsigned I = 0; I != *NumExpansions; ++I) { 141 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); 142 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 143 } 144 } 145 } 146 147 static void instantiateDependentAssumeAlignedAttr( 148 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 149 const AssumeAlignedAttr *Aligned, Decl *New) { 150 // The alignment expression is a constant expression. 151 EnterExpressionEvaluationContext Unevaluated( 152 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 153 154 Expr *E, *OE = nullptr; 155 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 156 if (Result.isInvalid()) 157 return; 158 E = Result.getAs<Expr>(); 159 160 if (Aligned->getOffset()) { 161 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); 162 if (Result.isInvalid()) 163 return; 164 OE = Result.getAs<Expr>(); 165 } 166 167 S.AddAssumeAlignedAttr(New, *Aligned, E, OE); 168 } 169 170 static void instantiateDependentAlignValueAttr( 171 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 172 const AlignValueAttr *Aligned, Decl *New) { 173 // The alignment expression is a constant expression. 174 EnterExpressionEvaluationContext Unevaluated( 175 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 176 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 177 if (!Result.isInvalid()) 178 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>()); 179 } 180 181 static void instantiateDependentAllocAlignAttr( 182 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 183 const AllocAlignAttr *Align, Decl *New) { 184 Expr *Param = IntegerLiteral::Create( 185 S.getASTContext(), 186 llvm::APInt(64, Align->getParamIndex().getSourceIndex()), 187 S.getASTContext().UnsignedLongLongTy, Align->getLocation()); 188 S.AddAllocAlignAttr(New, *Align, Param); 189 } 190 191 static void instantiateDependentAnnotationAttr( 192 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 193 const AnnotateAttr *Attr, Decl *New) { 194 EnterExpressionEvaluationContext Unevaluated( 195 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 196 197 // If the attribute has delayed arguments it will have to instantiate those 198 // and handle them as new arguments for the attribute. 199 bool HasDelayedArgs = Attr->delayedArgs_size(); 200 201 ArrayRef<Expr *> ArgsToInstantiate = 202 HasDelayedArgs 203 ? ArrayRef<Expr *>{Attr->delayedArgs_begin(), Attr->delayedArgs_end()} 204 : ArrayRef<Expr *>{Attr->args_begin(), Attr->args_end()}; 205 206 SmallVector<Expr *, 4> Args; 207 if (S.SubstExprs(ArgsToInstantiate, 208 /*IsCall=*/false, TemplateArgs, Args)) 209 return; 210 211 StringRef Str = Attr->getAnnotation(); 212 if (HasDelayedArgs) { 213 if (Args.size() < 1) { 214 S.Diag(Attr->getLoc(), diag::err_attribute_too_few_arguments) 215 << Attr << 1; 216 return; 217 } 218 219 if (!S.checkStringLiteralArgumentAttr(*Attr, Args[0], Str)) 220 return; 221 222 llvm::SmallVector<Expr *, 4> ActualArgs; 223 ActualArgs.insert(ActualArgs.begin(), Args.begin() + 1, Args.end()); 224 std::swap(Args, ActualArgs); 225 } 226 S.AddAnnotationAttr(New, *Attr, Str, Args); 227 } 228 229 static Expr *instantiateDependentFunctionAttrCondition( 230 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 231 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { 232 Expr *Cond = nullptr; 233 { 234 Sema::ContextRAII SwitchContext(S, New); 235 EnterExpressionEvaluationContext Unevaluated( 236 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 237 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); 238 if (Result.isInvalid()) 239 return nullptr; 240 Cond = Result.getAs<Expr>(); 241 } 242 if (!Cond->isTypeDependent()) { 243 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 244 if (Converted.isInvalid()) 245 return nullptr; 246 Cond = Converted.get(); 247 } 248 249 SmallVector<PartialDiagnosticAt, 8> Diags; 250 if (OldCond->isValueDependent() && !Cond->isValueDependent() && 251 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { 252 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; 253 for (const auto &P : Diags) 254 S.Diag(P.first, P.second); 255 return nullptr; 256 } 257 return Cond; 258 } 259 260 static void instantiateDependentEnableIfAttr( 261 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 262 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { 263 Expr *Cond = instantiateDependentFunctionAttrCondition( 264 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); 265 266 if (Cond) 267 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA, 268 Cond, EIA->getMessage())); 269 } 270 271 static void instantiateDependentDiagnoseIfAttr( 272 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 273 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { 274 Expr *Cond = instantiateDependentFunctionAttrCondition( 275 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); 276 277 if (Cond) 278 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( 279 S.getASTContext(), *DIA, Cond, DIA->getMessage(), 280 DIA->getDiagnosticType(), DIA->getArgDependent(), New)); 281 } 282 283 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using 284 // template A as the base and arguments from TemplateArgs. 285 static void instantiateDependentCUDALaunchBoundsAttr( 286 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 287 const CUDALaunchBoundsAttr &Attr, Decl *New) { 288 // The alignment expression is a constant expression. 289 EnterExpressionEvaluationContext Unevaluated( 290 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 291 292 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); 293 if (Result.isInvalid()) 294 return; 295 Expr *MaxThreads = Result.getAs<Expr>(); 296 297 Expr *MinBlocks = nullptr; 298 if (Attr.getMinBlocks()) { 299 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); 300 if (Result.isInvalid()) 301 return; 302 MinBlocks = Result.getAs<Expr>(); 303 } 304 305 Expr *MaxBlocks = nullptr; 306 if (Attr.getMaxBlocks()) { 307 Result = S.SubstExpr(Attr.getMaxBlocks(), TemplateArgs); 308 if (Result.isInvalid()) 309 return; 310 MaxBlocks = Result.getAs<Expr>(); 311 } 312 313 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks, MaxBlocks); 314 } 315 316 static void 317 instantiateDependentModeAttr(Sema &S, 318 const MultiLevelTemplateArgumentList &TemplateArgs, 319 const ModeAttr &Attr, Decl *New) { 320 S.AddModeAttr(New, Attr, Attr.getMode(), 321 /*InInstantiation=*/true); 322 } 323 324 /// Instantiation of 'declare simd' attribute and its arguments. 325 static void instantiateOMPDeclareSimdDeclAttr( 326 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 327 const OMPDeclareSimdDeclAttr &Attr, Decl *New) { 328 // Allow 'this' in clauses with varlists. 329 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 330 New = FTD->getTemplatedDecl(); 331 auto *FD = cast<FunctionDecl>(New); 332 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 333 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps; 334 SmallVector<unsigned, 4> LinModifiers; 335 336 auto SubstExpr = [&](Expr *E) -> ExprResult { 337 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 338 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 339 Sema::ContextRAII SavedContext(S, FD); 340 LocalInstantiationScope Local(S); 341 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 342 Local.InstantiatedLocal( 343 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 344 return S.SubstExpr(E, TemplateArgs); 345 } 346 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 347 FD->isCXXInstanceMember()); 348 return S.SubstExpr(E, TemplateArgs); 349 }; 350 351 // Substitute a single OpenMP clause, which is a potentially-evaluated 352 // full-expression. 353 auto Subst = [&](Expr *E) -> ExprResult { 354 EnterExpressionEvaluationContext Evaluated( 355 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 356 ExprResult Res = SubstExpr(E); 357 if (Res.isInvalid()) 358 return Res; 359 return S.ActOnFinishFullExpr(Res.get(), false); 360 }; 361 362 ExprResult Simdlen; 363 if (auto *E = Attr.getSimdlen()) 364 Simdlen = Subst(E); 365 366 if (Attr.uniforms_size() > 0) { 367 for(auto *E : Attr.uniforms()) { 368 ExprResult Inst = Subst(E); 369 if (Inst.isInvalid()) 370 continue; 371 Uniforms.push_back(Inst.get()); 372 } 373 } 374 375 auto AI = Attr.alignments_begin(); 376 for (auto *E : Attr.aligneds()) { 377 ExprResult Inst = Subst(E); 378 if (Inst.isInvalid()) 379 continue; 380 Aligneds.push_back(Inst.get()); 381 Inst = ExprEmpty(); 382 if (*AI) 383 Inst = S.SubstExpr(*AI, TemplateArgs); 384 Alignments.push_back(Inst.get()); 385 ++AI; 386 } 387 388 auto SI = Attr.steps_begin(); 389 for (auto *E : Attr.linears()) { 390 ExprResult Inst = Subst(E); 391 if (Inst.isInvalid()) 392 continue; 393 Linears.push_back(Inst.get()); 394 Inst = ExprEmpty(); 395 if (*SI) 396 Inst = S.SubstExpr(*SI, TemplateArgs); 397 Steps.push_back(Inst.get()); 398 ++SI; 399 } 400 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); 401 (void)S.ActOnOpenMPDeclareSimdDirective( 402 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), 403 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, 404 Attr.getRange()); 405 } 406 407 /// Instantiation of 'declare variant' attribute and its arguments. 408 static void instantiateOMPDeclareVariantAttr( 409 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 410 const OMPDeclareVariantAttr &Attr, Decl *New) { 411 // Allow 'this' in clauses with varlists. 412 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 413 New = FTD->getTemplatedDecl(); 414 auto *FD = cast<FunctionDecl>(New); 415 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 416 417 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) { 418 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 419 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 420 Sema::ContextRAII SavedContext(S, FD); 421 LocalInstantiationScope Local(S); 422 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 423 Local.InstantiatedLocal( 424 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 425 return S.SubstExpr(E, TemplateArgs); 426 } 427 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 428 FD->isCXXInstanceMember()); 429 return S.SubstExpr(E, TemplateArgs); 430 }; 431 432 // Substitute a single OpenMP clause, which is a potentially-evaluated 433 // full-expression. 434 auto &&Subst = [&SubstExpr, &S](Expr *E) { 435 EnterExpressionEvaluationContext Evaluated( 436 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 437 ExprResult Res = SubstExpr(E); 438 if (Res.isInvalid()) 439 return Res; 440 return S.ActOnFinishFullExpr(Res.get(), false); 441 }; 442 443 ExprResult VariantFuncRef; 444 if (Expr *E = Attr.getVariantFuncRef()) { 445 // Do not mark function as is used to prevent its emission if this is the 446 // only place where it is used. 447 EnterExpressionEvaluationContext Unevaluated( 448 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 449 VariantFuncRef = Subst(E); 450 } 451 452 // Copy the template version of the OMPTraitInfo and run substitute on all 453 // score and condition expressiosn. 454 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo(); 455 TI = *Attr.getTraitInfos(); 456 457 // Try to substitute template parameters in score and condition expressions. 458 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) { 459 if (E) { 460 EnterExpressionEvaluationContext Unevaluated( 461 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 462 ExprResult ER = Subst(E); 463 if (ER.isUsable()) 464 E = ER.get(); 465 else 466 return true; 467 } 468 return false; 469 }; 470 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr)) 471 return; 472 473 Expr *E = VariantFuncRef.get(); 474 475 // Check function/variant ref for `omp declare variant` but not for `omp 476 // begin declare variant` (which use implicit attributes). 477 std::optional<std::pair<FunctionDecl *, Expr *>> DeclVarData = 478 S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New), E, TI, 479 Attr.appendArgs_size(), 480 Attr.getRange()); 481 482 if (!DeclVarData) 483 return; 484 485 E = DeclVarData->second; 486 FD = DeclVarData->first; 487 488 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 489 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) { 490 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) { 491 if (!VariantFTD->isThisDeclarationADefinition()) 492 return; 493 Sema::TentativeAnalysisScope Trap(S); 494 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy( 495 S.Context, TemplateArgs.getInnermost()); 496 497 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL, 498 New->getLocation()); 499 if (!SubstFD) 500 return; 501 QualType NewType = S.Context.mergeFunctionTypes( 502 SubstFD->getType(), FD->getType(), 503 /* OfBlockPointer */ false, 504 /* Unqualified */ false, /* AllowCXX */ true); 505 if (NewType.isNull()) 506 return; 507 S.InstantiateFunctionDefinition( 508 New->getLocation(), SubstFD, /* Recursive */ true, 509 /* DefinitionRequired */ false, /* AtEndOfTU */ false); 510 SubstFD->setInstantiationIsPending(!SubstFD->isDefined()); 511 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(), 512 SourceLocation(), SubstFD, 513 /* RefersToEnclosingVariableOrCapture */ false, 514 /* NameLoc */ SubstFD->getLocation(), 515 SubstFD->getType(), ExprValueKind::VK_PRValue); 516 } 517 } 518 } 519 520 SmallVector<Expr *, 8> NothingExprs; 521 SmallVector<Expr *, 8> NeedDevicePtrExprs; 522 SmallVector<OMPInteropInfo, 4> AppendArgs; 523 524 for (Expr *E : Attr.adjustArgsNothing()) { 525 ExprResult ER = Subst(E); 526 if (ER.isInvalid()) 527 continue; 528 NothingExprs.push_back(ER.get()); 529 } 530 for (Expr *E : Attr.adjustArgsNeedDevicePtr()) { 531 ExprResult ER = Subst(E); 532 if (ER.isInvalid()) 533 continue; 534 NeedDevicePtrExprs.push_back(ER.get()); 535 } 536 for (OMPInteropInfo &II : Attr.appendArgs()) { 537 // When prefer_type is implemented for append_args handle them here too. 538 AppendArgs.emplace_back(II.IsTarget, II.IsTargetSync); 539 } 540 541 S.ActOnOpenMPDeclareVariantDirective( 542 FD, E, TI, NothingExprs, NeedDevicePtrExprs, AppendArgs, SourceLocation(), 543 SourceLocation(), Attr.getRange()); 544 } 545 546 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 547 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 548 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) { 549 // Both min and max expression are constant expressions. 550 EnterExpressionEvaluationContext Unevaluated( 551 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 552 553 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 554 if (Result.isInvalid()) 555 return; 556 Expr *MinExpr = Result.getAs<Expr>(); 557 558 Result = S.SubstExpr(Attr.getMax(), TemplateArgs); 559 if (Result.isInvalid()) 560 return; 561 Expr *MaxExpr = Result.getAs<Expr>(); 562 563 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr); 564 } 565 566 ExplicitSpecifier Sema::instantiateExplicitSpecifier( 567 const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES) { 568 if (!ES.getExpr()) 569 return ES; 570 Expr *OldCond = ES.getExpr(); 571 Expr *Cond = nullptr; 572 { 573 EnterExpressionEvaluationContext Unevaluated( 574 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 575 ExprResult SubstResult = SubstExpr(OldCond, TemplateArgs); 576 if (SubstResult.isInvalid()) { 577 return ExplicitSpecifier::Invalid(); 578 } 579 Cond = SubstResult.get(); 580 } 581 ExplicitSpecifier Result(Cond, ES.getKind()); 582 if (!Cond->isTypeDependent()) 583 tryResolveExplicitSpecifier(Result); 584 return Result; 585 } 586 587 static void instantiateDependentAMDGPUWavesPerEUAttr( 588 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 589 const AMDGPUWavesPerEUAttr &Attr, Decl *New) { 590 // Both min and max expression are constant expressions. 591 EnterExpressionEvaluationContext Unevaluated( 592 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 593 594 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 595 if (Result.isInvalid()) 596 return; 597 Expr *MinExpr = Result.getAs<Expr>(); 598 599 Expr *MaxExpr = nullptr; 600 if (auto Max = Attr.getMax()) { 601 Result = S.SubstExpr(Max, TemplateArgs); 602 if (Result.isInvalid()) 603 return; 604 MaxExpr = Result.getAs<Expr>(); 605 } 606 607 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr); 608 } 609 610 // This doesn't take any template parameters, but we have a custom action that 611 // needs to happen when the kernel itself is instantiated. We need to run the 612 // ItaniumMangler to mark the names required to name this kernel. 613 static void instantiateDependentSYCLKernelAttr( 614 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 615 const SYCLKernelAttr &Attr, Decl *New) { 616 New->addAttr(Attr.clone(S.getASTContext())); 617 } 618 619 /// Determine whether the attribute A might be relevant to the declaration D. 620 /// If not, we can skip instantiating it. The attribute may or may not have 621 /// been instantiated yet. 622 static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) { 623 // 'preferred_name' is only relevant to the matching specialization of the 624 // template. 625 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) { 626 QualType T = PNA->getTypedefType(); 627 const auto *RD = cast<CXXRecordDecl>(D); 628 if (!T->isDependentType() && !RD->isDependentContext() && 629 !declaresSameEntity(T->getAsCXXRecordDecl(), RD)) 630 return false; 631 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>()) 632 if (S.Context.hasSameType(ExistingPNA->getTypedefType(), 633 PNA->getTypedefType())) 634 return false; 635 return true; 636 } 637 638 if (const auto *BA = dyn_cast<BuiltinAttr>(A)) { 639 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 640 switch (BA->getID()) { 641 case Builtin::BIforward: 642 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference 643 // type and returns an lvalue reference type. The library implementation 644 // will produce an error in this case; don't get in its way. 645 if (FD && FD->getNumParams() >= 1 && 646 FD->getParamDecl(0)->getType()->isRValueReferenceType() && 647 FD->getReturnType()->isLValueReferenceType()) { 648 return false; 649 } 650 [[fallthrough]]; 651 case Builtin::BImove: 652 case Builtin::BImove_if_noexcept: 653 // HACK: Super-old versions of libc++ (3.1 and earlier) provide 654 // std::forward and std::move overloads that sometimes return by value 655 // instead of by reference when building in C++98 mode. Don't treat such 656 // cases as builtins. 657 if (FD && !FD->getReturnType()->isReferenceType()) 658 return false; 659 break; 660 } 661 } 662 663 return true; 664 } 665 666 static void instantiateDependentHLSLParamModifierAttr( 667 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 668 const HLSLParamModifierAttr *Attr, Decl *New) { 669 ParmVarDecl *P = cast<ParmVarDecl>(New); 670 P->addAttr(Attr->clone(S.getASTContext())); 671 P->setType(S.getASTContext().getLValueReferenceType(P->getType())); 672 } 673 674 void Sema::InstantiateAttrsForDecl( 675 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, 676 Decl *New, LateInstantiatedAttrVec *LateAttrs, 677 LocalInstantiationScope *OuterMostScope) { 678 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) { 679 // FIXME: This function is called multiple times for the same template 680 // specialization. We should only instantiate attributes that were added 681 // since the previous instantiation. 682 for (const auto *TmplAttr : Tmpl->attrs()) { 683 if (!isRelevantAttr(*this, New, TmplAttr)) 684 continue; 685 686 // FIXME: If any of the special case versions from InstantiateAttrs become 687 // applicable to template declaration, we'll need to add them here. 688 CXXThisScopeRAII ThisScope( 689 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()), 690 Qualifiers(), ND->isCXXInstanceMember()); 691 692 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( 693 TmplAttr, Context, *this, TemplateArgs); 694 if (NewAttr && isRelevantAttr(*this, New, NewAttr)) 695 New->addAttr(NewAttr); 696 } 697 } 698 } 699 700 static Sema::RetainOwnershipKind 701 attrToRetainOwnershipKind(const Attr *A) { 702 switch (A->getKind()) { 703 case clang::attr::CFConsumed: 704 return Sema::RetainOwnershipKind::CF; 705 case clang::attr::OSConsumed: 706 return Sema::RetainOwnershipKind::OS; 707 case clang::attr::NSConsumed: 708 return Sema::RetainOwnershipKind::NS; 709 default: 710 llvm_unreachable("Wrong argument supplied"); 711 } 712 } 713 714 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, 715 const Decl *Tmpl, Decl *New, 716 LateInstantiatedAttrVec *LateAttrs, 717 LocalInstantiationScope *OuterMostScope) { 718 for (const auto *TmplAttr : Tmpl->attrs()) { 719 if (!isRelevantAttr(*this, New, TmplAttr)) 720 continue; 721 722 // FIXME: This should be generalized to more than just the AlignedAttr. 723 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); 724 if (Aligned && Aligned->isAlignmentDependent()) { 725 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); 726 continue; 727 } 728 729 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) { 730 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); 731 continue; 732 } 733 734 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) { 735 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); 736 continue; 737 } 738 739 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) { 740 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); 741 continue; 742 } 743 744 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) { 745 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New); 746 continue; 747 } 748 749 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) { 750 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, 751 cast<FunctionDecl>(New)); 752 continue; 753 } 754 755 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) { 756 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, 757 cast<FunctionDecl>(New)); 758 continue; 759 } 760 761 if (const auto *CUDALaunchBounds = 762 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { 763 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, 764 *CUDALaunchBounds, New); 765 continue; 766 } 767 768 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) { 769 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); 770 continue; 771 } 772 773 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) { 774 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); 775 continue; 776 } 777 778 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) { 779 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New); 780 continue; 781 } 782 783 if (const auto *AMDGPUFlatWorkGroupSize = 784 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) { 785 instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 786 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New); 787 } 788 789 if (const auto *AMDGPUFlatWorkGroupSize = 790 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) { 791 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs, 792 *AMDGPUFlatWorkGroupSize, New); 793 } 794 795 if (const auto *ParamAttr = dyn_cast<HLSLParamModifierAttr>(TmplAttr)) { 796 instantiateDependentHLSLParamModifierAttr(*this, TemplateArgs, ParamAttr, 797 New); 798 continue; 799 } 800 801 // Existing DLL attribute on the instantiation takes precedence. 802 if (TmplAttr->getKind() == attr::DLLExport || 803 TmplAttr->getKind() == attr::DLLImport) { 804 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { 805 continue; 806 } 807 } 808 809 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) { 810 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI()); 811 continue; 812 } 813 814 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) || 815 isa<CFConsumedAttr>(TmplAttr)) { 816 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr), 817 /*template instantiation=*/true); 818 continue; 819 } 820 821 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) { 822 if (!New->hasAttr<PointerAttr>()) 823 New->addAttr(A->clone(Context)); 824 continue; 825 } 826 827 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) { 828 if (!New->hasAttr<OwnerAttr>()) 829 New->addAttr(A->clone(Context)); 830 continue; 831 } 832 833 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) { 834 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New); 835 continue; 836 } 837 838 assert(!TmplAttr->isPackExpansion()); 839 if (TmplAttr->isLateParsed() && LateAttrs) { 840 // Late parsed attributes must be instantiated and attached after the 841 // enclosing class has been instantiated. See Sema::InstantiateClass. 842 LocalInstantiationScope *Saved = nullptr; 843 if (CurrentInstantiationScope) 844 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); 845 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); 846 } else { 847 // Allow 'this' within late-parsed attributes. 848 auto *ND = cast<NamedDecl>(New); 849 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); 850 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(), 851 ND->isCXXInstanceMember()); 852 853 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, 854 *this, TemplateArgs); 855 if (NewAttr && isRelevantAttr(*this, New, TmplAttr)) 856 New->addAttr(NewAttr); 857 } 858 } 859 } 860 861 /// Update instantiation attributes after template was late parsed. 862 /// 863 /// Some attributes are evaluated based on the body of template. If it is 864 /// late parsed, such attributes cannot be evaluated when declaration is 865 /// instantiated. This function is used to update instantiation attributes when 866 /// template definition is ready. 867 void Sema::updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst) { 868 for (const auto *Attr : Pattern->attrs()) { 869 if (auto *A = dyn_cast<StrictFPAttr>(Attr)) { 870 if (!Inst->hasAttr<StrictFPAttr>()) 871 Inst->addAttr(A->clone(getASTContext())); 872 continue; 873 } 874 } 875 } 876 877 /// In the MS ABI, we need to instantiate default arguments of dllexported 878 /// default constructors along with the constructor definition. This allows IR 879 /// gen to emit a constructor closure which calls the default constructor with 880 /// its default arguments. 881 void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) { 882 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 883 Ctor->isDefaultConstructor()); 884 unsigned NumParams = Ctor->getNumParams(); 885 if (NumParams == 0) 886 return; 887 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>(); 888 if (!Attr) 889 return; 890 for (unsigned I = 0; I != NumParams; ++I) { 891 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, 892 Ctor->getParamDecl(I)); 893 CleanupVarDeclMarking(); 894 } 895 } 896 897 /// Get the previous declaration of a declaration for the purposes of template 898 /// instantiation. If this finds a previous declaration, then the previous 899 /// declaration of the instantiation of D should be an instantiation of the 900 /// result of this function. 901 template<typename DeclT> 902 static DeclT *getPreviousDeclForInstantiation(DeclT *D) { 903 DeclT *Result = D->getPreviousDecl(); 904 905 // If the declaration is within a class, and the previous declaration was 906 // merged from a different definition of that class, then we don't have a 907 // previous declaration for the purpose of template instantiation. 908 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && 909 D->getLexicalDeclContext() != Result->getLexicalDeclContext()) 910 return nullptr; 911 912 return Result; 913 } 914 915 Decl * 916 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { 917 llvm_unreachable("Translation units cannot be instantiated"); 918 } 919 920 Decl *TemplateDeclInstantiator::VisitHLSLBufferDecl(HLSLBufferDecl *Decl) { 921 llvm_unreachable("HLSL buffer declarations cannot be instantiated"); 922 } 923 924 Decl * 925 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { 926 llvm_unreachable("pragma comment cannot be instantiated"); 927 } 928 929 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( 930 PragmaDetectMismatchDecl *D) { 931 llvm_unreachable("pragma comment cannot be instantiated"); 932 } 933 934 Decl * 935 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { 936 llvm_unreachable("extern \"C\" context cannot be instantiated"); 937 } 938 939 Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) { 940 llvm_unreachable("GUID declaration cannot be instantiated"); 941 } 942 943 Decl *TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl( 944 UnnamedGlobalConstantDecl *D) { 945 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated"); 946 } 947 948 Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl( 949 TemplateParamObjectDecl *D) { 950 llvm_unreachable("template parameter objects cannot be instantiated"); 951 } 952 953 Decl * 954 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { 955 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), 956 D->getIdentifier()); 957 Owner->addDecl(Inst); 958 return Inst; 959 } 960 961 Decl * 962 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { 963 llvm_unreachable("Namespaces cannot be instantiated"); 964 } 965 966 Decl * 967 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { 968 NamespaceAliasDecl *Inst 969 = NamespaceAliasDecl::Create(SemaRef.Context, Owner, 970 D->getNamespaceLoc(), 971 D->getAliasLoc(), 972 D->getIdentifier(), 973 D->getQualifierLoc(), 974 D->getTargetNameLoc(), 975 D->getNamespace()); 976 Owner->addDecl(Inst); 977 return Inst; 978 } 979 980 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, 981 bool IsTypeAlias) { 982 bool Invalid = false; 983 TypeSourceInfo *DI = D->getTypeSourceInfo(); 984 if (DI->getType()->isInstantiationDependentType() || 985 DI->getType()->isVariablyModifiedType()) { 986 DI = SemaRef.SubstType(DI, TemplateArgs, 987 D->getLocation(), D->getDeclName()); 988 if (!DI) { 989 Invalid = true; 990 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); 991 } 992 } else { 993 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 994 } 995 996 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong. 997 // libstdc++ relies upon this bug in its implementation of common_type. If we 998 // happen to be processing that implementation, fake up the g++ ?: 999 // semantics. See LWG issue 2141 for more information on the bug. The bugs 1000 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22). 1001 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); 1002 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); 1003 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && 1004 DT->isReferenceType() && 1005 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && 1006 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && 1007 D->getIdentifier() && D->getIdentifier()->isStr("type") && 1008 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc())) 1009 // Fold it to the (non-reference) type which g++ would have produced. 1010 DI = SemaRef.Context.getTrivialTypeSourceInfo( 1011 DI->getType().getNonReferenceType()); 1012 1013 // Create the new typedef 1014 TypedefNameDecl *Typedef; 1015 if (IsTypeAlias) 1016 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1017 D->getLocation(), D->getIdentifier(), DI); 1018 else 1019 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1020 D->getLocation(), D->getIdentifier(), DI); 1021 if (Invalid) 1022 Typedef->setInvalidDecl(); 1023 1024 // If the old typedef was the name for linkage purposes of an anonymous 1025 // tag decl, re-establish that relationship for the new typedef. 1026 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { 1027 TagDecl *oldTag = oldTagType->getDecl(); 1028 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { 1029 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); 1030 assert(!newTag->hasNameForLinkage()); 1031 newTag->setTypedefNameForAnonDecl(Typedef); 1032 } 1033 } 1034 1035 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { 1036 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, 1037 TemplateArgs); 1038 if (!InstPrev) 1039 return nullptr; 1040 1041 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); 1042 1043 // If the typedef types are not identical, reject them. 1044 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); 1045 1046 Typedef->setPreviousDecl(InstPrevTypedef); 1047 } 1048 1049 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); 1050 1051 if (D->getUnderlyingType()->getAs<DependentNameType>()) 1052 SemaRef.inferGslPointerAttribute(Typedef); 1053 1054 Typedef->setAccess(D->getAccess()); 1055 Typedef->setReferenced(D->isReferenced()); 1056 1057 return Typedef; 1058 } 1059 1060 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { 1061 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); 1062 if (Typedef) 1063 Owner->addDecl(Typedef); 1064 return Typedef; 1065 } 1066 1067 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { 1068 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); 1069 if (Typedef) 1070 Owner->addDecl(Typedef); 1071 return Typedef; 1072 } 1073 1074 Decl * 1075 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { 1076 // Create a local instantiation scope for this type alias template, which 1077 // will contain the instantiations of the template parameters. 1078 LocalInstantiationScope Scope(SemaRef); 1079 1080 TemplateParameterList *TempParams = D->getTemplateParameters(); 1081 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1082 if (!InstParams) 1083 return nullptr; 1084 1085 TypeAliasDecl *Pattern = D->getTemplatedDecl(); 1086 1087 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; 1088 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { 1089 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1090 if (!Found.empty()) { 1091 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); 1092 } 1093 } 1094 1095 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( 1096 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); 1097 if (!AliasInst) 1098 return nullptr; 1099 1100 TypeAliasTemplateDecl *Inst 1101 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1102 D->getDeclName(), InstParams, AliasInst); 1103 AliasInst->setDescribedAliasTemplate(Inst); 1104 if (PrevAliasTemplate) 1105 Inst->setPreviousDecl(PrevAliasTemplate); 1106 1107 Inst->setAccess(D->getAccess()); 1108 1109 if (!PrevAliasTemplate) 1110 Inst->setInstantiatedFromMemberTemplate(D); 1111 1112 Owner->addDecl(Inst); 1113 1114 return Inst; 1115 } 1116 1117 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { 1118 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1119 D->getIdentifier()); 1120 NewBD->setReferenced(D->isReferenced()); 1121 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); 1122 return NewBD; 1123 } 1124 1125 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { 1126 // Transform the bindings first. 1127 SmallVector<BindingDecl*, 16> NewBindings; 1128 for (auto *OldBD : D->bindings()) 1129 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD))); 1130 ArrayRef<BindingDecl*> NewBindingArray = NewBindings; 1131 1132 auto *NewDD = cast_or_null<DecompositionDecl>( 1133 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); 1134 1135 if (!NewDD || NewDD->isInvalidDecl()) 1136 for (auto *NewBD : NewBindings) 1137 NewBD->setInvalidDecl(); 1138 1139 return NewDD; 1140 } 1141 1142 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { 1143 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); 1144 } 1145 1146 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, 1147 bool InstantiatingVarTemplate, 1148 ArrayRef<BindingDecl*> *Bindings) { 1149 1150 // Do substitution on the type of the declaration 1151 TypeSourceInfo *DI = SemaRef.SubstType( 1152 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), 1153 D->getDeclName(), /*AllowDeducedTST*/true); 1154 if (!DI) 1155 return nullptr; 1156 1157 if (DI->getType()->isFunctionType()) { 1158 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 1159 << D->isStaticDataMember() << DI->getType(); 1160 return nullptr; 1161 } 1162 1163 DeclContext *DC = Owner; 1164 if (D->isLocalExternDecl()) 1165 SemaRef.adjustContextForLocalExternDecl(DC); 1166 1167 // Build the instantiated declaration. 1168 VarDecl *Var; 1169 if (Bindings) 1170 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1171 D->getLocation(), DI->getType(), DI, 1172 D->getStorageClass(), *Bindings); 1173 else 1174 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1175 D->getLocation(), D->getIdentifier(), DI->getType(), 1176 DI, D->getStorageClass()); 1177 1178 // In ARC, infer 'retaining' for variables of retainable type. 1179 if (SemaRef.getLangOpts().ObjCAutoRefCount && 1180 SemaRef.inferObjCARCLifetime(Var)) 1181 Var->setInvalidDecl(); 1182 1183 if (SemaRef.getLangOpts().OpenCL) 1184 SemaRef.deduceOpenCLAddressSpace(Var); 1185 1186 // Substitute the nested name specifier, if any. 1187 if (SubstQualifier(D, Var)) 1188 return nullptr; 1189 1190 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 1191 StartingScope, InstantiatingVarTemplate); 1192 if (D->isNRVOVariable() && !Var->isInvalidDecl()) { 1193 QualType RT; 1194 if (auto *F = dyn_cast<FunctionDecl>(DC)) 1195 RT = F->getReturnType(); 1196 else if (isa<BlockDecl>(DC)) 1197 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType) 1198 ->getReturnType(); 1199 else 1200 llvm_unreachable("Unknown context type"); 1201 1202 // This is the last chance we have of checking copy elision eligibility 1203 // for functions in dependent contexts. The sema actions for building 1204 // the return statement during template instantiation will have no effect 1205 // regarding copy elision, since NRVO propagation runs on the scope exit 1206 // actions, and these are not run on instantiation. 1207 // This might run through some VarDecls which were returned from non-taken 1208 // 'if constexpr' branches, and these will end up being constructed on the 1209 // return slot even if they will never be returned, as a sort of accidental 1210 // 'optimization'. Notably, functions with 'auto' return types won't have it 1211 // deduced by this point. Coupled with the limitation described 1212 // previously, this makes it very hard to support copy elision for these. 1213 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var); 1214 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr; 1215 Var->setNRVOVariable(NRVO); 1216 } 1217 1218 Var->setImplicit(D->isImplicit()); 1219 1220 if (Var->isStaticLocal()) 1221 SemaRef.CheckStaticLocalForDllExport(Var); 1222 1223 if (Var->getTLSKind()) 1224 SemaRef.CheckThreadLocalForLargeAlignment(Var); 1225 1226 return Var; 1227 } 1228 1229 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { 1230 AccessSpecDecl* AD 1231 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, 1232 D->getAccessSpecifierLoc(), D->getColonLoc()); 1233 Owner->addHiddenDecl(AD); 1234 return AD; 1235 } 1236 1237 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { 1238 bool Invalid = false; 1239 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1240 if (DI->getType()->isInstantiationDependentType() || 1241 DI->getType()->isVariablyModifiedType()) { 1242 DI = SemaRef.SubstType(DI, TemplateArgs, 1243 D->getLocation(), D->getDeclName()); 1244 if (!DI) { 1245 DI = D->getTypeSourceInfo(); 1246 Invalid = true; 1247 } else if (DI->getType()->isFunctionType()) { 1248 // C++ [temp.arg.type]p3: 1249 // If a declaration acquires a function type through a type 1250 // dependent on a template-parameter and this causes a 1251 // declaration that does not use the syntactic form of a 1252 // function declarator to have function type, the program is 1253 // ill-formed. 1254 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1255 << DI->getType(); 1256 Invalid = true; 1257 } 1258 } else { 1259 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1260 } 1261 1262 Expr *BitWidth = D->getBitWidth(); 1263 if (Invalid) 1264 BitWidth = nullptr; 1265 else if (BitWidth) { 1266 // The bit-width expression is a constant expression. 1267 EnterExpressionEvaluationContext Unevaluated( 1268 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1269 1270 ExprResult InstantiatedBitWidth 1271 = SemaRef.SubstExpr(BitWidth, TemplateArgs); 1272 if (InstantiatedBitWidth.isInvalid()) { 1273 Invalid = true; 1274 BitWidth = nullptr; 1275 } else 1276 BitWidth = InstantiatedBitWidth.getAs<Expr>(); 1277 } 1278 1279 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), 1280 DI->getType(), DI, 1281 cast<RecordDecl>(Owner), 1282 D->getLocation(), 1283 D->isMutable(), 1284 BitWidth, 1285 D->getInClassInitStyle(), 1286 D->getInnerLocStart(), 1287 D->getAccess(), 1288 nullptr); 1289 if (!Field) { 1290 cast<Decl>(Owner)->setInvalidDecl(); 1291 return nullptr; 1292 } 1293 1294 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); 1295 1296 if (Field->hasAttrs()) 1297 SemaRef.CheckAlignasUnderalignment(Field); 1298 1299 if (Invalid) 1300 Field->setInvalidDecl(); 1301 1302 if (!Field->getDeclName()) { 1303 // Keep track of where this decl came from. 1304 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); 1305 } 1306 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { 1307 if (Parent->isAnonymousStructOrUnion() && 1308 Parent->getRedeclContext()->isFunctionOrMethod()) 1309 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); 1310 } 1311 1312 Field->setImplicit(D->isImplicit()); 1313 Field->setAccess(D->getAccess()); 1314 Owner->addDecl(Field); 1315 1316 return Field; 1317 } 1318 1319 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { 1320 bool Invalid = false; 1321 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1322 1323 if (DI->getType()->isVariablyModifiedType()) { 1324 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) 1325 << D; 1326 Invalid = true; 1327 } else if (DI->getType()->isInstantiationDependentType()) { 1328 DI = SemaRef.SubstType(DI, TemplateArgs, 1329 D->getLocation(), D->getDeclName()); 1330 if (!DI) { 1331 DI = D->getTypeSourceInfo(); 1332 Invalid = true; 1333 } else if (DI->getType()->isFunctionType()) { 1334 // C++ [temp.arg.type]p3: 1335 // If a declaration acquires a function type through a type 1336 // dependent on a template-parameter and this causes a 1337 // declaration that does not use the syntactic form of a 1338 // function declarator to have function type, the program is 1339 // ill-formed. 1340 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1341 << DI->getType(); 1342 Invalid = true; 1343 } 1344 } else { 1345 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1346 } 1347 1348 MSPropertyDecl *Property = MSPropertyDecl::Create( 1349 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), 1350 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId()); 1351 1352 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, 1353 StartingScope); 1354 1355 if (Invalid) 1356 Property->setInvalidDecl(); 1357 1358 Property->setAccess(D->getAccess()); 1359 Owner->addDecl(Property); 1360 1361 return Property; 1362 } 1363 1364 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { 1365 NamedDecl **NamedChain = 1366 new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; 1367 1368 int i = 0; 1369 for (auto *PI : D->chain()) { 1370 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, 1371 TemplateArgs); 1372 if (!Next) 1373 return nullptr; 1374 1375 NamedChain[i++] = Next; 1376 } 1377 1378 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); 1379 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 1380 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, 1381 {NamedChain, D->getChainingSize()}); 1382 1383 for (const auto *Attr : D->attrs()) 1384 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 1385 1386 IndirectField->setImplicit(D->isImplicit()); 1387 IndirectField->setAccess(D->getAccess()); 1388 Owner->addDecl(IndirectField); 1389 return IndirectField; 1390 } 1391 1392 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { 1393 // Handle friend type expressions by simply substituting template 1394 // parameters into the pattern type and checking the result. 1395 if (TypeSourceInfo *Ty = D->getFriendType()) { 1396 TypeSourceInfo *InstTy; 1397 // If this is an unsupported friend, don't bother substituting template 1398 // arguments into it. The actual type referred to won't be used by any 1399 // parts of Clang, and may not be valid for instantiating. Just use the 1400 // same info for the instantiated friend. 1401 if (D->isUnsupportedFriend()) { 1402 InstTy = Ty; 1403 } else { 1404 InstTy = SemaRef.SubstType(Ty, TemplateArgs, 1405 D->getLocation(), DeclarationName()); 1406 } 1407 if (!InstTy) 1408 return nullptr; 1409 1410 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(), 1411 D->getFriendLoc(), InstTy); 1412 if (!FD) 1413 return nullptr; 1414 1415 FD->setAccess(AS_public); 1416 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1417 Owner->addDecl(FD); 1418 return FD; 1419 } 1420 1421 NamedDecl *ND = D->getFriendDecl(); 1422 assert(ND && "friend decl must be a decl or a type!"); 1423 1424 // All of the Visit implementations for the various potential friend 1425 // declarations have to be carefully written to work for friend 1426 // objects, with the most important detail being that the target 1427 // decl should almost certainly not be placed in Owner. 1428 Decl *NewND = Visit(ND); 1429 if (!NewND) return nullptr; 1430 1431 FriendDecl *FD = 1432 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1433 cast<NamedDecl>(NewND), D->getFriendLoc()); 1434 FD->setAccess(AS_public); 1435 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1436 Owner->addDecl(FD); 1437 return FD; 1438 } 1439 1440 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { 1441 Expr *AssertExpr = D->getAssertExpr(); 1442 1443 // The expression in a static assertion is a constant expression. 1444 EnterExpressionEvaluationContext Unevaluated( 1445 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1446 1447 ExprResult InstantiatedAssertExpr 1448 = SemaRef.SubstExpr(AssertExpr, TemplateArgs); 1449 if (InstantiatedAssertExpr.isInvalid()) 1450 return nullptr; 1451 1452 ExprResult InstantiatedMessageExpr = 1453 SemaRef.SubstExpr(D->getMessage(), TemplateArgs); 1454 if (InstantiatedMessageExpr.isInvalid()) 1455 return nullptr; 1456 1457 return SemaRef.BuildStaticAssertDeclaration( 1458 D->getLocation(), InstantiatedAssertExpr.get(), 1459 InstantiatedMessageExpr.get(), D->getRParenLoc(), D->isFailed()); 1460 } 1461 1462 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { 1463 EnumDecl *PrevDecl = nullptr; 1464 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1465 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1466 PatternPrev, 1467 TemplateArgs); 1468 if (!Prev) return nullptr; 1469 PrevDecl = cast<EnumDecl>(Prev); 1470 } 1471 1472 EnumDecl *Enum = 1473 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1474 D->getLocation(), D->getIdentifier(), PrevDecl, 1475 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); 1476 if (D->isFixed()) { 1477 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { 1478 // If we have type source information for the underlying type, it means it 1479 // has been explicitly set by the user. Perform substitution on it before 1480 // moving on. 1481 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1482 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, 1483 DeclarationName()); 1484 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) 1485 Enum->setIntegerType(SemaRef.Context.IntTy); 1486 else 1487 Enum->setIntegerTypeSourceInfo(NewTI); 1488 } else { 1489 assert(!D->getIntegerType()->isDependentType() 1490 && "Dependent type without type source info"); 1491 Enum->setIntegerType(D->getIntegerType()); 1492 } 1493 } 1494 1495 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); 1496 1497 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); 1498 Enum->setAccess(D->getAccess()); 1499 // Forward the mangling number from the template to the instantiated decl. 1500 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); 1501 // See if the old tag was defined along with a declarator. 1502 // If it did, mark the new tag as being associated with that declarator. 1503 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1504 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); 1505 // See if the old tag was defined along with a typedef. 1506 // If it did, mark the new tag as being associated with that typedef. 1507 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1508 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); 1509 if (SubstQualifier(D, Enum)) return nullptr; 1510 Owner->addDecl(Enum); 1511 1512 EnumDecl *Def = D->getDefinition(); 1513 if (Def && Def != D) { 1514 // If this is an out-of-line definition of an enum member template, check 1515 // that the underlying types match in the instantiation of both 1516 // declarations. 1517 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { 1518 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1519 QualType DefnUnderlying = 1520 SemaRef.SubstType(TI->getType(), TemplateArgs, 1521 UnderlyingLoc, DeclarationName()); 1522 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), 1523 DefnUnderlying, /*IsFixed=*/true, Enum); 1524 } 1525 } 1526 1527 // C++11 [temp.inst]p1: The implicit instantiation of a class template 1528 // specialization causes the implicit instantiation of the declarations, but 1529 // not the definitions of scoped member enumerations. 1530 // 1531 // DR1484 clarifies that enumeration definitions inside of a template 1532 // declaration aren't considered entities that can be separately instantiated 1533 // from the rest of the entity they are declared inside of. 1534 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { 1535 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); 1536 InstantiateEnumDefinition(Enum, Def); 1537 } 1538 1539 return Enum; 1540 } 1541 1542 void TemplateDeclInstantiator::InstantiateEnumDefinition( 1543 EnumDecl *Enum, EnumDecl *Pattern) { 1544 Enum->startDefinition(); 1545 1546 // Update the location to refer to the definition. 1547 Enum->setLocation(Pattern->getLocation()); 1548 1549 SmallVector<Decl*, 4> Enumerators; 1550 1551 EnumConstantDecl *LastEnumConst = nullptr; 1552 for (auto *EC : Pattern->enumerators()) { 1553 // The specified value for the enumerator. 1554 ExprResult Value((Expr *)nullptr); 1555 if (Expr *UninstValue = EC->getInitExpr()) { 1556 // The enumerator's value expression is a constant expression. 1557 EnterExpressionEvaluationContext Unevaluated( 1558 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1559 1560 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); 1561 } 1562 1563 // Drop the initial value and continue. 1564 bool isInvalid = false; 1565 if (Value.isInvalid()) { 1566 Value = nullptr; 1567 isInvalid = true; 1568 } 1569 1570 EnumConstantDecl *EnumConst 1571 = SemaRef.CheckEnumConstant(Enum, LastEnumConst, 1572 EC->getLocation(), EC->getIdentifier(), 1573 Value.get()); 1574 1575 if (isInvalid) { 1576 if (EnumConst) 1577 EnumConst->setInvalidDecl(); 1578 Enum->setInvalidDecl(); 1579 } 1580 1581 if (EnumConst) { 1582 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); 1583 1584 EnumConst->setAccess(Enum->getAccess()); 1585 Enum->addDecl(EnumConst); 1586 Enumerators.push_back(EnumConst); 1587 LastEnumConst = EnumConst; 1588 1589 if (Pattern->getDeclContext()->isFunctionOrMethod() && 1590 !Enum->isScoped()) { 1591 // If the enumeration is within a function or method, record the enum 1592 // constant as a local. 1593 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); 1594 } 1595 } 1596 } 1597 1598 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, 1599 Enumerators, nullptr, ParsedAttributesView()); 1600 } 1601 1602 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { 1603 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); 1604 } 1605 1606 Decl * 1607 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { 1608 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); 1609 } 1610 1611 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { 1612 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1613 1614 // Create a local instantiation scope for this class template, which 1615 // will contain the instantiations of the template parameters. 1616 LocalInstantiationScope Scope(SemaRef); 1617 TemplateParameterList *TempParams = D->getTemplateParameters(); 1618 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1619 if (!InstParams) 1620 return nullptr; 1621 1622 CXXRecordDecl *Pattern = D->getTemplatedDecl(); 1623 1624 // Instantiate the qualifier. We have to do this first in case 1625 // we're a friend declaration, because if we are then we need to put 1626 // the new declaration in the appropriate context. 1627 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); 1628 if (QualifierLoc) { 1629 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1630 TemplateArgs); 1631 if (!QualifierLoc) 1632 return nullptr; 1633 } 1634 1635 CXXRecordDecl *PrevDecl = nullptr; 1636 ClassTemplateDecl *PrevClassTemplate = nullptr; 1637 1638 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { 1639 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1640 if (!Found.empty()) { 1641 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); 1642 if (PrevClassTemplate) 1643 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1644 } 1645 } 1646 1647 // If this isn't a friend, then it's a member template, in which 1648 // case we just want to build the instantiation in the 1649 // specialization. If it is a friend, we want to build it in 1650 // the appropriate context. 1651 DeclContext *DC = Owner; 1652 if (isFriend) { 1653 if (QualifierLoc) { 1654 CXXScopeSpec SS; 1655 SS.Adopt(QualifierLoc); 1656 DC = SemaRef.computeDeclContext(SS); 1657 if (!DC) return nullptr; 1658 } else { 1659 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), 1660 Pattern->getDeclContext(), 1661 TemplateArgs); 1662 } 1663 1664 // Look for a previous declaration of the template in the owning 1665 // context. 1666 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), 1667 Sema::LookupOrdinaryName, 1668 SemaRef.forRedeclarationInCurContext()); 1669 SemaRef.LookupQualifiedName(R, DC); 1670 1671 if (R.isSingleResult()) { 1672 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); 1673 if (PrevClassTemplate) 1674 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1675 } 1676 1677 if (!PrevClassTemplate && QualifierLoc) { 1678 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) 1679 << llvm::to_underlying(D->getTemplatedDecl()->getTagKind()) 1680 << Pattern->getDeclName() << DC << QualifierLoc.getSourceRange(); 1681 return nullptr; 1682 } 1683 } 1684 1685 CXXRecordDecl *RecordInst = CXXRecordDecl::Create( 1686 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(), 1687 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, 1688 /*DelayTypeCreation=*/true); 1689 if (QualifierLoc) 1690 RecordInst->setQualifierInfo(QualifierLoc); 1691 1692 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs, 1693 StartingScope); 1694 1695 ClassTemplateDecl *Inst 1696 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), 1697 D->getIdentifier(), InstParams, RecordInst); 1698 RecordInst->setDescribedClassTemplate(Inst); 1699 1700 if (isFriend) { 1701 assert(!Owner->isDependentContext()); 1702 Inst->setLexicalDeclContext(Owner); 1703 RecordInst->setLexicalDeclContext(Owner); 1704 1705 if (PrevClassTemplate) { 1706 Inst->setCommonPtr(PrevClassTemplate->getCommonPtr()); 1707 RecordInst->setTypeForDecl( 1708 PrevClassTemplate->getTemplatedDecl()->getTypeForDecl()); 1709 const ClassTemplateDecl *MostRecentPrevCT = 1710 PrevClassTemplate->getMostRecentDecl(); 1711 TemplateParameterList *PrevParams = 1712 MostRecentPrevCT->getTemplateParameters(); 1713 1714 // Make sure the parameter lists match. 1715 if (!SemaRef.TemplateParameterListsAreEqual( 1716 RecordInst, InstParams, MostRecentPrevCT->getTemplatedDecl(), 1717 PrevParams, true, Sema::TPL_TemplateMatch)) 1718 return nullptr; 1719 1720 // Do some additional validation, then merge default arguments 1721 // from the existing declarations. 1722 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams, 1723 Sema::TPC_ClassTemplate)) 1724 return nullptr; 1725 1726 Inst->setAccess(PrevClassTemplate->getAccess()); 1727 } else { 1728 Inst->setAccess(D->getAccess()); 1729 } 1730 1731 Inst->setObjectOfFriendDecl(); 1732 // TODO: do we want to track the instantiation progeny of this 1733 // friend target decl? 1734 } else { 1735 Inst->setAccess(D->getAccess()); 1736 if (!PrevClassTemplate) 1737 Inst->setInstantiatedFromMemberTemplate(D); 1738 } 1739 1740 Inst->setPreviousDecl(PrevClassTemplate); 1741 1742 // Trigger creation of the type for the instantiation. 1743 SemaRef.Context.getInjectedClassNameType( 1744 RecordInst, Inst->getInjectedClassNameSpecialization()); 1745 1746 // Finish handling of friends. 1747 if (isFriend) { 1748 DC->makeDeclVisibleInContext(Inst); 1749 return Inst; 1750 } 1751 1752 if (D->isOutOfLine()) { 1753 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1754 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1755 } 1756 1757 Owner->addDecl(Inst); 1758 1759 if (!PrevClassTemplate) { 1760 // Queue up any out-of-line partial specializations of this member 1761 // class template; the client will force their instantiation once 1762 // the enclosing class has been instantiated. 1763 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1764 D->getPartialSpecializations(PartialSpecs); 1765 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1766 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1767 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); 1768 } 1769 1770 return Inst; 1771 } 1772 1773 Decl * 1774 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( 1775 ClassTemplatePartialSpecializationDecl *D) { 1776 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 1777 1778 // Lookup the already-instantiated declaration in the instantiation 1779 // of the class template and return that. 1780 DeclContext::lookup_result Found 1781 = Owner->lookup(ClassTemplate->getDeclName()); 1782 if (Found.empty()) 1783 return nullptr; 1784 1785 ClassTemplateDecl *InstClassTemplate 1786 = dyn_cast<ClassTemplateDecl>(Found.front()); 1787 if (!InstClassTemplate) 1788 return nullptr; 1789 1790 if (ClassTemplatePartialSpecializationDecl *Result 1791 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) 1792 return Result; 1793 1794 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); 1795 } 1796 1797 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { 1798 assert(D->getTemplatedDecl()->isStaticDataMember() && 1799 "Only static data member templates are allowed."); 1800 1801 // Create a local instantiation scope for this variable template, which 1802 // will contain the instantiations of the template parameters. 1803 LocalInstantiationScope Scope(SemaRef); 1804 TemplateParameterList *TempParams = D->getTemplateParameters(); 1805 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1806 if (!InstParams) 1807 return nullptr; 1808 1809 VarDecl *Pattern = D->getTemplatedDecl(); 1810 VarTemplateDecl *PrevVarTemplate = nullptr; 1811 1812 if (getPreviousDeclForInstantiation(Pattern)) { 1813 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1814 if (!Found.empty()) 1815 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1816 } 1817 1818 VarDecl *VarInst = 1819 cast_or_null<VarDecl>(VisitVarDecl(Pattern, 1820 /*InstantiatingVarTemplate=*/true)); 1821 if (!VarInst) return nullptr; 1822 1823 DeclContext *DC = Owner; 1824 1825 VarTemplateDecl *Inst = VarTemplateDecl::Create( 1826 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, 1827 VarInst); 1828 VarInst->setDescribedVarTemplate(Inst); 1829 Inst->setPreviousDecl(PrevVarTemplate); 1830 1831 Inst->setAccess(D->getAccess()); 1832 if (!PrevVarTemplate) 1833 Inst->setInstantiatedFromMemberTemplate(D); 1834 1835 if (D->isOutOfLine()) { 1836 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1837 VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1838 } 1839 1840 Owner->addDecl(Inst); 1841 1842 if (!PrevVarTemplate) { 1843 // Queue up any out-of-line partial specializations of this member 1844 // variable template; the client will force their instantiation once 1845 // the enclosing class has been instantiated. 1846 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1847 D->getPartialSpecializations(PartialSpecs); 1848 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1849 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1850 OutOfLineVarPartialSpecs.push_back( 1851 std::make_pair(Inst, PartialSpecs[I])); 1852 } 1853 1854 return Inst; 1855 } 1856 1857 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( 1858 VarTemplatePartialSpecializationDecl *D) { 1859 assert(D->isStaticDataMember() && 1860 "Only static data member templates are allowed."); 1861 1862 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 1863 1864 // Lookup the already-instantiated declaration and return that. 1865 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); 1866 assert(!Found.empty() && "Instantiation found nothing?"); 1867 1868 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1869 assert(InstVarTemplate && "Instantiation did not find a variable template?"); 1870 1871 if (VarTemplatePartialSpecializationDecl *Result = 1872 InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) 1873 return Result; 1874 1875 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); 1876 } 1877 1878 Decl * 1879 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { 1880 // Create a local instantiation scope for this function template, which 1881 // will contain the instantiations of the template parameters and then get 1882 // merged with the local instantiation scope for the function template 1883 // itself. 1884 LocalInstantiationScope Scope(SemaRef); 1885 Sema::ConstraintEvalRAII<TemplateDeclInstantiator> RAII(*this); 1886 1887 TemplateParameterList *TempParams = D->getTemplateParameters(); 1888 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1889 if (!InstParams) 1890 return nullptr; 1891 1892 FunctionDecl *Instantiated = nullptr; 1893 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) 1894 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, 1895 InstParams)); 1896 else 1897 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( 1898 D->getTemplatedDecl(), 1899 InstParams)); 1900 1901 if (!Instantiated) 1902 return nullptr; 1903 1904 // Link the instantiated function template declaration to the function 1905 // template from which it was instantiated. 1906 FunctionTemplateDecl *InstTemplate 1907 = Instantiated->getDescribedFunctionTemplate(); 1908 InstTemplate->setAccess(D->getAccess()); 1909 assert(InstTemplate && 1910 "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); 1911 1912 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); 1913 1914 // Link the instantiation back to the pattern *unless* this is a 1915 // non-definition friend declaration. 1916 if (!InstTemplate->getInstantiatedFromMemberTemplate() && 1917 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) 1918 InstTemplate->setInstantiatedFromMemberTemplate(D); 1919 1920 // Make declarations visible in the appropriate context. 1921 if (!isFriend) { 1922 Owner->addDecl(InstTemplate); 1923 } else if (InstTemplate->getDeclContext()->isRecord() && 1924 !getPreviousDeclForInstantiation(D)) { 1925 SemaRef.CheckFriendAccess(InstTemplate); 1926 } 1927 1928 return InstTemplate; 1929 } 1930 1931 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { 1932 CXXRecordDecl *PrevDecl = nullptr; 1933 if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1934 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1935 PatternPrev, 1936 TemplateArgs); 1937 if (!Prev) return nullptr; 1938 PrevDecl = cast<CXXRecordDecl>(Prev); 1939 } 1940 1941 CXXRecordDecl *Record = nullptr; 1942 bool IsInjectedClassName = D->isInjectedClassName(); 1943 if (D->isLambda()) 1944 Record = CXXRecordDecl::CreateLambda( 1945 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(), 1946 D->getLambdaDependencyKind(), D->isGenericLambda(), 1947 D->getLambdaCaptureDefault()); 1948 else 1949 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, 1950 D->getBeginLoc(), D->getLocation(), 1951 D->getIdentifier(), PrevDecl, 1952 /*DelayTypeCreation=*/IsInjectedClassName); 1953 // Link the type of the injected-class-name to that of the outer class. 1954 if (IsInjectedClassName) 1955 (void)SemaRef.Context.getTypeDeclType(Record, cast<CXXRecordDecl>(Owner)); 1956 1957 // Substitute the nested name specifier, if any. 1958 if (SubstQualifier(D, Record)) 1959 return nullptr; 1960 1961 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs, 1962 StartingScope); 1963 1964 Record->setImplicit(D->isImplicit()); 1965 // FIXME: Check against AS_none is an ugly hack to work around the issue that 1966 // the tag decls introduced by friend class declarations don't have an access 1967 // specifier. Remove once this area of the code gets sorted out. 1968 if (D->getAccess() != AS_none) 1969 Record->setAccess(D->getAccess()); 1970 if (!IsInjectedClassName) 1971 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 1972 1973 // If the original function was part of a friend declaration, 1974 // inherit its namespace state. 1975 if (D->getFriendObjectKind()) 1976 Record->setObjectOfFriendDecl(); 1977 1978 // Make sure that anonymous structs and unions are recorded. 1979 if (D->isAnonymousStructOrUnion()) 1980 Record->setAnonymousStructOrUnion(true); 1981 1982 if (D->isLocalClass()) 1983 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); 1984 1985 // Forward the mangling number from the template to the instantiated decl. 1986 SemaRef.Context.setManglingNumber(Record, 1987 SemaRef.Context.getManglingNumber(D)); 1988 1989 // See if the old tag was defined along with a declarator. 1990 // If it did, mark the new tag as being associated with that declarator. 1991 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1992 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); 1993 1994 // See if the old tag was defined along with a typedef. 1995 // If it did, mark the new tag as being associated with that typedef. 1996 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1997 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); 1998 1999 Owner->addDecl(Record); 2000 2001 // DR1484 clarifies that the members of a local class are instantiated as part 2002 // of the instantiation of their enclosing entity. 2003 if (D->isCompleteDefinition() && D->isLocalClass()) { 2004 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); 2005 2006 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, 2007 TSK_ImplicitInstantiation, 2008 /*Complain=*/true); 2009 2010 // For nested local classes, we will instantiate the members when we 2011 // reach the end of the outermost (non-nested) local class. 2012 if (!D->isCXXClassMember()) 2013 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, 2014 TSK_ImplicitInstantiation); 2015 2016 // This class may have local implicit instantiations that need to be 2017 // performed within this scope. 2018 LocalInstantiations.perform(); 2019 } 2020 2021 SemaRef.DiagnoseUnusedNestedTypedefs(Record); 2022 2023 if (IsInjectedClassName) 2024 assert(Record->isInjectedClassName() && "Broken injected-class-name"); 2025 2026 return Record; 2027 } 2028 2029 /// Adjust the given function type for an instantiation of the 2030 /// given declaration, to cope with modifications to the function's type that 2031 /// aren't reflected in the type-source information. 2032 /// 2033 /// \param D The declaration we're instantiating. 2034 /// \param TInfo The already-instantiated type. 2035 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, 2036 FunctionDecl *D, 2037 TypeSourceInfo *TInfo) { 2038 const FunctionProtoType *OrigFunc 2039 = D->getType()->castAs<FunctionProtoType>(); 2040 const FunctionProtoType *NewFunc 2041 = TInfo->getType()->castAs<FunctionProtoType>(); 2042 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) 2043 return TInfo->getType(); 2044 2045 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); 2046 NewEPI.ExtInfo = OrigFunc->getExtInfo(); 2047 return Context.getFunctionType(NewFunc->getReturnType(), 2048 NewFunc->getParamTypes(), NewEPI); 2049 } 2050 2051 /// Normal class members are of more specific types and therefore 2052 /// don't make it here. This function serves three purposes: 2053 /// 1) instantiating function templates 2054 /// 2) substituting friend and local function declarations 2055 /// 3) substituting deduction guide declarations for nested class templates 2056 Decl *TemplateDeclInstantiator::VisitFunctionDecl( 2057 FunctionDecl *D, TemplateParameterList *TemplateParams, 2058 RewriteKind FunctionRewriteKind) { 2059 // Check whether there is already a function template specialization for 2060 // this declaration. 2061 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2062 if (FunctionTemplate && !TemplateParams) { 2063 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2064 2065 void *InsertPos = nullptr; 2066 FunctionDecl *SpecFunc 2067 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2068 2069 // If we already have a function template specialization, return it. 2070 if (SpecFunc) 2071 return SpecFunc; 2072 } 2073 2074 bool isFriend; 2075 if (FunctionTemplate) 2076 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2077 else 2078 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2079 2080 bool MergeWithParentScope = (TemplateParams != nullptr) || 2081 Owner->isFunctionOrMethod() || 2082 !(isa<Decl>(Owner) && 2083 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2084 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2085 2086 ExplicitSpecifier InstantiatedExplicitSpecifier; 2087 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 2088 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier( 2089 TemplateArgs, DGuide->getExplicitSpecifier()); 2090 if (InstantiatedExplicitSpecifier.isInvalid()) 2091 return nullptr; 2092 } 2093 2094 SmallVector<ParmVarDecl *, 4> Params; 2095 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2096 if (!TInfo) 2097 return nullptr; 2098 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2099 2100 if (TemplateParams && TemplateParams->size()) { 2101 auto *LastParam = 2102 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back()); 2103 if (LastParam && LastParam->isImplicit() && 2104 LastParam->hasTypeConstraint()) { 2105 // In abbreviated templates, the type-constraints of invented template 2106 // type parameters are instantiated with the function type, invalidating 2107 // the TemplateParameterList which relied on the template type parameter 2108 // not having a type constraint. Recreate the TemplateParameterList with 2109 // the updated parameter list. 2110 TemplateParams = TemplateParameterList::Create( 2111 SemaRef.Context, TemplateParams->getTemplateLoc(), 2112 TemplateParams->getLAngleLoc(), TemplateParams->asArray(), 2113 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); 2114 } 2115 } 2116 2117 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2118 if (QualifierLoc) { 2119 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2120 TemplateArgs); 2121 if (!QualifierLoc) 2122 return nullptr; 2123 } 2124 2125 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2126 2127 // If we're instantiating a local function declaration, put the result 2128 // in the enclosing namespace; otherwise we need to find the instantiated 2129 // context. 2130 DeclContext *DC; 2131 if (D->isLocalExternDecl()) { 2132 DC = Owner; 2133 SemaRef.adjustContextForLocalExternDecl(DC); 2134 } else if (isFriend && QualifierLoc) { 2135 CXXScopeSpec SS; 2136 SS.Adopt(QualifierLoc); 2137 DC = SemaRef.computeDeclContext(SS); 2138 if (!DC) return nullptr; 2139 } else { 2140 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), 2141 TemplateArgs); 2142 } 2143 2144 DeclarationNameInfo NameInfo 2145 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2146 2147 if (FunctionRewriteKind != RewriteKind::None) 2148 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2149 2150 FunctionDecl *Function; 2151 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 2152 Function = CXXDeductionGuideDecl::Create( 2153 SemaRef.Context, DC, D->getInnerLocStart(), 2154 InstantiatedExplicitSpecifier, NameInfo, T, TInfo, 2155 D->getSourceRange().getEnd(), DGuide->getCorrespondingConstructor(), 2156 DGuide->getDeductionCandidateKind()); 2157 Function->setAccess(D->getAccess()); 2158 } else { 2159 Function = FunctionDecl::Create( 2160 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo, 2161 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(), 2162 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(), 2163 TrailingRequiresClause); 2164 Function->setFriendConstraintRefersToEnclosingTemplate( 2165 D->FriendConstraintRefersToEnclosingTemplate()); 2166 Function->setRangeEnd(D->getSourceRange().getEnd()); 2167 } 2168 2169 if (D->isInlined()) 2170 Function->setImplicitlyInline(); 2171 2172 if (QualifierLoc) 2173 Function->setQualifierInfo(QualifierLoc); 2174 2175 if (D->isLocalExternDecl()) 2176 Function->setLocalExternDecl(); 2177 2178 DeclContext *LexicalDC = Owner; 2179 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { 2180 assert(D->getDeclContext()->isFileContext()); 2181 LexicalDC = D->getDeclContext(); 2182 } 2183 else if (D->isLocalExternDecl()) { 2184 LexicalDC = SemaRef.CurContext; 2185 } 2186 2187 Function->setLexicalDeclContext(LexicalDC); 2188 2189 // Attach the parameters 2190 for (unsigned P = 0; P < Params.size(); ++P) 2191 if (Params[P]) 2192 Params[P]->setOwningFunction(Function); 2193 Function->setParams(Params); 2194 2195 if (TrailingRequiresClause) 2196 Function->setTrailingRequiresClause(TrailingRequiresClause); 2197 2198 if (TemplateParams) { 2199 // Our resulting instantiation is actually a function template, since we 2200 // are substituting only the outer template parameters. For example, given 2201 // 2202 // template<typename T> 2203 // struct X { 2204 // template<typename U> friend void f(T, U); 2205 // }; 2206 // 2207 // X<int> x; 2208 // 2209 // We are instantiating the friend function template "f" within X<int>, 2210 // which means substituting int for T, but leaving "f" as a friend function 2211 // template. 2212 // Build the function template itself. 2213 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, 2214 Function->getLocation(), 2215 Function->getDeclName(), 2216 TemplateParams, Function); 2217 Function->setDescribedFunctionTemplate(FunctionTemplate); 2218 2219 FunctionTemplate->setLexicalDeclContext(LexicalDC); 2220 2221 if (isFriend && D->isThisDeclarationADefinition()) { 2222 FunctionTemplate->setInstantiatedFromMemberTemplate( 2223 D->getDescribedFunctionTemplate()); 2224 } 2225 } else if (FunctionTemplate) { 2226 // Record this function template specialization. 2227 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2228 Function->setFunctionTemplateSpecialization(FunctionTemplate, 2229 TemplateArgumentList::CreateCopy(SemaRef.Context, 2230 Innermost), 2231 /*InsertPos=*/nullptr); 2232 } else if (isFriend && D->isThisDeclarationADefinition()) { 2233 // Do not connect the friend to the template unless it's actually a 2234 // definition. We don't want non-template functions to be marked as being 2235 // template instantiations. 2236 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2237 } else if (!isFriend) { 2238 // If this is not a function template, and this is not a friend (that is, 2239 // this is a locally declared function), save the instantiation relationship 2240 // for the purposes of constraint instantiation. 2241 Function->setInstantiatedFromDecl(D); 2242 } 2243 2244 if (isFriend) { 2245 Function->setObjectOfFriendDecl(); 2246 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate()) 2247 FT->setObjectOfFriendDecl(); 2248 } 2249 2250 if (InitFunctionInstantiation(Function, D)) 2251 Function->setInvalidDecl(); 2252 2253 bool IsExplicitSpecialization = false; 2254 2255 LookupResult Previous( 2256 SemaRef, Function->getDeclName(), SourceLocation(), 2257 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 2258 : Sema::LookupOrdinaryName, 2259 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration 2260 : SemaRef.forRedeclarationInCurContext()); 2261 2262 if (DependentFunctionTemplateSpecializationInfo *DFTSI = 2263 D->getDependentSpecializationInfo()) { 2264 assert(isFriend && "dependent specialization info on " 2265 "non-member non-friend function?"); 2266 2267 // Instantiate the explicit template arguments. 2268 TemplateArgumentListInfo ExplicitArgs; 2269 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) { 2270 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc()); 2271 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc()); 2272 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2273 ExplicitArgs)) 2274 return nullptr; 2275 } 2276 2277 // Map the candidates for the primary template to their instantiations. 2278 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) { 2279 if (NamedDecl *ND = 2280 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs)) 2281 Previous.addDecl(ND); 2282 else 2283 return nullptr; 2284 } 2285 2286 if (SemaRef.CheckFunctionTemplateSpecialization( 2287 Function, 2288 DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr, 2289 Previous)) 2290 Function->setInvalidDecl(); 2291 2292 IsExplicitSpecialization = true; 2293 } else if (const ASTTemplateArgumentListInfo *ArgsWritten = 2294 D->getTemplateSpecializationArgsAsWritten()) { 2295 // The name of this function was written as a template-id. 2296 SemaRef.LookupQualifiedName(Previous, DC); 2297 2298 // Instantiate the explicit template arguments. 2299 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(), 2300 ArgsWritten->getRAngleLoc()); 2301 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2302 ExplicitArgs)) 2303 return nullptr; 2304 2305 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 2306 &ExplicitArgs, 2307 Previous)) 2308 Function->setInvalidDecl(); 2309 2310 IsExplicitSpecialization = true; 2311 } else if (TemplateParams || !FunctionTemplate) { 2312 // Look only into the namespace where the friend would be declared to 2313 // find a previous declaration. This is the innermost enclosing namespace, 2314 // as described in ActOnFriendFunctionDecl. 2315 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext()); 2316 2317 // In C++, the previous declaration we find might be a tag type 2318 // (class or enum). In this case, the new declaration will hide the 2319 // tag type. Note that this does not apply if we're declaring a 2320 // typedef (C++ [dcl.typedef]p4). 2321 if (Previous.isSingleTagDecl()) 2322 Previous.clear(); 2323 2324 // Filter out previous declarations that don't match the scope. The only 2325 // effect this has is to remove declarations found in inline namespaces 2326 // for friend declarations with unqualified names. 2327 if (isFriend && !QualifierLoc) { 2328 SemaRef.FilterLookupForScope(Previous, DC, /*Scope=*/ nullptr, 2329 /*ConsiderLinkage=*/ true, 2330 QualifierLoc.hasQualifier()); 2331 } 2332 } 2333 2334 // Per [temp.inst], default arguments in function declarations at local scope 2335 // are instantiated along with the enclosing declaration. For example: 2336 // 2337 // template<typename T> 2338 // void ft() { 2339 // void f(int = []{ return T::value; }()); 2340 // } 2341 // template void ft<int>(); // error: type 'int' cannot be used prior 2342 // to '::' because it has no members 2343 // 2344 // The error is issued during instantiation of ft<int>() because substitution 2345 // into the default argument fails; the default argument is instantiated even 2346 // though it is never used. 2347 if (Function->isLocalExternDecl()) { 2348 for (ParmVarDecl *PVD : Function->parameters()) { 2349 if (!PVD->hasDefaultArg()) 2350 continue; 2351 if (SemaRef.SubstDefaultArgument(D->getInnerLocStart(), PVD, TemplateArgs)) { 2352 // If substitution fails, the default argument is set to a 2353 // RecoveryExpr that wraps the uninstantiated default argument so 2354 // that downstream diagnostics are omitted. 2355 Expr *UninstExpr = PVD->getUninstantiatedDefaultArg(); 2356 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr( 2357 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(), 2358 { UninstExpr }, UninstExpr->getType()); 2359 if (ErrorResult.isUsable()) 2360 PVD->setDefaultArg(ErrorResult.get()); 2361 } 2362 } 2363 } 2364 2365 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, 2366 IsExplicitSpecialization, 2367 Function->isThisDeclarationADefinition()); 2368 2369 // Check the template parameter list against the previous declaration. The 2370 // goal here is to pick up default arguments added since the friend was 2371 // declared; we know the template parameter lists match, since otherwise 2372 // we would not have picked this template as the previous declaration. 2373 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) { 2374 SemaRef.CheckTemplateParameterList( 2375 TemplateParams, 2376 FunctionTemplate->getPreviousDecl()->getTemplateParameters(), 2377 Function->isThisDeclarationADefinition() 2378 ? Sema::TPC_FriendFunctionTemplateDefinition 2379 : Sema::TPC_FriendFunctionTemplate); 2380 } 2381 2382 // If we're introducing a friend definition after the first use, trigger 2383 // instantiation. 2384 // FIXME: If this is a friend function template definition, we should check 2385 // to see if any specializations have been used. 2386 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) { 2387 if (MemberSpecializationInfo *MSInfo = 2388 Function->getMemberSpecializationInfo()) { 2389 if (MSInfo->getPointOfInstantiation().isInvalid()) { 2390 SourceLocation Loc = D->getLocation(); // FIXME 2391 MSInfo->setPointOfInstantiation(Loc); 2392 SemaRef.PendingLocalImplicitInstantiations.push_back( 2393 std::make_pair(Function, Loc)); 2394 } 2395 } 2396 } 2397 2398 if (D->isExplicitlyDefaulted()) { 2399 if (SubstDefaultedFunction(Function, D)) 2400 return nullptr; 2401 } 2402 if (D->isDeleted()) 2403 SemaRef.SetDeclDeleted(Function, D->getLocation()); 2404 2405 NamedDecl *PrincipalDecl = 2406 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function); 2407 2408 // If this declaration lives in a different context from its lexical context, 2409 // add it to the corresponding lookup table. 2410 if (isFriend || 2411 (Function->isLocalExternDecl() && !Function->getPreviousDecl())) 2412 DC->makeDeclVisibleInContext(PrincipalDecl); 2413 2414 if (Function->isOverloadedOperator() && !DC->isRecord() && 2415 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 2416 PrincipalDecl->setNonMemberOperator(); 2417 2418 return Function; 2419 } 2420 2421 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl( 2422 CXXMethodDecl *D, TemplateParameterList *TemplateParams, 2423 RewriteKind FunctionRewriteKind) { 2424 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2425 if (FunctionTemplate && !TemplateParams) { 2426 // We are creating a function template specialization from a function 2427 // template. Check whether there is already a function template 2428 // specialization for this particular set of template arguments. 2429 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2430 2431 void *InsertPos = nullptr; 2432 FunctionDecl *SpecFunc 2433 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2434 2435 // If we already have a function template specialization, return it. 2436 if (SpecFunc) 2437 return SpecFunc; 2438 } 2439 2440 bool isFriend; 2441 if (FunctionTemplate) 2442 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2443 else 2444 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2445 2446 bool MergeWithParentScope = (TemplateParams != nullptr) || 2447 !(isa<Decl>(Owner) && 2448 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2449 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2450 2451 Sema::LambdaScopeForCallOperatorInstantiationRAII LambdaScope( 2452 SemaRef, const_cast<CXXMethodDecl *>(D), TemplateArgs, Scope); 2453 2454 // Instantiate enclosing template arguments for friends. 2455 SmallVector<TemplateParameterList *, 4> TempParamLists; 2456 unsigned NumTempParamLists = 0; 2457 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { 2458 TempParamLists.resize(NumTempParamLists); 2459 for (unsigned I = 0; I != NumTempParamLists; ++I) { 2460 TemplateParameterList *TempParams = D->getTemplateParameterList(I); 2461 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2462 if (!InstParams) 2463 return nullptr; 2464 TempParamLists[I] = InstParams; 2465 } 2466 } 2467 2468 auto InstantiatedExplicitSpecifier = ExplicitSpecifier::getFromDecl(D); 2469 // deduction guides need this 2470 const bool CouldInstantiate = 2471 InstantiatedExplicitSpecifier.getExpr() == nullptr || 2472 !InstantiatedExplicitSpecifier.getExpr()->isValueDependent(); 2473 2474 // Delay the instantiation of the explicit-specifier until after the 2475 // constraints are checked during template argument deduction. 2476 if (CouldInstantiate || 2477 SemaRef.CodeSynthesisContexts.back().Kind != 2478 Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution) { 2479 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier( 2480 TemplateArgs, InstantiatedExplicitSpecifier); 2481 2482 if (InstantiatedExplicitSpecifier.isInvalid()) 2483 return nullptr; 2484 } else { 2485 InstantiatedExplicitSpecifier.setKind(ExplicitSpecKind::Unresolved); 2486 } 2487 2488 // Implicit destructors/constructors created for local classes in 2489 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI. 2490 // Unfortunately there isn't enough context in those functions to 2491 // conditionally populate the TSI without breaking non-template related use 2492 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get 2493 // a proper transformation. 2494 if (cast<CXXRecordDecl>(D->getParent())->isLambda() && 2495 !D->getTypeSourceInfo() && 2496 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) { 2497 TypeSourceInfo *TSI = 2498 SemaRef.Context.getTrivialTypeSourceInfo(D->getType()); 2499 D->setTypeSourceInfo(TSI); 2500 } 2501 2502 SmallVector<ParmVarDecl *, 4> Params; 2503 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2504 if (!TInfo) 2505 return nullptr; 2506 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2507 2508 if (TemplateParams && TemplateParams->size()) { 2509 auto *LastParam = 2510 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back()); 2511 if (LastParam && LastParam->isImplicit() && 2512 LastParam->hasTypeConstraint()) { 2513 // In abbreviated templates, the type-constraints of invented template 2514 // type parameters are instantiated with the function type, invalidating 2515 // the TemplateParameterList which relied on the template type parameter 2516 // not having a type constraint. Recreate the TemplateParameterList with 2517 // the updated parameter list. 2518 TemplateParams = TemplateParameterList::Create( 2519 SemaRef.Context, TemplateParams->getTemplateLoc(), 2520 TemplateParams->getLAngleLoc(), TemplateParams->asArray(), 2521 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); 2522 } 2523 } 2524 2525 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2526 if (QualifierLoc) { 2527 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2528 TemplateArgs); 2529 if (!QualifierLoc) 2530 return nullptr; 2531 } 2532 2533 DeclContext *DC = Owner; 2534 if (isFriend) { 2535 if (QualifierLoc) { 2536 CXXScopeSpec SS; 2537 SS.Adopt(QualifierLoc); 2538 DC = SemaRef.computeDeclContext(SS); 2539 2540 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) 2541 return nullptr; 2542 } else { 2543 DC = SemaRef.FindInstantiatedContext(D->getLocation(), 2544 D->getDeclContext(), 2545 TemplateArgs); 2546 } 2547 if (!DC) return nullptr; 2548 } 2549 2550 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 2551 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2552 2553 DeclarationNameInfo NameInfo 2554 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2555 2556 if (FunctionRewriteKind != RewriteKind::None) 2557 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2558 2559 // Build the instantiated method declaration. 2560 CXXMethodDecl *Method = nullptr; 2561 2562 SourceLocation StartLoc = D->getInnerLocStart(); 2563 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 2564 Method = CXXConstructorDecl::Create( 2565 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2566 InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(), 2567 Constructor->isInlineSpecified(), false, 2568 Constructor->getConstexprKind(), InheritedConstructor(), 2569 TrailingRequiresClause); 2570 Method->setRangeEnd(Constructor->getEndLoc()); 2571 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { 2572 Method = CXXDestructorDecl::Create( 2573 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2574 Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false, 2575 Destructor->getConstexprKind(), TrailingRequiresClause); 2576 Method->setIneligibleOrNotSelected(true); 2577 Method->setRangeEnd(Destructor->getEndLoc()); 2578 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName( 2579 SemaRef.Context.getCanonicalType( 2580 SemaRef.Context.getTypeDeclType(Record)))); 2581 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { 2582 Method = CXXConversionDecl::Create( 2583 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2584 Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(), 2585 InstantiatedExplicitSpecifier, Conversion->getConstexprKind(), 2586 Conversion->getEndLoc(), TrailingRequiresClause); 2587 } else { 2588 StorageClass SC = D->isStatic() ? SC_Static : SC_None; 2589 Method = CXXMethodDecl::Create( 2590 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC, 2591 D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(), 2592 D->getEndLoc(), TrailingRequiresClause); 2593 } 2594 2595 if (D->isInlined()) 2596 Method->setImplicitlyInline(); 2597 2598 if (QualifierLoc) 2599 Method->setQualifierInfo(QualifierLoc); 2600 2601 if (TemplateParams) { 2602 // Our resulting instantiation is actually a function template, since we 2603 // are substituting only the outer template parameters. For example, given 2604 // 2605 // template<typename T> 2606 // struct X { 2607 // template<typename U> void f(T, U); 2608 // }; 2609 // 2610 // X<int> x; 2611 // 2612 // We are instantiating the member template "f" within X<int>, which means 2613 // substituting int for T, but leaving "f" as a member function template. 2614 // Build the function template itself. 2615 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, 2616 Method->getLocation(), 2617 Method->getDeclName(), 2618 TemplateParams, Method); 2619 if (isFriend) { 2620 FunctionTemplate->setLexicalDeclContext(Owner); 2621 FunctionTemplate->setObjectOfFriendDecl(); 2622 } else if (D->isOutOfLine()) 2623 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); 2624 Method->setDescribedFunctionTemplate(FunctionTemplate); 2625 } else if (FunctionTemplate) { 2626 // Record this function template specialization. 2627 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2628 Method->setFunctionTemplateSpecialization(FunctionTemplate, 2629 TemplateArgumentList::CreateCopy(SemaRef.Context, 2630 Innermost), 2631 /*InsertPos=*/nullptr); 2632 } else if (!isFriend) { 2633 // Record that this is an instantiation of a member function. 2634 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2635 } 2636 2637 // If we are instantiating a member function defined 2638 // out-of-line, the instantiation will have the same lexical 2639 // context (which will be a namespace scope) as the template. 2640 if (isFriend) { 2641 if (NumTempParamLists) 2642 Method->setTemplateParameterListsInfo( 2643 SemaRef.Context, 2644 llvm::ArrayRef(TempParamLists.data(), NumTempParamLists)); 2645 2646 Method->setLexicalDeclContext(Owner); 2647 Method->setObjectOfFriendDecl(); 2648 } else if (D->isOutOfLine()) 2649 Method->setLexicalDeclContext(D->getLexicalDeclContext()); 2650 2651 // Attach the parameters 2652 for (unsigned P = 0; P < Params.size(); ++P) 2653 Params[P]->setOwningFunction(Method); 2654 Method->setParams(Params); 2655 2656 if (InitMethodInstantiation(Method, D)) 2657 Method->setInvalidDecl(); 2658 2659 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, 2660 Sema::ForExternalRedeclaration); 2661 2662 bool IsExplicitSpecialization = false; 2663 2664 // If the name of this function was written as a template-id, instantiate 2665 // the explicit template arguments. 2666 if (DependentFunctionTemplateSpecializationInfo *DFTSI = 2667 D->getDependentSpecializationInfo()) { 2668 // Instantiate the explicit template arguments. 2669 TemplateArgumentListInfo ExplicitArgs; 2670 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) { 2671 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc()); 2672 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc()); 2673 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2674 ExplicitArgs)) 2675 return nullptr; 2676 } 2677 2678 // Map the candidates for the primary template to their instantiations. 2679 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) { 2680 if (NamedDecl *ND = 2681 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs)) 2682 Previous.addDecl(ND); 2683 else 2684 return nullptr; 2685 } 2686 2687 if (SemaRef.CheckFunctionTemplateSpecialization( 2688 Method, DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr, 2689 Previous)) 2690 Method->setInvalidDecl(); 2691 2692 IsExplicitSpecialization = true; 2693 } else if (const ASTTemplateArgumentListInfo *ArgsWritten = 2694 D->getTemplateSpecializationArgsAsWritten()) { 2695 SemaRef.LookupQualifiedName(Previous, DC); 2696 2697 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(), 2698 ArgsWritten->getRAngleLoc()); 2699 2700 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2701 ExplicitArgs)) 2702 return nullptr; 2703 2704 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2705 &ExplicitArgs, 2706 Previous)) 2707 Method->setInvalidDecl(); 2708 2709 IsExplicitSpecialization = true; 2710 } else if (!FunctionTemplate || TemplateParams || isFriend) { 2711 SemaRef.LookupQualifiedName(Previous, Record); 2712 2713 // In C++, the previous declaration we find might be a tag type 2714 // (class or enum). In this case, the new declaration will hide the 2715 // tag type. Note that this does not apply if we're declaring a 2716 // typedef (C++ [dcl.typedef]p4). 2717 if (Previous.isSingleTagDecl()) 2718 Previous.clear(); 2719 } 2720 2721 // Per [temp.inst], default arguments in member functions of local classes 2722 // are instantiated along with the member function declaration. For example: 2723 // 2724 // template<typename T> 2725 // void ft() { 2726 // struct lc { 2727 // int operator()(int p = []{ return T::value; }()); 2728 // }; 2729 // } 2730 // template void ft<int>(); // error: type 'int' cannot be used prior 2731 // to '::'because it has no members 2732 // 2733 // The error is issued during instantiation of ft<int>()::lc::operator() 2734 // because substitution into the default argument fails; the default argument 2735 // is instantiated even though it is never used. 2736 if (D->isInLocalScopeForInstantiation()) { 2737 for (unsigned P = 0; P < Params.size(); ++P) { 2738 if (!Params[P]->hasDefaultArg()) 2739 continue; 2740 if (SemaRef.SubstDefaultArgument(StartLoc, Params[P], TemplateArgs)) { 2741 // If substitution fails, the default argument is set to a 2742 // RecoveryExpr that wraps the uninstantiated default argument so 2743 // that downstream diagnostics are omitted. 2744 Expr *UninstExpr = Params[P]->getUninstantiatedDefaultArg(); 2745 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr( 2746 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(), 2747 { UninstExpr }, UninstExpr->getType()); 2748 if (ErrorResult.isUsable()) 2749 Params[P]->setDefaultArg(ErrorResult.get()); 2750 } 2751 } 2752 } 2753 2754 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, 2755 IsExplicitSpecialization, 2756 Method->isThisDeclarationADefinition()); 2757 2758 if (D->isPureVirtual()) 2759 SemaRef.CheckPureMethod(Method, SourceRange()); 2760 2761 // Propagate access. For a non-friend declaration, the access is 2762 // whatever we're propagating from. For a friend, it should be the 2763 // previous declaration we just found. 2764 if (isFriend && Method->getPreviousDecl()) 2765 Method->setAccess(Method->getPreviousDecl()->getAccess()); 2766 else 2767 Method->setAccess(D->getAccess()); 2768 if (FunctionTemplate) 2769 FunctionTemplate->setAccess(Method->getAccess()); 2770 2771 SemaRef.CheckOverrideControl(Method); 2772 2773 // If a function is defined as defaulted or deleted, mark it as such now. 2774 if (D->isExplicitlyDefaulted()) { 2775 if (SubstDefaultedFunction(Method, D)) 2776 return nullptr; 2777 } 2778 if (D->isDeletedAsWritten()) 2779 SemaRef.SetDeclDeleted(Method, Method->getLocation()); 2780 2781 // If this is an explicit specialization, mark the implicitly-instantiated 2782 // template specialization as being an explicit specialization too. 2783 // FIXME: Is this necessary? 2784 if (IsExplicitSpecialization && !isFriend) 2785 SemaRef.CompleteMemberSpecialization(Method, Previous); 2786 2787 // If the method is a special member function, we need to mark it as 2788 // ineligible so that Owner->addDecl() won't mark the class as non trivial. 2789 // At the end of the class instantiation, we calculate eligibility again and 2790 // then we adjust trivility if needed. 2791 // We need this check to happen only after the method parameters are set, 2792 // because being e.g. a copy constructor depends on the instantiated 2793 // arguments. 2794 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Method)) { 2795 if (Constructor->isDefaultConstructor() || 2796 Constructor->isCopyOrMoveConstructor()) 2797 Method->setIneligibleOrNotSelected(true); 2798 } else if (Method->isCopyAssignmentOperator() || 2799 Method->isMoveAssignmentOperator()) { 2800 Method->setIneligibleOrNotSelected(true); 2801 } 2802 2803 // If there's a function template, let our caller handle it. 2804 if (FunctionTemplate) { 2805 // do nothing 2806 2807 // Don't hide a (potentially) valid declaration with an invalid one. 2808 } else if (Method->isInvalidDecl() && !Previous.empty()) { 2809 // do nothing 2810 2811 // Otherwise, check access to friends and make them visible. 2812 } else if (isFriend) { 2813 // We only need to re-check access for methods which we didn't 2814 // manage to match during parsing. 2815 if (!D->getPreviousDecl()) 2816 SemaRef.CheckFriendAccess(Method); 2817 2818 Record->makeDeclVisibleInContext(Method); 2819 2820 // Otherwise, add the declaration. We don't need to do this for 2821 // class-scope specializations because we'll have matched them with 2822 // the appropriate template. 2823 } else { 2824 Owner->addDecl(Method); 2825 } 2826 2827 // PR17480: Honor the used attribute to instantiate member function 2828 // definitions 2829 if (Method->hasAttr<UsedAttr>()) { 2830 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) { 2831 SourceLocation Loc; 2832 if (const MemberSpecializationInfo *MSInfo = 2833 A->getMemberSpecializationInfo()) 2834 Loc = MSInfo->getPointOfInstantiation(); 2835 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A)) 2836 Loc = Spec->getPointOfInstantiation(); 2837 SemaRef.MarkFunctionReferenced(Loc, Method); 2838 } 2839 } 2840 2841 return Method; 2842 } 2843 2844 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { 2845 return VisitCXXMethodDecl(D); 2846 } 2847 2848 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { 2849 return VisitCXXMethodDecl(D); 2850 } 2851 2852 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { 2853 return VisitCXXMethodDecl(D); 2854 } 2855 2856 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { 2857 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, 2858 std::nullopt, 2859 /*ExpectParameterPack=*/false); 2860 } 2861 2862 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( 2863 TemplateTypeParmDecl *D) { 2864 assert(D->getTypeForDecl()->isTemplateTypeParmType()); 2865 2866 std::optional<unsigned> NumExpanded; 2867 2868 if (const TypeConstraint *TC = D->getTypeConstraint()) { 2869 if (D->isPackExpansion() && !D->isExpandedParameterPack()) { 2870 assert(TC->getTemplateArgsAsWritten() && 2871 "type parameter can only be an expansion when explicit arguments " 2872 "are specified"); 2873 // The template type parameter pack's type is a pack expansion of types. 2874 // Determine whether we need to expand this parameter pack into separate 2875 // types. 2876 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2877 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2878 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded); 2879 2880 // Determine whether the set of unexpanded parameter packs can and should 2881 // be expanded. 2882 bool Expand = true; 2883 bool RetainExpansion = false; 2884 if (SemaRef.CheckParameterPacksForExpansion( 2885 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2886 ->getEllipsisLoc(), 2887 SourceRange(TC->getConceptNameLoc(), 2888 TC->hasExplicitTemplateArgs() ? 2889 TC->getTemplateArgsAsWritten()->getRAngleLoc() : 2890 TC->getConceptNameInfo().getEndLoc()), 2891 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded)) 2892 return nullptr; 2893 } 2894 } 2895 2896 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( 2897 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), 2898 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), 2899 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(), 2900 D->hasTypeConstraint(), NumExpanded); 2901 2902 Inst->setAccess(AS_public); 2903 Inst->setImplicit(D->isImplicit()); 2904 if (auto *TC = D->getTypeConstraint()) { 2905 if (!D->isImplicit()) { 2906 // Invented template parameter type constraints will be instantiated 2907 // with the corresponding auto-typed parameter as it might reference 2908 // other parameters. 2909 if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs, 2910 EvaluateConstraints)) 2911 return nullptr; 2912 } 2913 } 2914 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2915 TypeSourceInfo *InstantiatedDefaultArg = 2916 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, 2917 D->getDefaultArgumentLoc(), D->getDeclName()); 2918 if (InstantiatedDefaultArg) 2919 Inst->setDefaultArgument(InstantiatedDefaultArg); 2920 } 2921 2922 // Introduce this template parameter's instantiation into the instantiation 2923 // scope. 2924 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); 2925 2926 return Inst; 2927 } 2928 2929 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( 2930 NonTypeTemplateParmDecl *D) { 2931 // Substitute into the type of the non-type template parameter. 2932 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); 2933 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; 2934 SmallVector<QualType, 4> ExpandedParameterPackTypes; 2935 bool IsExpandedParameterPack = false; 2936 TypeSourceInfo *DI; 2937 QualType T; 2938 bool Invalid = false; 2939 2940 if (D->isExpandedParameterPack()) { 2941 // The non-type template parameter pack is an already-expanded pack 2942 // expansion of types. Substitute into each of the expanded types. 2943 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); 2944 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); 2945 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { 2946 TypeSourceInfo *NewDI = 2947 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, 2948 D->getLocation(), D->getDeclName()); 2949 if (!NewDI) 2950 return nullptr; 2951 2952 QualType NewT = 2953 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2954 if (NewT.isNull()) 2955 return nullptr; 2956 2957 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 2958 ExpandedParameterPackTypes.push_back(NewT); 2959 } 2960 2961 IsExpandedParameterPack = true; 2962 DI = D->getTypeSourceInfo(); 2963 T = DI->getType(); 2964 } else if (D->isPackExpansion()) { 2965 // The non-type template parameter pack's type is a pack expansion of types. 2966 // Determine whether we need to expand this parameter pack into separate 2967 // types. 2968 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); 2969 TypeLoc Pattern = Expansion.getPatternLoc(); 2970 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2971 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); 2972 2973 // Determine whether the set of unexpanded parameter packs can and should 2974 // be expanded. 2975 bool Expand = true; 2976 bool RetainExpansion = false; 2977 std::optional<unsigned> OrigNumExpansions = 2978 Expansion.getTypePtr()->getNumExpansions(); 2979 std::optional<unsigned> NumExpansions = OrigNumExpansions; 2980 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), 2981 Pattern.getSourceRange(), 2982 Unexpanded, 2983 TemplateArgs, 2984 Expand, RetainExpansion, 2985 NumExpansions)) 2986 return nullptr; 2987 2988 if (Expand) { 2989 for (unsigned I = 0; I != *NumExpansions; ++I) { 2990 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2991 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, 2992 D->getLocation(), 2993 D->getDeclName()); 2994 if (!NewDI) 2995 return nullptr; 2996 2997 QualType NewT = 2998 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2999 if (NewT.isNull()) 3000 return nullptr; 3001 3002 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 3003 ExpandedParameterPackTypes.push_back(NewT); 3004 } 3005 3006 // Note that we have an expanded parameter pack. The "type" of this 3007 // expanded parameter pack is the original expansion type, but callers 3008 // will end up using the expanded parameter pack types for type-checking. 3009 IsExpandedParameterPack = true; 3010 DI = D->getTypeSourceInfo(); 3011 T = DI->getType(); 3012 } else { 3013 // We cannot fully expand the pack expansion now, so substitute into the 3014 // pattern and create a new pack expansion type. 3015 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3016 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, 3017 D->getLocation(), 3018 D->getDeclName()); 3019 if (!NewPattern) 3020 return nullptr; 3021 3022 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); 3023 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), 3024 NumExpansions); 3025 if (!DI) 3026 return nullptr; 3027 3028 T = DI->getType(); 3029 } 3030 } else { 3031 // Simple case: substitution into a parameter that is not a parameter pack. 3032 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 3033 D->getLocation(), D->getDeclName()); 3034 if (!DI) 3035 return nullptr; 3036 3037 // Check that this type is acceptable for a non-type template parameter. 3038 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); 3039 if (T.isNull()) { 3040 T = SemaRef.Context.IntTy; 3041 Invalid = true; 3042 } 3043 } 3044 3045 NonTypeTemplateParmDecl *Param; 3046 if (IsExpandedParameterPack) 3047 Param = NonTypeTemplateParmDecl::Create( 3048 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3049 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3050 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, 3051 ExpandedParameterPackTypesAsWritten); 3052 else 3053 Param = NonTypeTemplateParmDecl::Create( 3054 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3055 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3056 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); 3057 3058 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc()) 3059 if (AutoLoc.isConstrained()) { 3060 SourceLocation EllipsisLoc; 3061 if (IsExpandedParameterPack) 3062 EllipsisLoc = 3063 DI->getTypeLoc().getAs<PackExpansionTypeLoc>().getEllipsisLoc(); 3064 else if (auto *Constraint = dyn_cast_if_present<CXXFoldExpr>( 3065 D->getPlaceholderTypeConstraint())) 3066 EllipsisLoc = Constraint->getEllipsisLoc(); 3067 // Note: We attach the uninstantiated constriant here, so that it can be 3068 // instantiated relative to the top level, like all our other 3069 // constraints. 3070 if (SemaRef.AttachTypeConstraint(AutoLoc, /*NewConstrainedParm=*/Param, 3071 /*OrigConstrainedParm=*/D, EllipsisLoc)) 3072 Invalid = true; 3073 } 3074 3075 Param->setAccess(AS_public); 3076 Param->setImplicit(D->isImplicit()); 3077 if (Invalid) 3078 Param->setInvalidDecl(); 3079 3080 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3081 EnterExpressionEvaluationContext ConstantEvaluated( 3082 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3083 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); 3084 if (!Value.isInvalid()) 3085 Param->setDefaultArgument(Value.get()); 3086 } 3087 3088 // Introduce this template parameter's instantiation into the instantiation 3089 // scope. 3090 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 3091 return Param; 3092 } 3093 3094 static void collectUnexpandedParameterPacks( 3095 Sema &S, 3096 TemplateParameterList *Params, 3097 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { 3098 for (const auto &P : *Params) { 3099 if (P->isTemplateParameterPack()) 3100 continue; 3101 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) 3102 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), 3103 Unexpanded); 3104 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) 3105 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), 3106 Unexpanded); 3107 } 3108 } 3109 3110 Decl * 3111 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( 3112 TemplateTemplateParmDecl *D) { 3113 // Instantiate the template parameter list of the template template parameter. 3114 TemplateParameterList *TempParams = D->getTemplateParameters(); 3115 TemplateParameterList *InstParams; 3116 SmallVector<TemplateParameterList*, 8> ExpandedParams; 3117 3118 bool IsExpandedParameterPack = false; 3119 3120 if (D->isExpandedParameterPack()) { 3121 // The template template parameter pack is an already-expanded pack 3122 // expansion of template parameters. Substitute into each of the expanded 3123 // parameters. 3124 ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); 3125 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); 3126 I != N; ++I) { 3127 LocalInstantiationScope Scope(SemaRef); 3128 TemplateParameterList *Expansion = 3129 SubstTemplateParams(D->getExpansionTemplateParameters(I)); 3130 if (!Expansion) 3131 return nullptr; 3132 ExpandedParams.push_back(Expansion); 3133 } 3134 3135 IsExpandedParameterPack = true; 3136 InstParams = TempParams; 3137 } else if (D->isPackExpansion()) { 3138 // The template template parameter pack expands to a pack of template 3139 // template parameters. Determine whether we need to expand this parameter 3140 // pack into separate parameters. 3141 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3142 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), 3143 Unexpanded); 3144 3145 // Determine whether the set of unexpanded parameter packs can and should 3146 // be expanded. 3147 bool Expand = true; 3148 bool RetainExpansion = false; 3149 std::optional<unsigned> NumExpansions; 3150 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), 3151 TempParams->getSourceRange(), 3152 Unexpanded, 3153 TemplateArgs, 3154 Expand, RetainExpansion, 3155 NumExpansions)) 3156 return nullptr; 3157 3158 if (Expand) { 3159 for (unsigned I = 0; I != *NumExpansions; ++I) { 3160 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3161 LocalInstantiationScope Scope(SemaRef); 3162 TemplateParameterList *Expansion = SubstTemplateParams(TempParams); 3163 if (!Expansion) 3164 return nullptr; 3165 ExpandedParams.push_back(Expansion); 3166 } 3167 3168 // Note that we have an expanded parameter pack. The "type" of this 3169 // expanded parameter pack is the original expansion type, but callers 3170 // will end up using the expanded parameter pack types for type-checking. 3171 IsExpandedParameterPack = true; 3172 InstParams = TempParams; 3173 } else { 3174 // We cannot fully expand the pack expansion now, so just substitute 3175 // into the pattern. 3176 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3177 3178 LocalInstantiationScope Scope(SemaRef); 3179 InstParams = SubstTemplateParams(TempParams); 3180 if (!InstParams) 3181 return nullptr; 3182 } 3183 } else { 3184 // Perform the actual substitution of template parameters within a new, 3185 // local instantiation scope. 3186 LocalInstantiationScope Scope(SemaRef); 3187 InstParams = SubstTemplateParams(TempParams); 3188 if (!InstParams) 3189 return nullptr; 3190 } 3191 3192 // Build the template template parameter. 3193 TemplateTemplateParmDecl *Param; 3194 if (IsExpandedParameterPack) 3195 Param = TemplateTemplateParmDecl::Create( 3196 SemaRef.Context, Owner, D->getLocation(), 3197 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3198 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams); 3199 else 3200 Param = TemplateTemplateParmDecl::Create( 3201 SemaRef.Context, Owner, D->getLocation(), 3202 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3203 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); 3204 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3205 NestedNameSpecifierLoc QualifierLoc = 3206 D->getDefaultArgument().getTemplateQualifierLoc(); 3207 QualifierLoc = 3208 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); 3209 TemplateName TName = SemaRef.SubstTemplateName( 3210 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), 3211 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); 3212 if (!TName.isNull()) 3213 Param->setDefaultArgument( 3214 SemaRef.Context, 3215 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName), 3216 D->getDefaultArgument().getTemplateQualifierLoc(), 3217 D->getDefaultArgument().getTemplateNameLoc())); 3218 } 3219 Param->setAccess(AS_public); 3220 Param->setImplicit(D->isImplicit()); 3221 3222 // Introduce this template parameter's instantiation into the instantiation 3223 // scope. 3224 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 3225 3226 return Param; 3227 } 3228 3229 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { 3230 // Using directives are never dependent (and never contain any types or 3231 // expressions), so they require no explicit instantiation work. 3232 3233 UsingDirectiveDecl *Inst 3234 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), 3235 D->getNamespaceKeyLocation(), 3236 D->getQualifierLoc(), 3237 D->getIdentLocation(), 3238 D->getNominatedNamespace(), 3239 D->getCommonAncestor()); 3240 3241 // Add the using directive to its declaration context 3242 // only if this is not a function or method. 3243 if (!Owner->isFunctionOrMethod()) 3244 Owner->addDecl(Inst); 3245 3246 return Inst; 3247 } 3248 3249 Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D, 3250 BaseUsingDecl *Inst, 3251 LookupResult *Lookup) { 3252 3253 bool isFunctionScope = Owner->isFunctionOrMethod(); 3254 3255 for (auto *Shadow : D->shadows()) { 3256 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so 3257 // reconstruct it in the case where it matters. Hm, can we extract it from 3258 // the DeclSpec when parsing and save it in the UsingDecl itself? 3259 NamedDecl *OldTarget = Shadow->getTargetDecl(); 3260 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow)) 3261 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) 3262 OldTarget = BaseShadow; 3263 3264 NamedDecl *InstTarget = nullptr; 3265 if (auto *EmptyD = 3266 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) { 3267 InstTarget = UnresolvedUsingIfExistsDecl::Create( 3268 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName()); 3269 } else { 3270 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( 3271 Shadow->getLocation(), OldTarget, TemplateArgs)); 3272 } 3273 if (!InstTarget) 3274 return nullptr; 3275 3276 UsingShadowDecl *PrevDecl = nullptr; 3277 if (Lookup && 3278 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl)) 3279 continue; 3280 3281 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow)) 3282 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( 3283 Shadow->getLocation(), OldPrev, TemplateArgs)); 3284 3285 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl( 3286 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl); 3287 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); 3288 3289 if (isFunctionScope) 3290 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); 3291 } 3292 3293 return Inst; 3294 } 3295 3296 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { 3297 3298 // The nested name specifier may be dependent, for example 3299 // template <typename T> struct t { 3300 // struct s1 { T f1(); }; 3301 // struct s2 : s1 { using s1::f1; }; 3302 // }; 3303 // template struct t<int>; 3304 // Here, in using s1::f1, s1 refers to t<T>::s1; 3305 // we need to substitute for t<int>::s1. 3306 NestedNameSpecifierLoc QualifierLoc 3307 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3308 TemplateArgs); 3309 if (!QualifierLoc) 3310 return nullptr; 3311 3312 // For an inheriting constructor declaration, the name of the using 3313 // declaration is the name of a constructor in this class, not in the 3314 // base class. 3315 DeclarationNameInfo NameInfo = D->getNameInfo(); 3316 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 3317 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext)) 3318 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( 3319 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); 3320 3321 // We only need to do redeclaration lookups if we're in a class scope (in 3322 // fact, it's not really even possible in non-class scopes). 3323 bool CheckRedeclaration = Owner->isRecord(); 3324 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, 3325 Sema::ForVisibleRedeclaration); 3326 3327 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, 3328 D->getUsingLoc(), 3329 QualifierLoc, 3330 NameInfo, 3331 D->hasTypename()); 3332 3333 CXXScopeSpec SS; 3334 SS.Adopt(QualifierLoc); 3335 if (CheckRedeclaration) { 3336 Prev.setHideTags(false); 3337 SemaRef.LookupQualifiedName(Prev, Owner); 3338 3339 // Check for invalid redeclarations. 3340 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), 3341 D->hasTypename(), SS, 3342 D->getLocation(), Prev)) 3343 NewUD->setInvalidDecl(); 3344 } 3345 3346 if (!NewUD->isInvalidDecl() && 3347 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS, 3348 NameInfo, D->getLocation(), nullptr, D)) 3349 NewUD->setInvalidDecl(); 3350 3351 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); 3352 NewUD->setAccess(D->getAccess()); 3353 Owner->addDecl(NewUD); 3354 3355 // Don't process the shadow decls for an invalid decl. 3356 if (NewUD->isInvalidDecl()) 3357 return NewUD; 3358 3359 // If the using scope was dependent, or we had dependent bases, we need to 3360 // recheck the inheritance 3361 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 3362 SemaRef.CheckInheritingConstructorUsingDecl(NewUD); 3363 3364 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr); 3365 } 3366 3367 Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) { 3368 // Cannot be a dependent type, but still could be an instantiation 3369 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl( 3370 D->getLocation(), D->getEnumDecl(), TemplateArgs)); 3371 3372 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation())) 3373 return nullptr; 3374 3375 TypeSourceInfo *TSI = SemaRef.SubstType(D->getEnumType(), TemplateArgs, 3376 D->getLocation(), D->getDeclName()); 3377 UsingEnumDecl *NewUD = 3378 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(), 3379 D->getEnumLoc(), D->getLocation(), TSI); 3380 3381 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D); 3382 NewUD->setAccess(D->getAccess()); 3383 Owner->addDecl(NewUD); 3384 3385 // Don't process the shadow decls for an invalid decl. 3386 if (NewUD->isInvalidDecl()) 3387 return NewUD; 3388 3389 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it 3390 // cannot be dependent, and will therefore have been checked during template 3391 // definition. 3392 3393 return VisitBaseUsingDecls(D, NewUD, nullptr); 3394 } 3395 3396 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { 3397 // Ignore these; we handle them in bulk when processing the UsingDecl. 3398 return nullptr; 3399 } 3400 3401 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( 3402 ConstructorUsingShadowDecl *D) { 3403 // Ignore these; we handle them in bulk when processing the UsingDecl. 3404 return nullptr; 3405 } 3406 3407 template <typename T> 3408 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( 3409 T *D, bool InstantiatingPackElement) { 3410 // If this is a pack expansion, expand it now. 3411 if (D->isPackExpansion() && !InstantiatingPackElement) { 3412 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3413 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); 3414 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); 3415 3416 // Determine whether the set of unexpanded parameter packs can and should 3417 // be expanded. 3418 bool Expand = true; 3419 bool RetainExpansion = false; 3420 std::optional<unsigned> NumExpansions; 3421 if (SemaRef.CheckParameterPacksForExpansion( 3422 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, 3423 Expand, RetainExpansion, NumExpansions)) 3424 return nullptr; 3425 3426 // This declaration cannot appear within a function template signature, 3427 // so we can't have a partial argument list for a parameter pack. 3428 assert(!RetainExpansion && 3429 "should never need to retain an expansion for UsingPackDecl"); 3430 3431 if (!Expand) { 3432 // We cannot fully expand the pack expansion now, so substitute into the 3433 // pattern and create a new pack expansion. 3434 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3435 return instantiateUnresolvedUsingDecl(D, true); 3436 } 3437 3438 // Within a function, we don't have any normal way to check for conflicts 3439 // between shadow declarations from different using declarations in the 3440 // same pack expansion, but this is always ill-formed because all expansions 3441 // must produce (conflicting) enumerators. 3442 // 3443 // Sadly we can't just reject this in the template definition because it 3444 // could be valid if the pack is empty or has exactly one expansion. 3445 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { 3446 SemaRef.Diag(D->getEllipsisLoc(), 3447 diag::err_using_decl_redeclaration_expansion); 3448 return nullptr; 3449 } 3450 3451 // Instantiate the slices of this pack and build a UsingPackDecl. 3452 SmallVector<NamedDecl*, 8> Expansions; 3453 for (unsigned I = 0; I != *NumExpansions; ++I) { 3454 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3455 Decl *Slice = instantiateUnresolvedUsingDecl(D, true); 3456 if (!Slice) 3457 return nullptr; 3458 // Note that we can still get unresolved using declarations here, if we 3459 // had arguments for all packs but the pattern also contained other 3460 // template arguments (this only happens during partial substitution, eg 3461 // into the body of a generic lambda in a function template). 3462 Expansions.push_back(cast<NamedDecl>(Slice)); 3463 } 3464 3465 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3466 if (isDeclWithinFunction(D)) 3467 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3468 return NewD; 3469 } 3470 3471 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D); 3472 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); 3473 3474 NestedNameSpecifierLoc QualifierLoc 3475 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3476 TemplateArgs); 3477 if (!QualifierLoc) 3478 return nullptr; 3479 3480 CXXScopeSpec SS; 3481 SS.Adopt(QualifierLoc); 3482 3483 DeclarationNameInfo NameInfo 3484 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 3485 3486 // Produce a pack expansion only if we're not instantiating a particular 3487 // slice of a pack expansion. 3488 bool InstantiatingSlice = D->getEllipsisLoc().isValid() && 3489 SemaRef.ArgumentPackSubstitutionIndex != -1; 3490 SourceLocation EllipsisLoc = 3491 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); 3492 3493 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>(); 3494 NamedDecl *UD = SemaRef.BuildUsingDeclaration( 3495 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), 3496 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, 3497 ParsedAttributesView(), 3498 /*IsInstantiation*/ true, IsUsingIfExists); 3499 if (UD) { 3500 SemaRef.InstantiateAttrs(TemplateArgs, D, UD); 3501 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); 3502 } 3503 3504 return UD; 3505 } 3506 3507 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( 3508 UnresolvedUsingTypenameDecl *D) { 3509 return instantiateUnresolvedUsingDecl(D); 3510 } 3511 3512 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( 3513 UnresolvedUsingValueDecl *D) { 3514 return instantiateUnresolvedUsingDecl(D); 3515 } 3516 3517 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl( 3518 UnresolvedUsingIfExistsDecl *D) { 3519 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl"); 3520 } 3521 3522 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { 3523 SmallVector<NamedDecl*, 8> Expansions; 3524 for (auto *UD : D->expansions()) { 3525 if (NamedDecl *NewUD = 3526 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) 3527 Expansions.push_back(NewUD); 3528 else 3529 return nullptr; 3530 } 3531 3532 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3533 if (isDeclWithinFunction(D)) 3534 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3535 return NewD; 3536 } 3537 3538 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( 3539 OMPThreadPrivateDecl *D) { 3540 SmallVector<Expr *, 5> Vars; 3541 for (auto *I : D->varlists()) { 3542 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3543 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); 3544 Vars.push_back(Var); 3545 } 3546 3547 OMPThreadPrivateDecl *TD = 3548 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); 3549 3550 TD->setAccess(AS_public); 3551 Owner->addDecl(TD); 3552 3553 return TD; 3554 } 3555 3556 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) { 3557 SmallVector<Expr *, 5> Vars; 3558 for (auto *I : D->varlists()) { 3559 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3560 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr"); 3561 Vars.push_back(Var); 3562 } 3563 SmallVector<OMPClause *, 4> Clauses; 3564 // Copy map clauses from the original mapper. 3565 for (OMPClause *C : D->clauselists()) { 3566 OMPClause *IC = nullptr; 3567 if (auto *AC = dyn_cast<OMPAllocatorClause>(C)) { 3568 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs); 3569 if (!NewE.isUsable()) 3570 continue; 3571 IC = SemaRef.ActOnOpenMPAllocatorClause( 3572 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); 3573 } else if (auto *AC = dyn_cast<OMPAlignClause>(C)) { 3574 ExprResult NewE = SemaRef.SubstExpr(AC->getAlignment(), TemplateArgs); 3575 if (!NewE.isUsable()) 3576 continue; 3577 IC = SemaRef.ActOnOpenMPAlignClause(NewE.get(), AC->getBeginLoc(), 3578 AC->getLParenLoc(), AC->getEndLoc()); 3579 // If align clause value ends up being invalid, this can end up null. 3580 if (!IC) 3581 continue; 3582 } 3583 Clauses.push_back(IC); 3584 } 3585 3586 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective( 3587 D->getLocation(), Vars, Clauses, Owner); 3588 if (Res.get().isNull()) 3589 return nullptr; 3590 return Res.get().getSingleDecl(); 3591 } 3592 3593 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) { 3594 llvm_unreachable( 3595 "Requires directive cannot be instantiated within a dependent context"); 3596 } 3597 3598 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( 3599 OMPDeclareReductionDecl *D) { 3600 // Instantiate type and check if it is allowed. 3601 const bool RequiresInstantiation = 3602 D->getType()->isDependentType() || 3603 D->getType()->isInstantiationDependentType() || 3604 D->getType()->containsUnexpandedParameterPack(); 3605 QualType SubstReductionType; 3606 if (RequiresInstantiation) { 3607 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType( 3608 D->getLocation(), 3609 ParsedType::make(SemaRef.SubstType( 3610 D->getType(), TemplateArgs, D->getLocation(), DeclarationName()))); 3611 } else { 3612 SubstReductionType = D->getType(); 3613 } 3614 if (SubstReductionType.isNull()) 3615 return nullptr; 3616 Expr *Combiner = D->getCombiner(); 3617 Expr *Init = D->getInitializer(); 3618 bool IsCorrect = true; 3619 // Create instantiated copy. 3620 std::pair<QualType, SourceLocation> ReductionTypes[] = { 3621 std::make_pair(SubstReductionType, D->getLocation())}; 3622 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3623 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3624 PrevDeclInScope = cast<OMPDeclareReductionDecl>( 3625 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3626 ->get<Decl *>()); 3627 } 3628 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart( 3629 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), 3630 PrevDeclInScope); 3631 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl()); 3632 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); 3633 Expr *SubstCombiner = nullptr; 3634 Expr *SubstInitializer = nullptr; 3635 // Combiners instantiation sequence. 3636 if (Combiner) { 3637 SemaRef.ActOnOpenMPDeclareReductionCombinerStart( 3638 /*S=*/nullptr, NewDRD); 3639 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3640 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(), 3641 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl()); 3642 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3643 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(), 3644 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl()); 3645 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3646 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3647 ThisContext); 3648 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get(); 3649 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner); 3650 } 3651 // Initializers instantiation sequence. 3652 if (Init) { 3653 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart( 3654 /*S=*/nullptr, NewDRD); 3655 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3656 cast<DeclRefExpr>(D->getInitOrig())->getDecl(), 3657 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl()); 3658 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3659 cast<DeclRefExpr>(D->getInitPriv())->getDecl(), 3660 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl()); 3661 if (D->getInitializerKind() == OMPDeclareReductionInitKind::Call) { 3662 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get(); 3663 } else { 3664 auto *OldPrivParm = 3665 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()); 3666 IsCorrect = IsCorrect && OldPrivParm->hasInit(); 3667 if (IsCorrect) 3668 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm, 3669 TemplateArgs); 3670 } 3671 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer, 3672 OmpPrivParm); 3673 } 3674 IsCorrect = IsCorrect && SubstCombiner && 3675 (!Init || 3676 (D->getInitializerKind() == OMPDeclareReductionInitKind::Call && 3677 SubstInitializer) || 3678 (D->getInitializerKind() != OMPDeclareReductionInitKind::Call && 3679 !SubstInitializer)); 3680 3681 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd( 3682 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl()); 3683 3684 return NewDRD; 3685 } 3686 3687 Decl * 3688 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) { 3689 // Instantiate type and check if it is allowed. 3690 const bool RequiresInstantiation = 3691 D->getType()->isDependentType() || 3692 D->getType()->isInstantiationDependentType() || 3693 D->getType()->containsUnexpandedParameterPack(); 3694 QualType SubstMapperTy; 3695 DeclarationName VN = D->getVarName(); 3696 if (RequiresInstantiation) { 3697 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType( 3698 D->getLocation(), 3699 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, 3700 D->getLocation(), VN))); 3701 } else { 3702 SubstMapperTy = D->getType(); 3703 } 3704 if (SubstMapperTy.isNull()) 3705 return nullptr; 3706 // Create an instantiated copy of mapper. 3707 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3708 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3709 PrevDeclInScope = cast<OMPDeclareMapperDecl>( 3710 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3711 ->get<Decl *>()); 3712 } 3713 bool IsCorrect = true; 3714 SmallVector<OMPClause *, 6> Clauses; 3715 // Instantiate the mapper variable. 3716 DeclarationNameInfo DirName; 3717 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName, 3718 /*S=*/nullptr, 3719 (*D->clauselist_begin())->getBeginLoc()); 3720 ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl( 3721 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN); 3722 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3723 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(), 3724 cast<DeclRefExpr>(MapperVarRef.get())->getDecl()); 3725 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3726 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3727 ThisContext); 3728 // Instantiate map clauses. 3729 for (OMPClause *C : D->clauselists()) { 3730 auto *OldC = cast<OMPMapClause>(C); 3731 SmallVector<Expr *, 4> NewVars; 3732 for (Expr *OE : OldC->varlists()) { 3733 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get(); 3734 if (!NE) { 3735 IsCorrect = false; 3736 break; 3737 } 3738 NewVars.push_back(NE); 3739 } 3740 if (!IsCorrect) 3741 break; 3742 NestedNameSpecifierLoc NewQualifierLoc = 3743 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(), 3744 TemplateArgs); 3745 CXXScopeSpec SS; 3746 SS.Adopt(NewQualifierLoc); 3747 DeclarationNameInfo NewNameInfo = 3748 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs); 3749 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(), 3750 OldC->getEndLoc()); 3751 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause( 3752 OldC->getIteratorModifier(), OldC->getMapTypeModifiers(), 3753 OldC->getMapTypeModifiersLoc(), SS, NewNameInfo, OldC->getMapType(), 3754 OldC->isImplicitMapType(), OldC->getMapLoc(), OldC->getColonLoc(), 3755 NewVars, Locs); 3756 Clauses.push_back(NewC); 3757 } 3758 SemaRef.EndOpenMPDSABlock(nullptr); 3759 if (!IsCorrect) 3760 return nullptr; 3761 Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective( 3762 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(), 3763 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope); 3764 Decl *NewDMD = DG.get().getSingleDecl(); 3765 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD); 3766 return NewDMD; 3767 } 3768 3769 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( 3770 OMPCapturedExprDecl * /*D*/) { 3771 llvm_unreachable("Should not be met in templates"); 3772 } 3773 3774 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { 3775 return VisitFunctionDecl(D, nullptr); 3776 } 3777 3778 Decl * 3779 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { 3780 Decl *Inst = VisitFunctionDecl(D, nullptr); 3781 if (Inst && !D->getDescribedFunctionTemplate()) 3782 Owner->addDecl(Inst); 3783 return Inst; 3784 } 3785 3786 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { 3787 return VisitCXXMethodDecl(D, nullptr); 3788 } 3789 3790 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { 3791 llvm_unreachable("There are only CXXRecordDecls in C++"); 3792 } 3793 3794 Decl * 3795 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( 3796 ClassTemplateSpecializationDecl *D) { 3797 // As a MS extension, we permit class-scope explicit specialization 3798 // of member class templates. 3799 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 3800 assert(ClassTemplate->getDeclContext()->isRecord() && 3801 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 3802 "can only instantiate an explicit specialization " 3803 "for a member class template"); 3804 3805 // Lookup the already-instantiated declaration in the instantiation 3806 // of the class template. 3807 ClassTemplateDecl *InstClassTemplate = 3808 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl( 3809 D->getLocation(), ClassTemplate, TemplateArgs)); 3810 if (!InstClassTemplate) 3811 return nullptr; 3812 3813 // Substitute into the template arguments of the class template explicit 3814 // specialization. 3815 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). 3816 castAs<TemplateSpecializationTypeLoc>(); 3817 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), 3818 Loc.getRAngleLoc()); 3819 SmallVector<TemplateArgumentLoc, 4> ArgLocs; 3820 for (unsigned I = 0; I != Loc.getNumArgs(); ++I) 3821 ArgLocs.push_back(Loc.getArgLoc(I)); 3822 if (SemaRef.SubstTemplateArguments(ArgLocs, TemplateArgs, InstTemplateArgs)) 3823 return nullptr; 3824 3825 // Check that the template argument list is well-formed for this 3826 // class template. 3827 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 3828 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, D->getLocation(), 3829 InstTemplateArgs, false, 3830 SugaredConverted, CanonicalConverted, 3831 /*UpdateArgsWithConversions=*/true)) 3832 return nullptr; 3833 3834 // Figure out where to insert this class template explicit specialization 3835 // in the member template's set of class template explicit specializations. 3836 void *InsertPos = nullptr; 3837 ClassTemplateSpecializationDecl *PrevDecl = 3838 InstClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 3839 3840 // Check whether we've already seen a conflicting instantiation of this 3841 // declaration (for instance, if there was a prior implicit instantiation). 3842 bool Ignored; 3843 if (PrevDecl && 3844 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), 3845 D->getSpecializationKind(), 3846 PrevDecl, 3847 PrevDecl->getSpecializationKind(), 3848 PrevDecl->getPointOfInstantiation(), 3849 Ignored)) 3850 return nullptr; 3851 3852 // If PrevDecl was a definition and D is also a definition, diagnose. 3853 // This happens in cases like: 3854 // 3855 // template<typename T, typename U> 3856 // struct Outer { 3857 // template<typename X> struct Inner; 3858 // template<> struct Inner<T> {}; 3859 // template<> struct Inner<U> {}; 3860 // }; 3861 // 3862 // Outer<int, int> outer; // error: the explicit specializations of Inner 3863 // // have the same signature. 3864 if (PrevDecl && PrevDecl->getDefinition() && 3865 D->isThisDeclarationADefinition()) { 3866 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; 3867 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), 3868 diag::note_previous_definition); 3869 return nullptr; 3870 } 3871 3872 // Create the class template partial specialization declaration. 3873 ClassTemplateSpecializationDecl *InstD = 3874 ClassTemplateSpecializationDecl::Create( 3875 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), 3876 D->getLocation(), InstClassTemplate, CanonicalConverted, PrevDecl); 3877 3878 // Add this partial specialization to the set of class template partial 3879 // specializations. 3880 if (!PrevDecl) 3881 InstClassTemplate->AddSpecialization(InstD, InsertPos); 3882 3883 // Substitute the nested name specifier, if any. 3884 if (SubstQualifier(D, InstD)) 3885 return nullptr; 3886 3887 // Build the canonical type that describes the converted template 3888 // arguments of the class template explicit specialization. 3889 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 3890 TemplateName(InstClassTemplate), CanonicalConverted, 3891 SemaRef.Context.getRecordType(InstD)); 3892 3893 // Build the fully-sugared type for this class template 3894 // specialization as the user wrote in the specialization 3895 // itself. This means that we'll pretty-print the type retrieved 3896 // from the specialization's declaration the way that the user 3897 // actually wrote the specialization, rather than formatting the 3898 // name based on the "canonical" representation used to store the 3899 // template arguments in the specialization. 3900 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 3901 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, 3902 CanonType); 3903 3904 InstD->setAccess(D->getAccess()); 3905 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 3906 InstD->setSpecializationKind(D->getSpecializationKind()); 3907 InstD->setTypeAsWritten(WrittenTy); 3908 InstD->setExternLoc(D->getExternLoc()); 3909 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); 3910 3911 Owner->addDecl(InstD); 3912 3913 // Instantiate the members of the class-scope explicit specialization eagerly. 3914 // We don't have support for lazy instantiation of an explicit specialization 3915 // yet, and MSVC eagerly instantiates in this case. 3916 // FIXME: This is wrong in standard C++. 3917 if (D->isThisDeclarationADefinition() && 3918 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, 3919 TSK_ImplicitInstantiation, 3920 /*Complain=*/true)) 3921 return nullptr; 3922 3923 return InstD; 3924 } 3925 3926 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3927 VarTemplateSpecializationDecl *D) { 3928 3929 TemplateArgumentListInfo VarTemplateArgsInfo; 3930 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 3931 assert(VarTemplate && 3932 "A template specialization without specialized template?"); 3933 3934 VarTemplateDecl *InstVarTemplate = 3935 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl( 3936 D->getLocation(), VarTemplate, TemplateArgs)); 3937 if (!InstVarTemplate) 3938 return nullptr; 3939 3940 // Substitute the current template arguments. 3941 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo = 3942 D->getTemplateArgsInfo()) { 3943 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo->getLAngleLoc()); 3944 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo->getRAngleLoc()); 3945 3946 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(), 3947 TemplateArgs, VarTemplateArgsInfo)) 3948 return nullptr; 3949 } 3950 3951 // Check that the template argument list is well-formed for this template. 3952 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 3953 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(), 3954 VarTemplateArgsInfo, false, 3955 SugaredConverted, CanonicalConverted, 3956 /*UpdateArgsWithConversions=*/true)) 3957 return nullptr; 3958 3959 // Check whether we've already seen a declaration of this specialization. 3960 void *InsertPos = nullptr; 3961 VarTemplateSpecializationDecl *PrevDecl = 3962 InstVarTemplate->findSpecialization(CanonicalConverted, InsertPos); 3963 3964 // Check whether we've already seen a conflicting instantiation of this 3965 // declaration (for instance, if there was a prior implicit instantiation). 3966 bool Ignored; 3967 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl( 3968 D->getLocation(), D->getSpecializationKind(), PrevDecl, 3969 PrevDecl->getSpecializationKind(), 3970 PrevDecl->getPointOfInstantiation(), Ignored)) 3971 return nullptr; 3972 3973 return VisitVarTemplateSpecializationDecl( 3974 InstVarTemplate, D, VarTemplateArgsInfo, CanonicalConverted, PrevDecl); 3975 } 3976 3977 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3978 VarTemplateDecl *VarTemplate, VarDecl *D, 3979 const TemplateArgumentListInfo &TemplateArgsInfo, 3980 ArrayRef<TemplateArgument> Converted, 3981 VarTemplateSpecializationDecl *PrevDecl) { 3982 3983 // Do substitution on the type of the declaration 3984 TypeSourceInfo *DI = 3985 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 3986 D->getTypeSpecStartLoc(), D->getDeclName()); 3987 if (!DI) 3988 return nullptr; 3989 3990 if (DI->getType()->isFunctionType()) { 3991 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 3992 << D->isStaticDataMember() << DI->getType(); 3993 return nullptr; 3994 } 3995 3996 // Build the instantiated declaration 3997 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( 3998 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3999 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); 4000 Var->setTemplateArgsInfo(TemplateArgsInfo); 4001 if (!PrevDecl) { 4002 void *InsertPos = nullptr; 4003 VarTemplate->findSpecialization(Converted, InsertPos); 4004 VarTemplate->AddSpecialization(Var, InsertPos); 4005 } 4006 4007 if (SemaRef.getLangOpts().OpenCL) 4008 SemaRef.deduceOpenCLAddressSpace(Var); 4009 4010 // Substitute the nested name specifier, if any. 4011 if (SubstQualifier(D, Var)) 4012 return nullptr; 4013 4014 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 4015 StartingScope, false, PrevDecl); 4016 4017 return Var; 4018 } 4019 4020 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { 4021 llvm_unreachable("@defs is not supported in Objective-C++"); 4022 } 4023 4024 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { 4025 // FIXME: We need to be able to instantiate FriendTemplateDecls. 4026 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( 4027 DiagnosticsEngine::Error, 4028 "cannot instantiate %0 yet"); 4029 SemaRef.Diag(D->getLocation(), DiagID) 4030 << D->getDeclKindName(); 4031 4032 return nullptr; 4033 } 4034 4035 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) { 4036 llvm_unreachable("Concept definitions cannot reside inside a template"); 4037 } 4038 4039 Decl *TemplateDeclInstantiator::VisitImplicitConceptSpecializationDecl( 4040 ImplicitConceptSpecializationDecl *D) { 4041 llvm_unreachable("Concept specializations cannot reside inside a template"); 4042 } 4043 4044 Decl * 4045 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) { 4046 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(), 4047 D->getBeginLoc()); 4048 } 4049 4050 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { 4051 llvm_unreachable("Unexpected decl"); 4052 } 4053 4054 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, 4055 const MultiLevelTemplateArgumentList &TemplateArgs) { 4056 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 4057 if (D->isInvalidDecl()) 4058 return nullptr; 4059 4060 Decl *SubstD; 4061 runWithSufficientStackSpace(D->getLocation(), [&] { 4062 SubstD = Instantiator.Visit(D); 4063 }); 4064 return SubstD; 4065 } 4066 4067 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK, 4068 FunctionDecl *Orig, QualType &T, 4069 TypeSourceInfo *&TInfo, 4070 DeclarationNameInfo &NameInfo) { 4071 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual); 4072 4073 // C++2a [class.compare.default]p3: 4074 // the return type is replaced with bool 4075 auto *FPT = T->castAs<FunctionProtoType>(); 4076 T = SemaRef.Context.getFunctionType( 4077 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo()); 4078 4079 // Update the return type in the source info too. The most straightforward 4080 // way is to create new TypeSourceInfo for the new type. Use the location of 4081 // the '= default' as the location of the new type. 4082 // 4083 // FIXME: Set the correct return type when we initially transform the type, 4084 // rather than delaying it to now. 4085 TypeSourceInfo *NewTInfo = 4086 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc()); 4087 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>(); 4088 assert(OldLoc && "type of function is not a function type?"); 4089 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 4090 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I) 4091 NewLoc.setParam(I, OldLoc.getParam(I)); 4092 TInfo = NewTInfo; 4093 4094 // and the declarator-id is replaced with operator== 4095 NameInfo.setName( 4096 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual)); 4097 } 4098 4099 FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, 4100 FunctionDecl *Spaceship) { 4101 if (Spaceship->isInvalidDecl()) 4102 return nullptr; 4103 4104 // C++2a [class.compare.default]p3: 4105 // an == operator function is declared implicitly [...] with the same 4106 // access and function-definition and in the same class scope as the 4107 // three-way comparison operator function 4108 MultiLevelTemplateArgumentList NoTemplateArgs; 4109 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite); 4110 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth()); 4111 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs); 4112 Decl *R; 4113 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) { 4114 R = Instantiator.VisitCXXMethodDecl( 4115 MD, /*TemplateParams=*/nullptr, 4116 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 4117 } else { 4118 assert(Spaceship->getFriendObjectKind() && 4119 "defaulted spaceship is neither a member nor a friend"); 4120 4121 R = Instantiator.VisitFunctionDecl( 4122 Spaceship, /*TemplateParams=*/nullptr, 4123 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 4124 if (!R) 4125 return nullptr; 4126 4127 FriendDecl *FD = 4128 FriendDecl::Create(Context, RD, Spaceship->getLocation(), 4129 cast<NamedDecl>(R), Spaceship->getBeginLoc()); 4130 FD->setAccess(AS_public); 4131 RD->addDecl(FD); 4132 } 4133 return cast_or_null<FunctionDecl>(R); 4134 } 4135 4136 /// Instantiates a nested template parameter list in the current 4137 /// instantiation context. 4138 /// 4139 /// \param L The parameter list to instantiate 4140 /// 4141 /// \returns NULL if there was an error 4142 TemplateParameterList * 4143 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { 4144 // Get errors for all the parameters before bailing out. 4145 bool Invalid = false; 4146 4147 unsigned N = L->size(); 4148 typedef SmallVector<NamedDecl *, 8> ParamVector; 4149 ParamVector Params; 4150 Params.reserve(N); 4151 for (auto &P : *L) { 4152 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); 4153 Params.push_back(D); 4154 Invalid = Invalid || !D || D->isInvalidDecl(); 4155 } 4156 4157 // Clean up if we had an error. 4158 if (Invalid) 4159 return nullptr; 4160 4161 Expr *InstRequiresClause = L->getRequiresClause(); 4162 4163 TemplateParameterList *InstL 4164 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), 4165 L->getLAngleLoc(), Params, 4166 L->getRAngleLoc(), InstRequiresClause); 4167 return InstL; 4168 } 4169 4170 TemplateParameterList * 4171 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, 4172 const MultiLevelTemplateArgumentList &TemplateArgs, 4173 bool EvaluateConstraints) { 4174 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 4175 Instantiator.setEvaluateConstraints(EvaluateConstraints); 4176 return Instantiator.SubstTemplateParams(Params); 4177 } 4178 4179 /// Instantiate the declaration of a class template partial 4180 /// specialization. 4181 /// 4182 /// \param ClassTemplate the (instantiated) class template that is partially 4183 // specialized by the instantiation of \p PartialSpec. 4184 /// 4185 /// \param PartialSpec the (uninstantiated) class template partial 4186 /// specialization that we are instantiating. 4187 /// 4188 /// \returns The instantiated partial specialization, if successful; otherwise, 4189 /// NULL to indicate an error. 4190 ClassTemplatePartialSpecializationDecl * 4191 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( 4192 ClassTemplateDecl *ClassTemplate, 4193 ClassTemplatePartialSpecializationDecl *PartialSpec) { 4194 // Create a local instantiation scope for this class template partial 4195 // specialization, which will contain the instantiations of the template 4196 // parameters. 4197 LocalInstantiationScope Scope(SemaRef); 4198 4199 // Substitute into the template parameters of the class template partial 4200 // specialization. 4201 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 4202 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 4203 if (!InstParams) 4204 return nullptr; 4205 4206 // Substitute into the template arguments of the class template partial 4207 // specialization. 4208 const ASTTemplateArgumentListInfo *TemplArgInfo 4209 = PartialSpec->getTemplateArgsAsWritten(); 4210 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 4211 TemplArgInfo->RAngleLoc); 4212 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, 4213 InstTemplateArgs)) 4214 return nullptr; 4215 4216 // Check that the template argument list is well-formed for this 4217 // class template. 4218 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4219 if (SemaRef.CheckTemplateArgumentList( 4220 ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs, 4221 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted)) 4222 return nullptr; 4223 4224 // Check these arguments are valid for a template partial specialization. 4225 if (SemaRef.CheckTemplatePartialSpecializationArgs( 4226 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), 4227 CanonicalConverted)) 4228 return nullptr; 4229 4230 // Figure out where to insert this class template partial specialization 4231 // in the member template's set of class template partial specializations. 4232 void *InsertPos = nullptr; 4233 ClassTemplateSpecializationDecl *PrevDecl = 4234 ClassTemplate->findPartialSpecialization(CanonicalConverted, InstParams, 4235 InsertPos); 4236 4237 // Build the canonical type that describes the converted template 4238 // arguments of the class template partial specialization. 4239 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 4240 TemplateName(ClassTemplate), CanonicalConverted); 4241 4242 // Build the fully-sugared type for this class template 4243 // specialization as the user wrote in the specialization 4244 // itself. This means that we'll pretty-print the type retrieved 4245 // from the specialization's declaration the way that the user 4246 // actually wrote the specialization, rather than formatting the 4247 // name based on the "canonical" representation used to store the 4248 // template arguments in the specialization. 4249 TypeSourceInfo *WrittenTy 4250 = SemaRef.Context.getTemplateSpecializationTypeInfo( 4251 TemplateName(ClassTemplate), 4252 PartialSpec->getLocation(), 4253 InstTemplateArgs, 4254 CanonType); 4255 4256 if (PrevDecl) { 4257 // We've already seen a partial specialization with the same template 4258 // parameters and template arguments. This can happen, for example, when 4259 // substituting the outer template arguments ends up causing two 4260 // class template partial specializations of a member class template 4261 // to have identical forms, e.g., 4262 // 4263 // template<typename T, typename U> 4264 // struct Outer { 4265 // template<typename X, typename Y> struct Inner; 4266 // template<typename Y> struct Inner<T, Y>; 4267 // template<typename Y> struct Inner<U, Y>; 4268 // }; 4269 // 4270 // Outer<int, int> outer; // error: the partial specializations of Inner 4271 // // have the same signature. 4272 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) 4273 << WrittenTy->getType(); 4274 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) 4275 << SemaRef.Context.getTypeDeclType(PrevDecl); 4276 return nullptr; 4277 } 4278 4279 4280 // Create the class template partial specialization declaration. 4281 ClassTemplatePartialSpecializationDecl *InstPartialSpec = 4282 ClassTemplatePartialSpecializationDecl::Create( 4283 SemaRef.Context, PartialSpec->getTagKind(), Owner, 4284 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams, 4285 ClassTemplate, CanonicalConverted, InstTemplateArgs, CanonType, 4286 nullptr); 4287 // Substitute the nested name specifier, if any. 4288 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4289 return nullptr; 4290 4291 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4292 InstPartialSpec->setTypeAsWritten(WrittenTy); 4293 4294 // Check the completed partial specialization. 4295 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4296 4297 // Add this partial specialization to the set of class template partial 4298 // specializations. 4299 ClassTemplate->AddPartialSpecialization(InstPartialSpec, 4300 /*InsertPos=*/nullptr); 4301 return InstPartialSpec; 4302 } 4303 4304 /// Instantiate the declaration of a variable template partial 4305 /// specialization. 4306 /// 4307 /// \param VarTemplate the (instantiated) variable template that is partially 4308 /// specialized by the instantiation of \p PartialSpec. 4309 /// 4310 /// \param PartialSpec the (uninstantiated) variable template partial 4311 /// specialization that we are instantiating. 4312 /// 4313 /// \returns The instantiated partial specialization, if successful; otherwise, 4314 /// NULL to indicate an error. 4315 VarTemplatePartialSpecializationDecl * 4316 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( 4317 VarTemplateDecl *VarTemplate, 4318 VarTemplatePartialSpecializationDecl *PartialSpec) { 4319 // Create a local instantiation scope for this variable template partial 4320 // specialization, which will contain the instantiations of the template 4321 // parameters. 4322 LocalInstantiationScope Scope(SemaRef); 4323 4324 // Substitute into the template parameters of the variable template partial 4325 // specialization. 4326 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 4327 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 4328 if (!InstParams) 4329 return nullptr; 4330 4331 // Substitute into the template arguments of the variable template partial 4332 // specialization. 4333 const ASTTemplateArgumentListInfo *TemplArgInfo 4334 = PartialSpec->getTemplateArgsAsWritten(); 4335 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 4336 TemplArgInfo->RAngleLoc); 4337 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, 4338 InstTemplateArgs)) 4339 return nullptr; 4340 4341 // Check that the template argument list is well-formed for this 4342 // class template. 4343 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4344 if (SemaRef.CheckTemplateArgumentList( 4345 VarTemplate, PartialSpec->getLocation(), InstTemplateArgs, 4346 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted)) 4347 return nullptr; 4348 4349 // Check these arguments are valid for a template partial specialization. 4350 if (SemaRef.CheckTemplatePartialSpecializationArgs( 4351 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), 4352 CanonicalConverted)) 4353 return nullptr; 4354 4355 // Figure out where to insert this variable template partial specialization 4356 // in the member template's set of variable template partial specializations. 4357 void *InsertPos = nullptr; 4358 VarTemplateSpecializationDecl *PrevDecl = 4359 VarTemplate->findPartialSpecialization(CanonicalConverted, InstParams, 4360 InsertPos); 4361 4362 // Build the canonical type that describes the converted template 4363 // arguments of the variable template partial specialization. 4364 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 4365 TemplateName(VarTemplate), CanonicalConverted); 4366 4367 // Build the fully-sugared type for this variable template 4368 // specialization as the user wrote in the specialization 4369 // itself. This means that we'll pretty-print the type retrieved 4370 // from the specialization's declaration the way that the user 4371 // actually wrote the specialization, rather than formatting the 4372 // name based on the "canonical" representation used to store the 4373 // template arguments in the specialization. 4374 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 4375 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, 4376 CanonType); 4377 4378 if (PrevDecl) { 4379 // We've already seen a partial specialization with the same template 4380 // parameters and template arguments. This can happen, for example, when 4381 // substituting the outer template arguments ends up causing two 4382 // variable template partial specializations of a member variable template 4383 // to have identical forms, e.g., 4384 // 4385 // template<typename T, typename U> 4386 // struct Outer { 4387 // template<typename X, typename Y> pair<X,Y> p; 4388 // template<typename Y> pair<T, Y> p; 4389 // template<typename Y> pair<U, Y> p; 4390 // }; 4391 // 4392 // Outer<int, int> outer; // error: the partial specializations of Inner 4393 // // have the same signature. 4394 SemaRef.Diag(PartialSpec->getLocation(), 4395 diag::err_var_partial_spec_redeclared) 4396 << WrittenTy->getType(); 4397 SemaRef.Diag(PrevDecl->getLocation(), 4398 diag::note_var_prev_partial_spec_here); 4399 return nullptr; 4400 } 4401 4402 // Do substitution on the type of the declaration 4403 TypeSourceInfo *DI = SemaRef.SubstType( 4404 PartialSpec->getTypeSourceInfo(), TemplateArgs, 4405 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); 4406 if (!DI) 4407 return nullptr; 4408 4409 if (DI->getType()->isFunctionType()) { 4410 SemaRef.Diag(PartialSpec->getLocation(), 4411 diag::err_variable_instantiates_to_function) 4412 << PartialSpec->isStaticDataMember() << DI->getType(); 4413 return nullptr; 4414 } 4415 4416 // Create the variable template partial specialization declaration. 4417 VarTemplatePartialSpecializationDecl *InstPartialSpec = 4418 VarTemplatePartialSpecializationDecl::Create( 4419 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), 4420 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), 4421 DI, PartialSpec->getStorageClass(), CanonicalConverted, 4422 InstTemplateArgs); 4423 4424 // Substitute the nested name specifier, if any. 4425 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4426 return nullptr; 4427 4428 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4429 InstPartialSpec->setTypeAsWritten(WrittenTy); 4430 4431 // Check the completed partial specialization. 4432 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4433 4434 // Add this partial specialization to the set of variable template partial 4435 // specializations. The instantiation of the initializer is not necessary. 4436 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); 4437 4438 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, 4439 LateAttrs, Owner, StartingScope); 4440 4441 return InstPartialSpec; 4442 } 4443 4444 TypeSourceInfo* 4445 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, 4446 SmallVectorImpl<ParmVarDecl *> &Params) { 4447 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); 4448 assert(OldTInfo && "substituting function without type source info"); 4449 assert(Params.empty() && "parameter vector is non-empty at start"); 4450 4451 CXXRecordDecl *ThisContext = nullptr; 4452 Qualifiers ThisTypeQuals; 4453 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4454 ThisContext = cast<CXXRecordDecl>(Owner); 4455 ThisTypeQuals = Method->getFunctionObjectParameterType().getQualifiers(); 4456 } 4457 4458 TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType( 4459 OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(), 4460 ThisContext, ThisTypeQuals, EvaluateConstraints); 4461 if (!NewTInfo) 4462 return nullptr; 4463 4464 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); 4465 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { 4466 if (NewTInfo != OldTInfo) { 4467 // Get parameters from the new type info. 4468 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); 4469 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); 4470 unsigned NewIdx = 0; 4471 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); 4472 OldIdx != NumOldParams; ++OldIdx) { 4473 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); 4474 if (!OldParam) 4475 return nullptr; 4476 4477 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; 4478 4479 std::optional<unsigned> NumArgumentsInExpansion; 4480 if (OldParam->isParameterPack()) 4481 NumArgumentsInExpansion = 4482 SemaRef.getNumArgumentsInExpansion(OldParam->getType(), 4483 TemplateArgs); 4484 if (!NumArgumentsInExpansion) { 4485 // Simple case: normal parameter, or a parameter pack that's 4486 // instantiated to a (still-dependent) parameter pack. 4487 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4488 Params.push_back(NewParam); 4489 Scope->InstantiatedLocal(OldParam, NewParam); 4490 } else { 4491 // Parameter pack expansion: make the instantiation an argument pack. 4492 Scope->MakeInstantiatedLocalArgPack(OldParam); 4493 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { 4494 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4495 Params.push_back(NewParam); 4496 Scope->InstantiatedLocalPackArg(OldParam, NewParam); 4497 } 4498 } 4499 } 4500 } else { 4501 // The function type itself was not dependent and therefore no 4502 // substitution occurred. However, we still need to instantiate 4503 // the function parameters themselves. 4504 const FunctionProtoType *OldProto = 4505 cast<FunctionProtoType>(OldProtoLoc.getType()); 4506 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; 4507 ++i) { 4508 ParmVarDecl *OldParam = OldProtoLoc.getParam(i); 4509 if (!OldParam) { 4510 Params.push_back(SemaRef.BuildParmVarDeclForTypedef( 4511 D, D->getLocation(), OldProto->getParamType(i))); 4512 continue; 4513 } 4514 4515 ParmVarDecl *Parm = 4516 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); 4517 if (!Parm) 4518 return nullptr; 4519 Params.push_back(Parm); 4520 } 4521 } 4522 } else { 4523 // If the type of this function, after ignoring parentheses, is not 4524 // *directly* a function type, then we're instantiating a function that 4525 // was declared via a typedef or with attributes, e.g., 4526 // 4527 // typedef int functype(int, int); 4528 // functype func; 4529 // int __cdecl meth(int, int); 4530 // 4531 // In this case, we'll just go instantiate the ParmVarDecls that we 4532 // synthesized in the method declaration. 4533 SmallVector<QualType, 4> ParamTypes; 4534 Sema::ExtParameterInfoBuilder ExtParamInfos; 4535 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, 4536 TemplateArgs, ParamTypes, &Params, 4537 ExtParamInfos)) 4538 return nullptr; 4539 } 4540 4541 return NewTInfo; 4542 } 4543 4544 /// Introduce the instantiated local variables into the local 4545 /// instantiation scope. 4546 void Sema::addInstantiatedLocalVarsToScope(FunctionDecl *Function, 4547 const FunctionDecl *PatternDecl, 4548 LocalInstantiationScope &Scope) { 4549 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(getFunctionScopes().back()); 4550 4551 for (auto *decl : PatternDecl->decls()) { 4552 if (!isa<VarDecl>(decl) || isa<ParmVarDecl>(decl)) 4553 continue; 4554 4555 VarDecl *VD = cast<VarDecl>(decl); 4556 IdentifierInfo *II = VD->getIdentifier(); 4557 4558 auto it = llvm::find_if(Function->decls(), [&](Decl *inst) { 4559 VarDecl *InstVD = dyn_cast<VarDecl>(inst); 4560 return InstVD && InstVD->isLocalVarDecl() && 4561 InstVD->getIdentifier() == II; 4562 }); 4563 4564 if (it == Function->decls().end()) 4565 continue; 4566 4567 Scope.InstantiatedLocal(VD, *it); 4568 LSI->addCapture(cast<VarDecl>(*it), /*isBlock=*/false, /*isByref=*/false, 4569 /*isNested=*/false, VD->getLocation(), SourceLocation(), 4570 VD->getType(), /*Invalid=*/false); 4571 } 4572 } 4573 4574 /// Introduce the instantiated function parameters into the local 4575 /// instantiation scope, and set the parameter names to those used 4576 /// in the template. 4577 bool Sema::addInstantiatedParametersToScope( 4578 FunctionDecl *Function, const FunctionDecl *PatternDecl, 4579 LocalInstantiationScope &Scope, 4580 const MultiLevelTemplateArgumentList &TemplateArgs) { 4581 unsigned FParamIdx = 0; 4582 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { 4583 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); 4584 if (!PatternParam->isParameterPack()) { 4585 // Simple case: not a parameter pack. 4586 assert(FParamIdx < Function->getNumParams()); 4587 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4588 FunctionParam->setDeclName(PatternParam->getDeclName()); 4589 // If the parameter's type is not dependent, update it to match the type 4590 // in the pattern. They can differ in top-level cv-qualifiers, and we want 4591 // the pattern's type here. If the type is dependent, they can't differ, 4592 // per core issue 1668. Substitute into the type from the pattern, in case 4593 // it's instantiation-dependent. 4594 // FIXME: Updating the type to work around this is at best fragile. 4595 if (!PatternDecl->getType()->isDependentType()) { 4596 QualType T = SubstType(PatternParam->getType(), TemplateArgs, 4597 FunctionParam->getLocation(), 4598 FunctionParam->getDeclName()); 4599 if (T.isNull()) 4600 return true; 4601 FunctionParam->setType(T); 4602 } 4603 4604 Scope.InstantiatedLocal(PatternParam, FunctionParam); 4605 ++FParamIdx; 4606 continue; 4607 } 4608 4609 // Expand the parameter pack. 4610 Scope.MakeInstantiatedLocalArgPack(PatternParam); 4611 std::optional<unsigned> NumArgumentsInExpansion = 4612 getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); 4613 if (NumArgumentsInExpansion) { 4614 QualType PatternType = 4615 PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); 4616 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { 4617 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4618 FunctionParam->setDeclName(PatternParam->getDeclName()); 4619 if (!PatternDecl->getType()->isDependentType()) { 4620 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, Arg); 4621 QualType T = 4622 SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(), 4623 FunctionParam->getDeclName()); 4624 if (T.isNull()) 4625 return true; 4626 FunctionParam->setType(T); 4627 } 4628 4629 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); 4630 ++FParamIdx; 4631 } 4632 } 4633 } 4634 4635 return false; 4636 } 4637 4638 bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD, 4639 ParmVarDecl *Param) { 4640 assert(Param->hasUninstantiatedDefaultArg()); 4641 4642 // Instantiate the expression. 4643 // 4644 // FIXME: Pass in a correct Pattern argument, otherwise 4645 // getTemplateInstantiationArgs uses the lexical context of FD, e.g. 4646 // 4647 // template<typename T> 4648 // struct A { 4649 // static int FooImpl(); 4650 // 4651 // template<typename Tp> 4652 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level 4653 // // template argument list [[T], [Tp]], should be [[Tp]]. 4654 // friend A<Tp> Foo(int a); 4655 // }; 4656 // 4657 // template<typename T> 4658 // A<T> Foo(int a = A<T>::FooImpl()); 4659 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 4660 FD, FD->getLexicalDeclContext(), /*Final=*/false, nullptr, 4661 /*RelativeToPrimary=*/true); 4662 4663 if (SubstDefaultArgument(CallLoc, Param, TemplateArgs, /*ForCallExpr*/ true)) 4664 return true; 4665 4666 if (ASTMutationListener *L = getASTMutationListener()) 4667 L->DefaultArgumentInstantiated(Param); 4668 4669 return false; 4670 } 4671 4672 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, 4673 FunctionDecl *Decl) { 4674 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); 4675 if (Proto->getExceptionSpecType() != EST_Uninstantiated) 4676 return; 4677 4678 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, 4679 InstantiatingTemplate::ExceptionSpecification()); 4680 if (Inst.isInvalid()) { 4681 // We hit the instantiation depth limit. Clear the exception specification 4682 // so that our callers don't have to cope with EST_Uninstantiated. 4683 UpdateExceptionSpec(Decl, EST_None); 4684 return; 4685 } 4686 if (Inst.isAlreadyInstantiating()) { 4687 // This exception specification indirectly depends on itself. Reject. 4688 // FIXME: Corresponding rule in the standard? 4689 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; 4690 UpdateExceptionSpec(Decl, EST_None); 4691 return; 4692 } 4693 4694 // Enter the scope of this instantiation. We don't use 4695 // PushDeclContext because we don't have a scope. 4696 Sema::ContextRAII savedContext(*this, Decl); 4697 LocalInstantiationScope Scope(*this); 4698 4699 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 4700 Decl, Decl->getLexicalDeclContext(), /*Final=*/false, nullptr, 4701 /*RelativeToPrimary*/ true); 4702 4703 // FIXME: We can't use getTemplateInstantiationPattern(false) in general 4704 // here, because for a non-defining friend declaration in a class template, 4705 // we don't store enough information to map back to the friend declaration in 4706 // the template. 4707 FunctionDecl *Template = Proto->getExceptionSpecTemplate(); 4708 if (addInstantiatedParametersToScope(Decl, Template, Scope, TemplateArgs)) { 4709 UpdateExceptionSpec(Decl, EST_None); 4710 return; 4711 } 4712 4713 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), 4714 TemplateArgs); 4715 } 4716 4717 /// Initializes the common fields of an instantiation function 4718 /// declaration (New) from the corresponding fields of its template (Tmpl). 4719 /// 4720 /// \returns true if there was an error 4721 bool 4722 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, 4723 FunctionDecl *Tmpl) { 4724 New->setImplicit(Tmpl->isImplicit()); 4725 4726 // Forward the mangling number from the template to the instantiated decl. 4727 SemaRef.Context.setManglingNumber(New, 4728 SemaRef.Context.getManglingNumber(Tmpl)); 4729 4730 // If we are performing substituting explicitly-specified template arguments 4731 // or deduced template arguments into a function template and we reach this 4732 // point, we are now past the point where SFINAE applies and have committed 4733 // to keeping the new function template specialization. We therefore 4734 // convert the active template instantiation for the function template 4735 // into a template instantiation for this specific function template 4736 // specialization, which is not a SFINAE context, so that we diagnose any 4737 // further errors in the declaration itself. 4738 // 4739 // FIXME: This is a hack. 4740 typedef Sema::CodeSynthesisContext ActiveInstType; 4741 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); 4742 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || 4743 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { 4744 if (isa<FunctionTemplateDecl>(ActiveInst.Entity)) { 4745 SemaRef.InstantiatingSpecializations.erase( 4746 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind}); 4747 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4748 ActiveInst.Kind = ActiveInstType::TemplateInstantiation; 4749 ActiveInst.Entity = New; 4750 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4751 } 4752 } 4753 4754 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); 4755 assert(Proto && "Function template without prototype?"); 4756 4757 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { 4758 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 4759 4760 // DR1330: In C++11, defer instantiation of a non-trivial 4761 // exception specification. 4762 // DR1484: Local classes and their members are instantiated along with the 4763 // containing function. 4764 if (SemaRef.getLangOpts().CPlusPlus11 && 4765 EPI.ExceptionSpec.Type != EST_None && 4766 EPI.ExceptionSpec.Type != EST_DynamicNone && 4767 EPI.ExceptionSpec.Type != EST_BasicNoexcept && 4768 !Tmpl->isInLocalScopeForInstantiation()) { 4769 FunctionDecl *ExceptionSpecTemplate = Tmpl; 4770 if (EPI.ExceptionSpec.Type == EST_Uninstantiated) 4771 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; 4772 ExceptionSpecificationType NewEST = EST_Uninstantiated; 4773 if (EPI.ExceptionSpec.Type == EST_Unevaluated) 4774 NewEST = EST_Unevaluated; 4775 4776 // Mark the function has having an uninstantiated exception specification. 4777 const FunctionProtoType *NewProto 4778 = New->getType()->getAs<FunctionProtoType>(); 4779 assert(NewProto && "Template instantiation without function prototype?"); 4780 EPI = NewProto->getExtProtoInfo(); 4781 EPI.ExceptionSpec.Type = NewEST; 4782 EPI.ExceptionSpec.SourceDecl = New; 4783 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; 4784 New->setType(SemaRef.Context.getFunctionType( 4785 NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); 4786 } else { 4787 Sema::ContextRAII SwitchContext(SemaRef, New); 4788 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); 4789 } 4790 } 4791 4792 // Get the definition. Leaves the variable unchanged if undefined. 4793 const FunctionDecl *Definition = Tmpl; 4794 Tmpl->isDefined(Definition); 4795 4796 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, 4797 LateAttrs, StartingScope); 4798 4799 return false; 4800 } 4801 4802 /// Initializes common fields of an instantiated method 4803 /// declaration (New) from the corresponding fields of its template 4804 /// (Tmpl). 4805 /// 4806 /// \returns true if there was an error 4807 bool 4808 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, 4809 CXXMethodDecl *Tmpl) { 4810 if (InitFunctionInstantiation(New, Tmpl)) 4811 return true; 4812 4813 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11) 4814 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New)); 4815 4816 New->setAccess(Tmpl->getAccess()); 4817 if (Tmpl->isVirtualAsWritten()) 4818 New->setVirtualAsWritten(true); 4819 4820 // FIXME: New needs a pointer to Tmpl 4821 return false; 4822 } 4823 4824 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New, 4825 FunctionDecl *Tmpl) { 4826 // Transfer across any unqualified lookups. 4827 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) { 4828 SmallVector<DeclAccessPair, 32> Lookups; 4829 Lookups.reserve(DFI->getUnqualifiedLookups().size()); 4830 bool AnyChanged = false; 4831 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) { 4832 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(), 4833 DA.getDecl(), TemplateArgs); 4834 if (!D) 4835 return true; 4836 AnyChanged |= (D != DA.getDecl()); 4837 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess())); 4838 } 4839 4840 // It's unlikely that substitution will change any declarations. Don't 4841 // store an unnecessary copy in that case. 4842 New->setDefaultedFunctionInfo( 4843 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create( 4844 SemaRef.Context, Lookups) 4845 : DFI); 4846 } 4847 4848 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation()); 4849 return false; 4850 } 4851 4852 /// Instantiate (or find existing instantiation of) a function template with a 4853 /// given set of template arguments. 4854 /// 4855 /// Usually this should not be used, and template argument deduction should be 4856 /// used in its place. 4857 FunctionDecl * 4858 Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, 4859 const TemplateArgumentList *Args, 4860 SourceLocation Loc) { 4861 FunctionDecl *FD = FTD->getTemplatedDecl(); 4862 4863 sema::TemplateDeductionInfo Info(Loc); 4864 InstantiatingTemplate Inst( 4865 *this, Loc, FTD, Args->asArray(), 4866 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 4867 if (Inst.isInvalid()) 4868 return nullptr; 4869 4870 ContextRAII SavedContext(*this, FD); 4871 MultiLevelTemplateArgumentList MArgs(FTD, Args->asArray(), 4872 /*Final=*/false); 4873 4874 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs)); 4875 } 4876 4877 /// Instantiate the definition of the given function from its 4878 /// template. 4879 /// 4880 /// \param PointOfInstantiation the point at which the instantiation was 4881 /// required. Note that this is not precisely a "point of instantiation" 4882 /// for the function, but it's close. 4883 /// 4884 /// \param Function the already-instantiated declaration of a 4885 /// function template specialization or member function of a class template 4886 /// specialization. 4887 /// 4888 /// \param Recursive if true, recursively instantiates any functions that 4889 /// are required by this instantiation. 4890 /// 4891 /// \param DefinitionRequired if true, then we are performing an explicit 4892 /// instantiation where the body of the function is required. Complain if 4893 /// there is no such body. 4894 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, 4895 FunctionDecl *Function, 4896 bool Recursive, 4897 bool DefinitionRequired, 4898 bool AtEndOfTU) { 4899 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function)) 4900 return; 4901 4902 // Never instantiate an explicit specialization except if it is a class scope 4903 // explicit specialization. 4904 TemplateSpecializationKind TSK = 4905 Function->getTemplateSpecializationKindForInstantiation(); 4906 if (TSK == TSK_ExplicitSpecialization) 4907 return; 4908 4909 // Never implicitly instantiate a builtin; we don't actually need a function 4910 // body. 4911 if (Function->getBuiltinID() && TSK == TSK_ImplicitInstantiation && 4912 !DefinitionRequired) 4913 return; 4914 4915 // Don't instantiate a definition if we already have one. 4916 const FunctionDecl *ExistingDefn = nullptr; 4917 if (Function->isDefined(ExistingDefn, 4918 /*CheckForPendingFriendDefinition=*/true)) { 4919 if (ExistingDefn->isThisDeclarationADefinition()) 4920 return; 4921 4922 // If we're asked to instantiate a function whose body comes from an 4923 // instantiated friend declaration, attach the instantiated body to the 4924 // corresponding declaration of the function. 4925 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition()); 4926 Function = const_cast<FunctionDecl*>(ExistingDefn); 4927 } 4928 4929 // Find the function body that we'll be substituting. 4930 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); 4931 assert(PatternDecl && "instantiating a non-template"); 4932 4933 const FunctionDecl *PatternDef = PatternDecl->getDefinition(); 4934 Stmt *Pattern = nullptr; 4935 if (PatternDef) { 4936 Pattern = PatternDef->getBody(PatternDef); 4937 PatternDecl = PatternDef; 4938 if (PatternDef->willHaveBody()) 4939 PatternDef = nullptr; 4940 } 4941 4942 // FIXME: We need to track the instantiation stack in order to know which 4943 // definitions should be visible within this instantiation. 4944 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, 4945 Function->getInstantiatedFromMemberFunction(), 4946 PatternDecl, PatternDef, TSK, 4947 /*Complain*/DefinitionRequired)) { 4948 if (DefinitionRequired) 4949 Function->setInvalidDecl(); 4950 else if (TSK == TSK_ExplicitInstantiationDefinition || 4951 (Function->isConstexpr() && !Recursive)) { 4952 // Try again at the end of the translation unit (at which point a 4953 // definition will be required). 4954 assert(!Recursive); 4955 Function->setInstantiationIsPending(true); 4956 PendingInstantiations.push_back( 4957 std::make_pair(Function, PointOfInstantiation)); 4958 } else if (TSK == TSK_ImplicitInstantiation) { 4959 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 4960 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 4961 Diag(PointOfInstantiation, diag::warn_func_template_missing) 4962 << Function; 4963 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 4964 if (getLangOpts().CPlusPlus11) 4965 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) 4966 << Function; 4967 } 4968 } 4969 4970 return; 4971 } 4972 4973 // Postpone late parsed template instantiations. 4974 if (PatternDecl->isLateTemplateParsed() && 4975 !LateTemplateParser) { 4976 Function->setInstantiationIsPending(true); 4977 LateParsedInstantiations.push_back( 4978 std::make_pair(Function, PointOfInstantiation)); 4979 return; 4980 } 4981 4982 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() { 4983 std::string Name; 4984 llvm::raw_string_ostream OS(Name); 4985 Function->getNameForDiagnostic(OS, getPrintingPolicy(), 4986 /*Qualified=*/true); 4987 return Name; 4988 }); 4989 4990 // If we're performing recursive template instantiation, create our own 4991 // queue of pending implicit instantiations that we will instantiate later, 4992 // while we're still within our own instantiation context. 4993 // This has to happen before LateTemplateParser below is called, so that 4994 // it marks vtables used in late parsed templates as used. 4995 GlobalEagerInstantiationScope GlobalInstantiations(*this, 4996 /*Enabled=*/Recursive); 4997 LocalEagerInstantiationScope LocalInstantiations(*this); 4998 4999 // Call the LateTemplateParser callback if there is a need to late parse 5000 // a templated function definition. 5001 if (!Pattern && PatternDecl->isLateTemplateParsed() && 5002 LateTemplateParser) { 5003 // FIXME: Optimize to allow individual templates to be deserialized. 5004 if (PatternDecl->isFromASTFile()) 5005 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); 5006 5007 auto LPTIter = LateParsedTemplateMap.find(PatternDecl); 5008 assert(LPTIter != LateParsedTemplateMap.end() && 5009 "missing LateParsedTemplate"); 5010 LateTemplateParser(OpaqueParser, *LPTIter->second); 5011 Pattern = PatternDecl->getBody(PatternDecl); 5012 updateAttrsForLateParsedTemplate(PatternDecl, Function); 5013 } 5014 5015 // Note, we should never try to instantiate a deleted function template. 5016 assert((Pattern || PatternDecl->isDefaulted() || 5017 PatternDecl->hasSkippedBody()) && 5018 "unexpected kind of function template definition"); 5019 5020 // C++1y [temp.explicit]p10: 5021 // Except for inline functions, declarations with types deduced from their 5022 // initializer or return value, and class template specializations, other 5023 // explicit instantiation declarations have the effect of suppressing the 5024 // implicit instantiation of the entity to which they refer. 5025 if (TSK == TSK_ExplicitInstantiationDeclaration && 5026 !PatternDecl->isInlined() && 5027 !PatternDecl->getReturnType()->getContainedAutoType()) 5028 return; 5029 5030 if (PatternDecl->isInlined()) { 5031 // Function, and all later redeclarations of it (from imported modules, 5032 // for instance), are now implicitly inline. 5033 for (auto *D = Function->getMostRecentDecl(); /**/; 5034 D = D->getPreviousDecl()) { 5035 D->setImplicitlyInline(); 5036 if (D == Function) 5037 break; 5038 } 5039 } 5040 5041 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); 5042 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5043 return; 5044 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(), 5045 "instantiating function definition"); 5046 5047 // The instantiation is visible here, even if it was first declared in an 5048 // unimported module. 5049 Function->setVisibleDespiteOwningModule(); 5050 5051 // Copy the source locations from the pattern. 5052 Function->setLocation(PatternDecl->getLocation()); 5053 Function->setInnerLocStart(PatternDecl->getInnerLocStart()); 5054 Function->setRangeEnd(PatternDecl->getEndLoc()); 5055 5056 EnterExpressionEvaluationContext EvalContext( 5057 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 5058 5059 // Introduce a new scope where local variable instantiations will be 5060 // recorded, unless we're actually a member function within a local 5061 // class, in which case we need to merge our results with the parent 5062 // scope (of the enclosing function). The exception is instantiating 5063 // a function template specialization, since the template to be 5064 // instantiated already has references to locals properly substituted. 5065 bool MergeWithParentScope = false; 5066 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) 5067 MergeWithParentScope = 5068 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization(); 5069 5070 LocalInstantiationScope Scope(*this, MergeWithParentScope); 5071 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() { 5072 // Special members might get their TypeSourceInfo set up w.r.t the 5073 // PatternDecl context, in which case parameters could still be pointing 5074 // back to the original class, make sure arguments are bound to the 5075 // instantiated record instead. 5076 assert(PatternDecl->isDefaulted() && 5077 "Special member needs to be defaulted"); 5078 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember(); 5079 if (!(PatternSM == Sema::CXXCopyConstructor || 5080 PatternSM == Sema::CXXCopyAssignment || 5081 PatternSM == Sema::CXXMoveConstructor || 5082 PatternSM == Sema::CXXMoveAssignment)) 5083 return; 5084 5085 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()); 5086 const auto *PatternRec = 5087 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext()); 5088 if (!NewRec || !PatternRec) 5089 return; 5090 if (!PatternRec->isLambda()) 5091 return; 5092 5093 struct SpecialMemberTypeInfoRebuilder 5094 : TreeTransform<SpecialMemberTypeInfoRebuilder> { 5095 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>; 5096 const CXXRecordDecl *OldDecl; 5097 CXXRecordDecl *NewDecl; 5098 5099 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O, 5100 CXXRecordDecl *N) 5101 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {} 5102 5103 bool TransformExceptionSpec(SourceLocation Loc, 5104 FunctionProtoType::ExceptionSpecInfo &ESI, 5105 SmallVectorImpl<QualType> &Exceptions, 5106 bool &Changed) { 5107 return false; 5108 } 5109 5110 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) { 5111 const RecordType *T = TL.getTypePtr(); 5112 RecordDecl *Record = cast_or_null<RecordDecl>( 5113 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); 5114 if (Record != OldDecl) 5115 return Base::TransformRecordType(TLB, TL); 5116 5117 QualType Result = getDerived().RebuildRecordType(NewDecl); 5118 if (Result.isNull()) 5119 return QualType(); 5120 5121 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result); 5122 NewTL.setNameLoc(TL.getNameLoc()); 5123 return Result; 5124 } 5125 } IR{*this, PatternRec, NewRec}; 5126 5127 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo()); 5128 assert(NewSI && "Type Transform failed?"); 5129 Function->setType(NewSI->getType()); 5130 Function->setTypeSourceInfo(NewSI); 5131 5132 ParmVarDecl *Parm = Function->getParamDecl(0); 5133 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo()); 5134 Parm->setType(NewParmSI->getType()); 5135 Parm->setTypeSourceInfo(NewParmSI); 5136 }; 5137 5138 if (PatternDecl->isDefaulted()) { 5139 RebuildTypeSourceInfoForDefaultSpecialMembers(); 5140 SetDeclDefaulted(Function, PatternDecl->getLocation()); 5141 } else { 5142 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 5143 Function, Function->getLexicalDeclContext(), /*Final=*/false, nullptr, 5144 false, PatternDecl); 5145 5146 // Substitute into the qualifier; we can get a substitution failure here 5147 // through evil use of alias templates. 5148 // FIXME: Is CurContext correct for this? Should we go to the (instantiation 5149 // of the) lexical context of the pattern? 5150 SubstQualifier(*this, PatternDecl, Function, TemplateArgs); 5151 5152 ActOnStartOfFunctionDef(nullptr, Function); 5153 5154 // Enter the scope of this instantiation. We don't use 5155 // PushDeclContext because we don't have a scope. 5156 Sema::ContextRAII savedContext(*this, Function); 5157 5158 FPFeaturesStateRAII SavedFPFeatures(*this); 5159 CurFPFeatures = FPOptions(getLangOpts()); 5160 FpPragmaStack.CurrentValue = FPOptionsOverride(); 5161 5162 if (addInstantiatedParametersToScope(Function, PatternDecl, Scope, 5163 TemplateArgs)) 5164 return; 5165 5166 StmtResult Body; 5167 if (PatternDecl->hasSkippedBody()) { 5168 ActOnSkippedFunctionBody(Function); 5169 Body = nullptr; 5170 } else { 5171 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) { 5172 // If this is a constructor, instantiate the member initializers. 5173 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl), 5174 TemplateArgs); 5175 5176 // If this is an MS ABI dllexport default constructor, instantiate any 5177 // default arguments. 5178 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 5179 Ctor->isDefaultConstructor()) { 5180 InstantiateDefaultCtorDefaultArgs(Ctor); 5181 } 5182 } 5183 5184 // Instantiate the function body. 5185 Body = SubstStmt(Pattern, TemplateArgs); 5186 5187 if (Body.isInvalid()) 5188 Function->setInvalidDecl(); 5189 } 5190 // FIXME: finishing the function body while in an expression evaluation 5191 // context seems wrong. Investigate more. 5192 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); 5193 5194 PerformDependentDiagnostics(PatternDecl, TemplateArgs); 5195 5196 if (auto *Listener = getASTMutationListener()) 5197 Listener->FunctionDefinitionInstantiated(Function); 5198 5199 savedContext.pop(); 5200 } 5201 5202 DeclGroupRef DG(Function); 5203 Consumer.HandleTopLevelDecl(DG); 5204 5205 // This class may have local implicit instantiations that need to be 5206 // instantiation within this scope. 5207 LocalInstantiations.perform(); 5208 Scope.Exit(); 5209 GlobalInstantiations.perform(); 5210 } 5211 5212 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( 5213 VarTemplateDecl *VarTemplate, VarDecl *FromVar, 5214 const TemplateArgumentList &TemplateArgList, 5215 const TemplateArgumentListInfo &TemplateArgsInfo, 5216 SmallVectorImpl<TemplateArgument> &Converted, 5217 SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs, 5218 LocalInstantiationScope *StartingScope) { 5219 if (FromVar->isInvalidDecl()) 5220 return nullptr; 5221 5222 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); 5223 if (Inst.isInvalid()) 5224 return nullptr; 5225 5226 // Instantiate the first declaration of the variable template: for a partial 5227 // specialization of a static data member template, the first declaration may 5228 // or may not be the declaration in the class; if it's in the class, we want 5229 // to instantiate a member in the class (a declaration), and if it's outside, 5230 // we want to instantiate a definition. 5231 // 5232 // If we're instantiating an explicitly-specialized member template or member 5233 // partial specialization, don't do this. The member specialization completely 5234 // replaces the original declaration in this case. 5235 bool IsMemberSpec = false; 5236 MultiLevelTemplateArgumentList MultiLevelList; 5237 if (auto *PartialSpec = 5238 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) { 5239 IsMemberSpec = PartialSpec->isMemberSpecialization(); 5240 MultiLevelList.addOuterTemplateArguments( 5241 PartialSpec, TemplateArgList.asArray(), /*Final=*/false); 5242 } else { 5243 assert(VarTemplate == FromVar->getDescribedVarTemplate()); 5244 IsMemberSpec = VarTemplate->isMemberSpecialization(); 5245 MultiLevelList.addOuterTemplateArguments( 5246 VarTemplate, TemplateArgList.asArray(), /*Final=*/false); 5247 } 5248 if (!IsMemberSpec) 5249 FromVar = FromVar->getFirstDecl(); 5250 5251 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), 5252 MultiLevelList); 5253 5254 // TODO: Set LateAttrs and StartingScope ... 5255 5256 return cast_or_null<VarTemplateSpecializationDecl>( 5257 Instantiator.VisitVarTemplateSpecializationDecl( 5258 VarTemplate, FromVar, TemplateArgsInfo, Converted)); 5259 } 5260 5261 /// Instantiates a variable template specialization by completing it 5262 /// with appropriate type information and initializer. 5263 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( 5264 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, 5265 const MultiLevelTemplateArgumentList &TemplateArgs) { 5266 assert(PatternDecl->isThisDeclarationADefinition() && 5267 "don't have a definition to instantiate from"); 5268 5269 // Do substitution on the type of the declaration 5270 TypeSourceInfo *DI = 5271 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, 5272 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); 5273 if (!DI) 5274 return nullptr; 5275 5276 // Update the type of this variable template specialization. 5277 VarSpec->setType(DI->getType()); 5278 5279 // Convert the declaration into a definition now. 5280 VarSpec->setCompleteDefinition(); 5281 5282 // Instantiate the initializer. 5283 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); 5284 5285 if (getLangOpts().OpenCL) 5286 deduceOpenCLAddressSpace(VarSpec); 5287 5288 return VarSpec; 5289 } 5290 5291 /// BuildVariableInstantiation - Used after a new variable has been created. 5292 /// Sets basic variable data and decides whether to postpone the 5293 /// variable instantiation. 5294 void Sema::BuildVariableInstantiation( 5295 VarDecl *NewVar, VarDecl *OldVar, 5296 const MultiLevelTemplateArgumentList &TemplateArgs, 5297 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, 5298 LocalInstantiationScope *StartingScope, 5299 bool InstantiatingVarTemplate, 5300 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) { 5301 // Instantiating a partial specialization to produce a partial 5302 // specialization. 5303 bool InstantiatingVarTemplatePartialSpec = 5304 isa<VarTemplatePartialSpecializationDecl>(OldVar) && 5305 isa<VarTemplatePartialSpecializationDecl>(NewVar); 5306 // Instantiating from a variable template (or partial specialization) to 5307 // produce a variable template specialization. 5308 bool InstantiatingSpecFromTemplate = 5309 isa<VarTemplateSpecializationDecl>(NewVar) && 5310 (OldVar->getDescribedVarTemplate() || 5311 isa<VarTemplatePartialSpecializationDecl>(OldVar)); 5312 5313 // If we are instantiating a local extern declaration, the 5314 // instantiation belongs lexically to the containing function. 5315 // If we are instantiating a static data member defined 5316 // out-of-line, the instantiation will have the same lexical 5317 // context (which will be a namespace scope) as the template. 5318 if (OldVar->isLocalExternDecl()) { 5319 NewVar->setLocalExternDecl(); 5320 NewVar->setLexicalDeclContext(Owner); 5321 } else if (OldVar->isOutOfLine()) 5322 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); 5323 NewVar->setTSCSpec(OldVar->getTSCSpec()); 5324 NewVar->setInitStyle(OldVar->getInitStyle()); 5325 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); 5326 NewVar->setObjCForDecl(OldVar->isObjCForDecl()); 5327 NewVar->setConstexpr(OldVar->isConstexpr()); 5328 NewVar->setInitCapture(OldVar->isInitCapture()); 5329 NewVar->setPreviousDeclInSameBlockScope( 5330 OldVar->isPreviousDeclInSameBlockScope()); 5331 NewVar->setAccess(OldVar->getAccess()); 5332 5333 if (!OldVar->isStaticDataMember()) { 5334 if (OldVar->isUsed(false)) 5335 NewVar->setIsUsed(); 5336 NewVar->setReferenced(OldVar->isReferenced()); 5337 } 5338 5339 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); 5340 5341 LookupResult Previous( 5342 *this, NewVar->getDeclName(), NewVar->getLocation(), 5343 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 5344 : Sema::LookupOrdinaryName, 5345 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration 5346 : forRedeclarationInCurContext()); 5347 5348 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && 5349 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || 5350 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { 5351 // We have a previous declaration. Use that one, so we merge with the 5352 // right type. 5353 if (NamedDecl *NewPrev = FindInstantiatedDecl( 5354 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) 5355 Previous.addDecl(NewPrev); 5356 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && 5357 OldVar->hasLinkage()) { 5358 LookupQualifiedName(Previous, NewVar->getDeclContext(), false); 5359 } else if (PrevDeclForVarTemplateSpecialization) { 5360 Previous.addDecl(PrevDeclForVarTemplateSpecialization); 5361 } 5362 CheckVariableDeclaration(NewVar, Previous); 5363 5364 if (!InstantiatingVarTemplate) { 5365 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); 5366 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) 5367 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); 5368 } 5369 5370 if (!OldVar->isOutOfLine()) { 5371 if (NewVar->getDeclContext()->isFunctionOrMethod()) 5372 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); 5373 } 5374 5375 // Link instantiations of static data members back to the template from 5376 // which they were instantiated. 5377 // 5378 // Don't do this when instantiating a template (we link the template itself 5379 // back in that case) nor when instantiating a static data member template 5380 // (that's not a member specialization). 5381 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate && 5382 !InstantiatingSpecFromTemplate) 5383 NewVar->setInstantiationOfStaticDataMember(OldVar, 5384 TSK_ImplicitInstantiation); 5385 5386 // If the pattern is an (in-class) explicit specialization, then the result 5387 // is also an explicit specialization. 5388 if (VarTemplateSpecializationDecl *OldVTSD = 5389 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) { 5390 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization && 5391 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD)) 5392 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind( 5393 TSK_ExplicitSpecialization); 5394 } 5395 5396 // Forward the mangling number from the template to the instantiated decl. 5397 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); 5398 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); 5399 5400 // Figure out whether to eagerly instantiate the initializer. 5401 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) { 5402 // We're producing a template. Don't instantiate the initializer yet. 5403 } else if (NewVar->getType()->isUndeducedType()) { 5404 // We need the type to complete the declaration of the variable. 5405 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 5406 } else if (InstantiatingSpecFromTemplate || 5407 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() && 5408 !NewVar->isThisDeclarationADefinition())) { 5409 // Delay instantiation of the initializer for variable template 5410 // specializations or inline static data members until a definition of the 5411 // variable is needed. 5412 } else { 5413 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 5414 } 5415 5416 // Diagnose unused local variables with dependent types, where the diagnostic 5417 // will have been deferred. 5418 if (!NewVar->isInvalidDecl() && 5419 NewVar->getDeclContext()->isFunctionOrMethod() && 5420 OldVar->getType()->isDependentType()) 5421 DiagnoseUnusedDecl(NewVar); 5422 } 5423 5424 /// Instantiate the initializer of a variable. 5425 void Sema::InstantiateVariableInitializer( 5426 VarDecl *Var, VarDecl *OldVar, 5427 const MultiLevelTemplateArgumentList &TemplateArgs) { 5428 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 5429 L->VariableDefinitionInstantiated(Var); 5430 5431 // We propagate the 'inline' flag with the initializer, because it 5432 // would otherwise imply that the variable is a definition for a 5433 // non-static data member. 5434 if (OldVar->isInlineSpecified()) 5435 Var->setInlineSpecified(); 5436 else if (OldVar->isInline()) 5437 Var->setImplicitlyInline(); 5438 5439 if (OldVar->getInit()) { 5440 EnterExpressionEvaluationContext Evaluated( 5441 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); 5442 5443 // Instantiate the initializer. 5444 ExprResult Init; 5445 5446 { 5447 ContextRAII SwitchContext(*this, Var->getDeclContext()); 5448 Init = SubstInitializer(OldVar->getInit(), TemplateArgs, 5449 OldVar->getInitStyle() == VarDecl::CallInit); 5450 } 5451 5452 if (!Init.isInvalid()) { 5453 Expr *InitExpr = Init.get(); 5454 5455 if (Var->hasAttr<DLLImportAttr>() && 5456 (!InitExpr || 5457 !InitExpr->isConstantInitializer(getASTContext(), false))) { 5458 // Do not dynamically initialize dllimport variables. 5459 } else if (InitExpr) { 5460 bool DirectInit = OldVar->isDirectInit(); 5461 AddInitializerToDecl(Var, InitExpr, DirectInit); 5462 } else 5463 ActOnUninitializedDecl(Var); 5464 } else { 5465 // FIXME: Not too happy about invalidating the declaration 5466 // because of a bogus initializer. 5467 Var->setInvalidDecl(); 5468 } 5469 } else { 5470 // `inline` variables are a definition and declaration all in one; we won't 5471 // pick up an initializer from anywhere else. 5472 if (Var->isStaticDataMember() && !Var->isInline()) { 5473 if (!Var->isOutOfLine()) 5474 return; 5475 5476 // If the declaration inside the class had an initializer, don't add 5477 // another one to the out-of-line definition. 5478 if (OldVar->getFirstDecl()->hasInit()) 5479 return; 5480 } 5481 5482 // We'll add an initializer to a for-range declaration later. 5483 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl()) 5484 return; 5485 5486 ActOnUninitializedDecl(Var); 5487 } 5488 5489 if (getLangOpts().CUDA) 5490 checkAllowedCUDAInitializer(Var); 5491 } 5492 5493 /// Instantiate the definition of the given variable from its 5494 /// template. 5495 /// 5496 /// \param PointOfInstantiation the point at which the instantiation was 5497 /// required. Note that this is not precisely a "point of instantiation" 5498 /// for the variable, but it's close. 5499 /// 5500 /// \param Var the already-instantiated declaration of a templated variable. 5501 /// 5502 /// \param Recursive if true, recursively instantiates any functions that 5503 /// are required by this instantiation. 5504 /// 5505 /// \param DefinitionRequired if true, then we are performing an explicit 5506 /// instantiation where a definition of the variable is required. Complain 5507 /// if there is no such definition. 5508 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, 5509 VarDecl *Var, bool Recursive, 5510 bool DefinitionRequired, bool AtEndOfTU) { 5511 if (Var->isInvalidDecl()) 5512 return; 5513 5514 // Never instantiate an explicitly-specialized entity. 5515 TemplateSpecializationKind TSK = 5516 Var->getTemplateSpecializationKindForInstantiation(); 5517 if (TSK == TSK_ExplicitSpecialization) 5518 return; 5519 5520 // Find the pattern and the arguments to substitute into it. 5521 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern(); 5522 assert(PatternDecl && "no pattern for templated variable"); 5523 MultiLevelTemplateArgumentList TemplateArgs = 5524 getTemplateInstantiationArgs(Var); 5525 5526 VarTemplateSpecializationDecl *VarSpec = 5527 dyn_cast<VarTemplateSpecializationDecl>(Var); 5528 if (VarSpec) { 5529 // If this is a static data member template, there might be an 5530 // uninstantiated initializer on the declaration. If so, instantiate 5531 // it now. 5532 // 5533 // FIXME: This largely duplicates what we would do below. The difference 5534 // is that along this path we may instantiate an initializer from an 5535 // in-class declaration of the template and instantiate the definition 5536 // from a separate out-of-class definition. 5537 if (PatternDecl->isStaticDataMember() && 5538 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && 5539 !Var->hasInit()) { 5540 // FIXME: Factor out the duplicated instantiation context setup/tear down 5541 // code here. 5542 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5543 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5544 return; 5545 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5546 "instantiating variable initializer"); 5547 5548 // The instantiation is visible here, even if it was first declared in an 5549 // unimported module. 5550 Var->setVisibleDespiteOwningModule(); 5551 5552 // If we're performing recursive template instantiation, create our own 5553 // queue of pending implicit instantiations that we will instantiate 5554 // later, while we're still within our own instantiation context. 5555 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5556 /*Enabled=*/Recursive); 5557 LocalInstantiationScope Local(*this); 5558 LocalEagerInstantiationScope LocalInstantiations(*this); 5559 5560 // Enter the scope of this instantiation. We don't use 5561 // PushDeclContext because we don't have a scope. 5562 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5563 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); 5564 PreviousContext.pop(); 5565 5566 // This variable may have local implicit instantiations that need to be 5567 // instantiated within this scope. 5568 LocalInstantiations.perform(); 5569 Local.Exit(); 5570 GlobalInstantiations.perform(); 5571 } 5572 } else { 5573 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && 5574 "not a static data member?"); 5575 } 5576 5577 VarDecl *Def = PatternDecl->getDefinition(getASTContext()); 5578 5579 // If we don't have a definition of the variable template, we won't perform 5580 // any instantiation. Rather, we rely on the user to instantiate this 5581 // definition (or provide a specialization for it) in another translation 5582 // unit. 5583 if (!Def && !DefinitionRequired) { 5584 if (TSK == TSK_ExplicitInstantiationDefinition) { 5585 PendingInstantiations.push_back( 5586 std::make_pair(Var, PointOfInstantiation)); 5587 } else if (TSK == TSK_ImplicitInstantiation) { 5588 // Warn about missing definition at the end of translation unit. 5589 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 5590 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 5591 Diag(PointOfInstantiation, diag::warn_var_template_missing) 5592 << Var; 5593 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 5594 if (getLangOpts().CPlusPlus11) 5595 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; 5596 } 5597 return; 5598 } 5599 } 5600 5601 // FIXME: We need to track the instantiation stack in order to know which 5602 // definitions should be visible within this instantiation. 5603 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). 5604 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, 5605 /*InstantiatedFromMember*/false, 5606 PatternDecl, Def, TSK, 5607 /*Complain*/DefinitionRequired)) 5608 return; 5609 5610 // C++11 [temp.explicit]p10: 5611 // Except for inline functions, const variables of literal types, variables 5612 // of reference types, [...] explicit instantiation declarations 5613 // have the effect of suppressing the implicit instantiation of the entity 5614 // to which they refer. 5615 // 5616 // FIXME: That's not exactly the same as "might be usable in constant 5617 // expressions", which only allows constexpr variables and const integral 5618 // types, not arbitrary const literal types. 5619 if (TSK == TSK_ExplicitInstantiationDeclaration && 5620 !Var->mightBeUsableInConstantExpressions(getASTContext())) 5621 return; 5622 5623 // Make sure to pass the instantiated variable to the consumer at the end. 5624 struct PassToConsumerRAII { 5625 ASTConsumer &Consumer; 5626 VarDecl *Var; 5627 5628 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) 5629 : Consumer(Consumer), Var(Var) { } 5630 5631 ~PassToConsumerRAII() { 5632 Consumer.HandleCXXStaticMemberVarInstantiation(Var); 5633 } 5634 } PassToConsumerRAII(Consumer, Var); 5635 5636 // If we already have a definition, we're done. 5637 if (VarDecl *Def = Var->getDefinition()) { 5638 // We may be explicitly instantiating something we've already implicitly 5639 // instantiated. 5640 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), 5641 PointOfInstantiation); 5642 return; 5643 } 5644 5645 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5646 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5647 return; 5648 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5649 "instantiating variable definition"); 5650 5651 // If we're performing recursive template instantiation, create our own 5652 // queue of pending implicit instantiations that we will instantiate later, 5653 // while we're still within our own instantiation context. 5654 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5655 /*Enabled=*/Recursive); 5656 5657 // Enter the scope of this instantiation. We don't use 5658 // PushDeclContext because we don't have a scope. 5659 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5660 LocalInstantiationScope Local(*this); 5661 5662 LocalEagerInstantiationScope LocalInstantiations(*this); 5663 5664 VarDecl *OldVar = Var; 5665 if (Def->isStaticDataMember() && !Def->isOutOfLine()) { 5666 // We're instantiating an inline static data member whose definition was 5667 // provided inside the class. 5668 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5669 } else if (!VarSpec) { 5670 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), 5671 TemplateArgs)); 5672 } else if (Var->isStaticDataMember() && 5673 Var->getLexicalDeclContext()->isRecord()) { 5674 // We need to instantiate the definition of a static data member template, 5675 // and all we have is the in-class declaration of it. Instantiate a separate 5676 // declaration of the definition. 5677 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), 5678 TemplateArgs); 5679 5680 TemplateArgumentListInfo TemplateArgInfo; 5681 if (const ASTTemplateArgumentListInfo *ArgInfo = 5682 VarSpec->getTemplateArgsInfo()) { 5683 TemplateArgInfo.setLAngleLoc(ArgInfo->getLAngleLoc()); 5684 TemplateArgInfo.setRAngleLoc(ArgInfo->getRAngleLoc()); 5685 for (const TemplateArgumentLoc &Arg : ArgInfo->arguments()) 5686 TemplateArgInfo.addArgument(Arg); 5687 } 5688 5689 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( 5690 VarSpec->getSpecializedTemplate(), Def, TemplateArgInfo, 5691 VarSpec->getTemplateArgs().asArray(), VarSpec)); 5692 if (Var) { 5693 llvm::PointerUnion<VarTemplateDecl *, 5694 VarTemplatePartialSpecializationDecl *> PatternPtr = 5695 VarSpec->getSpecializedTemplateOrPartial(); 5696 if (VarTemplatePartialSpecializationDecl *Partial = 5697 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) 5698 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( 5699 Partial, &VarSpec->getTemplateInstantiationArgs()); 5700 5701 // Attach the initializer. 5702 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5703 } 5704 } else 5705 // Complete the existing variable's definition with an appropriately 5706 // substituted type and initializer. 5707 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); 5708 5709 PreviousContext.pop(); 5710 5711 if (Var) { 5712 PassToConsumerRAII.Var = Var; 5713 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), 5714 OldVar->getPointOfInstantiation()); 5715 } 5716 5717 // This variable may have local implicit instantiations that need to be 5718 // instantiated within this scope. 5719 LocalInstantiations.perform(); 5720 Local.Exit(); 5721 GlobalInstantiations.perform(); 5722 } 5723 5724 void 5725 Sema::InstantiateMemInitializers(CXXConstructorDecl *New, 5726 const CXXConstructorDecl *Tmpl, 5727 const MultiLevelTemplateArgumentList &TemplateArgs) { 5728 5729 SmallVector<CXXCtorInitializer*, 4> NewInits; 5730 bool AnyErrors = Tmpl->isInvalidDecl(); 5731 5732 // Instantiate all the initializers. 5733 for (const auto *Init : Tmpl->inits()) { 5734 // Only instantiate written initializers, let Sema re-construct implicit 5735 // ones. 5736 if (!Init->isWritten()) 5737 continue; 5738 5739 SourceLocation EllipsisLoc; 5740 5741 if (Init->isPackExpansion()) { 5742 // This is a pack expansion. We should expand it now. 5743 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); 5744 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 5745 collectUnexpandedParameterPacks(BaseTL, Unexpanded); 5746 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); 5747 bool ShouldExpand = false; 5748 bool RetainExpansion = false; 5749 std::optional<unsigned> NumExpansions; 5750 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), 5751 BaseTL.getSourceRange(), 5752 Unexpanded, 5753 TemplateArgs, ShouldExpand, 5754 RetainExpansion, 5755 NumExpansions)) { 5756 AnyErrors = true; 5757 New->setInvalidDecl(); 5758 continue; 5759 } 5760 assert(ShouldExpand && "Partial instantiation of base initializer?"); 5761 5762 // Loop over all of the arguments in the argument pack(s), 5763 for (unsigned I = 0; I != *NumExpansions; ++I) { 5764 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); 5765 5766 // Instantiate the initializer. 5767 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5768 /*CXXDirectInit=*/true); 5769 if (TempInit.isInvalid()) { 5770 AnyErrors = true; 5771 break; 5772 } 5773 5774 // Instantiate the base type. 5775 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), 5776 TemplateArgs, 5777 Init->getSourceLocation(), 5778 New->getDeclName()); 5779 if (!BaseTInfo) { 5780 AnyErrors = true; 5781 break; 5782 } 5783 5784 // Build the initializer. 5785 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), 5786 BaseTInfo, TempInit.get(), 5787 New->getParent(), 5788 SourceLocation()); 5789 if (NewInit.isInvalid()) { 5790 AnyErrors = true; 5791 break; 5792 } 5793 5794 NewInits.push_back(NewInit.get()); 5795 } 5796 5797 continue; 5798 } 5799 5800 // Instantiate the initializer. 5801 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5802 /*CXXDirectInit=*/true); 5803 if (TempInit.isInvalid()) { 5804 AnyErrors = true; 5805 continue; 5806 } 5807 5808 MemInitResult NewInit; 5809 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { 5810 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), 5811 TemplateArgs, 5812 Init->getSourceLocation(), 5813 New->getDeclName()); 5814 if (!TInfo) { 5815 AnyErrors = true; 5816 New->setInvalidDecl(); 5817 continue; 5818 } 5819 5820 if (Init->isBaseInitializer()) 5821 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), 5822 New->getParent(), EllipsisLoc); 5823 else 5824 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), 5825 cast<CXXRecordDecl>(CurContext->getParent())); 5826 } else if (Init->isMemberInitializer()) { 5827 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( 5828 Init->getMemberLocation(), 5829 Init->getMember(), 5830 TemplateArgs)); 5831 if (!Member) { 5832 AnyErrors = true; 5833 New->setInvalidDecl(); 5834 continue; 5835 } 5836 5837 NewInit = BuildMemberInitializer(Member, TempInit.get(), 5838 Init->getSourceLocation()); 5839 } else if (Init->isIndirectMemberInitializer()) { 5840 IndirectFieldDecl *IndirectMember = 5841 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( 5842 Init->getMemberLocation(), 5843 Init->getIndirectMember(), TemplateArgs)); 5844 5845 if (!IndirectMember) { 5846 AnyErrors = true; 5847 New->setInvalidDecl(); 5848 continue; 5849 } 5850 5851 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), 5852 Init->getSourceLocation()); 5853 } 5854 5855 if (NewInit.isInvalid()) { 5856 AnyErrors = true; 5857 New->setInvalidDecl(); 5858 } else { 5859 NewInits.push_back(NewInit.get()); 5860 } 5861 } 5862 5863 // Assign all the initializers to the new constructor. 5864 ActOnMemInitializers(New, 5865 /*FIXME: ColonLoc */ 5866 SourceLocation(), 5867 NewInits, 5868 AnyErrors); 5869 } 5870 5871 // TODO: this could be templated if the various decl types used the 5872 // same method name. 5873 static bool isInstantiationOf(ClassTemplateDecl *Pattern, 5874 ClassTemplateDecl *Instance) { 5875 Pattern = Pattern->getCanonicalDecl(); 5876 5877 do { 5878 Instance = Instance->getCanonicalDecl(); 5879 if (Pattern == Instance) return true; 5880 Instance = Instance->getInstantiatedFromMemberTemplate(); 5881 } while (Instance); 5882 5883 return false; 5884 } 5885 5886 static bool isInstantiationOf(FunctionTemplateDecl *Pattern, 5887 FunctionTemplateDecl *Instance) { 5888 Pattern = Pattern->getCanonicalDecl(); 5889 5890 do { 5891 Instance = Instance->getCanonicalDecl(); 5892 if (Pattern == Instance) return true; 5893 Instance = Instance->getInstantiatedFromMemberTemplate(); 5894 } while (Instance); 5895 5896 return false; 5897 } 5898 5899 static bool 5900 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, 5901 ClassTemplatePartialSpecializationDecl *Instance) { 5902 Pattern 5903 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); 5904 do { 5905 Instance = cast<ClassTemplatePartialSpecializationDecl>( 5906 Instance->getCanonicalDecl()); 5907 if (Pattern == Instance) 5908 return true; 5909 Instance = Instance->getInstantiatedFromMember(); 5910 } while (Instance); 5911 5912 return false; 5913 } 5914 5915 static bool isInstantiationOf(CXXRecordDecl *Pattern, 5916 CXXRecordDecl *Instance) { 5917 Pattern = Pattern->getCanonicalDecl(); 5918 5919 do { 5920 Instance = Instance->getCanonicalDecl(); 5921 if (Pattern == Instance) return true; 5922 Instance = Instance->getInstantiatedFromMemberClass(); 5923 } while (Instance); 5924 5925 return false; 5926 } 5927 5928 static bool isInstantiationOf(FunctionDecl *Pattern, 5929 FunctionDecl *Instance) { 5930 Pattern = Pattern->getCanonicalDecl(); 5931 5932 do { 5933 Instance = Instance->getCanonicalDecl(); 5934 if (Pattern == Instance) return true; 5935 Instance = Instance->getInstantiatedFromMemberFunction(); 5936 } while (Instance); 5937 5938 return false; 5939 } 5940 5941 static bool isInstantiationOf(EnumDecl *Pattern, 5942 EnumDecl *Instance) { 5943 Pattern = Pattern->getCanonicalDecl(); 5944 5945 do { 5946 Instance = Instance->getCanonicalDecl(); 5947 if (Pattern == Instance) return true; 5948 Instance = Instance->getInstantiatedFromMemberEnum(); 5949 } while (Instance); 5950 5951 return false; 5952 } 5953 5954 static bool isInstantiationOf(UsingShadowDecl *Pattern, 5955 UsingShadowDecl *Instance, 5956 ASTContext &C) { 5957 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), 5958 Pattern); 5959 } 5960 5961 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, 5962 ASTContext &C) { 5963 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 5964 } 5965 5966 template<typename T> 5967 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, 5968 ASTContext &Ctx) { 5969 // An unresolved using declaration can instantiate to an unresolved using 5970 // declaration, or to a using declaration or a using declaration pack. 5971 // 5972 // Multiple declarations can claim to be instantiated from an unresolved 5973 // using declaration if it's a pack expansion. We want the UsingPackDecl 5974 // in that case, not the individual UsingDecls within the pack. 5975 bool OtherIsPackExpansion; 5976 NamedDecl *OtherFrom; 5977 if (auto *OtherUUD = dyn_cast<T>(Other)) { 5978 OtherIsPackExpansion = OtherUUD->isPackExpansion(); 5979 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); 5980 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) { 5981 OtherIsPackExpansion = true; 5982 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); 5983 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) { 5984 OtherIsPackExpansion = false; 5985 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); 5986 } else { 5987 return false; 5988 } 5989 return Pattern->isPackExpansion() == OtherIsPackExpansion && 5990 declaresSameEntity(OtherFrom, Pattern); 5991 } 5992 5993 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, 5994 VarDecl *Instance) { 5995 assert(Instance->isStaticDataMember()); 5996 5997 Pattern = Pattern->getCanonicalDecl(); 5998 5999 do { 6000 Instance = Instance->getCanonicalDecl(); 6001 if (Pattern == Instance) return true; 6002 Instance = Instance->getInstantiatedFromStaticDataMember(); 6003 } while (Instance); 6004 6005 return false; 6006 } 6007 6008 // Other is the prospective instantiation 6009 // D is the prospective pattern 6010 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { 6011 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) 6012 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 6013 6014 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) 6015 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 6016 6017 if (D->getKind() != Other->getKind()) 6018 return false; 6019 6020 if (auto *Record = dyn_cast<CXXRecordDecl>(Other)) 6021 return isInstantiationOf(cast<CXXRecordDecl>(D), Record); 6022 6023 if (auto *Function = dyn_cast<FunctionDecl>(Other)) 6024 return isInstantiationOf(cast<FunctionDecl>(D), Function); 6025 6026 if (auto *Enum = dyn_cast<EnumDecl>(Other)) 6027 return isInstantiationOf(cast<EnumDecl>(D), Enum); 6028 6029 if (auto *Var = dyn_cast<VarDecl>(Other)) 6030 if (Var->isStaticDataMember()) 6031 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); 6032 6033 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other)) 6034 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); 6035 6036 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other)) 6037 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); 6038 6039 if (auto *PartialSpec = 6040 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) 6041 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), 6042 PartialSpec); 6043 6044 if (auto *Field = dyn_cast<FieldDecl>(Other)) { 6045 if (!Field->getDeclName()) { 6046 // This is an unnamed field. 6047 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), 6048 cast<FieldDecl>(D)); 6049 } 6050 } 6051 6052 if (auto *Using = dyn_cast<UsingDecl>(Other)) 6053 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); 6054 6055 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other)) 6056 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); 6057 6058 return D->getDeclName() && 6059 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); 6060 } 6061 6062 template<typename ForwardIterator> 6063 static NamedDecl *findInstantiationOf(ASTContext &Ctx, 6064 NamedDecl *D, 6065 ForwardIterator first, 6066 ForwardIterator last) { 6067 for (; first != last; ++first) 6068 if (isInstantiationOf(Ctx, D, *first)) 6069 return cast<NamedDecl>(*first); 6070 6071 return nullptr; 6072 } 6073 6074 /// Finds the instantiation of the given declaration context 6075 /// within the current instantiation. 6076 /// 6077 /// \returns NULL if there was an error 6078 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, 6079 const MultiLevelTemplateArgumentList &TemplateArgs) { 6080 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { 6081 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); 6082 return cast_or_null<DeclContext>(ID); 6083 } else return DC; 6084 } 6085 6086 /// Determine whether the given context is dependent on template parameters at 6087 /// level \p Level or below. 6088 /// 6089 /// Sometimes we only substitute an inner set of template arguments and leave 6090 /// the outer templates alone. In such cases, contexts dependent only on the 6091 /// outer levels are not effectively dependent. 6092 static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) { 6093 if (!DC->isDependentContext()) 6094 return false; 6095 if (!Level) 6096 return true; 6097 return cast<Decl>(DC)->getTemplateDepth() > Level; 6098 } 6099 6100 /// Find the instantiation of the given declaration within the 6101 /// current instantiation. 6102 /// 6103 /// This routine is intended to be used when \p D is a declaration 6104 /// referenced from within a template, that needs to mapped into the 6105 /// corresponding declaration within an instantiation. For example, 6106 /// given: 6107 /// 6108 /// \code 6109 /// template<typename T> 6110 /// struct X { 6111 /// enum Kind { 6112 /// KnownValue = sizeof(T) 6113 /// }; 6114 /// 6115 /// bool getKind() const { return KnownValue; } 6116 /// }; 6117 /// 6118 /// template struct X<int>; 6119 /// \endcode 6120 /// 6121 /// In the instantiation of X<int>::getKind(), we need to map the \p 6122 /// EnumConstantDecl for \p KnownValue (which refers to 6123 /// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue). 6124 /// \p FindInstantiatedDecl performs this mapping from within the instantiation 6125 /// of X<int>. 6126 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, 6127 const MultiLevelTemplateArgumentList &TemplateArgs, 6128 bool FindingInstantiatedContext) { 6129 DeclContext *ParentDC = D->getDeclContext(); 6130 // Determine whether our parent context depends on any of the template 6131 // arguments we're currently substituting. 6132 bool ParentDependsOnArgs = isDependentContextAtLevel( 6133 ParentDC, TemplateArgs.getNumRetainedOuterLevels()); 6134 // FIXME: Parameters of pointer to functions (y below) that are themselves 6135 // parameters (p below) can have their ParentDC set to the translation-unit 6136 // - thus we can not consistently check if the ParentDC of such a parameter 6137 // is Dependent or/and a FunctionOrMethod. 6138 // For e.g. this code, during Template argument deduction tries to 6139 // find an instantiated decl for (T y) when the ParentDC for y is 6140 // the translation unit. 6141 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} 6142 // float baz(float(*)()) { return 0.0; } 6143 // Foo(baz); 6144 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time 6145 // it gets here, always has a FunctionOrMethod as its ParentDC?? 6146 // For now: 6147 // - as long as we have a ParmVarDecl whose parent is non-dependent and 6148 // whose type is not instantiation dependent, do nothing to the decl 6149 // - otherwise find its instantiated decl. 6150 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs && 6151 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) 6152 return D; 6153 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || 6154 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || 6155 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() || 6156 isa<OMPDeclareReductionDecl>(ParentDC) || 6157 isa<OMPDeclareMapperDecl>(ParentDC))) || 6158 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda() && 6159 cast<CXXRecordDecl>(D)->getTemplateDepth() > 6160 TemplateArgs.getNumRetainedOuterLevels())) { 6161 // D is a local of some kind. Look into the map of local 6162 // declarations to their instantiations. 6163 if (CurrentInstantiationScope) { 6164 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { 6165 if (Decl *FD = Found->dyn_cast<Decl *>()) 6166 return cast<NamedDecl>(FD); 6167 6168 int PackIdx = ArgumentPackSubstitutionIndex; 6169 assert(PackIdx != -1 && 6170 "found declaration pack but not pack expanding"); 6171 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; 6172 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); 6173 } 6174 } 6175 6176 // If we're performing a partial substitution during template argument 6177 // deduction, we may not have values for template parameters yet. They 6178 // just map to themselves. 6179 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || 6180 isa<TemplateTemplateParmDecl>(D)) 6181 return D; 6182 6183 if (D->isInvalidDecl()) 6184 return nullptr; 6185 6186 // Normally this function only searches for already instantiated declaration 6187 // however we have to make an exclusion for local types used before 6188 // definition as in the code: 6189 // 6190 // template<typename T> void f1() { 6191 // void g1(struct x1); 6192 // struct x1 {}; 6193 // } 6194 // 6195 // In this case instantiation of the type of 'g1' requires definition of 6196 // 'x1', which is defined later. Error recovery may produce an enum used 6197 // before definition. In these cases we need to instantiate relevant 6198 // declarations here. 6199 bool NeedInstantiate = false; 6200 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) 6201 NeedInstantiate = RD->isLocalClass(); 6202 else if (isa<TypedefNameDecl>(D) && 6203 isa<CXXDeductionGuideDecl>(D->getDeclContext())) 6204 NeedInstantiate = true; 6205 else 6206 NeedInstantiate = isa<EnumDecl>(D); 6207 if (NeedInstantiate) { 6208 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 6209 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 6210 return cast<TypeDecl>(Inst); 6211 } 6212 6213 // If we didn't find the decl, then we must have a label decl that hasn't 6214 // been found yet. Lazily instantiate it and return it now. 6215 assert(isa<LabelDecl>(D)); 6216 6217 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 6218 assert(Inst && "Failed to instantiate label??"); 6219 6220 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 6221 return cast<LabelDecl>(Inst); 6222 } 6223 6224 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 6225 if (!Record->isDependentContext()) 6226 return D; 6227 6228 // Determine whether this record is the "templated" declaration describing 6229 // a class template or class template specialization. 6230 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); 6231 if (ClassTemplate) 6232 ClassTemplate = ClassTemplate->getCanonicalDecl(); 6233 else if (ClassTemplateSpecializationDecl *Spec = 6234 dyn_cast<ClassTemplateSpecializationDecl>(Record)) 6235 ClassTemplate = Spec->getSpecializedTemplate()->getCanonicalDecl(); 6236 6237 // Walk the current context to find either the record or an instantiation of 6238 // it. 6239 DeclContext *DC = CurContext; 6240 while (!DC->isFileContext()) { 6241 // If we're performing substitution while we're inside the template 6242 // definition, we'll find our own context. We're done. 6243 if (DC->Equals(Record)) 6244 return Record; 6245 6246 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { 6247 // Check whether we're in the process of instantiating a class template 6248 // specialization of the template we're mapping. 6249 if (ClassTemplateSpecializationDecl *InstSpec 6250 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ 6251 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); 6252 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) 6253 return InstRecord; 6254 } 6255 6256 // Check whether we're in the process of instantiating a member class. 6257 if (isInstantiationOf(Record, InstRecord)) 6258 return InstRecord; 6259 } 6260 6261 // Move to the outer template scope. 6262 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { 6263 if (FD->getFriendObjectKind() && 6264 FD->getNonTransparentDeclContext()->isFileContext()) { 6265 DC = FD->getLexicalDeclContext(); 6266 continue; 6267 } 6268 // An implicit deduction guide acts as if it's within the class template 6269 // specialization described by its name and first N template params. 6270 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD); 6271 if (Guide && Guide->isImplicit()) { 6272 TemplateDecl *TD = Guide->getDeducedTemplate(); 6273 // Convert the arguments to an "as-written" list. 6274 TemplateArgumentListInfo Args(Loc, Loc); 6275 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( 6276 TD->getTemplateParameters()->size())) { 6277 ArrayRef<TemplateArgument> Unpacked(Arg); 6278 if (Arg.getKind() == TemplateArgument::Pack) 6279 Unpacked = Arg.pack_elements(); 6280 for (TemplateArgument UnpackedArg : Unpacked) 6281 Args.addArgument( 6282 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); 6283 } 6284 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); 6285 if (T.isNull()) 6286 return nullptr; 6287 auto *SubstRecord = T->getAsCXXRecordDecl(); 6288 assert(SubstRecord && "class template id not a class type?"); 6289 // Check that this template-id names the primary template and not a 6290 // partial or explicit specialization. (In the latter cases, it's 6291 // meaningless to attempt to find an instantiation of D within the 6292 // specialization.) 6293 // FIXME: The standard doesn't say what should happen here. 6294 if (FindingInstantiatedContext && 6295 usesPartialOrExplicitSpecialization( 6296 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) { 6297 Diag(Loc, diag::err_specialization_not_primary_template) 6298 << T << (SubstRecord->getTemplateSpecializationKind() == 6299 TSK_ExplicitSpecialization); 6300 return nullptr; 6301 } 6302 DC = SubstRecord; 6303 continue; 6304 } 6305 } 6306 6307 DC = DC->getParent(); 6308 } 6309 6310 // Fall through to deal with other dependent record types (e.g., 6311 // anonymous unions in class templates). 6312 } 6313 6314 if (!ParentDependsOnArgs) 6315 return D; 6316 6317 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); 6318 if (!ParentDC) 6319 return nullptr; 6320 6321 if (ParentDC != D->getDeclContext()) { 6322 // We performed some kind of instantiation in the parent context, 6323 // so now we need to look into the instantiated parent context to 6324 // find the instantiation of the declaration D. 6325 6326 // If our context used to be dependent, we may need to instantiate 6327 // it before performing lookup into that context. 6328 bool IsBeingInstantiated = false; 6329 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { 6330 if (!Spec->isDependentContext()) { 6331 QualType T = Context.getTypeDeclType(Spec); 6332 const RecordType *Tag = T->getAs<RecordType>(); 6333 assert(Tag && "type of non-dependent record is not a RecordType"); 6334 if (Tag->isBeingDefined()) 6335 IsBeingInstantiated = true; 6336 if (!Tag->isBeingDefined() && 6337 RequireCompleteType(Loc, T, diag::err_incomplete_type)) 6338 return nullptr; 6339 6340 ParentDC = Tag->getDecl(); 6341 } 6342 } 6343 6344 NamedDecl *Result = nullptr; 6345 // FIXME: If the name is a dependent name, this lookup won't necessarily 6346 // find it. Does that ever matter? 6347 if (auto Name = D->getDeclName()) { 6348 DeclarationNameInfo NameInfo(Name, D->getLocation()); 6349 DeclarationNameInfo NewNameInfo = 6350 SubstDeclarationNameInfo(NameInfo, TemplateArgs); 6351 Name = NewNameInfo.getName(); 6352 if (!Name) 6353 return nullptr; 6354 DeclContext::lookup_result Found = ParentDC->lookup(Name); 6355 6356 Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); 6357 } else { 6358 // Since we don't have a name for the entity we're looking for, 6359 // our only option is to walk through all of the declarations to 6360 // find that name. This will occur in a few cases: 6361 // 6362 // - anonymous struct/union within a template 6363 // - unnamed class/struct/union/enum within a template 6364 // 6365 // FIXME: Find a better way to find these instantiations! 6366 Result = findInstantiationOf(Context, D, 6367 ParentDC->decls_begin(), 6368 ParentDC->decls_end()); 6369 } 6370 6371 if (!Result) { 6372 if (isa<UsingShadowDecl>(D)) { 6373 // UsingShadowDecls can instantiate to nothing because of using hiding. 6374 } else if (hasUncompilableErrorOccurred()) { 6375 // We've already complained about some ill-formed code, so most likely 6376 // this declaration failed to instantiate. There's no point in 6377 // complaining further, since this is normal in invalid code. 6378 // FIXME: Use more fine-grained 'invalid' tracking for this. 6379 } else if (IsBeingInstantiated) { 6380 // The class in which this member exists is currently being 6381 // instantiated, and we haven't gotten around to instantiating this 6382 // member yet. This can happen when the code uses forward declarations 6383 // of member classes, and introduces ordering dependencies via 6384 // template instantiation. 6385 Diag(Loc, diag::err_member_not_yet_instantiated) 6386 << D->getDeclName() 6387 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); 6388 Diag(D->getLocation(), diag::note_non_instantiated_member_here); 6389 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { 6390 // This enumeration constant was found when the template was defined, 6391 // but can't be found in the instantiation. This can happen if an 6392 // unscoped enumeration member is explicitly specialized. 6393 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); 6394 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, 6395 TemplateArgs)); 6396 assert(Spec->getTemplateSpecializationKind() == 6397 TSK_ExplicitSpecialization); 6398 Diag(Loc, diag::err_enumerator_does_not_exist) 6399 << D->getDeclName() 6400 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); 6401 Diag(Spec->getLocation(), diag::note_enum_specialized_here) 6402 << Context.getTypeDeclType(Spec); 6403 } else { 6404 // We should have found something, but didn't. 6405 llvm_unreachable("Unable to find instantiation of declaration!"); 6406 } 6407 } 6408 6409 D = Result; 6410 } 6411 6412 return D; 6413 } 6414 6415 /// Performs template instantiation for all implicit template 6416 /// instantiations we have seen until this point. 6417 void Sema::PerformPendingInstantiations(bool LocalOnly) { 6418 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations; 6419 while (!PendingLocalImplicitInstantiations.empty() || 6420 (!LocalOnly && !PendingInstantiations.empty())) { 6421 PendingImplicitInstantiation Inst; 6422 6423 if (PendingLocalImplicitInstantiations.empty()) { 6424 Inst = PendingInstantiations.front(); 6425 PendingInstantiations.pop_front(); 6426 } else { 6427 Inst = PendingLocalImplicitInstantiations.front(); 6428 PendingLocalImplicitInstantiations.pop_front(); 6429 } 6430 6431 // Instantiate function definitions 6432 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { 6433 bool DefinitionRequired = Function->getTemplateSpecializationKind() == 6434 TSK_ExplicitInstantiationDefinition; 6435 if (Function->isMultiVersion()) { 6436 getASTContext().forEachMultiversionedFunctionVersion( 6437 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) { 6438 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true, 6439 DefinitionRequired, true); 6440 if (CurFD->isDefined()) 6441 CurFD->setInstantiationIsPending(false); 6442 }); 6443 } else { 6444 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true, 6445 DefinitionRequired, true); 6446 if (Function->isDefined()) 6447 Function->setInstantiationIsPending(false); 6448 } 6449 // Definition of a PCH-ed template declaration may be available only in the TU. 6450 if (!LocalOnly && LangOpts.PCHInstantiateTemplates && 6451 TUKind == TU_Prefix && Function->instantiationIsPending()) 6452 delayedPCHInstantiations.push_back(Inst); 6453 continue; 6454 } 6455 6456 // Instantiate variable definitions 6457 VarDecl *Var = cast<VarDecl>(Inst.first); 6458 6459 assert((Var->isStaticDataMember() || 6460 isa<VarTemplateSpecializationDecl>(Var)) && 6461 "Not a static data member, nor a variable template" 6462 " specialization?"); 6463 6464 // Don't try to instantiate declarations if the most recent redeclaration 6465 // is invalid. 6466 if (Var->getMostRecentDecl()->isInvalidDecl()) 6467 continue; 6468 6469 // Check if the most recent declaration has changed the specialization kind 6470 // and removed the need for implicit instantiation. 6471 switch (Var->getMostRecentDecl() 6472 ->getTemplateSpecializationKindForInstantiation()) { 6473 case TSK_Undeclared: 6474 llvm_unreachable("Cannot instantitiate an undeclared specialization."); 6475 case TSK_ExplicitInstantiationDeclaration: 6476 case TSK_ExplicitSpecialization: 6477 continue; // No longer need to instantiate this type. 6478 case TSK_ExplicitInstantiationDefinition: 6479 // We only need an instantiation if the pending instantiation *is* the 6480 // explicit instantiation. 6481 if (Var != Var->getMostRecentDecl()) 6482 continue; 6483 break; 6484 case TSK_ImplicitInstantiation: 6485 break; 6486 } 6487 6488 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 6489 "instantiating variable definition"); 6490 bool DefinitionRequired = Var->getTemplateSpecializationKind() == 6491 TSK_ExplicitInstantiationDefinition; 6492 6493 // Instantiate static data member definitions or variable template 6494 // specializations. 6495 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, 6496 DefinitionRequired, true); 6497 } 6498 6499 if (!LocalOnly && LangOpts.PCHInstantiateTemplates) 6500 PendingInstantiations.swap(delayedPCHInstantiations); 6501 } 6502 6503 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, 6504 const MultiLevelTemplateArgumentList &TemplateArgs) { 6505 for (auto *DD : Pattern->ddiags()) { 6506 switch (DD->getKind()) { 6507 case DependentDiagnostic::Access: 6508 HandleDependentAccessCheck(*DD, TemplateArgs); 6509 break; 6510 } 6511 } 6512 } 6513