1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/DeclFriend.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/RecursiveASTVisitor.h" 20 #include "clang/AST/TemplateName.h" 21 #include "clang/AST/TypeVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/LangOptions.h" 25 #include "clang/Basic/PartialDiagnostic.h" 26 #include "clang/Basic/SourceLocation.h" 27 #include "clang/Basic/Stack.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/EnterExpressionEvaluationContext.h" 31 #include "clang/Sema/Initialization.h" 32 #include "clang/Sema/Lookup.h" 33 #include "clang/Sema/Overload.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/SemaInternal.h" 37 #include "clang/Sema/Template.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/SmallBitVector.h" 40 #include "llvm/ADT/SmallString.h" 41 #include "llvm/ADT/StringExtras.h" 42 43 #include <iterator> 44 #include <optional> 45 using namespace clang; 46 using namespace sema; 47 48 // Exported for use by Parser. 49 SourceRange 50 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 51 unsigned N) { 52 if (!N) return SourceRange(); 53 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 54 } 55 56 unsigned Sema::getTemplateDepth(Scope *S) const { 57 unsigned Depth = 0; 58 59 // Each template parameter scope represents one level of template parameter 60 // depth. 61 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; 62 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { 63 ++Depth; 64 } 65 66 // Note that there are template parameters with the given depth. 67 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; 68 69 // Look for parameters of an enclosing generic lambda. We don't create a 70 // template parameter scope for these. 71 for (FunctionScopeInfo *FSI : getFunctionScopes()) { 72 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { 73 if (!LSI->TemplateParams.empty()) { 74 ParamsAtDepth(LSI->AutoTemplateParameterDepth); 75 break; 76 } 77 if (LSI->GLTemplateParameterList) { 78 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); 79 break; 80 } 81 } 82 } 83 84 // Look for parameters of an enclosing terse function template. We don't 85 // create a template parameter scope for these either. 86 for (const InventedTemplateParameterInfo &Info : 87 getInventedParameterInfos()) { 88 if (!Info.TemplateParams.empty()) { 89 ParamsAtDepth(Info.AutoTemplateParameterDepth); 90 break; 91 } 92 } 93 94 return Depth; 95 } 96 97 /// \brief Determine whether the declaration found is acceptable as the name 98 /// of a template and, if so, return that template declaration. Otherwise, 99 /// returns null. 100 /// 101 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 102 /// is true. In all other cases it will return a TemplateDecl (or null). 103 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 104 bool AllowFunctionTemplates, 105 bool AllowDependent) { 106 D = D->getUnderlyingDecl(); 107 108 if (isa<TemplateDecl>(D)) { 109 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 110 return nullptr; 111 112 return D; 113 } 114 115 if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) { 116 // C++ [temp.local]p1: 117 // Like normal (non-template) classes, class templates have an 118 // injected-class-name (Clause 9). The injected-class-name 119 // can be used with or without a template-argument-list. When 120 // it is used without a template-argument-list, it is 121 // equivalent to the injected-class-name followed by the 122 // template-parameters of the class template enclosed in 123 // <>. When it is used with a template-argument-list, it 124 // refers to the specified class template specialization, 125 // which could be the current specialization or another 126 // specialization. 127 if (Record->isInjectedClassName()) { 128 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 129 if (Record->getDescribedClassTemplate()) 130 return Record->getDescribedClassTemplate(); 131 132 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 133 return Spec->getSpecializedTemplate(); 134 } 135 136 return nullptr; 137 } 138 139 // 'using Dependent::foo;' can resolve to a template name. 140 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 141 // injected-class-name). 142 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 143 return D; 144 145 return nullptr; 146 } 147 148 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 149 bool AllowFunctionTemplates, 150 bool AllowDependent) { 151 LookupResult::Filter filter = R.makeFilter(); 152 while (filter.hasNext()) { 153 NamedDecl *Orig = filter.next(); 154 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 155 filter.erase(); 156 } 157 filter.done(); 158 } 159 160 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 161 bool AllowFunctionTemplates, 162 bool AllowDependent, 163 bool AllowNonTemplateFunctions) { 164 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 165 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 166 return true; 167 if (AllowNonTemplateFunctions && 168 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 169 return true; 170 } 171 172 return false; 173 } 174 175 TemplateNameKind Sema::isTemplateName(Scope *S, 176 CXXScopeSpec &SS, 177 bool hasTemplateKeyword, 178 const UnqualifiedId &Name, 179 ParsedType ObjectTypePtr, 180 bool EnteringContext, 181 TemplateTy &TemplateResult, 182 bool &MemberOfUnknownSpecialization, 183 bool Disambiguation) { 184 assert(getLangOpts().CPlusPlus && "No template names in C!"); 185 186 DeclarationName TName; 187 MemberOfUnknownSpecialization = false; 188 189 switch (Name.getKind()) { 190 case UnqualifiedIdKind::IK_Identifier: 191 TName = DeclarationName(Name.Identifier); 192 break; 193 194 case UnqualifiedIdKind::IK_OperatorFunctionId: 195 TName = Context.DeclarationNames.getCXXOperatorName( 196 Name.OperatorFunctionId.Operator); 197 break; 198 199 case UnqualifiedIdKind::IK_LiteralOperatorId: 200 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 201 break; 202 203 default: 204 return TNK_Non_template; 205 } 206 207 QualType ObjectType = ObjectTypePtr.get(); 208 209 AssumedTemplateKind AssumedTemplate; 210 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 211 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 212 MemberOfUnknownSpecialization, SourceLocation(), 213 &AssumedTemplate, 214 /*AllowTypoCorrection=*/!Disambiguation)) 215 return TNK_Non_template; 216 217 if (AssumedTemplate != AssumedTemplateKind::None) { 218 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 219 // Let the parser know whether we found nothing or found functions; if we 220 // found nothing, we want to more carefully check whether this is actually 221 // a function template name versus some other kind of undeclared identifier. 222 return AssumedTemplate == AssumedTemplateKind::FoundNothing 223 ? TNK_Undeclared_template 224 : TNK_Function_template; 225 } 226 227 if (R.empty()) 228 return TNK_Non_template; 229 230 NamedDecl *D = nullptr; 231 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin()); 232 if (R.isAmbiguous()) { 233 // If we got an ambiguity involving a non-function template, treat this 234 // as a template name, and pick an arbitrary template for error recovery. 235 bool AnyFunctionTemplates = false; 236 for (NamedDecl *FoundD : R) { 237 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 238 if (isa<FunctionTemplateDecl>(FoundTemplate)) 239 AnyFunctionTemplates = true; 240 else { 241 D = FoundTemplate; 242 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD); 243 break; 244 } 245 } 246 } 247 248 // If we didn't find any templates at all, this isn't a template name. 249 // Leave the ambiguity for a later lookup to diagnose. 250 if (!D && !AnyFunctionTemplates) { 251 R.suppressDiagnostics(); 252 return TNK_Non_template; 253 } 254 255 // If the only templates were function templates, filter out the rest. 256 // We'll diagnose the ambiguity later. 257 if (!D) 258 FilterAcceptableTemplateNames(R); 259 } 260 261 // At this point, we have either picked a single template name declaration D 262 // or we have a non-empty set of results R containing either one template name 263 // declaration or a set of function templates. 264 265 TemplateName Template; 266 TemplateNameKind TemplateKind; 267 268 unsigned ResultCount = R.end() - R.begin(); 269 if (!D && ResultCount > 1) { 270 // We assume that we'll preserve the qualifier from a function 271 // template name in other ways. 272 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 273 TemplateKind = TNK_Function_template; 274 275 // We'll do this lookup again later. 276 R.suppressDiagnostics(); 277 } else { 278 if (!D) { 279 D = getAsTemplateNameDecl(*R.begin()); 280 assert(D && "unambiguous result is not a template name"); 281 } 282 283 if (isa<UnresolvedUsingValueDecl>(D)) { 284 // We don't yet know whether this is a template-name or not. 285 MemberOfUnknownSpecialization = true; 286 return TNK_Non_template; 287 } 288 289 TemplateDecl *TD = cast<TemplateDecl>(D); 290 Template = 291 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); 292 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); 293 if (SS.isSet() && !SS.isInvalid()) { 294 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 295 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword, 296 Template); 297 } 298 299 if (isa<FunctionTemplateDecl>(TD)) { 300 TemplateKind = TNK_Function_template; 301 302 // We'll do this lookup again later. 303 R.suppressDiagnostics(); 304 } else { 305 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 306 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 307 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 308 TemplateKind = 309 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 310 isa<ConceptDecl>(TD) ? TNK_Concept_template : 311 TNK_Type_template; 312 } 313 } 314 315 TemplateResult = TemplateTy::make(Template); 316 return TemplateKind; 317 } 318 319 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 320 SourceLocation NameLoc, CXXScopeSpec &SS, 321 ParsedTemplateTy *Template /*=nullptr*/) { 322 bool MemberOfUnknownSpecialization = false; 323 324 // We could use redeclaration lookup here, but we don't need to: the 325 // syntactic form of a deduction guide is enough to identify it even 326 // if we can't look up the template name at all. 327 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 328 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 329 /*EnteringContext*/ false, 330 MemberOfUnknownSpecialization)) 331 return false; 332 333 if (R.empty()) return false; 334 if (R.isAmbiguous()) { 335 // FIXME: Diagnose an ambiguity if we find at least one template. 336 R.suppressDiagnostics(); 337 return false; 338 } 339 340 // We only treat template-names that name type templates as valid deduction 341 // guide names. 342 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 343 if (!TD || !getAsTypeTemplateDecl(TD)) 344 return false; 345 346 if (Template) 347 *Template = TemplateTy::make(TemplateName(TD)); 348 return true; 349 } 350 351 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 352 SourceLocation IILoc, 353 Scope *S, 354 const CXXScopeSpec *SS, 355 TemplateTy &SuggestedTemplate, 356 TemplateNameKind &SuggestedKind) { 357 // We can't recover unless there's a dependent scope specifier preceding the 358 // template name. 359 // FIXME: Typo correction? 360 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 361 computeDeclContext(*SS)) 362 return false; 363 364 // The code is missing a 'template' keyword prior to the dependent template 365 // name. 366 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 367 Diag(IILoc, diag::err_template_kw_missing) 368 << Qualifier << II.getName() 369 << FixItHint::CreateInsertion(IILoc, "template "); 370 SuggestedTemplate 371 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 372 SuggestedKind = TNK_Dependent_template_name; 373 return true; 374 } 375 376 bool Sema::LookupTemplateName(LookupResult &Found, 377 Scope *S, CXXScopeSpec &SS, 378 QualType ObjectType, 379 bool EnteringContext, 380 bool &MemberOfUnknownSpecialization, 381 RequiredTemplateKind RequiredTemplate, 382 AssumedTemplateKind *ATK, 383 bool AllowTypoCorrection) { 384 if (ATK) 385 *ATK = AssumedTemplateKind::None; 386 387 if (SS.isInvalid()) 388 return true; 389 390 Found.setTemplateNameLookup(true); 391 392 // Determine where to perform name lookup 393 MemberOfUnknownSpecialization = false; 394 DeclContext *LookupCtx = nullptr; 395 bool IsDependent = false; 396 if (!ObjectType.isNull()) { 397 // This nested-name-specifier occurs in a member access expression, e.g., 398 // x->B::f, and we are looking into the type of the object. 399 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); 400 LookupCtx = computeDeclContext(ObjectType); 401 IsDependent = !LookupCtx && ObjectType->isDependentType(); 402 assert((IsDependent || !ObjectType->isIncompleteType() || 403 !ObjectType->getAs<TagType>() || 404 ObjectType->castAs<TagType>()->isBeingDefined()) && 405 "Caller should have completed object type"); 406 407 // Template names cannot appear inside an Objective-C class or object type 408 // or a vector type. 409 // 410 // FIXME: This is wrong. For example: 411 // 412 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 413 // Vec<int> vi; 414 // vi.Vec<int>::~Vec<int>(); 415 // 416 // ... should be accepted but we will not treat 'Vec' as a template name 417 // here. The right thing to do would be to check if the name is a valid 418 // vector component name, and look up a template name if not. And similarly 419 // for lookups into Objective-C class and object types, where the same 420 // problem can arise. 421 if (ObjectType->isObjCObjectOrInterfaceType() || 422 ObjectType->isVectorType()) { 423 Found.clear(); 424 return false; 425 } 426 } else if (SS.isNotEmpty()) { 427 // This nested-name-specifier occurs after another nested-name-specifier, 428 // so long into the context associated with the prior nested-name-specifier. 429 LookupCtx = computeDeclContext(SS, EnteringContext); 430 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); 431 432 // The declaration context must be complete. 433 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 434 return true; 435 } 436 437 bool ObjectTypeSearchedInScope = false; 438 bool AllowFunctionTemplatesInLookup = true; 439 if (LookupCtx) { 440 // Perform "qualified" name lookup into the declaration context we 441 // computed, which is either the type of the base of a member access 442 // expression or the declaration context associated with a prior 443 // nested-name-specifier. 444 LookupQualifiedName(Found, LookupCtx); 445 446 // FIXME: The C++ standard does not clearly specify what happens in the 447 // case where the object type is dependent, and implementations vary. In 448 // Clang, we treat a name after a . or -> as a template-name if lookup 449 // finds a non-dependent member or member of the current instantiation that 450 // is a type template, or finds no such members and lookup in the context 451 // of the postfix-expression finds a type template. In the latter case, the 452 // name is nonetheless dependent, and we may resolve it to a member of an 453 // unknown specialization when we come to instantiate the template. 454 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 455 } 456 457 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { 458 // C++ [basic.lookup.classref]p1: 459 // In a class member access expression (5.2.5), if the . or -> token is 460 // immediately followed by an identifier followed by a <, the 461 // identifier must be looked up to determine whether the < is the 462 // beginning of a template argument list (14.2) or a less-than operator. 463 // The identifier is first looked up in the class of the object 464 // expression. If the identifier is not found, it is then looked up in 465 // the context of the entire postfix-expression and shall name a class 466 // template. 467 if (S) 468 LookupName(Found, S); 469 470 if (!ObjectType.isNull()) { 471 // FIXME: We should filter out all non-type templates here, particularly 472 // variable templates and concepts. But the exclusion of alias templates 473 // and template template parameters is a wording defect. 474 AllowFunctionTemplatesInLookup = false; 475 ObjectTypeSearchedInScope = true; 476 } 477 478 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 479 } 480 481 if (Found.isAmbiguous()) 482 return false; 483 484 if (ATK && SS.isEmpty() && ObjectType.isNull() && 485 !RequiredTemplate.hasTemplateKeyword()) { 486 // C++2a [temp.names]p2: 487 // A name is also considered to refer to a template if it is an 488 // unqualified-id followed by a < and name lookup finds either one or more 489 // functions or finds nothing. 490 // 491 // To keep our behavior consistent, we apply the "finds nothing" part in 492 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 493 // successfully form a call to an undeclared template-id. 494 bool AllFunctions = 495 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) { 496 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 497 }); 498 if (AllFunctions || (Found.empty() && !IsDependent)) { 499 // If lookup found any functions, or if this is a name that can only be 500 // used for a function, then strongly assume this is a function 501 // template-id. 502 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 503 ? AssumedTemplateKind::FoundNothing 504 : AssumedTemplateKind::FoundFunctions; 505 Found.clear(); 506 return false; 507 } 508 } 509 510 if (Found.empty() && !IsDependent && AllowTypoCorrection) { 511 // If we did not find any names, and this is not a disambiguation, attempt 512 // to correct any typos. 513 DeclarationName Name = Found.getLookupName(); 514 Found.clear(); 515 // Simple filter callback that, for keywords, only accepts the C++ *_cast 516 DefaultFilterCCC FilterCCC{}; 517 FilterCCC.WantTypeSpecifiers = false; 518 FilterCCC.WantExpressionKeywords = false; 519 FilterCCC.WantRemainingKeywords = false; 520 FilterCCC.WantCXXNamedCasts = true; 521 if (TypoCorrection Corrected = 522 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 523 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 524 if (auto *ND = Corrected.getFoundDecl()) 525 Found.addDecl(ND); 526 FilterAcceptableTemplateNames(Found); 527 if (Found.isAmbiguous()) { 528 Found.clear(); 529 } else if (!Found.empty()) { 530 Found.setLookupName(Corrected.getCorrection()); 531 if (LookupCtx) { 532 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 533 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 534 Name.getAsString() == CorrectedStr; 535 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 536 << Name << LookupCtx << DroppedSpecifier 537 << SS.getRange()); 538 } else { 539 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 540 } 541 } 542 } 543 } 544 545 NamedDecl *ExampleLookupResult = 546 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 547 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 548 if (Found.empty()) { 549 if (IsDependent) { 550 MemberOfUnknownSpecialization = true; 551 return false; 552 } 553 554 // If a 'template' keyword was used, a lookup that finds only non-template 555 // names is an error. 556 if (ExampleLookupResult && RequiredTemplate) { 557 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 558 << Found.getLookupName() << SS.getRange() 559 << RequiredTemplate.hasTemplateKeyword() 560 << RequiredTemplate.getTemplateKeywordLoc(); 561 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 562 diag::note_template_kw_refers_to_non_template) 563 << Found.getLookupName(); 564 return true; 565 } 566 567 return false; 568 } 569 570 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 571 !getLangOpts().CPlusPlus11) { 572 // C++03 [basic.lookup.classref]p1: 573 // [...] If the lookup in the class of the object expression finds a 574 // template, the name is also looked up in the context of the entire 575 // postfix-expression and [...] 576 // 577 // Note: C++11 does not perform this second lookup. 578 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 579 LookupOrdinaryName); 580 FoundOuter.setTemplateNameLookup(true); 581 LookupName(FoundOuter, S); 582 // FIXME: We silently accept an ambiguous lookup here, in violation of 583 // [basic.lookup]/1. 584 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 585 586 NamedDecl *OuterTemplate; 587 if (FoundOuter.empty()) { 588 // - if the name is not found, the name found in the class of the 589 // object expression is used, otherwise 590 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 591 !(OuterTemplate = 592 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 593 // - if the name is found in the context of the entire 594 // postfix-expression and does not name a class template, the name 595 // found in the class of the object expression is used, otherwise 596 FoundOuter.clear(); 597 } else if (!Found.isSuppressingAmbiguousDiagnostics()) { 598 // - if the name found is a class template, it must refer to the same 599 // entity as the one found in the class of the object expression, 600 // otherwise the program is ill-formed. 601 if (!Found.isSingleResult() || 602 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 603 OuterTemplate->getCanonicalDecl()) { 604 Diag(Found.getNameLoc(), 605 diag::ext_nested_name_member_ref_lookup_ambiguous) 606 << Found.getLookupName() 607 << ObjectType; 608 Diag(Found.getRepresentativeDecl()->getLocation(), 609 diag::note_ambig_member_ref_object_type) 610 << ObjectType; 611 Diag(FoundOuter.getFoundDecl()->getLocation(), 612 diag::note_ambig_member_ref_scope); 613 614 // Recover by taking the template that we found in the object 615 // expression's type. 616 } 617 } 618 } 619 620 return false; 621 } 622 623 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 624 SourceLocation Less, 625 SourceLocation Greater) { 626 if (TemplateName.isInvalid()) 627 return; 628 629 DeclarationNameInfo NameInfo; 630 CXXScopeSpec SS; 631 LookupNameKind LookupKind; 632 633 DeclContext *LookupCtx = nullptr; 634 NamedDecl *Found = nullptr; 635 bool MissingTemplateKeyword = false; 636 637 // Figure out what name we looked up. 638 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 639 NameInfo = DRE->getNameInfo(); 640 SS.Adopt(DRE->getQualifierLoc()); 641 LookupKind = LookupOrdinaryName; 642 Found = DRE->getFoundDecl(); 643 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 644 NameInfo = ME->getMemberNameInfo(); 645 SS.Adopt(ME->getQualifierLoc()); 646 LookupKind = LookupMemberName; 647 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 648 Found = ME->getMemberDecl(); 649 } else if (auto *DSDRE = 650 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 651 NameInfo = DSDRE->getNameInfo(); 652 SS.Adopt(DSDRE->getQualifierLoc()); 653 MissingTemplateKeyword = true; 654 } else if (auto *DSME = 655 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 656 NameInfo = DSME->getMemberNameInfo(); 657 SS.Adopt(DSME->getQualifierLoc()); 658 MissingTemplateKeyword = true; 659 } else { 660 llvm_unreachable("unexpected kind of potential template name"); 661 } 662 663 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 664 // was missing. 665 if (MissingTemplateKeyword) { 666 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 667 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 668 return; 669 } 670 671 // Try to correct the name by looking for templates and C++ named casts. 672 struct TemplateCandidateFilter : CorrectionCandidateCallback { 673 Sema &S; 674 TemplateCandidateFilter(Sema &S) : S(S) { 675 WantTypeSpecifiers = false; 676 WantExpressionKeywords = false; 677 WantRemainingKeywords = false; 678 WantCXXNamedCasts = true; 679 }; 680 bool ValidateCandidate(const TypoCorrection &Candidate) override { 681 if (auto *ND = Candidate.getCorrectionDecl()) 682 return S.getAsTemplateNameDecl(ND); 683 return Candidate.isKeyword(); 684 } 685 686 std::unique_ptr<CorrectionCandidateCallback> clone() override { 687 return std::make_unique<TemplateCandidateFilter>(*this); 688 } 689 }; 690 691 DeclarationName Name = NameInfo.getName(); 692 TemplateCandidateFilter CCC(*this); 693 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 694 CTK_ErrorRecovery, LookupCtx)) { 695 auto *ND = Corrected.getFoundDecl(); 696 if (ND) 697 ND = getAsTemplateNameDecl(ND); 698 if (ND || Corrected.isKeyword()) { 699 if (LookupCtx) { 700 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 701 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 702 Name.getAsString() == CorrectedStr; 703 diagnoseTypo(Corrected, 704 PDiag(diag::err_non_template_in_member_template_id_suggest) 705 << Name << LookupCtx << DroppedSpecifier 706 << SS.getRange(), false); 707 } else { 708 diagnoseTypo(Corrected, 709 PDiag(diag::err_non_template_in_template_id_suggest) 710 << Name, false); 711 } 712 if (Found) 713 Diag(Found->getLocation(), 714 diag::note_non_template_in_template_id_found); 715 return; 716 } 717 } 718 719 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 720 << Name << SourceRange(Less, Greater); 721 if (Found) 722 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 723 } 724 725 /// ActOnDependentIdExpression - Handle a dependent id-expression that 726 /// was just parsed. This is only possible with an explicit scope 727 /// specifier naming a dependent type. 728 ExprResult 729 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 730 SourceLocation TemplateKWLoc, 731 const DeclarationNameInfo &NameInfo, 732 bool isAddressOfOperand, 733 const TemplateArgumentListInfo *TemplateArgs) { 734 DeclContext *DC = getFunctionLevelDeclContext(); 735 736 // C++11 [expr.prim.general]p12: 737 // An id-expression that denotes a non-static data member or non-static 738 // member function of a class can only be used: 739 // (...) 740 // - if that id-expression denotes a non-static data member and it 741 // appears in an unevaluated operand. 742 // 743 // If this might be the case, form a DependentScopeDeclRefExpr instead of a 744 // CXXDependentScopeMemberExpr. The former can instantiate to either 745 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is 746 // always a MemberExpr. 747 bool MightBeCxx11UnevalField = 748 getLangOpts().CPlusPlus11 && isUnevaluatedContext(); 749 750 // Check if the nested name specifier is an enum type. 751 bool IsEnum = false; 752 if (NestedNameSpecifier *NNS = SS.getScopeRep()) 753 IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType()); 754 755 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && 756 isa<CXXMethodDecl>(DC) && 757 cast<CXXMethodDecl>(DC)->isImplicitObjectMemberFunction()) { 758 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType().getNonReferenceType(); 759 760 // Since the 'this' expression is synthesized, we don't need to 761 // perform the double-lookup check. 762 NamedDecl *FirstQualifierInScope = nullptr; 763 764 return CXXDependentScopeMemberExpr::Create( 765 Context, /*This=*/nullptr, ThisType, 766 /*IsArrow=*/!Context.getLangOpts().HLSL, 767 /*Op=*/SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 768 FirstQualifierInScope, NameInfo, TemplateArgs); 769 } 770 771 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 772 } 773 774 ExprResult 775 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 776 SourceLocation TemplateKWLoc, 777 const DeclarationNameInfo &NameInfo, 778 const TemplateArgumentListInfo *TemplateArgs) { 779 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc 780 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 781 if (!QualifierLoc) 782 return ExprError(); 783 784 return DependentScopeDeclRefExpr::Create( 785 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); 786 } 787 788 789 /// Determine whether we would be unable to instantiate this template (because 790 /// it either has no definition, or is in the process of being instantiated). 791 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 792 NamedDecl *Instantiation, 793 bool InstantiatedFromMember, 794 const NamedDecl *Pattern, 795 const NamedDecl *PatternDef, 796 TemplateSpecializationKind TSK, 797 bool Complain /*= true*/) { 798 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 799 isa<VarDecl>(Instantiation)); 800 801 bool IsEntityBeingDefined = false; 802 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 803 IsEntityBeingDefined = TD->isBeingDefined(); 804 805 if (PatternDef && !IsEntityBeingDefined) { 806 NamedDecl *SuggestedDef = nullptr; 807 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef), 808 &SuggestedDef, 809 /*OnlyNeedComplete*/ false)) { 810 // If we're allowed to diagnose this and recover, do so. 811 bool Recover = Complain && !isSFINAEContext(); 812 if (Complain) 813 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 814 Sema::MissingImportKind::Definition, Recover); 815 return !Recover; 816 } 817 return false; 818 } 819 820 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 821 return true; 822 823 QualType InstantiationTy; 824 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 825 InstantiationTy = Context.getTypeDeclType(TD); 826 if (PatternDef) { 827 Diag(PointOfInstantiation, 828 diag::err_template_instantiate_within_definition) 829 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 830 << InstantiationTy; 831 // Not much point in noting the template declaration here, since 832 // we're lexically inside it. 833 Instantiation->setInvalidDecl(); 834 } else if (InstantiatedFromMember) { 835 if (isa<FunctionDecl>(Instantiation)) { 836 Diag(PointOfInstantiation, 837 diag::err_explicit_instantiation_undefined_member) 838 << /*member function*/ 1 << Instantiation->getDeclName() 839 << Instantiation->getDeclContext(); 840 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 841 } else { 842 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 843 Diag(PointOfInstantiation, 844 diag::err_implicit_instantiate_member_undefined) 845 << InstantiationTy; 846 Diag(Pattern->getLocation(), diag::note_member_declared_at); 847 } 848 } else { 849 if (isa<FunctionDecl>(Instantiation)) { 850 Diag(PointOfInstantiation, 851 diag::err_explicit_instantiation_undefined_func_template) 852 << Pattern; 853 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 854 } else if (isa<TagDecl>(Instantiation)) { 855 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 856 << (TSK != TSK_ImplicitInstantiation) 857 << InstantiationTy; 858 NoteTemplateLocation(*Pattern); 859 } else { 860 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 861 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 862 Diag(PointOfInstantiation, 863 diag::err_explicit_instantiation_undefined_var_template) 864 << Instantiation; 865 Instantiation->setInvalidDecl(); 866 } else 867 Diag(PointOfInstantiation, 868 diag::err_explicit_instantiation_undefined_member) 869 << /*static data member*/ 2 << Instantiation->getDeclName() 870 << Instantiation->getDeclContext(); 871 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 872 } 873 } 874 875 // In general, Instantiation isn't marked invalid to get more than one 876 // error for multiple undefined instantiations. But the code that does 877 // explicit declaration -> explicit definition conversion can't handle 878 // invalid declarations, so mark as invalid in that case. 879 if (TSK == TSK_ExplicitInstantiationDeclaration) 880 Instantiation->setInvalidDecl(); 881 return true; 882 } 883 884 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 885 /// that the template parameter 'PrevDecl' is being shadowed by a new 886 /// declaration at location Loc. Returns true to indicate that this is 887 /// an error, and false otherwise. 888 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 889 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 890 891 // C++ [temp.local]p4: 892 // A template-parameter shall not be redeclared within its 893 // scope (including nested scopes). 894 // 895 // Make this a warning when MSVC compatibility is requested. 896 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow 897 : diag::err_template_param_shadow; 898 const auto *ND = cast<NamedDecl>(PrevDecl); 899 Diag(Loc, DiagId) << ND->getDeclName(); 900 NoteTemplateParameterLocation(*ND); 901 } 902 903 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 904 /// the parameter D to reference the templated declaration and return a pointer 905 /// to the template declaration. Otherwise, do nothing to D and return null. 906 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 907 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 908 D = Temp->getTemplatedDecl(); 909 return Temp; 910 } 911 return nullptr; 912 } 913 914 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 915 SourceLocation EllipsisLoc) const { 916 assert(Kind == Template && 917 "Only template template arguments can be pack expansions here"); 918 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 919 "Template template argument pack expansion without packs"); 920 ParsedTemplateArgument Result(*this); 921 Result.EllipsisLoc = EllipsisLoc; 922 return Result; 923 } 924 925 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 926 const ParsedTemplateArgument &Arg) { 927 928 switch (Arg.getKind()) { 929 case ParsedTemplateArgument::Type: { 930 TypeSourceInfo *DI; 931 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 932 if (!DI) 933 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 934 return TemplateArgumentLoc(TemplateArgument(T), DI); 935 } 936 937 case ParsedTemplateArgument::NonType: { 938 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 939 return TemplateArgumentLoc(TemplateArgument(E), E); 940 } 941 942 case ParsedTemplateArgument::Template: { 943 TemplateName Template = Arg.getAsTemplate().get(); 944 TemplateArgument TArg; 945 if (Arg.getEllipsisLoc().isValid()) 946 TArg = TemplateArgument(Template, std::optional<unsigned int>()); 947 else 948 TArg = Template; 949 return TemplateArgumentLoc( 950 SemaRef.Context, TArg, 951 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context), 952 Arg.getLocation(), Arg.getEllipsisLoc()); 953 } 954 } 955 956 llvm_unreachable("Unhandled parsed template argument"); 957 } 958 959 /// Translates template arguments as provided by the parser 960 /// into template arguments used by semantic analysis. 961 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 962 TemplateArgumentListInfo &TemplateArgs) { 963 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 964 TemplateArgs.addArgument(translateTemplateArgument(*this, 965 TemplateArgsIn[I])); 966 } 967 968 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 969 SourceLocation Loc, 970 IdentifierInfo *Name) { 971 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 972 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 973 if (PrevDecl && PrevDecl->isTemplateParameter()) 974 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 975 } 976 977 /// Convert a parsed type into a parsed template argument. This is mostly 978 /// trivial, except that we may have parsed a C++17 deduced class template 979 /// specialization type, in which case we should form a template template 980 /// argument instead of a type template argument. 981 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 982 TypeSourceInfo *TInfo; 983 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 984 if (T.isNull()) 985 return ParsedTemplateArgument(); 986 assert(TInfo && "template argument with no location"); 987 988 // If we might have formed a deduced template specialization type, convert 989 // it to a template template argument. 990 if (getLangOpts().CPlusPlus17) { 991 TypeLoc TL = TInfo->getTypeLoc(); 992 SourceLocation EllipsisLoc; 993 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 994 EllipsisLoc = PET.getEllipsisLoc(); 995 TL = PET.getPatternLoc(); 996 } 997 998 CXXScopeSpec SS; 999 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 1000 SS.Adopt(ET.getQualifierLoc()); 1001 TL = ET.getNamedTypeLoc(); 1002 } 1003 1004 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 1005 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 1006 if (SS.isSet()) 1007 Name = Context.getQualifiedTemplateName(SS.getScopeRep(), 1008 /*HasTemplateKeyword=*/false, 1009 Name); 1010 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 1011 DTST.getTemplateNameLoc()); 1012 if (EllipsisLoc.isValid()) 1013 Result = Result.getTemplatePackExpansion(EllipsisLoc); 1014 return Result; 1015 } 1016 } 1017 1018 // This is a normal type template argument. Note, if the type template 1019 // argument is an injected-class-name for a template, it has a dual nature 1020 // and can be used as either a type or a template. We handle that in 1021 // convertTypeTemplateArgumentToTemplate. 1022 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 1023 ParsedType.get().getAsOpaquePtr(), 1024 TInfo->getTypeLoc().getBeginLoc()); 1025 } 1026 1027 /// ActOnTypeParameter - Called when a C++ template type parameter 1028 /// (e.g., "typename T") has been parsed. Typename specifies whether 1029 /// the keyword "typename" was used to declare the type parameter 1030 /// (otherwise, "class" was used), and KeyLoc is the location of the 1031 /// "class" or "typename" keyword. ParamName is the name of the 1032 /// parameter (NULL indicates an unnamed template parameter) and 1033 /// ParamNameLoc is the location of the parameter name (if any). 1034 /// If the type parameter has a default argument, it will be added 1035 /// later via ActOnTypeParameterDefault. 1036 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 1037 SourceLocation EllipsisLoc, 1038 SourceLocation KeyLoc, 1039 IdentifierInfo *ParamName, 1040 SourceLocation ParamNameLoc, 1041 unsigned Depth, unsigned Position, 1042 SourceLocation EqualLoc, 1043 ParsedType DefaultArg, 1044 bool HasTypeConstraint) { 1045 assert(S->isTemplateParamScope() && 1046 "Template type parameter not in template parameter scope!"); 1047 1048 bool IsParameterPack = EllipsisLoc.isValid(); 1049 TemplateTypeParmDecl *Param 1050 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1051 KeyLoc, ParamNameLoc, Depth, Position, 1052 ParamName, Typename, IsParameterPack, 1053 HasTypeConstraint); 1054 Param->setAccess(AS_public); 1055 1056 if (Param->isParameterPack()) 1057 if (auto *LSI = getEnclosingLambda()) 1058 LSI->LocalPacks.push_back(Param); 1059 1060 if (ParamName) { 1061 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1062 1063 // Add the template parameter into the current scope. 1064 S->AddDecl(Param); 1065 IdResolver.AddDecl(Param); 1066 } 1067 1068 // C++0x [temp.param]p9: 1069 // A default template-argument may be specified for any kind of 1070 // template-parameter that is not a template parameter pack. 1071 if (DefaultArg && IsParameterPack) { 1072 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1073 DefaultArg = nullptr; 1074 } 1075 1076 // Handle the default argument, if provided. 1077 if (DefaultArg) { 1078 TypeSourceInfo *DefaultTInfo; 1079 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1080 1081 assert(DefaultTInfo && "expected source information for type"); 1082 1083 // Check for unexpanded parameter packs. 1084 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1085 UPPC_DefaultArgument)) 1086 return Param; 1087 1088 // Check the template argument itself. 1089 if (CheckTemplateArgument(DefaultTInfo)) { 1090 Param->setInvalidDecl(); 1091 return Param; 1092 } 1093 1094 Param->setDefaultArgument(DefaultTInfo); 1095 } 1096 1097 return Param; 1098 } 1099 1100 /// Convert the parser's template argument list representation into our form. 1101 static TemplateArgumentListInfo 1102 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1103 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1104 TemplateId.RAngleLoc); 1105 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1106 TemplateId.NumArgs); 1107 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1108 return TemplateArgs; 1109 } 1110 1111 bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) { 1112 1113 TemplateName TN = TypeConstr->Template.get(); 1114 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1115 1116 // C++2a [temp.param]p4: 1117 // [...] The concept designated by a type-constraint shall be a type 1118 // concept ([temp.concept]). 1119 if (!CD->isTypeConcept()) { 1120 Diag(TypeConstr->TemplateNameLoc, 1121 diag::err_type_constraint_non_type_concept); 1122 return true; 1123 } 1124 1125 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1126 1127 if (!WereArgsSpecified && 1128 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1129 Diag(TypeConstr->TemplateNameLoc, 1130 diag::err_type_constraint_missing_arguments) 1131 << CD; 1132 return true; 1133 } 1134 return false; 1135 } 1136 1137 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1138 TemplateIdAnnotation *TypeConstr, 1139 TemplateTypeParmDecl *ConstrainedParameter, 1140 SourceLocation EllipsisLoc) { 1141 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc, 1142 false); 1143 } 1144 1145 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, 1146 TemplateIdAnnotation *TypeConstr, 1147 TemplateTypeParmDecl *ConstrainedParameter, 1148 SourceLocation EllipsisLoc, 1149 bool AllowUnexpandedPack) { 1150 1151 if (CheckTypeConstraint(TypeConstr)) 1152 return true; 1153 1154 TemplateName TN = TypeConstr->Template.get(); 1155 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1156 1157 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), 1158 TypeConstr->TemplateNameLoc); 1159 1160 TemplateArgumentListInfo TemplateArgs; 1161 if (TypeConstr->LAngleLoc.isValid()) { 1162 TemplateArgs = 1163 makeTemplateArgumentListInfo(*this, *TypeConstr); 1164 1165 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { 1166 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { 1167 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint)) 1168 return true; 1169 } 1170 } 1171 } 1172 return AttachTypeConstraint( 1173 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1174 ConceptName, CD, 1175 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1176 ConstrainedParameter, EllipsisLoc); 1177 } 1178 1179 template<typename ArgumentLocAppender> 1180 static ExprResult formImmediatelyDeclaredConstraint( 1181 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1182 ConceptDecl *NamedConcept, SourceLocation LAngleLoc, 1183 SourceLocation RAngleLoc, QualType ConstrainedType, 1184 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1185 SourceLocation EllipsisLoc) { 1186 1187 TemplateArgumentListInfo ConstraintArgs; 1188 ConstraintArgs.addArgument( 1189 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1190 /*NTTPType=*/QualType(), ParamNameLoc)); 1191 1192 ConstraintArgs.setRAngleLoc(RAngleLoc); 1193 ConstraintArgs.setLAngleLoc(LAngleLoc); 1194 Appender(ConstraintArgs); 1195 1196 // C++2a [temp.param]p4: 1197 // [...] This constraint-expression E is called the immediately-declared 1198 // constraint of T. [...] 1199 CXXScopeSpec SS; 1200 SS.Adopt(NS); 1201 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1202 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1203 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); 1204 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1205 return ImmediatelyDeclaredConstraint; 1206 1207 // C++2a [temp.param]p4: 1208 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1209 // 1210 // We have the following case: 1211 // 1212 // template<typename T> concept C1 = true; 1213 // template<C1... T> struct s1; 1214 // 1215 // The constraint: (C1<T> && ...) 1216 // 1217 // Note that the type of C1<T> is known to be 'bool', so we don't need to do 1218 // any unqualified lookups for 'operator&&' here. 1219 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr, 1220 /*LParenLoc=*/SourceLocation(), 1221 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1222 EllipsisLoc, /*RHS=*/nullptr, 1223 /*RParenLoc=*/SourceLocation(), 1224 /*NumExpansions=*/std::nullopt); 1225 } 1226 1227 /// Attach a type-constraint to a template parameter. 1228 /// \returns true if an error occurred. This can happen if the 1229 /// immediately-declared constraint could not be formed (e.g. incorrect number 1230 /// of arguments for the named concept). 1231 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1232 DeclarationNameInfo NameInfo, 1233 ConceptDecl *NamedConcept, 1234 const TemplateArgumentListInfo *TemplateArgs, 1235 TemplateTypeParmDecl *ConstrainedParameter, 1236 SourceLocation EllipsisLoc) { 1237 // C++2a [temp.param]p4: 1238 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1239 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1240 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1241 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1242 *TemplateArgs) : nullptr; 1243 1244 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); 1245 1246 ExprResult ImmediatelyDeclaredConstraint = 1247 formImmediatelyDeclaredConstraint( 1248 *this, NS, NameInfo, NamedConcept, 1249 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1250 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1251 ParamAsArgument, ConstrainedParameter->getLocation(), 1252 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1253 if (TemplateArgs) 1254 for (const auto &ArgLoc : TemplateArgs->arguments()) 1255 ConstraintArgs.addArgument(ArgLoc); 1256 }, EllipsisLoc); 1257 if (ImmediatelyDeclaredConstraint.isInvalid()) 1258 return true; 1259 1260 auto *CL = ConceptReference::Create(Context, /*NNS=*/NS, 1261 /*TemplateKWLoc=*/SourceLocation{}, 1262 /*ConceptNameInfo=*/NameInfo, 1263 /*FoundDecl=*/NamedConcept, 1264 /*NamedConcept=*/NamedConcept, 1265 /*ArgsWritten=*/ArgsAsWritten); 1266 ConstrainedParameter->setTypeConstraint(CL, 1267 ImmediatelyDeclaredConstraint.get()); 1268 return false; 1269 } 1270 1271 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, 1272 NonTypeTemplateParmDecl *NewConstrainedParm, 1273 NonTypeTemplateParmDecl *OrigConstrainedParm, 1274 SourceLocation EllipsisLoc) { 1275 if (NewConstrainedParm->getType() != TL.getType() || 1276 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1277 Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1278 diag::err_unsupported_placeholder_constraint) 1279 << NewConstrainedParm->getTypeSourceInfo() 1280 ->getTypeLoc() 1281 .getSourceRange(); 1282 return true; 1283 } 1284 // FIXME: Concepts: This should be the type of the placeholder, but this is 1285 // unclear in the wording right now. 1286 DeclRefExpr *Ref = 1287 BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(), 1288 VK_PRValue, OrigConstrainedParm->getLocation()); 1289 if (!Ref) 1290 return true; 1291 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( 1292 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1293 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), 1294 BuildDecltypeType(Ref), OrigConstrainedParm->getLocation(), 1295 [&](TemplateArgumentListInfo &ConstraintArgs) { 1296 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1297 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1298 }, 1299 EllipsisLoc); 1300 if (ImmediatelyDeclaredConstraint.isInvalid() || 1301 !ImmediatelyDeclaredConstraint.isUsable()) 1302 return true; 1303 1304 NewConstrainedParm->setPlaceholderTypeConstraint( 1305 ImmediatelyDeclaredConstraint.get()); 1306 return false; 1307 } 1308 1309 /// Check that the type of a non-type template parameter is 1310 /// well-formed. 1311 /// 1312 /// \returns the (possibly-promoted) parameter type if valid; 1313 /// otherwise, produces a diagnostic and returns a NULL type. 1314 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1315 SourceLocation Loc) { 1316 if (TSI->getType()->isUndeducedType()) { 1317 // C++17 [temp.dep.expr]p3: 1318 // An id-expression is type-dependent if it contains 1319 // - an identifier associated by name lookup with a non-type 1320 // template-parameter declared with a type that contains a 1321 // placeholder type (7.1.7.4), 1322 TSI = SubstAutoTypeSourceInfoDependent(TSI); 1323 } 1324 1325 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1326 } 1327 1328 /// Require the given type to be a structural type, and diagnose if it is not. 1329 /// 1330 /// \return \c true if an error was produced. 1331 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { 1332 if (T->isDependentType()) 1333 return false; 1334 1335 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) 1336 return true; 1337 1338 if (T->isStructuralType()) 1339 return false; 1340 1341 // Structural types are required to be object types or lvalue references. 1342 if (T->isRValueReferenceType()) { 1343 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; 1344 return true; 1345 } 1346 1347 // Don't mention structural types in our diagnostic prior to C++20. Also, 1348 // there's not much more we can say about non-scalar non-class types -- 1349 // because we can't see functions or arrays here, those can only be language 1350 // extensions. 1351 if (!getLangOpts().CPlusPlus20 || 1352 (!T->isScalarType() && !T->isRecordType())) { 1353 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; 1354 return true; 1355 } 1356 1357 // Structural types are required to be literal types. 1358 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) 1359 return true; 1360 1361 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; 1362 1363 // Drill down into the reason why the class is non-structural. 1364 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 1365 // All members are required to be public and non-mutable, and can't be of 1366 // rvalue reference type. Check these conditions first to prefer a "local" 1367 // reason over a more distant one. 1368 for (const FieldDecl *FD : RD->fields()) { 1369 if (FD->getAccess() != AS_public) { 1370 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; 1371 return true; 1372 } 1373 if (FD->isMutable()) { 1374 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; 1375 return true; 1376 } 1377 if (FD->getType()->isRValueReferenceType()) { 1378 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) 1379 << T; 1380 return true; 1381 } 1382 } 1383 1384 // All bases are required to be public. 1385 for (const auto &BaseSpec : RD->bases()) { 1386 if (BaseSpec.getAccessSpecifier() != AS_public) { 1387 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) 1388 << T << 1; 1389 return true; 1390 } 1391 } 1392 1393 // All subobjects are required to be of structural types. 1394 SourceLocation SubLoc; 1395 QualType SubType; 1396 int Kind = -1; 1397 1398 for (const FieldDecl *FD : RD->fields()) { 1399 QualType T = Context.getBaseElementType(FD->getType()); 1400 if (!T->isStructuralType()) { 1401 SubLoc = FD->getLocation(); 1402 SubType = T; 1403 Kind = 0; 1404 break; 1405 } 1406 } 1407 1408 if (Kind == -1) { 1409 for (const auto &BaseSpec : RD->bases()) { 1410 QualType T = BaseSpec.getType(); 1411 if (!T->isStructuralType()) { 1412 SubLoc = BaseSpec.getBaseTypeLoc(); 1413 SubType = T; 1414 Kind = 1; 1415 break; 1416 } 1417 } 1418 } 1419 1420 assert(Kind != -1 && "couldn't find reason why type is not structural"); 1421 Diag(SubLoc, diag::note_not_structural_subobject) 1422 << T << Kind << SubType; 1423 T = SubType; 1424 RD = T->getAsCXXRecordDecl(); 1425 } 1426 1427 return true; 1428 } 1429 1430 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1431 SourceLocation Loc) { 1432 // We don't allow variably-modified types as the type of non-type template 1433 // parameters. 1434 if (T->isVariablyModifiedType()) { 1435 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1436 << T; 1437 return QualType(); 1438 } 1439 1440 // C++ [temp.param]p4: 1441 // 1442 // A non-type template-parameter shall have one of the following 1443 // (optionally cv-qualified) types: 1444 // 1445 // -- integral or enumeration type, 1446 if (T->isIntegralOrEnumerationType() || 1447 // -- pointer to object or pointer to function, 1448 T->isPointerType() || 1449 // -- lvalue reference to object or lvalue reference to function, 1450 T->isLValueReferenceType() || 1451 // -- pointer to member, 1452 T->isMemberPointerType() || 1453 // -- std::nullptr_t, or 1454 T->isNullPtrType() || 1455 // -- a type that contains a placeholder type. 1456 T->isUndeducedType()) { 1457 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1458 // are ignored when determining its type. 1459 return T.getUnqualifiedType(); 1460 } 1461 1462 // C++ [temp.param]p8: 1463 // 1464 // A non-type template-parameter of type "array of T" or 1465 // "function returning T" is adjusted to be of type "pointer to 1466 // T" or "pointer to function returning T", respectively. 1467 if (T->isArrayType() || T->isFunctionType()) 1468 return Context.getDecayedType(T); 1469 1470 // If T is a dependent type, we can't do the check now, so we 1471 // assume that it is well-formed. Note that stripping off the 1472 // qualifiers here is not really correct if T turns out to be 1473 // an array type, but we'll recompute the type everywhere it's 1474 // used during instantiation, so that should be OK. (Using the 1475 // qualified type is equally wrong.) 1476 if (T->isDependentType()) 1477 return T.getUnqualifiedType(); 1478 1479 // C++20 [temp.param]p6: 1480 // -- a structural type 1481 if (RequireStructuralType(T, Loc)) 1482 return QualType(); 1483 1484 if (!getLangOpts().CPlusPlus20) { 1485 // FIXME: Consider allowing structural types as an extension in C++17. (In 1486 // earlier language modes, the template argument evaluation rules are too 1487 // inflexible.) 1488 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; 1489 return QualType(); 1490 } 1491 1492 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; 1493 return T.getUnqualifiedType(); 1494 } 1495 1496 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1497 unsigned Depth, 1498 unsigned Position, 1499 SourceLocation EqualLoc, 1500 Expr *Default) { 1501 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 1502 1503 // Check that we have valid decl-specifiers specified. 1504 auto CheckValidDeclSpecifiers = [this, &D] { 1505 // C++ [temp.param] 1506 // p1 1507 // template-parameter: 1508 // ... 1509 // parameter-declaration 1510 // p2 1511 // ... A storage class shall not be specified in a template-parameter 1512 // declaration. 1513 // [dcl.typedef]p1: 1514 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1515 // of a parameter-declaration 1516 const DeclSpec &DS = D.getDeclSpec(); 1517 auto EmitDiag = [this](SourceLocation Loc) { 1518 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1519 << FixItHint::CreateRemoval(Loc); 1520 }; 1521 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1522 EmitDiag(DS.getStorageClassSpecLoc()); 1523 1524 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1525 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1526 1527 // [dcl.inline]p1: 1528 // The inline specifier can be applied only to the declaration or 1529 // definition of a variable or function. 1530 1531 if (DS.isInlineSpecified()) 1532 EmitDiag(DS.getInlineSpecLoc()); 1533 1534 // [dcl.constexpr]p1: 1535 // The constexpr specifier shall be applied only to the definition of a 1536 // variable or variable template or the declaration of a function or 1537 // function template. 1538 1539 if (DS.hasConstexprSpecifier()) 1540 EmitDiag(DS.getConstexprSpecLoc()); 1541 1542 // [dcl.fct.spec]p1: 1543 // Function-specifiers can be used only in function declarations. 1544 1545 if (DS.isVirtualSpecified()) 1546 EmitDiag(DS.getVirtualSpecLoc()); 1547 1548 if (DS.hasExplicitSpecifier()) 1549 EmitDiag(DS.getExplicitSpecLoc()); 1550 1551 if (DS.isNoreturnSpecified()) 1552 EmitDiag(DS.getNoreturnSpecLoc()); 1553 }; 1554 1555 CheckValidDeclSpecifiers(); 1556 1557 if (const auto *T = TInfo->getType()->getContainedDeducedType()) 1558 if (isa<AutoType>(T)) 1559 Diag(D.getIdentifierLoc(), 1560 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1561 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1562 1563 assert(S->isTemplateParamScope() && 1564 "Non-type template parameter not in template parameter scope!"); 1565 bool Invalid = false; 1566 1567 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1568 if (T.isNull()) { 1569 T = Context.IntTy; // Recover with an 'int' type. 1570 Invalid = true; 1571 } 1572 1573 CheckFunctionOrTemplateParamDeclarator(S, D); 1574 1575 IdentifierInfo *ParamName = D.getIdentifier(); 1576 bool IsParameterPack = D.hasEllipsis(); 1577 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1578 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1579 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1580 TInfo); 1581 Param->setAccess(AS_public); 1582 1583 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1584 if (TL.isConstrained()) 1585 if (AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc())) 1586 Invalid = true; 1587 1588 if (Invalid) 1589 Param->setInvalidDecl(); 1590 1591 if (Param->isParameterPack()) 1592 if (auto *LSI = getEnclosingLambda()) 1593 LSI->LocalPacks.push_back(Param); 1594 1595 if (ParamName) { 1596 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1597 ParamName); 1598 1599 // Add the template parameter into the current scope. 1600 S->AddDecl(Param); 1601 IdResolver.AddDecl(Param); 1602 } 1603 1604 // C++0x [temp.param]p9: 1605 // A default template-argument may be specified for any kind of 1606 // template-parameter that is not a template parameter pack. 1607 if (Default && IsParameterPack) { 1608 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1609 Default = nullptr; 1610 } 1611 1612 // Check the well-formedness of the default template argument, if provided. 1613 if (Default) { 1614 // Check for unexpanded parameter packs. 1615 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1616 return Param; 1617 1618 Param->setDefaultArgument(Default); 1619 } 1620 1621 return Param; 1622 } 1623 1624 /// ActOnTemplateTemplateParameter - Called when a C++ template template 1625 /// parameter (e.g. T in template <template \<typename> class T> class array) 1626 /// has been parsed. S is the current scope. 1627 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, 1628 SourceLocation TmpLoc, 1629 TemplateParameterList *Params, 1630 SourceLocation EllipsisLoc, 1631 IdentifierInfo *Name, 1632 SourceLocation NameLoc, 1633 unsigned Depth, 1634 unsigned Position, 1635 SourceLocation EqualLoc, 1636 ParsedTemplateArgument Default) { 1637 assert(S->isTemplateParamScope() && 1638 "Template template parameter not in template parameter scope!"); 1639 1640 // Construct the parameter object. 1641 bool IsParameterPack = EllipsisLoc.isValid(); 1642 TemplateTemplateParmDecl *Param = 1643 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1644 NameLoc.isInvalid()? TmpLoc : NameLoc, 1645 Depth, Position, IsParameterPack, 1646 Name, Params); 1647 Param->setAccess(AS_public); 1648 1649 if (Param->isParameterPack()) 1650 if (auto *LSI = getEnclosingLambda()) 1651 LSI->LocalPacks.push_back(Param); 1652 1653 // If the template template parameter has a name, then link the identifier 1654 // into the scope and lookup mechanisms. 1655 if (Name) { 1656 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1657 1658 S->AddDecl(Param); 1659 IdResolver.AddDecl(Param); 1660 } 1661 1662 if (Params->size() == 0) { 1663 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1664 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1665 Param->setInvalidDecl(); 1666 } 1667 1668 // C++0x [temp.param]p9: 1669 // A default template-argument may be specified for any kind of 1670 // template-parameter that is not a template parameter pack. 1671 if (IsParameterPack && !Default.isInvalid()) { 1672 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1673 Default = ParsedTemplateArgument(); 1674 } 1675 1676 if (!Default.isInvalid()) { 1677 // Check only that we have a template template argument. We don't want to 1678 // try to check well-formedness now, because our template template parameter 1679 // might have dependent types in its template parameters, which we wouldn't 1680 // be able to match now. 1681 // 1682 // If none of the template template parameter's template arguments mention 1683 // other template parameters, we could actually perform more checking here. 1684 // However, it isn't worth doing. 1685 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1686 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1687 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1688 << DefaultArg.getSourceRange(); 1689 return Param; 1690 } 1691 1692 // Check for unexpanded parameter packs. 1693 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1694 DefaultArg.getArgument().getAsTemplate(), 1695 UPPC_DefaultArgument)) 1696 return Param; 1697 1698 Param->setDefaultArgument(Context, DefaultArg); 1699 } 1700 1701 return Param; 1702 } 1703 1704 namespace { 1705 class ConstraintRefersToContainingTemplateChecker 1706 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> { 1707 bool Result = false; 1708 const FunctionDecl *Friend = nullptr; 1709 unsigned TemplateDepth = 0; 1710 1711 // Check a record-decl that we've seen to see if it is a lexical parent of the 1712 // Friend, likely because it was referred to without its template arguments. 1713 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) { 1714 CheckingRD = CheckingRD->getMostRecentDecl(); 1715 if (!CheckingRD->isTemplated()) 1716 return; 1717 1718 for (const DeclContext *DC = Friend->getLexicalDeclContext(); 1719 DC && !DC->isFileContext(); DC = DC->getParent()) 1720 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) 1721 if (CheckingRD == RD->getMostRecentDecl()) 1722 Result = true; 1723 } 1724 1725 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { 1726 assert(D->getDepth() <= TemplateDepth && 1727 "Nothing should reference a value below the actual template depth, " 1728 "depth is likely wrong"); 1729 if (D->getDepth() != TemplateDepth) 1730 Result = true; 1731 1732 // Necessary because the type of the NTTP might be what refers to the parent 1733 // constriant. 1734 TransformType(D->getType()); 1735 } 1736 1737 public: 1738 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>; 1739 1740 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef, 1741 const FunctionDecl *Friend, 1742 unsigned TemplateDepth) 1743 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {} 1744 bool getResult() const { return Result; } 1745 1746 // This should be the only template parm type that we have to deal with. 1747 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and 1748 // FunctionParmPackExpr are all partially substituted, which cannot happen 1749 // with concepts at this point in translation. 1750 using inherited::TransformTemplateTypeParmType; 1751 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, 1752 TemplateTypeParmTypeLoc TL, bool) { 1753 assert(TL.getDecl()->getDepth() <= TemplateDepth && 1754 "Nothing should reference a value below the actual template depth, " 1755 "depth is likely wrong"); 1756 if (TL.getDecl()->getDepth() != TemplateDepth) 1757 Result = true; 1758 return inherited::TransformTemplateTypeParmType( 1759 TLB, TL, 1760 /*SuppressObjCLifetime=*/false); 1761 } 1762 1763 Decl *TransformDecl(SourceLocation Loc, Decl *D) { 1764 if (!D) 1765 return D; 1766 // FIXME : This is possibly an incomplete list, but it is unclear what other 1767 // Decl kinds could be used to refer to the template parameters. This is a 1768 // best guess so far based on examples currently available, but the 1769 // unreachable should catch future instances/cases. 1770 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) 1771 TransformType(TD->getUnderlyingType()); 1772 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D)) 1773 CheckNonTypeTemplateParmDecl(NTTPD); 1774 else if (auto *VD = dyn_cast<ValueDecl>(D)) 1775 TransformType(VD->getType()); 1776 else if (auto *TD = dyn_cast<TemplateDecl>(D)) 1777 TransformTemplateParameterList(TD->getTemplateParameters()); 1778 else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1779 CheckIfContainingRecord(RD); 1780 else if (isa<NamedDecl>(D)) { 1781 // No direct types to visit here I believe. 1782 } else 1783 llvm_unreachable("Don't know how to handle this declaration type yet"); 1784 return D; 1785 } 1786 }; 1787 } // namespace 1788 1789 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate( 1790 const FunctionDecl *Friend, unsigned TemplateDepth, 1791 const Expr *Constraint) { 1792 assert(Friend->getFriendObjectKind() && "Only works on a friend"); 1793 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend, 1794 TemplateDepth); 1795 Checker.TransformExpr(const_cast<Expr *>(Constraint)); 1796 return Checker.getResult(); 1797 } 1798 1799 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally 1800 /// constrained by RequiresClause, that contains the template parameters in 1801 /// Params. 1802 TemplateParameterList * 1803 Sema::ActOnTemplateParameterList(unsigned Depth, 1804 SourceLocation ExportLoc, 1805 SourceLocation TemplateLoc, 1806 SourceLocation LAngleLoc, 1807 ArrayRef<NamedDecl *> Params, 1808 SourceLocation RAngleLoc, 1809 Expr *RequiresClause) { 1810 if (ExportLoc.isValid()) 1811 Diag(ExportLoc, diag::warn_template_export_unsupported); 1812 1813 for (NamedDecl *P : Params) 1814 warnOnReservedIdentifier(P); 1815 1816 return TemplateParameterList::Create( 1817 Context, TemplateLoc, LAngleLoc, 1818 llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause); 1819 } 1820 1821 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1822 const CXXScopeSpec &SS) { 1823 if (SS.isSet()) 1824 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1825 } 1826 1827 // Returns the template parameter list with all default template argument 1828 // information. 1829 static TemplateParameterList *GetTemplateParameterList(TemplateDecl *TD) { 1830 // Make sure we get the template parameter list from the most 1831 // recent declaration, since that is the only one that is guaranteed to 1832 // have all the default template argument information. 1833 Decl *D = TD->getMostRecentDecl(); 1834 // C++11 [temp.param]p12: 1835 // A default template argument shall not be specified in a friend class 1836 // template declaration. 1837 // 1838 // Skip past friend *declarations* because they are not supposed to contain 1839 // default template arguments. Moreover, these declarations may introduce 1840 // template parameters living in different template depths than the 1841 // corresponding template parameters in TD, causing unmatched constraint 1842 // substitution. 1843 // 1844 // FIXME: Diagnose such cases within a class template: 1845 // template <class T> 1846 // struct S { 1847 // template <class = void> friend struct C; 1848 // }; 1849 // template struct S<int>; 1850 while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None && 1851 D->getPreviousDecl()) 1852 D = D->getPreviousDecl(); 1853 return cast<TemplateDecl>(D)->getTemplateParameters(); 1854 } 1855 1856 DeclResult Sema::CheckClassTemplate( 1857 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1858 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1859 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1860 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1861 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1862 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1863 assert(TemplateParams && TemplateParams->size() > 0 && 1864 "No template parameters"); 1865 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 1866 bool Invalid = false; 1867 1868 // Check that we can declare a template here. 1869 if (CheckTemplateDeclScope(S, TemplateParams)) 1870 return true; 1871 1872 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1873 assert(Kind != TagTypeKind::Enum && 1874 "can't build template of enumerated type"); 1875 1876 // There is no such thing as an unnamed class template. 1877 if (!Name) { 1878 Diag(KWLoc, diag::err_template_unnamed_class); 1879 return true; 1880 } 1881 1882 // Find any previous declaration with this name. For a friend with no 1883 // scope explicitly specified, we only look for tag declarations (per 1884 // C++11 [basic.lookup.elab]p2). 1885 DeclContext *SemanticContext; 1886 LookupResult Previous(*this, Name, NameLoc, 1887 (SS.isEmpty() && TUK == TUK_Friend) 1888 ? LookupTagName : LookupOrdinaryName, 1889 forRedeclarationInCurContext()); 1890 if (SS.isNotEmpty() && !SS.isInvalid()) { 1891 SemanticContext = computeDeclContext(SS, true); 1892 if (!SemanticContext) { 1893 // FIXME: Horrible, horrible hack! We can't currently represent this 1894 // in the AST, and historically we have just ignored such friend 1895 // class templates, so don't complain here. 1896 Diag(NameLoc, TUK == TUK_Friend 1897 ? diag::warn_template_qualified_friend_ignored 1898 : diag::err_template_qualified_declarator_no_match) 1899 << SS.getScopeRep() << SS.getRange(); 1900 return TUK != TUK_Friend; 1901 } 1902 1903 if (RequireCompleteDeclContext(SS, SemanticContext)) 1904 return true; 1905 1906 // If we're adding a template to a dependent context, we may need to 1907 // rebuilding some of the types used within the template parameter list, 1908 // now that we know what the current instantiation is. 1909 if (SemanticContext->isDependentContext()) { 1910 ContextRAII SavedContext(*this, SemanticContext); 1911 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1912 Invalid = true; 1913 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 1914 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); 1915 1916 LookupQualifiedName(Previous, SemanticContext); 1917 } else { 1918 SemanticContext = CurContext; 1919 1920 // C++14 [class.mem]p14: 1921 // If T is the name of a class, then each of the following shall have a 1922 // name different from T: 1923 // -- every member template of class T 1924 if (TUK != TUK_Friend && 1925 DiagnoseClassNameShadow(SemanticContext, 1926 DeclarationNameInfo(Name, NameLoc))) 1927 return true; 1928 1929 LookupName(Previous, S); 1930 } 1931 1932 if (Previous.isAmbiguous()) 1933 return true; 1934 1935 NamedDecl *PrevDecl = nullptr; 1936 if (Previous.begin() != Previous.end()) 1937 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1938 1939 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1940 // Maybe we will complain about the shadowed template parameter. 1941 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1942 // Just pretend that we didn't see the previous declaration. 1943 PrevDecl = nullptr; 1944 } 1945 1946 // If there is a previous declaration with the same name, check 1947 // whether this is a valid redeclaration. 1948 ClassTemplateDecl *PrevClassTemplate = 1949 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1950 1951 // We may have found the injected-class-name of a class template, 1952 // class template partial specialization, or class template specialization. 1953 // In these cases, grab the template that is being defined or specialized. 1954 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 1955 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1956 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1957 PrevClassTemplate 1958 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1959 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1960 PrevClassTemplate 1961 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1962 ->getSpecializedTemplate(); 1963 } 1964 } 1965 1966 if (TUK == TUK_Friend) { 1967 // C++ [namespace.memdef]p3: 1968 // [...] When looking for a prior declaration of a class or a function 1969 // declared as a friend, and when the name of the friend class or 1970 // function is neither a qualified name nor a template-id, scopes outside 1971 // the innermost enclosing namespace scope are not considered. 1972 if (!SS.isSet()) { 1973 DeclContext *OutermostContext = CurContext; 1974 while (!OutermostContext->isFileContext()) 1975 OutermostContext = OutermostContext->getLookupParent(); 1976 1977 if (PrevDecl && 1978 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1979 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1980 SemanticContext = PrevDecl->getDeclContext(); 1981 } else { 1982 // Declarations in outer scopes don't matter. However, the outermost 1983 // context we computed is the semantic context for our new 1984 // declaration. 1985 PrevDecl = PrevClassTemplate = nullptr; 1986 SemanticContext = OutermostContext; 1987 1988 // Check that the chosen semantic context doesn't already contain a 1989 // declaration of this name as a non-tag type. 1990 Previous.clear(LookupOrdinaryName); 1991 DeclContext *LookupContext = SemanticContext; 1992 while (LookupContext->isTransparentContext()) 1993 LookupContext = LookupContext->getLookupParent(); 1994 LookupQualifiedName(Previous, LookupContext); 1995 1996 if (Previous.isAmbiguous()) 1997 return true; 1998 1999 if (Previous.begin() != Previous.end()) 2000 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 2001 } 2002 } 2003 } else if (PrevDecl && 2004 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 2005 S, SS.isValid())) 2006 PrevDecl = PrevClassTemplate = nullptr; 2007 2008 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 2009 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 2010 if (SS.isEmpty() && 2011 !(PrevClassTemplate && 2012 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 2013 SemanticContext->getRedeclContext()))) { 2014 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 2015 Diag(Shadow->getTargetDecl()->getLocation(), 2016 diag::note_using_decl_target); 2017 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; 2018 // Recover by ignoring the old declaration. 2019 PrevDecl = PrevClassTemplate = nullptr; 2020 } 2021 } 2022 2023 if (PrevClassTemplate) { 2024 // Ensure that the template parameter lists are compatible. Skip this check 2025 // for a friend in a dependent context: the template parameter list itself 2026 // could be dependent. 2027 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 2028 !TemplateParameterListsAreEqual( 2029 TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext 2030 : CurContext, 2031 CurContext, KWLoc), 2032 TemplateParams, PrevClassTemplate, 2033 PrevClassTemplate->getTemplateParameters(), /*Complain=*/true, 2034 TPL_TemplateMatch)) 2035 return true; 2036 2037 // C++ [temp.class]p4: 2038 // In a redeclaration, partial specialization, explicit 2039 // specialization or explicit instantiation of a class template, 2040 // the class-key shall agree in kind with the original class 2041 // template declaration (7.1.5.3). 2042 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 2043 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 2044 TUK == TUK_Definition, KWLoc, Name)) { 2045 Diag(KWLoc, diag::err_use_with_wrong_tag) 2046 << Name 2047 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 2048 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 2049 Kind = PrevRecordDecl->getTagKind(); 2050 } 2051 2052 // Check for redefinition of this class template. 2053 if (TUK == TUK_Definition) { 2054 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 2055 // If we have a prior definition that is not visible, treat this as 2056 // simply making that previous definition visible. 2057 NamedDecl *Hidden = nullptr; 2058 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 2059 SkipBody->ShouldSkip = true; 2060 SkipBody->Previous = Def; 2061 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 2062 assert(Tmpl && "original definition of a class template is not a " 2063 "class template?"); 2064 makeMergedDefinitionVisible(Hidden); 2065 makeMergedDefinitionVisible(Tmpl); 2066 } else { 2067 Diag(NameLoc, diag::err_redefinition) << Name; 2068 Diag(Def->getLocation(), diag::note_previous_definition); 2069 // FIXME: Would it make sense to try to "forget" the previous 2070 // definition, as part of error recovery? 2071 return true; 2072 } 2073 } 2074 } 2075 } else if (PrevDecl) { 2076 // C++ [temp]p5: 2077 // A class template shall not have the same name as any other 2078 // template, class, function, object, enumeration, enumerator, 2079 // namespace, or type in the same scope (3.3), except as specified 2080 // in (14.5.4). 2081 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 2082 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2083 return true; 2084 } 2085 2086 // Check the template parameter list of this declaration, possibly 2087 // merging in the template parameter list from the previous class 2088 // template declaration. Skip this check for a friend in a dependent 2089 // context, because the template parameter list might be dependent. 2090 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 2091 CheckTemplateParameterList( 2092 TemplateParams, 2093 PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate) 2094 : nullptr, 2095 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 2096 SemanticContext->isDependentContext()) 2097 ? TPC_ClassTemplateMember 2098 : TUK == TUK_Friend ? TPC_FriendClassTemplate 2099 : TPC_ClassTemplate, 2100 SkipBody)) 2101 Invalid = true; 2102 2103 if (SS.isSet()) { 2104 // If the name of the template was qualified, we must be defining the 2105 // template out-of-line. 2106 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 2107 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 2108 : diag::err_member_decl_does_not_match) 2109 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 2110 Invalid = true; 2111 } 2112 } 2113 2114 // If this is a templated friend in a dependent context we should not put it 2115 // on the redecl chain. In some cases, the templated friend can be the most 2116 // recent declaration tricking the template instantiator to make substitutions 2117 // there. 2118 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 2119 bool ShouldAddRedecl 2120 = !(TUK == TUK_Friend && CurContext->isDependentContext()); 2121 2122 CXXRecordDecl *NewClass = 2123 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 2124 PrevClassTemplate && ShouldAddRedecl ? 2125 PrevClassTemplate->getTemplatedDecl() : nullptr, 2126 /*DelayTypeCreation=*/true); 2127 SetNestedNameSpecifier(*this, NewClass, SS); 2128 if (NumOuterTemplateParamLists > 0) 2129 NewClass->setTemplateParameterListsInfo( 2130 Context, 2131 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists)); 2132 2133 // Add alignment attributes if necessary; these attributes are checked when 2134 // the ASTContext lays out the structure. 2135 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 2136 AddAlignmentAttributesForRecord(NewClass); 2137 AddMsStructLayoutForRecord(NewClass); 2138 } 2139 2140 ClassTemplateDecl *NewTemplate 2141 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 2142 DeclarationName(Name), TemplateParams, 2143 NewClass); 2144 2145 if (ShouldAddRedecl) 2146 NewTemplate->setPreviousDecl(PrevClassTemplate); 2147 2148 NewClass->setDescribedClassTemplate(NewTemplate); 2149 2150 if (ModulePrivateLoc.isValid()) 2151 NewTemplate->setModulePrivate(); 2152 2153 // Build the type for the class template declaration now. 2154 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 2155 T = Context.getInjectedClassNameType(NewClass, T); 2156 assert(T->isDependentType() && "Class template type is not dependent?"); 2157 (void)T; 2158 2159 // If we are providing an explicit specialization of a member that is a 2160 // class template, make a note of that. 2161 if (PrevClassTemplate && 2162 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 2163 PrevClassTemplate->setMemberSpecialization(); 2164 2165 // Set the access specifier. 2166 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 2167 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 2168 2169 // Set the lexical context of these templates 2170 NewClass->setLexicalDeclContext(CurContext); 2171 NewTemplate->setLexicalDeclContext(CurContext); 2172 2173 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 2174 NewClass->startDefinition(); 2175 2176 ProcessDeclAttributeList(S, NewClass, Attr); 2177 2178 if (PrevClassTemplate) 2179 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 2180 2181 AddPushedVisibilityAttribute(NewClass); 2182 inferGslOwnerPointerAttribute(NewClass); 2183 2184 if (TUK != TUK_Friend) { 2185 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 2186 Scope *Outer = S; 2187 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 2188 Outer = Outer->getParent(); 2189 PushOnScopeChains(NewTemplate, Outer); 2190 } else { 2191 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 2192 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 2193 NewClass->setAccess(PrevClassTemplate->getAccess()); 2194 } 2195 2196 NewTemplate->setObjectOfFriendDecl(); 2197 2198 // Friend templates are visible in fairly strange ways. 2199 if (!CurContext->isDependentContext()) { 2200 DeclContext *DC = SemanticContext->getRedeclContext(); 2201 DC->makeDeclVisibleInContext(NewTemplate); 2202 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 2203 PushOnScopeChains(NewTemplate, EnclosingScope, 2204 /* AddToContext = */ false); 2205 } 2206 2207 FriendDecl *Friend = FriendDecl::Create( 2208 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 2209 Friend->setAccess(AS_public); 2210 CurContext->addDecl(Friend); 2211 } 2212 2213 if (PrevClassTemplate) 2214 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate); 2215 2216 if (Invalid) { 2217 NewTemplate->setInvalidDecl(); 2218 NewClass->setInvalidDecl(); 2219 } 2220 2221 ActOnDocumentableDecl(NewTemplate); 2222 2223 if (SkipBody && SkipBody->ShouldSkip) 2224 return SkipBody->Previous; 2225 2226 return NewTemplate; 2227 } 2228 2229 namespace { 2230 /// Tree transform to "extract" a transformed type from a class template's 2231 /// constructor to a deduction guide. 2232 class ExtractTypeForDeductionGuide 2233 : public TreeTransform<ExtractTypeForDeductionGuide> { 2234 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs; 2235 2236 public: 2237 typedef TreeTransform<ExtractTypeForDeductionGuide> Base; 2238 ExtractTypeForDeductionGuide( 2239 Sema &SemaRef, 2240 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) 2241 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {} 2242 2243 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } 2244 2245 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { 2246 ASTContext &Context = SemaRef.getASTContext(); 2247 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl(); 2248 TypedefNameDecl *Decl = OrigDecl; 2249 // Transform the underlying type of the typedef and clone the Decl only if 2250 // the typedef has a dependent context. 2251 if (OrigDecl->getDeclContext()->isDependentContext()) { 2252 TypeLocBuilder InnerTLB; 2253 QualType Transformed = 2254 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc()); 2255 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed); 2256 if (isa<TypeAliasDecl>(OrigDecl)) 2257 Decl = TypeAliasDecl::Create( 2258 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2259 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2260 else { 2261 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef"); 2262 Decl = TypedefDecl::Create( 2263 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2264 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2265 } 2266 MaterializedTypedefs.push_back(Decl); 2267 } 2268 2269 QualType TDTy = Context.getTypedefType(Decl); 2270 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy); 2271 TypedefTL.setNameLoc(TL.getNameLoc()); 2272 2273 return TDTy; 2274 } 2275 }; 2276 2277 /// Transform to convert portions of a constructor declaration into the 2278 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. 2279 struct ConvertConstructorToDeductionGuideTransform { 2280 ConvertConstructorToDeductionGuideTransform(Sema &S, 2281 ClassTemplateDecl *Template) 2282 : SemaRef(S), Template(Template) { 2283 // If the template is nested, then we need to use the original 2284 // pattern to iterate over the constructors. 2285 ClassTemplateDecl *Pattern = Template; 2286 while (Pattern->getInstantiatedFromMemberTemplate()) { 2287 if (Pattern->isMemberSpecialization()) 2288 break; 2289 Pattern = Pattern->getInstantiatedFromMemberTemplate(); 2290 NestedPattern = Pattern; 2291 } 2292 2293 if (NestedPattern) 2294 OuterInstantiationArgs = SemaRef.getTemplateInstantiationArgs(Template); 2295 } 2296 2297 Sema &SemaRef; 2298 ClassTemplateDecl *Template; 2299 ClassTemplateDecl *NestedPattern = nullptr; 2300 2301 DeclContext *DC = Template->getDeclContext(); 2302 CXXRecordDecl *Primary = Template->getTemplatedDecl(); 2303 DeclarationName DeductionGuideName = 2304 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); 2305 2306 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); 2307 2308 // Index adjustment to apply to convert depth-1 template parameters into 2309 // depth-0 template parameters. 2310 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); 2311 2312 // Instantiation arguments for the outermost depth-1 templates 2313 // when the template is nested 2314 MultiLevelTemplateArgumentList OuterInstantiationArgs; 2315 2316 /// Transform a constructor declaration into a deduction guide. 2317 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, 2318 CXXConstructorDecl *CD) { 2319 SmallVector<TemplateArgument, 16> SubstArgs; 2320 2321 LocalInstantiationScope Scope(SemaRef); 2322 2323 // C++ [over.match.class.deduct]p1: 2324 // -- For each constructor of the class template designated by the 2325 // template-name, a function template with the following properties: 2326 2327 // -- The template parameters are the template parameters of the class 2328 // template followed by the template parameters (including default 2329 // template arguments) of the constructor, if any. 2330 TemplateParameterList *TemplateParams = GetTemplateParameterList(Template); 2331 if (FTD) { 2332 TemplateParameterList *InnerParams = FTD->getTemplateParameters(); 2333 SmallVector<NamedDecl *, 16> AllParams; 2334 SmallVector<TemplateArgument, 16> Depth1Args; 2335 AllParams.reserve(TemplateParams->size() + InnerParams->size()); 2336 AllParams.insert(AllParams.begin(), 2337 TemplateParams->begin(), TemplateParams->end()); 2338 SubstArgs.reserve(InnerParams->size()); 2339 Depth1Args.reserve(InnerParams->size()); 2340 2341 // Later template parameters could refer to earlier ones, so build up 2342 // a list of substituted template arguments as we go. 2343 for (NamedDecl *Param : *InnerParams) { 2344 MultiLevelTemplateArgumentList Args; 2345 Args.setKind(TemplateSubstitutionKind::Rewrite); 2346 Args.addOuterTemplateArguments(Depth1Args); 2347 Args.addOuterRetainedLevel(); 2348 if (NestedPattern) 2349 Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth()); 2350 NamedDecl *NewParam = transformTemplateParameter(Param, Args); 2351 if (!NewParam) 2352 return nullptr; 2353 2354 // Constraints require that we substitute depth-1 arguments 2355 // to match depths when substituted for evaluation later 2356 Depth1Args.push_back(SemaRef.Context.getCanonicalTemplateArgument( 2357 SemaRef.Context.getInjectedTemplateArg(NewParam))); 2358 2359 if (NestedPattern) { 2360 TemplateDeclInstantiator Instantiator(SemaRef, DC, 2361 OuterInstantiationArgs); 2362 Instantiator.setEvaluateConstraints(false); 2363 SemaRef.runWithSufficientStackSpace(NewParam->getLocation(), [&] { 2364 NewParam = cast<NamedDecl>(Instantiator.Visit(NewParam)); 2365 }); 2366 } 2367 2368 assert(NewParam->getTemplateDepth() == 0 && 2369 "Unexpected template parameter depth"); 2370 2371 AllParams.push_back(NewParam); 2372 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( 2373 SemaRef.Context.getInjectedTemplateArg(NewParam))); 2374 } 2375 2376 // Substitute new template parameters into requires-clause if present. 2377 Expr *RequiresClause = nullptr; 2378 if (Expr *InnerRC = InnerParams->getRequiresClause()) { 2379 MultiLevelTemplateArgumentList Args; 2380 Args.setKind(TemplateSubstitutionKind::Rewrite); 2381 Args.addOuterTemplateArguments(Depth1Args); 2382 Args.addOuterRetainedLevel(); 2383 if (NestedPattern) 2384 Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth()); 2385 ExprResult E = SemaRef.SubstExpr(InnerRC, Args); 2386 if (E.isInvalid()) 2387 return nullptr; 2388 RequiresClause = E.getAs<Expr>(); 2389 } 2390 2391 TemplateParams = TemplateParameterList::Create( 2392 SemaRef.Context, InnerParams->getTemplateLoc(), 2393 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), 2394 RequiresClause); 2395 } 2396 2397 // If we built a new template-parameter-list, track that we need to 2398 // substitute references to the old parameters into references to the 2399 // new ones. 2400 MultiLevelTemplateArgumentList Args; 2401 Args.setKind(TemplateSubstitutionKind::Rewrite); 2402 if (FTD) { 2403 Args.addOuterTemplateArguments(SubstArgs); 2404 Args.addOuterRetainedLevel(); 2405 } 2406 2407 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() 2408 .getAsAdjusted<FunctionProtoTypeLoc>(); 2409 assert(FPTL && "no prototype for constructor declaration"); 2410 2411 // Transform the type of the function, adjusting the return type and 2412 // replacing references to the old parameters with references to the 2413 // new ones. 2414 TypeLocBuilder TLB; 2415 SmallVector<ParmVarDecl*, 8> Params; 2416 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs; 2417 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args, 2418 MaterializedTypedefs); 2419 if (NewType.isNull()) 2420 return nullptr; 2421 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); 2422 2423 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(), 2424 NewTInfo, CD->getBeginLoc(), CD->getLocation(), 2425 CD->getEndLoc(), MaterializedTypedefs); 2426 } 2427 2428 /// Build a deduction guide with the specified parameter types. 2429 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { 2430 SourceLocation Loc = Template->getLocation(); 2431 2432 // Build the requested type. 2433 FunctionProtoType::ExtProtoInfo EPI; 2434 EPI.HasTrailingReturn = true; 2435 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, 2436 DeductionGuideName, EPI); 2437 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); 2438 if (NestedPattern) 2439 TSI = SemaRef.SubstType(TSI, OuterInstantiationArgs, Loc, 2440 DeductionGuideName); 2441 2442 FunctionProtoTypeLoc FPTL = 2443 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 2444 2445 // Build the parameters, needed during deduction / substitution. 2446 SmallVector<ParmVarDecl*, 4> Params; 2447 for (auto T : ParamTypes) { 2448 auto *TSI = SemaRef.Context.getTrivialTypeSourceInfo(T, Loc); 2449 if (NestedPattern) 2450 TSI = SemaRef.SubstType(TSI, OuterInstantiationArgs, Loc, 2451 DeclarationName()); 2452 ParmVarDecl *NewParam = 2453 ParmVarDecl::Create(SemaRef.Context, DC, Loc, Loc, nullptr, 2454 TSI->getType(), TSI, SC_None, nullptr); 2455 NewParam->setScopeInfo(0, Params.size()); 2456 FPTL.setParam(Params.size(), NewParam); 2457 Params.push_back(NewParam); 2458 } 2459 2460 return buildDeductionGuide(GetTemplateParameterList(Template), nullptr, 2461 ExplicitSpecifier(), TSI, Loc, Loc, Loc); 2462 } 2463 2464 private: 2465 /// Transform a constructor template parameter into a deduction guide template 2466 /// parameter, rebuilding any internal references to earlier parameters and 2467 /// renumbering as we go. 2468 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, 2469 MultiLevelTemplateArgumentList &Args) { 2470 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { 2471 // TemplateTypeParmDecl's index cannot be changed after creation, so 2472 // substitute it directly. 2473 auto *NewTTP = TemplateTypeParmDecl::Create( 2474 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), 2475 TTP->getDepth() - 1, Depth1IndexAdjustment + TTP->getIndex(), 2476 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), 2477 TTP->isParameterPack(), TTP->hasTypeConstraint(), 2478 TTP->isExpandedParameterPack() 2479 ? std::optional<unsigned>(TTP->getNumExpansionParameters()) 2480 : std::nullopt); 2481 if (const auto *TC = TTP->getTypeConstraint()) 2482 SemaRef.SubstTypeConstraint(NewTTP, TC, Args, 2483 /*EvaluateConstraint*/ true); 2484 if (TTP->hasDefaultArgument()) { 2485 TypeSourceInfo *InstantiatedDefaultArg = 2486 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, 2487 TTP->getDefaultArgumentLoc(), TTP->getDeclName()); 2488 if (InstantiatedDefaultArg) 2489 NewTTP->setDefaultArgument(InstantiatedDefaultArg); 2490 } 2491 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, 2492 NewTTP); 2493 return NewTTP; 2494 } 2495 2496 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) 2497 return transformTemplateParameterImpl(TTP, Args); 2498 2499 return transformTemplateParameterImpl( 2500 cast<NonTypeTemplateParmDecl>(TemplateParam), Args); 2501 } 2502 template<typename TemplateParmDecl> 2503 TemplateParmDecl * 2504 transformTemplateParameterImpl(TemplateParmDecl *OldParam, 2505 MultiLevelTemplateArgumentList &Args) { 2506 // Ask the template instantiator to do the heavy lifting for us, then adjust 2507 // the index of the parameter once it's done. 2508 auto *NewParam = 2509 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); 2510 assert(NewParam->getDepth() == OldParam->getDepth() - 1 && 2511 "unexpected template param depth"); 2512 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); 2513 return NewParam; 2514 } 2515 2516 QualType transformFunctionProtoType( 2517 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, 2518 SmallVectorImpl<ParmVarDecl *> &Params, 2519 MultiLevelTemplateArgumentList &Args, 2520 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2521 SmallVector<QualType, 4> ParamTypes; 2522 const FunctionProtoType *T = TL.getTypePtr(); 2523 2524 // -- The types of the function parameters are those of the constructor. 2525 for (auto *OldParam : TL.getParams()) { 2526 ParmVarDecl *NewParam = OldParam; 2527 // Given 2528 // template <class T> struct C { 2529 // template <class U> struct D { 2530 // template <class V> D(U, V); 2531 // }; 2532 // }; 2533 // First, transform all the references to template parameters that are 2534 // defined outside of the surrounding class template. That is T in the 2535 // above example. 2536 if (NestedPattern) { 2537 NewParam = transformFunctionTypeParam(NewParam, OuterInstantiationArgs, 2538 MaterializedTypedefs); 2539 if (!NewParam) 2540 return QualType(); 2541 } 2542 // Then, transform all the references to template parameters that are 2543 // defined at the class template and the constructor. In this example, 2544 // they're U and V, respectively. 2545 NewParam = 2546 transformFunctionTypeParam(NewParam, Args, MaterializedTypedefs); 2547 if (!NewParam) 2548 return QualType(); 2549 ParamTypes.push_back(NewParam->getType()); 2550 Params.push_back(NewParam); 2551 } 2552 2553 // -- The return type is the class template specialization designated by 2554 // the template-name and template arguments corresponding to the 2555 // template parameters obtained from the class template. 2556 // 2557 // We use the injected-class-name type of the primary template instead. 2558 // This has the convenient property that it is different from any type that 2559 // the user can write in a deduction-guide (because they cannot enter the 2560 // context of the template), so implicit deduction guides can never collide 2561 // with explicit ones. 2562 QualType ReturnType = DeducedType; 2563 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); 2564 2565 // Resolving a wording defect, we also inherit the variadicness of the 2566 // constructor. 2567 FunctionProtoType::ExtProtoInfo EPI; 2568 EPI.Variadic = T->isVariadic(); 2569 EPI.HasTrailingReturn = true; 2570 2571 QualType Result = SemaRef.BuildFunctionType( 2572 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); 2573 if (Result.isNull()) 2574 return QualType(); 2575 2576 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); 2577 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); 2578 NewTL.setLParenLoc(TL.getLParenLoc()); 2579 NewTL.setRParenLoc(TL.getRParenLoc()); 2580 NewTL.setExceptionSpecRange(SourceRange()); 2581 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); 2582 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) 2583 NewTL.setParam(I, Params[I]); 2584 2585 return Result; 2586 } 2587 2588 ParmVarDecl *transformFunctionTypeParam( 2589 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args, 2590 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2591 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); 2592 TypeSourceInfo *NewDI; 2593 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { 2594 // Expand out the one and only element in each inner pack. 2595 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); 2596 NewDI = 2597 SemaRef.SubstType(PackTL.getPatternLoc(), Args, 2598 OldParam->getLocation(), OldParam->getDeclName()); 2599 if (!NewDI) return nullptr; 2600 NewDI = 2601 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), 2602 PackTL.getTypePtr()->getNumExpansions()); 2603 } else 2604 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), 2605 OldParam->getDeclName()); 2606 if (!NewDI) 2607 return nullptr; 2608 2609 // Extract the type. This (for instance) replaces references to typedef 2610 // members of the current instantiations with the definitions of those 2611 // typedefs, avoiding triggering instantiation of the deduced type during 2612 // deduction. 2613 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs) 2614 .transform(NewDI); 2615 2616 // Resolving a wording defect, we also inherit default arguments from the 2617 // constructor. 2618 ExprResult NewDefArg; 2619 if (OldParam->hasDefaultArg()) { 2620 // We don't care what the value is (we won't use it); just create a 2621 // placeholder to indicate there is a default argument. 2622 QualType ParamTy = NewDI->getType(); 2623 NewDefArg = new (SemaRef.Context) 2624 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(), 2625 ParamTy.getNonLValueExprType(SemaRef.Context), 2626 ParamTy->isLValueReferenceType() ? VK_LValue 2627 : ParamTy->isRValueReferenceType() ? VK_XValue 2628 : VK_PRValue); 2629 } 2630 // Handle arrays and functions decay. 2631 auto NewType = NewDI->getType(); 2632 if (NewType->isArrayType() || NewType->isFunctionType()) 2633 NewType = SemaRef.Context.getDecayedType(NewType); 2634 2635 ParmVarDecl *NewParam = ParmVarDecl::Create( 2636 SemaRef.Context, DC, OldParam->getInnerLocStart(), 2637 OldParam->getLocation(), OldParam->getIdentifier(), NewType, NewDI, 2638 OldParam->getStorageClass(), NewDefArg.get()); 2639 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), 2640 OldParam->getFunctionScopeIndex()); 2641 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); 2642 return NewParam; 2643 } 2644 2645 FunctionTemplateDecl *buildDeductionGuide( 2646 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor, 2647 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart, 2648 SourceLocation Loc, SourceLocation LocEnd, 2649 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) { 2650 DeclarationNameInfo Name(DeductionGuideName, Loc); 2651 ArrayRef<ParmVarDecl *> Params = 2652 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); 2653 2654 // Build the implicit deduction guide template. 2655 auto *Guide = 2656 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, 2657 TInfo->getType(), TInfo, LocEnd, Ctor); 2658 Guide->setImplicit(); 2659 Guide->setParams(Params); 2660 2661 for (auto *Param : Params) 2662 Param->setDeclContext(Guide); 2663 for (auto *TD : MaterializedTypedefs) 2664 TD->setDeclContext(Guide); 2665 2666 auto *GuideTemplate = FunctionTemplateDecl::Create( 2667 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); 2668 GuideTemplate->setImplicit(); 2669 Guide->setDescribedFunctionTemplate(GuideTemplate); 2670 2671 if (isa<CXXRecordDecl>(DC)) { 2672 Guide->setAccess(AS_public); 2673 GuideTemplate->setAccess(AS_public); 2674 } 2675 2676 DC->addDecl(GuideTemplate); 2677 return GuideTemplate; 2678 } 2679 }; 2680 } 2681 2682 FunctionTemplateDecl *Sema::DeclareImplicitDeductionGuideFromInitList( 2683 TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes, 2684 SourceLocation Loc) { 2685 if (CXXRecordDecl *DefRecord = 2686 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2687 if (TemplateDecl *DescribedTemplate = 2688 DefRecord->getDescribedClassTemplate()) 2689 Template = DescribedTemplate; 2690 } 2691 2692 DeclContext *DC = Template->getDeclContext(); 2693 if (DC->isDependentContext()) 2694 return nullptr; 2695 2696 ConvertConstructorToDeductionGuideTransform Transform( 2697 *this, cast<ClassTemplateDecl>(Template)); 2698 if (!isCompleteType(Loc, Transform.DeducedType)) 2699 return nullptr; 2700 2701 // In case we were expanding a pack when we attempted to declare deduction 2702 // guides, turn off pack expansion for everything we're about to do. 2703 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 2704 /*NewSubstitutionIndex=*/-1); 2705 // Create a template instantiation record to track the "instantiation" of 2706 // constructors into deduction guides. 2707 InstantiatingTemplate BuildingDeductionGuides( 2708 *this, Loc, Template, 2709 Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{}); 2710 if (BuildingDeductionGuides.isInvalid()) 2711 return nullptr; 2712 2713 ClassTemplateDecl *Pattern = 2714 Transform.NestedPattern ? Transform.NestedPattern : Transform.Template; 2715 ContextRAII SavedContext(*this, Pattern->getTemplatedDecl()); 2716 2717 auto *DG = cast<FunctionTemplateDecl>( 2718 Transform.buildSimpleDeductionGuide(ParamTypes)); 2719 SavedContext.pop(); 2720 return DG; 2721 } 2722 2723 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, 2724 SourceLocation Loc) { 2725 if (CXXRecordDecl *DefRecord = 2726 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2727 if (TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate()) 2728 Template = DescribedTemplate; 2729 } 2730 2731 DeclContext *DC = Template->getDeclContext(); 2732 if (DC->isDependentContext()) 2733 return; 2734 2735 ConvertConstructorToDeductionGuideTransform Transform( 2736 *this, cast<ClassTemplateDecl>(Template)); 2737 if (!isCompleteType(Loc, Transform.DeducedType)) 2738 return; 2739 2740 // Check whether we've already declared deduction guides for this template. 2741 // FIXME: Consider storing a flag on the template to indicate this. 2742 auto Existing = DC->lookup(Transform.DeductionGuideName); 2743 for (auto *D : Existing) 2744 if (D->isImplicit()) 2745 return; 2746 2747 // In case we were expanding a pack when we attempted to declare deduction 2748 // guides, turn off pack expansion for everything we're about to do. 2749 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); 2750 // Create a template instantiation record to track the "instantiation" of 2751 // constructors into deduction guides. 2752 InstantiatingTemplate BuildingDeductionGuides( 2753 *this, Loc, Template, 2754 Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{}); 2755 if (BuildingDeductionGuides.isInvalid()) 2756 return; 2757 2758 // Convert declared constructors into deduction guide templates. 2759 // FIXME: Skip constructors for which deduction must necessarily fail (those 2760 // for which some class template parameter without a default argument never 2761 // appears in a deduced context). 2762 ClassTemplateDecl *Pattern = 2763 Transform.NestedPattern ? Transform.NestedPattern : Transform.Template; 2764 ContextRAII SavedContext(*this, Pattern->getTemplatedDecl()); 2765 llvm::SmallPtrSet<NamedDecl *, 8> ProcessedCtors; 2766 bool AddedAny = false; 2767 for (NamedDecl *D : LookupConstructors(Pattern->getTemplatedDecl())) { 2768 D = D->getUnderlyingDecl(); 2769 if (D->isInvalidDecl() || D->isImplicit()) 2770 continue; 2771 2772 D = cast<NamedDecl>(D->getCanonicalDecl()); 2773 2774 // Within C++20 modules, we may have multiple same constructors in 2775 // multiple same RecordDecls. And it doesn't make sense to create 2776 // duplicated deduction guides for the duplicated constructors. 2777 if (ProcessedCtors.count(D)) 2778 continue; 2779 2780 auto *FTD = dyn_cast<FunctionTemplateDecl>(D); 2781 auto *CD = 2782 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); 2783 // Class-scope explicit specializations (MS extension) do not result in 2784 // deduction guides. 2785 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) 2786 continue; 2787 2788 // Cannot make a deduction guide when unparsed arguments are present. 2789 if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) { 2790 return !P || P->hasUnparsedDefaultArg(); 2791 })) 2792 continue; 2793 2794 ProcessedCtors.insert(D); 2795 Transform.transformConstructor(FTD, CD); 2796 AddedAny = true; 2797 } 2798 2799 // C++17 [over.match.class.deduct] 2800 // -- If C is not defined or does not declare any constructors, an 2801 // additional function template derived as above from a hypothetical 2802 // constructor C(). 2803 if (!AddedAny) 2804 Transform.buildSimpleDeductionGuide(std::nullopt); 2805 2806 // -- An additional function template derived as above from a hypothetical 2807 // constructor C(C), called the copy deduction candidate. 2808 cast<CXXDeductionGuideDecl>( 2809 cast<FunctionTemplateDecl>( 2810 Transform.buildSimpleDeductionGuide(Transform.DeducedType)) 2811 ->getTemplatedDecl()) 2812 ->setDeductionCandidateKind(DeductionCandidate::Copy); 2813 2814 SavedContext.pop(); 2815 } 2816 2817 /// Diagnose the presence of a default template argument on a 2818 /// template parameter, which is ill-formed in certain contexts. 2819 /// 2820 /// \returns true if the default template argument should be dropped. 2821 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2822 Sema::TemplateParamListContext TPC, 2823 SourceLocation ParamLoc, 2824 SourceRange DefArgRange) { 2825 switch (TPC) { 2826 case Sema::TPC_ClassTemplate: 2827 case Sema::TPC_VarTemplate: 2828 case Sema::TPC_TypeAliasTemplate: 2829 return false; 2830 2831 case Sema::TPC_FunctionTemplate: 2832 case Sema::TPC_FriendFunctionTemplateDefinition: 2833 // C++ [temp.param]p9: 2834 // A default template-argument shall not be specified in a 2835 // function template declaration or a function template 2836 // definition [...] 2837 // If a friend function template declaration specifies a default 2838 // template-argument, that declaration shall be a definition and shall be 2839 // the only declaration of the function template in the translation unit. 2840 // (C++98/03 doesn't have this wording; see DR226). 2841 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2842 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2843 : diag::ext_template_parameter_default_in_function_template) 2844 << DefArgRange; 2845 return false; 2846 2847 case Sema::TPC_ClassTemplateMember: 2848 // C++0x [temp.param]p9: 2849 // A default template-argument shall not be specified in the 2850 // template-parameter-lists of the definition of a member of a 2851 // class template that appears outside of the member's class. 2852 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2853 << DefArgRange; 2854 return true; 2855 2856 case Sema::TPC_FriendClassTemplate: 2857 case Sema::TPC_FriendFunctionTemplate: 2858 // C++ [temp.param]p9: 2859 // A default template-argument shall not be specified in a 2860 // friend template declaration. 2861 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2862 << DefArgRange; 2863 return true; 2864 2865 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2866 // for friend function templates if there is only a single 2867 // declaration (and it is a definition). Strange! 2868 } 2869 2870 llvm_unreachable("Invalid TemplateParamListContext!"); 2871 } 2872 2873 /// Check for unexpanded parameter packs within the template parameters 2874 /// of a template template parameter, recursively. 2875 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2876 TemplateTemplateParmDecl *TTP) { 2877 // A template template parameter which is a parameter pack is also a pack 2878 // expansion. 2879 if (TTP->isParameterPack()) 2880 return false; 2881 2882 TemplateParameterList *Params = TTP->getTemplateParameters(); 2883 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2884 NamedDecl *P = Params->getParam(I); 2885 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2886 if (!TTP->isParameterPack()) 2887 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2888 if (TC->hasExplicitTemplateArgs()) 2889 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2890 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2891 Sema::UPPC_TypeConstraint)) 2892 return true; 2893 continue; 2894 } 2895 2896 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2897 if (!NTTP->isParameterPack() && 2898 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2899 NTTP->getTypeSourceInfo(), 2900 Sema::UPPC_NonTypeTemplateParameterType)) 2901 return true; 2902 2903 continue; 2904 } 2905 2906 if (TemplateTemplateParmDecl *InnerTTP 2907 = dyn_cast<TemplateTemplateParmDecl>(P)) 2908 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2909 return true; 2910 } 2911 2912 return false; 2913 } 2914 2915 /// Checks the validity of a template parameter list, possibly 2916 /// considering the template parameter list from a previous 2917 /// declaration. 2918 /// 2919 /// If an "old" template parameter list is provided, it must be 2920 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 2921 /// template parameter list. 2922 /// 2923 /// \param NewParams Template parameter list for a new template 2924 /// declaration. This template parameter list will be updated with any 2925 /// default arguments that are carried through from the previous 2926 /// template parameter list. 2927 /// 2928 /// \param OldParams If provided, template parameter list from a 2929 /// previous declaration of the same template. Default template 2930 /// arguments will be merged from the old template parameter list to 2931 /// the new template parameter list. 2932 /// 2933 /// \param TPC Describes the context in which we are checking the given 2934 /// template parameter list. 2935 /// 2936 /// \param SkipBody If we might have already made a prior merged definition 2937 /// of this template visible, the corresponding body-skipping information. 2938 /// Default argument redefinition is not an error when skipping such a body, 2939 /// because (under the ODR) we can assume the default arguments are the same 2940 /// as the prior merged definition. 2941 /// 2942 /// \returns true if an error occurred, false otherwise. 2943 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2944 TemplateParameterList *OldParams, 2945 TemplateParamListContext TPC, 2946 SkipBodyInfo *SkipBody) { 2947 bool Invalid = false; 2948 2949 // C++ [temp.param]p10: 2950 // The set of default template-arguments available for use with a 2951 // template declaration or definition is obtained by merging the 2952 // default arguments from the definition (if in scope) and all 2953 // declarations in scope in the same way default function 2954 // arguments are (8.3.6). 2955 bool SawDefaultArgument = false; 2956 SourceLocation PreviousDefaultArgLoc; 2957 2958 // Dummy initialization to avoid warnings. 2959 TemplateParameterList::iterator OldParam = NewParams->end(); 2960 if (OldParams) 2961 OldParam = OldParams->begin(); 2962 2963 bool RemoveDefaultArguments = false; 2964 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2965 NewParamEnd = NewParams->end(); 2966 NewParam != NewParamEnd; ++NewParam) { 2967 // Whether we've seen a duplicate default argument in the same translation 2968 // unit. 2969 bool RedundantDefaultArg = false; 2970 // Whether we've found inconsis inconsitent default arguments in different 2971 // translation unit. 2972 bool InconsistentDefaultArg = false; 2973 // The name of the module which contains the inconsistent default argument. 2974 std::string PrevModuleName; 2975 2976 SourceLocation OldDefaultLoc; 2977 SourceLocation NewDefaultLoc; 2978 2979 // Variable used to diagnose missing default arguments 2980 bool MissingDefaultArg = false; 2981 2982 // Variable used to diagnose non-final parameter packs 2983 bool SawParameterPack = false; 2984 2985 if (TemplateTypeParmDecl *NewTypeParm 2986 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2987 // Check the presence of a default argument here. 2988 if (NewTypeParm->hasDefaultArgument() && 2989 DiagnoseDefaultTemplateArgument(*this, TPC, 2990 NewTypeParm->getLocation(), 2991 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 2992 .getSourceRange())) 2993 NewTypeParm->removeDefaultArgument(); 2994 2995 // Merge default arguments for template type parameters. 2996 TemplateTypeParmDecl *OldTypeParm 2997 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2998 if (NewTypeParm->isParameterPack()) { 2999 assert(!NewTypeParm->hasDefaultArgument() && 3000 "Parameter packs can't have a default argument!"); 3001 SawParameterPack = true; 3002 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 3003 NewTypeParm->hasDefaultArgument() && 3004 (!SkipBody || !SkipBody->ShouldSkip)) { 3005 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 3006 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 3007 SawDefaultArgument = true; 3008 3009 if (!OldTypeParm->getOwningModule()) 3010 RedundantDefaultArg = true; 3011 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm, 3012 NewTypeParm)) { 3013 InconsistentDefaultArg = true; 3014 PrevModuleName = 3015 OldTypeParm->getImportedOwningModule()->getFullModuleName(); 3016 } 3017 PreviousDefaultArgLoc = NewDefaultLoc; 3018 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 3019 // Merge the default argument from the old declaration to the 3020 // new declaration. 3021 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 3022 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 3023 } else if (NewTypeParm->hasDefaultArgument()) { 3024 SawDefaultArgument = true; 3025 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 3026 } else if (SawDefaultArgument) 3027 MissingDefaultArg = true; 3028 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 3029 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 3030 // Check for unexpanded parameter packs. 3031 if (!NewNonTypeParm->isParameterPack() && 3032 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 3033 NewNonTypeParm->getTypeSourceInfo(), 3034 UPPC_NonTypeTemplateParameterType)) { 3035 Invalid = true; 3036 continue; 3037 } 3038 3039 // Check the presence of a default argument here. 3040 if (NewNonTypeParm->hasDefaultArgument() && 3041 DiagnoseDefaultTemplateArgument(*this, TPC, 3042 NewNonTypeParm->getLocation(), 3043 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 3044 NewNonTypeParm->removeDefaultArgument(); 3045 } 3046 3047 // Merge default arguments for non-type template parameters 3048 NonTypeTemplateParmDecl *OldNonTypeParm 3049 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 3050 if (NewNonTypeParm->isParameterPack()) { 3051 assert(!NewNonTypeParm->hasDefaultArgument() && 3052 "Parameter packs can't have a default argument!"); 3053 if (!NewNonTypeParm->isPackExpansion()) 3054 SawParameterPack = true; 3055 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 3056 NewNonTypeParm->hasDefaultArgument() && 3057 (!SkipBody || !SkipBody->ShouldSkip)) { 3058 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 3059 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 3060 SawDefaultArgument = true; 3061 if (!OldNonTypeParm->getOwningModule()) 3062 RedundantDefaultArg = true; 3063 else if (!getASTContext().isSameDefaultTemplateArgument( 3064 OldNonTypeParm, NewNonTypeParm)) { 3065 InconsistentDefaultArg = true; 3066 PrevModuleName = 3067 OldNonTypeParm->getImportedOwningModule()->getFullModuleName(); 3068 } 3069 PreviousDefaultArgLoc = NewDefaultLoc; 3070 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 3071 // Merge the default argument from the old declaration to the 3072 // new declaration. 3073 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 3074 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 3075 } else if (NewNonTypeParm->hasDefaultArgument()) { 3076 SawDefaultArgument = true; 3077 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 3078 } else if (SawDefaultArgument) 3079 MissingDefaultArg = true; 3080 } else { 3081 TemplateTemplateParmDecl *NewTemplateParm 3082 = cast<TemplateTemplateParmDecl>(*NewParam); 3083 3084 // Check for unexpanded parameter packs, recursively. 3085 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 3086 Invalid = true; 3087 continue; 3088 } 3089 3090 // Check the presence of a default argument here. 3091 if (NewTemplateParm->hasDefaultArgument() && 3092 DiagnoseDefaultTemplateArgument(*this, TPC, 3093 NewTemplateParm->getLocation(), 3094 NewTemplateParm->getDefaultArgument().getSourceRange())) 3095 NewTemplateParm->removeDefaultArgument(); 3096 3097 // Merge default arguments for template template parameters 3098 TemplateTemplateParmDecl *OldTemplateParm 3099 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 3100 if (NewTemplateParm->isParameterPack()) { 3101 assert(!NewTemplateParm->hasDefaultArgument() && 3102 "Parameter packs can't have a default argument!"); 3103 if (!NewTemplateParm->isPackExpansion()) 3104 SawParameterPack = true; 3105 } else if (OldTemplateParm && 3106 hasVisibleDefaultArgument(OldTemplateParm) && 3107 NewTemplateParm->hasDefaultArgument() && 3108 (!SkipBody || !SkipBody->ShouldSkip)) { 3109 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 3110 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 3111 SawDefaultArgument = true; 3112 if (!OldTemplateParm->getOwningModule()) 3113 RedundantDefaultArg = true; 3114 else if (!getASTContext().isSameDefaultTemplateArgument( 3115 OldTemplateParm, NewTemplateParm)) { 3116 InconsistentDefaultArg = true; 3117 PrevModuleName = 3118 OldTemplateParm->getImportedOwningModule()->getFullModuleName(); 3119 } 3120 PreviousDefaultArgLoc = NewDefaultLoc; 3121 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 3122 // Merge the default argument from the old declaration to the 3123 // new declaration. 3124 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 3125 PreviousDefaultArgLoc 3126 = OldTemplateParm->getDefaultArgument().getLocation(); 3127 } else if (NewTemplateParm->hasDefaultArgument()) { 3128 SawDefaultArgument = true; 3129 PreviousDefaultArgLoc 3130 = NewTemplateParm->getDefaultArgument().getLocation(); 3131 } else if (SawDefaultArgument) 3132 MissingDefaultArg = true; 3133 } 3134 3135 // C++11 [temp.param]p11: 3136 // If a template parameter of a primary class template or alias template 3137 // is a template parameter pack, it shall be the last template parameter. 3138 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 3139 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 3140 TPC == TPC_TypeAliasTemplate)) { 3141 Diag((*NewParam)->getLocation(), 3142 diag::err_template_param_pack_must_be_last_template_parameter); 3143 Invalid = true; 3144 } 3145 3146 // [basic.def.odr]/13: 3147 // There can be more than one definition of a 3148 // ... 3149 // default template argument 3150 // ... 3151 // in a program provided that each definition appears in a different 3152 // translation unit and the definitions satisfy the [same-meaning 3153 // criteria of the ODR]. 3154 // 3155 // Simply, the design of modules allows the definition of template default 3156 // argument to be repeated across translation unit. Note that the ODR is 3157 // checked elsewhere. But it is still not allowed to repeat template default 3158 // argument in the same translation unit. 3159 if (RedundantDefaultArg) { 3160 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 3161 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 3162 Invalid = true; 3163 } else if (InconsistentDefaultArg) { 3164 // We could only diagnose about the case that the OldParam is imported. 3165 // The case NewParam is imported should be handled in ASTReader. 3166 Diag(NewDefaultLoc, 3167 diag::err_template_param_default_arg_inconsistent_redefinition); 3168 Diag(OldDefaultLoc, 3169 diag::note_template_param_prev_default_arg_in_other_module) 3170 << PrevModuleName; 3171 Invalid = true; 3172 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 3173 // C++ [temp.param]p11: 3174 // If a template-parameter of a class template has a default 3175 // template-argument, each subsequent template-parameter shall either 3176 // have a default template-argument supplied or be a template parameter 3177 // pack. 3178 Diag((*NewParam)->getLocation(), 3179 diag::err_template_param_default_arg_missing); 3180 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 3181 Invalid = true; 3182 RemoveDefaultArguments = true; 3183 } 3184 3185 // If we have an old template parameter list that we're merging 3186 // in, move on to the next parameter. 3187 if (OldParams) 3188 ++OldParam; 3189 } 3190 3191 // We were missing some default arguments at the end of the list, so remove 3192 // all of the default arguments. 3193 if (RemoveDefaultArguments) { 3194 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 3195 NewParamEnd = NewParams->end(); 3196 NewParam != NewParamEnd; ++NewParam) { 3197 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 3198 TTP->removeDefaultArgument(); 3199 else if (NonTypeTemplateParmDecl *NTTP 3200 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 3201 NTTP->removeDefaultArgument(); 3202 else 3203 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 3204 } 3205 } 3206 3207 return Invalid; 3208 } 3209 3210 namespace { 3211 3212 /// A class which looks for a use of a certain level of template 3213 /// parameter. 3214 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 3215 typedef RecursiveASTVisitor<DependencyChecker> super; 3216 3217 unsigned Depth; 3218 3219 // Whether we're looking for a use of a template parameter that makes the 3220 // overall construct type-dependent / a dependent type. This is strictly 3221 // best-effort for now; we may fail to match at all for a dependent type 3222 // in some cases if this is set. 3223 bool IgnoreNonTypeDependent; 3224 3225 bool Match; 3226 SourceLocation MatchLoc; 3227 3228 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 3229 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 3230 Match(false) {} 3231 3232 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 3233 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 3234 NamedDecl *ND = Params->getParam(0); 3235 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 3236 Depth = PD->getDepth(); 3237 } else if (NonTypeTemplateParmDecl *PD = 3238 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 3239 Depth = PD->getDepth(); 3240 } else { 3241 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 3242 } 3243 } 3244 3245 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 3246 if (ParmDepth >= Depth) { 3247 Match = true; 3248 MatchLoc = Loc; 3249 return true; 3250 } 3251 return false; 3252 } 3253 3254 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 3255 // Prune out non-type-dependent expressions if requested. This can 3256 // sometimes result in us failing to find a template parameter reference 3257 // (if a value-dependent expression creates a dependent type), but this 3258 // mode is best-effort only. 3259 if (auto *E = dyn_cast_or_null<Expr>(S)) 3260 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 3261 return true; 3262 return super::TraverseStmt(S, Q); 3263 } 3264 3265 bool TraverseTypeLoc(TypeLoc TL) { 3266 if (IgnoreNonTypeDependent && !TL.isNull() && 3267 !TL.getType()->isDependentType()) 3268 return true; 3269 return super::TraverseTypeLoc(TL); 3270 } 3271 3272 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 3273 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 3274 } 3275 3276 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 3277 // For a best-effort search, keep looking until we find a location. 3278 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 3279 } 3280 3281 bool TraverseTemplateName(TemplateName N) { 3282 if (TemplateTemplateParmDecl *PD = 3283 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 3284 if (Matches(PD->getDepth())) 3285 return false; 3286 return super::TraverseTemplateName(N); 3287 } 3288 3289 bool VisitDeclRefExpr(DeclRefExpr *E) { 3290 if (NonTypeTemplateParmDecl *PD = 3291 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 3292 if (Matches(PD->getDepth(), E->getExprLoc())) 3293 return false; 3294 return super::VisitDeclRefExpr(E); 3295 } 3296 3297 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 3298 return TraverseType(T->getReplacementType()); 3299 } 3300 3301 bool 3302 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 3303 return TraverseTemplateArgument(T->getArgumentPack()); 3304 } 3305 3306 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 3307 return TraverseType(T->getInjectedSpecializationType()); 3308 } 3309 }; 3310 } // end anonymous namespace 3311 3312 /// Determines whether a given type depends on the given parameter 3313 /// list. 3314 static bool 3315 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 3316 if (!Params->size()) 3317 return false; 3318 3319 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 3320 Checker.TraverseType(T); 3321 return Checker.Match; 3322 } 3323 3324 // Find the source range corresponding to the named type in the given 3325 // nested-name-specifier, if any. 3326 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 3327 QualType T, 3328 const CXXScopeSpec &SS) { 3329 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 3330 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 3331 if (const Type *CurType = NNS->getAsType()) { 3332 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 3333 return NNSLoc.getTypeLoc().getSourceRange(); 3334 } else 3335 break; 3336 3337 NNSLoc = NNSLoc.getPrefix(); 3338 } 3339 3340 return SourceRange(); 3341 } 3342 3343 /// Match the given template parameter lists to the given scope 3344 /// specifier, returning the template parameter list that applies to the 3345 /// name. 3346 /// 3347 /// \param DeclStartLoc the start of the declaration that has a scope 3348 /// specifier or a template parameter list. 3349 /// 3350 /// \param DeclLoc The location of the declaration itself. 3351 /// 3352 /// \param SS the scope specifier that will be matched to the given template 3353 /// parameter lists. This scope specifier precedes a qualified name that is 3354 /// being declared. 3355 /// 3356 /// \param TemplateId The template-id following the scope specifier, if there 3357 /// is one. Used to check for a missing 'template<>'. 3358 /// 3359 /// \param ParamLists the template parameter lists, from the outermost to the 3360 /// innermost template parameter lists. 3361 /// 3362 /// \param IsFriend Whether to apply the slightly different rules for 3363 /// matching template parameters to scope specifiers in friend 3364 /// declarations. 3365 /// 3366 /// \param IsMemberSpecialization will be set true if the scope specifier 3367 /// denotes a fully-specialized type, and therefore this is a declaration of 3368 /// a member specialization. 3369 /// 3370 /// \returns the template parameter list, if any, that corresponds to the 3371 /// name that is preceded by the scope specifier @p SS. This template 3372 /// parameter list may have template parameters (if we're declaring a 3373 /// template) or may have no template parameters (if we're declaring a 3374 /// template specialization), or may be NULL (if what we're declaring isn't 3375 /// itself a template). 3376 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 3377 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 3378 TemplateIdAnnotation *TemplateId, 3379 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 3380 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 3381 IsMemberSpecialization = false; 3382 Invalid = false; 3383 3384 // The sequence of nested types to which we will match up the template 3385 // parameter lists. We first build this list by starting with the type named 3386 // by the nested-name-specifier and walking out until we run out of types. 3387 SmallVector<QualType, 4> NestedTypes; 3388 QualType T; 3389 if (SS.getScopeRep()) { 3390 if (CXXRecordDecl *Record 3391 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 3392 T = Context.getTypeDeclType(Record); 3393 else 3394 T = QualType(SS.getScopeRep()->getAsType(), 0); 3395 } 3396 3397 // If we found an explicit specialization that prevents us from needing 3398 // 'template<>' headers, this will be set to the location of that 3399 // explicit specialization. 3400 SourceLocation ExplicitSpecLoc; 3401 3402 while (!T.isNull()) { 3403 NestedTypes.push_back(T); 3404 3405 // Retrieve the parent of a record type. 3406 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3407 // If this type is an explicit specialization, we're done. 3408 if (ClassTemplateSpecializationDecl *Spec 3409 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3410 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 3411 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 3412 ExplicitSpecLoc = Spec->getLocation(); 3413 break; 3414 } 3415 } else if (Record->getTemplateSpecializationKind() 3416 == TSK_ExplicitSpecialization) { 3417 ExplicitSpecLoc = Record->getLocation(); 3418 break; 3419 } 3420 3421 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 3422 T = Context.getTypeDeclType(Parent); 3423 else 3424 T = QualType(); 3425 continue; 3426 } 3427 3428 if (const TemplateSpecializationType *TST 3429 = T->getAs<TemplateSpecializationType>()) { 3430 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3431 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 3432 T = Context.getTypeDeclType(Parent); 3433 else 3434 T = QualType(); 3435 continue; 3436 } 3437 } 3438 3439 // Look one step prior in a dependent template specialization type. 3440 if (const DependentTemplateSpecializationType *DependentTST 3441 = T->getAs<DependentTemplateSpecializationType>()) { 3442 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 3443 T = QualType(NNS->getAsType(), 0); 3444 else 3445 T = QualType(); 3446 continue; 3447 } 3448 3449 // Look one step prior in a dependent name type. 3450 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 3451 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 3452 T = QualType(NNS->getAsType(), 0); 3453 else 3454 T = QualType(); 3455 continue; 3456 } 3457 3458 // Retrieve the parent of an enumeration type. 3459 if (const EnumType *EnumT = T->getAs<EnumType>()) { 3460 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 3461 // check here. 3462 EnumDecl *Enum = EnumT->getDecl(); 3463 3464 // Get to the parent type. 3465 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 3466 T = Context.getTypeDeclType(Parent); 3467 else 3468 T = QualType(); 3469 continue; 3470 } 3471 3472 T = QualType(); 3473 } 3474 // Reverse the nested types list, since we want to traverse from the outermost 3475 // to the innermost while checking template-parameter-lists. 3476 std::reverse(NestedTypes.begin(), NestedTypes.end()); 3477 3478 // C++0x [temp.expl.spec]p17: 3479 // A member or a member template may be nested within many 3480 // enclosing class templates. In an explicit specialization for 3481 // such a member, the member declaration shall be preceded by a 3482 // template<> for each enclosing class template that is 3483 // explicitly specialized. 3484 bool SawNonEmptyTemplateParameterList = false; 3485 3486 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 3487 if (SawNonEmptyTemplateParameterList) { 3488 if (!SuppressDiagnostic) 3489 Diag(DeclLoc, diag::err_specialize_member_of_template) 3490 << !Recovery << Range; 3491 Invalid = true; 3492 IsMemberSpecialization = false; 3493 return true; 3494 } 3495 3496 return false; 3497 }; 3498 3499 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 3500 // Check that we can have an explicit specialization here. 3501 if (CheckExplicitSpecialization(Range, true)) 3502 return true; 3503 3504 // We don't have a template header, but we should. 3505 SourceLocation ExpectedTemplateLoc; 3506 if (!ParamLists.empty()) 3507 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 3508 else 3509 ExpectedTemplateLoc = DeclStartLoc; 3510 3511 if (!SuppressDiagnostic) 3512 Diag(DeclLoc, diag::err_template_spec_needs_header) 3513 << Range 3514 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 3515 return false; 3516 }; 3517 3518 unsigned ParamIdx = 0; 3519 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 3520 ++TypeIdx) { 3521 T = NestedTypes[TypeIdx]; 3522 3523 // Whether we expect a 'template<>' header. 3524 bool NeedEmptyTemplateHeader = false; 3525 3526 // Whether we expect a template header with parameters. 3527 bool NeedNonemptyTemplateHeader = false; 3528 3529 // For a dependent type, the set of template parameters that we 3530 // expect to see. 3531 TemplateParameterList *ExpectedTemplateParams = nullptr; 3532 3533 // C++0x [temp.expl.spec]p15: 3534 // A member or a member template may be nested within many enclosing 3535 // class templates. In an explicit specialization for such a member, the 3536 // member declaration shall be preceded by a template<> for each 3537 // enclosing class template that is explicitly specialized. 3538 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3539 if (ClassTemplatePartialSpecializationDecl *Partial 3540 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 3541 ExpectedTemplateParams = Partial->getTemplateParameters(); 3542 NeedNonemptyTemplateHeader = true; 3543 } else if (Record->isDependentType()) { 3544 if (Record->getDescribedClassTemplate()) { 3545 ExpectedTemplateParams = Record->getDescribedClassTemplate() 3546 ->getTemplateParameters(); 3547 NeedNonemptyTemplateHeader = true; 3548 } 3549 } else if (ClassTemplateSpecializationDecl *Spec 3550 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3551 // C++0x [temp.expl.spec]p4: 3552 // Members of an explicitly specialized class template are defined 3553 // in the same manner as members of normal classes, and not using 3554 // the template<> syntax. 3555 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 3556 NeedEmptyTemplateHeader = true; 3557 else 3558 continue; 3559 } else if (Record->getTemplateSpecializationKind()) { 3560 if (Record->getTemplateSpecializationKind() 3561 != TSK_ExplicitSpecialization && 3562 TypeIdx == NumTypes - 1) 3563 IsMemberSpecialization = true; 3564 3565 continue; 3566 } 3567 } else if (const TemplateSpecializationType *TST 3568 = T->getAs<TemplateSpecializationType>()) { 3569 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3570 ExpectedTemplateParams = Template->getTemplateParameters(); 3571 NeedNonemptyTemplateHeader = true; 3572 } 3573 } else if (T->getAs<DependentTemplateSpecializationType>()) { 3574 // FIXME: We actually could/should check the template arguments here 3575 // against the corresponding template parameter list. 3576 NeedNonemptyTemplateHeader = false; 3577 } 3578 3579 // C++ [temp.expl.spec]p16: 3580 // In an explicit specialization declaration for a member of a class 3581 // template or a member template that ap- pears in namespace scope, the 3582 // member template and some of its enclosing class templates may remain 3583 // unspecialized, except that the declaration shall not explicitly 3584 // specialize a class member template if its en- closing class templates 3585 // are not explicitly specialized as well. 3586 if (ParamIdx < ParamLists.size()) { 3587 if (ParamLists[ParamIdx]->size() == 0) { 3588 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3589 false)) 3590 return nullptr; 3591 } else 3592 SawNonEmptyTemplateParameterList = true; 3593 } 3594 3595 if (NeedEmptyTemplateHeader) { 3596 // If we're on the last of the types, and we need a 'template<>' header 3597 // here, then it's a member specialization. 3598 if (TypeIdx == NumTypes - 1) 3599 IsMemberSpecialization = true; 3600 3601 if (ParamIdx < ParamLists.size()) { 3602 if (ParamLists[ParamIdx]->size() > 0) { 3603 // The header has template parameters when it shouldn't. Complain. 3604 if (!SuppressDiagnostic) 3605 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3606 diag::err_template_param_list_matches_nontemplate) 3607 << T 3608 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 3609 ParamLists[ParamIdx]->getRAngleLoc()) 3610 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3611 Invalid = true; 3612 return nullptr; 3613 } 3614 3615 // Consume this template header. 3616 ++ParamIdx; 3617 continue; 3618 } 3619 3620 if (!IsFriend) 3621 if (DiagnoseMissingExplicitSpecialization( 3622 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 3623 return nullptr; 3624 3625 continue; 3626 } 3627 3628 if (NeedNonemptyTemplateHeader) { 3629 // In friend declarations we can have template-ids which don't 3630 // depend on the corresponding template parameter lists. But 3631 // assume that empty parameter lists are supposed to match this 3632 // template-id. 3633 if (IsFriend && T->isDependentType()) { 3634 if (ParamIdx < ParamLists.size() && 3635 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 3636 ExpectedTemplateParams = nullptr; 3637 else 3638 continue; 3639 } 3640 3641 if (ParamIdx < ParamLists.size()) { 3642 // Check the template parameter list, if we can. 3643 if (ExpectedTemplateParams && 3644 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 3645 ExpectedTemplateParams, 3646 !SuppressDiagnostic, TPL_TemplateMatch)) 3647 Invalid = true; 3648 3649 if (!Invalid && 3650 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 3651 TPC_ClassTemplateMember)) 3652 Invalid = true; 3653 3654 ++ParamIdx; 3655 continue; 3656 } 3657 3658 if (!SuppressDiagnostic) 3659 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 3660 << T 3661 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3662 Invalid = true; 3663 continue; 3664 } 3665 } 3666 3667 // If there were at least as many template-ids as there were template 3668 // parameter lists, then there are no template parameter lists remaining for 3669 // the declaration itself. 3670 if (ParamIdx >= ParamLists.size()) { 3671 if (TemplateId && !IsFriend) { 3672 // We don't have a template header for the declaration itself, but we 3673 // should. 3674 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 3675 TemplateId->RAngleLoc)); 3676 3677 // Fabricate an empty template parameter list for the invented header. 3678 return TemplateParameterList::Create(Context, SourceLocation(), 3679 SourceLocation(), std::nullopt, 3680 SourceLocation(), nullptr); 3681 } 3682 3683 return nullptr; 3684 } 3685 3686 // If there were too many template parameter lists, complain about that now. 3687 if (ParamIdx < ParamLists.size() - 1) { 3688 bool HasAnyExplicitSpecHeader = false; 3689 bool AllExplicitSpecHeaders = true; 3690 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3691 if (ParamLists[I]->size() == 0) 3692 HasAnyExplicitSpecHeader = true; 3693 else 3694 AllExplicitSpecHeaders = false; 3695 } 3696 3697 if (!SuppressDiagnostic) 3698 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3699 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 3700 : diag::err_template_spec_extra_headers) 3701 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3702 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3703 3704 // If there was a specialization somewhere, such that 'template<>' is 3705 // not required, and there were any 'template<>' headers, note where the 3706 // specialization occurred. 3707 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3708 !SuppressDiagnostic) 3709 Diag(ExplicitSpecLoc, 3710 diag::note_explicit_template_spec_does_not_need_header) 3711 << NestedTypes.back(); 3712 3713 // We have a template parameter list with no corresponding scope, which 3714 // means that the resulting template declaration can't be instantiated 3715 // properly (we'll end up with dependent nodes when we shouldn't). 3716 if (!AllExplicitSpecHeaders) 3717 Invalid = true; 3718 } 3719 3720 // C++ [temp.expl.spec]p16: 3721 // In an explicit specialization declaration for a member of a class 3722 // template or a member template that ap- pears in namespace scope, the 3723 // member template and some of its enclosing class templates may remain 3724 // unspecialized, except that the declaration shall not explicitly 3725 // specialize a class member template if its en- closing class templates 3726 // are not explicitly specialized as well. 3727 if (ParamLists.back()->size() == 0 && 3728 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3729 false)) 3730 return nullptr; 3731 3732 // Return the last template parameter list, which corresponds to the 3733 // entity being declared. 3734 return ParamLists.back(); 3735 } 3736 3737 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3738 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3739 Diag(Template->getLocation(), diag::note_template_declared_here) 3740 << (isa<FunctionTemplateDecl>(Template) 3741 ? 0 3742 : isa<ClassTemplateDecl>(Template) 3743 ? 1 3744 : isa<VarTemplateDecl>(Template) 3745 ? 2 3746 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3747 << Template->getDeclName(); 3748 return; 3749 } 3750 3751 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3752 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3753 IEnd = OST->end(); 3754 I != IEnd; ++I) 3755 Diag((*I)->getLocation(), diag::note_template_declared_here) 3756 << 0 << (*I)->getDeclName(); 3757 3758 return; 3759 } 3760 } 3761 3762 static QualType 3763 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3764 ArrayRef<TemplateArgument> Converted, 3765 SourceLocation TemplateLoc, 3766 TemplateArgumentListInfo &TemplateArgs) { 3767 ASTContext &Context = SemaRef.getASTContext(); 3768 3769 switch (BTD->getBuiltinTemplateKind()) { 3770 case BTK__make_integer_seq: { 3771 // Specializations of __make_integer_seq<S, T, N> are treated like 3772 // S<T, 0, ..., N-1>. 3773 3774 QualType OrigType = Converted[1].getAsType(); 3775 // C++14 [inteseq.intseq]p1: 3776 // T shall be an integer type. 3777 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) { 3778 SemaRef.Diag(TemplateArgs[1].getLocation(), 3779 diag::err_integer_sequence_integral_element_type); 3780 return QualType(); 3781 } 3782 3783 TemplateArgument NumArgsArg = Converted[2]; 3784 if (NumArgsArg.isDependent()) 3785 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3786 Converted); 3787 3788 TemplateArgumentListInfo SyntheticTemplateArgs; 3789 // The type argument, wrapped in substitution sugar, gets reused as the 3790 // first template argument in the synthetic template argument list. 3791 SyntheticTemplateArgs.addArgument( 3792 TemplateArgumentLoc(TemplateArgument(OrigType), 3793 SemaRef.Context.getTrivialTypeSourceInfo( 3794 OrigType, TemplateArgs[1].getLocation()))); 3795 3796 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) { 3797 // Expand N into 0 ... N-1. 3798 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3799 I < NumArgs; ++I) { 3800 TemplateArgument TA(Context, I, OrigType); 3801 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3802 TA, OrigType, TemplateArgs[2].getLocation())); 3803 } 3804 } else { 3805 // C++14 [inteseq.make]p1: 3806 // If N is negative the program is ill-formed. 3807 SemaRef.Diag(TemplateArgs[2].getLocation(), 3808 diag::err_integer_sequence_negative_length); 3809 return QualType(); 3810 } 3811 3812 // The first template argument will be reused as the template decl that 3813 // our synthetic template arguments will be applied to. 3814 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3815 TemplateLoc, SyntheticTemplateArgs); 3816 } 3817 3818 case BTK__type_pack_element: 3819 // Specializations of 3820 // __type_pack_element<Index, T_1, ..., T_N> 3821 // are treated like T_Index. 3822 assert(Converted.size() == 2 && 3823 "__type_pack_element should be given an index and a parameter pack"); 3824 3825 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3826 if (IndexArg.isDependent() || Ts.isDependent()) 3827 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3828 Converted); 3829 3830 llvm::APSInt Index = IndexArg.getAsIntegral(); 3831 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3832 "type std::size_t, and hence be non-negative"); 3833 // If the Index is out of bounds, the program is ill-formed. 3834 if (Index >= Ts.pack_size()) { 3835 SemaRef.Diag(TemplateArgs[0].getLocation(), 3836 diag::err_type_pack_element_out_of_bounds); 3837 return QualType(); 3838 } 3839 3840 // We simply return the type at index `Index`. 3841 int64_t N = Index.getExtValue(); 3842 return Ts.getPackAsArray()[N].getAsType(); 3843 } 3844 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3845 } 3846 3847 /// Determine whether this alias template is "enable_if_t". 3848 /// libc++ >=14 uses "__enable_if_t" in C++11 mode. 3849 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3850 return AliasTemplate->getName().equals("enable_if_t") || 3851 AliasTemplate->getName().equals("__enable_if_t"); 3852 } 3853 3854 /// Collect all of the separable terms in the given condition, which 3855 /// might be a conjunction. 3856 /// 3857 /// FIXME: The right answer is to convert the logical expression into 3858 /// disjunctive normal form, so we can find the first failed term 3859 /// within each possible clause. 3860 static void collectConjunctionTerms(Expr *Clause, 3861 SmallVectorImpl<Expr *> &Terms) { 3862 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3863 if (BinOp->getOpcode() == BO_LAnd) { 3864 collectConjunctionTerms(BinOp->getLHS(), Terms); 3865 collectConjunctionTerms(BinOp->getRHS(), Terms); 3866 return; 3867 } 3868 } 3869 3870 Terms.push_back(Clause); 3871 } 3872 3873 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3874 // a left-hand side that is value-dependent but never true. Identify 3875 // the idiom and ignore that term. 3876 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3877 // Top-level '||'. 3878 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3879 if (!BinOp) return Cond; 3880 3881 if (BinOp->getOpcode() != BO_LOr) return Cond; 3882 3883 // With an inner '==' that has a literal on the right-hand side. 3884 Expr *LHS = BinOp->getLHS(); 3885 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3886 if (!InnerBinOp) return Cond; 3887 3888 if (InnerBinOp->getOpcode() != BO_EQ || 3889 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3890 return Cond; 3891 3892 // If the inner binary operation came from a macro expansion named 3893 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3894 // of the '||', which is the real, user-provided condition. 3895 SourceLocation Loc = InnerBinOp->getExprLoc(); 3896 if (!Loc.isMacroID()) return Cond; 3897 3898 StringRef MacroName = PP.getImmediateMacroName(Loc); 3899 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3900 return BinOp->getRHS(); 3901 3902 return Cond; 3903 } 3904 3905 namespace { 3906 3907 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3908 // within failing boolean expression, such as substituting template parameters 3909 // for actual types. 3910 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3911 public: 3912 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3913 : Policy(P) {} 3914 3915 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3916 const auto *DR = dyn_cast<DeclRefExpr>(E); 3917 if (DR && DR->getQualifier()) { 3918 // If this is a qualified name, expand the template arguments in nested 3919 // qualifiers. 3920 DR->getQualifier()->print(OS, Policy, true); 3921 // Then print the decl itself. 3922 const ValueDecl *VD = DR->getDecl(); 3923 OS << VD->getName(); 3924 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3925 // This is a template variable, print the expanded template arguments. 3926 printTemplateArgumentList( 3927 OS, IV->getTemplateArgs().asArray(), Policy, 3928 IV->getSpecializedTemplate()->getTemplateParameters()); 3929 } 3930 return true; 3931 } 3932 return false; 3933 } 3934 3935 private: 3936 const PrintingPolicy Policy; 3937 }; 3938 3939 } // end anonymous namespace 3940 3941 std::pair<Expr *, std::string> 3942 Sema::findFailedBooleanCondition(Expr *Cond) { 3943 Cond = lookThroughRangesV3Condition(PP, Cond); 3944 3945 // Separate out all of the terms in a conjunction. 3946 SmallVector<Expr *, 4> Terms; 3947 collectConjunctionTerms(Cond, Terms); 3948 3949 // Determine which term failed. 3950 Expr *FailedCond = nullptr; 3951 for (Expr *Term : Terms) { 3952 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3953 3954 // Literals are uninteresting. 3955 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3956 isa<IntegerLiteral>(TermAsWritten)) 3957 continue; 3958 3959 // The initialization of the parameter from the argument is 3960 // a constant-evaluated context. 3961 EnterExpressionEvaluationContext ConstantEvaluated( 3962 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3963 3964 bool Succeeded; 3965 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3966 !Succeeded) { 3967 FailedCond = TermAsWritten; 3968 break; 3969 } 3970 } 3971 if (!FailedCond) 3972 FailedCond = Cond->IgnoreParenImpCasts(); 3973 3974 std::string Description; 3975 { 3976 llvm::raw_string_ostream Out(Description); 3977 PrintingPolicy Policy = getPrintingPolicy(); 3978 Policy.PrintCanonicalTypes = true; 3979 FailedBooleanConditionPrinterHelper Helper(Policy); 3980 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3981 } 3982 return { FailedCond, Description }; 3983 } 3984 3985 QualType Sema::CheckTemplateIdType(TemplateName Name, 3986 SourceLocation TemplateLoc, 3987 TemplateArgumentListInfo &TemplateArgs) { 3988 DependentTemplateName *DTN 3989 = Name.getUnderlying().getAsDependentTemplateName(); 3990 if (DTN && DTN->isIdentifier()) 3991 // When building a template-id where the template-name is dependent, 3992 // assume the template is a type template. Either our assumption is 3993 // correct, or the code is ill-formed and will be diagnosed when the 3994 // dependent name is substituted. 3995 return Context.getDependentTemplateSpecializationType( 3996 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(), 3997 TemplateArgs.arguments()); 3998 3999 if (Name.getAsAssumedTemplateName() && 4000 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc)) 4001 return QualType(); 4002 4003 TemplateDecl *Template = Name.getAsTemplateDecl(); 4004 if (!Template || isa<FunctionTemplateDecl>(Template) || 4005 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 4006 // We might have a substituted template template parameter pack. If so, 4007 // build a template specialization type for it. 4008 if (Name.getAsSubstTemplateTemplateParmPack()) 4009 return Context.getTemplateSpecializationType(Name, 4010 TemplateArgs.arguments()); 4011 4012 Diag(TemplateLoc, diag::err_template_id_not_a_type) 4013 << Name; 4014 NoteAllFoundTemplates(Name); 4015 return QualType(); 4016 } 4017 4018 // Check that the template argument list is well-formed for this 4019 // template. 4020 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4021 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false, 4022 SugaredConverted, CanonicalConverted, 4023 /*UpdateArgsWithConversions=*/true)) 4024 return QualType(); 4025 4026 QualType CanonType; 4027 4028 if (TypeAliasTemplateDecl *AliasTemplate = 4029 dyn_cast<TypeAliasTemplateDecl>(Template)) { 4030 4031 // Find the canonical type for this type alias template specialization. 4032 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 4033 if (Pattern->isInvalidDecl()) 4034 return QualType(); 4035 4036 // Only substitute for the innermost template argument list. 4037 MultiLevelTemplateArgumentList TemplateArgLists; 4038 TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted, 4039 /*Final=*/false); 4040 TemplateArgLists.addOuterRetainedLevels( 4041 AliasTemplate->getTemplateParameters()->getDepth()); 4042 4043 LocalInstantiationScope Scope(*this); 4044 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 4045 if (Inst.isInvalid()) 4046 return QualType(); 4047 4048 CanonType = SubstType(Pattern->getUnderlyingType(), 4049 TemplateArgLists, AliasTemplate->getLocation(), 4050 AliasTemplate->getDeclName()); 4051 if (CanonType.isNull()) { 4052 // If this was enable_if and we failed to find the nested type 4053 // within enable_if in a SFINAE context, dig out the specific 4054 // enable_if condition that failed and present that instead. 4055 if (isEnableIfAliasTemplate(AliasTemplate)) { 4056 if (auto DeductionInfo = isSFINAEContext()) { 4057 if (*DeductionInfo && 4058 (*DeductionInfo)->hasSFINAEDiagnostic() && 4059 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 4060 diag::err_typename_nested_not_found_enable_if && 4061 TemplateArgs[0].getArgument().getKind() 4062 == TemplateArgument::Expression) { 4063 Expr *FailedCond; 4064 std::string FailedDescription; 4065 std::tie(FailedCond, FailedDescription) = 4066 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 4067 4068 // Remove the old SFINAE diagnostic. 4069 PartialDiagnosticAt OldDiag = 4070 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 4071 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 4072 4073 // Add a new SFINAE diagnostic specifying which condition 4074 // failed. 4075 (*DeductionInfo)->addSFINAEDiagnostic( 4076 OldDiag.first, 4077 PDiag(diag::err_typename_nested_not_found_requirement) 4078 << FailedDescription 4079 << FailedCond->getSourceRange()); 4080 } 4081 } 4082 } 4083 4084 return QualType(); 4085 } 4086 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 4087 CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted, 4088 TemplateLoc, TemplateArgs); 4089 } else if (Name.isDependent() || 4090 TemplateSpecializationType::anyDependentTemplateArguments( 4091 TemplateArgs, CanonicalConverted)) { 4092 // This class template specialization is a dependent 4093 // type. Therefore, its canonical type is another class template 4094 // specialization type that contains all of the converted 4095 // arguments in canonical form. This ensures that, e.g., A<T> and 4096 // A<T, T> have identical types when A is declared as: 4097 // 4098 // template<typename T, typename U = T> struct A; 4099 CanonType = Context.getCanonicalTemplateSpecializationType( 4100 Name, CanonicalConverted); 4101 4102 // This might work out to be a current instantiation, in which 4103 // case the canonical type needs to be the InjectedClassNameType. 4104 // 4105 // TODO: in theory this could be a simple hashtable lookup; most 4106 // changes to CurContext don't change the set of current 4107 // instantiations. 4108 if (isa<ClassTemplateDecl>(Template)) { 4109 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 4110 // If we get out to a namespace, we're done. 4111 if (Ctx->isFileContext()) break; 4112 4113 // If this isn't a record, keep looking. 4114 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 4115 if (!Record) continue; 4116 4117 // Look for one of the two cases with InjectedClassNameTypes 4118 // and check whether it's the same template. 4119 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 4120 !Record->getDescribedClassTemplate()) 4121 continue; 4122 4123 // Fetch the injected class name type and check whether its 4124 // injected type is equal to the type we just built. 4125 QualType ICNT = Context.getTypeDeclType(Record); 4126 QualType Injected = cast<InjectedClassNameType>(ICNT) 4127 ->getInjectedSpecializationType(); 4128 4129 if (CanonType != Injected->getCanonicalTypeInternal()) 4130 continue; 4131 4132 // If so, the canonical type of this TST is the injected 4133 // class name type of the record we just found. 4134 assert(ICNT.isCanonical()); 4135 CanonType = ICNT; 4136 break; 4137 } 4138 } 4139 } else if (ClassTemplateDecl *ClassTemplate = 4140 dyn_cast<ClassTemplateDecl>(Template)) { 4141 // Find the class template specialization declaration that 4142 // corresponds to these arguments. 4143 void *InsertPos = nullptr; 4144 ClassTemplateSpecializationDecl *Decl = 4145 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 4146 if (!Decl) { 4147 // This is the first time we have referenced this class template 4148 // specialization. Create the canonical declaration and add it to 4149 // the set of specializations. 4150 Decl = ClassTemplateSpecializationDecl::Create( 4151 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 4152 ClassTemplate->getDeclContext(), 4153 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 4154 ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted, 4155 nullptr); 4156 ClassTemplate->AddSpecialization(Decl, InsertPos); 4157 if (ClassTemplate->isOutOfLine()) 4158 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 4159 } 4160 4161 if (Decl->getSpecializationKind() == TSK_Undeclared && 4162 ClassTemplate->getTemplatedDecl()->hasAttrs()) { 4163 InstantiatingTemplate Inst(*this, TemplateLoc, Decl); 4164 if (!Inst.isInvalid()) { 4165 MultiLevelTemplateArgumentList TemplateArgLists(Template, 4166 CanonicalConverted, 4167 /*Final=*/false); 4168 InstantiateAttrsForDecl(TemplateArgLists, 4169 ClassTemplate->getTemplatedDecl(), Decl); 4170 } 4171 } 4172 4173 // Diagnose uses of this specialization. 4174 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 4175 4176 CanonType = Context.getTypeDeclType(Decl); 4177 assert(isa<RecordType>(CanonType) && 4178 "type of non-dependent specialization is not a RecordType"); 4179 } else { 4180 llvm_unreachable("Unhandled template kind"); 4181 } 4182 4183 // Build the fully-sugared type for this class template 4184 // specialization, which refers back to the class template 4185 // specialization we created or found. 4186 return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(), 4187 CanonType); 4188 } 4189 4190 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 4191 TemplateNameKind &TNK, 4192 SourceLocation NameLoc, 4193 IdentifierInfo *&II) { 4194 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 4195 4196 TemplateName Name = ParsedName.get(); 4197 auto *ATN = Name.getAsAssumedTemplateName(); 4198 assert(ATN && "not an assumed template name"); 4199 II = ATN->getDeclName().getAsIdentifierInfo(); 4200 4201 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 4202 // Resolved to a type template name. 4203 ParsedName = TemplateTy::make(Name); 4204 TNK = TNK_Type_template; 4205 } 4206 } 4207 4208 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 4209 SourceLocation NameLoc, 4210 bool Diagnose) { 4211 // We assumed this undeclared identifier to be an (ADL-only) function 4212 // template name, but it was used in a context where a type was required. 4213 // Try to typo-correct it now. 4214 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 4215 assert(ATN && "not an assumed template name"); 4216 4217 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 4218 struct CandidateCallback : CorrectionCandidateCallback { 4219 bool ValidateCandidate(const TypoCorrection &TC) override { 4220 return TC.getCorrectionDecl() && 4221 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 4222 } 4223 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4224 return std::make_unique<CandidateCallback>(*this); 4225 } 4226 } FilterCCC; 4227 4228 TypoCorrection Corrected = 4229 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 4230 FilterCCC, CTK_ErrorRecovery); 4231 if (Corrected && Corrected.getFoundDecl()) { 4232 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 4233 << ATN->getDeclName()); 4234 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); 4235 return false; 4236 } 4237 4238 if (Diagnose) 4239 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 4240 return true; 4241 } 4242 4243 TypeResult Sema::ActOnTemplateIdType( 4244 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 4245 TemplateTy TemplateD, IdentifierInfo *TemplateII, 4246 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 4247 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 4248 bool IsCtorOrDtorName, bool IsClassName, 4249 ImplicitTypenameContext AllowImplicitTypename) { 4250 if (SS.isInvalid()) 4251 return true; 4252 4253 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 4254 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 4255 4256 // C++ [temp.res]p3: 4257 // A qualified-id that refers to a type and in which the 4258 // nested-name-specifier depends on a template-parameter (14.6.2) 4259 // shall be prefixed by the keyword typename to indicate that the 4260 // qualified-id denotes a type, forming an 4261 // elaborated-type-specifier (7.1.5.3). 4262 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 4263 // C++2a relaxes some of those restrictions in [temp.res]p5. 4264 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { 4265 if (getLangOpts().CPlusPlus20) 4266 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename); 4267 else 4268 Diag(SS.getBeginLoc(), diag::ext_implicit_typename) 4269 << SS.getScopeRep() << TemplateII->getName() 4270 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename "); 4271 } else 4272 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 4273 << SS.getScopeRep() << TemplateII->getName(); 4274 4275 // FIXME: This is not quite correct recovery as we don't transform SS 4276 // into the corresponding dependent form (and we don't diagnose missing 4277 // 'template' keywords within SS as a result). 4278 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 4279 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 4280 TemplateArgsIn, RAngleLoc); 4281 } 4282 4283 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 4284 // it's not actually allowed to be used as a type in most cases. Because 4285 // we annotate it before we know whether it's valid, we have to check for 4286 // this case here. 4287 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 4288 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 4289 Diag(TemplateIILoc, 4290 TemplateKWLoc.isInvalid() 4291 ? diag::err_out_of_line_qualified_id_type_names_constructor 4292 : diag::ext_out_of_line_qualified_id_type_names_constructor) 4293 << TemplateII << 0 /*injected-class-name used as template name*/ 4294 << 1 /*if any keyword was present, it was 'template'*/; 4295 } 4296 } 4297 4298 TemplateName Template = TemplateD.get(); 4299 if (Template.getAsAssumedTemplateName() && 4300 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 4301 return true; 4302 4303 // Translate the parser's template argument list in our AST format. 4304 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4305 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4306 4307 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 4308 assert(SS.getScopeRep() == DTN->getQualifier()); 4309 QualType T = Context.getDependentTemplateSpecializationType( 4310 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(), 4311 TemplateArgs.arguments()); 4312 // Build type-source information. 4313 TypeLocBuilder TLB; 4314 DependentTemplateSpecializationTypeLoc SpecTL 4315 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 4316 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 4317 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4318 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4319 SpecTL.setTemplateNameLoc(TemplateIILoc); 4320 SpecTL.setLAngleLoc(LAngleLoc); 4321 SpecTL.setRAngleLoc(RAngleLoc); 4322 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 4323 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 4324 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 4325 } 4326 4327 QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 4328 if (SpecTy.isNull()) 4329 return true; 4330 4331 // Build type-source information. 4332 TypeLocBuilder TLB; 4333 TemplateSpecializationTypeLoc SpecTL = 4334 TLB.push<TemplateSpecializationTypeLoc>(SpecTy); 4335 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4336 SpecTL.setTemplateNameLoc(TemplateIILoc); 4337 SpecTL.setLAngleLoc(LAngleLoc); 4338 SpecTL.setRAngleLoc(RAngleLoc); 4339 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 4340 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 4341 4342 // Create an elaborated-type-specifier containing the nested-name-specifier. 4343 QualType ElTy = 4344 getElaboratedType(ElaboratedTypeKeyword::None, 4345 !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy); 4346 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy); 4347 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 4348 if (!ElabTL.isEmpty()) 4349 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4350 return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy)); 4351 } 4352 4353 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 4354 TypeSpecifierType TagSpec, 4355 SourceLocation TagLoc, 4356 CXXScopeSpec &SS, 4357 SourceLocation TemplateKWLoc, 4358 TemplateTy TemplateD, 4359 SourceLocation TemplateLoc, 4360 SourceLocation LAngleLoc, 4361 ASTTemplateArgsPtr TemplateArgsIn, 4362 SourceLocation RAngleLoc) { 4363 if (SS.isInvalid()) 4364 return TypeResult(true); 4365 4366 TemplateName Template = TemplateD.get(); 4367 4368 // Translate the parser's template argument list in our AST format. 4369 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4370 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4371 4372 // Determine the tag kind 4373 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4374 ElaboratedTypeKeyword Keyword 4375 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 4376 4377 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 4378 assert(SS.getScopeRep() == DTN->getQualifier()); 4379 QualType T = Context.getDependentTemplateSpecializationType( 4380 Keyword, DTN->getQualifier(), DTN->getIdentifier(), 4381 TemplateArgs.arguments()); 4382 4383 // Build type-source information. 4384 TypeLocBuilder TLB; 4385 DependentTemplateSpecializationTypeLoc SpecTL 4386 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 4387 SpecTL.setElaboratedKeywordLoc(TagLoc); 4388 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4389 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4390 SpecTL.setTemplateNameLoc(TemplateLoc); 4391 SpecTL.setLAngleLoc(LAngleLoc); 4392 SpecTL.setRAngleLoc(RAngleLoc); 4393 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 4394 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 4395 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 4396 } 4397 4398 if (TypeAliasTemplateDecl *TAT = 4399 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 4400 // C++0x [dcl.type.elab]p2: 4401 // If the identifier resolves to a typedef-name or the simple-template-id 4402 // resolves to an alias template specialization, the 4403 // elaborated-type-specifier is ill-formed. 4404 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 4405 << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind); 4406 Diag(TAT->getLocation(), diag::note_declared_at); 4407 } 4408 4409 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 4410 if (Result.isNull()) 4411 return TypeResult(true); 4412 4413 // Check the tag kind 4414 if (const RecordType *RT = Result->getAs<RecordType>()) { 4415 RecordDecl *D = RT->getDecl(); 4416 4417 IdentifierInfo *Id = D->getIdentifier(); 4418 assert(Id && "templated class must have an identifier"); 4419 4420 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 4421 TagLoc, Id)) { 4422 Diag(TagLoc, diag::err_use_with_wrong_tag) 4423 << Result 4424 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 4425 Diag(D->getLocation(), diag::note_previous_use); 4426 } 4427 } 4428 4429 // Provide source-location information for the template specialization. 4430 TypeLocBuilder TLB; 4431 TemplateSpecializationTypeLoc SpecTL 4432 = TLB.push<TemplateSpecializationTypeLoc>(Result); 4433 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4434 SpecTL.setTemplateNameLoc(TemplateLoc); 4435 SpecTL.setLAngleLoc(LAngleLoc); 4436 SpecTL.setRAngleLoc(RAngleLoc); 4437 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 4438 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 4439 4440 // Construct an elaborated type containing the nested-name-specifier (if any) 4441 // and tag keyword. 4442 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 4443 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 4444 ElabTL.setElaboratedKeywordLoc(TagLoc); 4445 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4446 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 4447 } 4448 4449 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 4450 NamedDecl *PrevDecl, 4451 SourceLocation Loc, 4452 bool IsPartialSpecialization); 4453 4454 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 4455 4456 static bool isTemplateArgumentTemplateParameter( 4457 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 4458 switch (Arg.getKind()) { 4459 case TemplateArgument::Null: 4460 case TemplateArgument::NullPtr: 4461 case TemplateArgument::Integral: 4462 case TemplateArgument::Declaration: 4463 case TemplateArgument::StructuralValue: 4464 case TemplateArgument::Pack: 4465 case TemplateArgument::TemplateExpansion: 4466 return false; 4467 4468 case TemplateArgument::Type: { 4469 QualType Type = Arg.getAsType(); 4470 const TemplateTypeParmType *TPT = 4471 Arg.getAsType()->getAs<TemplateTypeParmType>(); 4472 return TPT && !Type.hasQualifiers() && 4473 TPT->getDepth() == Depth && TPT->getIndex() == Index; 4474 } 4475 4476 case TemplateArgument::Expression: { 4477 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 4478 if (!DRE || !DRE->getDecl()) 4479 return false; 4480 const NonTypeTemplateParmDecl *NTTP = 4481 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 4482 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 4483 } 4484 4485 case TemplateArgument::Template: 4486 const TemplateTemplateParmDecl *TTP = 4487 dyn_cast_or_null<TemplateTemplateParmDecl>( 4488 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 4489 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 4490 } 4491 llvm_unreachable("unexpected kind of template argument"); 4492 } 4493 4494 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 4495 ArrayRef<TemplateArgument> Args) { 4496 if (Params->size() != Args.size()) 4497 return false; 4498 4499 unsigned Depth = Params->getDepth(); 4500 4501 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4502 TemplateArgument Arg = Args[I]; 4503 4504 // If the parameter is a pack expansion, the argument must be a pack 4505 // whose only element is a pack expansion. 4506 if (Params->getParam(I)->isParameterPack()) { 4507 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 4508 !Arg.pack_begin()->isPackExpansion()) 4509 return false; 4510 Arg = Arg.pack_begin()->getPackExpansionPattern(); 4511 } 4512 4513 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 4514 return false; 4515 } 4516 4517 return true; 4518 } 4519 4520 template<typename PartialSpecDecl> 4521 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 4522 if (Partial->getDeclContext()->isDependentContext()) 4523 return; 4524 4525 // FIXME: Get the TDK from deduction in order to provide better diagnostics 4526 // for non-substitution-failure issues? 4527 TemplateDeductionInfo Info(Partial->getLocation()); 4528 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 4529 return; 4530 4531 auto *Template = Partial->getSpecializedTemplate(); 4532 S.Diag(Partial->getLocation(), 4533 diag::ext_partial_spec_not_more_specialized_than_primary) 4534 << isa<VarTemplateDecl>(Template); 4535 4536 if (Info.hasSFINAEDiagnostic()) { 4537 PartialDiagnosticAt Diag = {SourceLocation(), 4538 PartialDiagnostic::NullDiagnostic()}; 4539 Info.takeSFINAEDiagnostic(Diag); 4540 SmallString<128> SFINAEArgString; 4541 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 4542 S.Diag(Diag.first, 4543 diag::note_partial_spec_not_more_specialized_than_primary) 4544 << SFINAEArgString; 4545 } 4546 4547 S.NoteTemplateLocation(*Template); 4548 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 4549 Template->getAssociatedConstraints(TemplateAC); 4550 Partial->getAssociatedConstraints(PartialAC); 4551 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 4552 TemplateAC); 4553 } 4554 4555 static void 4556 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 4557 const llvm::SmallBitVector &DeducibleParams) { 4558 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4559 if (!DeducibleParams[I]) { 4560 NamedDecl *Param = TemplateParams->getParam(I); 4561 if (Param->getDeclName()) 4562 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4563 << Param->getDeclName(); 4564 else 4565 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4566 << "(anonymous)"; 4567 } 4568 } 4569 } 4570 4571 4572 template<typename PartialSpecDecl> 4573 static void checkTemplatePartialSpecialization(Sema &S, 4574 PartialSpecDecl *Partial) { 4575 // C++1z [temp.class.spec]p8: (DR1495) 4576 // - The specialization shall be more specialized than the primary 4577 // template (14.5.5.2). 4578 checkMoreSpecializedThanPrimary(S, Partial); 4579 4580 // C++ [temp.class.spec]p8: (DR1315) 4581 // - Each template-parameter shall appear at least once in the 4582 // template-id outside a non-deduced context. 4583 // C++1z [temp.class.spec.match]p3 (P0127R2) 4584 // If the template arguments of a partial specialization cannot be 4585 // deduced because of the structure of its template-parameter-list 4586 // and the template-id, the program is ill-formed. 4587 auto *TemplateParams = Partial->getTemplateParameters(); 4588 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4589 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4590 TemplateParams->getDepth(), DeducibleParams); 4591 4592 if (!DeducibleParams.all()) { 4593 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4594 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 4595 << isa<VarTemplatePartialSpecializationDecl>(Partial) 4596 << (NumNonDeducible > 1) 4597 << SourceRange(Partial->getLocation(), 4598 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4599 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4600 } 4601 } 4602 4603 void Sema::CheckTemplatePartialSpecialization( 4604 ClassTemplatePartialSpecializationDecl *Partial) { 4605 checkTemplatePartialSpecialization(*this, Partial); 4606 } 4607 4608 void Sema::CheckTemplatePartialSpecialization( 4609 VarTemplatePartialSpecializationDecl *Partial) { 4610 checkTemplatePartialSpecialization(*this, Partial); 4611 } 4612 4613 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4614 // C++1z [temp.param]p11: 4615 // A template parameter of a deduction guide template that does not have a 4616 // default-argument shall be deducible from the parameter-type-list of the 4617 // deduction guide template. 4618 auto *TemplateParams = TD->getTemplateParameters(); 4619 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4620 MarkDeducedTemplateParameters(TD, DeducibleParams); 4621 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4622 // A parameter pack is deducible (to an empty pack). 4623 auto *Param = TemplateParams->getParam(I); 4624 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4625 DeducibleParams[I] = true; 4626 } 4627 4628 if (!DeducibleParams.all()) { 4629 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4630 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4631 << (NumNonDeducible > 1); 4632 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4633 } 4634 } 4635 4636 DeclResult Sema::ActOnVarTemplateSpecialization( 4637 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 4638 TemplateParameterList *TemplateParams, StorageClass SC, 4639 bool IsPartialSpecialization) { 4640 // D must be variable template id. 4641 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4642 "Variable template specialization is declared with a template id."); 4643 4644 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4645 TemplateArgumentListInfo TemplateArgs = 4646 makeTemplateArgumentListInfo(*this, *TemplateId); 4647 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4648 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4649 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4650 4651 TemplateName Name = TemplateId->Template.get(); 4652 4653 // The template-id must name a variable template. 4654 VarTemplateDecl *VarTemplate = 4655 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4656 if (!VarTemplate) { 4657 NamedDecl *FnTemplate; 4658 if (auto *OTS = Name.getAsOverloadedTemplate()) 4659 FnTemplate = *OTS->begin(); 4660 else 4661 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4662 if (FnTemplate) 4663 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4664 << FnTemplate->getDeclName(); 4665 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4666 << IsPartialSpecialization; 4667 } 4668 4669 // Check for unexpanded parameter packs in any of the template arguments. 4670 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4671 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4672 IsPartialSpecialization 4673 ? UPPC_PartialSpecialization 4674 : UPPC_ExplicitSpecialization)) 4675 return true; 4676 4677 // Check that the template argument list is well-formed for this 4678 // template. 4679 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4680 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4681 false, SugaredConverted, CanonicalConverted, 4682 /*UpdateArgsWithConversions=*/true)) 4683 return true; 4684 4685 // Find the variable template (partial) specialization declaration that 4686 // corresponds to these arguments. 4687 if (IsPartialSpecialization) { 4688 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4689 TemplateArgs.size(), 4690 CanonicalConverted)) 4691 return true; 4692 4693 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 4694 // also do them during instantiation. 4695 if (!Name.isDependent() && 4696 !TemplateSpecializationType::anyDependentTemplateArguments( 4697 TemplateArgs, CanonicalConverted)) { 4698 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4699 << VarTemplate->getDeclName(); 4700 IsPartialSpecialization = false; 4701 } 4702 4703 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4704 CanonicalConverted) && 4705 (!Context.getLangOpts().CPlusPlus20 || 4706 !TemplateParams->hasAssociatedConstraints())) { 4707 // C++ [temp.class.spec]p9b3: 4708 // 4709 // -- The argument list of the specialization shall not be identical 4710 // to the implicit argument list of the primary template. 4711 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4712 << /*variable template*/ 1 4713 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 4714 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4715 // FIXME: Recover from this by treating the declaration as a redeclaration 4716 // of the primary template. 4717 return true; 4718 } 4719 } 4720 4721 void *InsertPos = nullptr; 4722 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4723 4724 if (IsPartialSpecialization) 4725 PrevDecl = VarTemplate->findPartialSpecialization( 4726 CanonicalConverted, TemplateParams, InsertPos); 4727 else 4728 PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos); 4729 4730 VarTemplateSpecializationDecl *Specialization = nullptr; 4731 4732 // Check whether we can declare a variable template specialization in 4733 // the current scope. 4734 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4735 TemplateNameLoc, 4736 IsPartialSpecialization)) 4737 return true; 4738 4739 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4740 // Since the only prior variable template specialization with these 4741 // arguments was referenced but not declared, reuse that 4742 // declaration node as our own, updating its source location and 4743 // the list of outer template parameters to reflect our new declaration. 4744 Specialization = PrevDecl; 4745 Specialization->setLocation(TemplateNameLoc); 4746 PrevDecl = nullptr; 4747 } else if (IsPartialSpecialization) { 4748 // Create a new class template partial specialization declaration node. 4749 VarTemplatePartialSpecializationDecl *PrevPartial = 4750 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4751 VarTemplatePartialSpecializationDecl *Partial = 4752 VarTemplatePartialSpecializationDecl::Create( 4753 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4754 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4755 CanonicalConverted, TemplateArgs); 4756 4757 if (!PrevPartial) 4758 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4759 Specialization = Partial; 4760 4761 // If we are providing an explicit specialization of a member variable 4762 // template specialization, make a note of that. 4763 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4764 PrevPartial->setMemberSpecialization(); 4765 4766 CheckTemplatePartialSpecialization(Partial); 4767 } else { 4768 // Create a new class template specialization declaration node for 4769 // this explicit specialization or friend declaration. 4770 Specialization = VarTemplateSpecializationDecl::Create( 4771 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4772 VarTemplate, DI->getType(), DI, SC, CanonicalConverted); 4773 Specialization->setTemplateArgsInfo(TemplateArgs); 4774 4775 if (!PrevDecl) 4776 VarTemplate->AddSpecialization(Specialization, InsertPos); 4777 } 4778 4779 // C++ [temp.expl.spec]p6: 4780 // If a template, a member template or the member of a class template is 4781 // explicitly specialized then that specialization shall be declared 4782 // before the first use of that specialization that would cause an implicit 4783 // instantiation to take place, in every translation unit in which such a 4784 // use occurs; no diagnostic is required. 4785 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4786 bool Okay = false; 4787 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4788 // Is there any previous explicit specialization declaration? 4789 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4790 Okay = true; 4791 break; 4792 } 4793 } 4794 4795 if (!Okay) { 4796 SourceRange Range(TemplateNameLoc, RAngleLoc); 4797 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4798 << Name << Range; 4799 4800 Diag(PrevDecl->getPointOfInstantiation(), 4801 diag::note_instantiation_required_here) 4802 << (PrevDecl->getTemplateSpecializationKind() != 4803 TSK_ImplicitInstantiation); 4804 return true; 4805 } 4806 } 4807 4808 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4809 Specialization->setLexicalDeclContext(CurContext); 4810 4811 // Add the specialization into its lexical context, so that it can 4812 // be seen when iterating through the list of declarations in that 4813 // context. However, specializations are not found by name lookup. 4814 CurContext->addDecl(Specialization); 4815 4816 // Note that this is an explicit specialization. 4817 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4818 4819 if (PrevDecl) { 4820 // Check that this isn't a redefinition of this specialization, 4821 // merging with previous declarations. 4822 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 4823 forRedeclarationInCurContext()); 4824 PrevSpec.addDecl(PrevDecl); 4825 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 4826 } else if (Specialization->isStaticDataMember() && 4827 Specialization->isOutOfLine()) { 4828 Specialization->setAccess(VarTemplate->getAccess()); 4829 } 4830 4831 return Specialization; 4832 } 4833 4834 namespace { 4835 /// A partial specialization whose template arguments have matched 4836 /// a given template-id. 4837 struct PartialSpecMatchResult { 4838 VarTemplatePartialSpecializationDecl *Partial; 4839 TemplateArgumentList *Args; 4840 }; 4841 } // end anonymous namespace 4842 4843 DeclResult 4844 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4845 SourceLocation TemplateNameLoc, 4846 const TemplateArgumentListInfo &TemplateArgs) { 4847 assert(Template && "A variable template id without template?"); 4848 4849 // Check that the template argument list is well-formed for this template. 4850 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4851 if (CheckTemplateArgumentList( 4852 Template, TemplateNameLoc, 4853 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 4854 SugaredConverted, CanonicalConverted, 4855 /*UpdateArgsWithConversions=*/true)) 4856 return true; 4857 4858 // Produce a placeholder value if the specialization is dependent. 4859 if (Template->getDeclContext()->isDependentContext() || 4860 TemplateSpecializationType::anyDependentTemplateArguments( 4861 TemplateArgs, CanonicalConverted)) 4862 return DeclResult(); 4863 4864 // Find the variable template specialization declaration that 4865 // corresponds to these arguments. 4866 void *InsertPos = nullptr; 4867 if (VarTemplateSpecializationDecl *Spec = 4868 Template->findSpecialization(CanonicalConverted, InsertPos)) { 4869 checkSpecializationReachability(TemplateNameLoc, Spec); 4870 // If we already have a variable template specialization, return it. 4871 return Spec; 4872 } 4873 4874 // This is the first time we have referenced this variable template 4875 // specialization. Create the canonical declaration and add it to 4876 // the set of specializations, based on the closest partial specialization 4877 // that it represents. That is, 4878 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4879 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 4880 CanonicalConverted); 4881 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 4882 bool AmbiguousPartialSpec = false; 4883 typedef PartialSpecMatchResult MatchResult; 4884 SmallVector<MatchResult, 4> Matched; 4885 SourceLocation PointOfInstantiation = TemplateNameLoc; 4886 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4887 /*ForTakingAddress=*/false); 4888 4889 // 1. Attempt to find the closest partial specialization that this 4890 // specializes, if any. 4891 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4892 // Perhaps better after unification of DeduceTemplateArguments() and 4893 // getMoreSpecializedPartialSpecialization(). 4894 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4895 Template->getPartialSpecializations(PartialSpecs); 4896 4897 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4898 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4899 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4900 4901 if (TemplateDeductionResult Result = 4902 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 4903 // Store the failed-deduction information for use in diagnostics, later. 4904 // TODO: Actually use the failed-deduction info? 4905 FailedCandidates.addCandidate().set( 4906 DeclAccessPair::make(Template, AS_public), Partial, 4907 MakeDeductionFailureInfo(Context, Result, Info)); 4908 (void)Result; 4909 } else { 4910 Matched.push_back(PartialSpecMatchResult()); 4911 Matched.back().Partial = Partial; 4912 Matched.back().Args = Info.takeCanonical(); 4913 } 4914 } 4915 4916 if (Matched.size() >= 1) { 4917 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4918 if (Matched.size() == 1) { 4919 // -- If exactly one matching specialization is found, the 4920 // instantiation is generated from that specialization. 4921 // We don't need to do anything for this. 4922 } else { 4923 // -- If more than one matching specialization is found, the 4924 // partial order rules (14.5.4.2) are used to determine 4925 // whether one of the specializations is more specialized 4926 // than the others. If none of the specializations is more 4927 // specialized than all of the other matching 4928 // specializations, then the use of the variable template is 4929 // ambiguous and the program is ill-formed. 4930 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4931 PEnd = Matched.end(); 4932 P != PEnd; ++P) { 4933 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4934 PointOfInstantiation) == 4935 P->Partial) 4936 Best = P; 4937 } 4938 4939 // Determine if the best partial specialization is more specialized than 4940 // the others. 4941 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4942 PEnd = Matched.end(); 4943 P != PEnd; ++P) { 4944 if (P != Best && getMoreSpecializedPartialSpecialization( 4945 P->Partial, Best->Partial, 4946 PointOfInstantiation) != Best->Partial) { 4947 AmbiguousPartialSpec = true; 4948 break; 4949 } 4950 } 4951 } 4952 4953 // Instantiate using the best variable template partial specialization. 4954 InstantiationPattern = Best->Partial; 4955 InstantiationArgs = Best->Args; 4956 } else { 4957 // -- If no match is found, the instantiation is generated 4958 // from the primary template. 4959 // InstantiationPattern = Template->getTemplatedDecl(); 4960 } 4961 4962 // 2. Create the canonical declaration. 4963 // Note that we do not instantiate a definition until we see an odr-use 4964 // in DoMarkVarDeclReferenced(). 4965 // FIXME: LateAttrs et al.? 4966 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4967 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 4968 CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/); 4969 if (!Decl) 4970 return true; 4971 4972 if (AmbiguousPartialSpec) { 4973 // Partial ordering did not produce a clear winner. Complain. 4974 Decl->setInvalidDecl(); 4975 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4976 << Decl; 4977 4978 // Print the matching partial specializations. 4979 for (MatchResult P : Matched) 4980 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4981 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4982 *P.Args); 4983 return true; 4984 } 4985 4986 if (VarTemplatePartialSpecializationDecl *D = 4987 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4988 Decl->setInstantiationOf(D, InstantiationArgs); 4989 4990 checkSpecializationReachability(TemplateNameLoc, Decl); 4991 4992 assert(Decl && "No variable template specialization?"); 4993 return Decl; 4994 } 4995 4996 ExprResult 4997 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 4998 const DeclarationNameInfo &NameInfo, 4999 VarTemplateDecl *Template, SourceLocation TemplateLoc, 5000 const TemplateArgumentListInfo *TemplateArgs) { 5001 5002 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 5003 *TemplateArgs); 5004 if (Decl.isInvalid()) 5005 return ExprError(); 5006 5007 if (!Decl.get()) 5008 return ExprResult(); 5009 5010 VarDecl *Var = cast<VarDecl>(Decl.get()); 5011 if (!Var->getTemplateSpecializationKind()) 5012 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 5013 NameInfo.getLoc()); 5014 5015 // Build an ordinary singleton decl ref. 5016 return BuildDeclarationNameExpr(SS, NameInfo, Var, 5017 /*FoundD=*/nullptr, TemplateArgs); 5018 } 5019 5020 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 5021 SourceLocation Loc) { 5022 Diag(Loc, diag::err_template_missing_args) 5023 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 5024 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 5025 NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange()); 5026 } 5027 } 5028 5029 ExprResult 5030 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 5031 SourceLocation TemplateKWLoc, 5032 const DeclarationNameInfo &ConceptNameInfo, 5033 NamedDecl *FoundDecl, 5034 ConceptDecl *NamedConcept, 5035 const TemplateArgumentListInfo *TemplateArgs) { 5036 assert(NamedConcept && "A concept template id without a template?"); 5037 5038 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 5039 if (CheckTemplateArgumentList( 5040 NamedConcept, ConceptNameInfo.getLoc(), 5041 const_cast<TemplateArgumentListInfo &>(*TemplateArgs), 5042 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted, 5043 /*UpdateArgsWithConversions=*/false)) 5044 return ExprError(); 5045 5046 auto *CSD = ImplicitConceptSpecializationDecl::Create( 5047 Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(), 5048 CanonicalConverted); 5049 ConstraintSatisfaction Satisfaction; 5050 bool AreArgsDependent = 5051 TemplateSpecializationType::anyDependentTemplateArguments( 5052 *TemplateArgs, CanonicalConverted); 5053 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted, 5054 /*Final=*/false); 5055 LocalInstantiationScope Scope(*this); 5056 5057 EnterExpressionEvaluationContext EECtx{ 5058 *this, ExpressionEvaluationContext::ConstantEvaluated, CSD}; 5059 5060 if (!AreArgsDependent && 5061 CheckConstraintSatisfaction( 5062 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL, 5063 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), 5064 TemplateArgs->getRAngleLoc()), 5065 Satisfaction)) 5066 return ExprError(); 5067 auto *CL = ConceptReference::Create( 5068 Context, 5069 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 5070 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 5071 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs)); 5072 return ConceptSpecializationExpr::Create( 5073 Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction); 5074 } 5075 5076 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 5077 SourceLocation TemplateKWLoc, 5078 LookupResult &R, 5079 bool RequiresADL, 5080 const TemplateArgumentListInfo *TemplateArgs) { 5081 // FIXME: Can we do any checking at this point? I guess we could check the 5082 // template arguments that we have against the template name, if the template 5083 // name refers to a single template. That's not a terribly common case, 5084 // though. 5085 // foo<int> could identify a single function unambiguously 5086 // This approach does NOT work, since f<int>(1); 5087 // gets resolved prior to resorting to overload resolution 5088 // i.e., template<class T> void f(double); 5089 // vs template<class T, class U> void f(U); 5090 5091 // These should be filtered out by our callers. 5092 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 5093 5094 // Non-function templates require a template argument list. 5095 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 5096 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 5097 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); 5098 return ExprError(); 5099 } 5100 } 5101 bool KnownDependent = false; 5102 // In C++1y, check variable template ids. 5103 if (R.getAsSingle<VarTemplateDecl>()) { 5104 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(), 5105 R.getAsSingle<VarTemplateDecl>(), 5106 TemplateKWLoc, TemplateArgs); 5107 if (Res.isInvalid() || Res.isUsable()) 5108 return Res; 5109 // Result is dependent. Carry on to build an UnresolvedLookupEpxr. 5110 KnownDependent = true; 5111 } 5112 5113 if (R.getAsSingle<ConceptDecl>()) { 5114 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 5115 R.getFoundDecl(), 5116 R.getAsSingle<ConceptDecl>(), TemplateArgs); 5117 } 5118 5119 // We don't want lookup warnings at this point. 5120 R.suppressDiagnostics(); 5121 5122 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create( 5123 Context, R.getNamingClass(), SS.getWithLocInContext(Context), 5124 TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs, 5125 R.begin(), R.end(), KnownDependent); 5126 5127 return ULE; 5128 } 5129 5130 // We actually only call this from template instantiation. 5131 ExprResult 5132 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 5133 SourceLocation TemplateKWLoc, 5134 const DeclarationNameInfo &NameInfo, 5135 const TemplateArgumentListInfo *TemplateArgs) { 5136 5137 assert(TemplateArgs || TemplateKWLoc.isValid()); 5138 DeclContext *DC; 5139 if (!(DC = computeDeclContext(SS, false)) || 5140 DC->isDependentContext() || 5141 RequireCompleteDeclContext(SS, DC)) 5142 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 5143 5144 bool MemberOfUnknownSpecialization; 5145 LookupResult R(*this, NameInfo, LookupOrdinaryName); 5146 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), 5147 /*Entering*/false, MemberOfUnknownSpecialization, 5148 TemplateKWLoc)) 5149 return ExprError(); 5150 5151 if (R.isAmbiguous()) 5152 return ExprError(); 5153 5154 if (R.empty()) { 5155 Diag(NameInfo.getLoc(), diag::err_no_member) 5156 << NameInfo.getName() << DC << SS.getRange(); 5157 return ExprError(); 5158 } 5159 5160 auto DiagnoseTypeTemplateDecl = [&](TemplateDecl *Temp, 5161 bool isTypeAliasTemplateDecl) { 5162 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template) 5163 << SS.getScopeRep() << NameInfo.getName().getAsString() << SS.getRange() 5164 << isTypeAliasTemplateDecl; 5165 Diag(Temp->getLocation(), diag::note_referenced_type_template) << 0; 5166 return ExprError(); 5167 }; 5168 5169 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) 5170 return DiagnoseTypeTemplateDecl(Temp, false); 5171 5172 if (TypeAliasTemplateDecl *Temp = R.getAsSingle<TypeAliasTemplateDecl>()) 5173 return DiagnoseTypeTemplateDecl(Temp, true); 5174 5175 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 5176 } 5177 5178 /// Form a template name from a name that is syntactically required to name a 5179 /// template, either due to use of the 'template' keyword or because a name in 5180 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4). 5181 /// 5182 /// This action forms a template name given the name of the template and its 5183 /// optional scope specifier. This is used when the 'template' keyword is used 5184 /// or when the parsing context unambiguously treats a following '<' as 5185 /// introducing a template argument list. Note that this may produce a 5186 /// non-dependent template name if we can perform the lookup now and identify 5187 /// the named template. 5188 /// 5189 /// For example, given "x.MetaFun::template apply", the scope specifier 5190 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location 5191 /// of the "template" keyword, and "apply" is the \p Name. 5192 TemplateNameKind Sema::ActOnTemplateName(Scope *S, 5193 CXXScopeSpec &SS, 5194 SourceLocation TemplateKWLoc, 5195 const UnqualifiedId &Name, 5196 ParsedType ObjectType, 5197 bool EnteringContext, 5198 TemplateTy &Result, 5199 bool AllowInjectedClassName) { 5200 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 5201 Diag(TemplateKWLoc, 5202 getLangOpts().CPlusPlus11 ? 5203 diag::warn_cxx98_compat_template_outside_of_template : 5204 diag::ext_template_outside_of_template) 5205 << FixItHint::CreateRemoval(TemplateKWLoc); 5206 5207 if (SS.isInvalid()) 5208 return TNK_Non_template; 5209 5210 // Figure out where isTemplateName is going to look. 5211 DeclContext *LookupCtx = nullptr; 5212 if (SS.isNotEmpty()) 5213 LookupCtx = computeDeclContext(SS, EnteringContext); 5214 else if (ObjectType) 5215 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); 5216 5217 // C++0x [temp.names]p5: 5218 // If a name prefixed by the keyword template is not the name of 5219 // a template, the program is ill-formed. [Note: the keyword 5220 // template may not be applied to non-template members of class 5221 // templates. -end note ] [ Note: as is the case with the 5222 // typename prefix, the template prefix is allowed in cases 5223 // where it is not strictly necessary; i.e., when the 5224 // nested-name-specifier or the expression on the left of the -> 5225 // or . is not dependent on a template-parameter, or the use 5226 // does not appear in the scope of a template. -end note] 5227 // 5228 // Note: C++03 was more strict here, because it banned the use of 5229 // the "template" keyword prior to a template-name that was not a 5230 // dependent name. C++ DR468 relaxed this requirement (the 5231 // "template" keyword is now permitted). We follow the C++0x 5232 // rules, even in C++03 mode with a warning, retroactively applying the DR. 5233 bool MemberOfUnknownSpecialization; 5234 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 5235 ObjectType, EnteringContext, Result, 5236 MemberOfUnknownSpecialization); 5237 if (TNK != TNK_Non_template) { 5238 // We resolved this to a (non-dependent) template name. Return it. 5239 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 5240 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && 5241 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 5242 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 5243 // C++14 [class.qual]p2: 5244 // In a lookup in which function names are not ignored and the 5245 // nested-name-specifier nominates a class C, if the name specified 5246 // [...] is the injected-class-name of C, [...] the name is instead 5247 // considered to name the constructor 5248 // 5249 // We don't get here if naming the constructor would be valid, so we 5250 // just reject immediately and recover by treating the 5251 // injected-class-name as naming the template. 5252 Diag(Name.getBeginLoc(), 5253 diag::ext_out_of_line_qualified_id_type_names_constructor) 5254 << Name.Identifier 5255 << 0 /*injected-class-name used as template name*/ 5256 << TemplateKWLoc.isValid(); 5257 } 5258 return TNK; 5259 } 5260 5261 if (!MemberOfUnknownSpecialization) { 5262 // Didn't find a template name, and the lookup wasn't dependent. 5263 // Do the lookup again to determine if this is a "nothing found" case or 5264 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 5265 // need to do this. 5266 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 5267 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 5268 LookupOrdinaryName); 5269 bool MOUS; 5270 // Tell LookupTemplateName that we require a template so that it diagnoses 5271 // cases where it finds a non-template. 5272 RequiredTemplateKind RTK = TemplateKWLoc.isValid() 5273 ? RequiredTemplateKind(TemplateKWLoc) 5274 : TemplateNameIsRequired; 5275 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS, 5276 RTK, nullptr, /*AllowTypoCorrection=*/false) && 5277 !R.isAmbiguous()) { 5278 if (LookupCtx) 5279 Diag(Name.getBeginLoc(), diag::err_no_member) 5280 << DNI.getName() << LookupCtx << SS.getRange(); 5281 else 5282 Diag(Name.getBeginLoc(), diag::err_undeclared_use) 5283 << DNI.getName() << SS.getRange(); 5284 } 5285 return TNK_Non_template; 5286 } 5287 5288 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 5289 5290 switch (Name.getKind()) { 5291 case UnqualifiedIdKind::IK_Identifier: 5292 Result = TemplateTy::make( 5293 Context.getDependentTemplateName(Qualifier, Name.Identifier)); 5294 return TNK_Dependent_template_name; 5295 5296 case UnqualifiedIdKind::IK_OperatorFunctionId: 5297 Result = TemplateTy::make(Context.getDependentTemplateName( 5298 Qualifier, Name.OperatorFunctionId.Operator)); 5299 return TNK_Function_template; 5300 5301 case UnqualifiedIdKind::IK_LiteralOperatorId: 5302 // This is a kind of template name, but can never occur in a dependent 5303 // scope (literal operators can only be declared at namespace scope). 5304 break; 5305 5306 default: 5307 break; 5308 } 5309 5310 // This name cannot possibly name a dependent template. Diagnose this now 5311 // rather than building a dependent template name that can never be valid. 5312 Diag(Name.getBeginLoc(), 5313 diag::err_template_kw_refers_to_dependent_non_template) 5314 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 5315 << TemplateKWLoc.isValid() << TemplateKWLoc; 5316 return TNK_Non_template; 5317 } 5318 5319 bool Sema::CheckTemplateTypeArgument( 5320 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL, 5321 SmallVectorImpl<TemplateArgument> &SugaredConverted, 5322 SmallVectorImpl<TemplateArgument> &CanonicalConverted) { 5323 const TemplateArgument &Arg = AL.getArgument(); 5324 QualType ArgType; 5325 TypeSourceInfo *TSI = nullptr; 5326 5327 // Check template type parameter. 5328 switch(Arg.getKind()) { 5329 case TemplateArgument::Type: 5330 // C++ [temp.arg.type]p1: 5331 // A template-argument for a template-parameter which is a 5332 // type shall be a type-id. 5333 ArgType = Arg.getAsType(); 5334 TSI = AL.getTypeSourceInfo(); 5335 break; 5336 case TemplateArgument::Template: 5337 case TemplateArgument::TemplateExpansion: { 5338 // We have a template type parameter but the template argument 5339 // is a template without any arguments. 5340 SourceRange SR = AL.getSourceRange(); 5341 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 5342 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 5343 return true; 5344 } 5345 case TemplateArgument::Expression: { 5346 // We have a template type parameter but the template argument is an 5347 // expression; see if maybe it is missing the "typename" keyword. 5348 CXXScopeSpec SS; 5349 DeclarationNameInfo NameInfo; 5350 5351 if (DependentScopeDeclRefExpr *ArgExpr = 5352 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 5353 SS.Adopt(ArgExpr->getQualifierLoc()); 5354 NameInfo = ArgExpr->getNameInfo(); 5355 } else if (CXXDependentScopeMemberExpr *ArgExpr = 5356 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 5357 if (ArgExpr->isImplicitAccess()) { 5358 SS.Adopt(ArgExpr->getQualifierLoc()); 5359 NameInfo = ArgExpr->getMemberNameInfo(); 5360 } 5361 } 5362 5363 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 5364 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 5365 LookupParsedName(Result, CurScope, &SS); 5366 5367 if (Result.getAsSingle<TypeDecl>() || 5368 Result.getResultKind() == 5369 LookupResult::NotFoundInCurrentInstantiation) { 5370 assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); 5371 // Suggest that the user add 'typename' before the NNS. 5372 SourceLocation Loc = AL.getSourceRange().getBegin(); 5373 Diag(Loc, getLangOpts().MSVCCompat 5374 ? diag::ext_ms_template_type_arg_missing_typename 5375 : diag::err_template_arg_must_be_type_suggest) 5376 << FixItHint::CreateInsertion(Loc, "typename "); 5377 NoteTemplateParameterLocation(*Param); 5378 5379 // Recover by synthesizing a type using the location information that we 5380 // already have. 5381 ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename, 5382 SS.getScopeRep(), II); 5383 TypeLocBuilder TLB; 5384 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 5385 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 5386 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 5387 TL.setNameLoc(NameInfo.getLoc()); 5388 TSI = TLB.getTypeSourceInfo(Context, ArgType); 5389 5390 // Overwrite our input TemplateArgumentLoc so that we can recover 5391 // properly. 5392 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 5393 TemplateArgumentLocInfo(TSI)); 5394 5395 break; 5396 } 5397 } 5398 // fallthrough 5399 [[fallthrough]]; 5400 } 5401 default: { 5402 // We have a template type parameter but the template argument 5403 // is not a type. 5404 SourceRange SR = AL.getSourceRange(); 5405 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 5406 NoteTemplateParameterLocation(*Param); 5407 5408 return true; 5409 } 5410 } 5411 5412 if (CheckTemplateArgument(TSI)) 5413 return true; 5414 5415 // Objective-C ARC: 5416 // If an explicitly-specified template argument type is a lifetime type 5417 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 5418 if (getLangOpts().ObjCAutoRefCount && 5419 ArgType->isObjCLifetimeType() && 5420 !ArgType.getObjCLifetime()) { 5421 Qualifiers Qs; 5422 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 5423 ArgType = Context.getQualifiedType(ArgType, Qs); 5424 } 5425 5426 SugaredConverted.push_back(TemplateArgument(ArgType)); 5427 CanonicalConverted.push_back( 5428 TemplateArgument(Context.getCanonicalType(ArgType))); 5429 return false; 5430 } 5431 5432 /// Substitute template arguments into the default template argument for 5433 /// the given template type parameter. 5434 /// 5435 /// \param SemaRef the semantic analysis object for which we are performing 5436 /// the substitution. 5437 /// 5438 /// \param Template the template that we are synthesizing template arguments 5439 /// for. 5440 /// 5441 /// \param TemplateLoc the location of the template name that started the 5442 /// template-id we are checking. 5443 /// 5444 /// \param RAngleLoc the location of the right angle bracket ('>') that 5445 /// terminates the template-id. 5446 /// 5447 /// \param Param the template template parameter whose default we are 5448 /// substituting into. 5449 /// 5450 /// \param Converted the list of template arguments provided for template 5451 /// parameters that precede \p Param in the template parameter list. 5452 /// \returns the substituted template argument, or NULL if an error occurred. 5453 static TypeSourceInfo *SubstDefaultTemplateArgument( 5454 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5455 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param, 5456 ArrayRef<TemplateArgument> SugaredConverted, 5457 ArrayRef<TemplateArgument> CanonicalConverted) { 5458 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 5459 5460 // If the argument type is dependent, instantiate it now based 5461 // on the previously-computed template arguments. 5462 if (ArgType->getType()->isInstantiationDependentType()) { 5463 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, 5464 SugaredConverted, 5465 SourceRange(TemplateLoc, RAngleLoc)); 5466 if (Inst.isInvalid()) 5467 return nullptr; 5468 5469 // Only substitute for the innermost template argument list. 5470 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5471 /*Final=*/true); 5472 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5473 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5474 5475 bool ForLambdaCallOperator = false; 5476 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext())) 5477 ForLambdaCallOperator = Rec->isLambda(); 5478 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), 5479 !ForLambdaCallOperator); 5480 ArgType = 5481 SemaRef.SubstType(ArgType, TemplateArgLists, 5482 Param->getDefaultArgumentLoc(), Param->getDeclName()); 5483 } 5484 5485 return ArgType; 5486 } 5487 5488 /// Substitute template arguments into the default template argument for 5489 /// the given non-type template parameter. 5490 /// 5491 /// \param SemaRef the semantic analysis object for which we are performing 5492 /// the substitution. 5493 /// 5494 /// \param Template the template that we are synthesizing template arguments 5495 /// for. 5496 /// 5497 /// \param TemplateLoc the location of the template name that started the 5498 /// template-id we are checking. 5499 /// 5500 /// \param RAngleLoc the location of the right angle bracket ('>') that 5501 /// terminates the template-id. 5502 /// 5503 /// \param Param the non-type template parameter whose default we are 5504 /// substituting into. 5505 /// 5506 /// \param Converted the list of template arguments provided for template 5507 /// parameters that precede \p Param in the template parameter list. 5508 /// 5509 /// \returns the substituted template argument, or NULL if an error occurred. 5510 static ExprResult SubstDefaultTemplateArgument( 5511 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5512 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param, 5513 ArrayRef<TemplateArgument> SugaredConverted, 5514 ArrayRef<TemplateArgument> CanonicalConverted) { 5515 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, 5516 SugaredConverted, 5517 SourceRange(TemplateLoc, RAngleLoc)); 5518 if (Inst.isInvalid()) 5519 return ExprError(); 5520 5521 // Only substitute for the innermost template argument list. 5522 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5523 /*Final=*/true); 5524 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5525 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5526 5527 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5528 EnterExpressionEvaluationContext ConstantEvaluated( 5529 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 5530 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 5531 } 5532 5533 /// Substitute template arguments into the default template argument for 5534 /// the given template template parameter. 5535 /// 5536 /// \param SemaRef the semantic analysis object for which we are performing 5537 /// the substitution. 5538 /// 5539 /// \param Template the template that we are synthesizing template arguments 5540 /// for. 5541 /// 5542 /// \param TemplateLoc the location of the template name that started the 5543 /// template-id we are checking. 5544 /// 5545 /// \param RAngleLoc the location of the right angle bracket ('>') that 5546 /// terminates the template-id. 5547 /// 5548 /// \param Param the template template parameter whose default we are 5549 /// substituting into. 5550 /// 5551 /// \param Converted the list of template arguments provided for template 5552 /// parameters that precede \p Param in the template parameter list. 5553 /// 5554 /// \param QualifierLoc Will be set to the nested-name-specifier (with 5555 /// source-location information) that precedes the template name. 5556 /// 5557 /// \returns the substituted template argument, or NULL if an error occurred. 5558 static TemplateName SubstDefaultTemplateArgument( 5559 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5560 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param, 5561 ArrayRef<TemplateArgument> SugaredConverted, 5562 ArrayRef<TemplateArgument> CanonicalConverted, 5563 NestedNameSpecifierLoc &QualifierLoc) { 5564 Sema::InstantiatingTemplate Inst( 5565 SemaRef, TemplateLoc, TemplateParameter(Param), Template, 5566 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc)); 5567 if (Inst.isInvalid()) 5568 return TemplateName(); 5569 5570 // Only substitute for the innermost template argument list. 5571 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5572 /*Final=*/true); 5573 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5574 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5575 5576 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5577 // Substitute into the nested-name-specifier first, 5578 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 5579 if (QualifierLoc) { 5580 QualifierLoc = 5581 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 5582 if (!QualifierLoc) 5583 return TemplateName(); 5584 } 5585 5586 return SemaRef.SubstTemplateName( 5587 QualifierLoc, 5588 Param->getDefaultArgument().getArgument().getAsTemplate(), 5589 Param->getDefaultArgument().getTemplateNameLoc(), 5590 TemplateArgLists); 5591 } 5592 5593 /// If the given template parameter has a default template 5594 /// argument, substitute into that default template argument and 5595 /// return the corresponding template argument. 5596 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable( 5597 TemplateDecl *Template, SourceLocation TemplateLoc, 5598 SourceLocation RAngleLoc, Decl *Param, 5599 ArrayRef<TemplateArgument> SugaredConverted, 5600 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) { 5601 HasDefaultArg = false; 5602 5603 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 5604 if (!hasReachableDefaultArgument(TypeParm)) 5605 return TemplateArgumentLoc(); 5606 5607 HasDefaultArg = true; 5608 TypeSourceInfo *DI = SubstDefaultTemplateArgument( 5609 *this, Template, TemplateLoc, RAngleLoc, TypeParm, SugaredConverted, 5610 CanonicalConverted); 5611 if (DI) 5612 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 5613 5614 return TemplateArgumentLoc(); 5615 } 5616 5617 if (NonTypeTemplateParmDecl *NonTypeParm 5618 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5619 if (!hasReachableDefaultArgument(NonTypeParm)) 5620 return TemplateArgumentLoc(); 5621 5622 HasDefaultArg = true; 5623 ExprResult Arg = SubstDefaultTemplateArgument( 5624 *this, Template, TemplateLoc, RAngleLoc, NonTypeParm, SugaredConverted, 5625 CanonicalConverted); 5626 if (Arg.isInvalid()) 5627 return TemplateArgumentLoc(); 5628 5629 Expr *ArgE = Arg.getAs<Expr>(); 5630 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 5631 } 5632 5633 TemplateTemplateParmDecl *TempTempParm 5634 = cast<TemplateTemplateParmDecl>(Param); 5635 if (!hasReachableDefaultArgument(TempTempParm)) 5636 return TemplateArgumentLoc(); 5637 5638 HasDefaultArg = true; 5639 NestedNameSpecifierLoc QualifierLoc; 5640 TemplateName TName = SubstDefaultTemplateArgument( 5641 *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted, 5642 CanonicalConverted, QualifierLoc); 5643 if (TName.isNull()) 5644 return TemplateArgumentLoc(); 5645 5646 return TemplateArgumentLoc( 5647 Context, TemplateArgument(TName), 5648 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5649 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5650 } 5651 5652 /// Convert a template-argument that we parsed as a type into a template, if 5653 /// possible. C++ permits injected-class-names to perform dual service as 5654 /// template template arguments and as template type arguments. 5655 static TemplateArgumentLoc 5656 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { 5657 // Extract and step over any surrounding nested-name-specifier. 5658 NestedNameSpecifierLoc QualLoc; 5659 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5660 if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None) 5661 return TemplateArgumentLoc(); 5662 5663 QualLoc = ETLoc.getQualifierLoc(); 5664 TLoc = ETLoc.getNamedTypeLoc(); 5665 } 5666 // If this type was written as an injected-class-name, it can be used as a 5667 // template template argument. 5668 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5669 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), 5670 QualLoc, InjLoc.getNameLoc()); 5671 5672 // If this type was written as an injected-class-name, it may have been 5673 // converted to a RecordType during instantiation. If the RecordType is 5674 // *not* wrapped in a TemplateSpecializationType and denotes a class 5675 // template specialization, it must have come from an injected-class-name. 5676 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5677 if (auto *CTSD = 5678 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5679 return TemplateArgumentLoc(Context, 5680 TemplateName(CTSD->getSpecializedTemplate()), 5681 QualLoc, RecLoc.getNameLoc()); 5682 5683 return TemplateArgumentLoc(); 5684 } 5685 5686 /// Check that the given template argument corresponds to the given 5687 /// template parameter. 5688 /// 5689 /// \param Param The template parameter against which the argument will be 5690 /// checked. 5691 /// 5692 /// \param Arg The template argument, which may be updated due to conversions. 5693 /// 5694 /// \param Template The template in which the template argument resides. 5695 /// 5696 /// \param TemplateLoc The location of the template name for the template 5697 /// whose argument list we're matching. 5698 /// 5699 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 5700 /// the template argument list. 5701 /// 5702 /// \param ArgumentPackIndex The index into the argument pack where this 5703 /// argument will be placed. Only valid if the parameter is a parameter pack. 5704 /// 5705 /// \param Converted The checked, converted argument will be added to the 5706 /// end of this small vector. 5707 /// 5708 /// \param CTAK Describes how we arrived at this particular template argument: 5709 /// explicitly written, deduced, etc. 5710 /// 5711 /// \returns true on error, false otherwise. 5712 bool Sema::CheckTemplateArgument( 5713 NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, 5714 SourceLocation TemplateLoc, SourceLocation RAngleLoc, 5715 unsigned ArgumentPackIndex, 5716 SmallVectorImpl<TemplateArgument> &SugaredConverted, 5717 SmallVectorImpl<TemplateArgument> &CanonicalConverted, 5718 CheckTemplateArgumentKind CTAK) { 5719 // Check template type parameters. 5720 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5721 return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted, 5722 CanonicalConverted); 5723 5724 // Check non-type template parameters. 5725 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5726 // Do substitution on the type of the non-type template parameter 5727 // with the template arguments we've seen thus far. But if the 5728 // template has a dependent context then we cannot substitute yet. 5729 QualType NTTPType = NTTP->getType(); 5730 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5731 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5732 5733 if (NTTPType->isInstantiationDependentType() && 5734 !isa<TemplateTemplateParmDecl>(Template) && 5735 !Template->getDeclContext()->isDependentContext()) { 5736 // Do substitution on the type of the non-type template parameter. 5737 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP, 5738 SugaredConverted, 5739 SourceRange(TemplateLoc, RAngleLoc)); 5740 if (Inst.isInvalid()) 5741 return true; 5742 5743 MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted, 5744 /*Final=*/true); 5745 // If the parameter is a pack expansion, expand this slice of the pack. 5746 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5747 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5748 ArgumentPackIndex); 5749 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(), 5750 NTTP->getDeclName()); 5751 } else { 5752 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(), 5753 NTTP->getDeclName()); 5754 } 5755 5756 // If that worked, check the non-type template parameter type 5757 // for validity. 5758 if (!NTTPType.isNull()) 5759 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5760 NTTP->getLocation()); 5761 if (NTTPType.isNull()) 5762 return true; 5763 } 5764 5765 switch (Arg.getArgument().getKind()) { 5766 case TemplateArgument::Null: 5767 llvm_unreachable("Should never see a NULL template argument here"); 5768 5769 case TemplateArgument::Expression: { 5770 Expr *E = Arg.getArgument().getAsExpr(); 5771 TemplateArgument SugaredResult, CanonicalResult; 5772 unsigned CurSFINAEErrors = NumSFINAEErrors; 5773 ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult, 5774 CanonicalResult, CTAK); 5775 if (Res.isInvalid()) 5776 return true; 5777 // If the current template argument causes an error, give up now. 5778 if (CurSFINAEErrors < NumSFINAEErrors) 5779 return true; 5780 5781 // If the resulting expression is new, then use it in place of the 5782 // old expression in the template argument. 5783 if (Res.get() != E) { 5784 TemplateArgument TA(Res.get()); 5785 Arg = TemplateArgumentLoc(TA, Res.get()); 5786 } 5787 5788 SugaredConverted.push_back(SugaredResult); 5789 CanonicalConverted.push_back(CanonicalResult); 5790 break; 5791 } 5792 5793 case TemplateArgument::Declaration: 5794 case TemplateArgument::Integral: 5795 case TemplateArgument::StructuralValue: 5796 case TemplateArgument::NullPtr: 5797 // We've already checked this template argument, so just copy 5798 // it to the list of converted arguments. 5799 SugaredConverted.push_back(Arg.getArgument()); 5800 CanonicalConverted.push_back( 5801 Context.getCanonicalTemplateArgument(Arg.getArgument())); 5802 break; 5803 5804 case TemplateArgument::Template: 5805 case TemplateArgument::TemplateExpansion: 5806 // We were given a template template argument. It may not be ill-formed; 5807 // see below. 5808 if (DependentTemplateName *DTN 5809 = Arg.getArgument().getAsTemplateOrTemplatePattern() 5810 .getAsDependentTemplateName()) { 5811 // We have a template argument such as \c T::template X, which we 5812 // parsed as a template template argument. However, since we now 5813 // know that we need a non-type template argument, convert this 5814 // template name into an expression. 5815 5816 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5817 Arg.getTemplateNameLoc()); 5818 5819 CXXScopeSpec SS; 5820 SS.Adopt(Arg.getTemplateQualifierLoc()); 5821 // FIXME: the template-template arg was a DependentTemplateName, 5822 // so it was provided with a template keyword. However, its source 5823 // location is not stored in the template argument structure. 5824 SourceLocation TemplateKWLoc; 5825 ExprResult E = DependentScopeDeclRefExpr::Create( 5826 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5827 nullptr); 5828 5829 // If we parsed the template argument as a pack expansion, create a 5830 // pack expansion expression. 5831 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5832 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5833 if (E.isInvalid()) 5834 return true; 5835 } 5836 5837 TemplateArgument SugaredResult, CanonicalResult; 5838 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult, 5839 CanonicalResult, CTAK_Specified); 5840 if (E.isInvalid()) 5841 return true; 5842 5843 SugaredConverted.push_back(SugaredResult); 5844 CanonicalConverted.push_back(CanonicalResult); 5845 break; 5846 } 5847 5848 // We have a template argument that actually does refer to a class 5849 // template, alias template, or template template parameter, and 5850 // therefore cannot be a non-type template argument. 5851 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5852 << Arg.getSourceRange(); 5853 NoteTemplateParameterLocation(*Param); 5854 5855 return true; 5856 5857 case TemplateArgument::Type: { 5858 // We have a non-type template parameter but the template 5859 // argument is a type. 5860 5861 // C++ [temp.arg]p2: 5862 // In a template-argument, an ambiguity between a type-id and 5863 // an expression is resolved to a type-id, regardless of the 5864 // form of the corresponding template-parameter. 5865 // 5866 // We warn specifically about this case, since it can be rather 5867 // confusing for users. 5868 QualType T = Arg.getArgument().getAsType(); 5869 SourceRange SR = Arg.getSourceRange(); 5870 if (T->isFunctionType()) 5871 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5872 else 5873 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5874 NoteTemplateParameterLocation(*Param); 5875 return true; 5876 } 5877 5878 case TemplateArgument::Pack: 5879 llvm_unreachable("Caller must expand template argument packs"); 5880 } 5881 5882 return false; 5883 } 5884 5885 5886 // Check template template parameters. 5887 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5888 5889 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5890 if (TempParm->isExpandedParameterPack()) 5891 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5892 5893 // Substitute into the template parameter list of the template 5894 // template parameter, since previously-supplied template arguments 5895 // may appear within the template template parameter. 5896 // 5897 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5898 { 5899 // Set up a template instantiation context. 5900 LocalInstantiationScope Scope(*this); 5901 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm, 5902 SugaredConverted, 5903 SourceRange(TemplateLoc, RAngleLoc)); 5904 if (Inst.isInvalid()) 5905 return true; 5906 5907 Params = 5908 SubstTemplateParams(Params, CurContext, 5909 MultiLevelTemplateArgumentList( 5910 Template, SugaredConverted, /*Final=*/true), 5911 /*EvaluateConstraints=*/false); 5912 if (!Params) 5913 return true; 5914 } 5915 5916 // C++1z [temp.local]p1: (DR1004) 5917 // When [the injected-class-name] is used [...] as a template-argument for 5918 // a template template-parameter [...] it refers to the class template 5919 // itself. 5920 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5921 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5922 Context, Arg.getTypeSourceInfo()->getTypeLoc()); 5923 if (!ConvertedArg.getArgument().isNull()) 5924 Arg = ConvertedArg; 5925 } 5926 5927 switch (Arg.getArgument().getKind()) { 5928 case TemplateArgument::Null: 5929 llvm_unreachable("Should never see a NULL template argument here"); 5930 5931 case TemplateArgument::Template: 5932 case TemplateArgument::TemplateExpansion: 5933 if (CheckTemplateTemplateArgument(TempParm, Params, Arg)) 5934 return true; 5935 5936 SugaredConverted.push_back(Arg.getArgument()); 5937 CanonicalConverted.push_back( 5938 Context.getCanonicalTemplateArgument(Arg.getArgument())); 5939 break; 5940 5941 case TemplateArgument::Expression: 5942 case TemplateArgument::Type: 5943 // We have a template template parameter but the template 5944 // argument does not refer to a template. 5945 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5946 << getLangOpts().CPlusPlus11; 5947 return true; 5948 5949 case TemplateArgument::Declaration: 5950 case TemplateArgument::Integral: 5951 case TemplateArgument::StructuralValue: 5952 case TemplateArgument::NullPtr: 5953 llvm_unreachable("non-type argument with template template parameter"); 5954 5955 case TemplateArgument::Pack: 5956 llvm_unreachable("Caller must expand template argument packs"); 5957 } 5958 5959 return false; 5960 } 5961 5962 /// Diagnose a missing template argument. 5963 template<typename TemplateParmDecl> 5964 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5965 TemplateDecl *TD, 5966 const TemplateParmDecl *D, 5967 TemplateArgumentListInfo &Args) { 5968 // Dig out the most recent declaration of the template parameter; there may be 5969 // declarations of the template that are more recent than TD. 5970 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5971 ->getTemplateParameters() 5972 ->getParam(D->getIndex())); 5973 5974 // If there's a default argument that's not reachable, diagnose that we're 5975 // missing a module import. 5976 llvm::SmallVector<Module*, 8> Modules; 5977 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) { 5978 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5979 D->getDefaultArgumentLoc(), Modules, 5980 Sema::MissingImportKind::DefaultArgument, 5981 /*Recover*/true); 5982 return true; 5983 } 5984 5985 // FIXME: If there's a more recent default argument that *is* visible, 5986 // diagnose that it was declared too late. 5987 5988 TemplateParameterList *Params = TD->getTemplateParameters(); 5989 5990 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5991 << /*not enough args*/0 5992 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5993 << TD; 5994 S.NoteTemplateLocation(*TD, Params->getSourceRange()); 5995 return true; 5996 } 5997 5998 /// Check that the given template argument list is well-formed 5999 /// for specializing the given template. 6000 bool Sema::CheckTemplateArgumentList( 6001 TemplateDecl *Template, SourceLocation TemplateLoc, 6002 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, 6003 SmallVectorImpl<TemplateArgument> &SugaredConverted, 6004 SmallVectorImpl<TemplateArgument> &CanonicalConverted, 6005 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { 6006 6007 if (ConstraintsNotSatisfied) 6008 *ConstraintsNotSatisfied = false; 6009 6010 // Make a copy of the template arguments for processing. Only make the 6011 // changes at the end when successful in matching the arguments to the 6012 // template. 6013 TemplateArgumentListInfo NewArgs = TemplateArgs; 6014 6015 TemplateParameterList *Params = GetTemplateParameterList(Template); 6016 6017 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 6018 6019 // C++ [temp.arg]p1: 6020 // [...] The type and form of each template-argument specified in 6021 // a template-id shall match the type and form specified for the 6022 // corresponding parameter declared by the template in its 6023 // template-parameter-list. 6024 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 6025 SmallVector<TemplateArgument, 2> SugaredArgumentPack; 6026 SmallVector<TemplateArgument, 2> CanonicalArgumentPack; 6027 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 6028 LocalInstantiationScope InstScope(*this, true); 6029 for (TemplateParameterList::iterator Param = Params->begin(), 6030 ParamEnd = Params->end(); 6031 Param != ParamEnd; /* increment in loop */) { 6032 // If we have an expanded parameter pack, make sure we don't have too 6033 // many arguments. 6034 if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 6035 if (*Expansions == SugaredArgumentPack.size()) { 6036 // We're done with this parameter pack. Pack up its arguments and add 6037 // them to the list. 6038 SugaredConverted.push_back( 6039 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 6040 SugaredArgumentPack.clear(); 6041 6042 CanonicalConverted.push_back( 6043 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 6044 CanonicalArgumentPack.clear(); 6045 6046 // This argument is assigned to the next parameter. 6047 ++Param; 6048 continue; 6049 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 6050 // Not enough arguments for this parameter pack. 6051 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 6052 << /*not enough args*/0 6053 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 6054 << Template; 6055 NoteTemplateLocation(*Template, Params->getSourceRange()); 6056 return true; 6057 } 6058 } 6059 6060 if (ArgIdx < NumArgs) { 6061 // Check the template argument we were given. 6062 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc, 6063 RAngleLoc, SugaredArgumentPack.size(), 6064 SugaredConverted, CanonicalConverted, 6065 CTAK_Specified)) 6066 return true; 6067 6068 CanonicalConverted.back().setIsDefaulted( 6069 clang::isSubstitutedDefaultArgument( 6070 Context, NewArgs[ArgIdx].getArgument(), *Param, 6071 CanonicalConverted, Params->getDepth())); 6072 6073 bool PackExpansionIntoNonPack = 6074 NewArgs[ArgIdx].getArgument().isPackExpansion() && 6075 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 6076 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) || 6077 isa<ConceptDecl>(Template))) { 6078 // Core issue 1430: we have a pack expansion as an argument to an 6079 // alias template, and it's not part of a parameter pack. This 6080 // can't be canonicalized, so reject it now. 6081 // As for concepts - we cannot normalize constraints where this 6082 // situation exists. 6083 Diag(NewArgs[ArgIdx].getLocation(), 6084 diag::err_template_expansion_into_fixed_list) 6085 << (isa<ConceptDecl>(Template) ? 1 : 0) 6086 << NewArgs[ArgIdx].getSourceRange(); 6087 NoteTemplateParameterLocation(**Param); 6088 return true; 6089 } 6090 6091 // We're now done with this argument. 6092 ++ArgIdx; 6093 6094 if ((*Param)->isTemplateParameterPack()) { 6095 // The template parameter was a template parameter pack, so take the 6096 // deduced argument and place it on the argument pack. Note that we 6097 // stay on the same template parameter so that we can deduce more 6098 // arguments. 6099 SugaredArgumentPack.push_back(SugaredConverted.pop_back_val()); 6100 CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val()); 6101 } else { 6102 // Move to the next template parameter. 6103 ++Param; 6104 } 6105 6106 // If we just saw a pack expansion into a non-pack, then directly convert 6107 // the remaining arguments, because we don't know what parameters they'll 6108 // match up with. 6109 if (PackExpansionIntoNonPack) { 6110 if (!SugaredArgumentPack.empty()) { 6111 // If we were part way through filling in an expanded parameter pack, 6112 // fall back to just producing individual arguments. 6113 SugaredConverted.insert(SugaredConverted.end(), 6114 SugaredArgumentPack.begin(), 6115 SugaredArgumentPack.end()); 6116 SugaredArgumentPack.clear(); 6117 6118 CanonicalConverted.insert(CanonicalConverted.end(), 6119 CanonicalArgumentPack.begin(), 6120 CanonicalArgumentPack.end()); 6121 CanonicalArgumentPack.clear(); 6122 } 6123 6124 while (ArgIdx < NumArgs) { 6125 const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument(); 6126 SugaredConverted.push_back(Arg); 6127 CanonicalConverted.push_back( 6128 Context.getCanonicalTemplateArgument(Arg)); 6129 ++ArgIdx; 6130 } 6131 6132 return false; 6133 } 6134 6135 continue; 6136 } 6137 6138 // If we're checking a partial template argument list, we're done. 6139 if (PartialTemplateArgs) { 6140 if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) { 6141 SugaredConverted.push_back( 6142 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 6143 CanonicalConverted.push_back( 6144 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 6145 } 6146 return false; 6147 } 6148 6149 // If we have a template parameter pack with no more corresponding 6150 // arguments, just break out now and we'll fill in the argument pack below. 6151 if ((*Param)->isTemplateParameterPack()) { 6152 assert(!getExpandedPackSize(*Param) && 6153 "Should have dealt with this already"); 6154 6155 // A non-expanded parameter pack before the end of the parameter list 6156 // only occurs for an ill-formed template parameter list, unless we've 6157 // got a partial argument list for a function template, so just bail out. 6158 if (Param + 1 != ParamEnd) { 6159 assert( 6160 (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) && 6161 "Concept templates must have parameter packs at the end."); 6162 return true; 6163 } 6164 6165 SugaredConverted.push_back( 6166 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 6167 SugaredArgumentPack.clear(); 6168 6169 CanonicalConverted.push_back( 6170 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 6171 CanonicalArgumentPack.clear(); 6172 6173 ++Param; 6174 continue; 6175 } 6176 6177 // Check whether we have a default argument. 6178 TemplateArgumentLoc Arg; 6179 6180 // Retrieve the default template argument from the template 6181 // parameter. For each kind of template parameter, we substitute the 6182 // template arguments provided thus far and any "outer" template arguments 6183 // (when the template parameter was part of a nested template) into 6184 // the default argument. 6185 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 6186 if (!hasReachableDefaultArgument(TTP)) 6187 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 6188 NewArgs); 6189 6190 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument( 6191 *this, Template, TemplateLoc, RAngleLoc, TTP, SugaredConverted, 6192 CanonicalConverted); 6193 if (!ArgType) 6194 return true; 6195 6196 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 6197 ArgType); 6198 } else if (NonTypeTemplateParmDecl *NTTP 6199 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 6200 if (!hasReachableDefaultArgument(NTTP)) 6201 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 6202 NewArgs); 6203 6204 ExprResult E = SubstDefaultTemplateArgument( 6205 *this, Template, TemplateLoc, RAngleLoc, NTTP, SugaredConverted, 6206 CanonicalConverted); 6207 if (E.isInvalid()) 6208 return true; 6209 6210 Expr *Ex = E.getAs<Expr>(); 6211 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 6212 } else { 6213 TemplateTemplateParmDecl *TempParm 6214 = cast<TemplateTemplateParmDecl>(*Param); 6215 6216 if (!hasReachableDefaultArgument(TempParm)) 6217 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 6218 NewArgs); 6219 6220 NestedNameSpecifierLoc QualifierLoc; 6221 TemplateName Name = SubstDefaultTemplateArgument( 6222 *this, Template, TemplateLoc, RAngleLoc, TempParm, SugaredConverted, 6223 CanonicalConverted, QualifierLoc); 6224 if (Name.isNull()) 6225 return true; 6226 6227 Arg = TemplateArgumentLoc( 6228 Context, TemplateArgument(Name), QualifierLoc, 6229 TempParm->getDefaultArgument().getTemplateNameLoc()); 6230 } 6231 6232 // Introduce an instantiation record that describes where we are using 6233 // the default template argument. We're not actually instantiating a 6234 // template here, we just create this object to put a note into the 6235 // context stack. 6236 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, 6237 SugaredConverted, 6238 SourceRange(TemplateLoc, RAngleLoc)); 6239 if (Inst.isInvalid()) 6240 return true; 6241 6242 // Check the default template argument. 6243 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0, 6244 SugaredConverted, CanonicalConverted, 6245 CTAK_Specified)) 6246 return true; 6247 6248 CanonicalConverted.back().setIsDefaulted(true); 6249 6250 // Core issue 150 (assumed resolution): if this is a template template 6251 // parameter, keep track of the default template arguments from the 6252 // template definition. 6253 if (isTemplateTemplateParameter) 6254 NewArgs.addArgument(Arg); 6255 6256 // Move to the next template parameter and argument. 6257 ++Param; 6258 ++ArgIdx; 6259 } 6260 6261 // If we're performing a partial argument substitution, allow any trailing 6262 // pack expansions; they might be empty. This can happen even if 6263 // PartialTemplateArgs is false (the list of arguments is complete but 6264 // still dependent). 6265 if (ArgIdx < NumArgs && CurrentInstantiationScope && 6266 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 6267 while (ArgIdx < NumArgs && 6268 NewArgs[ArgIdx].getArgument().isPackExpansion()) { 6269 const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument(); 6270 SugaredConverted.push_back(Arg); 6271 CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg)); 6272 } 6273 } 6274 6275 // If we have any leftover arguments, then there were too many arguments. 6276 // Complain and fail. 6277 if (ArgIdx < NumArgs) { 6278 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 6279 << /*too many args*/1 6280 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 6281 << Template 6282 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 6283 NoteTemplateLocation(*Template, Params->getSourceRange()); 6284 return true; 6285 } 6286 6287 // No problems found with the new argument list, propagate changes back 6288 // to caller. 6289 if (UpdateArgsWithConversions) 6290 TemplateArgs = std::move(NewArgs); 6291 6292 if (!PartialTemplateArgs) { 6293 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, 6294 CanonicalConverted); 6295 // Setup the context/ThisScope for the case where we are needing to 6296 // re-instantiate constraints outside of normal instantiation. 6297 DeclContext *NewContext = Template->getDeclContext(); 6298 6299 // If this template is in a template, make sure we extract the templated 6300 // decl. 6301 if (auto *TD = dyn_cast<TemplateDecl>(NewContext)) 6302 NewContext = Decl::castToDeclContext(TD->getTemplatedDecl()); 6303 auto *RD = dyn_cast<CXXRecordDecl>(NewContext); 6304 6305 Qualifiers ThisQuals; 6306 if (const auto *Method = 6307 dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl())) 6308 ThisQuals = Method->getMethodQualifiers(); 6309 6310 ContextRAII Context(*this, NewContext); 6311 CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr); 6312 6313 MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs( 6314 Template, NewContext, /*Final=*/false, &StackTemplateArgs, 6315 /*RelativeToPrimary=*/true, 6316 /*Pattern=*/nullptr, 6317 /*ForConceptInstantiation=*/true); 6318 if (EnsureTemplateArgumentListConstraints( 6319 Template, MLTAL, 6320 SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) { 6321 if (ConstraintsNotSatisfied) 6322 *ConstraintsNotSatisfied = true; 6323 return true; 6324 } 6325 } 6326 6327 return false; 6328 } 6329 6330 namespace { 6331 class UnnamedLocalNoLinkageFinder 6332 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 6333 { 6334 Sema &S; 6335 SourceRange SR; 6336 6337 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 6338 6339 public: 6340 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 6341 6342 bool Visit(QualType T) { 6343 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 6344 } 6345 6346 #define TYPE(Class, Parent) \ 6347 bool Visit##Class##Type(const Class##Type *); 6348 #define ABSTRACT_TYPE(Class, Parent) \ 6349 bool Visit##Class##Type(const Class##Type *) { return false; } 6350 #define NON_CANONICAL_TYPE(Class, Parent) \ 6351 bool Visit##Class##Type(const Class##Type *) { return false; } 6352 #include "clang/AST/TypeNodes.inc" 6353 6354 bool VisitTagDecl(const TagDecl *Tag); 6355 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 6356 }; 6357 } // end anonymous namespace 6358 6359 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 6360 return false; 6361 } 6362 6363 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 6364 return Visit(T->getElementType()); 6365 } 6366 6367 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 6368 return Visit(T->getPointeeType()); 6369 } 6370 6371 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 6372 const BlockPointerType* T) { 6373 return Visit(T->getPointeeType()); 6374 } 6375 6376 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 6377 const LValueReferenceType* T) { 6378 return Visit(T->getPointeeType()); 6379 } 6380 6381 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 6382 const RValueReferenceType* T) { 6383 return Visit(T->getPointeeType()); 6384 } 6385 6386 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 6387 const MemberPointerType* T) { 6388 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 6389 } 6390 6391 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 6392 const ConstantArrayType* T) { 6393 return Visit(T->getElementType()); 6394 } 6395 6396 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 6397 const IncompleteArrayType* T) { 6398 return Visit(T->getElementType()); 6399 } 6400 6401 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 6402 const VariableArrayType* T) { 6403 return Visit(T->getElementType()); 6404 } 6405 6406 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 6407 const DependentSizedArrayType* T) { 6408 return Visit(T->getElementType()); 6409 } 6410 6411 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 6412 const DependentSizedExtVectorType* T) { 6413 return Visit(T->getElementType()); 6414 } 6415 6416 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( 6417 const DependentSizedMatrixType *T) { 6418 return Visit(T->getElementType()); 6419 } 6420 6421 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 6422 const DependentAddressSpaceType *T) { 6423 return Visit(T->getPointeeType()); 6424 } 6425 6426 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 6427 return Visit(T->getElementType()); 6428 } 6429 6430 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 6431 const DependentVectorType *T) { 6432 return Visit(T->getElementType()); 6433 } 6434 6435 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 6436 return Visit(T->getElementType()); 6437 } 6438 6439 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( 6440 const ConstantMatrixType *T) { 6441 return Visit(T->getElementType()); 6442 } 6443 6444 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 6445 const FunctionProtoType* T) { 6446 for (const auto &A : T->param_types()) { 6447 if (Visit(A)) 6448 return true; 6449 } 6450 6451 return Visit(T->getReturnType()); 6452 } 6453 6454 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 6455 const FunctionNoProtoType* T) { 6456 return Visit(T->getReturnType()); 6457 } 6458 6459 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 6460 const UnresolvedUsingType*) { 6461 return false; 6462 } 6463 6464 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 6465 return false; 6466 } 6467 6468 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 6469 return Visit(T->getUnmodifiedType()); 6470 } 6471 6472 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 6473 return false; 6474 } 6475 6476 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 6477 const UnaryTransformType*) { 6478 return false; 6479 } 6480 6481 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 6482 return Visit(T->getDeducedType()); 6483 } 6484 6485 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 6486 const DeducedTemplateSpecializationType *T) { 6487 return Visit(T->getDeducedType()); 6488 } 6489 6490 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 6491 return VisitTagDecl(T->getDecl()); 6492 } 6493 6494 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 6495 return VisitTagDecl(T->getDecl()); 6496 } 6497 6498 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 6499 const TemplateTypeParmType*) { 6500 return false; 6501 } 6502 6503 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 6504 const SubstTemplateTypeParmPackType *) { 6505 return false; 6506 } 6507 6508 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 6509 const TemplateSpecializationType*) { 6510 return false; 6511 } 6512 6513 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 6514 const InjectedClassNameType* T) { 6515 return VisitTagDecl(T->getDecl()); 6516 } 6517 6518 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 6519 const DependentNameType* T) { 6520 return VisitNestedNameSpecifier(T->getQualifier()); 6521 } 6522 6523 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 6524 const DependentTemplateSpecializationType* T) { 6525 if (auto *Q = T->getQualifier()) 6526 return VisitNestedNameSpecifier(Q); 6527 return false; 6528 } 6529 6530 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 6531 const PackExpansionType* T) { 6532 return Visit(T->getPattern()); 6533 } 6534 6535 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 6536 return false; 6537 } 6538 6539 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 6540 const ObjCInterfaceType *) { 6541 return false; 6542 } 6543 6544 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 6545 const ObjCObjectPointerType *) { 6546 return false; 6547 } 6548 6549 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 6550 return Visit(T->getValueType()); 6551 } 6552 6553 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 6554 return false; 6555 } 6556 6557 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { 6558 return false; 6559 } 6560 6561 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( 6562 const DependentBitIntType *T) { 6563 return false; 6564 } 6565 6566 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 6567 if (Tag->getDeclContext()->isFunctionOrMethod()) { 6568 S.Diag(SR.getBegin(), 6569 S.getLangOpts().CPlusPlus11 ? 6570 diag::warn_cxx98_compat_template_arg_local_type : 6571 diag::ext_template_arg_local_type) 6572 << S.Context.getTypeDeclType(Tag) << SR; 6573 return true; 6574 } 6575 6576 if (!Tag->hasNameForLinkage()) { 6577 S.Diag(SR.getBegin(), 6578 S.getLangOpts().CPlusPlus11 ? 6579 diag::warn_cxx98_compat_template_arg_unnamed_type : 6580 diag::ext_template_arg_unnamed_type) << SR; 6581 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 6582 return true; 6583 } 6584 6585 return false; 6586 } 6587 6588 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 6589 NestedNameSpecifier *NNS) { 6590 assert(NNS); 6591 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 6592 return true; 6593 6594 switch (NNS->getKind()) { 6595 case NestedNameSpecifier::Identifier: 6596 case NestedNameSpecifier::Namespace: 6597 case NestedNameSpecifier::NamespaceAlias: 6598 case NestedNameSpecifier::Global: 6599 case NestedNameSpecifier::Super: 6600 return false; 6601 6602 case NestedNameSpecifier::TypeSpec: 6603 case NestedNameSpecifier::TypeSpecWithTemplate: 6604 return Visit(QualType(NNS->getAsType(), 0)); 6605 } 6606 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6607 } 6608 6609 /// Check a template argument against its corresponding 6610 /// template type parameter. 6611 /// 6612 /// This routine implements the semantics of C++ [temp.arg.type]. It 6613 /// returns true if an error occurred, and false otherwise. 6614 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { 6615 assert(ArgInfo && "invalid TypeSourceInfo"); 6616 QualType Arg = ArgInfo->getType(); 6617 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 6618 QualType CanonArg = Context.getCanonicalType(Arg); 6619 6620 if (CanonArg->isVariablyModifiedType()) { 6621 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 6622 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 6623 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 6624 } 6625 6626 // C++03 [temp.arg.type]p2: 6627 // A local type, a type with no linkage, an unnamed type or a type 6628 // compounded from any of these types shall not be used as a 6629 // template-argument for a template type-parameter. 6630 // 6631 // C++11 allows these, and even in C++03 we allow them as an extension with 6632 // a warning. 6633 if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) { 6634 UnnamedLocalNoLinkageFinder Finder(*this, SR); 6635 (void)Finder.Visit(CanonArg); 6636 } 6637 6638 return false; 6639 } 6640 6641 enum NullPointerValueKind { 6642 NPV_NotNullPointer, 6643 NPV_NullPointer, 6644 NPV_Error 6645 }; 6646 6647 /// Determine whether the given template argument is a null pointer 6648 /// value of the appropriate type. 6649 static NullPointerValueKind 6650 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 6651 QualType ParamType, Expr *Arg, 6652 Decl *Entity = nullptr) { 6653 if (Arg->isValueDependent() || Arg->isTypeDependent()) 6654 return NPV_NotNullPointer; 6655 6656 // dllimport'd entities aren't constant but are available inside of template 6657 // arguments. 6658 if (Entity && Entity->hasAttr<DLLImportAttr>()) 6659 return NPV_NotNullPointer; 6660 6661 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6662 llvm_unreachable( 6663 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6664 6665 if (!S.getLangOpts().CPlusPlus11) 6666 return NPV_NotNullPointer; 6667 6668 // Determine whether we have a constant expression. 6669 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6670 if (ArgRV.isInvalid()) 6671 return NPV_Error; 6672 Arg = ArgRV.get(); 6673 6674 Expr::EvalResult EvalResult; 6675 SmallVector<PartialDiagnosticAt, 8> Notes; 6676 EvalResult.Diag = &Notes; 6677 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6678 EvalResult.HasSideEffects) { 6679 SourceLocation DiagLoc = Arg->getExprLoc(); 6680 6681 // If our only note is the usual "invalid subexpression" note, just point 6682 // the caret at its location rather than producing an essentially 6683 // redundant note. 6684 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6685 diag::note_invalid_subexpr_in_const_expr) { 6686 DiagLoc = Notes[0].first; 6687 Notes.clear(); 6688 } 6689 6690 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6691 << Arg->getType() << Arg->getSourceRange(); 6692 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6693 S.Diag(Notes[I].first, Notes[I].second); 6694 6695 S.NoteTemplateParameterLocation(*Param); 6696 return NPV_Error; 6697 } 6698 6699 // C++11 [temp.arg.nontype]p1: 6700 // - an address constant expression of type std::nullptr_t 6701 if (Arg->getType()->isNullPtrType()) 6702 return NPV_NullPointer; 6703 6704 // - a constant expression that evaluates to a null pointer value (4.10); or 6705 // - a constant expression that evaluates to a null member pointer value 6706 // (4.11); or 6707 if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) || 6708 (EvalResult.Val.isMemberPointer() && 6709 !EvalResult.Val.getMemberPointerDecl())) { 6710 // If our expression has an appropriate type, we've succeeded. 6711 bool ObjCLifetimeConversion; 6712 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6713 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6714 ObjCLifetimeConversion)) 6715 return NPV_NullPointer; 6716 6717 // The types didn't match, but we know we got a null pointer; complain, 6718 // then recover as if the types were correct. 6719 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6720 << Arg->getType() << ParamType << Arg->getSourceRange(); 6721 S.NoteTemplateParameterLocation(*Param); 6722 return NPV_NullPointer; 6723 } 6724 6725 if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) { 6726 // We found a pointer that isn't null, but doesn't refer to an object. 6727 // We could just return NPV_NotNullPointer, but we can print a better 6728 // message with the information we have here. 6729 S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid) 6730 << EvalResult.Val.getAsString(S.Context, ParamType); 6731 S.NoteTemplateParameterLocation(*Param); 6732 return NPV_Error; 6733 } 6734 6735 // If we don't have a null pointer value, but we do have a NULL pointer 6736 // constant, suggest a cast to the appropriate type. 6737 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6738 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6739 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6740 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6741 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6742 ")"); 6743 S.NoteTemplateParameterLocation(*Param); 6744 return NPV_NullPointer; 6745 } 6746 6747 // FIXME: If we ever want to support general, address-constant expressions 6748 // as non-type template arguments, we should return the ExprResult here to 6749 // be interpreted by the caller. 6750 return NPV_NotNullPointer; 6751 } 6752 6753 /// Checks whether the given template argument is compatible with its 6754 /// template parameter. 6755 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6756 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6757 Expr *Arg, QualType ArgType) { 6758 bool ObjCLifetimeConversion; 6759 if (ParamType->isPointerType() && 6760 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6761 S.IsQualificationConversion(ArgType, ParamType, false, 6762 ObjCLifetimeConversion)) { 6763 // For pointer-to-object types, qualification conversions are 6764 // permitted. 6765 } else { 6766 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6767 if (!ParamRef->getPointeeType()->isFunctionType()) { 6768 // C++ [temp.arg.nontype]p5b3: 6769 // For a non-type template-parameter of type reference to 6770 // object, no conversions apply. The type referred to by the 6771 // reference may be more cv-qualified than the (otherwise 6772 // identical) type of the template- argument. The 6773 // template-parameter is bound directly to the 6774 // template-argument, which shall be an lvalue. 6775 6776 // FIXME: Other qualifiers? 6777 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6778 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6779 6780 if ((ParamQuals | ArgQuals) != ParamQuals) { 6781 S.Diag(Arg->getBeginLoc(), 6782 diag::err_template_arg_ref_bind_ignores_quals) 6783 << ParamType << Arg->getType() << Arg->getSourceRange(); 6784 S.NoteTemplateParameterLocation(*Param); 6785 return true; 6786 } 6787 } 6788 } 6789 6790 // At this point, the template argument refers to an object or 6791 // function with external linkage. We now need to check whether the 6792 // argument and parameter types are compatible. 6793 if (!S.Context.hasSameUnqualifiedType(ArgType, 6794 ParamType.getNonReferenceType())) { 6795 // We can't perform this conversion or binding. 6796 if (ParamType->isReferenceType()) 6797 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6798 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6799 else 6800 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6801 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6802 S.NoteTemplateParameterLocation(*Param); 6803 return true; 6804 } 6805 } 6806 6807 return false; 6808 } 6809 6810 /// Checks whether the given template argument is the address 6811 /// of an object or function according to C++ [temp.arg.nontype]p1. 6812 static bool CheckTemplateArgumentAddressOfObjectOrFunction( 6813 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6814 TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) { 6815 bool Invalid = false; 6816 Expr *Arg = ArgIn; 6817 QualType ArgType = Arg->getType(); 6818 6819 bool AddressTaken = false; 6820 SourceLocation AddrOpLoc; 6821 if (S.getLangOpts().MicrosoftExt) { 6822 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6823 // dereference and address-of operators. 6824 Arg = Arg->IgnoreParenCasts(); 6825 6826 bool ExtWarnMSTemplateArg = false; 6827 UnaryOperatorKind FirstOpKind; 6828 SourceLocation FirstOpLoc; 6829 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6830 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6831 if (UnOpKind == UO_Deref) 6832 ExtWarnMSTemplateArg = true; 6833 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6834 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6835 if (!AddrOpLoc.isValid()) { 6836 FirstOpKind = UnOpKind; 6837 FirstOpLoc = UnOp->getOperatorLoc(); 6838 } 6839 } else 6840 break; 6841 } 6842 if (FirstOpLoc.isValid()) { 6843 if (ExtWarnMSTemplateArg) 6844 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6845 << ArgIn->getSourceRange(); 6846 6847 if (FirstOpKind == UO_AddrOf) 6848 AddressTaken = true; 6849 else if (Arg->getType()->isPointerType()) { 6850 // We cannot let pointers get dereferenced here, that is obviously not a 6851 // constant expression. 6852 assert(FirstOpKind == UO_Deref); 6853 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6854 << Arg->getSourceRange(); 6855 } 6856 } 6857 } else { 6858 // See through any implicit casts we added to fix the type. 6859 Arg = Arg->IgnoreImpCasts(); 6860 6861 // C++ [temp.arg.nontype]p1: 6862 // 6863 // A template-argument for a non-type, non-template 6864 // template-parameter shall be one of: [...] 6865 // 6866 // -- the address of an object or function with external 6867 // linkage, including function templates and function 6868 // template-ids but excluding non-static class members, 6869 // expressed as & id-expression where the & is optional if 6870 // the name refers to a function or array, or if the 6871 // corresponding template-parameter is a reference; or 6872 6873 // In C++98/03 mode, give an extension warning on any extra parentheses. 6874 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6875 bool ExtraParens = false; 6876 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6877 if (!Invalid && !ExtraParens) { 6878 S.Diag(Arg->getBeginLoc(), 6879 S.getLangOpts().CPlusPlus11 6880 ? diag::warn_cxx98_compat_template_arg_extra_parens 6881 : diag::ext_template_arg_extra_parens) 6882 << Arg->getSourceRange(); 6883 ExtraParens = true; 6884 } 6885 6886 Arg = Parens->getSubExpr(); 6887 } 6888 6889 while (SubstNonTypeTemplateParmExpr *subst = 6890 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6891 Arg = subst->getReplacement()->IgnoreImpCasts(); 6892 6893 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6894 if (UnOp->getOpcode() == UO_AddrOf) { 6895 Arg = UnOp->getSubExpr(); 6896 AddressTaken = true; 6897 AddrOpLoc = UnOp->getOperatorLoc(); 6898 } 6899 } 6900 6901 while (SubstNonTypeTemplateParmExpr *subst = 6902 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6903 Arg = subst->getReplacement()->IgnoreImpCasts(); 6904 } 6905 6906 ValueDecl *Entity = nullptr; 6907 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) 6908 Entity = DRE->getDecl(); 6909 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) 6910 Entity = CUE->getGuidDecl(); 6911 6912 // If our parameter has pointer type, check for a null template value. 6913 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6914 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6915 Entity)) { 6916 case NPV_NullPointer: 6917 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6918 SugaredConverted = TemplateArgument(ParamType, 6919 /*isNullPtr=*/true); 6920 CanonicalConverted = 6921 TemplateArgument(S.Context.getCanonicalType(ParamType), 6922 /*isNullPtr=*/true); 6923 return false; 6924 6925 case NPV_Error: 6926 return true; 6927 6928 case NPV_NotNullPointer: 6929 break; 6930 } 6931 } 6932 6933 // Stop checking the precise nature of the argument if it is value dependent, 6934 // it should be checked when instantiated. 6935 if (Arg->isValueDependent()) { 6936 SugaredConverted = TemplateArgument(ArgIn); 6937 CanonicalConverted = 6938 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6939 return false; 6940 } 6941 6942 if (!Entity) { 6943 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6944 << Arg->getSourceRange(); 6945 S.NoteTemplateParameterLocation(*Param); 6946 return true; 6947 } 6948 6949 // Cannot refer to non-static data members 6950 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6951 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6952 << Entity << Arg->getSourceRange(); 6953 S.NoteTemplateParameterLocation(*Param); 6954 return true; 6955 } 6956 6957 // Cannot refer to non-static member functions 6958 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6959 if (!Method->isStatic()) { 6960 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6961 << Method << Arg->getSourceRange(); 6962 S.NoteTemplateParameterLocation(*Param); 6963 return true; 6964 } 6965 } 6966 6967 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6968 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6969 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); 6970 6971 // A non-type template argument must refer to an object or function. 6972 if (!Func && !Var && !Guid) { 6973 // We found something, but we don't know specifically what it is. 6974 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6975 << Arg->getSourceRange(); 6976 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); 6977 return true; 6978 } 6979 6980 // Address / reference template args must have external linkage in C++98. 6981 if (Entity->getFormalLinkage() == Linkage::Internal) { 6982 S.Diag(Arg->getBeginLoc(), 6983 S.getLangOpts().CPlusPlus11 6984 ? diag::warn_cxx98_compat_template_arg_object_internal 6985 : diag::ext_template_arg_object_internal) 6986 << !Func << Entity << Arg->getSourceRange(); 6987 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6988 << !Func; 6989 } else if (!Entity->hasLinkage()) { 6990 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6991 << !Func << Entity << Arg->getSourceRange(); 6992 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6993 << !Func; 6994 return true; 6995 } 6996 6997 if (Var) { 6998 // A value of reference type is not an object. 6999 if (Var->getType()->isReferenceType()) { 7000 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 7001 << Var->getType() << Arg->getSourceRange(); 7002 S.NoteTemplateParameterLocation(*Param); 7003 return true; 7004 } 7005 7006 // A template argument must have static storage duration. 7007 if (Var->getTLSKind()) { 7008 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 7009 << Arg->getSourceRange(); 7010 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 7011 return true; 7012 } 7013 } 7014 7015 if (AddressTaken && ParamType->isReferenceType()) { 7016 // If we originally had an address-of operator, but the 7017 // parameter has reference type, complain and (if things look 7018 // like they will work) drop the address-of operator. 7019 if (!S.Context.hasSameUnqualifiedType(Entity->getType(), 7020 ParamType.getNonReferenceType())) { 7021 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 7022 << ParamType; 7023 S.NoteTemplateParameterLocation(*Param); 7024 return true; 7025 } 7026 7027 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 7028 << ParamType 7029 << FixItHint::CreateRemoval(AddrOpLoc); 7030 S.NoteTemplateParameterLocation(*Param); 7031 7032 ArgType = Entity->getType(); 7033 } 7034 7035 // If the template parameter has pointer type, either we must have taken the 7036 // address or the argument must decay to a pointer. 7037 if (!AddressTaken && ParamType->isPointerType()) { 7038 if (Func) { 7039 // Function-to-pointer decay. 7040 ArgType = S.Context.getPointerType(Func->getType()); 7041 } else if (Entity->getType()->isArrayType()) { 7042 // Array-to-pointer decay. 7043 ArgType = S.Context.getArrayDecayedType(Entity->getType()); 7044 } else { 7045 // If the template parameter has pointer type but the address of 7046 // this object was not taken, complain and (possibly) recover by 7047 // taking the address of the entity. 7048 ArgType = S.Context.getPointerType(Entity->getType()); 7049 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 7050 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 7051 << ParamType; 7052 S.NoteTemplateParameterLocation(*Param); 7053 return true; 7054 } 7055 7056 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 7057 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 7058 7059 S.NoteTemplateParameterLocation(*Param); 7060 } 7061 } 7062 7063 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 7064 Arg, ArgType)) 7065 return true; 7066 7067 // Create the template argument. 7068 SugaredConverted = TemplateArgument(Entity, ParamType); 7069 CanonicalConverted = 7070 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 7071 S.Context.getCanonicalType(ParamType)); 7072 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 7073 return false; 7074 } 7075 7076 /// Checks whether the given template argument is a pointer to 7077 /// member constant according to C++ [temp.arg.nontype]p1. 7078 static bool 7079 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param, 7080 QualType ParamType, Expr *&ResultArg, 7081 TemplateArgument &SugaredConverted, 7082 TemplateArgument &CanonicalConverted) { 7083 bool Invalid = false; 7084 7085 Expr *Arg = ResultArg; 7086 bool ObjCLifetimeConversion; 7087 7088 // C++ [temp.arg.nontype]p1: 7089 // 7090 // A template-argument for a non-type, non-template 7091 // template-parameter shall be one of: [...] 7092 // 7093 // -- a pointer to member expressed as described in 5.3.1. 7094 DeclRefExpr *DRE = nullptr; 7095 7096 // In C++98/03 mode, give an extension warning on any extra parentheses. 7097 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 7098 bool ExtraParens = false; 7099 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 7100 if (!Invalid && !ExtraParens) { 7101 S.Diag(Arg->getBeginLoc(), 7102 S.getLangOpts().CPlusPlus11 7103 ? diag::warn_cxx98_compat_template_arg_extra_parens 7104 : diag::ext_template_arg_extra_parens) 7105 << Arg->getSourceRange(); 7106 ExtraParens = true; 7107 } 7108 7109 Arg = Parens->getSubExpr(); 7110 } 7111 7112 while (SubstNonTypeTemplateParmExpr *subst = 7113 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 7114 Arg = subst->getReplacement()->IgnoreImpCasts(); 7115 7116 // A pointer-to-member constant written &Class::member. 7117 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 7118 if (UnOp->getOpcode() == UO_AddrOf) { 7119 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 7120 if (DRE && !DRE->getQualifier()) 7121 DRE = nullptr; 7122 } 7123 } 7124 // A constant of pointer-to-member type. 7125 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 7126 ValueDecl *VD = DRE->getDecl(); 7127 if (VD->getType()->isMemberPointerType()) { 7128 if (isa<NonTypeTemplateParmDecl>(VD)) { 7129 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7130 SugaredConverted = TemplateArgument(Arg); 7131 CanonicalConverted = 7132 S.Context.getCanonicalTemplateArgument(SugaredConverted); 7133 } else { 7134 SugaredConverted = TemplateArgument(VD, ParamType); 7135 CanonicalConverted = 7136 TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), 7137 S.Context.getCanonicalType(ParamType)); 7138 } 7139 return Invalid; 7140 } 7141 } 7142 7143 DRE = nullptr; 7144 } 7145 7146 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 7147 7148 // Check for a null pointer value. 7149 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 7150 Entity)) { 7151 case NPV_Error: 7152 return true; 7153 case NPV_NullPointer: 7154 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7155 SugaredConverted = TemplateArgument(ParamType, 7156 /*isNullPtr*/ true); 7157 CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType), 7158 /*isNullPtr*/ true); 7159 return false; 7160 case NPV_NotNullPointer: 7161 break; 7162 } 7163 7164 if (S.IsQualificationConversion(ResultArg->getType(), 7165 ParamType.getNonReferenceType(), false, 7166 ObjCLifetimeConversion)) { 7167 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 7168 ResultArg->getValueKind()) 7169 .get(); 7170 } else if (!S.Context.hasSameUnqualifiedType( 7171 ResultArg->getType(), ParamType.getNonReferenceType())) { 7172 // We can't perform this conversion. 7173 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 7174 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 7175 S.NoteTemplateParameterLocation(*Param); 7176 return true; 7177 } 7178 7179 if (!DRE) 7180 return S.Diag(Arg->getBeginLoc(), 7181 diag::err_template_arg_not_pointer_to_member_form) 7182 << Arg->getSourceRange(); 7183 7184 if (isa<FieldDecl>(DRE->getDecl()) || 7185 isa<IndirectFieldDecl>(DRE->getDecl()) || 7186 isa<CXXMethodDecl>(DRE->getDecl())) { 7187 assert((isa<FieldDecl>(DRE->getDecl()) || 7188 isa<IndirectFieldDecl>(DRE->getDecl()) || 7189 cast<CXXMethodDecl>(DRE->getDecl()) 7190 ->isImplicitObjectMemberFunction()) && 7191 "Only non-static member pointers can make it here"); 7192 7193 // Okay: this is the address of a non-static member, and therefore 7194 // a member pointer constant. 7195 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7196 SugaredConverted = TemplateArgument(Arg); 7197 CanonicalConverted = 7198 S.Context.getCanonicalTemplateArgument(SugaredConverted); 7199 } else { 7200 ValueDecl *D = DRE->getDecl(); 7201 SugaredConverted = TemplateArgument(D, ParamType); 7202 CanonicalConverted = 7203 TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()), 7204 S.Context.getCanonicalType(ParamType)); 7205 } 7206 return Invalid; 7207 } 7208 7209 // We found something else, but we don't know specifically what it is. 7210 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 7211 << Arg->getSourceRange(); 7212 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 7213 return true; 7214 } 7215 7216 /// Check a template argument against its corresponding 7217 /// non-type template parameter. 7218 /// 7219 /// This routine implements the semantics of C++ [temp.arg.nontype]. 7220 /// If an error occurred, it returns ExprError(); otherwise, it 7221 /// returns the converted template argument. \p ParamType is the 7222 /// type of the non-type template parameter after it has been instantiated. 7223 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 7224 QualType ParamType, Expr *Arg, 7225 TemplateArgument &SugaredConverted, 7226 TemplateArgument &CanonicalConverted, 7227 CheckTemplateArgumentKind CTAK) { 7228 SourceLocation StartLoc = Arg->getBeginLoc(); 7229 7230 // If the parameter type somehow involves auto, deduce the type now. 7231 DeducedType *DeducedT = ParamType->getContainedDeducedType(); 7232 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { 7233 // During template argument deduction, we allow 'decltype(auto)' to 7234 // match an arbitrary dependent argument. 7235 // FIXME: The language rules don't say what happens in this case. 7236 // FIXME: We get an opaque dependent type out of decltype(auto) if the 7237 // expression is merely instantiation-dependent; is this enough? 7238 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { 7239 auto *AT = dyn_cast<AutoType>(DeducedT); 7240 if (AT && AT->isDecltypeAuto()) { 7241 SugaredConverted = TemplateArgument(Arg); 7242 CanonicalConverted = TemplateArgument( 7243 Context.getCanonicalTemplateArgument(SugaredConverted)); 7244 return Arg; 7245 } 7246 } 7247 7248 // When checking a deduced template argument, deduce from its type even if 7249 // the type is dependent, in order to check the types of non-type template 7250 // arguments line up properly in partial ordering. 7251 Expr *DeductionArg = Arg; 7252 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 7253 DeductionArg = PE->getPattern(); 7254 TypeSourceInfo *TSI = 7255 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()); 7256 if (isa<DeducedTemplateSpecializationType>(DeducedT)) { 7257 InitializedEntity Entity = 7258 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 7259 InitializationKind Kind = InitializationKind::CreateForInit( 7260 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg); 7261 Expr *Inits[1] = {DeductionArg}; 7262 ParamType = 7263 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits); 7264 if (ParamType.isNull()) 7265 return ExprError(); 7266 } else { 7267 TemplateDeductionInfo Info(DeductionArg->getExprLoc(), 7268 Param->getDepth() + 1); 7269 ParamType = QualType(); 7270 TemplateDeductionResult Result = 7271 DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info, 7272 /*DependentDeduction=*/true, 7273 // We do not check constraints right now because the 7274 // immediately-declared constraint of the auto type is 7275 // also an associated constraint, and will be checked 7276 // along with the other associated constraints after 7277 // checking the template argument list. 7278 /*IgnoreConstraints=*/true); 7279 if (Result == TDK_AlreadyDiagnosed) { 7280 if (ParamType.isNull()) 7281 return ExprError(); 7282 } else if (Result != TDK_Success) { 7283 Diag(Arg->getExprLoc(), 7284 diag::err_non_type_template_parm_type_deduction_failure) 7285 << Param->getDeclName() << Param->getType() << Arg->getType() 7286 << Arg->getSourceRange(); 7287 NoteTemplateParameterLocation(*Param); 7288 return ExprError(); 7289 } 7290 } 7291 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 7292 // an error. The error message normally references the parameter 7293 // declaration, but here we'll pass the argument location because that's 7294 // where the parameter type is deduced. 7295 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 7296 if (ParamType.isNull()) { 7297 NoteTemplateParameterLocation(*Param); 7298 return ExprError(); 7299 } 7300 } 7301 7302 // We should have already dropped all cv-qualifiers by now. 7303 assert(!ParamType.hasQualifiers() && 7304 "non-type template parameter type cannot be qualified"); 7305 7306 // FIXME: When Param is a reference, should we check that Arg is an lvalue? 7307 if (CTAK == CTAK_Deduced && 7308 (ParamType->isReferenceType() 7309 ? !Context.hasSameType(ParamType.getNonReferenceType(), 7310 Arg->getType()) 7311 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) { 7312 // FIXME: If either type is dependent, we skip the check. This isn't 7313 // correct, since during deduction we're supposed to have replaced each 7314 // template parameter with some unique (non-dependent) placeholder. 7315 // FIXME: If the argument type contains 'auto', we carry on and fail the 7316 // type check in order to force specific types to be more specialized than 7317 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 7318 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. 7319 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 7320 !Arg->getType()->getContainedDeducedType()) { 7321 SugaredConverted = TemplateArgument(Arg); 7322 CanonicalConverted = TemplateArgument( 7323 Context.getCanonicalTemplateArgument(SugaredConverted)); 7324 return Arg; 7325 } 7326 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 7327 // we should actually be checking the type of the template argument in P, 7328 // not the type of the template argument deduced from A, against the 7329 // template parameter type. 7330 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 7331 << Arg->getType() 7332 << ParamType.getUnqualifiedType(); 7333 NoteTemplateParameterLocation(*Param); 7334 return ExprError(); 7335 } 7336 7337 // If either the parameter has a dependent type or the argument is 7338 // type-dependent, there's nothing we can check now. 7339 if (ParamType->isDependentType() || Arg->isTypeDependent()) { 7340 // Force the argument to the type of the parameter to maintain invariants. 7341 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 7342 if (PE) 7343 Arg = PE->getPattern(); 7344 ExprResult E = ImpCastExprToType( 7345 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 7346 ParamType->isLValueReferenceType() ? VK_LValue 7347 : ParamType->isRValueReferenceType() ? VK_XValue 7348 : VK_PRValue); 7349 if (E.isInvalid()) 7350 return ExprError(); 7351 if (PE) { 7352 // Recreate a pack expansion if we unwrapped one. 7353 E = new (Context) 7354 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 7355 PE->getNumExpansions()); 7356 } 7357 SugaredConverted = TemplateArgument(E.get()); 7358 CanonicalConverted = TemplateArgument( 7359 Context.getCanonicalTemplateArgument(SugaredConverted)); 7360 return E; 7361 } 7362 7363 QualType CanonParamType = Context.getCanonicalType(ParamType); 7364 // Avoid making a copy when initializing a template parameter of class type 7365 // from a template parameter object of the same type. This is going beyond 7366 // the standard, but is required for soundness: in 7367 // template<A a> struct X { X *p; X<a> *q; }; 7368 // ... we need p and q to have the same type. 7369 // 7370 // Similarly, don't inject a call to a copy constructor when initializing 7371 // from a template parameter of the same type. 7372 Expr *InnerArg = Arg->IgnoreParenImpCasts(); 7373 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) && 7374 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) { 7375 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl(); 7376 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 7377 7378 SugaredConverted = TemplateArgument(TPO, ParamType); 7379 CanonicalConverted = 7380 TemplateArgument(TPO->getCanonicalDecl(), CanonParamType); 7381 return Arg; 7382 } 7383 if (isa<NonTypeTemplateParmDecl>(ND)) { 7384 SugaredConverted = TemplateArgument(Arg); 7385 CanonicalConverted = 7386 Context.getCanonicalTemplateArgument(SugaredConverted); 7387 return Arg; 7388 } 7389 } 7390 7391 // The initialization of the parameter from the argument is 7392 // a constant-evaluated context. 7393 EnterExpressionEvaluationContext ConstantEvaluated( 7394 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 7395 7396 bool IsConvertedConstantExpression = true; 7397 if (isa<InitListExpr>(Arg) || ParamType->isRecordType()) { 7398 InitializationKind Kind = InitializationKind::CreateForInit( 7399 Arg->getBeginLoc(), /*DirectInit=*/false, Arg); 7400 Expr *Inits[1] = {Arg}; 7401 InitializedEntity Entity = 7402 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 7403 InitializationSequence InitSeq(*this, Entity, Kind, Inits); 7404 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Inits); 7405 if (Result.isInvalid() || !Result.get()) 7406 return ExprError(); 7407 Result = ActOnConstantExpression(Result.get()); 7408 if (Result.isInvalid() || !Result.get()) 7409 return ExprError(); 7410 Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(), 7411 /*DiscardedValue=*/false, 7412 /*IsConstexpr=*/true, /*IsTemplateArgument=*/true) 7413 .get(); 7414 IsConvertedConstantExpression = false; 7415 } 7416 7417 if (getLangOpts().CPlusPlus17) { 7418 // C++17 [temp.arg.nontype]p1: 7419 // A template-argument for a non-type template parameter shall be 7420 // a converted constant expression of the type of the template-parameter. 7421 APValue Value; 7422 ExprResult ArgResult; 7423 if (IsConvertedConstantExpression) { 7424 ArgResult = BuildConvertedConstantExpression(Arg, ParamType, 7425 CCEK_TemplateArg, Param); 7426 if (ArgResult.isInvalid()) 7427 return ExprError(); 7428 } else { 7429 ArgResult = Arg; 7430 } 7431 7432 // For a value-dependent argument, CheckConvertedConstantExpression is 7433 // permitted (and expected) to be unable to determine a value. 7434 if (ArgResult.get()->isValueDependent()) { 7435 SugaredConverted = TemplateArgument(ArgResult.get()); 7436 CanonicalConverted = 7437 Context.getCanonicalTemplateArgument(SugaredConverted); 7438 return ArgResult; 7439 } 7440 7441 APValue PreNarrowingValue; 7442 ArgResult = EvaluateConvertedConstantExpression( 7443 ArgResult.get(), ParamType, Value, CCEK_TemplateArg, /*RequireInt=*/ 7444 false, PreNarrowingValue); 7445 if (ArgResult.isInvalid()) 7446 return ExprError(); 7447 7448 if (Value.isLValue()) { 7449 APValue::LValueBase Base = Value.getLValueBase(); 7450 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 7451 // For a non-type template-parameter of pointer or reference type, 7452 // the value of the constant expression shall not refer to 7453 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 7454 ParamType->isNullPtrType()); 7455 // -- a temporary object 7456 // -- a string literal 7457 // -- the result of a typeid expression, or 7458 // -- a predefined __func__ variable 7459 if (Base && 7460 (!VD || 7461 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) { 7462 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 7463 << Arg->getSourceRange(); 7464 return ExprError(); 7465 } 7466 7467 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD && 7468 VD->getType()->isArrayType() && 7469 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 7470 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 7471 SugaredConverted = TemplateArgument(VD, ParamType); 7472 CanonicalConverted = TemplateArgument( 7473 cast<ValueDecl>(VD->getCanonicalDecl()), CanonParamType); 7474 return ArgResult.get(); 7475 } 7476 7477 // -- a subobject [until C++20] 7478 if (!getLangOpts().CPlusPlus20) { 7479 if (!Value.hasLValuePath() || Value.getLValuePath().size() || 7480 Value.isLValueOnePastTheEnd()) { 7481 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 7482 << Value.getAsString(Context, ParamType); 7483 return ExprError(); 7484 } 7485 assert((VD || !ParamType->isReferenceType()) && 7486 "null reference should not be a constant expression"); 7487 assert((!VD || !ParamType->isNullPtrType()) && 7488 "non-null value of type nullptr_t?"); 7489 } 7490 } 7491 7492 if (Value.isAddrLabelDiff()) 7493 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 7494 7495 SugaredConverted = TemplateArgument(Context, ParamType, Value); 7496 CanonicalConverted = TemplateArgument(Context, CanonParamType, Value); 7497 return ArgResult.get(); 7498 } 7499 7500 // C++ [temp.arg.nontype]p5: 7501 // The following conversions are performed on each expression used 7502 // as a non-type template-argument. If a non-type 7503 // template-argument cannot be converted to the type of the 7504 // corresponding template-parameter then the program is 7505 // ill-formed. 7506 if (ParamType->isIntegralOrEnumerationType()) { 7507 // C++11: 7508 // -- for a non-type template-parameter of integral or 7509 // enumeration type, conversions permitted in a converted 7510 // constant expression are applied. 7511 // 7512 // C++98: 7513 // -- for a non-type template-parameter of integral or 7514 // enumeration type, integral promotions (4.5) and integral 7515 // conversions (4.7) are applied. 7516 7517 if (getLangOpts().CPlusPlus11) { 7518 // C++ [temp.arg.nontype]p1: 7519 // A template-argument for a non-type, non-template template-parameter 7520 // shall be one of: 7521 // 7522 // -- for a non-type template-parameter of integral or enumeration 7523 // type, a converted constant expression of the type of the 7524 // template-parameter; or 7525 llvm::APSInt Value; 7526 ExprResult ArgResult = 7527 CheckConvertedConstantExpression(Arg, ParamType, Value, 7528 CCEK_TemplateArg); 7529 if (ArgResult.isInvalid()) 7530 return ExprError(); 7531 7532 // We can't check arbitrary value-dependent arguments. 7533 if (ArgResult.get()->isValueDependent()) { 7534 SugaredConverted = TemplateArgument(ArgResult.get()); 7535 CanonicalConverted = 7536 Context.getCanonicalTemplateArgument(SugaredConverted); 7537 return ArgResult; 7538 } 7539 7540 // Widen the argument value to sizeof(parameter type). This is almost 7541 // always a no-op, except when the parameter type is bool. In 7542 // that case, this may extend the argument from 1 bit to 8 bits. 7543 QualType IntegerType = ParamType; 7544 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7545 IntegerType = Enum->getDecl()->getIntegerType(); 7546 Value = Value.extOrTrunc(IntegerType->isBitIntType() 7547 ? Context.getIntWidth(IntegerType) 7548 : Context.getTypeSize(IntegerType)); 7549 7550 SugaredConverted = TemplateArgument(Context, Value, ParamType); 7551 CanonicalConverted = 7552 TemplateArgument(Context, Value, Context.getCanonicalType(ParamType)); 7553 return ArgResult; 7554 } 7555 7556 ExprResult ArgResult = DefaultLvalueConversion(Arg); 7557 if (ArgResult.isInvalid()) 7558 return ExprError(); 7559 Arg = ArgResult.get(); 7560 7561 QualType ArgType = Arg->getType(); 7562 7563 // C++ [temp.arg.nontype]p1: 7564 // A template-argument for a non-type, non-template 7565 // template-parameter shall be one of: 7566 // 7567 // -- an integral constant-expression of integral or enumeration 7568 // type; or 7569 // -- the name of a non-type template-parameter; or 7570 llvm::APSInt Value; 7571 if (!ArgType->isIntegralOrEnumerationType()) { 7572 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 7573 << ArgType << Arg->getSourceRange(); 7574 NoteTemplateParameterLocation(*Param); 7575 return ExprError(); 7576 } else if (!Arg->isValueDependent()) { 7577 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 7578 QualType T; 7579 7580 public: 7581 TmplArgICEDiagnoser(QualType T) : T(T) { } 7582 7583 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 7584 SourceLocation Loc) override { 7585 return S.Diag(Loc, diag::err_template_arg_not_ice) << T; 7586 } 7587 } Diagnoser(ArgType); 7588 7589 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); 7590 if (!Arg) 7591 return ExprError(); 7592 } 7593 7594 // From here on out, all we care about is the unqualified form 7595 // of the argument type. 7596 ArgType = ArgType.getUnqualifiedType(); 7597 7598 // Try to convert the argument to the parameter's type. 7599 if (Context.hasSameType(ParamType, ArgType)) { 7600 // Okay: no conversion necessary 7601 } else if (ParamType->isBooleanType()) { 7602 // This is an integral-to-boolean conversion. 7603 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 7604 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 7605 !ParamType->isEnumeralType()) { 7606 // This is an integral promotion or conversion. 7607 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 7608 } else { 7609 // We can't perform this conversion. 7610 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 7611 << Arg->getType() << ParamType << Arg->getSourceRange(); 7612 NoteTemplateParameterLocation(*Param); 7613 return ExprError(); 7614 } 7615 7616 // Add the value of this argument to the list of converted 7617 // arguments. We use the bitwidth and signedness of the template 7618 // parameter. 7619 if (Arg->isValueDependent()) { 7620 // The argument is value-dependent. Create a new 7621 // TemplateArgument with the converted expression. 7622 SugaredConverted = TemplateArgument(Arg); 7623 CanonicalConverted = 7624 Context.getCanonicalTemplateArgument(SugaredConverted); 7625 return Arg; 7626 } 7627 7628 QualType IntegerType = ParamType; 7629 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) { 7630 IntegerType = Enum->getDecl()->getIntegerType(); 7631 } 7632 7633 if (ParamType->isBooleanType()) { 7634 // Value must be zero or one. 7635 Value = Value != 0; 7636 unsigned AllowedBits = Context.getTypeSize(IntegerType); 7637 if (Value.getBitWidth() != AllowedBits) 7638 Value = Value.extOrTrunc(AllowedBits); 7639 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7640 } else { 7641 llvm::APSInt OldValue = Value; 7642 7643 // Coerce the template argument's value to the value it will have 7644 // based on the template parameter's type. 7645 unsigned AllowedBits = IntegerType->isBitIntType() 7646 ? Context.getIntWidth(IntegerType) 7647 : Context.getTypeSize(IntegerType); 7648 if (Value.getBitWidth() != AllowedBits) 7649 Value = Value.extOrTrunc(AllowedBits); 7650 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7651 7652 // Complain if an unsigned parameter received a negative value. 7653 if (IntegerType->isUnsignedIntegerOrEnumerationType() && 7654 (OldValue.isSigned() && OldValue.isNegative())) { 7655 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 7656 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7657 << Arg->getSourceRange(); 7658 NoteTemplateParameterLocation(*Param); 7659 } 7660 7661 // Complain if we overflowed the template parameter's type. 7662 unsigned RequiredBits; 7663 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 7664 RequiredBits = OldValue.getActiveBits(); 7665 else if (OldValue.isUnsigned()) 7666 RequiredBits = OldValue.getActiveBits() + 1; 7667 else 7668 RequiredBits = OldValue.getSignificantBits(); 7669 if (RequiredBits > AllowedBits) { 7670 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 7671 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7672 << Arg->getSourceRange(); 7673 NoteTemplateParameterLocation(*Param); 7674 } 7675 } 7676 7677 QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType; 7678 SugaredConverted = TemplateArgument(Context, Value, T); 7679 CanonicalConverted = 7680 TemplateArgument(Context, Value, Context.getCanonicalType(T)); 7681 return Arg; 7682 } 7683 7684 QualType ArgType = Arg->getType(); 7685 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 7686 7687 // Handle pointer-to-function, reference-to-function, and 7688 // pointer-to-member-function all in (roughly) the same way. 7689 if (// -- For a non-type template-parameter of type pointer to 7690 // function, only the function-to-pointer conversion (4.3) is 7691 // applied. If the template-argument represents a set of 7692 // overloaded functions (or a pointer to such), the matching 7693 // function is selected from the set (13.4). 7694 (ParamType->isPointerType() && 7695 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 7696 // -- For a non-type template-parameter of type reference to 7697 // function, no conversions apply. If the template-argument 7698 // represents a set of overloaded functions, the matching 7699 // function is selected from the set (13.4). 7700 (ParamType->isReferenceType() && 7701 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 7702 // -- For a non-type template-parameter of type pointer to 7703 // member function, no conversions apply. If the 7704 // template-argument represents a set of overloaded member 7705 // functions, the matching member function is selected from 7706 // the set (13.4). 7707 (ParamType->isMemberPointerType() && 7708 ParamType->castAs<MemberPointerType>()->getPointeeType() 7709 ->isFunctionType())) { 7710 7711 if (Arg->getType() == Context.OverloadTy) { 7712 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 7713 true, 7714 FoundResult)) { 7715 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7716 return ExprError(); 7717 7718 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7719 if (Res.isInvalid()) 7720 return ExprError(); 7721 Arg = Res.get(); 7722 ArgType = Arg->getType(); 7723 } else 7724 return ExprError(); 7725 } 7726 7727 if (!ParamType->isMemberPointerType()) { 7728 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7729 *this, Param, ParamType, Arg, SugaredConverted, 7730 CanonicalConverted)) 7731 return ExprError(); 7732 return Arg; 7733 } 7734 7735 if (CheckTemplateArgumentPointerToMember( 7736 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7737 return ExprError(); 7738 return Arg; 7739 } 7740 7741 if (ParamType->isPointerType()) { 7742 // -- for a non-type template-parameter of type pointer to 7743 // object, qualification conversions (4.4) and the 7744 // array-to-pointer conversion (4.2) are applied. 7745 // C++0x also allows a value of std::nullptr_t. 7746 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7747 "Only object pointers allowed here"); 7748 7749 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7750 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7751 return ExprError(); 7752 return Arg; 7753 } 7754 7755 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7756 // -- For a non-type template-parameter of type reference to 7757 // object, no conversions apply. The type referred to by the 7758 // reference may be more cv-qualified than the (otherwise 7759 // identical) type of the template-argument. The 7760 // template-parameter is bound directly to the 7761 // template-argument, which must be an lvalue. 7762 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7763 "Only object references allowed here"); 7764 7765 if (Arg->getType() == Context.OverloadTy) { 7766 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7767 ParamRefType->getPointeeType(), 7768 true, 7769 FoundResult)) { 7770 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7771 return ExprError(); 7772 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7773 if (Res.isInvalid()) 7774 return ExprError(); 7775 Arg = Res.get(); 7776 ArgType = Arg->getType(); 7777 } else 7778 return ExprError(); 7779 } 7780 7781 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7782 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7783 return ExprError(); 7784 return Arg; 7785 } 7786 7787 // Deal with parameters of type std::nullptr_t. 7788 if (ParamType->isNullPtrType()) { 7789 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7790 SugaredConverted = TemplateArgument(Arg); 7791 CanonicalConverted = 7792 Context.getCanonicalTemplateArgument(SugaredConverted); 7793 return Arg; 7794 } 7795 7796 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7797 case NPV_NotNullPointer: 7798 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7799 << Arg->getType() << ParamType; 7800 NoteTemplateParameterLocation(*Param); 7801 return ExprError(); 7802 7803 case NPV_Error: 7804 return ExprError(); 7805 7806 case NPV_NullPointer: 7807 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7808 SugaredConverted = TemplateArgument(ParamType, 7809 /*isNullPtr=*/true); 7810 CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType), 7811 /*isNullPtr=*/true); 7812 return Arg; 7813 } 7814 } 7815 7816 // -- For a non-type template-parameter of type pointer to data 7817 // member, qualification conversions (4.4) are applied. 7818 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7819 7820 if (CheckTemplateArgumentPointerToMember( 7821 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7822 return ExprError(); 7823 return Arg; 7824 } 7825 7826 static void DiagnoseTemplateParameterListArityMismatch( 7827 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7828 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7829 7830 /// Check a template argument against its corresponding 7831 /// template template parameter. 7832 /// 7833 /// This routine implements the semantics of C++ [temp.arg.template]. 7834 /// It returns true if an error occurred, and false otherwise. 7835 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, 7836 TemplateParameterList *Params, 7837 TemplateArgumentLoc &Arg) { 7838 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7839 TemplateDecl *Template = Name.getAsTemplateDecl(); 7840 if (!Template) { 7841 // Any dependent template name is fine. 7842 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7843 return false; 7844 } 7845 7846 if (Template->isInvalidDecl()) 7847 return true; 7848 7849 // C++0x [temp.arg.template]p1: 7850 // A template-argument for a template template-parameter shall be 7851 // the name of a class template or an alias template, expressed as an 7852 // id-expression. When the template-argument names a class template, only 7853 // primary class templates are considered when matching the 7854 // template template argument with the corresponding parameter; 7855 // partial specializations are not considered even if their 7856 // parameter lists match that of the template template parameter. 7857 // 7858 // Note that we also allow template template parameters here, which 7859 // will happen when we are dealing with, e.g., class template 7860 // partial specializations. 7861 if (!isa<ClassTemplateDecl>(Template) && 7862 !isa<TemplateTemplateParmDecl>(Template) && 7863 !isa<TypeAliasTemplateDecl>(Template) && 7864 !isa<BuiltinTemplateDecl>(Template)) { 7865 assert(isa<FunctionTemplateDecl>(Template) && 7866 "Only function templates are possible here"); 7867 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7868 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7869 << Template; 7870 } 7871 7872 // C++1z [temp.arg.template]p3: (DR 150) 7873 // A template-argument matches a template template-parameter P when P 7874 // is at least as specialized as the template-argument A. 7875 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a 7876 // defect report resolution from C++17 and shouldn't be introduced by 7877 // concepts. 7878 if (getLangOpts().RelaxedTemplateTemplateArgs) { 7879 // Quick check for the common case: 7880 // If P contains a parameter pack, then A [...] matches P if each of A's 7881 // template parameters matches the corresponding template parameter in 7882 // the template-parameter-list of P. 7883 if (TemplateParameterListsAreEqual( 7884 Template->getTemplateParameters(), Params, false, 7885 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) && 7886 // If the argument has no associated constraints, then the parameter is 7887 // definitely at least as specialized as the argument. 7888 // Otherwise - we need a more thorough check. 7889 !Template->hasAssociatedConstraints()) 7890 return false; 7891 7892 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, 7893 Arg.getLocation())) { 7894 // P2113 7895 // C++20[temp.func.order]p2 7896 // [...] If both deductions succeed, the partial ordering selects the 7897 // more constrained template (if one exists) as determined below. 7898 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7899 Params->getAssociatedConstraints(ParamsAC); 7900 // C++2a[temp.arg.template]p3 7901 // [...] In this comparison, if P is unconstrained, the constraints on A 7902 // are not considered. 7903 if (ParamsAC.empty()) 7904 return false; 7905 7906 Template->getAssociatedConstraints(TemplateAC); 7907 7908 bool IsParamAtLeastAsConstrained; 7909 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7910 IsParamAtLeastAsConstrained)) 7911 return true; 7912 if (!IsParamAtLeastAsConstrained) { 7913 Diag(Arg.getLocation(), 7914 diag::err_template_template_parameter_not_at_least_as_constrained) 7915 << Template << Param << Arg.getSourceRange(); 7916 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7917 Diag(Template->getLocation(), diag::note_entity_declared_at) 7918 << Template; 7919 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7920 TemplateAC); 7921 return true; 7922 } 7923 return false; 7924 } 7925 // FIXME: Produce better diagnostics for deduction failures. 7926 } 7927 7928 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 7929 Params, 7930 true, 7931 TPL_TemplateTemplateArgumentMatch, 7932 Arg.getLocation()); 7933 } 7934 7935 static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl, 7936 unsigned HereDiagID, 7937 unsigned ExternalDiagID) { 7938 if (Decl.getLocation().isValid()) 7939 return S.Diag(Decl.getLocation(), HereDiagID); 7940 7941 SmallString<128> Str; 7942 llvm::raw_svector_ostream Out(Str); 7943 PrintingPolicy PP = S.getPrintingPolicy(); 7944 PP.TerseOutput = 1; 7945 Decl.print(Out, PP); 7946 return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str(); 7947 } 7948 7949 void Sema::NoteTemplateLocation(const NamedDecl &Decl, 7950 std::optional<SourceRange> ParamRange) { 7951 SemaDiagnosticBuilder DB = 7952 noteLocation(*this, Decl, diag::note_template_decl_here, 7953 diag::note_template_decl_external); 7954 if (ParamRange && ParamRange->isValid()) { 7955 assert(Decl.getLocation().isValid() && 7956 "Parameter range has location when Decl does not"); 7957 DB << *ParamRange; 7958 } 7959 } 7960 7961 void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) { 7962 noteLocation(*this, Decl, diag::note_template_param_here, 7963 diag::note_template_param_external); 7964 } 7965 7966 /// Given a non-type template argument that refers to a 7967 /// declaration and the type of its corresponding non-type template 7968 /// parameter, produce an expression that properly refers to that 7969 /// declaration. 7970 ExprResult 7971 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 7972 QualType ParamType, 7973 SourceLocation Loc) { 7974 // C++ [temp.param]p8: 7975 // 7976 // A non-type template-parameter of type "array of T" or 7977 // "function returning T" is adjusted to be of type "pointer to 7978 // T" or "pointer to function returning T", respectively. 7979 if (ParamType->isArrayType()) 7980 ParamType = Context.getArrayDecayedType(ParamType); 7981 else if (ParamType->isFunctionType()) 7982 ParamType = Context.getPointerType(ParamType); 7983 7984 // For a NULL non-type template argument, return nullptr casted to the 7985 // parameter's type. 7986 if (Arg.getKind() == TemplateArgument::NullPtr) { 7987 return ImpCastExprToType( 7988 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7989 ParamType, 7990 ParamType->getAs<MemberPointerType>() 7991 ? CK_NullToMemberPointer 7992 : CK_NullToPointer); 7993 } 7994 assert(Arg.getKind() == TemplateArgument::Declaration && 7995 "Only declaration template arguments permitted here"); 7996 7997 ValueDecl *VD = Arg.getAsDecl(); 7998 7999 CXXScopeSpec SS; 8000 if (ParamType->isMemberPointerType()) { 8001 // If this is a pointer to member, we need to use a qualified name to 8002 // form a suitable pointer-to-member constant. 8003 assert(VD->getDeclContext()->isRecord() && 8004 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 8005 isa<IndirectFieldDecl>(VD))); 8006 QualType ClassType 8007 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 8008 NestedNameSpecifier *Qualifier 8009 = NestedNameSpecifier::Create(Context, nullptr, false, 8010 ClassType.getTypePtr()); 8011 SS.MakeTrivial(Context, Qualifier, Loc); 8012 } 8013 8014 ExprResult RefExpr = BuildDeclarationNameExpr( 8015 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8016 if (RefExpr.isInvalid()) 8017 return ExprError(); 8018 8019 // For a pointer, the argument declaration is the pointee. Take its address. 8020 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 8021 if (ParamType->isPointerType() && !ElemT.isNull() && 8022 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 8023 // Decay an array argument if we want a pointer to its first element. 8024 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 8025 if (RefExpr.isInvalid()) 8026 return ExprError(); 8027 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 8028 // For any other pointer, take the address (or form a pointer-to-member). 8029 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 8030 if (RefExpr.isInvalid()) 8031 return ExprError(); 8032 } else if (ParamType->isRecordType()) { 8033 assert(isa<TemplateParamObjectDecl>(VD) && 8034 "arg for class template param not a template parameter object"); 8035 // No conversions apply in this case. 8036 return RefExpr; 8037 } else { 8038 assert(ParamType->isReferenceType() && 8039 "unexpected type for decl template argument"); 8040 } 8041 8042 // At this point we should have the right value category. 8043 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 8044 "value kind mismatch for non-type template argument"); 8045 8046 // The type of the template parameter can differ from the type of the 8047 // argument in various ways; convert it now if necessary. 8048 QualType DestExprType = ParamType.getNonLValueExprType(Context); 8049 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 8050 CastKind CK; 8051 QualType Ignored; 8052 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 8053 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 8054 CK = CK_NoOp; 8055 } else if (ParamType->isVoidPointerType() && 8056 RefExpr.get()->getType()->isPointerType()) { 8057 CK = CK_BitCast; 8058 } else { 8059 // FIXME: Pointers to members can need conversion derived-to-base or 8060 // base-to-derived conversions. We currently don't retain enough 8061 // information to convert properly (we need to track a cast path or 8062 // subobject number in the template argument). 8063 llvm_unreachable( 8064 "unexpected conversion required for non-type template argument"); 8065 } 8066 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 8067 RefExpr.get()->getValueKind()); 8068 } 8069 8070 return RefExpr; 8071 } 8072 8073 /// Construct a new expression that refers to the given 8074 /// integral template argument with the given source-location 8075 /// information. 8076 /// 8077 /// This routine takes care of the mapping from an integral template 8078 /// argument (which may have any integral type) to the appropriate 8079 /// literal value. 8080 static Expr *BuildExpressionFromIntegralTemplateArgumentValue( 8081 Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) { 8082 assert(OrigT->isIntegralOrEnumerationType()); 8083 8084 // If this is an enum type that we're instantiating, we need to use an integer 8085 // type the same size as the enumerator. We don't want to build an 8086 // IntegerLiteral with enum type. The integer type of an enum type can be of 8087 // any integral type with C++11 enum classes, make sure we create the right 8088 // type of literal for it. 8089 QualType T = OrigT; 8090 if (const EnumType *ET = OrigT->getAs<EnumType>()) 8091 T = ET->getDecl()->getIntegerType(); 8092 8093 Expr *E; 8094 if (T->isAnyCharacterType()) { 8095 CharacterLiteralKind Kind; 8096 if (T->isWideCharType()) 8097 Kind = CharacterLiteralKind::Wide; 8098 else if (T->isChar8Type() && S.getLangOpts().Char8) 8099 Kind = CharacterLiteralKind::UTF8; 8100 else if (T->isChar16Type()) 8101 Kind = CharacterLiteralKind::UTF16; 8102 else if (T->isChar32Type()) 8103 Kind = CharacterLiteralKind::UTF32; 8104 else 8105 Kind = CharacterLiteralKind::Ascii; 8106 8107 E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc); 8108 } else if (T->isBooleanType()) { 8109 E = CXXBoolLiteralExpr::Create(S.Context, Int.getBoolValue(), T, Loc); 8110 } else { 8111 E = IntegerLiteral::Create(S.Context, Int, T, Loc); 8112 } 8113 8114 if (OrigT->isEnumeralType()) { 8115 // FIXME: This is a hack. We need a better way to handle substituted 8116 // non-type template parameters. 8117 E = CStyleCastExpr::Create(S.Context, OrigT, VK_PRValue, CK_IntegralCast, E, 8118 nullptr, S.CurFPFeatureOverrides(), 8119 S.Context.getTrivialTypeSourceInfo(OrigT, Loc), 8120 Loc, Loc); 8121 } 8122 8123 return E; 8124 } 8125 8126 static Expr *BuildExpressionFromNonTypeTemplateArgumentValue( 8127 Sema &S, QualType T, const APValue &Val, SourceLocation Loc) { 8128 auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * { 8129 auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc); 8130 ILE->setType(T); 8131 return ILE; 8132 }; 8133 8134 switch (Val.getKind()) { 8135 case APValue::AddrLabelDiff: 8136 // This cannot occur in a template argument at all. 8137 case APValue::Array: 8138 case APValue::Struct: 8139 case APValue::Union: 8140 // These can only occur within a template parameter object, which is 8141 // represented as a TemplateArgument::Declaration. 8142 llvm_unreachable("unexpected template argument value"); 8143 8144 case APValue::Int: 8145 return BuildExpressionFromIntegralTemplateArgumentValue(S, T, Val.getInt(), 8146 Loc); 8147 8148 case APValue::Float: 8149 return FloatingLiteral::Create(S.Context, Val.getFloat(), /*IsExact=*/true, 8150 T, Loc); 8151 8152 case APValue::FixedPoint: 8153 return FixedPointLiteral::CreateFromRawInt( 8154 S.Context, Val.getFixedPoint().getValue(), T, Loc, 8155 Val.getFixedPoint().getScale()); 8156 8157 case APValue::ComplexInt: { 8158 QualType ElemT = T->castAs<ComplexType>()->getElementType(); 8159 return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue( 8160 S, ElemT, Val.getComplexIntReal(), Loc), 8161 BuildExpressionFromIntegralTemplateArgumentValue( 8162 S, ElemT, Val.getComplexIntImag(), Loc)}); 8163 } 8164 8165 case APValue::ComplexFloat: { 8166 QualType ElemT = T->castAs<ComplexType>()->getElementType(); 8167 return MakeInitList( 8168 {FloatingLiteral::Create(S.Context, Val.getComplexFloatReal(), true, 8169 ElemT, Loc), 8170 FloatingLiteral::Create(S.Context, Val.getComplexFloatImag(), true, 8171 ElemT, Loc)}); 8172 } 8173 8174 case APValue::Vector: { 8175 QualType ElemT = T->castAs<VectorType>()->getElementType(); 8176 llvm::SmallVector<Expr *, 8> Elts; 8177 for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I) 8178 Elts.push_back(BuildExpressionFromNonTypeTemplateArgumentValue( 8179 S, ElemT, Val.getVectorElt(I), Loc)); 8180 return MakeInitList(Elts); 8181 } 8182 8183 case APValue::None: 8184 case APValue::Indeterminate: 8185 llvm_unreachable("Unexpected APValue kind."); 8186 case APValue::LValue: 8187 case APValue::MemberPointer: 8188 // There isn't necessarily a valid equivalent source-level syntax for 8189 // these; in particular, a naive lowering might violate access control. 8190 // So for now we lower to a ConstantExpr holding the value, wrapped around 8191 // an OpaqueValueExpr. 8192 // FIXME: We should have a better representation for this. 8193 ExprValueKind VK = VK_PRValue; 8194 if (T->isReferenceType()) { 8195 T = T->getPointeeType(); 8196 VK = VK_LValue; 8197 } 8198 auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK); 8199 return ConstantExpr::Create(S.Context, OVE, Val); 8200 } 8201 llvm_unreachable("Unhandled APValue::ValueKind enum"); 8202 } 8203 8204 ExprResult 8205 Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg, 8206 SourceLocation Loc) { 8207 switch (Arg.getKind()) { 8208 case TemplateArgument::Null: 8209 case TemplateArgument::Type: 8210 case TemplateArgument::Template: 8211 case TemplateArgument::TemplateExpansion: 8212 case TemplateArgument::Pack: 8213 llvm_unreachable("not a non-type template argument"); 8214 8215 case TemplateArgument::Expression: 8216 return Arg.getAsExpr(); 8217 8218 case TemplateArgument::NullPtr: 8219 case TemplateArgument::Declaration: 8220 return BuildExpressionFromDeclTemplateArgument( 8221 Arg, Arg.getNonTypeTemplateArgumentType(), Loc); 8222 8223 case TemplateArgument::Integral: 8224 return BuildExpressionFromIntegralTemplateArgumentValue( 8225 *this, Arg.getIntegralType(), Arg.getAsIntegral(), Loc); 8226 8227 case TemplateArgument::StructuralValue: 8228 return BuildExpressionFromNonTypeTemplateArgumentValue( 8229 *this, Arg.getStructuralValueType(), Arg.getAsStructuralValue(), Loc); 8230 } 8231 llvm_unreachable("Unhandled TemplateArgument::ArgKind enum"); 8232 } 8233 8234 /// Match two template parameters within template parameter lists. 8235 static bool MatchTemplateParameterKind( 8236 Sema &S, NamedDecl *New, 8237 const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old, 8238 const NamedDecl *OldInstFrom, bool Complain, 8239 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { 8240 // Check the actual kind (type, non-type, template). 8241 if (Old->getKind() != New->getKind()) { 8242 if (Complain) { 8243 unsigned NextDiag = diag::err_template_param_different_kind; 8244 if (TemplateArgLoc.isValid()) { 8245 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 8246 NextDiag = diag::note_template_param_different_kind; 8247 } 8248 S.Diag(New->getLocation(), NextDiag) 8249 << (Kind != Sema::TPL_TemplateMatch); 8250 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 8251 << (Kind != Sema::TPL_TemplateMatch); 8252 } 8253 8254 return false; 8255 } 8256 8257 // Check that both are parameter packs or neither are parameter packs. 8258 // However, if we are matching a template template argument to a 8259 // template template parameter, the template template parameter can have 8260 // a parameter pack where the template template argument does not. 8261 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 8262 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 8263 Old->isTemplateParameterPack())) { 8264 if (Complain) { 8265 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 8266 if (TemplateArgLoc.isValid()) { 8267 S.Diag(TemplateArgLoc, 8268 diag::err_template_arg_template_params_mismatch); 8269 NextDiag = diag::note_template_parameter_pack_non_pack; 8270 } 8271 8272 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 8273 : isa<NonTypeTemplateParmDecl>(New)? 1 8274 : 2; 8275 S.Diag(New->getLocation(), NextDiag) 8276 << ParamKind << New->isParameterPack(); 8277 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 8278 << ParamKind << Old->isParameterPack(); 8279 } 8280 8281 return false; 8282 } 8283 8284 // For non-type template parameters, check the type of the parameter. 8285 if (NonTypeTemplateParmDecl *OldNTTP 8286 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 8287 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 8288 8289 // If we are matching a template template argument to a template 8290 // template parameter and one of the non-type template parameter types 8291 // is dependent, then we must wait until template instantiation time 8292 // to actually compare the arguments. 8293 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || 8294 (!OldNTTP->getType()->isDependentType() && 8295 !NewNTTP->getType()->isDependentType())) { 8296 // C++20 [temp.over.link]p6: 8297 // Two [non-type] template-parameters are equivalent [if] they have 8298 // equivalent types ignoring the use of type-constraints for 8299 // placeholder types 8300 QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType()); 8301 QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType()); 8302 if (!S.Context.hasSameType(OldType, NewType)) { 8303 if (Complain) { 8304 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 8305 if (TemplateArgLoc.isValid()) { 8306 S.Diag(TemplateArgLoc, 8307 diag::err_template_arg_template_params_mismatch); 8308 NextDiag = diag::note_template_nontype_parm_different_type; 8309 } 8310 S.Diag(NewNTTP->getLocation(), NextDiag) 8311 << NewNTTP->getType() 8312 << (Kind != Sema::TPL_TemplateMatch); 8313 S.Diag(OldNTTP->getLocation(), 8314 diag::note_template_nontype_parm_prev_declaration) 8315 << OldNTTP->getType(); 8316 } 8317 8318 return false; 8319 } 8320 } 8321 } 8322 // For template template parameters, check the template parameter types. 8323 // The template parameter lists of template template 8324 // parameters must agree. 8325 else if (TemplateTemplateParmDecl *OldTTP = 8326 dyn_cast<TemplateTemplateParmDecl>(Old)) { 8327 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 8328 if (!S.TemplateParameterListsAreEqual( 8329 NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom, 8330 OldTTP->getTemplateParameters(), Complain, 8331 (Kind == Sema::TPL_TemplateMatch 8332 ? Sema::TPL_TemplateTemplateParmMatch 8333 : Kind), 8334 TemplateArgLoc)) 8335 return false; 8336 } 8337 8338 if (Kind != Sema::TPL_TemplateParamsEquivalent && 8339 Kind != Sema::TPL_TemplateTemplateArgumentMatch && 8340 !isa<TemplateTemplateParmDecl>(Old)) { 8341 const Expr *NewC = nullptr, *OldC = nullptr; 8342 8343 if (isa<TemplateTypeParmDecl>(New)) { 8344 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 8345 NewC = TC->getImmediatelyDeclaredConstraint(); 8346 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 8347 OldC = TC->getImmediatelyDeclaredConstraint(); 8348 } else if (isa<NonTypeTemplateParmDecl>(New)) { 8349 if (const Expr *E = cast<NonTypeTemplateParmDecl>(New) 8350 ->getPlaceholderTypeConstraint()) 8351 NewC = E; 8352 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old) 8353 ->getPlaceholderTypeConstraint()) 8354 OldC = E; 8355 } else 8356 llvm_unreachable("unexpected template parameter type"); 8357 8358 auto Diagnose = [&] { 8359 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 8360 diag::err_template_different_type_constraint); 8361 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 8362 diag::note_template_prev_declaration) << /*declaration*/0; 8363 }; 8364 8365 if (!NewC != !OldC) { 8366 if (Complain) 8367 Diagnose(); 8368 return false; 8369 } 8370 8371 if (NewC) { 8372 if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom, 8373 NewC)) { 8374 if (Complain) 8375 Diagnose(); 8376 return false; 8377 } 8378 } 8379 } 8380 8381 return true; 8382 } 8383 8384 /// Diagnose a known arity mismatch when comparing template argument 8385 /// lists. 8386 static 8387 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 8388 TemplateParameterList *New, 8389 TemplateParameterList *Old, 8390 Sema::TemplateParameterListEqualKind Kind, 8391 SourceLocation TemplateArgLoc) { 8392 unsigned NextDiag = diag::err_template_param_list_different_arity; 8393 if (TemplateArgLoc.isValid()) { 8394 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 8395 NextDiag = diag::note_template_param_list_different_arity; 8396 } 8397 S.Diag(New->getTemplateLoc(), NextDiag) 8398 << (New->size() > Old->size()) 8399 << (Kind != Sema::TPL_TemplateMatch) 8400 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 8401 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 8402 << (Kind != Sema::TPL_TemplateMatch) 8403 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 8404 } 8405 8406 /// Determine whether the given template parameter lists are 8407 /// equivalent. 8408 /// 8409 /// \param New The new template parameter list, typically written in the 8410 /// source code as part of a new template declaration. 8411 /// 8412 /// \param Old The old template parameter list, typically found via 8413 /// name lookup of the template declared with this template parameter 8414 /// list. 8415 /// 8416 /// \param Complain If true, this routine will produce a diagnostic if 8417 /// the template parameter lists are not equivalent. 8418 /// 8419 /// \param Kind describes how we are to match the template parameter lists. 8420 /// 8421 /// \param TemplateArgLoc If this source location is valid, then we 8422 /// are actually checking the template parameter list of a template 8423 /// argument (New) against the template parameter list of its 8424 /// corresponding template template parameter (Old). We produce 8425 /// slightly different diagnostics in this scenario. 8426 /// 8427 /// \returns True if the template parameter lists are equal, false 8428 /// otherwise. 8429 bool Sema::TemplateParameterListsAreEqual( 8430 const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New, 8431 const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, 8432 TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { 8433 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 8434 if (Complain) 8435 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 8436 TemplateArgLoc); 8437 8438 return false; 8439 } 8440 8441 // C++0x [temp.arg.template]p3: 8442 // A template-argument matches a template template-parameter (call it P) 8443 // when each of the template parameters in the template-parameter-list of 8444 // the template-argument's corresponding class template or alias template 8445 // (call it A) matches the corresponding template parameter in the 8446 // template-parameter-list of P. [...] 8447 TemplateParameterList::iterator NewParm = New->begin(); 8448 TemplateParameterList::iterator NewParmEnd = New->end(); 8449 for (TemplateParameterList::iterator OldParm = Old->begin(), 8450 OldParmEnd = Old->end(); 8451 OldParm != OldParmEnd; ++OldParm) { 8452 if (Kind != TPL_TemplateTemplateArgumentMatch || 8453 !(*OldParm)->isTemplateParameterPack()) { 8454 if (NewParm == NewParmEnd) { 8455 if (Complain) 8456 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 8457 TemplateArgLoc); 8458 8459 return false; 8460 } 8461 8462 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm, 8463 OldInstFrom, Complain, Kind, 8464 TemplateArgLoc)) 8465 return false; 8466 8467 ++NewParm; 8468 continue; 8469 } 8470 8471 // C++0x [temp.arg.template]p3: 8472 // [...] When P's template- parameter-list contains a template parameter 8473 // pack (14.5.3), the template parameter pack will match zero or more 8474 // template parameters or template parameter packs in the 8475 // template-parameter-list of A with the same type and form as the 8476 // template parameter pack in P (ignoring whether those template 8477 // parameters are template parameter packs). 8478 for (; NewParm != NewParmEnd; ++NewParm) { 8479 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm, 8480 OldInstFrom, Complain, Kind, 8481 TemplateArgLoc)) 8482 return false; 8483 } 8484 } 8485 8486 // Make sure we exhausted all of the arguments. 8487 if (NewParm != NewParmEnd) { 8488 if (Complain) 8489 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 8490 TemplateArgLoc); 8491 8492 return false; 8493 } 8494 8495 if (Kind != TPL_TemplateTemplateArgumentMatch && 8496 Kind != TPL_TemplateParamsEquivalent) { 8497 const Expr *NewRC = New->getRequiresClause(); 8498 const Expr *OldRC = Old->getRequiresClause(); 8499 8500 auto Diagnose = [&] { 8501 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 8502 diag::err_template_different_requires_clause); 8503 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 8504 diag::note_template_prev_declaration) << /*declaration*/0; 8505 }; 8506 8507 if (!NewRC != !OldRC) { 8508 if (Complain) 8509 Diagnose(); 8510 return false; 8511 } 8512 8513 if (NewRC) { 8514 if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom, 8515 NewRC)) { 8516 if (Complain) 8517 Diagnose(); 8518 return false; 8519 } 8520 } 8521 } 8522 8523 return true; 8524 } 8525 8526 /// Check whether a template can be declared within this scope. 8527 /// 8528 /// If the template declaration is valid in this scope, returns 8529 /// false. Otherwise, issues a diagnostic and returns true. 8530 bool 8531 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 8532 if (!S) 8533 return false; 8534 8535 // Find the nearest enclosing declaration scope. 8536 while ((S->getFlags() & Scope::DeclScope) == 0 || 8537 (S->getFlags() & Scope::TemplateParamScope) != 0) 8538 S = S->getParent(); 8539 8540 // C++ [temp.pre]p6: [P2096] 8541 // A template, explicit specialization, or partial specialization shall not 8542 // have C linkage. 8543 DeclContext *Ctx = S->getEntity(); 8544 if (Ctx && Ctx->isExternCContext()) { 8545 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 8546 << TemplateParams->getSourceRange(); 8547 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 8548 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 8549 return true; 8550 } 8551 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; 8552 8553 // C++ [temp]p2: 8554 // A template-declaration can appear only as a namespace scope or 8555 // class scope declaration. 8556 // C++ [temp.expl.spec]p3: 8557 // An explicit specialization may be declared in any scope in which the 8558 // corresponding primary template may be defined. 8559 // C++ [temp.class.spec]p6: [P2096] 8560 // A partial specialization may be declared in any scope in which the 8561 // corresponding primary template may be defined. 8562 if (Ctx) { 8563 if (Ctx->isFileContext()) 8564 return false; 8565 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 8566 // C++ [temp.mem]p2: 8567 // A local class shall not have member templates. 8568 if (RD->isLocalClass()) 8569 return Diag(TemplateParams->getTemplateLoc(), 8570 diag::err_template_inside_local_class) 8571 << TemplateParams->getSourceRange(); 8572 else 8573 return false; 8574 } 8575 } 8576 8577 return Diag(TemplateParams->getTemplateLoc(), 8578 diag::err_template_outside_namespace_or_class_scope) 8579 << TemplateParams->getSourceRange(); 8580 } 8581 8582 /// Determine what kind of template specialization the given declaration 8583 /// is. 8584 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 8585 if (!D) 8586 return TSK_Undeclared; 8587 8588 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 8589 return Record->getTemplateSpecializationKind(); 8590 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 8591 return Function->getTemplateSpecializationKind(); 8592 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 8593 return Var->getTemplateSpecializationKind(); 8594 8595 return TSK_Undeclared; 8596 } 8597 8598 /// Check whether a specialization is well-formed in the current 8599 /// context. 8600 /// 8601 /// This routine determines whether a template specialization can be declared 8602 /// in the current context (C++ [temp.expl.spec]p2). 8603 /// 8604 /// \param S the semantic analysis object for which this check is being 8605 /// performed. 8606 /// 8607 /// \param Specialized the entity being specialized or instantiated, which 8608 /// may be a kind of template (class template, function template, etc.) or 8609 /// a member of a class template (member function, static data member, 8610 /// member class). 8611 /// 8612 /// \param PrevDecl the previous declaration of this entity, if any. 8613 /// 8614 /// \param Loc the location of the explicit specialization or instantiation of 8615 /// this entity. 8616 /// 8617 /// \param IsPartialSpecialization whether this is a partial specialization of 8618 /// a class template. 8619 /// 8620 /// \returns true if there was an error that we cannot recover from, false 8621 /// otherwise. 8622 static bool CheckTemplateSpecializationScope(Sema &S, 8623 NamedDecl *Specialized, 8624 NamedDecl *PrevDecl, 8625 SourceLocation Loc, 8626 bool IsPartialSpecialization) { 8627 // Keep these "kind" numbers in sync with the %select statements in the 8628 // various diagnostics emitted by this routine. 8629 int EntityKind = 0; 8630 if (isa<ClassTemplateDecl>(Specialized)) 8631 EntityKind = IsPartialSpecialization? 1 : 0; 8632 else if (isa<VarTemplateDecl>(Specialized)) 8633 EntityKind = IsPartialSpecialization ? 3 : 2; 8634 else if (isa<FunctionTemplateDecl>(Specialized)) 8635 EntityKind = 4; 8636 else if (isa<CXXMethodDecl>(Specialized)) 8637 EntityKind = 5; 8638 else if (isa<VarDecl>(Specialized)) 8639 EntityKind = 6; 8640 else if (isa<RecordDecl>(Specialized)) 8641 EntityKind = 7; 8642 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 8643 EntityKind = 8; 8644 else { 8645 S.Diag(Loc, diag::err_template_spec_unknown_kind) 8646 << S.getLangOpts().CPlusPlus11; 8647 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8648 return true; 8649 } 8650 8651 // C++ [temp.expl.spec]p2: 8652 // An explicit specialization may be declared in any scope in which 8653 // the corresponding primary template may be defined. 8654 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8655 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 8656 << Specialized; 8657 return true; 8658 } 8659 8660 // C++ [temp.class.spec]p6: 8661 // A class template partial specialization may be declared in any 8662 // scope in which the primary template may be defined. 8663 DeclContext *SpecializedContext = 8664 Specialized->getDeclContext()->getRedeclContext(); 8665 DeclContext *DC = S.CurContext->getRedeclContext(); 8666 8667 // Make sure that this redeclaration (or definition) occurs in the same 8668 // scope or an enclosing namespace. 8669 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 8670 : DC->Equals(SpecializedContext))) { 8671 if (isa<TranslationUnitDecl>(SpecializedContext)) 8672 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 8673 << EntityKind << Specialized; 8674 else { 8675 auto *ND = cast<NamedDecl>(SpecializedContext); 8676 int Diag = diag::err_template_spec_redecl_out_of_scope; 8677 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 8678 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 8679 S.Diag(Loc, Diag) << EntityKind << Specialized 8680 << ND << isa<CXXRecordDecl>(ND); 8681 } 8682 8683 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8684 8685 // Don't allow specializing in the wrong class during error recovery. 8686 // Otherwise, things can go horribly wrong. 8687 if (DC->isRecord()) 8688 return true; 8689 } 8690 8691 return false; 8692 } 8693 8694 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 8695 if (!E->isTypeDependent()) 8696 return SourceLocation(); 8697 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8698 Checker.TraverseStmt(E); 8699 if (Checker.MatchLoc.isInvalid()) 8700 return E->getSourceRange(); 8701 return Checker.MatchLoc; 8702 } 8703 8704 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 8705 if (!TL.getType()->isDependentType()) 8706 return SourceLocation(); 8707 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8708 Checker.TraverseTypeLoc(TL); 8709 if (Checker.MatchLoc.isInvalid()) 8710 return TL.getSourceRange(); 8711 return Checker.MatchLoc; 8712 } 8713 8714 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 8715 /// that checks non-type template partial specialization arguments. 8716 static bool CheckNonTypeTemplatePartialSpecializationArgs( 8717 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 8718 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 8719 for (unsigned I = 0; I != NumArgs; ++I) { 8720 if (Args[I].getKind() == TemplateArgument::Pack) { 8721 if (CheckNonTypeTemplatePartialSpecializationArgs( 8722 S, TemplateNameLoc, Param, Args[I].pack_begin(), 8723 Args[I].pack_size(), IsDefaultArgument)) 8724 return true; 8725 8726 continue; 8727 } 8728 8729 if (Args[I].getKind() != TemplateArgument::Expression) 8730 continue; 8731 8732 Expr *ArgExpr = Args[I].getAsExpr(); 8733 8734 // We can have a pack expansion of any of the bullets below. 8735 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 8736 ArgExpr = Expansion->getPattern(); 8737 8738 // Strip off any implicit casts we added as part of type checking. 8739 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 8740 ArgExpr = ICE->getSubExpr(); 8741 8742 // C++ [temp.class.spec]p8: 8743 // A non-type argument is non-specialized if it is the name of a 8744 // non-type parameter. All other non-type arguments are 8745 // specialized. 8746 // 8747 // Below, we check the two conditions that only apply to 8748 // specialized non-type arguments, so skip any non-specialized 8749 // arguments. 8750 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 8751 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 8752 continue; 8753 8754 // C++ [temp.class.spec]p9: 8755 // Within the argument list of a class template partial 8756 // specialization, the following restrictions apply: 8757 // -- A partially specialized non-type argument expression 8758 // shall not involve a template parameter of the partial 8759 // specialization except when the argument expression is a 8760 // simple identifier. 8761 // -- The type of a template parameter corresponding to a 8762 // specialized non-type argument shall not be dependent on a 8763 // parameter of the specialization. 8764 // DR1315 removes the first bullet, leaving an incoherent set of rules. 8765 // We implement a compromise between the original rules and DR1315: 8766 // -- A specialized non-type template argument shall not be 8767 // type-dependent and the corresponding template parameter 8768 // shall have a non-dependent type. 8769 SourceRange ParamUseRange = 8770 findTemplateParameterInType(Param->getDepth(), ArgExpr); 8771 if (ParamUseRange.isValid()) { 8772 if (IsDefaultArgument) { 8773 S.Diag(TemplateNameLoc, 8774 diag::err_dependent_non_type_arg_in_partial_spec); 8775 S.Diag(ParamUseRange.getBegin(), 8776 diag::note_dependent_non_type_default_arg_in_partial_spec) 8777 << ParamUseRange; 8778 } else { 8779 S.Diag(ParamUseRange.getBegin(), 8780 diag::err_dependent_non_type_arg_in_partial_spec) 8781 << ParamUseRange; 8782 } 8783 return true; 8784 } 8785 8786 ParamUseRange = findTemplateParameter( 8787 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 8788 if (ParamUseRange.isValid()) { 8789 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 8790 diag::err_dependent_typed_non_type_arg_in_partial_spec) 8791 << Param->getType(); 8792 S.NoteTemplateParameterLocation(*Param); 8793 return true; 8794 } 8795 } 8796 8797 return false; 8798 } 8799 8800 /// Check the non-type template arguments of a class template 8801 /// partial specialization according to C++ [temp.class.spec]p9. 8802 /// 8803 /// \param TemplateNameLoc the location of the template name. 8804 /// \param PrimaryTemplate the template parameters of the primary class 8805 /// template. 8806 /// \param NumExplicit the number of explicitly-specified template arguments. 8807 /// \param TemplateArgs the template arguments of the class template 8808 /// partial specialization. 8809 /// 8810 /// \returns \c true if there was an error, \c false otherwise. 8811 bool Sema::CheckTemplatePartialSpecializationArgs( 8812 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 8813 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 8814 // We have to be conservative when checking a template in a dependent 8815 // context. 8816 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 8817 return false; 8818 8819 TemplateParameterList *TemplateParams = 8820 PrimaryTemplate->getTemplateParameters(); 8821 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8822 NonTypeTemplateParmDecl *Param 8823 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 8824 if (!Param) 8825 continue; 8826 8827 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 8828 Param, &TemplateArgs[I], 8829 1, I >= NumExplicit)) 8830 return true; 8831 } 8832 8833 return false; 8834 } 8835 8836 DeclResult Sema::ActOnClassTemplateSpecialization( 8837 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 8838 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 8839 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 8840 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 8841 assert(TUK != TUK_Reference && "References are not specializations"); 8842 8843 // NOTE: KWLoc is the location of the tag keyword. This will instead 8844 // store the location of the outermost template keyword in the declaration. 8845 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 8846 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 8847 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 8848 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 8849 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 8850 8851 // Find the class template we're specializing 8852 TemplateName Name = TemplateId.Template.get(); 8853 ClassTemplateDecl *ClassTemplate 8854 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 8855 8856 if (!ClassTemplate) { 8857 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 8858 << (Name.getAsTemplateDecl() && 8859 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 8860 return true; 8861 } 8862 8863 bool isMemberSpecialization = false; 8864 bool isPartialSpecialization = false; 8865 8866 // Check the validity of the template headers that introduce this 8867 // template. 8868 // FIXME: We probably shouldn't complain about these headers for 8869 // friend declarations. 8870 bool Invalid = false; 8871 TemplateParameterList *TemplateParams = 8872 MatchTemplateParametersToScopeSpecifier( 8873 KWLoc, TemplateNameLoc, SS, &TemplateId, 8874 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, 8875 Invalid); 8876 if (Invalid) 8877 return true; 8878 8879 // Check that we can declare a template specialization here. 8880 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) 8881 return true; 8882 8883 if (TemplateParams && TemplateParams->size() > 0) { 8884 isPartialSpecialization = true; 8885 8886 if (TUK == TUK_Friend) { 8887 Diag(KWLoc, diag::err_partial_specialization_friend) 8888 << SourceRange(LAngleLoc, RAngleLoc); 8889 return true; 8890 } 8891 8892 // C++ [temp.class.spec]p10: 8893 // The template parameter list of a specialization shall not 8894 // contain default template argument values. 8895 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8896 Decl *Param = TemplateParams->getParam(I); 8897 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8898 if (TTP->hasDefaultArgument()) { 8899 Diag(TTP->getDefaultArgumentLoc(), 8900 diag::err_default_arg_in_partial_spec); 8901 TTP->removeDefaultArgument(); 8902 } 8903 } else if (NonTypeTemplateParmDecl *NTTP 8904 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8905 if (Expr *DefArg = NTTP->getDefaultArgument()) { 8906 Diag(NTTP->getDefaultArgumentLoc(), 8907 diag::err_default_arg_in_partial_spec) 8908 << DefArg->getSourceRange(); 8909 NTTP->removeDefaultArgument(); 8910 } 8911 } else { 8912 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8913 if (TTP->hasDefaultArgument()) { 8914 Diag(TTP->getDefaultArgument().getLocation(), 8915 diag::err_default_arg_in_partial_spec) 8916 << TTP->getDefaultArgument().getSourceRange(); 8917 TTP->removeDefaultArgument(); 8918 } 8919 } 8920 } 8921 } else if (TemplateParams) { 8922 if (TUK == TUK_Friend) 8923 Diag(KWLoc, diag::err_template_spec_friend) 8924 << FixItHint::CreateRemoval( 8925 SourceRange(TemplateParams->getTemplateLoc(), 8926 TemplateParams->getRAngleLoc())) 8927 << SourceRange(LAngleLoc, RAngleLoc); 8928 } else { 8929 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 8930 } 8931 8932 // Check that the specialization uses the same tag kind as the 8933 // original template. 8934 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8935 assert(Kind != TagTypeKind::Enum && 8936 "Invalid enum tag in class template spec!"); 8937 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 8938 Kind, TUK == TUK_Definition, KWLoc, 8939 ClassTemplate->getIdentifier())) { 8940 Diag(KWLoc, diag::err_use_with_wrong_tag) 8941 << ClassTemplate 8942 << FixItHint::CreateReplacement(KWLoc, 8943 ClassTemplate->getTemplatedDecl()->getKindName()); 8944 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8945 diag::note_previous_use); 8946 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8947 } 8948 8949 // Translate the parser's template argument list in our AST format. 8950 TemplateArgumentListInfo TemplateArgs = 8951 makeTemplateArgumentListInfo(*this, TemplateId); 8952 8953 // Check for unexpanded parameter packs in any of the template arguments. 8954 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8955 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8956 isPartialSpecialization 8957 ? UPPC_PartialSpecialization 8958 : UPPC_ExplicitSpecialization)) 8959 return true; 8960 8961 // Check that the template argument list is well-formed for this 8962 // template. 8963 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 8964 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, 8965 false, SugaredConverted, CanonicalConverted, 8966 /*UpdateArgsWithConversions=*/true)) 8967 return true; 8968 8969 // Find the class template (partial) specialization declaration that 8970 // corresponds to these arguments. 8971 if (isPartialSpecialization) { 8972 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8973 TemplateArgs.size(), 8974 CanonicalConverted)) 8975 return true; 8976 8977 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8978 // also do it during instantiation. 8979 if (!Name.isDependent() && 8980 !TemplateSpecializationType::anyDependentTemplateArguments( 8981 TemplateArgs, CanonicalConverted)) { 8982 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8983 << ClassTemplate->getDeclName(); 8984 isPartialSpecialization = false; 8985 } 8986 } 8987 8988 void *InsertPos = nullptr; 8989 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8990 8991 if (isPartialSpecialization) 8992 PrevDecl = ClassTemplate->findPartialSpecialization( 8993 CanonicalConverted, TemplateParams, InsertPos); 8994 else 8995 PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 8996 8997 ClassTemplateSpecializationDecl *Specialization = nullptr; 8998 8999 // Check whether we can declare a class template specialization in 9000 // the current scope. 9001 if (TUK != TUK_Friend && 9002 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 9003 TemplateNameLoc, 9004 isPartialSpecialization)) 9005 return true; 9006 9007 // The canonical type 9008 QualType CanonType; 9009 if (isPartialSpecialization) { 9010 // Build the canonical type that describes the converted template 9011 // arguments of the class template partial specialization. 9012 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 9013 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 9014 CanonicalConverted); 9015 9016 if (Context.hasSameType(CanonType, 9017 ClassTemplate->getInjectedClassNameSpecialization()) && 9018 (!Context.getLangOpts().CPlusPlus20 || 9019 !TemplateParams->hasAssociatedConstraints())) { 9020 // C++ [temp.class.spec]p9b3: 9021 // 9022 // -- The argument list of the specialization shall not be identical 9023 // to the implicit argument list of the primary template. 9024 // 9025 // This rule has since been removed, because it's redundant given DR1495, 9026 // but we keep it because it produces better diagnostics and recovery. 9027 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 9028 << /*class template*/0 << (TUK == TUK_Definition) 9029 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 9030 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 9031 ClassTemplate->getIdentifier(), 9032 TemplateNameLoc, 9033 Attr, 9034 TemplateParams, 9035 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 9036 /*FriendLoc*/SourceLocation(), 9037 TemplateParameterLists.size() - 1, 9038 TemplateParameterLists.data()); 9039 } 9040 9041 // Create a new class template partial specialization declaration node. 9042 ClassTemplatePartialSpecializationDecl *PrevPartial 9043 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 9044 ClassTemplatePartialSpecializationDecl *Partial = 9045 ClassTemplatePartialSpecializationDecl::Create( 9046 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, 9047 TemplateNameLoc, TemplateParams, ClassTemplate, CanonicalConverted, 9048 TemplateArgs, CanonType, PrevPartial); 9049 SetNestedNameSpecifier(*this, Partial, SS); 9050 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 9051 Partial->setTemplateParameterListsInfo( 9052 Context, TemplateParameterLists.drop_back(1)); 9053 } 9054 9055 if (!PrevPartial) 9056 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 9057 Specialization = Partial; 9058 9059 // If we are providing an explicit specialization of a member class 9060 // template specialization, make a note of that. 9061 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 9062 PrevPartial->setMemberSpecialization(); 9063 9064 CheckTemplatePartialSpecialization(Partial); 9065 } else { 9066 // Create a new class template specialization declaration node for 9067 // this explicit specialization or friend declaration. 9068 Specialization = ClassTemplateSpecializationDecl::Create( 9069 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc, 9070 ClassTemplate, CanonicalConverted, PrevDecl); 9071 SetNestedNameSpecifier(*this, Specialization, SS); 9072 if (TemplateParameterLists.size() > 0) { 9073 Specialization->setTemplateParameterListsInfo(Context, 9074 TemplateParameterLists); 9075 } 9076 9077 if (!PrevDecl) 9078 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9079 9080 if (CurContext->isDependentContext()) { 9081 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 9082 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 9083 CanonicalConverted); 9084 } else { 9085 CanonType = Context.getTypeDeclType(Specialization); 9086 } 9087 } 9088 9089 // C++ [temp.expl.spec]p6: 9090 // If a template, a member template or the member of a class template is 9091 // explicitly specialized then that specialization shall be declared 9092 // before the first use of that specialization that would cause an implicit 9093 // instantiation to take place, in every translation unit in which such a 9094 // use occurs; no diagnostic is required. 9095 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 9096 bool Okay = false; 9097 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 9098 // Is there any previous explicit specialization declaration? 9099 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 9100 Okay = true; 9101 break; 9102 } 9103 } 9104 9105 if (!Okay) { 9106 SourceRange Range(TemplateNameLoc, RAngleLoc); 9107 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 9108 << Context.getTypeDeclType(Specialization) << Range; 9109 9110 Diag(PrevDecl->getPointOfInstantiation(), 9111 diag::note_instantiation_required_here) 9112 << (PrevDecl->getTemplateSpecializationKind() 9113 != TSK_ImplicitInstantiation); 9114 return true; 9115 } 9116 } 9117 9118 // If this is not a friend, note that this is an explicit specialization. 9119 if (TUK != TUK_Friend) 9120 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 9121 9122 // Check that this isn't a redefinition of this specialization. 9123 if (TUK == TUK_Definition) { 9124 RecordDecl *Def = Specialization->getDefinition(); 9125 NamedDecl *Hidden = nullptr; 9126 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 9127 SkipBody->ShouldSkip = true; 9128 SkipBody->Previous = Def; 9129 makeMergedDefinitionVisible(Hidden); 9130 } else if (Def) { 9131 SourceRange Range(TemplateNameLoc, RAngleLoc); 9132 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 9133 Diag(Def->getLocation(), diag::note_previous_definition); 9134 Specialization->setInvalidDecl(); 9135 return true; 9136 } 9137 } 9138 9139 ProcessDeclAttributeList(S, Specialization, Attr); 9140 9141 // Add alignment attributes if necessary; these attributes are checked when 9142 // the ASTContext lays out the structure. 9143 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 9144 AddAlignmentAttributesForRecord(Specialization); 9145 AddMsStructLayoutForRecord(Specialization); 9146 } 9147 9148 if (ModulePrivateLoc.isValid()) 9149 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 9150 << (isPartialSpecialization? 1 : 0) 9151 << FixItHint::CreateRemoval(ModulePrivateLoc); 9152 9153 // Build the fully-sugared type for this class template 9154 // specialization as the user wrote in the specialization 9155 // itself. This means that we'll pretty-print the type retrieved 9156 // from the specialization's declaration the way that the user 9157 // actually wrote the specialization, rather than formatting the 9158 // name based on the "canonical" representation used to store the 9159 // template arguments in the specialization. 9160 TypeSourceInfo *WrittenTy 9161 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 9162 TemplateArgs, CanonType); 9163 if (TUK != TUK_Friend) { 9164 Specialization->setTypeAsWritten(WrittenTy); 9165 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 9166 } 9167 9168 // C++ [temp.expl.spec]p9: 9169 // A template explicit specialization is in the scope of the 9170 // namespace in which the template was defined. 9171 // 9172 // We actually implement this paragraph where we set the semantic 9173 // context (in the creation of the ClassTemplateSpecializationDecl), 9174 // but we also maintain the lexical context where the actual 9175 // definition occurs. 9176 Specialization->setLexicalDeclContext(CurContext); 9177 9178 // We may be starting the definition of this specialization. 9179 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 9180 Specialization->startDefinition(); 9181 9182 if (TUK == TUK_Friend) { 9183 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 9184 TemplateNameLoc, 9185 WrittenTy, 9186 /*FIXME:*/KWLoc); 9187 Friend->setAccess(AS_public); 9188 CurContext->addDecl(Friend); 9189 } else { 9190 // Add the specialization into its lexical context, so that it can 9191 // be seen when iterating through the list of declarations in that 9192 // context. However, specializations are not found by name lookup. 9193 CurContext->addDecl(Specialization); 9194 } 9195 9196 if (SkipBody && SkipBody->ShouldSkip) 9197 return SkipBody->Previous; 9198 9199 return Specialization; 9200 } 9201 9202 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 9203 MultiTemplateParamsArg TemplateParameterLists, 9204 Declarator &D) { 9205 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 9206 ActOnDocumentableDecl(NewDecl); 9207 return NewDecl; 9208 } 9209 9210 Decl *Sema::ActOnConceptDefinition(Scope *S, 9211 MultiTemplateParamsArg TemplateParameterLists, 9212 IdentifierInfo *Name, SourceLocation NameLoc, 9213 Expr *ConstraintExpr) { 9214 DeclContext *DC = CurContext; 9215 9216 if (!DC->getRedeclContext()->isFileContext()) { 9217 Diag(NameLoc, 9218 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 9219 return nullptr; 9220 } 9221 9222 if (TemplateParameterLists.size() > 1) { 9223 Diag(NameLoc, diag::err_concept_extra_headers); 9224 return nullptr; 9225 } 9226 9227 TemplateParameterList *Params = TemplateParameterLists.front(); 9228 9229 if (Params->size() == 0) { 9230 Diag(NameLoc, diag::err_concept_no_parameters); 9231 return nullptr; 9232 } 9233 9234 // Ensure that the parameter pack, if present, is the last parameter in the 9235 // template. 9236 for (TemplateParameterList::const_iterator ParamIt = Params->begin(), 9237 ParamEnd = Params->end(); 9238 ParamIt != ParamEnd; ++ParamIt) { 9239 Decl const *Param = *ParamIt; 9240 if (Param->isParameterPack()) { 9241 if (++ParamIt == ParamEnd) 9242 break; 9243 Diag(Param->getLocation(), 9244 diag::err_template_param_pack_must_be_last_template_parameter); 9245 return nullptr; 9246 } 9247 } 9248 9249 if (DiagnoseUnexpandedParameterPack(ConstraintExpr)) 9250 return nullptr; 9251 9252 ConceptDecl *NewDecl = 9253 ConceptDecl::Create(Context, DC, NameLoc, Name, Params, ConstraintExpr); 9254 9255 if (NewDecl->hasAssociatedConstraints()) { 9256 // C++2a [temp.concept]p4: 9257 // A concept shall not have associated constraints. 9258 Diag(NameLoc, diag::err_concept_no_associated_constraints); 9259 NewDecl->setInvalidDecl(); 9260 } 9261 9262 // Check for conflicting previous declaration. 9263 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); 9264 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 9265 forRedeclarationInCurContext()); 9266 LookupName(Previous, S); 9267 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, 9268 /*AllowInlineNamespace*/false); 9269 bool AddToScope = true; 9270 CheckConceptRedefinition(NewDecl, Previous, AddToScope); 9271 9272 ActOnDocumentableDecl(NewDecl); 9273 if (AddToScope) 9274 PushOnScopeChains(NewDecl, S); 9275 return NewDecl; 9276 } 9277 9278 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl, 9279 LookupResult &Previous, bool &AddToScope) { 9280 AddToScope = true; 9281 9282 if (Previous.empty()) 9283 return; 9284 9285 auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl()); 9286 if (!OldConcept) { 9287 auto *Old = Previous.getRepresentativeDecl(); 9288 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind) 9289 << NewDecl->getDeclName(); 9290 notePreviousDefinition(Old, NewDecl->getLocation()); 9291 AddToScope = false; 9292 return; 9293 } 9294 // Check if we can merge with a concept declaration. 9295 bool IsSame = Context.isSameEntity(NewDecl, OldConcept); 9296 if (!IsSame) { 9297 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept) 9298 << NewDecl->getDeclName(); 9299 notePreviousDefinition(OldConcept, NewDecl->getLocation()); 9300 AddToScope = false; 9301 return; 9302 } 9303 if (hasReachableDefinition(OldConcept) && 9304 IsRedefinitionInModule(NewDecl, OldConcept)) { 9305 Diag(NewDecl->getLocation(), diag::err_redefinition) 9306 << NewDecl->getDeclName(); 9307 notePreviousDefinition(OldConcept, NewDecl->getLocation()); 9308 AddToScope = false; 9309 return; 9310 } 9311 if (!Previous.isSingleResult()) { 9312 // FIXME: we should produce an error in case of ambig and failed lookups. 9313 // Other decls (e.g. namespaces) also have this shortcoming. 9314 return; 9315 } 9316 // We unwrap canonical decl late to check for module visibility. 9317 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl()); 9318 } 9319 9320 /// \brief Strips various properties off an implicit instantiation 9321 /// that has just been explicitly specialized. 9322 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) { 9323 if (MinGW || (isa<FunctionDecl>(D) && 9324 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) 9325 D->dropAttrs<DLLImportAttr, DLLExportAttr>(); 9326 9327 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 9328 FD->setInlineSpecified(false); 9329 } 9330 9331 /// Compute the diagnostic location for an explicit instantiation 9332 // declaration or definition. 9333 static SourceLocation DiagLocForExplicitInstantiation( 9334 NamedDecl* D, SourceLocation PointOfInstantiation) { 9335 // Explicit instantiations following a specialization have no effect and 9336 // hence no PointOfInstantiation. In that case, walk decl backwards 9337 // until a valid name loc is found. 9338 SourceLocation PrevDiagLoc = PointOfInstantiation; 9339 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 9340 Prev = Prev->getPreviousDecl()) { 9341 PrevDiagLoc = Prev->getLocation(); 9342 } 9343 assert(PrevDiagLoc.isValid() && 9344 "Explicit instantiation without point of instantiation?"); 9345 return PrevDiagLoc; 9346 } 9347 9348 /// Diagnose cases where we have an explicit template specialization 9349 /// before/after an explicit template instantiation, producing diagnostics 9350 /// for those cases where they are required and determining whether the 9351 /// new specialization/instantiation will have any effect. 9352 /// 9353 /// \param NewLoc the location of the new explicit specialization or 9354 /// instantiation. 9355 /// 9356 /// \param NewTSK the kind of the new explicit specialization or instantiation. 9357 /// 9358 /// \param PrevDecl the previous declaration of the entity. 9359 /// 9360 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 9361 /// 9362 /// \param PrevPointOfInstantiation if valid, indicates where the previous 9363 /// declaration was instantiated (either implicitly or explicitly). 9364 /// 9365 /// \param HasNoEffect will be set to true to indicate that the new 9366 /// specialization or instantiation has no effect and should be ignored. 9367 /// 9368 /// \returns true if there was an error that should prevent the introduction of 9369 /// the new declaration into the AST, false otherwise. 9370 bool 9371 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 9372 TemplateSpecializationKind NewTSK, 9373 NamedDecl *PrevDecl, 9374 TemplateSpecializationKind PrevTSK, 9375 SourceLocation PrevPointOfInstantiation, 9376 bool &HasNoEffect) { 9377 HasNoEffect = false; 9378 9379 switch (NewTSK) { 9380 case TSK_Undeclared: 9381 case TSK_ImplicitInstantiation: 9382 assert( 9383 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 9384 "previous declaration must be implicit!"); 9385 return false; 9386 9387 case TSK_ExplicitSpecialization: 9388 switch (PrevTSK) { 9389 case TSK_Undeclared: 9390 case TSK_ExplicitSpecialization: 9391 // Okay, we're just specializing something that is either already 9392 // explicitly specialized or has merely been mentioned without any 9393 // instantiation. 9394 return false; 9395 9396 case TSK_ImplicitInstantiation: 9397 if (PrevPointOfInstantiation.isInvalid()) { 9398 // The declaration itself has not actually been instantiated, so it is 9399 // still okay to specialize it. 9400 StripImplicitInstantiation( 9401 PrevDecl, 9402 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()); 9403 return false; 9404 } 9405 // Fall through 9406 [[fallthrough]]; 9407 9408 case TSK_ExplicitInstantiationDeclaration: 9409 case TSK_ExplicitInstantiationDefinition: 9410 assert((PrevTSK == TSK_ImplicitInstantiation || 9411 PrevPointOfInstantiation.isValid()) && 9412 "Explicit instantiation without point of instantiation?"); 9413 9414 // C++ [temp.expl.spec]p6: 9415 // If a template, a member template or the member of a class template 9416 // is explicitly specialized then that specialization shall be declared 9417 // before the first use of that specialization that would cause an 9418 // implicit instantiation to take place, in every translation unit in 9419 // which such a use occurs; no diagnostic is required. 9420 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 9421 // Is there any previous explicit specialization declaration? 9422 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 9423 return false; 9424 } 9425 9426 Diag(NewLoc, diag::err_specialization_after_instantiation) 9427 << PrevDecl; 9428 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 9429 << (PrevTSK != TSK_ImplicitInstantiation); 9430 9431 return true; 9432 } 9433 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 9434 9435 case TSK_ExplicitInstantiationDeclaration: 9436 switch (PrevTSK) { 9437 case TSK_ExplicitInstantiationDeclaration: 9438 // This explicit instantiation declaration is redundant (that's okay). 9439 HasNoEffect = true; 9440 return false; 9441 9442 case TSK_Undeclared: 9443 case TSK_ImplicitInstantiation: 9444 // We're explicitly instantiating something that may have already been 9445 // implicitly instantiated; that's fine. 9446 return false; 9447 9448 case TSK_ExplicitSpecialization: 9449 // C++0x [temp.explicit]p4: 9450 // For a given set of template parameters, if an explicit instantiation 9451 // of a template appears after a declaration of an explicit 9452 // specialization for that template, the explicit instantiation has no 9453 // effect. 9454 HasNoEffect = true; 9455 return false; 9456 9457 case TSK_ExplicitInstantiationDefinition: 9458 // C++0x [temp.explicit]p10: 9459 // If an entity is the subject of both an explicit instantiation 9460 // declaration and an explicit instantiation definition in the same 9461 // translation unit, the definition shall follow the declaration. 9462 Diag(NewLoc, 9463 diag::err_explicit_instantiation_declaration_after_definition); 9464 9465 // Explicit instantiations following a specialization have no effect and 9466 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 9467 // until a valid name loc is found. 9468 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 9469 diag::note_explicit_instantiation_definition_here); 9470 HasNoEffect = true; 9471 return false; 9472 } 9473 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 9474 9475 case TSK_ExplicitInstantiationDefinition: 9476 switch (PrevTSK) { 9477 case TSK_Undeclared: 9478 case TSK_ImplicitInstantiation: 9479 // We're explicitly instantiating something that may have already been 9480 // implicitly instantiated; that's fine. 9481 return false; 9482 9483 case TSK_ExplicitSpecialization: 9484 // C++ DR 259, C++0x [temp.explicit]p4: 9485 // For a given set of template parameters, if an explicit 9486 // instantiation of a template appears after a declaration of 9487 // an explicit specialization for that template, the explicit 9488 // instantiation has no effect. 9489 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 9490 << PrevDecl; 9491 Diag(PrevDecl->getLocation(), 9492 diag::note_previous_template_specialization); 9493 HasNoEffect = true; 9494 return false; 9495 9496 case TSK_ExplicitInstantiationDeclaration: 9497 // We're explicitly instantiating a definition for something for which we 9498 // were previously asked to suppress instantiations. That's fine. 9499 9500 // C++0x [temp.explicit]p4: 9501 // For a given set of template parameters, if an explicit instantiation 9502 // of a template appears after a declaration of an explicit 9503 // specialization for that template, the explicit instantiation has no 9504 // effect. 9505 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 9506 // Is there any previous explicit specialization declaration? 9507 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 9508 HasNoEffect = true; 9509 break; 9510 } 9511 } 9512 9513 return false; 9514 9515 case TSK_ExplicitInstantiationDefinition: 9516 // C++0x [temp.spec]p5: 9517 // For a given template and a given set of template-arguments, 9518 // - an explicit instantiation definition shall appear at most once 9519 // in a program, 9520 9521 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 9522 Diag(NewLoc, (getLangOpts().MSVCCompat) 9523 ? diag::ext_explicit_instantiation_duplicate 9524 : diag::err_explicit_instantiation_duplicate) 9525 << PrevDecl; 9526 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 9527 diag::note_previous_explicit_instantiation); 9528 HasNoEffect = true; 9529 return false; 9530 } 9531 } 9532 9533 llvm_unreachable("Missing specialization/instantiation case?"); 9534 } 9535 9536 /// Perform semantic analysis for the given dependent function 9537 /// template specialization. 9538 /// 9539 /// The only possible way to get a dependent function template specialization 9540 /// is with a friend declaration, like so: 9541 /// 9542 /// \code 9543 /// template \<class T> void foo(T); 9544 /// template \<class T> class A { 9545 /// friend void foo<>(T); 9546 /// }; 9547 /// \endcode 9548 /// 9549 /// There really isn't any useful analysis we can do here, so we 9550 /// just store the information. 9551 bool Sema::CheckDependentFunctionTemplateSpecialization( 9552 FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs, 9553 LookupResult &Previous) { 9554 // Remove anything from Previous that isn't a function template in 9555 // the correct context. 9556 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 9557 LookupResult::Filter F = Previous.makeFilter(); 9558 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 9559 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 9560 while (F.hasNext()) { 9561 NamedDecl *D = F.next()->getUnderlyingDecl(); 9562 if (!isa<FunctionTemplateDecl>(D)) { 9563 F.erase(); 9564 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 9565 continue; 9566 } 9567 9568 if (!FDLookupContext->InEnclosingNamespaceSetOf( 9569 D->getDeclContext()->getRedeclContext())) { 9570 F.erase(); 9571 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 9572 continue; 9573 } 9574 } 9575 F.done(); 9576 9577 bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None; 9578 if (Previous.empty()) { 9579 Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match) 9580 << IsFriend; 9581 for (auto &P : DiscardedCandidates) 9582 Diag(P.second->getLocation(), 9583 diag::note_dependent_function_template_spec_discard_reason) 9584 << P.first << IsFriend; 9585 return true; 9586 } 9587 9588 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 9589 ExplicitTemplateArgs); 9590 return false; 9591 } 9592 9593 /// Perform semantic analysis for the given function template 9594 /// specialization. 9595 /// 9596 /// This routine performs all of the semantic analysis required for an 9597 /// explicit function template specialization. On successful completion, 9598 /// the function declaration \p FD will become a function template 9599 /// specialization. 9600 /// 9601 /// \param FD the function declaration, which will be updated to become a 9602 /// function template specialization. 9603 /// 9604 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 9605 /// if any. Note that this may be valid info even when 0 arguments are 9606 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 9607 /// as it anyway contains info on the angle brackets locations. 9608 /// 9609 /// \param Previous the set of declarations that may be specialized by 9610 /// this function specialization. 9611 /// 9612 /// \param QualifiedFriend whether this is a lookup for a qualified friend 9613 /// declaration with no explicit template argument list that might be 9614 /// befriending a function template specialization. 9615 bool Sema::CheckFunctionTemplateSpecialization( 9616 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 9617 LookupResult &Previous, bool QualifiedFriend) { 9618 // The set of function template specializations that could match this 9619 // explicit function template specialization. 9620 UnresolvedSet<8> Candidates; 9621 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 9622 /*ForTakingAddress=*/false); 9623 9624 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 9625 ConvertedTemplateArgs; 9626 9627 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 9628 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9629 I != E; ++I) { 9630 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 9631 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 9632 // Only consider templates found within the same semantic lookup scope as 9633 // FD. 9634 if (!FDLookupContext->InEnclosingNamespaceSetOf( 9635 Ovl->getDeclContext()->getRedeclContext())) 9636 continue; 9637 9638 // When matching a constexpr member function template specialization 9639 // against the primary template, we don't yet know whether the 9640 // specialization has an implicit 'const' (because we don't know whether 9641 // it will be a static member function until we know which template it 9642 // specializes), so adjust it now assuming it specializes this template. 9643 QualType FT = FD->getType(); 9644 if (FD->isConstexpr()) { 9645 CXXMethodDecl *OldMD = 9646 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 9647 if (OldMD && OldMD->isConst()) { 9648 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 9649 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9650 EPI.TypeQuals.addConst(); 9651 FT = Context.getFunctionType(FPT->getReturnType(), 9652 FPT->getParamTypes(), EPI); 9653 } 9654 } 9655 9656 TemplateArgumentListInfo Args; 9657 if (ExplicitTemplateArgs) 9658 Args = *ExplicitTemplateArgs; 9659 9660 // C++ [temp.expl.spec]p11: 9661 // A trailing template-argument can be left unspecified in the 9662 // template-id naming an explicit function template specialization 9663 // provided it can be deduced from the function argument type. 9664 // Perform template argument deduction to determine whether we may be 9665 // specializing this template. 9666 // FIXME: It is somewhat wasteful to build 9667 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 9668 FunctionDecl *Specialization = nullptr; 9669 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 9670 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 9671 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, 9672 Info)) { 9673 // Template argument deduction failed; record why it failed, so 9674 // that we can provide nifty diagnostics. 9675 FailedCandidates.addCandidate().set( 9676 I.getPair(), FunTmpl->getTemplatedDecl(), 9677 MakeDeductionFailureInfo(Context, TDK, Info)); 9678 (void)TDK; 9679 continue; 9680 } 9681 9682 // Target attributes are part of the cuda function signature, so 9683 // the deduced template's cuda target must match that of the 9684 // specialization. Given that C++ template deduction does not 9685 // take target attributes into account, we reject candidates 9686 // here that have a different target. 9687 if (LangOpts.CUDA && 9688 IdentifyCUDATarget(Specialization, 9689 /* IgnoreImplicitHDAttr = */ true) != 9690 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 9691 FailedCandidates.addCandidate().set( 9692 I.getPair(), FunTmpl->getTemplatedDecl(), 9693 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 9694 continue; 9695 } 9696 9697 // Record this candidate. 9698 if (ExplicitTemplateArgs) 9699 ConvertedTemplateArgs[Specialization] = std::move(Args); 9700 Candidates.addDecl(Specialization, I.getAccess()); 9701 } 9702 } 9703 9704 // For a qualified friend declaration (with no explicit marker to indicate 9705 // that a template specialization was intended), note all (template and 9706 // non-template) candidates. 9707 if (QualifiedFriend && Candidates.empty()) { 9708 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 9709 << FD->getDeclName() << FDLookupContext; 9710 // FIXME: We should form a single candidate list and diagnose all 9711 // candidates at once, to get proper sorting and limiting. 9712 for (auto *OldND : Previous) { 9713 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 9714 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 9715 } 9716 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 9717 return true; 9718 } 9719 9720 // Find the most specialized function template. 9721 UnresolvedSetIterator Result = getMostSpecialized( 9722 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 9723 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 9724 PDiag(diag::err_function_template_spec_ambiguous) 9725 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 9726 PDiag(diag::note_function_template_spec_matched)); 9727 9728 if (Result == Candidates.end()) 9729 return true; 9730 9731 // Ignore access information; it doesn't figure into redeclaration checking. 9732 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 9733 9734 FunctionTemplateSpecializationInfo *SpecInfo 9735 = Specialization->getTemplateSpecializationInfo(); 9736 assert(SpecInfo && "Function template specialization info missing?"); 9737 9738 // Note: do not overwrite location info if previous template 9739 // specialization kind was explicit. 9740 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 9741 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 9742 Specialization->setLocation(FD->getLocation()); 9743 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 9744 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 9745 // function can differ from the template declaration with respect to 9746 // the constexpr specifier. 9747 // FIXME: We need an update record for this AST mutation. 9748 // FIXME: What if there are multiple such prior declarations (for instance, 9749 // from different modules)? 9750 Specialization->setConstexprKind(FD->getConstexprKind()); 9751 } 9752 9753 // FIXME: Check if the prior specialization has a point of instantiation. 9754 // If so, we have run afoul of . 9755 9756 // If this is a friend declaration, then we're not really declaring 9757 // an explicit specialization. 9758 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 9759 9760 // Check the scope of this explicit specialization. 9761 if (!isFriend && 9762 CheckTemplateSpecializationScope(*this, 9763 Specialization->getPrimaryTemplate(), 9764 Specialization, FD->getLocation(), 9765 false)) 9766 return true; 9767 9768 // C++ [temp.expl.spec]p6: 9769 // If a template, a member template or the member of a class template is 9770 // explicitly specialized then that specialization shall be declared 9771 // before the first use of that specialization that would cause an implicit 9772 // instantiation to take place, in every translation unit in which such a 9773 // use occurs; no diagnostic is required. 9774 bool HasNoEffect = false; 9775 if (!isFriend && 9776 CheckSpecializationInstantiationRedecl(FD->getLocation(), 9777 TSK_ExplicitSpecialization, 9778 Specialization, 9779 SpecInfo->getTemplateSpecializationKind(), 9780 SpecInfo->getPointOfInstantiation(), 9781 HasNoEffect)) 9782 return true; 9783 9784 // Mark the prior declaration as an explicit specialization, so that later 9785 // clients know that this is an explicit specialization. 9786 if (!isFriend) { 9787 // Since explicit specializations do not inherit '=delete' from their 9788 // primary function template - check if the 'specialization' that was 9789 // implicitly generated (during template argument deduction for partial 9790 // ordering) from the most specialized of all the function templates that 9791 // 'FD' could have been specializing, has a 'deleted' definition. If so, 9792 // first check that it was implicitly generated during template argument 9793 // deduction by making sure it wasn't referenced, and then reset the deleted 9794 // flag to not-deleted, so that we can inherit that information from 'FD'. 9795 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 9796 !Specialization->getCanonicalDecl()->isReferenced()) { 9797 // FIXME: This assert will not hold in the presence of modules. 9798 assert( 9799 Specialization->getCanonicalDecl() == Specialization && 9800 "This must be the only existing declaration of this specialization"); 9801 // FIXME: We need an update record for this AST mutation. 9802 Specialization->setDeletedAsWritten(false); 9803 } 9804 // FIXME: We need an update record for this AST mutation. 9805 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9806 MarkUnusedFileScopedDecl(Specialization); 9807 } 9808 9809 // Turn the given function declaration into a function template 9810 // specialization, with the template arguments from the previous 9811 // specialization. 9812 // Take copies of (semantic and syntactic) template argument lists. 9813 const TemplateArgumentList* TemplArgs = new (Context) 9814 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 9815 FD->setFunctionTemplateSpecialization( 9816 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 9817 SpecInfo->getTemplateSpecializationKind(), 9818 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 9819 9820 // A function template specialization inherits the target attributes 9821 // of its template. (We require the attributes explicitly in the 9822 // code to match, but a template may have implicit attributes by 9823 // virtue e.g. of being constexpr, and it passes these implicit 9824 // attributes on to its specializations.) 9825 if (LangOpts.CUDA) 9826 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); 9827 9828 // The "previous declaration" for this function template specialization is 9829 // the prior function template specialization. 9830 Previous.clear(); 9831 Previous.addDecl(Specialization); 9832 return false; 9833 } 9834 9835 /// Perform semantic analysis for the given non-template member 9836 /// specialization. 9837 /// 9838 /// This routine performs all of the semantic analysis required for an 9839 /// explicit member function specialization. On successful completion, 9840 /// the function declaration \p FD will become a member function 9841 /// specialization. 9842 /// 9843 /// \param Member the member declaration, which will be updated to become a 9844 /// specialization. 9845 /// 9846 /// \param Previous the set of declarations, one of which may be specialized 9847 /// by this function specialization; the set will be modified to contain the 9848 /// redeclared member. 9849 bool 9850 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 9851 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 9852 9853 // Try to find the member we are instantiating. 9854 NamedDecl *FoundInstantiation = nullptr; 9855 NamedDecl *Instantiation = nullptr; 9856 NamedDecl *InstantiatedFrom = nullptr; 9857 MemberSpecializationInfo *MSInfo = nullptr; 9858 9859 if (Previous.empty()) { 9860 // Nowhere to look anyway. 9861 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 9862 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9863 I != E; ++I) { 9864 NamedDecl *D = (*I)->getUnderlyingDecl(); 9865 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 9866 QualType Adjusted = Function->getType(); 9867 if (!hasExplicitCallingConv(Adjusted)) 9868 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 9869 // This doesn't handle deduced return types, but both function 9870 // declarations should be undeduced at this point. 9871 if (Context.hasSameType(Adjusted, Method->getType())) { 9872 FoundInstantiation = *I; 9873 Instantiation = Method; 9874 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 9875 MSInfo = Method->getMemberSpecializationInfo(); 9876 break; 9877 } 9878 } 9879 } 9880 } else if (isa<VarDecl>(Member)) { 9881 VarDecl *PrevVar; 9882 if (Previous.isSingleResult() && 9883 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 9884 if (PrevVar->isStaticDataMember()) { 9885 FoundInstantiation = Previous.getRepresentativeDecl(); 9886 Instantiation = PrevVar; 9887 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 9888 MSInfo = PrevVar->getMemberSpecializationInfo(); 9889 } 9890 } else if (isa<RecordDecl>(Member)) { 9891 CXXRecordDecl *PrevRecord; 9892 if (Previous.isSingleResult() && 9893 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 9894 FoundInstantiation = Previous.getRepresentativeDecl(); 9895 Instantiation = PrevRecord; 9896 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 9897 MSInfo = PrevRecord->getMemberSpecializationInfo(); 9898 } 9899 } else if (isa<EnumDecl>(Member)) { 9900 EnumDecl *PrevEnum; 9901 if (Previous.isSingleResult() && 9902 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 9903 FoundInstantiation = Previous.getRepresentativeDecl(); 9904 Instantiation = PrevEnum; 9905 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 9906 MSInfo = PrevEnum->getMemberSpecializationInfo(); 9907 } 9908 } 9909 9910 if (!Instantiation) { 9911 // There is no previous declaration that matches. Since member 9912 // specializations are always out-of-line, the caller will complain about 9913 // this mismatch later. 9914 return false; 9915 } 9916 9917 // A member specialization in a friend declaration isn't really declaring 9918 // an explicit specialization, just identifying a specific (possibly implicit) 9919 // specialization. Don't change the template specialization kind. 9920 // 9921 // FIXME: Is this really valid? Other compilers reject. 9922 if (Member->getFriendObjectKind() != Decl::FOK_None) { 9923 // Preserve instantiation information. 9924 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 9925 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 9926 cast<CXXMethodDecl>(InstantiatedFrom), 9927 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 9928 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 9929 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 9930 cast<CXXRecordDecl>(InstantiatedFrom), 9931 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 9932 } 9933 9934 Previous.clear(); 9935 Previous.addDecl(FoundInstantiation); 9936 return false; 9937 } 9938 9939 // Make sure that this is a specialization of a member. 9940 if (!InstantiatedFrom) { 9941 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 9942 << Member; 9943 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 9944 return true; 9945 } 9946 9947 // C++ [temp.expl.spec]p6: 9948 // If a template, a member template or the member of a class template is 9949 // explicitly specialized then that specialization shall be declared 9950 // before the first use of that specialization that would cause an implicit 9951 // instantiation to take place, in every translation unit in which such a 9952 // use occurs; no diagnostic is required. 9953 assert(MSInfo && "Member specialization info missing?"); 9954 9955 bool HasNoEffect = false; 9956 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9957 TSK_ExplicitSpecialization, 9958 Instantiation, 9959 MSInfo->getTemplateSpecializationKind(), 9960 MSInfo->getPointOfInstantiation(), 9961 HasNoEffect)) 9962 return true; 9963 9964 // Check the scope of this explicit specialization. 9965 if (CheckTemplateSpecializationScope(*this, 9966 InstantiatedFrom, 9967 Instantiation, Member->getLocation(), 9968 false)) 9969 return true; 9970 9971 // Note that this member specialization is an "instantiation of" the 9972 // corresponding member of the original template. 9973 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9974 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9975 if (InstantiationFunction->getTemplateSpecializationKind() == 9976 TSK_ImplicitInstantiation) { 9977 // Explicit specializations of member functions of class templates do not 9978 // inherit '=delete' from the member function they are specializing. 9979 if (InstantiationFunction->isDeleted()) { 9980 // FIXME: This assert will not hold in the presence of modules. 9981 assert(InstantiationFunction->getCanonicalDecl() == 9982 InstantiationFunction); 9983 // FIXME: We need an update record for this AST mutation. 9984 InstantiationFunction->setDeletedAsWritten(false); 9985 } 9986 } 9987 9988 MemberFunction->setInstantiationOfMemberFunction( 9989 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9990 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9991 MemberVar->setInstantiationOfStaticDataMember( 9992 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9993 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9994 MemberClass->setInstantiationOfMemberClass( 9995 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9996 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9997 MemberEnum->setInstantiationOfMemberEnum( 9998 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9999 } else { 10000 llvm_unreachable("unknown member specialization kind"); 10001 } 10002 10003 // Save the caller the trouble of having to figure out which declaration 10004 // this specialization matches. 10005 Previous.clear(); 10006 Previous.addDecl(FoundInstantiation); 10007 return false; 10008 } 10009 10010 /// Complete the explicit specialization of a member of a class template by 10011 /// updating the instantiated member to be marked as an explicit specialization. 10012 /// 10013 /// \param OrigD The member declaration instantiated from the template. 10014 /// \param Loc The location of the explicit specialization of the member. 10015 template<typename DeclT> 10016 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 10017 SourceLocation Loc) { 10018 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 10019 return; 10020 10021 // FIXME: Inform AST mutation listeners of this AST mutation. 10022 // FIXME: If there are multiple in-class declarations of the member (from 10023 // multiple modules, or a declaration and later definition of a member type), 10024 // should we update all of them? 10025 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 10026 OrigD->setLocation(Loc); 10027 } 10028 10029 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 10030 LookupResult &Previous) { 10031 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 10032 if (Instantiation == Member) 10033 return; 10034 10035 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 10036 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 10037 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 10038 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 10039 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 10040 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 10041 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 10042 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 10043 else 10044 llvm_unreachable("unknown member specialization kind"); 10045 } 10046 10047 /// Check the scope of an explicit instantiation. 10048 /// 10049 /// \returns true if a serious error occurs, false otherwise. 10050 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 10051 SourceLocation InstLoc, 10052 bool WasQualifiedName) { 10053 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 10054 DeclContext *CurContext = S.CurContext->getRedeclContext(); 10055 10056 if (CurContext->isRecord()) { 10057 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 10058 << D; 10059 return true; 10060 } 10061 10062 // C++11 [temp.explicit]p3: 10063 // An explicit instantiation shall appear in an enclosing namespace of its 10064 // template. If the name declared in the explicit instantiation is an 10065 // unqualified name, the explicit instantiation shall appear in the 10066 // namespace where its template is declared or, if that namespace is inline 10067 // (7.3.1), any namespace from its enclosing namespace set. 10068 // 10069 // This is DR275, which we do not retroactively apply to C++98/03. 10070 if (WasQualifiedName) { 10071 if (CurContext->Encloses(OrigContext)) 10072 return false; 10073 } else { 10074 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 10075 return false; 10076 } 10077 10078 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 10079 if (WasQualifiedName) 10080 S.Diag(InstLoc, 10081 S.getLangOpts().CPlusPlus11? 10082 diag::err_explicit_instantiation_out_of_scope : 10083 diag::warn_explicit_instantiation_out_of_scope_0x) 10084 << D << NS; 10085 else 10086 S.Diag(InstLoc, 10087 S.getLangOpts().CPlusPlus11? 10088 diag::err_explicit_instantiation_unqualified_wrong_namespace : 10089 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 10090 << D << NS; 10091 } else 10092 S.Diag(InstLoc, 10093 S.getLangOpts().CPlusPlus11? 10094 diag::err_explicit_instantiation_must_be_global : 10095 diag::warn_explicit_instantiation_must_be_global_0x) 10096 << D; 10097 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 10098 return false; 10099 } 10100 10101 /// Common checks for whether an explicit instantiation of \p D is valid. 10102 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 10103 SourceLocation InstLoc, 10104 bool WasQualifiedName, 10105 TemplateSpecializationKind TSK) { 10106 // C++ [temp.explicit]p13: 10107 // An explicit instantiation declaration shall not name a specialization of 10108 // a template with internal linkage. 10109 if (TSK == TSK_ExplicitInstantiationDeclaration && 10110 D->getFormalLinkage() == Linkage::Internal) { 10111 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 10112 return true; 10113 } 10114 10115 // C++11 [temp.explicit]p3: [DR 275] 10116 // An explicit instantiation shall appear in an enclosing namespace of its 10117 // template. 10118 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 10119 return true; 10120 10121 return false; 10122 } 10123 10124 /// Determine whether the given scope specifier has a template-id in it. 10125 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 10126 if (!SS.isSet()) 10127 return false; 10128 10129 // C++11 [temp.explicit]p3: 10130 // If the explicit instantiation is for a member function, a member class 10131 // or a static data member of a class template specialization, the name of 10132 // the class template specialization in the qualified-id for the member 10133 // name shall be a simple-template-id. 10134 // 10135 // C++98 has the same restriction, just worded differently. 10136 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 10137 NNS = NNS->getPrefix()) 10138 if (const Type *T = NNS->getAsType()) 10139 if (isa<TemplateSpecializationType>(T)) 10140 return true; 10141 10142 return false; 10143 } 10144 10145 /// Make a dllexport or dllimport attr on a class template specialization take 10146 /// effect. 10147 static void dllExportImportClassTemplateSpecialization( 10148 Sema &S, ClassTemplateSpecializationDecl *Def) { 10149 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 10150 assert(A && "dllExportImportClassTemplateSpecialization called " 10151 "on Def without dllexport or dllimport"); 10152 10153 // We reject explicit instantiations in class scope, so there should 10154 // never be any delayed exported classes to worry about. 10155 assert(S.DelayedDllExportClasses.empty() && 10156 "delayed exports present at explicit instantiation"); 10157 S.checkClassLevelDLLAttribute(Def); 10158 10159 // Propagate attribute to base class templates. 10160 for (auto &B : Def->bases()) { 10161 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 10162 B.getType()->getAsCXXRecordDecl())) 10163 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 10164 } 10165 10166 S.referenceDLLExportedClassMethods(); 10167 } 10168 10169 // Explicit instantiation of a class template specialization 10170 DeclResult Sema::ActOnExplicitInstantiation( 10171 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 10172 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 10173 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 10174 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 10175 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 10176 // Find the class template we're specializing 10177 TemplateName Name = TemplateD.get(); 10178 TemplateDecl *TD = Name.getAsTemplateDecl(); 10179 // Check that the specialization uses the same tag kind as the 10180 // original template. 10181 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10182 assert(Kind != TagTypeKind::Enum && 10183 "Invalid enum tag in class template explicit instantiation!"); 10184 10185 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 10186 10187 if (!ClassTemplate) { 10188 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 10189 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) 10190 << TD << NTK << llvm::to_underlying(Kind); 10191 Diag(TD->getLocation(), diag::note_previous_use); 10192 return true; 10193 } 10194 10195 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 10196 Kind, /*isDefinition*/false, KWLoc, 10197 ClassTemplate->getIdentifier())) { 10198 Diag(KWLoc, diag::err_use_with_wrong_tag) 10199 << ClassTemplate 10200 << FixItHint::CreateReplacement(KWLoc, 10201 ClassTemplate->getTemplatedDecl()->getKindName()); 10202 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 10203 diag::note_previous_use); 10204 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 10205 } 10206 10207 // C++0x [temp.explicit]p2: 10208 // There are two forms of explicit instantiation: an explicit instantiation 10209 // definition and an explicit instantiation declaration. An explicit 10210 // instantiation declaration begins with the extern keyword. [...] 10211 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 10212 ? TSK_ExplicitInstantiationDefinition 10213 : TSK_ExplicitInstantiationDeclaration; 10214 10215 if (TSK == TSK_ExplicitInstantiationDeclaration && 10216 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 10217 // Check for dllexport class template instantiation declarations, 10218 // except for MinGW mode. 10219 for (const ParsedAttr &AL : Attr) { 10220 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 10221 Diag(ExternLoc, 10222 diag::warn_attribute_dllexport_explicit_instantiation_decl); 10223 Diag(AL.getLoc(), diag::note_attribute); 10224 break; 10225 } 10226 } 10227 10228 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 10229 Diag(ExternLoc, 10230 diag::warn_attribute_dllexport_explicit_instantiation_decl); 10231 Diag(A->getLocation(), diag::note_attribute); 10232 } 10233 } 10234 10235 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10236 // instantiation declarations for most purposes. 10237 bool DLLImportExplicitInstantiationDef = false; 10238 if (TSK == TSK_ExplicitInstantiationDefinition && 10239 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 10240 // Check for dllimport class template instantiation definitions. 10241 bool DLLImport = 10242 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 10243 for (const ParsedAttr &AL : Attr) { 10244 if (AL.getKind() == ParsedAttr::AT_DLLImport) 10245 DLLImport = true; 10246 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 10247 // dllexport trumps dllimport here. 10248 DLLImport = false; 10249 break; 10250 } 10251 } 10252 if (DLLImport) { 10253 TSK = TSK_ExplicitInstantiationDeclaration; 10254 DLLImportExplicitInstantiationDef = true; 10255 } 10256 } 10257 10258 // Translate the parser's template argument list in our AST format. 10259 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10260 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10261 10262 // Check that the template argument list is well-formed for this 10263 // template. 10264 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 10265 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, 10266 false, SugaredConverted, CanonicalConverted, 10267 /*UpdateArgsWithConversions=*/true)) 10268 return true; 10269 10270 // Find the class template specialization declaration that 10271 // corresponds to these arguments. 10272 void *InsertPos = nullptr; 10273 ClassTemplateSpecializationDecl *PrevDecl = 10274 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 10275 10276 TemplateSpecializationKind PrevDecl_TSK 10277 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 10278 10279 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 10280 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 10281 // Check for dllexport class template instantiation definitions in MinGW 10282 // mode, if a previous declaration of the instantiation was seen. 10283 for (const ParsedAttr &AL : Attr) { 10284 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 10285 Diag(AL.getLoc(), 10286 diag::warn_attribute_dllexport_explicit_instantiation_def); 10287 break; 10288 } 10289 } 10290 } 10291 10292 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 10293 SS.isSet(), TSK)) 10294 return true; 10295 10296 ClassTemplateSpecializationDecl *Specialization = nullptr; 10297 10298 bool HasNoEffect = false; 10299 if (PrevDecl) { 10300 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 10301 PrevDecl, PrevDecl_TSK, 10302 PrevDecl->getPointOfInstantiation(), 10303 HasNoEffect)) 10304 return PrevDecl; 10305 10306 // Even though HasNoEffect == true means that this explicit instantiation 10307 // has no effect on semantics, we go on to put its syntax in the AST. 10308 10309 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 10310 PrevDecl_TSK == TSK_Undeclared) { 10311 // Since the only prior class template specialization with these 10312 // arguments was referenced but not declared, reuse that 10313 // declaration node as our own, updating the source location 10314 // for the template name to reflect our new declaration. 10315 // (Other source locations will be updated later.) 10316 Specialization = PrevDecl; 10317 Specialization->setLocation(TemplateNameLoc); 10318 PrevDecl = nullptr; 10319 } 10320 10321 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 10322 DLLImportExplicitInstantiationDef) { 10323 // The new specialization might add a dllimport attribute. 10324 HasNoEffect = false; 10325 } 10326 } 10327 10328 if (!Specialization) { 10329 // Create a new class template specialization declaration node for 10330 // this explicit specialization. 10331 Specialization = ClassTemplateSpecializationDecl::Create( 10332 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc, 10333 ClassTemplate, CanonicalConverted, PrevDecl); 10334 SetNestedNameSpecifier(*this, Specialization, SS); 10335 10336 // A MSInheritanceAttr attached to the previous declaration must be 10337 // propagated to the new node prior to instantiation. 10338 if (PrevDecl) { 10339 if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) { 10340 auto *Clone = A->clone(getASTContext()); 10341 Clone->setInherited(true); 10342 Specialization->addAttr(Clone); 10343 Consumer.AssignInheritanceModel(Specialization); 10344 } 10345 } 10346 10347 if (!HasNoEffect && !PrevDecl) { 10348 // Insert the new specialization. 10349 ClassTemplate->AddSpecialization(Specialization, InsertPos); 10350 } 10351 } 10352 10353 // Build the fully-sugared type for this explicit instantiation as 10354 // the user wrote in the explicit instantiation itself. This means 10355 // that we'll pretty-print the type retrieved from the 10356 // specialization's declaration the way that the user actually wrote 10357 // the explicit instantiation, rather than formatting the name based 10358 // on the "canonical" representation used to store the template 10359 // arguments in the specialization. 10360 TypeSourceInfo *WrittenTy 10361 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 10362 TemplateArgs, 10363 Context.getTypeDeclType(Specialization)); 10364 Specialization->setTypeAsWritten(WrittenTy); 10365 10366 // Set source locations for keywords. 10367 Specialization->setExternLoc(ExternLoc); 10368 Specialization->setTemplateKeywordLoc(TemplateLoc); 10369 Specialization->setBraceRange(SourceRange()); 10370 10371 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 10372 ProcessDeclAttributeList(S, Specialization, Attr); 10373 10374 // Add the explicit instantiation into its lexical context. However, 10375 // since explicit instantiations are never found by name lookup, we 10376 // just put it into the declaration context directly. 10377 Specialization->setLexicalDeclContext(CurContext); 10378 CurContext->addDecl(Specialization); 10379 10380 // Syntax is now OK, so return if it has no other effect on semantics. 10381 if (HasNoEffect) { 10382 // Set the template specialization kind. 10383 Specialization->setTemplateSpecializationKind(TSK); 10384 return Specialization; 10385 } 10386 10387 // C++ [temp.explicit]p3: 10388 // A definition of a class template or class member template 10389 // shall be in scope at the point of the explicit instantiation of 10390 // the class template or class member template. 10391 // 10392 // This check comes when we actually try to perform the 10393 // instantiation. 10394 ClassTemplateSpecializationDecl *Def 10395 = cast_or_null<ClassTemplateSpecializationDecl>( 10396 Specialization->getDefinition()); 10397 if (!Def) 10398 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 10399 else if (TSK == TSK_ExplicitInstantiationDefinition) { 10400 MarkVTableUsed(TemplateNameLoc, Specialization, true); 10401 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 10402 } 10403 10404 // Instantiate the members of this class template specialization. 10405 Def = cast_or_null<ClassTemplateSpecializationDecl>( 10406 Specialization->getDefinition()); 10407 if (Def) { 10408 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 10409 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 10410 // TSK_ExplicitInstantiationDefinition 10411 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 10412 (TSK == TSK_ExplicitInstantiationDefinition || 10413 DLLImportExplicitInstantiationDef)) { 10414 // FIXME: Need to notify the ASTMutationListener that we did this. 10415 Def->setTemplateSpecializationKind(TSK); 10416 10417 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 10418 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 10419 !Context.getTargetInfo().getTriple().isPS())) { 10420 // An explicit instantiation definition can add a dll attribute to a 10421 // template with a previous instantiation declaration. MinGW doesn't 10422 // allow this. 10423 auto *A = cast<InheritableAttr>( 10424 getDLLAttr(Specialization)->clone(getASTContext())); 10425 A->setInherited(true); 10426 Def->addAttr(A); 10427 dllExportImportClassTemplateSpecialization(*this, Def); 10428 } 10429 } 10430 10431 // Fix a TSK_ImplicitInstantiation followed by a 10432 // TSK_ExplicitInstantiationDefinition 10433 bool NewlyDLLExported = 10434 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 10435 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 10436 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 10437 !Context.getTargetInfo().getTriple().isPS())) { 10438 // An explicit instantiation definition can add a dll attribute to a 10439 // template with a previous implicit instantiation. MinGW doesn't allow 10440 // this. We limit clang to only adding dllexport, to avoid potentially 10441 // strange codegen behavior. For example, if we extend this conditional 10442 // to dllimport, and we have a source file calling a method on an 10443 // implicitly instantiated template class instance and then declaring a 10444 // dllimport explicit instantiation definition for the same template 10445 // class, the codegen for the method call will not respect the dllimport, 10446 // while it will with cl. The Def will already have the DLL attribute, 10447 // since the Def and Specialization will be the same in the case of 10448 // Old_TSK == TSK_ImplicitInstantiation, and we already added the 10449 // attribute to the Specialization; we just need to make it take effect. 10450 assert(Def == Specialization && 10451 "Def and Specialization should match for implicit instantiation"); 10452 dllExportImportClassTemplateSpecialization(*this, Def); 10453 } 10454 10455 // In MinGW mode, export the template instantiation if the declaration 10456 // was marked dllexport. 10457 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 10458 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 10459 PrevDecl->hasAttr<DLLExportAttr>()) { 10460 dllExportImportClassTemplateSpecialization(*this, Def); 10461 } 10462 10463 // Set the template specialization kind. Make sure it is set before 10464 // instantiating the members which will trigger ASTConsumer callbacks. 10465 Specialization->setTemplateSpecializationKind(TSK); 10466 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 10467 } else { 10468 10469 // Set the template specialization kind. 10470 Specialization->setTemplateSpecializationKind(TSK); 10471 } 10472 10473 return Specialization; 10474 } 10475 10476 // Explicit instantiation of a member class of a class template. 10477 DeclResult 10478 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 10479 SourceLocation TemplateLoc, unsigned TagSpec, 10480 SourceLocation KWLoc, CXXScopeSpec &SS, 10481 IdentifierInfo *Name, SourceLocation NameLoc, 10482 const ParsedAttributesView &Attr) { 10483 10484 bool Owned = false; 10485 bool IsDependent = false; 10486 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, KWLoc, SS, Name, 10487 NameLoc, Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(), 10488 MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(), 10489 false, TypeResult(), /*IsTypeSpecifier*/ false, 10490 /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get(); 10491 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 10492 10493 if (!TagD) 10494 return true; 10495 10496 TagDecl *Tag = cast<TagDecl>(TagD); 10497 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 10498 10499 if (Tag->isInvalidDecl()) 10500 return true; 10501 10502 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 10503 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 10504 if (!Pattern) { 10505 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 10506 << Context.getTypeDeclType(Record); 10507 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 10508 return true; 10509 } 10510 10511 // C++0x [temp.explicit]p2: 10512 // If the explicit instantiation is for a class or member class, the 10513 // elaborated-type-specifier in the declaration shall include a 10514 // simple-template-id. 10515 // 10516 // C++98 has the same restriction, just worded differently. 10517 if (!ScopeSpecifierHasTemplateId(SS)) 10518 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 10519 << Record << SS.getRange(); 10520 10521 // C++0x [temp.explicit]p2: 10522 // There are two forms of explicit instantiation: an explicit instantiation 10523 // definition and an explicit instantiation declaration. An explicit 10524 // instantiation declaration begins with the extern keyword. [...] 10525 TemplateSpecializationKind TSK 10526 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10527 : TSK_ExplicitInstantiationDeclaration; 10528 10529 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 10530 10531 // Verify that it is okay to explicitly instantiate here. 10532 CXXRecordDecl *PrevDecl 10533 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 10534 if (!PrevDecl && Record->getDefinition()) 10535 PrevDecl = Record; 10536 if (PrevDecl) { 10537 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 10538 bool HasNoEffect = false; 10539 assert(MSInfo && "No member specialization information?"); 10540 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 10541 PrevDecl, 10542 MSInfo->getTemplateSpecializationKind(), 10543 MSInfo->getPointOfInstantiation(), 10544 HasNoEffect)) 10545 return true; 10546 if (HasNoEffect) 10547 return TagD; 10548 } 10549 10550 CXXRecordDecl *RecordDef 10551 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 10552 if (!RecordDef) { 10553 // C++ [temp.explicit]p3: 10554 // A definition of a member class of a class template shall be in scope 10555 // at the point of an explicit instantiation of the member class. 10556 CXXRecordDecl *Def 10557 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 10558 if (!Def) { 10559 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 10560 << 0 << Record->getDeclName() << Record->getDeclContext(); 10561 Diag(Pattern->getLocation(), diag::note_forward_declaration) 10562 << Pattern; 10563 return true; 10564 } else { 10565 if (InstantiateClass(NameLoc, Record, Def, 10566 getTemplateInstantiationArgs(Record), 10567 TSK)) 10568 return true; 10569 10570 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 10571 if (!RecordDef) 10572 return true; 10573 } 10574 } 10575 10576 // Instantiate all of the members of the class. 10577 InstantiateClassMembers(NameLoc, RecordDef, 10578 getTemplateInstantiationArgs(Record), TSK); 10579 10580 if (TSK == TSK_ExplicitInstantiationDefinition) 10581 MarkVTableUsed(NameLoc, RecordDef, true); 10582 10583 // FIXME: We don't have any representation for explicit instantiations of 10584 // member classes. Such a representation is not needed for compilation, but it 10585 // should be available for clients that want to see all of the declarations in 10586 // the source code. 10587 return TagD; 10588 } 10589 10590 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 10591 SourceLocation ExternLoc, 10592 SourceLocation TemplateLoc, 10593 Declarator &D) { 10594 // Explicit instantiations always require a name. 10595 // TODO: check if/when DNInfo should replace Name. 10596 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 10597 DeclarationName Name = NameInfo.getName(); 10598 if (!Name) { 10599 if (!D.isInvalidType()) 10600 Diag(D.getDeclSpec().getBeginLoc(), 10601 diag::err_explicit_instantiation_requires_name) 10602 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 10603 10604 return true; 10605 } 10606 10607 // The scope passed in may not be a decl scope. Zip up the scope tree until 10608 // we find one that is. 10609 while ((S->getFlags() & Scope::DeclScope) == 0 || 10610 (S->getFlags() & Scope::TemplateParamScope) != 0) 10611 S = S->getParent(); 10612 10613 // Determine the type of the declaration. 10614 TypeSourceInfo *T = GetTypeForDeclarator(D); 10615 QualType R = T->getType(); 10616 if (R.isNull()) 10617 return true; 10618 10619 // C++ [dcl.stc]p1: 10620 // A storage-class-specifier shall not be specified in [...] an explicit 10621 // instantiation (14.7.2) directive. 10622 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 10623 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 10624 << Name; 10625 return true; 10626 } else if (D.getDeclSpec().getStorageClassSpec() 10627 != DeclSpec::SCS_unspecified) { 10628 // Complain about then remove the storage class specifier. 10629 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 10630 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10631 10632 D.getMutableDeclSpec().ClearStorageClassSpecs(); 10633 } 10634 10635 // C++0x [temp.explicit]p1: 10636 // [...] An explicit instantiation of a function template shall not use the 10637 // inline or constexpr specifiers. 10638 // Presumably, this also applies to member functions of class templates as 10639 // well. 10640 if (D.getDeclSpec().isInlineSpecified()) 10641 Diag(D.getDeclSpec().getInlineSpecLoc(), 10642 getLangOpts().CPlusPlus11 ? 10643 diag::err_explicit_instantiation_inline : 10644 diag::warn_explicit_instantiation_inline_0x) 10645 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 10646 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 10647 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 10648 // not already specified. 10649 Diag(D.getDeclSpec().getConstexprSpecLoc(), 10650 diag::err_explicit_instantiation_constexpr); 10651 10652 // A deduction guide is not on the list of entities that can be explicitly 10653 // instantiated. 10654 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 10655 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 10656 << /*explicit instantiation*/ 0; 10657 return true; 10658 } 10659 10660 // C++0x [temp.explicit]p2: 10661 // There are two forms of explicit instantiation: an explicit instantiation 10662 // definition and an explicit instantiation declaration. An explicit 10663 // instantiation declaration begins with the extern keyword. [...] 10664 TemplateSpecializationKind TSK 10665 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10666 : TSK_ExplicitInstantiationDeclaration; 10667 10668 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 10669 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 10670 10671 if (!R->isFunctionType()) { 10672 // C++ [temp.explicit]p1: 10673 // A [...] static data member of a class template can be explicitly 10674 // instantiated from the member definition associated with its class 10675 // template. 10676 // C++1y [temp.explicit]p1: 10677 // A [...] variable [...] template specialization can be explicitly 10678 // instantiated from its template. 10679 if (Previous.isAmbiguous()) 10680 return true; 10681 10682 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 10683 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 10684 10685 if (!PrevTemplate) { 10686 if (!Prev || !Prev->isStaticDataMember()) { 10687 // We expect to see a static data member here. 10688 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 10689 << Name; 10690 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10691 P != PEnd; ++P) 10692 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 10693 return true; 10694 } 10695 10696 if (!Prev->getInstantiatedFromStaticDataMember()) { 10697 // FIXME: Check for explicit specialization? 10698 Diag(D.getIdentifierLoc(), 10699 diag::err_explicit_instantiation_data_member_not_instantiated) 10700 << Prev; 10701 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 10702 // FIXME: Can we provide a note showing where this was declared? 10703 return true; 10704 } 10705 } else { 10706 // Explicitly instantiate a variable template. 10707 10708 // C++1y [dcl.spec.auto]p6: 10709 // ... A program that uses auto or decltype(auto) in a context not 10710 // explicitly allowed in this section is ill-formed. 10711 // 10712 // This includes auto-typed variable template instantiations. 10713 if (R->isUndeducedType()) { 10714 Diag(T->getTypeLoc().getBeginLoc(), 10715 diag::err_auto_not_allowed_var_inst); 10716 return true; 10717 } 10718 10719 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 10720 // C++1y [temp.explicit]p3: 10721 // If the explicit instantiation is for a variable, the unqualified-id 10722 // in the declaration shall be a template-id. 10723 Diag(D.getIdentifierLoc(), 10724 diag::err_explicit_instantiation_without_template_id) 10725 << PrevTemplate; 10726 Diag(PrevTemplate->getLocation(), 10727 diag::note_explicit_instantiation_here); 10728 return true; 10729 } 10730 10731 // Translate the parser's template argument list into our AST format. 10732 TemplateArgumentListInfo TemplateArgs = 10733 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10734 10735 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 10736 D.getIdentifierLoc(), TemplateArgs); 10737 if (Res.isInvalid()) 10738 return true; 10739 10740 if (!Res.isUsable()) { 10741 // We somehow specified dependent template arguments in an explicit 10742 // instantiation. This should probably only happen during error 10743 // recovery. 10744 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); 10745 return true; 10746 } 10747 10748 // Ignore access control bits, we don't need them for redeclaration 10749 // checking. 10750 Prev = cast<VarDecl>(Res.get()); 10751 } 10752 10753 // C++0x [temp.explicit]p2: 10754 // If the explicit instantiation is for a member function, a member class 10755 // or a static data member of a class template specialization, the name of 10756 // the class template specialization in the qualified-id for the member 10757 // name shall be a simple-template-id. 10758 // 10759 // C++98 has the same restriction, just worded differently. 10760 // 10761 // This does not apply to variable template specializations, where the 10762 // template-id is in the unqualified-id instead. 10763 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 10764 Diag(D.getIdentifierLoc(), 10765 diag::ext_explicit_instantiation_without_qualified_id) 10766 << Prev << D.getCXXScopeSpec().getRange(); 10767 10768 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 10769 10770 // Verify that it is okay to explicitly instantiate here. 10771 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 10772 SourceLocation POI = Prev->getPointOfInstantiation(); 10773 bool HasNoEffect = false; 10774 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 10775 PrevTSK, POI, HasNoEffect)) 10776 return true; 10777 10778 if (!HasNoEffect) { 10779 // Instantiate static data member or variable template. 10780 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10781 // Merge attributes. 10782 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 10783 if (TSK == TSK_ExplicitInstantiationDefinition) 10784 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 10785 } 10786 10787 // Check the new variable specialization against the parsed input. 10788 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) { 10789 Diag(T->getTypeLoc().getBeginLoc(), 10790 diag::err_invalid_var_template_spec_type) 10791 << 0 << PrevTemplate << R << Prev->getType(); 10792 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 10793 << 2 << PrevTemplate->getDeclName(); 10794 return true; 10795 } 10796 10797 // FIXME: Create an ExplicitInstantiation node? 10798 return (Decl*) nullptr; 10799 } 10800 10801 // If the declarator is a template-id, translate the parser's template 10802 // argument list into our AST format. 10803 bool HasExplicitTemplateArgs = false; 10804 TemplateArgumentListInfo TemplateArgs; 10805 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 10806 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10807 HasExplicitTemplateArgs = true; 10808 } 10809 10810 // C++ [temp.explicit]p1: 10811 // A [...] function [...] can be explicitly instantiated from its template. 10812 // A member function [...] of a class template can be explicitly 10813 // instantiated from the member definition associated with its class 10814 // template. 10815 UnresolvedSet<8> TemplateMatches; 10816 FunctionDecl *NonTemplateMatch = nullptr; 10817 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 10818 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10819 P != PEnd; ++P) { 10820 NamedDecl *Prev = *P; 10821 if (!HasExplicitTemplateArgs) { 10822 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 10823 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 10824 /*AdjustExceptionSpec*/true); 10825 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 10826 if (Method->getPrimaryTemplate()) { 10827 TemplateMatches.addDecl(Method, P.getAccess()); 10828 } else { 10829 // FIXME: Can this assert ever happen? Needs a test. 10830 assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); 10831 NonTemplateMatch = Method; 10832 } 10833 } 10834 } 10835 } 10836 10837 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 10838 if (!FunTmpl) 10839 continue; 10840 10841 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 10842 FunctionDecl *Specialization = nullptr; 10843 if (TemplateDeductionResult TDK 10844 = DeduceTemplateArguments(FunTmpl, 10845 (HasExplicitTemplateArgs ? &TemplateArgs 10846 : nullptr), 10847 R, Specialization, Info)) { 10848 // Keep track of almost-matches. 10849 FailedCandidates.addCandidate() 10850 .set(P.getPair(), FunTmpl->getTemplatedDecl(), 10851 MakeDeductionFailureInfo(Context, TDK, Info)); 10852 (void)TDK; 10853 continue; 10854 } 10855 10856 // Target attributes are part of the cuda function signature, so 10857 // the cuda target of the instantiated function must match that of its 10858 // template. Given that C++ template deduction does not take 10859 // target attributes into account, we reject candidates here that 10860 // have a different target. 10861 if (LangOpts.CUDA && 10862 IdentifyCUDATarget(Specialization, 10863 /* IgnoreImplicitHDAttr = */ true) != 10864 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { 10865 FailedCandidates.addCandidate().set( 10866 P.getPair(), FunTmpl->getTemplatedDecl(), 10867 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 10868 continue; 10869 } 10870 10871 TemplateMatches.addDecl(Specialization, P.getAccess()); 10872 } 10873 10874 FunctionDecl *Specialization = NonTemplateMatch; 10875 if (!Specialization) { 10876 // Find the most specialized function template specialization. 10877 UnresolvedSetIterator Result = getMostSpecialized( 10878 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, 10879 D.getIdentifierLoc(), 10880 PDiag(diag::err_explicit_instantiation_not_known) << Name, 10881 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 10882 PDiag(diag::note_explicit_instantiation_candidate)); 10883 10884 if (Result == TemplateMatches.end()) 10885 return true; 10886 10887 // Ignore access control bits, we don't need them for redeclaration checking. 10888 Specialization = cast<FunctionDecl>(*Result); 10889 } 10890 10891 // C++11 [except.spec]p4 10892 // In an explicit instantiation an exception-specification may be specified, 10893 // but is not required. 10894 // If an exception-specification is specified in an explicit instantiation 10895 // directive, it shall be compatible with the exception-specifications of 10896 // other declarations of that function. 10897 if (auto *FPT = R->getAs<FunctionProtoType>()) 10898 if (FPT->hasExceptionSpec()) { 10899 unsigned DiagID = 10900 diag::err_mismatched_exception_spec_explicit_instantiation; 10901 if (getLangOpts().MicrosoftExt) 10902 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 10903 bool Result = CheckEquivalentExceptionSpec( 10904 PDiag(DiagID) << Specialization->getType(), 10905 PDiag(diag::note_explicit_instantiation_here), 10906 Specialization->getType()->getAs<FunctionProtoType>(), 10907 Specialization->getLocation(), FPT, D.getBeginLoc()); 10908 // In Microsoft mode, mismatching exception specifications just cause a 10909 // warning. 10910 if (!getLangOpts().MicrosoftExt && Result) 10911 return true; 10912 } 10913 10914 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 10915 Diag(D.getIdentifierLoc(), 10916 diag::err_explicit_instantiation_member_function_not_instantiated) 10917 << Specialization 10918 << (Specialization->getTemplateSpecializationKind() == 10919 TSK_ExplicitSpecialization); 10920 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 10921 return true; 10922 } 10923 10924 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 10925 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 10926 PrevDecl = Specialization; 10927 10928 if (PrevDecl) { 10929 bool HasNoEffect = false; 10930 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 10931 PrevDecl, 10932 PrevDecl->getTemplateSpecializationKind(), 10933 PrevDecl->getPointOfInstantiation(), 10934 HasNoEffect)) 10935 return true; 10936 10937 // FIXME: We may still want to build some representation of this 10938 // explicit specialization. 10939 if (HasNoEffect) 10940 return (Decl*) nullptr; 10941 } 10942 10943 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 10944 // functions 10945 // valarray<size_t>::valarray(size_t) and 10946 // valarray<size_t>::~valarray() 10947 // that it declared to have internal linkage with the internal_linkage 10948 // attribute. Ignore the explicit instantiation declaration in this case. 10949 if (Specialization->hasAttr<InternalLinkageAttr>() && 10950 TSK == TSK_ExplicitInstantiationDeclaration) { 10951 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 10952 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 10953 RD->isInStdNamespace()) 10954 return (Decl*) nullptr; 10955 } 10956 10957 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 10958 10959 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10960 // instantiation declarations. 10961 if (TSK == TSK_ExplicitInstantiationDefinition && 10962 Specialization->hasAttr<DLLImportAttr>() && 10963 Context.getTargetInfo().getCXXABI().isMicrosoft()) 10964 TSK = TSK_ExplicitInstantiationDeclaration; 10965 10966 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10967 10968 if (Specialization->isDefined()) { 10969 // Let the ASTConsumer know that this function has been explicitly 10970 // instantiated now, and its linkage might have changed. 10971 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10972 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10973 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10974 10975 // C++0x [temp.explicit]p2: 10976 // If the explicit instantiation is for a member function, a member class 10977 // or a static data member of a class template specialization, the name of 10978 // the class template specialization in the qualified-id for the member 10979 // name shall be a simple-template-id. 10980 // 10981 // C++98 has the same restriction, just worded differently. 10982 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10983 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10984 D.getCXXScopeSpec().isSet() && 10985 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10986 Diag(D.getIdentifierLoc(), 10987 diag::ext_explicit_instantiation_without_qualified_id) 10988 << Specialization << D.getCXXScopeSpec().getRange(); 10989 10990 CheckExplicitInstantiation( 10991 *this, 10992 FunTmpl ? (NamedDecl *)FunTmpl 10993 : Specialization->getInstantiatedFromMemberFunction(), 10994 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10995 10996 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10997 return (Decl*) nullptr; 10998 } 10999 11000 TypeResult 11001 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 11002 const CXXScopeSpec &SS, IdentifierInfo *Name, 11003 SourceLocation TagLoc, SourceLocation NameLoc) { 11004 // This has to hold, because SS is expected to be defined. 11005 assert(Name && "Expected a name in a dependent tag"); 11006 11007 NestedNameSpecifier *NNS = SS.getScopeRep(); 11008 if (!NNS) 11009 return true; 11010 11011 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 11012 11013 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 11014 Diag(NameLoc, diag::err_dependent_tag_decl) 11015 << (TUK == TUK_Definition) << llvm::to_underlying(Kind) 11016 << SS.getRange(); 11017 return true; 11018 } 11019 11020 // Create the resulting type. 11021 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 11022 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 11023 11024 // Create type-source location information for this type. 11025 TypeLocBuilder TLB; 11026 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 11027 TL.setElaboratedKeywordLoc(TagLoc); 11028 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 11029 TL.setNameLoc(NameLoc); 11030 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 11031 } 11032 11033 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 11034 const CXXScopeSpec &SS, 11035 const IdentifierInfo &II, 11036 SourceLocation IdLoc, 11037 ImplicitTypenameContext IsImplicitTypename) { 11038 if (SS.isInvalid()) 11039 return true; 11040 11041 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 11042 Diag(TypenameLoc, 11043 getLangOpts().CPlusPlus11 ? 11044 diag::warn_cxx98_compat_typename_outside_of_template : 11045 diag::ext_typename_outside_of_template) 11046 << FixItHint::CreateRemoval(TypenameLoc); 11047 11048 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 11049 TypeSourceInfo *TSI = nullptr; 11050 QualType T = 11051 CheckTypenameType((TypenameLoc.isValid() || 11052 IsImplicitTypename == ImplicitTypenameContext::Yes) 11053 ? ElaboratedTypeKeyword::Typename 11054 : ElaboratedTypeKeyword::None, 11055 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 11056 /*DeducedTSTContext=*/true); 11057 if (T.isNull()) 11058 return true; 11059 return CreateParsedType(T, TSI); 11060 } 11061 11062 TypeResult 11063 Sema::ActOnTypenameType(Scope *S, 11064 SourceLocation TypenameLoc, 11065 const CXXScopeSpec &SS, 11066 SourceLocation TemplateKWLoc, 11067 TemplateTy TemplateIn, 11068 IdentifierInfo *TemplateII, 11069 SourceLocation TemplateIILoc, 11070 SourceLocation LAngleLoc, 11071 ASTTemplateArgsPtr TemplateArgsIn, 11072 SourceLocation RAngleLoc) { 11073 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 11074 Diag(TypenameLoc, 11075 getLangOpts().CPlusPlus11 ? 11076 diag::warn_cxx98_compat_typename_outside_of_template : 11077 diag::ext_typename_outside_of_template) 11078 << FixItHint::CreateRemoval(TypenameLoc); 11079 11080 // Strangely, non-type results are not ignored by this lookup, so the 11081 // program is ill-formed if it finds an injected-class-name. 11082 if (TypenameLoc.isValid()) { 11083 auto *LookupRD = 11084 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 11085 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 11086 Diag(TemplateIILoc, 11087 diag::ext_out_of_line_qualified_id_type_names_constructor) 11088 << TemplateII << 0 /*injected-class-name used as template name*/ 11089 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 11090 } 11091 } 11092 11093 // Translate the parser's template argument list in our AST format. 11094 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 11095 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 11096 11097 TemplateName Template = TemplateIn.get(); 11098 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 11099 // Construct a dependent template specialization type. 11100 assert(DTN && "dependent template has non-dependent name?"); 11101 assert(DTN->getQualifier() == SS.getScopeRep()); 11102 QualType T = Context.getDependentTemplateSpecializationType( 11103 ElaboratedTypeKeyword::Typename, DTN->getQualifier(), 11104 DTN->getIdentifier(), TemplateArgs.arguments()); 11105 11106 // Create source-location information for this type. 11107 TypeLocBuilder Builder; 11108 DependentTemplateSpecializationTypeLoc SpecTL 11109 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 11110 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 11111 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 11112 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 11113 SpecTL.setTemplateNameLoc(TemplateIILoc); 11114 SpecTL.setLAngleLoc(LAngleLoc); 11115 SpecTL.setRAngleLoc(RAngleLoc); 11116 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 11117 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 11118 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 11119 } 11120 11121 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 11122 if (T.isNull()) 11123 return true; 11124 11125 // Provide source-location information for the template specialization type. 11126 TypeLocBuilder Builder; 11127 TemplateSpecializationTypeLoc SpecTL 11128 = Builder.push<TemplateSpecializationTypeLoc>(T); 11129 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 11130 SpecTL.setTemplateNameLoc(TemplateIILoc); 11131 SpecTL.setLAngleLoc(LAngleLoc); 11132 SpecTL.setRAngleLoc(RAngleLoc); 11133 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 11134 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 11135 11136 T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename, 11137 SS.getScopeRep(), T); 11138 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 11139 TL.setElaboratedKeywordLoc(TypenameLoc); 11140 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 11141 11142 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 11143 return CreateParsedType(T, TSI); 11144 } 11145 11146 11147 /// Determine whether this failed name lookup should be treated as being 11148 /// disabled by a usage of std::enable_if. 11149 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 11150 SourceRange &CondRange, Expr *&Cond) { 11151 // We must be looking for a ::type... 11152 if (!II.isStr("type")) 11153 return false; 11154 11155 // ... within an explicitly-written template specialization... 11156 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 11157 return false; 11158 TypeLoc EnableIfTy = NNS.getTypeLoc(); 11159 TemplateSpecializationTypeLoc EnableIfTSTLoc = 11160 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 11161 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 11162 return false; 11163 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 11164 11165 // ... which names a complete class template declaration... 11166 const TemplateDecl *EnableIfDecl = 11167 EnableIfTST->getTemplateName().getAsTemplateDecl(); 11168 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 11169 return false; 11170 11171 // ... called "enable_if". 11172 const IdentifierInfo *EnableIfII = 11173 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 11174 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 11175 return false; 11176 11177 // Assume the first template argument is the condition. 11178 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 11179 11180 // Dig out the condition. 11181 Cond = nullptr; 11182 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 11183 != TemplateArgument::Expression) 11184 return true; 11185 11186 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 11187 11188 // Ignore Boolean literals; they add no value. 11189 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 11190 Cond = nullptr; 11191 11192 return true; 11193 } 11194 11195 QualType 11196 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 11197 SourceLocation KeywordLoc, 11198 NestedNameSpecifierLoc QualifierLoc, 11199 const IdentifierInfo &II, 11200 SourceLocation IILoc, 11201 TypeSourceInfo **TSI, 11202 bool DeducedTSTContext) { 11203 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 11204 DeducedTSTContext); 11205 if (T.isNull()) 11206 return QualType(); 11207 11208 *TSI = Context.CreateTypeSourceInfo(T); 11209 if (isa<DependentNameType>(T)) { 11210 DependentNameTypeLoc TL = 11211 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 11212 TL.setElaboratedKeywordLoc(KeywordLoc); 11213 TL.setQualifierLoc(QualifierLoc); 11214 TL.setNameLoc(IILoc); 11215 } else { 11216 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 11217 TL.setElaboratedKeywordLoc(KeywordLoc); 11218 TL.setQualifierLoc(QualifierLoc); 11219 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 11220 } 11221 return T; 11222 } 11223 11224 /// Build the type that describes a C++ typename specifier, 11225 /// e.g., "typename T::type". 11226 QualType 11227 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 11228 SourceLocation KeywordLoc, 11229 NestedNameSpecifierLoc QualifierLoc, 11230 const IdentifierInfo &II, 11231 SourceLocation IILoc, bool DeducedTSTContext) { 11232 CXXScopeSpec SS; 11233 SS.Adopt(QualifierLoc); 11234 11235 DeclContext *Ctx = nullptr; 11236 if (QualifierLoc) { 11237 Ctx = computeDeclContext(SS); 11238 if (!Ctx) { 11239 // If the nested-name-specifier is dependent and couldn't be 11240 // resolved to a type, build a typename type. 11241 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 11242 return Context.getDependentNameType(Keyword, 11243 QualifierLoc.getNestedNameSpecifier(), 11244 &II); 11245 } 11246 11247 // If the nested-name-specifier refers to the current instantiation, 11248 // the "typename" keyword itself is superfluous. In C++03, the 11249 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 11250 // allows such extraneous "typename" keywords, and we retroactively 11251 // apply this DR to C++03 code with only a warning. In any case we continue. 11252 11253 if (RequireCompleteDeclContext(SS, Ctx)) 11254 return QualType(); 11255 } 11256 11257 DeclarationName Name(&II); 11258 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 11259 if (Ctx) 11260 LookupQualifiedName(Result, Ctx, SS); 11261 else 11262 LookupName(Result, CurScope); 11263 unsigned DiagID = 0; 11264 Decl *Referenced = nullptr; 11265 switch (Result.getResultKind()) { 11266 case LookupResult::NotFound: { 11267 // If we're looking up 'type' within a template named 'enable_if', produce 11268 // a more specific diagnostic. 11269 SourceRange CondRange; 11270 Expr *Cond = nullptr; 11271 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 11272 // If we have a condition, narrow it down to the specific failed 11273 // condition. 11274 if (Cond) { 11275 Expr *FailedCond; 11276 std::string FailedDescription; 11277 std::tie(FailedCond, FailedDescription) = 11278 findFailedBooleanCondition(Cond); 11279 11280 Diag(FailedCond->getExprLoc(), 11281 diag::err_typename_nested_not_found_requirement) 11282 << FailedDescription 11283 << FailedCond->getSourceRange(); 11284 return QualType(); 11285 } 11286 11287 Diag(CondRange.getBegin(), 11288 diag::err_typename_nested_not_found_enable_if) 11289 << Ctx << CondRange; 11290 return QualType(); 11291 } 11292 11293 DiagID = Ctx ? diag::err_typename_nested_not_found 11294 : diag::err_unknown_typename; 11295 break; 11296 } 11297 11298 case LookupResult::FoundUnresolvedValue: { 11299 // We found a using declaration that is a value. Most likely, the using 11300 // declaration itself is meant to have the 'typename' keyword. 11301 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 11302 IILoc); 11303 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 11304 << Name << Ctx << FullRange; 11305 if (UnresolvedUsingValueDecl *Using 11306 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 11307 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 11308 Diag(Loc, diag::note_using_value_decl_missing_typename) 11309 << FixItHint::CreateInsertion(Loc, "typename "); 11310 } 11311 } 11312 // Fall through to create a dependent typename type, from which we can recover 11313 // better. 11314 [[fallthrough]]; 11315 11316 case LookupResult::NotFoundInCurrentInstantiation: 11317 // Okay, it's a member of an unknown instantiation. 11318 return Context.getDependentNameType(Keyword, 11319 QualifierLoc.getNestedNameSpecifier(), 11320 &II); 11321 11322 case LookupResult::Found: 11323 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 11324 // C++ [class.qual]p2: 11325 // In a lookup in which function names are not ignored and the 11326 // nested-name-specifier nominates a class C, if the name specified 11327 // after the nested-name-specifier, when looked up in C, is the 11328 // injected-class-name of C [...] then the name is instead considered 11329 // to name the constructor of class C. 11330 // 11331 // Unlike in an elaborated-type-specifier, function names are not ignored 11332 // in typename-specifier lookup. However, they are ignored in all the 11333 // contexts where we form a typename type with no keyword (that is, in 11334 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 11335 // 11336 // FIXME: That's not strictly true: mem-initializer-id lookup does not 11337 // ignore functions, but that appears to be an oversight. 11338 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 11339 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 11340 if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD && 11341 FoundRD->isInjectedClassName() && 11342 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 11343 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 11344 << &II << 1 << 0 /*'typename' keyword used*/; 11345 11346 // We found a type. Build an ElaboratedType, since the 11347 // typename-specifier was just sugar. 11348 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 11349 return Context.getElaboratedType(Keyword, 11350 QualifierLoc.getNestedNameSpecifier(), 11351 Context.getTypeDeclType(Type)); 11352 } 11353 11354 // C++ [dcl.type.simple]p2: 11355 // A type-specifier of the form 11356 // typename[opt] nested-name-specifier[opt] template-name 11357 // is a placeholder for a deduced class type [...]. 11358 if (getLangOpts().CPlusPlus17) { 11359 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 11360 if (!DeducedTSTContext) { 11361 QualType T(QualifierLoc 11362 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 11363 : nullptr, 0); 11364 if (!T.isNull()) 11365 Diag(IILoc, diag::err_dependent_deduced_tst) 11366 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 11367 else 11368 Diag(IILoc, diag::err_deduced_tst) 11369 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 11370 NoteTemplateLocation(*TD); 11371 return QualType(); 11372 } 11373 return Context.getElaboratedType( 11374 Keyword, QualifierLoc.getNestedNameSpecifier(), 11375 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 11376 QualType(), false)); 11377 } 11378 } 11379 11380 DiagID = Ctx ? diag::err_typename_nested_not_type 11381 : diag::err_typename_not_type; 11382 Referenced = Result.getFoundDecl(); 11383 break; 11384 11385 case LookupResult::FoundOverloaded: 11386 DiagID = Ctx ? diag::err_typename_nested_not_type 11387 : diag::err_typename_not_type; 11388 Referenced = *Result.begin(); 11389 break; 11390 11391 case LookupResult::Ambiguous: 11392 return QualType(); 11393 } 11394 11395 // If we get here, it's because name lookup did not find a 11396 // type. Emit an appropriate diagnostic and return an error. 11397 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 11398 IILoc); 11399 if (Ctx) 11400 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 11401 else 11402 Diag(IILoc, DiagID) << FullRange << Name; 11403 if (Referenced) 11404 Diag(Referenced->getLocation(), 11405 Ctx ? diag::note_typename_member_refers_here 11406 : diag::note_typename_refers_here) 11407 << Name; 11408 return QualType(); 11409 } 11410 11411 namespace { 11412 // See Sema::RebuildTypeInCurrentInstantiation 11413 class CurrentInstantiationRebuilder 11414 : public TreeTransform<CurrentInstantiationRebuilder> { 11415 SourceLocation Loc; 11416 DeclarationName Entity; 11417 11418 public: 11419 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 11420 11421 CurrentInstantiationRebuilder(Sema &SemaRef, 11422 SourceLocation Loc, 11423 DeclarationName Entity) 11424 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 11425 Loc(Loc), Entity(Entity) { } 11426 11427 /// Determine whether the given type \p T has already been 11428 /// transformed. 11429 /// 11430 /// For the purposes of type reconstruction, a type has already been 11431 /// transformed if it is NULL or if it is not dependent. 11432 bool AlreadyTransformed(QualType T) { 11433 return T.isNull() || !T->isInstantiationDependentType(); 11434 } 11435 11436 /// Returns the location of the entity whose type is being 11437 /// rebuilt. 11438 SourceLocation getBaseLocation() { return Loc; } 11439 11440 /// Returns the name of the entity whose type is being rebuilt. 11441 DeclarationName getBaseEntity() { return Entity; } 11442 11443 /// Sets the "base" location and entity when that 11444 /// information is known based on another transformation. 11445 void setBase(SourceLocation Loc, DeclarationName Entity) { 11446 this->Loc = Loc; 11447 this->Entity = Entity; 11448 } 11449 11450 ExprResult TransformLambdaExpr(LambdaExpr *E) { 11451 // Lambdas never need to be transformed. 11452 return E; 11453 } 11454 }; 11455 } // end anonymous namespace 11456 11457 /// Rebuilds a type within the context of the current instantiation. 11458 /// 11459 /// The type \p T is part of the type of an out-of-line member definition of 11460 /// a class template (or class template partial specialization) that was parsed 11461 /// and constructed before we entered the scope of the class template (or 11462 /// partial specialization thereof). This routine will rebuild that type now 11463 /// that we have entered the declarator's scope, which may produce different 11464 /// canonical types, e.g., 11465 /// 11466 /// \code 11467 /// template<typename T> 11468 /// struct X { 11469 /// typedef T* pointer; 11470 /// pointer data(); 11471 /// }; 11472 /// 11473 /// template<typename T> 11474 /// typename X<T>::pointer X<T>::data() { ... } 11475 /// \endcode 11476 /// 11477 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 11478 /// since we do not know that we can look into X<T> when we parsed the type. 11479 /// This function will rebuild the type, performing the lookup of "pointer" 11480 /// in X<T> and returning an ElaboratedType whose canonical type is the same 11481 /// as the canonical type of T*, allowing the return types of the out-of-line 11482 /// definition and the declaration to match. 11483 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 11484 SourceLocation Loc, 11485 DeclarationName Name) { 11486 if (!T || !T->getType()->isInstantiationDependentType()) 11487 return T; 11488 11489 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 11490 return Rebuilder.TransformType(T); 11491 } 11492 11493 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 11494 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 11495 DeclarationName()); 11496 return Rebuilder.TransformExpr(E); 11497 } 11498 11499 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 11500 if (SS.isInvalid()) 11501 return true; 11502 11503 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 11504 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 11505 DeclarationName()); 11506 NestedNameSpecifierLoc Rebuilt 11507 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 11508 if (!Rebuilt) 11509 return true; 11510 11511 SS.Adopt(Rebuilt); 11512 return false; 11513 } 11514 11515 /// Rebuild the template parameters now that we know we're in a current 11516 /// instantiation. 11517 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 11518 TemplateParameterList *Params) { 11519 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 11520 Decl *Param = Params->getParam(I); 11521 11522 // There is nothing to rebuild in a type parameter. 11523 if (isa<TemplateTypeParmDecl>(Param)) 11524 continue; 11525 11526 // Rebuild the template parameter list of a template template parameter. 11527 if (TemplateTemplateParmDecl *TTP 11528 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 11529 if (RebuildTemplateParamsInCurrentInstantiation( 11530 TTP->getTemplateParameters())) 11531 return true; 11532 11533 continue; 11534 } 11535 11536 // Rebuild the type of a non-type template parameter. 11537 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 11538 TypeSourceInfo *NewTSI 11539 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 11540 NTTP->getLocation(), 11541 NTTP->getDeclName()); 11542 if (!NewTSI) 11543 return true; 11544 11545 if (NewTSI->getType()->isUndeducedType()) { 11546 // C++17 [temp.dep.expr]p3: 11547 // An id-expression is type-dependent if it contains 11548 // - an identifier associated by name lookup with a non-type 11549 // template-parameter declared with a type that contains a 11550 // placeholder type (7.1.7.4), 11551 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI); 11552 } 11553 11554 if (NewTSI != NTTP->getTypeSourceInfo()) { 11555 NTTP->setTypeSourceInfo(NewTSI); 11556 NTTP->setType(NewTSI->getType()); 11557 } 11558 } 11559 11560 return false; 11561 } 11562 11563 /// Produces a formatted string that describes the binding of 11564 /// template parameters to template arguments. 11565 std::string 11566 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 11567 const TemplateArgumentList &Args) { 11568 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 11569 } 11570 11571 std::string 11572 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 11573 const TemplateArgument *Args, 11574 unsigned NumArgs) { 11575 SmallString<128> Str; 11576 llvm::raw_svector_ostream Out(Str); 11577 11578 if (!Params || Params->size() == 0 || NumArgs == 0) 11579 return std::string(); 11580 11581 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 11582 if (I >= NumArgs) 11583 break; 11584 11585 if (I == 0) 11586 Out << "[with "; 11587 else 11588 Out << ", "; 11589 11590 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 11591 Out << Id->getName(); 11592 } else { 11593 Out << '$' << I; 11594 } 11595 11596 Out << " = "; 11597 Args[I].print(getPrintingPolicy(), Out, 11598 TemplateParameterList::shouldIncludeTypeForArgument( 11599 getPrintingPolicy(), Params, I)); 11600 } 11601 11602 Out << ']'; 11603 return std::string(Out.str()); 11604 } 11605 11606 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 11607 CachedTokens &Toks) { 11608 if (!FD) 11609 return; 11610 11611 auto LPT = std::make_unique<LateParsedTemplate>(); 11612 11613 // Take tokens to avoid allocations 11614 LPT->Toks.swap(Toks); 11615 LPT->D = FnD; 11616 LPT->FPO = getCurFPFeatures(); 11617 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 11618 11619 FD->setLateTemplateParsed(true); 11620 } 11621 11622 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 11623 if (!FD) 11624 return; 11625 FD->setLateTemplateParsed(false); 11626 } 11627 11628 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 11629 DeclContext *DC = CurContext; 11630 11631 while (DC) { 11632 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 11633 const FunctionDecl *FD = RD->isLocalClass(); 11634 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 11635 } else if (DC->isTranslationUnit() || DC->isNamespace()) 11636 return false; 11637 11638 DC = DC->getParent(); 11639 } 11640 return false; 11641 } 11642 11643 namespace { 11644 /// Walk the path from which a declaration was instantiated, and check 11645 /// that every explicit specialization along that path is visible. This enforces 11646 /// C++ [temp.expl.spec]/6: 11647 /// 11648 /// If a template, a member template or a member of a class template is 11649 /// explicitly specialized then that specialization shall be declared before 11650 /// the first use of that specialization that would cause an implicit 11651 /// instantiation to take place, in every translation unit in which such a 11652 /// use occurs; no diagnostic is required. 11653 /// 11654 /// and also C++ [temp.class.spec]/1: 11655 /// 11656 /// A partial specialization shall be declared before the first use of a 11657 /// class template specialization that would make use of the partial 11658 /// specialization as the result of an implicit or explicit instantiation 11659 /// in every translation unit in which such a use occurs; no diagnostic is 11660 /// required. 11661 class ExplicitSpecializationVisibilityChecker { 11662 Sema &S; 11663 SourceLocation Loc; 11664 llvm::SmallVector<Module *, 8> Modules; 11665 Sema::AcceptableKind Kind; 11666 11667 public: 11668 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc, 11669 Sema::AcceptableKind Kind) 11670 : S(S), Loc(Loc), Kind(Kind) {} 11671 11672 void check(NamedDecl *ND) { 11673 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 11674 return checkImpl(FD); 11675 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 11676 return checkImpl(RD); 11677 if (auto *VD = dyn_cast<VarDecl>(ND)) 11678 return checkImpl(VD); 11679 if (auto *ED = dyn_cast<EnumDecl>(ND)) 11680 return checkImpl(ED); 11681 } 11682 11683 private: 11684 void diagnose(NamedDecl *D, bool IsPartialSpec) { 11685 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 11686 : Sema::MissingImportKind::ExplicitSpecialization; 11687 const bool Recover = true; 11688 11689 // If we got a custom set of modules (because only a subset of the 11690 // declarations are interesting), use them, otherwise let 11691 // diagnoseMissingImport intelligently pick some. 11692 if (Modules.empty()) 11693 S.diagnoseMissingImport(Loc, D, Kind, Recover); 11694 else 11695 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 11696 } 11697 11698 bool CheckMemberSpecialization(const NamedDecl *D) { 11699 return Kind == Sema::AcceptableKind::Visible 11700 ? S.hasVisibleMemberSpecialization(D) 11701 : S.hasReachableMemberSpecialization(D); 11702 } 11703 11704 bool CheckExplicitSpecialization(const NamedDecl *D) { 11705 return Kind == Sema::AcceptableKind::Visible 11706 ? S.hasVisibleExplicitSpecialization(D) 11707 : S.hasReachableExplicitSpecialization(D); 11708 } 11709 11710 bool CheckDeclaration(const NamedDecl *D) { 11711 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D) 11712 : S.hasReachableDeclaration(D); 11713 } 11714 11715 // Check a specific declaration. There are three problematic cases: 11716 // 11717 // 1) The declaration is an explicit specialization of a template 11718 // specialization. 11719 // 2) The declaration is an explicit specialization of a member of an 11720 // templated class. 11721 // 3) The declaration is an instantiation of a template, and that template 11722 // is an explicit specialization of a member of a templated class. 11723 // 11724 // We don't need to go any deeper than that, as the instantiation of the 11725 // surrounding class / etc is not triggered by whatever triggered this 11726 // instantiation, and thus should be checked elsewhere. 11727 template<typename SpecDecl> 11728 void checkImpl(SpecDecl *Spec) { 11729 bool IsHiddenExplicitSpecialization = false; 11730 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 11731 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo() 11732 ? !CheckMemberSpecialization(Spec) 11733 : !CheckExplicitSpecialization(Spec); 11734 } else { 11735 checkInstantiated(Spec); 11736 } 11737 11738 if (IsHiddenExplicitSpecialization) 11739 diagnose(Spec->getMostRecentDecl(), false); 11740 } 11741 11742 void checkInstantiated(FunctionDecl *FD) { 11743 if (auto *TD = FD->getPrimaryTemplate()) 11744 checkTemplate(TD); 11745 } 11746 11747 void checkInstantiated(CXXRecordDecl *RD) { 11748 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 11749 if (!SD) 11750 return; 11751 11752 auto From = SD->getSpecializedTemplateOrPartial(); 11753 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 11754 checkTemplate(TD); 11755 else if (auto *TD = 11756 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 11757 if (!CheckDeclaration(TD)) 11758 diagnose(TD, true); 11759 checkTemplate(TD); 11760 } 11761 } 11762 11763 void checkInstantiated(VarDecl *RD) { 11764 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 11765 if (!SD) 11766 return; 11767 11768 auto From = SD->getSpecializedTemplateOrPartial(); 11769 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 11770 checkTemplate(TD); 11771 else if (auto *TD = 11772 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 11773 if (!CheckDeclaration(TD)) 11774 diagnose(TD, true); 11775 checkTemplate(TD); 11776 } 11777 } 11778 11779 void checkInstantiated(EnumDecl *FD) {} 11780 11781 template<typename TemplDecl> 11782 void checkTemplate(TemplDecl *TD) { 11783 if (TD->isMemberSpecialization()) { 11784 if (!CheckMemberSpecialization(TD)) 11785 diagnose(TD->getMostRecentDecl(), false); 11786 } 11787 } 11788 }; 11789 } // end anonymous namespace 11790 11791 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 11792 if (!getLangOpts().Modules) 11793 return; 11794 11795 ExplicitSpecializationVisibilityChecker(*this, Loc, 11796 Sema::AcceptableKind::Visible) 11797 .check(Spec); 11798 } 11799 11800 void Sema::checkSpecializationReachability(SourceLocation Loc, 11801 NamedDecl *Spec) { 11802 if (!getLangOpts().CPlusPlusModules) 11803 return checkSpecializationVisibility(Loc, Spec); 11804 11805 ExplicitSpecializationVisibilityChecker(*this, Loc, 11806 Sema::AcceptableKind::Reachable) 11807 .check(Spec); 11808 } 11809 11810 /// Returns the top most location responsible for the definition of \p N. 11811 /// If \p N is a a template specialization, this is the location 11812 /// of the top of the instantiation stack. 11813 /// Otherwise, the location of \p N is returned. 11814 SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const { 11815 if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty()) 11816 return N->getLocation(); 11817 if (const auto *FD = dyn_cast<FunctionDecl>(N)) { 11818 if (!FD->isFunctionTemplateSpecialization()) 11819 return FD->getLocation(); 11820 } else if (!isa<ClassTemplateSpecializationDecl, 11821 VarTemplateSpecializationDecl>(N)) { 11822 return N->getLocation(); 11823 } 11824 for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) { 11825 if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid()) 11826 continue; 11827 return CSC.PointOfInstantiation; 11828 } 11829 return N->getLocation(); 11830 } 11831