xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaTemplate.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 //  This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10 
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TemplateName.h"
21 #include "clang/AST/TypeVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/Stack.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Overload.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/Template.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/SmallBitVector.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/StringExtras.h"
42 
43 #include <iterator>
44 #include <optional>
45 using namespace clang;
46 using namespace sema;
47 
48 // Exported for use by Parser.
49 SourceRange
50 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
51                               unsigned N) {
52   if (!N) return SourceRange();
53   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
54 }
55 
56 unsigned Sema::getTemplateDepth(Scope *S) const {
57   unsigned Depth = 0;
58 
59   // Each template parameter scope represents one level of template parameter
60   // depth.
61   for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
62        TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
63     ++Depth;
64   }
65 
66   // Note that there are template parameters with the given depth.
67   auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
68 
69   // Look for parameters of an enclosing generic lambda. We don't create a
70   // template parameter scope for these.
71   for (FunctionScopeInfo *FSI : getFunctionScopes()) {
72     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
73       if (!LSI->TemplateParams.empty()) {
74         ParamsAtDepth(LSI->AutoTemplateParameterDepth);
75         break;
76       }
77       if (LSI->GLTemplateParameterList) {
78         ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
79         break;
80       }
81     }
82   }
83 
84   // Look for parameters of an enclosing terse function template. We don't
85   // create a template parameter scope for these either.
86   for (const InventedTemplateParameterInfo &Info :
87        getInventedParameterInfos()) {
88     if (!Info.TemplateParams.empty()) {
89       ParamsAtDepth(Info.AutoTemplateParameterDepth);
90       break;
91     }
92   }
93 
94   return Depth;
95 }
96 
97 /// \brief Determine whether the declaration found is acceptable as the name
98 /// of a template and, if so, return that template declaration. Otherwise,
99 /// returns null.
100 ///
101 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
102 /// is true. In all other cases it will return a TemplateDecl (or null).
103 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
104                                        bool AllowFunctionTemplates,
105                                        bool AllowDependent) {
106   D = D->getUnderlyingDecl();
107 
108   if (isa<TemplateDecl>(D)) {
109     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
110       return nullptr;
111 
112     return D;
113   }
114 
115   if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) {
116     // C++ [temp.local]p1:
117     //   Like normal (non-template) classes, class templates have an
118     //   injected-class-name (Clause 9). The injected-class-name
119     //   can be used with or without a template-argument-list. When
120     //   it is used without a template-argument-list, it is
121     //   equivalent to the injected-class-name followed by the
122     //   template-parameters of the class template enclosed in
123     //   <>. When it is used with a template-argument-list, it
124     //   refers to the specified class template specialization,
125     //   which could be the current specialization or another
126     //   specialization.
127     if (Record->isInjectedClassName()) {
128       Record = cast<CXXRecordDecl>(Record->getDeclContext());
129       if (Record->getDescribedClassTemplate())
130         return Record->getDescribedClassTemplate();
131 
132       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record))
133         return Spec->getSpecializedTemplate();
134     }
135 
136     return nullptr;
137   }
138 
139   // 'using Dependent::foo;' can resolve to a template name.
140   // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
141   // injected-class-name).
142   if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
143     return D;
144 
145   return nullptr;
146 }
147 
148 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
149                                          bool AllowFunctionTemplates,
150                                          bool AllowDependent) {
151   LookupResult::Filter filter = R.makeFilter();
152   while (filter.hasNext()) {
153     NamedDecl *Orig = filter.next();
154     if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
155       filter.erase();
156   }
157   filter.done();
158 }
159 
160 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
161                                          bool AllowFunctionTemplates,
162                                          bool AllowDependent,
163                                          bool AllowNonTemplateFunctions) {
164   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
165     if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
166       return true;
167     if (AllowNonTemplateFunctions &&
168         isa<FunctionDecl>((*I)->getUnderlyingDecl()))
169       return true;
170   }
171 
172   return false;
173 }
174 
175 TemplateNameKind Sema::isTemplateName(Scope *S,
176                                       CXXScopeSpec &SS,
177                                       bool hasTemplateKeyword,
178                                       const UnqualifiedId &Name,
179                                       ParsedType ObjectTypePtr,
180                                       bool EnteringContext,
181                                       TemplateTy &TemplateResult,
182                                       bool &MemberOfUnknownSpecialization,
183                                       bool Disambiguation) {
184   assert(getLangOpts().CPlusPlus && "No template names in C!");
185 
186   DeclarationName TName;
187   MemberOfUnknownSpecialization = false;
188 
189   switch (Name.getKind()) {
190   case UnqualifiedIdKind::IK_Identifier:
191     TName = DeclarationName(Name.Identifier);
192     break;
193 
194   case UnqualifiedIdKind::IK_OperatorFunctionId:
195     TName = Context.DeclarationNames.getCXXOperatorName(
196                                               Name.OperatorFunctionId.Operator);
197     break;
198 
199   case UnqualifiedIdKind::IK_LiteralOperatorId:
200     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
201     break;
202 
203   default:
204     return TNK_Non_template;
205   }
206 
207   QualType ObjectType = ObjectTypePtr.get();
208 
209   AssumedTemplateKind AssumedTemplate;
210   LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
211   if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
212                          MemberOfUnknownSpecialization, SourceLocation(),
213                          &AssumedTemplate,
214                          /*AllowTypoCorrection=*/!Disambiguation))
215     return TNK_Non_template;
216 
217   if (AssumedTemplate != AssumedTemplateKind::None) {
218     TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
219     // Let the parser know whether we found nothing or found functions; if we
220     // found nothing, we want to more carefully check whether this is actually
221     // a function template name versus some other kind of undeclared identifier.
222     return AssumedTemplate == AssumedTemplateKind::FoundNothing
223                ? TNK_Undeclared_template
224                : TNK_Function_template;
225   }
226 
227   if (R.empty())
228     return TNK_Non_template;
229 
230   NamedDecl *D = nullptr;
231   UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
232   if (R.isAmbiguous()) {
233     // If we got an ambiguity involving a non-function template, treat this
234     // as a template name, and pick an arbitrary template for error recovery.
235     bool AnyFunctionTemplates = false;
236     for (NamedDecl *FoundD : R) {
237       if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
238         if (isa<FunctionTemplateDecl>(FoundTemplate))
239           AnyFunctionTemplates = true;
240         else {
241           D = FoundTemplate;
242           FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
243           break;
244         }
245       }
246     }
247 
248     // If we didn't find any templates at all, this isn't a template name.
249     // Leave the ambiguity for a later lookup to diagnose.
250     if (!D && !AnyFunctionTemplates) {
251       R.suppressDiagnostics();
252       return TNK_Non_template;
253     }
254 
255     // If the only templates were function templates, filter out the rest.
256     // We'll diagnose the ambiguity later.
257     if (!D)
258       FilterAcceptableTemplateNames(R);
259   }
260 
261   // At this point, we have either picked a single template name declaration D
262   // or we have a non-empty set of results R containing either one template name
263   // declaration or a set of function templates.
264 
265   TemplateName Template;
266   TemplateNameKind TemplateKind;
267 
268   unsigned ResultCount = R.end() - R.begin();
269   if (!D && ResultCount > 1) {
270     // We assume that we'll preserve the qualifier from a function
271     // template name in other ways.
272     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
273     TemplateKind = TNK_Function_template;
274 
275     // We'll do this lookup again later.
276     R.suppressDiagnostics();
277   } else {
278     if (!D) {
279       D = getAsTemplateNameDecl(*R.begin());
280       assert(D && "unambiguous result is not a template name");
281     }
282 
283     if (isa<UnresolvedUsingValueDecl>(D)) {
284       // We don't yet know whether this is a template-name or not.
285       MemberOfUnknownSpecialization = true;
286       return TNK_Non_template;
287     }
288 
289     TemplateDecl *TD = cast<TemplateDecl>(D);
290     Template =
291         FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
292     assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
293     if (SS.isSet() && !SS.isInvalid()) {
294       NestedNameSpecifier *Qualifier = SS.getScopeRep();
295       Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
296                                                   Template);
297     }
298 
299     if (isa<FunctionTemplateDecl>(TD)) {
300       TemplateKind = TNK_Function_template;
301 
302       // We'll do this lookup again later.
303       R.suppressDiagnostics();
304     } else {
305       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
306              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
307              isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
308       TemplateKind =
309           isa<VarTemplateDecl>(TD) ? TNK_Var_template :
310           isa<ConceptDecl>(TD) ? TNK_Concept_template :
311           TNK_Type_template;
312     }
313   }
314 
315   TemplateResult = TemplateTy::make(Template);
316   return TemplateKind;
317 }
318 
319 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
320                                 SourceLocation NameLoc, CXXScopeSpec &SS,
321                                 ParsedTemplateTy *Template /*=nullptr*/) {
322   bool MemberOfUnknownSpecialization = false;
323 
324   // We could use redeclaration lookup here, but we don't need to: the
325   // syntactic form of a deduction guide is enough to identify it even
326   // if we can't look up the template name at all.
327   LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
328   if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
329                          /*EnteringContext*/ false,
330                          MemberOfUnknownSpecialization))
331     return false;
332 
333   if (R.empty()) return false;
334   if (R.isAmbiguous()) {
335     // FIXME: Diagnose an ambiguity if we find at least one template.
336     R.suppressDiagnostics();
337     return false;
338   }
339 
340   // We only treat template-names that name type templates as valid deduction
341   // guide names.
342   TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
343   if (!TD || !getAsTypeTemplateDecl(TD))
344     return false;
345 
346   if (Template)
347     *Template = TemplateTy::make(TemplateName(TD));
348   return true;
349 }
350 
351 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
352                                        SourceLocation IILoc,
353                                        Scope *S,
354                                        const CXXScopeSpec *SS,
355                                        TemplateTy &SuggestedTemplate,
356                                        TemplateNameKind &SuggestedKind) {
357   // We can't recover unless there's a dependent scope specifier preceding the
358   // template name.
359   // FIXME: Typo correction?
360   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
361       computeDeclContext(*SS))
362     return false;
363 
364   // The code is missing a 'template' keyword prior to the dependent template
365   // name.
366   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
367   Diag(IILoc, diag::err_template_kw_missing)
368     << Qualifier << II.getName()
369     << FixItHint::CreateInsertion(IILoc, "template ");
370   SuggestedTemplate
371     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
372   SuggestedKind = TNK_Dependent_template_name;
373   return true;
374 }
375 
376 bool Sema::LookupTemplateName(LookupResult &Found,
377                               Scope *S, CXXScopeSpec &SS,
378                               QualType ObjectType,
379                               bool EnteringContext,
380                               bool &MemberOfUnknownSpecialization,
381                               RequiredTemplateKind RequiredTemplate,
382                               AssumedTemplateKind *ATK,
383                               bool AllowTypoCorrection) {
384   if (ATK)
385     *ATK = AssumedTemplateKind::None;
386 
387   if (SS.isInvalid())
388     return true;
389 
390   Found.setTemplateNameLookup(true);
391 
392   // Determine where to perform name lookup
393   MemberOfUnknownSpecialization = false;
394   DeclContext *LookupCtx = nullptr;
395   bool IsDependent = false;
396   if (!ObjectType.isNull()) {
397     // This nested-name-specifier occurs in a member access expression, e.g.,
398     // x->B::f, and we are looking into the type of the object.
399     assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
400     LookupCtx = computeDeclContext(ObjectType);
401     IsDependent = !LookupCtx && ObjectType->isDependentType();
402     assert((IsDependent || !ObjectType->isIncompleteType() ||
403             !ObjectType->getAs<TagType>() ||
404             ObjectType->castAs<TagType>()->isBeingDefined()) &&
405            "Caller should have completed object type");
406 
407     // Template names cannot appear inside an Objective-C class or object type
408     // or a vector type.
409     //
410     // FIXME: This is wrong. For example:
411     //
412     //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
413     //   Vec<int> vi;
414     //   vi.Vec<int>::~Vec<int>();
415     //
416     // ... should be accepted but we will not treat 'Vec' as a template name
417     // here. The right thing to do would be to check if the name is a valid
418     // vector component name, and look up a template name if not. And similarly
419     // for lookups into Objective-C class and object types, where the same
420     // problem can arise.
421     if (ObjectType->isObjCObjectOrInterfaceType() ||
422         ObjectType->isVectorType()) {
423       Found.clear();
424       return false;
425     }
426   } else if (SS.isNotEmpty()) {
427     // This nested-name-specifier occurs after another nested-name-specifier,
428     // so long into the context associated with the prior nested-name-specifier.
429     LookupCtx = computeDeclContext(SS, EnteringContext);
430     IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
431 
432     // The declaration context must be complete.
433     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
434       return true;
435   }
436 
437   bool ObjectTypeSearchedInScope = false;
438   bool AllowFunctionTemplatesInLookup = true;
439   if (LookupCtx) {
440     // Perform "qualified" name lookup into the declaration context we
441     // computed, which is either the type of the base of a member access
442     // expression or the declaration context associated with a prior
443     // nested-name-specifier.
444     LookupQualifiedName(Found, LookupCtx);
445 
446     // FIXME: The C++ standard does not clearly specify what happens in the
447     // case where the object type is dependent, and implementations vary. In
448     // Clang, we treat a name after a . or -> as a template-name if lookup
449     // finds a non-dependent member or member of the current instantiation that
450     // is a type template, or finds no such members and lookup in the context
451     // of the postfix-expression finds a type template. In the latter case, the
452     // name is nonetheless dependent, and we may resolve it to a member of an
453     // unknown specialization when we come to instantiate the template.
454     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
455   }
456 
457   if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
458     // C++ [basic.lookup.classref]p1:
459     //   In a class member access expression (5.2.5), if the . or -> token is
460     //   immediately followed by an identifier followed by a <, the
461     //   identifier must be looked up to determine whether the < is the
462     //   beginning of a template argument list (14.2) or a less-than operator.
463     //   The identifier is first looked up in the class of the object
464     //   expression. If the identifier is not found, it is then looked up in
465     //   the context of the entire postfix-expression and shall name a class
466     //   template.
467     if (S)
468       LookupName(Found, S);
469 
470     if (!ObjectType.isNull()) {
471       //  FIXME: We should filter out all non-type templates here, particularly
472       //  variable templates and concepts. But the exclusion of alias templates
473       //  and template template parameters is a wording defect.
474       AllowFunctionTemplatesInLookup = false;
475       ObjectTypeSearchedInScope = true;
476     }
477 
478     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
479   }
480 
481   if (Found.isAmbiguous())
482     return false;
483 
484   if (ATK && SS.isEmpty() && ObjectType.isNull() &&
485       !RequiredTemplate.hasTemplateKeyword()) {
486     // C++2a [temp.names]p2:
487     //   A name is also considered to refer to a template if it is an
488     //   unqualified-id followed by a < and name lookup finds either one or more
489     //   functions or finds nothing.
490     //
491     // To keep our behavior consistent, we apply the "finds nothing" part in
492     // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
493     // successfully form a call to an undeclared template-id.
494     bool AllFunctions =
495         getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
496           return isa<FunctionDecl>(ND->getUnderlyingDecl());
497         });
498     if (AllFunctions || (Found.empty() && !IsDependent)) {
499       // If lookup found any functions, or if this is a name that can only be
500       // used for a function, then strongly assume this is a function
501       // template-id.
502       *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
503                  ? AssumedTemplateKind::FoundNothing
504                  : AssumedTemplateKind::FoundFunctions;
505       Found.clear();
506       return false;
507     }
508   }
509 
510   if (Found.empty() && !IsDependent && AllowTypoCorrection) {
511     // If we did not find any names, and this is not a disambiguation, attempt
512     // to correct any typos.
513     DeclarationName Name = Found.getLookupName();
514     Found.clear();
515     // Simple filter callback that, for keywords, only accepts the C++ *_cast
516     DefaultFilterCCC FilterCCC{};
517     FilterCCC.WantTypeSpecifiers = false;
518     FilterCCC.WantExpressionKeywords = false;
519     FilterCCC.WantRemainingKeywords = false;
520     FilterCCC.WantCXXNamedCasts = true;
521     if (TypoCorrection Corrected =
522             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
523                         &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
524       if (auto *ND = Corrected.getFoundDecl())
525         Found.addDecl(ND);
526       FilterAcceptableTemplateNames(Found);
527       if (Found.isAmbiguous()) {
528         Found.clear();
529       } else if (!Found.empty()) {
530         Found.setLookupName(Corrected.getCorrection());
531         if (LookupCtx) {
532           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
533           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
534                                   Name.getAsString() == CorrectedStr;
535           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
536                                     << Name << LookupCtx << DroppedSpecifier
537                                     << SS.getRange());
538         } else {
539           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
540         }
541       }
542     }
543   }
544 
545   NamedDecl *ExampleLookupResult =
546       Found.empty() ? nullptr : Found.getRepresentativeDecl();
547   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
548   if (Found.empty()) {
549     if (IsDependent) {
550       MemberOfUnknownSpecialization = true;
551       return false;
552     }
553 
554     // If a 'template' keyword was used, a lookup that finds only non-template
555     // names is an error.
556     if (ExampleLookupResult && RequiredTemplate) {
557       Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
558           << Found.getLookupName() << SS.getRange()
559           << RequiredTemplate.hasTemplateKeyword()
560           << RequiredTemplate.getTemplateKeywordLoc();
561       Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
562            diag::note_template_kw_refers_to_non_template)
563           << Found.getLookupName();
564       return true;
565     }
566 
567     return false;
568   }
569 
570   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
571       !getLangOpts().CPlusPlus11) {
572     // C++03 [basic.lookup.classref]p1:
573     //   [...] If the lookup in the class of the object expression finds a
574     //   template, the name is also looked up in the context of the entire
575     //   postfix-expression and [...]
576     //
577     // Note: C++11 does not perform this second lookup.
578     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
579                             LookupOrdinaryName);
580     FoundOuter.setTemplateNameLookup(true);
581     LookupName(FoundOuter, S);
582     // FIXME: We silently accept an ambiguous lookup here, in violation of
583     // [basic.lookup]/1.
584     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
585 
586     NamedDecl *OuterTemplate;
587     if (FoundOuter.empty()) {
588       //   - if the name is not found, the name found in the class of the
589       //     object expression is used, otherwise
590     } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
591                !(OuterTemplate =
592                      getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
593       //   - if the name is found in the context of the entire
594       //     postfix-expression and does not name a class template, the name
595       //     found in the class of the object expression is used, otherwise
596       FoundOuter.clear();
597     } else if (!Found.isSuppressingAmbiguousDiagnostics()) {
598       //   - if the name found is a class template, it must refer to the same
599       //     entity as the one found in the class of the object expression,
600       //     otherwise the program is ill-formed.
601       if (!Found.isSingleResult() ||
602           getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
603               OuterTemplate->getCanonicalDecl()) {
604         Diag(Found.getNameLoc(),
605              diag::ext_nested_name_member_ref_lookup_ambiguous)
606           << Found.getLookupName()
607           << ObjectType;
608         Diag(Found.getRepresentativeDecl()->getLocation(),
609              diag::note_ambig_member_ref_object_type)
610           << ObjectType;
611         Diag(FoundOuter.getFoundDecl()->getLocation(),
612              diag::note_ambig_member_ref_scope);
613 
614         // Recover by taking the template that we found in the object
615         // expression's type.
616       }
617     }
618   }
619 
620   return false;
621 }
622 
623 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
624                                               SourceLocation Less,
625                                               SourceLocation Greater) {
626   if (TemplateName.isInvalid())
627     return;
628 
629   DeclarationNameInfo NameInfo;
630   CXXScopeSpec SS;
631   LookupNameKind LookupKind;
632 
633   DeclContext *LookupCtx = nullptr;
634   NamedDecl *Found = nullptr;
635   bool MissingTemplateKeyword = false;
636 
637   // Figure out what name we looked up.
638   if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
639     NameInfo = DRE->getNameInfo();
640     SS.Adopt(DRE->getQualifierLoc());
641     LookupKind = LookupOrdinaryName;
642     Found = DRE->getFoundDecl();
643   } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
644     NameInfo = ME->getMemberNameInfo();
645     SS.Adopt(ME->getQualifierLoc());
646     LookupKind = LookupMemberName;
647     LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
648     Found = ME->getMemberDecl();
649   } else if (auto *DSDRE =
650                  dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
651     NameInfo = DSDRE->getNameInfo();
652     SS.Adopt(DSDRE->getQualifierLoc());
653     MissingTemplateKeyword = true;
654   } else if (auto *DSME =
655                  dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
656     NameInfo = DSME->getMemberNameInfo();
657     SS.Adopt(DSME->getQualifierLoc());
658     MissingTemplateKeyword = true;
659   } else {
660     llvm_unreachable("unexpected kind of potential template name");
661   }
662 
663   // If this is a dependent-scope lookup, diagnose that the 'template' keyword
664   // was missing.
665   if (MissingTemplateKeyword) {
666     Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
667         << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
668     return;
669   }
670 
671   // Try to correct the name by looking for templates and C++ named casts.
672   struct TemplateCandidateFilter : CorrectionCandidateCallback {
673     Sema &S;
674     TemplateCandidateFilter(Sema &S) : S(S) {
675       WantTypeSpecifiers = false;
676       WantExpressionKeywords = false;
677       WantRemainingKeywords = false;
678       WantCXXNamedCasts = true;
679     };
680     bool ValidateCandidate(const TypoCorrection &Candidate) override {
681       if (auto *ND = Candidate.getCorrectionDecl())
682         return S.getAsTemplateNameDecl(ND);
683       return Candidate.isKeyword();
684     }
685 
686     std::unique_ptr<CorrectionCandidateCallback> clone() override {
687       return std::make_unique<TemplateCandidateFilter>(*this);
688     }
689   };
690 
691   DeclarationName Name = NameInfo.getName();
692   TemplateCandidateFilter CCC(*this);
693   if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
694                                              CTK_ErrorRecovery, LookupCtx)) {
695     auto *ND = Corrected.getFoundDecl();
696     if (ND)
697       ND = getAsTemplateNameDecl(ND);
698     if (ND || Corrected.isKeyword()) {
699       if (LookupCtx) {
700         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
701         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
702                                 Name.getAsString() == CorrectedStr;
703         diagnoseTypo(Corrected,
704                      PDiag(diag::err_non_template_in_member_template_id_suggest)
705                          << Name << LookupCtx << DroppedSpecifier
706                          << SS.getRange(), false);
707       } else {
708         diagnoseTypo(Corrected,
709                      PDiag(diag::err_non_template_in_template_id_suggest)
710                          << Name, false);
711       }
712       if (Found)
713         Diag(Found->getLocation(),
714              diag::note_non_template_in_template_id_found);
715       return;
716     }
717   }
718 
719   Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
720     << Name << SourceRange(Less, Greater);
721   if (Found)
722     Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
723 }
724 
725 /// ActOnDependentIdExpression - Handle a dependent id-expression that
726 /// was just parsed.  This is only possible with an explicit scope
727 /// specifier naming a dependent type.
728 ExprResult
729 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
730                                  SourceLocation TemplateKWLoc,
731                                  const DeclarationNameInfo &NameInfo,
732                                  bool isAddressOfOperand,
733                            const TemplateArgumentListInfo *TemplateArgs) {
734   DeclContext *DC = getFunctionLevelDeclContext();
735 
736   // C++11 [expr.prim.general]p12:
737   //   An id-expression that denotes a non-static data member or non-static
738   //   member function of a class can only be used:
739   //   (...)
740   //   - if that id-expression denotes a non-static data member and it
741   //     appears in an unevaluated operand.
742   //
743   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
744   // CXXDependentScopeMemberExpr. The former can instantiate to either
745   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
746   // always a MemberExpr.
747   bool MightBeCxx11UnevalField =
748       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
749 
750   // Check if the nested name specifier is an enum type.
751   bool IsEnum = false;
752   if (NestedNameSpecifier *NNS = SS.getScopeRep())
753     IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
754 
755   if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
756       isa<CXXMethodDecl>(DC) &&
757       cast<CXXMethodDecl>(DC)->isImplicitObjectMemberFunction()) {
758     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType().getNonReferenceType();
759 
760     // Since the 'this' expression is synthesized, we don't need to
761     // perform the double-lookup check.
762     NamedDecl *FirstQualifierInScope = nullptr;
763 
764     return CXXDependentScopeMemberExpr::Create(
765         Context, /*This=*/nullptr, ThisType,
766         /*IsArrow=*/!Context.getLangOpts().HLSL,
767         /*Op=*/SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
768         FirstQualifierInScope, NameInfo, TemplateArgs);
769   }
770 
771   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
772 }
773 
774 ExprResult
775 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
776                                 SourceLocation TemplateKWLoc,
777                                 const DeclarationNameInfo &NameInfo,
778                                 const TemplateArgumentListInfo *TemplateArgs) {
779   // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
780   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
781   if (!QualifierLoc)
782     return ExprError();
783 
784   return DependentScopeDeclRefExpr::Create(
785       Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
786 }
787 
788 
789 /// Determine whether we would be unable to instantiate this template (because
790 /// it either has no definition, or is in the process of being instantiated).
791 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
792                                           NamedDecl *Instantiation,
793                                           bool InstantiatedFromMember,
794                                           const NamedDecl *Pattern,
795                                           const NamedDecl *PatternDef,
796                                           TemplateSpecializationKind TSK,
797                                           bool Complain /*= true*/) {
798   assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
799          isa<VarDecl>(Instantiation));
800 
801   bool IsEntityBeingDefined = false;
802   if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
803     IsEntityBeingDefined = TD->isBeingDefined();
804 
805   if (PatternDef && !IsEntityBeingDefined) {
806     NamedDecl *SuggestedDef = nullptr;
807     if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
808                                 &SuggestedDef,
809                                 /*OnlyNeedComplete*/ false)) {
810       // If we're allowed to diagnose this and recover, do so.
811       bool Recover = Complain && !isSFINAEContext();
812       if (Complain)
813         diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
814                               Sema::MissingImportKind::Definition, Recover);
815       return !Recover;
816     }
817     return false;
818   }
819 
820   if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
821     return true;
822 
823   QualType InstantiationTy;
824   if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
825     InstantiationTy = Context.getTypeDeclType(TD);
826   if (PatternDef) {
827     Diag(PointOfInstantiation,
828          diag::err_template_instantiate_within_definition)
829       << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
830       << InstantiationTy;
831     // Not much point in noting the template declaration here, since
832     // we're lexically inside it.
833     Instantiation->setInvalidDecl();
834   } else if (InstantiatedFromMember) {
835     if (isa<FunctionDecl>(Instantiation)) {
836       Diag(PointOfInstantiation,
837            diag::err_explicit_instantiation_undefined_member)
838         << /*member function*/ 1 << Instantiation->getDeclName()
839         << Instantiation->getDeclContext();
840       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
841     } else {
842       assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
843       Diag(PointOfInstantiation,
844            diag::err_implicit_instantiate_member_undefined)
845         << InstantiationTy;
846       Diag(Pattern->getLocation(), diag::note_member_declared_at);
847     }
848   } else {
849     if (isa<FunctionDecl>(Instantiation)) {
850       Diag(PointOfInstantiation,
851            diag::err_explicit_instantiation_undefined_func_template)
852         << Pattern;
853       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
854     } else if (isa<TagDecl>(Instantiation)) {
855       Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
856         << (TSK != TSK_ImplicitInstantiation)
857         << InstantiationTy;
858       NoteTemplateLocation(*Pattern);
859     } else {
860       assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
861       if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
862         Diag(PointOfInstantiation,
863              diag::err_explicit_instantiation_undefined_var_template)
864           << Instantiation;
865         Instantiation->setInvalidDecl();
866       } else
867         Diag(PointOfInstantiation,
868              diag::err_explicit_instantiation_undefined_member)
869           << /*static data member*/ 2 << Instantiation->getDeclName()
870           << Instantiation->getDeclContext();
871       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
872     }
873   }
874 
875   // In general, Instantiation isn't marked invalid to get more than one
876   // error for multiple undefined instantiations. But the code that does
877   // explicit declaration -> explicit definition conversion can't handle
878   // invalid declarations, so mark as invalid in that case.
879   if (TSK == TSK_ExplicitInstantiationDeclaration)
880     Instantiation->setInvalidDecl();
881   return true;
882 }
883 
884 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
885 /// that the template parameter 'PrevDecl' is being shadowed by a new
886 /// declaration at location Loc. Returns true to indicate that this is
887 /// an error, and false otherwise.
888 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
889   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
890 
891   // C++ [temp.local]p4:
892   //   A template-parameter shall not be redeclared within its
893   //   scope (including nested scopes).
894   //
895   // Make this a warning when MSVC compatibility is requested.
896   unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
897                                              : diag::err_template_param_shadow;
898   const auto *ND = cast<NamedDecl>(PrevDecl);
899   Diag(Loc, DiagId) << ND->getDeclName();
900   NoteTemplateParameterLocation(*ND);
901 }
902 
903 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
904 /// the parameter D to reference the templated declaration and return a pointer
905 /// to the template declaration. Otherwise, do nothing to D and return null.
906 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
907   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
908     D = Temp->getTemplatedDecl();
909     return Temp;
910   }
911   return nullptr;
912 }
913 
914 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
915                                              SourceLocation EllipsisLoc) const {
916   assert(Kind == Template &&
917          "Only template template arguments can be pack expansions here");
918   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
919          "Template template argument pack expansion without packs");
920   ParsedTemplateArgument Result(*this);
921   Result.EllipsisLoc = EllipsisLoc;
922   return Result;
923 }
924 
925 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
926                                             const ParsedTemplateArgument &Arg) {
927 
928   switch (Arg.getKind()) {
929   case ParsedTemplateArgument::Type: {
930     TypeSourceInfo *DI;
931     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
932     if (!DI)
933       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
934     return TemplateArgumentLoc(TemplateArgument(T), DI);
935   }
936 
937   case ParsedTemplateArgument::NonType: {
938     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
939     return TemplateArgumentLoc(TemplateArgument(E), E);
940   }
941 
942   case ParsedTemplateArgument::Template: {
943     TemplateName Template = Arg.getAsTemplate().get();
944     TemplateArgument TArg;
945     if (Arg.getEllipsisLoc().isValid())
946       TArg = TemplateArgument(Template, std::optional<unsigned int>());
947     else
948       TArg = Template;
949     return TemplateArgumentLoc(
950         SemaRef.Context, TArg,
951         Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
952         Arg.getLocation(), Arg.getEllipsisLoc());
953   }
954   }
955 
956   llvm_unreachable("Unhandled parsed template argument");
957 }
958 
959 /// Translates template arguments as provided by the parser
960 /// into template arguments used by semantic analysis.
961 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
962                                       TemplateArgumentListInfo &TemplateArgs) {
963  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
964    TemplateArgs.addArgument(translateTemplateArgument(*this,
965                                                       TemplateArgsIn[I]));
966 }
967 
968 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
969                                                  SourceLocation Loc,
970                                                  IdentifierInfo *Name) {
971   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
972       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
973   if (PrevDecl && PrevDecl->isTemplateParameter())
974     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
975 }
976 
977 /// Convert a parsed type into a parsed template argument. This is mostly
978 /// trivial, except that we may have parsed a C++17 deduced class template
979 /// specialization type, in which case we should form a template template
980 /// argument instead of a type template argument.
981 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
982   TypeSourceInfo *TInfo;
983   QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
984   if (T.isNull())
985     return ParsedTemplateArgument();
986   assert(TInfo && "template argument with no location");
987 
988   // If we might have formed a deduced template specialization type, convert
989   // it to a template template argument.
990   if (getLangOpts().CPlusPlus17) {
991     TypeLoc TL = TInfo->getTypeLoc();
992     SourceLocation EllipsisLoc;
993     if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
994       EllipsisLoc = PET.getEllipsisLoc();
995       TL = PET.getPatternLoc();
996     }
997 
998     CXXScopeSpec SS;
999     if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
1000       SS.Adopt(ET.getQualifierLoc());
1001       TL = ET.getNamedTypeLoc();
1002     }
1003 
1004     if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1005       TemplateName Name = DTST.getTypePtr()->getTemplateName();
1006       if (SS.isSet())
1007         Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1008                                                 /*HasTemplateKeyword=*/false,
1009                                                 Name);
1010       ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1011                                     DTST.getTemplateNameLoc());
1012       if (EllipsisLoc.isValid())
1013         Result = Result.getTemplatePackExpansion(EllipsisLoc);
1014       return Result;
1015     }
1016   }
1017 
1018   // This is a normal type template argument. Note, if the type template
1019   // argument is an injected-class-name for a template, it has a dual nature
1020   // and can be used as either a type or a template. We handle that in
1021   // convertTypeTemplateArgumentToTemplate.
1022   return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1023                                 ParsedType.get().getAsOpaquePtr(),
1024                                 TInfo->getTypeLoc().getBeginLoc());
1025 }
1026 
1027 /// ActOnTypeParameter - Called when a C++ template type parameter
1028 /// (e.g., "typename T") has been parsed. Typename specifies whether
1029 /// the keyword "typename" was used to declare the type parameter
1030 /// (otherwise, "class" was used), and KeyLoc is the location of the
1031 /// "class" or "typename" keyword. ParamName is the name of the
1032 /// parameter (NULL indicates an unnamed template parameter) and
1033 /// ParamNameLoc is the location of the parameter name (if any).
1034 /// If the type parameter has a default argument, it will be added
1035 /// later via ActOnTypeParameterDefault.
1036 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1037                                     SourceLocation EllipsisLoc,
1038                                     SourceLocation KeyLoc,
1039                                     IdentifierInfo *ParamName,
1040                                     SourceLocation ParamNameLoc,
1041                                     unsigned Depth, unsigned Position,
1042                                     SourceLocation EqualLoc,
1043                                     ParsedType DefaultArg,
1044                                     bool HasTypeConstraint) {
1045   assert(S->isTemplateParamScope() &&
1046          "Template type parameter not in template parameter scope!");
1047 
1048   bool IsParameterPack = EllipsisLoc.isValid();
1049   TemplateTypeParmDecl *Param
1050     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1051                                    KeyLoc, ParamNameLoc, Depth, Position,
1052                                    ParamName, Typename, IsParameterPack,
1053                                    HasTypeConstraint);
1054   Param->setAccess(AS_public);
1055 
1056   if (Param->isParameterPack())
1057     if (auto *LSI = getEnclosingLambda())
1058       LSI->LocalPacks.push_back(Param);
1059 
1060   if (ParamName) {
1061     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1062 
1063     // Add the template parameter into the current scope.
1064     S->AddDecl(Param);
1065     IdResolver.AddDecl(Param);
1066   }
1067 
1068   // C++0x [temp.param]p9:
1069   //   A default template-argument may be specified for any kind of
1070   //   template-parameter that is not a template parameter pack.
1071   if (DefaultArg && IsParameterPack) {
1072     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1073     DefaultArg = nullptr;
1074   }
1075 
1076   // Handle the default argument, if provided.
1077   if (DefaultArg) {
1078     TypeSourceInfo *DefaultTInfo;
1079     GetTypeFromParser(DefaultArg, &DefaultTInfo);
1080 
1081     assert(DefaultTInfo && "expected source information for type");
1082 
1083     // Check for unexpanded parameter packs.
1084     if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1085                                         UPPC_DefaultArgument))
1086       return Param;
1087 
1088     // Check the template argument itself.
1089     if (CheckTemplateArgument(DefaultTInfo)) {
1090       Param->setInvalidDecl();
1091       return Param;
1092     }
1093 
1094     Param->setDefaultArgument(DefaultTInfo);
1095   }
1096 
1097   return Param;
1098 }
1099 
1100 /// Convert the parser's template argument list representation into our form.
1101 static TemplateArgumentListInfo
1102 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1103   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1104                                         TemplateId.RAngleLoc);
1105   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1106                                      TemplateId.NumArgs);
1107   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1108   return TemplateArgs;
1109 }
1110 
1111 bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) {
1112 
1113   TemplateName TN = TypeConstr->Template.get();
1114   ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1115 
1116   // C++2a [temp.param]p4:
1117   //     [...] The concept designated by a type-constraint shall be a type
1118   //     concept ([temp.concept]).
1119   if (!CD->isTypeConcept()) {
1120     Diag(TypeConstr->TemplateNameLoc,
1121          diag::err_type_constraint_non_type_concept);
1122     return true;
1123   }
1124 
1125   bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1126 
1127   if (!WereArgsSpecified &&
1128       CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1129     Diag(TypeConstr->TemplateNameLoc,
1130          diag::err_type_constraint_missing_arguments)
1131         << CD;
1132     return true;
1133   }
1134   return false;
1135 }
1136 
1137 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1138                                TemplateIdAnnotation *TypeConstr,
1139                                TemplateTypeParmDecl *ConstrainedParameter,
1140                                SourceLocation EllipsisLoc) {
1141   return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1142                              false);
1143 }
1144 
1145 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1146                                TemplateIdAnnotation *TypeConstr,
1147                                TemplateTypeParmDecl *ConstrainedParameter,
1148                                SourceLocation EllipsisLoc,
1149                                bool AllowUnexpandedPack) {
1150 
1151   if (CheckTypeConstraint(TypeConstr))
1152     return true;
1153 
1154   TemplateName TN = TypeConstr->Template.get();
1155   ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1156 
1157   DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1158                                   TypeConstr->TemplateNameLoc);
1159 
1160   TemplateArgumentListInfo TemplateArgs;
1161   if (TypeConstr->LAngleLoc.isValid()) {
1162     TemplateArgs =
1163         makeTemplateArgumentListInfo(*this, *TypeConstr);
1164 
1165     if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1166       for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1167         if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1168           return true;
1169       }
1170     }
1171   }
1172   return AttachTypeConstraint(
1173       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1174       ConceptName, CD,
1175       TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1176       ConstrainedParameter, EllipsisLoc);
1177 }
1178 
1179 template<typename ArgumentLocAppender>
1180 static ExprResult formImmediatelyDeclaredConstraint(
1181     Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1182     ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1183     SourceLocation RAngleLoc, QualType ConstrainedType,
1184     SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1185     SourceLocation EllipsisLoc) {
1186 
1187   TemplateArgumentListInfo ConstraintArgs;
1188   ConstraintArgs.addArgument(
1189     S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1190                                     /*NTTPType=*/QualType(), ParamNameLoc));
1191 
1192   ConstraintArgs.setRAngleLoc(RAngleLoc);
1193   ConstraintArgs.setLAngleLoc(LAngleLoc);
1194   Appender(ConstraintArgs);
1195 
1196   // C++2a [temp.param]p4:
1197   //     [...] This constraint-expression E is called the immediately-declared
1198   //     constraint of T. [...]
1199   CXXScopeSpec SS;
1200   SS.Adopt(NS);
1201   ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1202       SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1203       /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1204   if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1205     return ImmediatelyDeclaredConstraint;
1206 
1207   // C++2a [temp.param]p4:
1208   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1209   //
1210   // We have the following case:
1211   //
1212   // template<typename T> concept C1 = true;
1213   // template<C1... T> struct s1;
1214   //
1215   // The constraint: (C1<T> && ...)
1216   //
1217   // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1218   // any unqualified lookups for 'operator&&' here.
1219   return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1220                             /*LParenLoc=*/SourceLocation(),
1221                             ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1222                             EllipsisLoc, /*RHS=*/nullptr,
1223                             /*RParenLoc=*/SourceLocation(),
1224                             /*NumExpansions=*/std::nullopt);
1225 }
1226 
1227 /// Attach a type-constraint to a template parameter.
1228 /// \returns true if an error occurred. This can happen if the
1229 /// immediately-declared constraint could not be formed (e.g. incorrect number
1230 /// of arguments for the named concept).
1231 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1232                                 DeclarationNameInfo NameInfo,
1233                                 ConceptDecl *NamedConcept,
1234                                 const TemplateArgumentListInfo *TemplateArgs,
1235                                 TemplateTypeParmDecl *ConstrainedParameter,
1236                                 SourceLocation EllipsisLoc) {
1237   // C++2a [temp.param]p4:
1238   //     [...] If Q is of the form C<A1, ..., An>, then let E' be
1239   //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1240   const ASTTemplateArgumentListInfo *ArgsAsWritten =
1241     TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1242                                                        *TemplateArgs) : nullptr;
1243 
1244   QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1245 
1246   ExprResult ImmediatelyDeclaredConstraint =
1247       formImmediatelyDeclaredConstraint(
1248           *this, NS, NameInfo, NamedConcept,
1249           TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1250           TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1251           ParamAsArgument, ConstrainedParameter->getLocation(),
1252           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1253             if (TemplateArgs)
1254               for (const auto &ArgLoc : TemplateArgs->arguments())
1255                 ConstraintArgs.addArgument(ArgLoc);
1256           }, EllipsisLoc);
1257   if (ImmediatelyDeclaredConstraint.isInvalid())
1258     return true;
1259 
1260   auto *CL = ConceptReference::Create(Context, /*NNS=*/NS,
1261                                       /*TemplateKWLoc=*/SourceLocation{},
1262                                       /*ConceptNameInfo=*/NameInfo,
1263                                       /*FoundDecl=*/NamedConcept,
1264                                       /*NamedConcept=*/NamedConcept,
1265                                       /*ArgsWritten=*/ArgsAsWritten);
1266   ConstrainedParameter->setTypeConstraint(CL,
1267                                           ImmediatelyDeclaredConstraint.get());
1268   return false;
1269 }
1270 
1271 bool Sema::AttachTypeConstraint(AutoTypeLoc TL,
1272                                 NonTypeTemplateParmDecl *NewConstrainedParm,
1273                                 NonTypeTemplateParmDecl *OrigConstrainedParm,
1274                                 SourceLocation EllipsisLoc) {
1275   if (NewConstrainedParm->getType() != TL.getType() ||
1276       TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1277     Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1278          diag::err_unsupported_placeholder_constraint)
1279         << NewConstrainedParm->getTypeSourceInfo()
1280                ->getTypeLoc()
1281                .getSourceRange();
1282     return true;
1283   }
1284   // FIXME: Concepts: This should be the type of the placeholder, but this is
1285   // unclear in the wording right now.
1286   DeclRefExpr *Ref =
1287       BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(),
1288                        VK_PRValue, OrigConstrainedParm->getLocation());
1289   if (!Ref)
1290     return true;
1291   ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1292       *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1293       TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1294       BuildDecltypeType(Ref), OrigConstrainedParm->getLocation(),
1295       [&](TemplateArgumentListInfo &ConstraintArgs) {
1296         for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1297           ConstraintArgs.addArgument(TL.getArgLoc(I));
1298       },
1299       EllipsisLoc);
1300   if (ImmediatelyDeclaredConstraint.isInvalid() ||
1301       !ImmediatelyDeclaredConstraint.isUsable())
1302     return true;
1303 
1304   NewConstrainedParm->setPlaceholderTypeConstraint(
1305       ImmediatelyDeclaredConstraint.get());
1306   return false;
1307 }
1308 
1309 /// Check that the type of a non-type template parameter is
1310 /// well-formed.
1311 ///
1312 /// \returns the (possibly-promoted) parameter type if valid;
1313 /// otherwise, produces a diagnostic and returns a NULL type.
1314 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1315                                                  SourceLocation Loc) {
1316   if (TSI->getType()->isUndeducedType()) {
1317     // C++17 [temp.dep.expr]p3:
1318     //   An id-expression is type-dependent if it contains
1319     //    - an identifier associated by name lookup with a non-type
1320     //      template-parameter declared with a type that contains a
1321     //      placeholder type (7.1.7.4),
1322     TSI = SubstAutoTypeSourceInfoDependent(TSI);
1323   }
1324 
1325   return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1326 }
1327 
1328 /// Require the given type to be a structural type, and diagnose if it is not.
1329 ///
1330 /// \return \c true if an error was produced.
1331 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1332   if (T->isDependentType())
1333     return false;
1334 
1335   if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1336     return true;
1337 
1338   if (T->isStructuralType())
1339     return false;
1340 
1341   // Structural types are required to be object types or lvalue references.
1342   if (T->isRValueReferenceType()) {
1343     Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1344     return true;
1345   }
1346 
1347   // Don't mention structural types in our diagnostic prior to C++20. Also,
1348   // there's not much more we can say about non-scalar non-class types --
1349   // because we can't see functions or arrays here, those can only be language
1350   // extensions.
1351   if (!getLangOpts().CPlusPlus20 ||
1352       (!T->isScalarType() && !T->isRecordType())) {
1353     Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1354     return true;
1355   }
1356 
1357   // Structural types are required to be literal types.
1358   if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1359     return true;
1360 
1361   Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1362 
1363   // Drill down into the reason why the class is non-structural.
1364   while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1365     // All members are required to be public and non-mutable, and can't be of
1366     // rvalue reference type. Check these conditions first to prefer a "local"
1367     // reason over a more distant one.
1368     for (const FieldDecl *FD : RD->fields()) {
1369       if (FD->getAccess() != AS_public) {
1370         Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1371         return true;
1372       }
1373       if (FD->isMutable()) {
1374         Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1375         return true;
1376       }
1377       if (FD->getType()->isRValueReferenceType()) {
1378         Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1379             << T;
1380         return true;
1381       }
1382     }
1383 
1384     // All bases are required to be public.
1385     for (const auto &BaseSpec : RD->bases()) {
1386       if (BaseSpec.getAccessSpecifier() != AS_public) {
1387         Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1388             << T << 1;
1389         return true;
1390       }
1391     }
1392 
1393     // All subobjects are required to be of structural types.
1394     SourceLocation SubLoc;
1395     QualType SubType;
1396     int Kind = -1;
1397 
1398     for (const FieldDecl *FD : RD->fields()) {
1399       QualType T = Context.getBaseElementType(FD->getType());
1400       if (!T->isStructuralType()) {
1401         SubLoc = FD->getLocation();
1402         SubType = T;
1403         Kind = 0;
1404         break;
1405       }
1406     }
1407 
1408     if (Kind == -1) {
1409       for (const auto &BaseSpec : RD->bases()) {
1410         QualType T = BaseSpec.getType();
1411         if (!T->isStructuralType()) {
1412           SubLoc = BaseSpec.getBaseTypeLoc();
1413           SubType = T;
1414           Kind = 1;
1415           break;
1416         }
1417       }
1418     }
1419 
1420     assert(Kind != -1 && "couldn't find reason why type is not structural");
1421     Diag(SubLoc, diag::note_not_structural_subobject)
1422         << T << Kind << SubType;
1423     T = SubType;
1424     RD = T->getAsCXXRecordDecl();
1425   }
1426 
1427   return true;
1428 }
1429 
1430 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1431                                                  SourceLocation Loc) {
1432   // We don't allow variably-modified types as the type of non-type template
1433   // parameters.
1434   if (T->isVariablyModifiedType()) {
1435     Diag(Loc, diag::err_variably_modified_nontype_template_param)
1436       << T;
1437     return QualType();
1438   }
1439 
1440   // C++ [temp.param]p4:
1441   //
1442   // A non-type template-parameter shall have one of the following
1443   // (optionally cv-qualified) types:
1444   //
1445   //       -- integral or enumeration type,
1446   if (T->isIntegralOrEnumerationType() ||
1447       //   -- pointer to object or pointer to function,
1448       T->isPointerType() ||
1449       //   -- lvalue reference to object or lvalue reference to function,
1450       T->isLValueReferenceType() ||
1451       //   -- pointer to member,
1452       T->isMemberPointerType() ||
1453       //   -- std::nullptr_t, or
1454       T->isNullPtrType() ||
1455       //   -- a type that contains a placeholder type.
1456       T->isUndeducedType()) {
1457     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1458     // are ignored when determining its type.
1459     return T.getUnqualifiedType();
1460   }
1461 
1462   // C++ [temp.param]p8:
1463   //
1464   //   A non-type template-parameter of type "array of T" or
1465   //   "function returning T" is adjusted to be of type "pointer to
1466   //   T" or "pointer to function returning T", respectively.
1467   if (T->isArrayType() || T->isFunctionType())
1468     return Context.getDecayedType(T);
1469 
1470   // If T is a dependent type, we can't do the check now, so we
1471   // assume that it is well-formed. Note that stripping off the
1472   // qualifiers here is not really correct if T turns out to be
1473   // an array type, but we'll recompute the type everywhere it's
1474   // used during instantiation, so that should be OK. (Using the
1475   // qualified type is equally wrong.)
1476   if (T->isDependentType())
1477     return T.getUnqualifiedType();
1478 
1479   // C++20 [temp.param]p6:
1480   //   -- a structural type
1481   if (RequireStructuralType(T, Loc))
1482     return QualType();
1483 
1484   if (!getLangOpts().CPlusPlus20) {
1485     // FIXME: Consider allowing structural types as an extension in C++17. (In
1486     // earlier language modes, the template argument evaluation rules are too
1487     // inflexible.)
1488     Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1489     return QualType();
1490   }
1491 
1492   Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1493   return T.getUnqualifiedType();
1494 }
1495 
1496 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1497                                           unsigned Depth,
1498                                           unsigned Position,
1499                                           SourceLocation EqualLoc,
1500                                           Expr *Default) {
1501   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1502 
1503   // Check that we have valid decl-specifiers specified.
1504   auto CheckValidDeclSpecifiers = [this, &D] {
1505     // C++ [temp.param]
1506     // p1
1507     //   template-parameter:
1508     //     ...
1509     //     parameter-declaration
1510     // p2
1511     //   ... A storage class shall not be specified in a template-parameter
1512     //   declaration.
1513     // [dcl.typedef]p1:
1514     //   The typedef specifier [...] shall not be used in the decl-specifier-seq
1515     //   of a parameter-declaration
1516     const DeclSpec &DS = D.getDeclSpec();
1517     auto EmitDiag = [this](SourceLocation Loc) {
1518       Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1519           << FixItHint::CreateRemoval(Loc);
1520     };
1521     if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1522       EmitDiag(DS.getStorageClassSpecLoc());
1523 
1524     if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1525       EmitDiag(DS.getThreadStorageClassSpecLoc());
1526 
1527     // [dcl.inline]p1:
1528     //   The inline specifier can be applied only to the declaration or
1529     //   definition of a variable or function.
1530 
1531     if (DS.isInlineSpecified())
1532       EmitDiag(DS.getInlineSpecLoc());
1533 
1534     // [dcl.constexpr]p1:
1535     //   The constexpr specifier shall be applied only to the definition of a
1536     //   variable or variable template or the declaration of a function or
1537     //   function template.
1538 
1539     if (DS.hasConstexprSpecifier())
1540       EmitDiag(DS.getConstexprSpecLoc());
1541 
1542     // [dcl.fct.spec]p1:
1543     //   Function-specifiers can be used only in function declarations.
1544 
1545     if (DS.isVirtualSpecified())
1546       EmitDiag(DS.getVirtualSpecLoc());
1547 
1548     if (DS.hasExplicitSpecifier())
1549       EmitDiag(DS.getExplicitSpecLoc());
1550 
1551     if (DS.isNoreturnSpecified())
1552       EmitDiag(DS.getNoreturnSpecLoc());
1553   };
1554 
1555   CheckValidDeclSpecifiers();
1556 
1557   if (const auto *T = TInfo->getType()->getContainedDeducedType())
1558     if (isa<AutoType>(T))
1559       Diag(D.getIdentifierLoc(),
1560            diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1561           << QualType(TInfo->getType()->getContainedAutoType(), 0);
1562 
1563   assert(S->isTemplateParamScope() &&
1564          "Non-type template parameter not in template parameter scope!");
1565   bool Invalid = false;
1566 
1567   QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1568   if (T.isNull()) {
1569     T = Context.IntTy; // Recover with an 'int' type.
1570     Invalid = true;
1571   }
1572 
1573   CheckFunctionOrTemplateParamDeclarator(S, D);
1574 
1575   IdentifierInfo *ParamName = D.getIdentifier();
1576   bool IsParameterPack = D.hasEllipsis();
1577   NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1578       Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1579       D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1580       TInfo);
1581   Param->setAccess(AS_public);
1582 
1583   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1584     if (TL.isConstrained())
1585       if (AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc()))
1586         Invalid = true;
1587 
1588   if (Invalid)
1589     Param->setInvalidDecl();
1590 
1591   if (Param->isParameterPack())
1592     if (auto *LSI = getEnclosingLambda())
1593       LSI->LocalPacks.push_back(Param);
1594 
1595   if (ParamName) {
1596     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1597                                          ParamName);
1598 
1599     // Add the template parameter into the current scope.
1600     S->AddDecl(Param);
1601     IdResolver.AddDecl(Param);
1602   }
1603 
1604   // C++0x [temp.param]p9:
1605   //   A default template-argument may be specified for any kind of
1606   //   template-parameter that is not a template parameter pack.
1607   if (Default && IsParameterPack) {
1608     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1609     Default = nullptr;
1610   }
1611 
1612   // Check the well-formedness of the default template argument, if provided.
1613   if (Default) {
1614     // Check for unexpanded parameter packs.
1615     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1616       return Param;
1617 
1618     Param->setDefaultArgument(Default);
1619   }
1620 
1621   return Param;
1622 }
1623 
1624 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1625 /// parameter (e.g. T in template <template \<typename> class T> class array)
1626 /// has been parsed. S is the current scope.
1627 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1628                                            SourceLocation TmpLoc,
1629                                            TemplateParameterList *Params,
1630                                            SourceLocation EllipsisLoc,
1631                                            IdentifierInfo *Name,
1632                                            SourceLocation NameLoc,
1633                                            unsigned Depth,
1634                                            unsigned Position,
1635                                            SourceLocation EqualLoc,
1636                                            ParsedTemplateArgument Default) {
1637   assert(S->isTemplateParamScope() &&
1638          "Template template parameter not in template parameter scope!");
1639 
1640   // Construct the parameter object.
1641   bool IsParameterPack = EllipsisLoc.isValid();
1642   TemplateTemplateParmDecl *Param =
1643     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1644                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
1645                                      Depth, Position, IsParameterPack,
1646                                      Name, Params);
1647   Param->setAccess(AS_public);
1648 
1649   if (Param->isParameterPack())
1650     if (auto *LSI = getEnclosingLambda())
1651       LSI->LocalPacks.push_back(Param);
1652 
1653   // If the template template parameter has a name, then link the identifier
1654   // into the scope and lookup mechanisms.
1655   if (Name) {
1656     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1657 
1658     S->AddDecl(Param);
1659     IdResolver.AddDecl(Param);
1660   }
1661 
1662   if (Params->size() == 0) {
1663     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1664     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1665     Param->setInvalidDecl();
1666   }
1667 
1668   // C++0x [temp.param]p9:
1669   //   A default template-argument may be specified for any kind of
1670   //   template-parameter that is not a template parameter pack.
1671   if (IsParameterPack && !Default.isInvalid()) {
1672     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1673     Default = ParsedTemplateArgument();
1674   }
1675 
1676   if (!Default.isInvalid()) {
1677     // Check only that we have a template template argument. We don't want to
1678     // try to check well-formedness now, because our template template parameter
1679     // might have dependent types in its template parameters, which we wouldn't
1680     // be able to match now.
1681     //
1682     // If none of the template template parameter's template arguments mention
1683     // other template parameters, we could actually perform more checking here.
1684     // However, it isn't worth doing.
1685     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1686     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1687       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1688         << DefaultArg.getSourceRange();
1689       return Param;
1690     }
1691 
1692     // Check for unexpanded parameter packs.
1693     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1694                                         DefaultArg.getArgument().getAsTemplate(),
1695                                         UPPC_DefaultArgument))
1696       return Param;
1697 
1698     Param->setDefaultArgument(Context, DefaultArg);
1699   }
1700 
1701   return Param;
1702 }
1703 
1704 namespace {
1705 class ConstraintRefersToContainingTemplateChecker
1706     : public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
1707   bool Result = false;
1708   const FunctionDecl *Friend = nullptr;
1709   unsigned TemplateDepth = 0;
1710 
1711   // Check a record-decl that we've seen to see if it is a lexical parent of the
1712   // Friend, likely because it was referred to without its template arguments.
1713   void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
1714     CheckingRD = CheckingRD->getMostRecentDecl();
1715     if (!CheckingRD->isTemplated())
1716       return;
1717 
1718     for (const DeclContext *DC = Friend->getLexicalDeclContext();
1719          DC && !DC->isFileContext(); DC = DC->getParent())
1720       if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
1721         if (CheckingRD == RD->getMostRecentDecl())
1722           Result = true;
1723   }
1724 
1725   void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
1726     assert(D->getDepth() <= TemplateDepth &&
1727            "Nothing should reference a value below the actual template depth, "
1728            "depth is likely wrong");
1729     if (D->getDepth() != TemplateDepth)
1730       Result = true;
1731 
1732     // Necessary because the type of the NTTP might be what refers to the parent
1733     // constriant.
1734     TransformType(D->getType());
1735   }
1736 
1737 public:
1738   using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
1739 
1740   ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
1741                                               const FunctionDecl *Friend,
1742                                               unsigned TemplateDepth)
1743       : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
1744   bool getResult() const { return Result; }
1745 
1746   // This should be the only template parm type that we have to deal with.
1747   // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
1748   // FunctionParmPackExpr are all partially substituted, which cannot happen
1749   // with concepts at this point in translation.
1750   using inherited::TransformTemplateTypeParmType;
1751   QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1752                                          TemplateTypeParmTypeLoc TL, bool) {
1753     assert(TL.getDecl()->getDepth() <= TemplateDepth &&
1754            "Nothing should reference a value below the actual template depth, "
1755            "depth is likely wrong");
1756     if (TL.getDecl()->getDepth() != TemplateDepth)
1757       Result = true;
1758     return inherited::TransformTemplateTypeParmType(
1759         TLB, TL,
1760         /*SuppressObjCLifetime=*/false);
1761   }
1762 
1763   Decl *TransformDecl(SourceLocation Loc, Decl *D) {
1764     if (!D)
1765       return D;
1766     // FIXME : This is possibly an incomplete list, but it is unclear what other
1767     // Decl kinds could be used to refer to the template parameters.  This is a
1768     // best guess so far based on examples currently available, but the
1769     // unreachable should catch future instances/cases.
1770     if (auto *TD = dyn_cast<TypedefNameDecl>(D))
1771       TransformType(TD->getUnderlyingType());
1772     else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D))
1773       CheckNonTypeTemplateParmDecl(NTTPD);
1774     else if (auto *VD = dyn_cast<ValueDecl>(D))
1775       TransformType(VD->getType());
1776     else if (auto *TD = dyn_cast<TemplateDecl>(D))
1777       TransformTemplateParameterList(TD->getTemplateParameters());
1778     else if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1779       CheckIfContainingRecord(RD);
1780     else if (isa<NamedDecl>(D)) {
1781       // No direct types to visit here I believe.
1782     } else
1783       llvm_unreachable("Don't know how to handle this declaration type yet");
1784     return D;
1785   }
1786 };
1787 } // namespace
1788 
1789 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
1790     const FunctionDecl *Friend, unsigned TemplateDepth,
1791     const Expr *Constraint) {
1792   assert(Friend->getFriendObjectKind() && "Only works on a friend");
1793   ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
1794                                                       TemplateDepth);
1795   Checker.TransformExpr(const_cast<Expr *>(Constraint));
1796   return Checker.getResult();
1797 }
1798 
1799 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1800 /// constrained by RequiresClause, that contains the template parameters in
1801 /// Params.
1802 TemplateParameterList *
1803 Sema::ActOnTemplateParameterList(unsigned Depth,
1804                                  SourceLocation ExportLoc,
1805                                  SourceLocation TemplateLoc,
1806                                  SourceLocation LAngleLoc,
1807                                  ArrayRef<NamedDecl *> Params,
1808                                  SourceLocation RAngleLoc,
1809                                  Expr *RequiresClause) {
1810   if (ExportLoc.isValid())
1811     Diag(ExportLoc, diag::warn_template_export_unsupported);
1812 
1813   for (NamedDecl *P : Params)
1814     warnOnReservedIdentifier(P);
1815 
1816   return TemplateParameterList::Create(
1817       Context, TemplateLoc, LAngleLoc,
1818       llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
1819 }
1820 
1821 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1822                                    const CXXScopeSpec &SS) {
1823   if (SS.isSet())
1824     T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1825 }
1826 
1827 // Returns the template parameter list with all default template argument
1828 // information.
1829 static TemplateParameterList *GetTemplateParameterList(TemplateDecl *TD) {
1830   // Make sure we get the template parameter list from the most
1831   // recent declaration, since that is the only one that is guaranteed to
1832   // have all the default template argument information.
1833   return cast<TemplateDecl>(TD->getMostRecentDecl())->getTemplateParameters();
1834 }
1835 
1836 DeclResult Sema::CheckClassTemplate(
1837     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1838     CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1839     const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1840     AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1841     SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1842     TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1843   assert(TemplateParams && TemplateParams->size() > 0 &&
1844          "No template parameters");
1845   assert(TUK != TUK_Reference && "Can only declare or define class templates");
1846   bool Invalid = false;
1847 
1848   // Check that we can declare a template here.
1849   if (CheckTemplateDeclScope(S, TemplateParams))
1850     return true;
1851 
1852   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1853   assert(Kind != TagTypeKind::Enum &&
1854          "can't build template of enumerated type");
1855 
1856   // There is no such thing as an unnamed class template.
1857   if (!Name) {
1858     Diag(KWLoc, diag::err_template_unnamed_class);
1859     return true;
1860   }
1861 
1862   // Find any previous declaration with this name. For a friend with no
1863   // scope explicitly specified, we only look for tag declarations (per
1864   // C++11 [basic.lookup.elab]p2).
1865   DeclContext *SemanticContext;
1866   LookupResult Previous(*this, Name, NameLoc,
1867                         (SS.isEmpty() && TUK == TUK_Friend)
1868                           ? LookupTagName : LookupOrdinaryName,
1869                         forRedeclarationInCurContext());
1870   if (SS.isNotEmpty() && !SS.isInvalid()) {
1871     SemanticContext = computeDeclContext(SS, true);
1872     if (!SemanticContext) {
1873       // FIXME: Horrible, horrible hack! We can't currently represent this
1874       // in the AST, and historically we have just ignored such friend
1875       // class templates, so don't complain here.
1876       Diag(NameLoc, TUK == TUK_Friend
1877                         ? diag::warn_template_qualified_friend_ignored
1878                         : diag::err_template_qualified_declarator_no_match)
1879           << SS.getScopeRep() << SS.getRange();
1880       return TUK != TUK_Friend;
1881     }
1882 
1883     if (RequireCompleteDeclContext(SS, SemanticContext))
1884       return true;
1885 
1886     // If we're adding a template to a dependent context, we may need to
1887     // rebuilding some of the types used within the template parameter list,
1888     // now that we know what the current instantiation is.
1889     if (SemanticContext->isDependentContext()) {
1890       ContextRAII SavedContext(*this, SemanticContext);
1891       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1892         Invalid = true;
1893     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1894       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1895 
1896     LookupQualifiedName(Previous, SemanticContext);
1897   } else {
1898     SemanticContext = CurContext;
1899 
1900     // C++14 [class.mem]p14:
1901     //   If T is the name of a class, then each of the following shall have a
1902     //   name different from T:
1903     //    -- every member template of class T
1904     if (TUK != TUK_Friend &&
1905         DiagnoseClassNameShadow(SemanticContext,
1906                                 DeclarationNameInfo(Name, NameLoc)))
1907       return true;
1908 
1909     LookupName(Previous, S);
1910   }
1911 
1912   if (Previous.isAmbiguous())
1913     return true;
1914 
1915   NamedDecl *PrevDecl = nullptr;
1916   if (Previous.begin() != Previous.end())
1917     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1918 
1919   if (PrevDecl && PrevDecl->isTemplateParameter()) {
1920     // Maybe we will complain about the shadowed template parameter.
1921     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1922     // Just pretend that we didn't see the previous declaration.
1923     PrevDecl = nullptr;
1924   }
1925 
1926   // If there is a previous declaration with the same name, check
1927   // whether this is a valid redeclaration.
1928   ClassTemplateDecl *PrevClassTemplate =
1929       dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1930 
1931   // We may have found the injected-class-name of a class template,
1932   // class template partial specialization, or class template specialization.
1933   // In these cases, grab the template that is being defined or specialized.
1934   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1935       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1936     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1937     PrevClassTemplate
1938       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1939     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1940       PrevClassTemplate
1941         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1942             ->getSpecializedTemplate();
1943     }
1944   }
1945 
1946   if (TUK == TUK_Friend) {
1947     // C++ [namespace.memdef]p3:
1948     //   [...] When looking for a prior declaration of a class or a function
1949     //   declared as a friend, and when the name of the friend class or
1950     //   function is neither a qualified name nor a template-id, scopes outside
1951     //   the innermost enclosing namespace scope are not considered.
1952     if (!SS.isSet()) {
1953       DeclContext *OutermostContext = CurContext;
1954       while (!OutermostContext->isFileContext())
1955         OutermostContext = OutermostContext->getLookupParent();
1956 
1957       if (PrevDecl &&
1958           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1959            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1960         SemanticContext = PrevDecl->getDeclContext();
1961       } else {
1962         // Declarations in outer scopes don't matter. However, the outermost
1963         // context we computed is the semantic context for our new
1964         // declaration.
1965         PrevDecl = PrevClassTemplate = nullptr;
1966         SemanticContext = OutermostContext;
1967 
1968         // Check that the chosen semantic context doesn't already contain a
1969         // declaration of this name as a non-tag type.
1970         Previous.clear(LookupOrdinaryName);
1971         DeclContext *LookupContext = SemanticContext;
1972         while (LookupContext->isTransparentContext())
1973           LookupContext = LookupContext->getLookupParent();
1974         LookupQualifiedName(Previous, LookupContext);
1975 
1976         if (Previous.isAmbiguous())
1977           return true;
1978 
1979         if (Previous.begin() != Previous.end())
1980           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1981       }
1982     }
1983   } else if (PrevDecl &&
1984              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1985                             S, SS.isValid()))
1986     PrevDecl = PrevClassTemplate = nullptr;
1987 
1988   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1989           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1990     if (SS.isEmpty() &&
1991         !(PrevClassTemplate &&
1992           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1993               SemanticContext->getRedeclContext()))) {
1994       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1995       Diag(Shadow->getTargetDecl()->getLocation(),
1996            diag::note_using_decl_target);
1997       Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1998       // Recover by ignoring the old declaration.
1999       PrevDecl = PrevClassTemplate = nullptr;
2000     }
2001   }
2002 
2003   if (PrevClassTemplate) {
2004     // Ensure that the template parameter lists are compatible. Skip this check
2005     // for a friend in a dependent context: the template parameter list itself
2006     // could be dependent.
2007     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2008         !TemplateParameterListsAreEqual(
2009             TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext
2010                                                        : CurContext,
2011                                        CurContext, KWLoc),
2012             TemplateParams, PrevClassTemplate,
2013             PrevClassTemplate->getTemplateParameters(), /*Complain=*/true,
2014             TPL_TemplateMatch))
2015       return true;
2016 
2017     // C++ [temp.class]p4:
2018     //   In a redeclaration, partial specialization, explicit
2019     //   specialization or explicit instantiation of a class template,
2020     //   the class-key shall agree in kind with the original class
2021     //   template declaration (7.1.5.3).
2022     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
2023     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
2024                                       TUK == TUK_Definition,  KWLoc, Name)) {
2025       Diag(KWLoc, diag::err_use_with_wrong_tag)
2026         << Name
2027         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
2028       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
2029       Kind = PrevRecordDecl->getTagKind();
2030     }
2031 
2032     // Check for redefinition of this class template.
2033     if (TUK == TUK_Definition) {
2034       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
2035         // If we have a prior definition that is not visible, treat this as
2036         // simply making that previous definition visible.
2037         NamedDecl *Hidden = nullptr;
2038         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
2039           SkipBody->ShouldSkip = true;
2040           SkipBody->Previous = Def;
2041           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
2042           assert(Tmpl && "original definition of a class template is not a "
2043                          "class template?");
2044           makeMergedDefinitionVisible(Hidden);
2045           makeMergedDefinitionVisible(Tmpl);
2046         } else {
2047           Diag(NameLoc, diag::err_redefinition) << Name;
2048           Diag(Def->getLocation(), diag::note_previous_definition);
2049           // FIXME: Would it make sense to try to "forget" the previous
2050           // definition, as part of error recovery?
2051           return true;
2052         }
2053       }
2054     }
2055   } else if (PrevDecl) {
2056     // C++ [temp]p5:
2057     //   A class template shall not have the same name as any other
2058     //   template, class, function, object, enumeration, enumerator,
2059     //   namespace, or type in the same scope (3.3), except as specified
2060     //   in (14.5.4).
2061     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2062     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2063     return true;
2064   }
2065 
2066   // Check the template parameter list of this declaration, possibly
2067   // merging in the template parameter list from the previous class
2068   // template declaration. Skip this check for a friend in a dependent
2069   // context, because the template parameter list might be dependent.
2070   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2071       CheckTemplateParameterList(
2072           TemplateParams,
2073           PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate)
2074                             : nullptr,
2075           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
2076            SemanticContext->isDependentContext())
2077               ? TPC_ClassTemplateMember
2078           : TUK == TUK_Friend ? TPC_FriendClassTemplate
2079                               : TPC_ClassTemplate,
2080           SkipBody))
2081     Invalid = true;
2082 
2083   if (SS.isSet()) {
2084     // If the name of the template was qualified, we must be defining the
2085     // template out-of-line.
2086     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
2087       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
2088                                       : diag::err_member_decl_does_not_match)
2089         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
2090       Invalid = true;
2091     }
2092   }
2093 
2094   // If this is a templated friend in a dependent context we should not put it
2095   // on the redecl chain. In some cases, the templated friend can be the most
2096   // recent declaration tricking the template instantiator to make substitutions
2097   // there.
2098   // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
2099   bool ShouldAddRedecl
2100     = !(TUK == TUK_Friend && CurContext->isDependentContext());
2101 
2102   CXXRecordDecl *NewClass =
2103     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
2104                           PrevClassTemplate && ShouldAddRedecl ?
2105                             PrevClassTemplate->getTemplatedDecl() : nullptr,
2106                           /*DelayTypeCreation=*/true);
2107   SetNestedNameSpecifier(*this, NewClass, SS);
2108   if (NumOuterTemplateParamLists > 0)
2109     NewClass->setTemplateParameterListsInfo(
2110         Context,
2111         llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
2112 
2113   // Add alignment attributes if necessary; these attributes are checked when
2114   // the ASTContext lays out the structure.
2115   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
2116     AddAlignmentAttributesForRecord(NewClass);
2117     AddMsStructLayoutForRecord(NewClass);
2118   }
2119 
2120   ClassTemplateDecl *NewTemplate
2121     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2122                                 DeclarationName(Name), TemplateParams,
2123                                 NewClass);
2124 
2125   if (ShouldAddRedecl)
2126     NewTemplate->setPreviousDecl(PrevClassTemplate);
2127 
2128   NewClass->setDescribedClassTemplate(NewTemplate);
2129 
2130   if (ModulePrivateLoc.isValid())
2131     NewTemplate->setModulePrivate();
2132 
2133   // Build the type for the class template declaration now.
2134   QualType T = NewTemplate->getInjectedClassNameSpecialization();
2135   T = Context.getInjectedClassNameType(NewClass, T);
2136   assert(T->isDependentType() && "Class template type is not dependent?");
2137   (void)T;
2138 
2139   // If we are providing an explicit specialization of a member that is a
2140   // class template, make a note of that.
2141   if (PrevClassTemplate &&
2142       PrevClassTemplate->getInstantiatedFromMemberTemplate())
2143     PrevClassTemplate->setMemberSpecialization();
2144 
2145   // Set the access specifier.
2146   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2147     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2148 
2149   // Set the lexical context of these templates
2150   NewClass->setLexicalDeclContext(CurContext);
2151   NewTemplate->setLexicalDeclContext(CurContext);
2152 
2153   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2154     NewClass->startDefinition();
2155 
2156   ProcessDeclAttributeList(S, NewClass, Attr);
2157 
2158   if (PrevClassTemplate)
2159     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2160 
2161   AddPushedVisibilityAttribute(NewClass);
2162   inferGslOwnerPointerAttribute(NewClass);
2163 
2164   if (TUK != TUK_Friend) {
2165     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2166     Scope *Outer = S;
2167     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2168       Outer = Outer->getParent();
2169     PushOnScopeChains(NewTemplate, Outer);
2170   } else {
2171     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2172       NewTemplate->setAccess(PrevClassTemplate->getAccess());
2173       NewClass->setAccess(PrevClassTemplate->getAccess());
2174     }
2175 
2176     NewTemplate->setObjectOfFriendDecl();
2177 
2178     // Friend templates are visible in fairly strange ways.
2179     if (!CurContext->isDependentContext()) {
2180       DeclContext *DC = SemanticContext->getRedeclContext();
2181       DC->makeDeclVisibleInContext(NewTemplate);
2182       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2183         PushOnScopeChains(NewTemplate, EnclosingScope,
2184                           /* AddToContext = */ false);
2185     }
2186 
2187     FriendDecl *Friend = FriendDecl::Create(
2188         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2189     Friend->setAccess(AS_public);
2190     CurContext->addDecl(Friend);
2191   }
2192 
2193   if (PrevClassTemplate)
2194     CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2195 
2196   if (Invalid) {
2197     NewTemplate->setInvalidDecl();
2198     NewClass->setInvalidDecl();
2199   }
2200 
2201   ActOnDocumentableDecl(NewTemplate);
2202 
2203   if (SkipBody && SkipBody->ShouldSkip)
2204     return SkipBody->Previous;
2205 
2206   return NewTemplate;
2207 }
2208 
2209 namespace {
2210 /// Tree transform to "extract" a transformed type from a class template's
2211 /// constructor to a deduction guide.
2212 class ExtractTypeForDeductionGuide
2213   : public TreeTransform<ExtractTypeForDeductionGuide> {
2214   llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2215 
2216 public:
2217   typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2218   ExtractTypeForDeductionGuide(
2219       Sema &SemaRef,
2220       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2221       : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2222 
2223   TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2224 
2225   QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2226     ASTContext &Context = SemaRef.getASTContext();
2227     TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2228     TypedefNameDecl *Decl = OrigDecl;
2229     // Transform the underlying type of the typedef and clone the Decl only if
2230     // the typedef has a dependent context.
2231     if (OrigDecl->getDeclContext()->isDependentContext()) {
2232       TypeLocBuilder InnerTLB;
2233       QualType Transformed =
2234           TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2235       TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2236       if (isa<TypeAliasDecl>(OrigDecl))
2237         Decl = TypeAliasDecl::Create(
2238             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2239             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2240       else {
2241         assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2242         Decl = TypedefDecl::Create(
2243             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2244             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2245       }
2246       MaterializedTypedefs.push_back(Decl);
2247     }
2248 
2249     QualType TDTy = Context.getTypedefType(Decl);
2250     TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2251     TypedefTL.setNameLoc(TL.getNameLoc());
2252 
2253     return TDTy;
2254   }
2255 };
2256 
2257 /// Transform to convert portions of a constructor declaration into the
2258 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2259 struct ConvertConstructorToDeductionGuideTransform {
2260   ConvertConstructorToDeductionGuideTransform(Sema &S,
2261                                               ClassTemplateDecl *Template)
2262       : SemaRef(S), Template(Template) {
2263     // If the template is nested, then we need to use the original
2264     // pattern to iterate over the constructors.
2265     ClassTemplateDecl *Pattern = Template;
2266     while (Pattern->getInstantiatedFromMemberTemplate()) {
2267       if (Pattern->isMemberSpecialization())
2268         break;
2269       Pattern = Pattern->getInstantiatedFromMemberTemplate();
2270       NestedPattern = Pattern;
2271     }
2272 
2273     if (NestedPattern)
2274       OuterInstantiationArgs = SemaRef.getTemplateInstantiationArgs(Template);
2275   }
2276 
2277   Sema &SemaRef;
2278   ClassTemplateDecl *Template;
2279   ClassTemplateDecl *NestedPattern = nullptr;
2280 
2281   DeclContext *DC = Template->getDeclContext();
2282   CXXRecordDecl *Primary = Template->getTemplatedDecl();
2283   DeclarationName DeductionGuideName =
2284       SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2285 
2286   QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2287 
2288   // Index adjustment to apply to convert depth-1 template parameters into
2289   // depth-0 template parameters.
2290   unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2291 
2292   // Instantiation arguments for the outermost depth-1 templates
2293   // when the template is nested
2294   MultiLevelTemplateArgumentList OuterInstantiationArgs;
2295 
2296   /// Transform a constructor declaration into a deduction guide.
2297   NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2298                                   CXXConstructorDecl *CD) {
2299     SmallVector<TemplateArgument, 16> SubstArgs;
2300 
2301     LocalInstantiationScope Scope(SemaRef);
2302 
2303     // C++ [over.match.class.deduct]p1:
2304     // -- For each constructor of the class template designated by the
2305     //    template-name, a function template with the following properties:
2306 
2307     //    -- The template parameters are the template parameters of the class
2308     //       template followed by the template parameters (including default
2309     //       template arguments) of the constructor, if any.
2310     TemplateParameterList *TemplateParams = GetTemplateParameterList(Template);
2311     if (FTD) {
2312       TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2313       SmallVector<NamedDecl *, 16> AllParams;
2314       SmallVector<TemplateArgument, 16> Depth1Args;
2315       AllParams.reserve(TemplateParams->size() + InnerParams->size());
2316       AllParams.insert(AllParams.begin(),
2317                        TemplateParams->begin(), TemplateParams->end());
2318       SubstArgs.reserve(InnerParams->size());
2319       Depth1Args.reserve(InnerParams->size());
2320 
2321       // Later template parameters could refer to earlier ones, so build up
2322       // a list of substituted template arguments as we go.
2323       for (NamedDecl *Param : *InnerParams) {
2324         MultiLevelTemplateArgumentList Args;
2325         Args.setKind(TemplateSubstitutionKind::Rewrite);
2326         Args.addOuterTemplateArguments(Depth1Args);
2327         Args.addOuterRetainedLevel();
2328         if (NestedPattern)
2329           Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2330         NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2331         if (!NewParam)
2332           return nullptr;
2333 
2334         // Constraints require that we substitute depth-1 arguments
2335         // to match depths when substituted for evaluation later
2336         Depth1Args.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2337             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2338 
2339         if (NestedPattern) {
2340           TemplateDeclInstantiator Instantiator(SemaRef, DC,
2341                                                 OuterInstantiationArgs);
2342           Instantiator.setEvaluateConstraints(false);
2343           SemaRef.runWithSufficientStackSpace(NewParam->getLocation(), [&] {
2344             NewParam = cast<NamedDecl>(Instantiator.Visit(NewParam));
2345           });
2346         }
2347 
2348         assert(NewParam->getTemplateDepth() == 0 &&
2349                "Unexpected template parameter depth");
2350 
2351         AllParams.push_back(NewParam);
2352         SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2353             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2354       }
2355 
2356       // Substitute new template parameters into requires-clause if present.
2357       Expr *RequiresClause = nullptr;
2358       if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2359         MultiLevelTemplateArgumentList Args;
2360         Args.setKind(TemplateSubstitutionKind::Rewrite);
2361         Args.addOuterTemplateArguments(Depth1Args);
2362         Args.addOuterRetainedLevel();
2363         if (NestedPattern)
2364           Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2365         ExprResult E = SemaRef.SubstExpr(InnerRC, Args);
2366         if (E.isInvalid())
2367           return nullptr;
2368         RequiresClause = E.getAs<Expr>();
2369       }
2370 
2371       TemplateParams = TemplateParameterList::Create(
2372           SemaRef.Context, InnerParams->getTemplateLoc(),
2373           InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2374           RequiresClause);
2375     }
2376 
2377     // If we built a new template-parameter-list, track that we need to
2378     // substitute references to the old parameters into references to the
2379     // new ones.
2380     MultiLevelTemplateArgumentList Args;
2381     Args.setKind(TemplateSubstitutionKind::Rewrite);
2382     if (FTD) {
2383       Args.addOuterTemplateArguments(SubstArgs);
2384       Args.addOuterRetainedLevel();
2385     }
2386 
2387     if (NestedPattern)
2388       Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2389 
2390     FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2391                                    .getAsAdjusted<FunctionProtoTypeLoc>();
2392     assert(FPTL && "no prototype for constructor declaration");
2393 
2394     // Transform the type of the function, adjusting the return type and
2395     // replacing references to the old parameters with references to the
2396     // new ones.
2397     TypeLocBuilder TLB;
2398     SmallVector<ParmVarDecl*, 8> Params;
2399     SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2400     QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2401                                                   MaterializedTypedefs);
2402     if (NewType.isNull())
2403       return nullptr;
2404     TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2405 
2406     return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2407                                NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2408                                CD->getEndLoc(), MaterializedTypedefs);
2409   }
2410 
2411   /// Build a deduction guide with the specified parameter types.
2412   NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2413     SourceLocation Loc = Template->getLocation();
2414 
2415     // Build the requested type.
2416     FunctionProtoType::ExtProtoInfo EPI;
2417     EPI.HasTrailingReturn = true;
2418     QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2419                                                 DeductionGuideName, EPI);
2420     TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2421 
2422     FunctionProtoTypeLoc FPTL =
2423         TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2424 
2425     // Build the parameters, needed during deduction / substitution.
2426     SmallVector<ParmVarDecl*, 4> Params;
2427     for (auto T : ParamTypes) {
2428       ParmVarDecl *NewParam = ParmVarDecl::Create(
2429           SemaRef.Context, DC, Loc, Loc, nullptr, T,
2430           SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2431       NewParam->setScopeInfo(0, Params.size());
2432       FPTL.setParam(Params.size(), NewParam);
2433       Params.push_back(NewParam);
2434     }
2435 
2436     return buildDeductionGuide(GetTemplateParameterList(Template), nullptr,
2437                                ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2438   }
2439 
2440 private:
2441   /// Transform a constructor template parameter into a deduction guide template
2442   /// parameter, rebuilding any internal references to earlier parameters and
2443   /// renumbering as we go.
2444   NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2445                                         MultiLevelTemplateArgumentList &Args) {
2446     if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2447       // TemplateTypeParmDecl's index cannot be changed after creation, so
2448       // substitute it directly.
2449       auto *NewTTP = TemplateTypeParmDecl::Create(
2450           SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2451           TTP->getDepth() - 1, Depth1IndexAdjustment + TTP->getIndex(),
2452           TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2453           TTP->isParameterPack(), TTP->hasTypeConstraint(),
2454           TTP->isExpandedParameterPack()
2455               ? std::optional<unsigned>(TTP->getNumExpansionParameters())
2456               : std::nullopt);
2457       if (const auto *TC = TTP->getTypeConstraint())
2458         SemaRef.SubstTypeConstraint(NewTTP, TC, Args,
2459                                     /*EvaluateConstraint*/ true);
2460       if (TTP->hasDefaultArgument()) {
2461         TypeSourceInfo *InstantiatedDefaultArg =
2462             SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2463                               TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2464         if (InstantiatedDefaultArg)
2465           NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2466       }
2467       SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2468                                                            NewTTP);
2469       return NewTTP;
2470     }
2471 
2472     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2473       return transformTemplateParameterImpl(TTP, Args);
2474 
2475     return transformTemplateParameterImpl(
2476         cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2477   }
2478   template<typename TemplateParmDecl>
2479   TemplateParmDecl *
2480   transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2481                                  MultiLevelTemplateArgumentList &Args) {
2482     // Ask the template instantiator to do the heavy lifting for us, then adjust
2483     // the index of the parameter once it's done.
2484     auto *NewParam =
2485         cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2486     assert(NewParam->getDepth() == OldParam->getDepth() - 1 &&
2487            "unexpected template param depth");
2488     NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2489     return NewParam;
2490   }
2491 
2492   QualType transformFunctionProtoType(
2493       TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2494       SmallVectorImpl<ParmVarDecl *> &Params,
2495       MultiLevelTemplateArgumentList &Args,
2496       SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2497     SmallVector<QualType, 4> ParamTypes;
2498     const FunctionProtoType *T = TL.getTypePtr();
2499 
2500     //    -- The types of the function parameters are those of the constructor.
2501     for (auto *OldParam : TL.getParams()) {
2502       ParmVarDecl *NewParam =
2503           transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2504       if (NestedPattern && NewParam)
2505         NewParam = transformFunctionTypeParam(NewParam, OuterInstantiationArgs,
2506                                               MaterializedTypedefs);
2507       if (!NewParam)
2508         return QualType();
2509       ParamTypes.push_back(NewParam->getType());
2510       Params.push_back(NewParam);
2511     }
2512 
2513     //    -- The return type is the class template specialization designated by
2514     //       the template-name and template arguments corresponding to the
2515     //       template parameters obtained from the class template.
2516     //
2517     // We use the injected-class-name type of the primary template instead.
2518     // This has the convenient property that it is different from any type that
2519     // the user can write in a deduction-guide (because they cannot enter the
2520     // context of the template), so implicit deduction guides can never collide
2521     // with explicit ones.
2522     QualType ReturnType = DeducedType;
2523     TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2524 
2525     // Resolving a wording defect, we also inherit the variadicness of the
2526     // constructor.
2527     FunctionProtoType::ExtProtoInfo EPI;
2528     EPI.Variadic = T->isVariadic();
2529     EPI.HasTrailingReturn = true;
2530 
2531     QualType Result = SemaRef.BuildFunctionType(
2532         ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2533     if (Result.isNull())
2534       return QualType();
2535 
2536     FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2537     NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2538     NewTL.setLParenLoc(TL.getLParenLoc());
2539     NewTL.setRParenLoc(TL.getRParenLoc());
2540     NewTL.setExceptionSpecRange(SourceRange());
2541     NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2542     for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2543       NewTL.setParam(I, Params[I]);
2544 
2545     return Result;
2546   }
2547 
2548   ParmVarDecl *transformFunctionTypeParam(
2549       ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2550       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2551     TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2552     TypeSourceInfo *NewDI;
2553     if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2554       // Expand out the one and only element in each inner pack.
2555       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2556       NewDI =
2557           SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2558                             OldParam->getLocation(), OldParam->getDeclName());
2559       if (!NewDI) return nullptr;
2560       NewDI =
2561           SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2562                                      PackTL.getTypePtr()->getNumExpansions());
2563     } else
2564       NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2565                                 OldParam->getDeclName());
2566     if (!NewDI)
2567       return nullptr;
2568 
2569     // Extract the type. This (for instance) replaces references to typedef
2570     // members of the current instantiations with the definitions of those
2571     // typedefs, avoiding triggering instantiation of the deduced type during
2572     // deduction.
2573     NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2574                 .transform(NewDI);
2575 
2576     // Resolving a wording defect, we also inherit default arguments from the
2577     // constructor.
2578     ExprResult NewDefArg;
2579     if (OldParam->hasDefaultArg()) {
2580       // We don't care what the value is (we won't use it); just create a
2581       // placeholder to indicate there is a default argument.
2582       QualType ParamTy = NewDI->getType();
2583       NewDefArg = new (SemaRef.Context)
2584           OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2585                           ParamTy.getNonLValueExprType(SemaRef.Context),
2586                           ParamTy->isLValueReferenceType()   ? VK_LValue
2587                           : ParamTy->isRValueReferenceType() ? VK_XValue
2588                                                              : VK_PRValue);
2589     }
2590 
2591     ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2592                                                 OldParam->getInnerLocStart(),
2593                                                 OldParam->getLocation(),
2594                                                 OldParam->getIdentifier(),
2595                                                 NewDI->getType(),
2596                                                 NewDI,
2597                                                 OldParam->getStorageClass(),
2598                                                 NewDefArg.get());
2599     NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2600                            OldParam->getFunctionScopeIndex());
2601     SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2602     return NewParam;
2603   }
2604 
2605   FunctionTemplateDecl *buildDeductionGuide(
2606       TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2607       ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2608       SourceLocation Loc, SourceLocation LocEnd,
2609       llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2610     DeclarationNameInfo Name(DeductionGuideName, Loc);
2611     ArrayRef<ParmVarDecl *> Params =
2612         TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2613 
2614     // Build the implicit deduction guide template.
2615     auto *Guide =
2616         CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2617                                       TInfo->getType(), TInfo, LocEnd, Ctor);
2618     Guide->setImplicit();
2619     Guide->setParams(Params);
2620 
2621     for (auto *Param : Params)
2622       Param->setDeclContext(Guide);
2623     for (auto *TD : MaterializedTypedefs)
2624       TD->setDeclContext(Guide);
2625 
2626     auto *GuideTemplate = FunctionTemplateDecl::Create(
2627         SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2628     GuideTemplate->setImplicit();
2629     Guide->setDescribedFunctionTemplate(GuideTemplate);
2630 
2631     if (isa<CXXRecordDecl>(DC)) {
2632       Guide->setAccess(AS_public);
2633       GuideTemplate->setAccess(AS_public);
2634     }
2635 
2636     DC->addDecl(GuideTemplate);
2637     return GuideTemplate;
2638   }
2639 };
2640 }
2641 
2642 FunctionTemplateDecl *Sema::DeclareImplicitDeductionGuideFromInitList(
2643     TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes,
2644     SourceLocation Loc) {
2645   if (CXXRecordDecl *DefRecord =
2646           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2647     if (TemplateDecl *DescribedTemplate =
2648             DefRecord->getDescribedClassTemplate())
2649       Template = DescribedTemplate;
2650   }
2651 
2652   DeclContext *DC = Template->getDeclContext();
2653   if (DC->isDependentContext())
2654     return nullptr;
2655 
2656   ConvertConstructorToDeductionGuideTransform Transform(
2657       *this, cast<ClassTemplateDecl>(Template));
2658   if (!isCompleteType(Loc, Transform.DeducedType))
2659     return nullptr;
2660 
2661   // In case we were expanding a pack when we attempted to declare deduction
2662   // guides, turn off pack expansion for everything we're about to do.
2663   ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
2664                                                /*NewSubstitutionIndex=*/-1);
2665   // Create a template instantiation record to track the "instantiation" of
2666   // constructors into deduction guides.
2667   InstantiatingTemplate BuildingDeductionGuides(
2668       *this, Loc, Template,
2669       Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2670   if (BuildingDeductionGuides.isInvalid())
2671     return nullptr;
2672 
2673   return cast<FunctionTemplateDecl>(
2674       Transform.buildSimpleDeductionGuide(ParamTypes));
2675 }
2676 
2677 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2678                                           SourceLocation Loc) {
2679   if (CXXRecordDecl *DefRecord =
2680           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2681     if (TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate())
2682       Template = DescribedTemplate;
2683   }
2684 
2685   DeclContext *DC = Template->getDeclContext();
2686   if (DC->isDependentContext())
2687     return;
2688 
2689   ConvertConstructorToDeductionGuideTransform Transform(
2690       *this, cast<ClassTemplateDecl>(Template));
2691   if (!isCompleteType(Loc, Transform.DeducedType))
2692     return;
2693 
2694   // Check whether we've already declared deduction guides for this template.
2695   // FIXME: Consider storing a flag on the template to indicate this.
2696   auto Existing = DC->lookup(Transform.DeductionGuideName);
2697   for (auto *D : Existing)
2698     if (D->isImplicit())
2699       return;
2700 
2701   // In case we were expanding a pack when we attempted to declare deduction
2702   // guides, turn off pack expansion for everything we're about to do.
2703   ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2704   // Create a template instantiation record to track the "instantiation" of
2705   // constructors into deduction guides.
2706   InstantiatingTemplate BuildingDeductionGuides(
2707       *this, Loc, Template,
2708       Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2709   if (BuildingDeductionGuides.isInvalid())
2710     return;
2711 
2712   // Convert declared constructors into deduction guide templates.
2713   // FIXME: Skip constructors for which deduction must necessarily fail (those
2714   // for which some class template parameter without a default argument never
2715   // appears in a deduced context).
2716   ClassTemplateDecl *Pattern =
2717       Transform.NestedPattern ? Transform.NestedPattern : Transform.Template;
2718   ContextRAII SavedContext(*this, Pattern->getTemplatedDecl());
2719   llvm::SmallPtrSet<NamedDecl *, 8> ProcessedCtors;
2720   bool AddedAny = false;
2721   for (NamedDecl *D : LookupConstructors(Pattern->getTemplatedDecl())) {
2722     D = D->getUnderlyingDecl();
2723     if (D->isInvalidDecl() || D->isImplicit())
2724       continue;
2725 
2726     D = cast<NamedDecl>(D->getCanonicalDecl());
2727 
2728     // Within C++20 modules, we may have multiple same constructors in
2729     // multiple same RecordDecls. And it doesn't make sense to create
2730     // duplicated deduction guides for the duplicated constructors.
2731     if (ProcessedCtors.count(D))
2732       continue;
2733 
2734     auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2735     auto *CD =
2736         dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2737     // Class-scope explicit specializations (MS extension) do not result in
2738     // deduction guides.
2739     if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2740       continue;
2741 
2742     // Cannot make a deduction guide when unparsed arguments are present.
2743     if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2744           return !P || P->hasUnparsedDefaultArg();
2745         }))
2746       continue;
2747 
2748     ProcessedCtors.insert(D);
2749     Transform.transformConstructor(FTD, CD);
2750     AddedAny = true;
2751   }
2752 
2753   // C++17 [over.match.class.deduct]
2754   //    --  If C is not defined or does not declare any constructors, an
2755   //    additional function template derived as above from a hypothetical
2756   //    constructor C().
2757   if (!AddedAny)
2758     Transform.buildSimpleDeductionGuide(std::nullopt);
2759 
2760   //    -- An additional function template derived as above from a hypothetical
2761   //    constructor C(C), called the copy deduction candidate.
2762   cast<CXXDeductionGuideDecl>(
2763       cast<FunctionTemplateDecl>(
2764           Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2765           ->getTemplatedDecl())
2766       ->setDeductionCandidateKind(DeductionCandidate::Copy);
2767 
2768   SavedContext.pop();
2769 }
2770 
2771 /// Diagnose the presence of a default template argument on a
2772 /// template parameter, which is ill-formed in certain contexts.
2773 ///
2774 /// \returns true if the default template argument should be dropped.
2775 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2776                                             Sema::TemplateParamListContext TPC,
2777                                             SourceLocation ParamLoc,
2778                                             SourceRange DefArgRange) {
2779   switch (TPC) {
2780   case Sema::TPC_ClassTemplate:
2781   case Sema::TPC_VarTemplate:
2782   case Sema::TPC_TypeAliasTemplate:
2783     return false;
2784 
2785   case Sema::TPC_FunctionTemplate:
2786   case Sema::TPC_FriendFunctionTemplateDefinition:
2787     // C++ [temp.param]p9:
2788     //   A default template-argument shall not be specified in a
2789     //   function template declaration or a function template
2790     //   definition [...]
2791     //   If a friend function template declaration specifies a default
2792     //   template-argument, that declaration shall be a definition and shall be
2793     //   the only declaration of the function template in the translation unit.
2794     // (C++98/03 doesn't have this wording; see DR226).
2795     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2796          diag::warn_cxx98_compat_template_parameter_default_in_function_template
2797            : diag::ext_template_parameter_default_in_function_template)
2798       << DefArgRange;
2799     return false;
2800 
2801   case Sema::TPC_ClassTemplateMember:
2802     // C++0x [temp.param]p9:
2803     //   A default template-argument shall not be specified in the
2804     //   template-parameter-lists of the definition of a member of a
2805     //   class template that appears outside of the member's class.
2806     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2807       << DefArgRange;
2808     return true;
2809 
2810   case Sema::TPC_FriendClassTemplate:
2811   case Sema::TPC_FriendFunctionTemplate:
2812     // C++ [temp.param]p9:
2813     //   A default template-argument shall not be specified in a
2814     //   friend template declaration.
2815     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2816       << DefArgRange;
2817     return true;
2818 
2819     // FIXME: C++0x [temp.param]p9 allows default template-arguments
2820     // for friend function templates if there is only a single
2821     // declaration (and it is a definition). Strange!
2822   }
2823 
2824   llvm_unreachable("Invalid TemplateParamListContext!");
2825 }
2826 
2827 /// Check for unexpanded parameter packs within the template parameters
2828 /// of a template template parameter, recursively.
2829 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2830                                              TemplateTemplateParmDecl *TTP) {
2831   // A template template parameter which is a parameter pack is also a pack
2832   // expansion.
2833   if (TTP->isParameterPack())
2834     return false;
2835 
2836   TemplateParameterList *Params = TTP->getTemplateParameters();
2837   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2838     NamedDecl *P = Params->getParam(I);
2839     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2840       if (!TTP->isParameterPack())
2841         if (const TypeConstraint *TC = TTP->getTypeConstraint())
2842           if (TC->hasExplicitTemplateArgs())
2843             for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2844               if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2845                                                     Sema::UPPC_TypeConstraint))
2846                 return true;
2847       continue;
2848     }
2849 
2850     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2851       if (!NTTP->isParameterPack() &&
2852           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2853                                             NTTP->getTypeSourceInfo(),
2854                                       Sema::UPPC_NonTypeTemplateParameterType))
2855         return true;
2856 
2857       continue;
2858     }
2859 
2860     if (TemplateTemplateParmDecl *InnerTTP
2861                                         = dyn_cast<TemplateTemplateParmDecl>(P))
2862       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2863         return true;
2864   }
2865 
2866   return false;
2867 }
2868 
2869 /// Checks the validity of a template parameter list, possibly
2870 /// considering the template parameter list from a previous
2871 /// declaration.
2872 ///
2873 /// If an "old" template parameter list is provided, it must be
2874 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2875 /// template parameter list.
2876 ///
2877 /// \param NewParams Template parameter list for a new template
2878 /// declaration. This template parameter list will be updated with any
2879 /// default arguments that are carried through from the previous
2880 /// template parameter list.
2881 ///
2882 /// \param OldParams If provided, template parameter list from a
2883 /// previous declaration of the same template. Default template
2884 /// arguments will be merged from the old template parameter list to
2885 /// the new template parameter list.
2886 ///
2887 /// \param TPC Describes the context in which we are checking the given
2888 /// template parameter list.
2889 ///
2890 /// \param SkipBody If we might have already made a prior merged definition
2891 /// of this template visible, the corresponding body-skipping information.
2892 /// Default argument redefinition is not an error when skipping such a body,
2893 /// because (under the ODR) we can assume the default arguments are the same
2894 /// as the prior merged definition.
2895 ///
2896 /// \returns true if an error occurred, false otherwise.
2897 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2898                                       TemplateParameterList *OldParams,
2899                                       TemplateParamListContext TPC,
2900                                       SkipBodyInfo *SkipBody) {
2901   bool Invalid = false;
2902 
2903   // C++ [temp.param]p10:
2904   //   The set of default template-arguments available for use with a
2905   //   template declaration or definition is obtained by merging the
2906   //   default arguments from the definition (if in scope) and all
2907   //   declarations in scope in the same way default function
2908   //   arguments are (8.3.6).
2909   bool SawDefaultArgument = false;
2910   SourceLocation PreviousDefaultArgLoc;
2911 
2912   // Dummy initialization to avoid warnings.
2913   TemplateParameterList::iterator OldParam = NewParams->end();
2914   if (OldParams)
2915     OldParam = OldParams->begin();
2916 
2917   bool RemoveDefaultArguments = false;
2918   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2919                                     NewParamEnd = NewParams->end();
2920        NewParam != NewParamEnd; ++NewParam) {
2921     // Whether we've seen a duplicate default argument in the same translation
2922     // unit.
2923     bool RedundantDefaultArg = false;
2924     // Whether we've found inconsis inconsitent default arguments in different
2925     // translation unit.
2926     bool InconsistentDefaultArg = false;
2927     // The name of the module which contains the inconsistent default argument.
2928     std::string PrevModuleName;
2929 
2930     SourceLocation OldDefaultLoc;
2931     SourceLocation NewDefaultLoc;
2932 
2933     // Variable used to diagnose missing default arguments
2934     bool MissingDefaultArg = false;
2935 
2936     // Variable used to diagnose non-final parameter packs
2937     bool SawParameterPack = false;
2938 
2939     if (TemplateTypeParmDecl *NewTypeParm
2940           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2941       // Check the presence of a default argument here.
2942       if (NewTypeParm->hasDefaultArgument() &&
2943           DiagnoseDefaultTemplateArgument(*this, TPC,
2944                                           NewTypeParm->getLocation(),
2945                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2946                                                        .getSourceRange()))
2947         NewTypeParm->removeDefaultArgument();
2948 
2949       // Merge default arguments for template type parameters.
2950       TemplateTypeParmDecl *OldTypeParm
2951           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2952       if (NewTypeParm->isParameterPack()) {
2953         assert(!NewTypeParm->hasDefaultArgument() &&
2954                "Parameter packs can't have a default argument!");
2955         SawParameterPack = true;
2956       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2957                  NewTypeParm->hasDefaultArgument() &&
2958                  (!SkipBody || !SkipBody->ShouldSkip)) {
2959         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2960         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2961         SawDefaultArgument = true;
2962 
2963         if (!OldTypeParm->getOwningModule())
2964           RedundantDefaultArg = true;
2965         else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2966                                                                 NewTypeParm)) {
2967           InconsistentDefaultArg = true;
2968           PrevModuleName =
2969               OldTypeParm->getImportedOwningModule()->getFullModuleName();
2970         }
2971         PreviousDefaultArgLoc = NewDefaultLoc;
2972       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2973         // Merge the default argument from the old declaration to the
2974         // new declaration.
2975         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2976         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2977       } else if (NewTypeParm->hasDefaultArgument()) {
2978         SawDefaultArgument = true;
2979         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2980       } else if (SawDefaultArgument)
2981         MissingDefaultArg = true;
2982     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2983                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2984       // Check for unexpanded parameter packs.
2985       if (!NewNonTypeParm->isParameterPack() &&
2986           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2987                                           NewNonTypeParm->getTypeSourceInfo(),
2988                                           UPPC_NonTypeTemplateParameterType)) {
2989         Invalid = true;
2990         continue;
2991       }
2992 
2993       // Check the presence of a default argument here.
2994       if (NewNonTypeParm->hasDefaultArgument() &&
2995           DiagnoseDefaultTemplateArgument(*this, TPC,
2996                                           NewNonTypeParm->getLocation(),
2997                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2998         NewNonTypeParm->removeDefaultArgument();
2999       }
3000 
3001       // Merge default arguments for non-type template parameters
3002       NonTypeTemplateParmDecl *OldNonTypeParm
3003         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
3004       if (NewNonTypeParm->isParameterPack()) {
3005         assert(!NewNonTypeParm->hasDefaultArgument() &&
3006                "Parameter packs can't have a default argument!");
3007         if (!NewNonTypeParm->isPackExpansion())
3008           SawParameterPack = true;
3009       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
3010                  NewNonTypeParm->hasDefaultArgument() &&
3011                  (!SkipBody || !SkipBody->ShouldSkip)) {
3012         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
3013         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
3014         SawDefaultArgument = true;
3015         if (!OldNonTypeParm->getOwningModule())
3016           RedundantDefaultArg = true;
3017         else if (!getASTContext().isSameDefaultTemplateArgument(
3018                      OldNonTypeParm, NewNonTypeParm)) {
3019           InconsistentDefaultArg = true;
3020           PrevModuleName =
3021               OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
3022         }
3023         PreviousDefaultArgLoc = NewDefaultLoc;
3024       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
3025         // Merge the default argument from the old declaration to the
3026         // new declaration.
3027         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
3028         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
3029       } else if (NewNonTypeParm->hasDefaultArgument()) {
3030         SawDefaultArgument = true;
3031         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
3032       } else if (SawDefaultArgument)
3033         MissingDefaultArg = true;
3034     } else {
3035       TemplateTemplateParmDecl *NewTemplateParm
3036         = cast<TemplateTemplateParmDecl>(*NewParam);
3037 
3038       // Check for unexpanded parameter packs, recursively.
3039       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
3040         Invalid = true;
3041         continue;
3042       }
3043 
3044       // Check the presence of a default argument here.
3045       if (NewTemplateParm->hasDefaultArgument() &&
3046           DiagnoseDefaultTemplateArgument(*this, TPC,
3047                                           NewTemplateParm->getLocation(),
3048                      NewTemplateParm->getDefaultArgument().getSourceRange()))
3049         NewTemplateParm->removeDefaultArgument();
3050 
3051       // Merge default arguments for template template parameters
3052       TemplateTemplateParmDecl *OldTemplateParm
3053         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
3054       if (NewTemplateParm->isParameterPack()) {
3055         assert(!NewTemplateParm->hasDefaultArgument() &&
3056                "Parameter packs can't have a default argument!");
3057         if (!NewTemplateParm->isPackExpansion())
3058           SawParameterPack = true;
3059       } else if (OldTemplateParm &&
3060                  hasVisibleDefaultArgument(OldTemplateParm) &&
3061                  NewTemplateParm->hasDefaultArgument() &&
3062                  (!SkipBody || !SkipBody->ShouldSkip)) {
3063         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
3064         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
3065         SawDefaultArgument = true;
3066         if (!OldTemplateParm->getOwningModule())
3067           RedundantDefaultArg = true;
3068         else if (!getASTContext().isSameDefaultTemplateArgument(
3069                      OldTemplateParm, NewTemplateParm)) {
3070           InconsistentDefaultArg = true;
3071           PrevModuleName =
3072               OldTemplateParm->getImportedOwningModule()->getFullModuleName();
3073         }
3074         PreviousDefaultArgLoc = NewDefaultLoc;
3075       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
3076         // Merge the default argument from the old declaration to the
3077         // new declaration.
3078         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
3079         PreviousDefaultArgLoc
3080           = OldTemplateParm->getDefaultArgument().getLocation();
3081       } else if (NewTemplateParm->hasDefaultArgument()) {
3082         SawDefaultArgument = true;
3083         PreviousDefaultArgLoc
3084           = NewTemplateParm->getDefaultArgument().getLocation();
3085       } else if (SawDefaultArgument)
3086         MissingDefaultArg = true;
3087     }
3088 
3089     // C++11 [temp.param]p11:
3090     //   If a template parameter of a primary class template or alias template
3091     //   is a template parameter pack, it shall be the last template parameter.
3092     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
3093         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
3094          TPC == TPC_TypeAliasTemplate)) {
3095       Diag((*NewParam)->getLocation(),
3096            diag::err_template_param_pack_must_be_last_template_parameter);
3097       Invalid = true;
3098     }
3099 
3100     // [basic.def.odr]/13:
3101     //     There can be more than one definition of a
3102     //     ...
3103     //     default template argument
3104     //     ...
3105     //     in a program provided that each definition appears in a different
3106     //     translation unit and the definitions satisfy the [same-meaning
3107     //     criteria of the ODR].
3108     //
3109     // Simply, the design of modules allows the definition of template default
3110     // argument to be repeated across translation unit. Note that the ODR is
3111     // checked elsewhere. But it is still not allowed to repeat template default
3112     // argument in the same translation unit.
3113     if (RedundantDefaultArg) {
3114       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
3115       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
3116       Invalid = true;
3117     } else if (InconsistentDefaultArg) {
3118       // We could only diagnose about the case that the OldParam is imported.
3119       // The case NewParam is imported should be handled in ASTReader.
3120       Diag(NewDefaultLoc,
3121            diag::err_template_param_default_arg_inconsistent_redefinition);
3122       Diag(OldDefaultLoc,
3123            diag::note_template_param_prev_default_arg_in_other_module)
3124           << PrevModuleName;
3125       Invalid = true;
3126     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
3127       // C++ [temp.param]p11:
3128       //   If a template-parameter of a class template has a default
3129       //   template-argument, each subsequent template-parameter shall either
3130       //   have a default template-argument supplied or be a template parameter
3131       //   pack.
3132       Diag((*NewParam)->getLocation(),
3133            diag::err_template_param_default_arg_missing);
3134       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
3135       Invalid = true;
3136       RemoveDefaultArguments = true;
3137     }
3138 
3139     // If we have an old template parameter list that we're merging
3140     // in, move on to the next parameter.
3141     if (OldParams)
3142       ++OldParam;
3143   }
3144 
3145   // We were missing some default arguments at the end of the list, so remove
3146   // all of the default arguments.
3147   if (RemoveDefaultArguments) {
3148     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
3149                                       NewParamEnd = NewParams->end();
3150          NewParam != NewParamEnd; ++NewParam) {
3151       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
3152         TTP->removeDefaultArgument();
3153       else if (NonTypeTemplateParmDecl *NTTP
3154                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
3155         NTTP->removeDefaultArgument();
3156       else
3157         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
3158     }
3159   }
3160 
3161   return Invalid;
3162 }
3163 
3164 namespace {
3165 
3166 /// A class which looks for a use of a certain level of template
3167 /// parameter.
3168 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
3169   typedef RecursiveASTVisitor<DependencyChecker> super;
3170 
3171   unsigned Depth;
3172 
3173   // Whether we're looking for a use of a template parameter that makes the
3174   // overall construct type-dependent / a dependent type. This is strictly
3175   // best-effort for now; we may fail to match at all for a dependent type
3176   // in some cases if this is set.
3177   bool IgnoreNonTypeDependent;
3178 
3179   bool Match;
3180   SourceLocation MatchLoc;
3181 
3182   DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
3183       : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
3184         Match(false) {}
3185 
3186   DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
3187       : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
3188     NamedDecl *ND = Params->getParam(0);
3189     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
3190       Depth = PD->getDepth();
3191     } else if (NonTypeTemplateParmDecl *PD =
3192                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
3193       Depth = PD->getDepth();
3194     } else {
3195       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
3196     }
3197   }
3198 
3199   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
3200     if (ParmDepth >= Depth) {
3201       Match = true;
3202       MatchLoc = Loc;
3203       return true;
3204     }
3205     return false;
3206   }
3207 
3208   bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
3209     // Prune out non-type-dependent expressions if requested. This can
3210     // sometimes result in us failing to find a template parameter reference
3211     // (if a value-dependent expression creates a dependent type), but this
3212     // mode is best-effort only.
3213     if (auto *E = dyn_cast_or_null<Expr>(S))
3214       if (IgnoreNonTypeDependent && !E->isTypeDependent())
3215         return true;
3216     return super::TraverseStmt(S, Q);
3217   }
3218 
3219   bool TraverseTypeLoc(TypeLoc TL) {
3220     if (IgnoreNonTypeDependent && !TL.isNull() &&
3221         !TL.getType()->isDependentType())
3222       return true;
3223     return super::TraverseTypeLoc(TL);
3224   }
3225 
3226   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3227     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
3228   }
3229 
3230   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3231     // For a best-effort search, keep looking until we find a location.
3232     return IgnoreNonTypeDependent || !Matches(T->getDepth());
3233   }
3234 
3235   bool TraverseTemplateName(TemplateName N) {
3236     if (TemplateTemplateParmDecl *PD =
3237           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
3238       if (Matches(PD->getDepth()))
3239         return false;
3240     return super::TraverseTemplateName(N);
3241   }
3242 
3243   bool VisitDeclRefExpr(DeclRefExpr *E) {
3244     if (NonTypeTemplateParmDecl *PD =
3245           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
3246       if (Matches(PD->getDepth(), E->getExprLoc()))
3247         return false;
3248     return super::VisitDeclRefExpr(E);
3249   }
3250 
3251   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3252     return TraverseType(T->getReplacementType());
3253   }
3254 
3255   bool
3256   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3257     return TraverseTemplateArgument(T->getArgumentPack());
3258   }
3259 
3260   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3261     return TraverseType(T->getInjectedSpecializationType());
3262   }
3263 };
3264 } // end anonymous namespace
3265 
3266 /// Determines whether a given type depends on the given parameter
3267 /// list.
3268 static bool
3269 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3270   if (!Params->size())
3271     return false;
3272 
3273   DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3274   Checker.TraverseType(T);
3275   return Checker.Match;
3276 }
3277 
3278 // Find the source range corresponding to the named type in the given
3279 // nested-name-specifier, if any.
3280 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3281                                                        QualType T,
3282                                                        const CXXScopeSpec &SS) {
3283   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3284   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3285     if (const Type *CurType = NNS->getAsType()) {
3286       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3287         return NNSLoc.getTypeLoc().getSourceRange();
3288     } else
3289       break;
3290 
3291     NNSLoc = NNSLoc.getPrefix();
3292   }
3293 
3294   return SourceRange();
3295 }
3296 
3297 /// Match the given template parameter lists to the given scope
3298 /// specifier, returning the template parameter list that applies to the
3299 /// name.
3300 ///
3301 /// \param DeclStartLoc the start of the declaration that has a scope
3302 /// specifier or a template parameter list.
3303 ///
3304 /// \param DeclLoc The location of the declaration itself.
3305 ///
3306 /// \param SS the scope specifier that will be matched to the given template
3307 /// parameter lists. This scope specifier precedes a qualified name that is
3308 /// being declared.
3309 ///
3310 /// \param TemplateId The template-id following the scope specifier, if there
3311 /// is one. Used to check for a missing 'template<>'.
3312 ///
3313 /// \param ParamLists the template parameter lists, from the outermost to the
3314 /// innermost template parameter lists.
3315 ///
3316 /// \param IsFriend Whether to apply the slightly different rules for
3317 /// matching template parameters to scope specifiers in friend
3318 /// declarations.
3319 ///
3320 /// \param IsMemberSpecialization will be set true if the scope specifier
3321 /// denotes a fully-specialized type, and therefore this is a declaration of
3322 /// a member specialization.
3323 ///
3324 /// \returns the template parameter list, if any, that corresponds to the
3325 /// name that is preceded by the scope specifier @p SS. This template
3326 /// parameter list may have template parameters (if we're declaring a
3327 /// template) or may have no template parameters (if we're declaring a
3328 /// template specialization), or may be NULL (if what we're declaring isn't
3329 /// itself a template).
3330 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3331     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3332     TemplateIdAnnotation *TemplateId,
3333     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3334     bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3335   IsMemberSpecialization = false;
3336   Invalid = false;
3337 
3338   // The sequence of nested types to which we will match up the template
3339   // parameter lists. We first build this list by starting with the type named
3340   // by the nested-name-specifier and walking out until we run out of types.
3341   SmallVector<QualType, 4> NestedTypes;
3342   QualType T;
3343   if (SS.getScopeRep()) {
3344     if (CXXRecordDecl *Record
3345               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3346       T = Context.getTypeDeclType(Record);
3347     else
3348       T = QualType(SS.getScopeRep()->getAsType(), 0);
3349   }
3350 
3351   // If we found an explicit specialization that prevents us from needing
3352   // 'template<>' headers, this will be set to the location of that
3353   // explicit specialization.
3354   SourceLocation ExplicitSpecLoc;
3355 
3356   while (!T.isNull()) {
3357     NestedTypes.push_back(T);
3358 
3359     // Retrieve the parent of a record type.
3360     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3361       // If this type is an explicit specialization, we're done.
3362       if (ClassTemplateSpecializationDecl *Spec
3363           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3364         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3365             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3366           ExplicitSpecLoc = Spec->getLocation();
3367           break;
3368         }
3369       } else if (Record->getTemplateSpecializationKind()
3370                                                 == TSK_ExplicitSpecialization) {
3371         ExplicitSpecLoc = Record->getLocation();
3372         break;
3373       }
3374 
3375       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3376         T = Context.getTypeDeclType(Parent);
3377       else
3378         T = QualType();
3379       continue;
3380     }
3381 
3382     if (const TemplateSpecializationType *TST
3383                                      = T->getAs<TemplateSpecializationType>()) {
3384       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3385         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3386           T = Context.getTypeDeclType(Parent);
3387         else
3388           T = QualType();
3389         continue;
3390       }
3391     }
3392 
3393     // Look one step prior in a dependent template specialization type.
3394     if (const DependentTemplateSpecializationType *DependentTST
3395                           = T->getAs<DependentTemplateSpecializationType>()) {
3396       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3397         T = QualType(NNS->getAsType(), 0);
3398       else
3399         T = QualType();
3400       continue;
3401     }
3402 
3403     // Look one step prior in a dependent name type.
3404     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3405       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3406         T = QualType(NNS->getAsType(), 0);
3407       else
3408         T = QualType();
3409       continue;
3410     }
3411 
3412     // Retrieve the parent of an enumeration type.
3413     if (const EnumType *EnumT = T->getAs<EnumType>()) {
3414       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3415       // check here.
3416       EnumDecl *Enum = EnumT->getDecl();
3417 
3418       // Get to the parent type.
3419       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3420         T = Context.getTypeDeclType(Parent);
3421       else
3422         T = QualType();
3423       continue;
3424     }
3425 
3426     T = QualType();
3427   }
3428   // Reverse the nested types list, since we want to traverse from the outermost
3429   // to the innermost while checking template-parameter-lists.
3430   std::reverse(NestedTypes.begin(), NestedTypes.end());
3431 
3432   // C++0x [temp.expl.spec]p17:
3433   //   A member or a member template may be nested within many
3434   //   enclosing class templates. In an explicit specialization for
3435   //   such a member, the member declaration shall be preceded by a
3436   //   template<> for each enclosing class template that is
3437   //   explicitly specialized.
3438   bool SawNonEmptyTemplateParameterList = false;
3439 
3440   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3441     if (SawNonEmptyTemplateParameterList) {
3442       if (!SuppressDiagnostic)
3443         Diag(DeclLoc, diag::err_specialize_member_of_template)
3444           << !Recovery << Range;
3445       Invalid = true;
3446       IsMemberSpecialization = false;
3447       return true;
3448     }
3449 
3450     return false;
3451   };
3452 
3453   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3454     // Check that we can have an explicit specialization here.
3455     if (CheckExplicitSpecialization(Range, true))
3456       return true;
3457 
3458     // We don't have a template header, but we should.
3459     SourceLocation ExpectedTemplateLoc;
3460     if (!ParamLists.empty())
3461       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3462     else
3463       ExpectedTemplateLoc = DeclStartLoc;
3464 
3465     if (!SuppressDiagnostic)
3466       Diag(DeclLoc, diag::err_template_spec_needs_header)
3467         << Range
3468         << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3469     return false;
3470   };
3471 
3472   unsigned ParamIdx = 0;
3473   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3474        ++TypeIdx) {
3475     T = NestedTypes[TypeIdx];
3476 
3477     // Whether we expect a 'template<>' header.
3478     bool NeedEmptyTemplateHeader = false;
3479 
3480     // Whether we expect a template header with parameters.
3481     bool NeedNonemptyTemplateHeader = false;
3482 
3483     // For a dependent type, the set of template parameters that we
3484     // expect to see.
3485     TemplateParameterList *ExpectedTemplateParams = nullptr;
3486 
3487     // C++0x [temp.expl.spec]p15:
3488     //   A member or a member template may be nested within many enclosing
3489     //   class templates. In an explicit specialization for such a member, the
3490     //   member declaration shall be preceded by a template<> for each
3491     //   enclosing class template that is explicitly specialized.
3492     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3493       if (ClassTemplatePartialSpecializationDecl *Partial
3494             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3495         ExpectedTemplateParams = Partial->getTemplateParameters();
3496         NeedNonemptyTemplateHeader = true;
3497       } else if (Record->isDependentType()) {
3498         if (Record->getDescribedClassTemplate()) {
3499           ExpectedTemplateParams = Record->getDescribedClassTemplate()
3500                                                       ->getTemplateParameters();
3501           NeedNonemptyTemplateHeader = true;
3502         }
3503       } else if (ClassTemplateSpecializationDecl *Spec
3504                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3505         // C++0x [temp.expl.spec]p4:
3506         //   Members of an explicitly specialized class template are defined
3507         //   in the same manner as members of normal classes, and not using
3508         //   the template<> syntax.
3509         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3510           NeedEmptyTemplateHeader = true;
3511         else
3512           continue;
3513       } else if (Record->getTemplateSpecializationKind()) {
3514         if (Record->getTemplateSpecializationKind()
3515                                                 != TSK_ExplicitSpecialization &&
3516             TypeIdx == NumTypes - 1)
3517           IsMemberSpecialization = true;
3518 
3519         continue;
3520       }
3521     } else if (const TemplateSpecializationType *TST
3522                                      = T->getAs<TemplateSpecializationType>()) {
3523       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3524         ExpectedTemplateParams = Template->getTemplateParameters();
3525         NeedNonemptyTemplateHeader = true;
3526       }
3527     } else if (T->getAs<DependentTemplateSpecializationType>()) {
3528       // FIXME:  We actually could/should check the template arguments here
3529       // against the corresponding template parameter list.
3530       NeedNonemptyTemplateHeader = false;
3531     }
3532 
3533     // C++ [temp.expl.spec]p16:
3534     //   In an explicit specialization declaration for a member of a class
3535     //   template or a member template that ap- pears in namespace scope, the
3536     //   member template and some of its enclosing class templates may remain
3537     //   unspecialized, except that the declaration shall not explicitly
3538     //   specialize a class member template if its en- closing class templates
3539     //   are not explicitly specialized as well.
3540     if (ParamIdx < ParamLists.size()) {
3541       if (ParamLists[ParamIdx]->size() == 0) {
3542         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3543                                         false))
3544           return nullptr;
3545       } else
3546         SawNonEmptyTemplateParameterList = true;
3547     }
3548 
3549     if (NeedEmptyTemplateHeader) {
3550       // If we're on the last of the types, and we need a 'template<>' header
3551       // here, then it's a member specialization.
3552       if (TypeIdx == NumTypes - 1)
3553         IsMemberSpecialization = true;
3554 
3555       if (ParamIdx < ParamLists.size()) {
3556         if (ParamLists[ParamIdx]->size() > 0) {
3557           // The header has template parameters when it shouldn't. Complain.
3558           if (!SuppressDiagnostic)
3559             Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3560                  diag::err_template_param_list_matches_nontemplate)
3561               << T
3562               << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3563                              ParamLists[ParamIdx]->getRAngleLoc())
3564               << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3565           Invalid = true;
3566           return nullptr;
3567         }
3568 
3569         // Consume this template header.
3570         ++ParamIdx;
3571         continue;
3572       }
3573 
3574       if (!IsFriend)
3575         if (DiagnoseMissingExplicitSpecialization(
3576                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3577           return nullptr;
3578 
3579       continue;
3580     }
3581 
3582     if (NeedNonemptyTemplateHeader) {
3583       // In friend declarations we can have template-ids which don't
3584       // depend on the corresponding template parameter lists.  But
3585       // assume that empty parameter lists are supposed to match this
3586       // template-id.
3587       if (IsFriend && T->isDependentType()) {
3588         if (ParamIdx < ParamLists.size() &&
3589             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3590           ExpectedTemplateParams = nullptr;
3591         else
3592           continue;
3593       }
3594 
3595       if (ParamIdx < ParamLists.size()) {
3596         // Check the template parameter list, if we can.
3597         if (ExpectedTemplateParams &&
3598             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3599                                             ExpectedTemplateParams,
3600                                             !SuppressDiagnostic, TPL_TemplateMatch))
3601           Invalid = true;
3602 
3603         if (!Invalid &&
3604             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3605                                        TPC_ClassTemplateMember))
3606           Invalid = true;
3607 
3608         ++ParamIdx;
3609         continue;
3610       }
3611 
3612       if (!SuppressDiagnostic)
3613         Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3614           << T
3615           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3616       Invalid = true;
3617       continue;
3618     }
3619   }
3620 
3621   // If there were at least as many template-ids as there were template
3622   // parameter lists, then there are no template parameter lists remaining for
3623   // the declaration itself.
3624   if (ParamIdx >= ParamLists.size()) {
3625     if (TemplateId && !IsFriend) {
3626       // We don't have a template header for the declaration itself, but we
3627       // should.
3628       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3629                                                         TemplateId->RAngleLoc));
3630 
3631       // Fabricate an empty template parameter list for the invented header.
3632       return TemplateParameterList::Create(Context, SourceLocation(),
3633                                            SourceLocation(), std::nullopt,
3634                                            SourceLocation(), nullptr);
3635     }
3636 
3637     return nullptr;
3638   }
3639 
3640   // If there were too many template parameter lists, complain about that now.
3641   if (ParamIdx < ParamLists.size() - 1) {
3642     bool HasAnyExplicitSpecHeader = false;
3643     bool AllExplicitSpecHeaders = true;
3644     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3645       if (ParamLists[I]->size() == 0)
3646         HasAnyExplicitSpecHeader = true;
3647       else
3648         AllExplicitSpecHeaders = false;
3649     }
3650 
3651     if (!SuppressDiagnostic)
3652       Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3653            AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3654                                   : diag::err_template_spec_extra_headers)
3655           << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3656                          ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3657 
3658     // If there was a specialization somewhere, such that 'template<>' is
3659     // not required, and there were any 'template<>' headers, note where the
3660     // specialization occurred.
3661     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3662         !SuppressDiagnostic)
3663       Diag(ExplicitSpecLoc,
3664            diag::note_explicit_template_spec_does_not_need_header)
3665         << NestedTypes.back();
3666 
3667     // We have a template parameter list with no corresponding scope, which
3668     // means that the resulting template declaration can't be instantiated
3669     // properly (we'll end up with dependent nodes when we shouldn't).
3670     if (!AllExplicitSpecHeaders)
3671       Invalid = true;
3672   }
3673 
3674   // C++ [temp.expl.spec]p16:
3675   //   In an explicit specialization declaration for a member of a class
3676   //   template or a member template that ap- pears in namespace scope, the
3677   //   member template and some of its enclosing class templates may remain
3678   //   unspecialized, except that the declaration shall not explicitly
3679   //   specialize a class member template if its en- closing class templates
3680   //   are not explicitly specialized as well.
3681   if (ParamLists.back()->size() == 0 &&
3682       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3683                                   false))
3684     return nullptr;
3685 
3686   // Return the last template parameter list, which corresponds to the
3687   // entity being declared.
3688   return ParamLists.back();
3689 }
3690 
3691 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3692   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3693     Diag(Template->getLocation(), diag::note_template_declared_here)
3694         << (isa<FunctionTemplateDecl>(Template)
3695                 ? 0
3696                 : isa<ClassTemplateDecl>(Template)
3697                       ? 1
3698                       : isa<VarTemplateDecl>(Template)
3699                             ? 2
3700                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3701         << Template->getDeclName();
3702     return;
3703   }
3704 
3705   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3706     for (OverloadedTemplateStorage::iterator I = OST->begin(),
3707                                           IEnd = OST->end();
3708          I != IEnd; ++I)
3709       Diag((*I)->getLocation(), diag::note_template_declared_here)
3710         << 0 << (*I)->getDeclName();
3711 
3712     return;
3713   }
3714 }
3715 
3716 static QualType
3717 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3718                            ArrayRef<TemplateArgument> Converted,
3719                            SourceLocation TemplateLoc,
3720                            TemplateArgumentListInfo &TemplateArgs) {
3721   ASTContext &Context = SemaRef.getASTContext();
3722 
3723   switch (BTD->getBuiltinTemplateKind()) {
3724   case BTK__make_integer_seq: {
3725     // Specializations of __make_integer_seq<S, T, N> are treated like
3726     // S<T, 0, ..., N-1>.
3727 
3728     QualType OrigType = Converted[1].getAsType();
3729     // C++14 [inteseq.intseq]p1:
3730     //   T shall be an integer type.
3731     if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) {
3732       SemaRef.Diag(TemplateArgs[1].getLocation(),
3733                    diag::err_integer_sequence_integral_element_type);
3734       return QualType();
3735     }
3736 
3737     TemplateArgument NumArgsArg = Converted[2];
3738     if (NumArgsArg.isDependent())
3739       return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3740                                                             Converted);
3741 
3742     TemplateArgumentListInfo SyntheticTemplateArgs;
3743     // The type argument, wrapped in substitution sugar, gets reused as the
3744     // first template argument in the synthetic template argument list.
3745     SyntheticTemplateArgs.addArgument(
3746         TemplateArgumentLoc(TemplateArgument(OrigType),
3747                             SemaRef.Context.getTrivialTypeSourceInfo(
3748                                 OrigType, TemplateArgs[1].getLocation())));
3749 
3750     if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
3751       // Expand N into 0 ... N-1.
3752       for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3753            I < NumArgs; ++I) {
3754         TemplateArgument TA(Context, I, OrigType);
3755         SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3756             TA, OrigType, TemplateArgs[2].getLocation()));
3757       }
3758     } else {
3759       // C++14 [inteseq.make]p1:
3760       //   If N is negative the program is ill-formed.
3761       SemaRef.Diag(TemplateArgs[2].getLocation(),
3762                    diag::err_integer_sequence_negative_length);
3763       return QualType();
3764     }
3765 
3766     // The first template argument will be reused as the template decl that
3767     // our synthetic template arguments will be applied to.
3768     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3769                                        TemplateLoc, SyntheticTemplateArgs);
3770   }
3771 
3772   case BTK__type_pack_element:
3773     // Specializations of
3774     //    __type_pack_element<Index, T_1, ..., T_N>
3775     // are treated like T_Index.
3776     assert(Converted.size() == 2 &&
3777       "__type_pack_element should be given an index and a parameter pack");
3778 
3779     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3780     if (IndexArg.isDependent() || Ts.isDependent())
3781       return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3782                                                             Converted);
3783 
3784     llvm::APSInt Index = IndexArg.getAsIntegral();
3785     assert(Index >= 0 && "the index used with __type_pack_element should be of "
3786                          "type std::size_t, and hence be non-negative");
3787     // If the Index is out of bounds, the program is ill-formed.
3788     if (Index >= Ts.pack_size()) {
3789       SemaRef.Diag(TemplateArgs[0].getLocation(),
3790                    diag::err_type_pack_element_out_of_bounds);
3791       return QualType();
3792     }
3793 
3794     // We simply return the type at index `Index`.
3795     int64_t N = Index.getExtValue();
3796     return Ts.getPackAsArray()[N].getAsType();
3797   }
3798   llvm_unreachable("unexpected BuiltinTemplateDecl!");
3799 }
3800 
3801 /// Determine whether this alias template is "enable_if_t".
3802 /// libc++ >=14 uses "__enable_if_t" in C++11 mode.
3803 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3804   return AliasTemplate->getName().equals("enable_if_t") ||
3805          AliasTemplate->getName().equals("__enable_if_t");
3806 }
3807 
3808 /// Collect all of the separable terms in the given condition, which
3809 /// might be a conjunction.
3810 ///
3811 /// FIXME: The right answer is to convert the logical expression into
3812 /// disjunctive normal form, so we can find the first failed term
3813 /// within each possible clause.
3814 static void collectConjunctionTerms(Expr *Clause,
3815                                     SmallVectorImpl<Expr *> &Terms) {
3816   if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3817     if (BinOp->getOpcode() == BO_LAnd) {
3818       collectConjunctionTerms(BinOp->getLHS(), Terms);
3819       collectConjunctionTerms(BinOp->getRHS(), Terms);
3820       return;
3821     }
3822   }
3823 
3824   Terms.push_back(Clause);
3825 }
3826 
3827 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3828 // a left-hand side that is value-dependent but never true. Identify
3829 // the idiom and ignore that term.
3830 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3831   // Top-level '||'.
3832   auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3833   if (!BinOp) return Cond;
3834 
3835   if (BinOp->getOpcode() != BO_LOr) return Cond;
3836 
3837   // With an inner '==' that has a literal on the right-hand side.
3838   Expr *LHS = BinOp->getLHS();
3839   auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3840   if (!InnerBinOp) return Cond;
3841 
3842   if (InnerBinOp->getOpcode() != BO_EQ ||
3843       !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3844     return Cond;
3845 
3846   // If the inner binary operation came from a macro expansion named
3847   // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3848   // of the '||', which is the real, user-provided condition.
3849   SourceLocation Loc = InnerBinOp->getExprLoc();
3850   if (!Loc.isMacroID()) return Cond;
3851 
3852   StringRef MacroName = PP.getImmediateMacroName(Loc);
3853   if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3854     return BinOp->getRHS();
3855 
3856   return Cond;
3857 }
3858 
3859 namespace {
3860 
3861 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3862 // within failing boolean expression, such as substituting template parameters
3863 // for actual types.
3864 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3865 public:
3866   explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3867       : Policy(P) {}
3868 
3869   bool handledStmt(Stmt *E, raw_ostream &OS) override {
3870     const auto *DR = dyn_cast<DeclRefExpr>(E);
3871     if (DR && DR->getQualifier()) {
3872       // If this is a qualified name, expand the template arguments in nested
3873       // qualifiers.
3874       DR->getQualifier()->print(OS, Policy, true);
3875       // Then print the decl itself.
3876       const ValueDecl *VD = DR->getDecl();
3877       OS << VD->getName();
3878       if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3879         // This is a template variable, print the expanded template arguments.
3880         printTemplateArgumentList(
3881             OS, IV->getTemplateArgs().asArray(), Policy,
3882             IV->getSpecializedTemplate()->getTemplateParameters());
3883       }
3884       return true;
3885     }
3886     return false;
3887   }
3888 
3889 private:
3890   const PrintingPolicy Policy;
3891 };
3892 
3893 } // end anonymous namespace
3894 
3895 std::pair<Expr *, std::string>
3896 Sema::findFailedBooleanCondition(Expr *Cond) {
3897   Cond = lookThroughRangesV3Condition(PP, Cond);
3898 
3899   // Separate out all of the terms in a conjunction.
3900   SmallVector<Expr *, 4> Terms;
3901   collectConjunctionTerms(Cond, Terms);
3902 
3903   // Determine which term failed.
3904   Expr *FailedCond = nullptr;
3905   for (Expr *Term : Terms) {
3906     Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3907 
3908     // Literals are uninteresting.
3909     if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3910         isa<IntegerLiteral>(TermAsWritten))
3911       continue;
3912 
3913     // The initialization of the parameter from the argument is
3914     // a constant-evaluated context.
3915     EnterExpressionEvaluationContext ConstantEvaluated(
3916       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3917 
3918     bool Succeeded;
3919     if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3920         !Succeeded) {
3921       FailedCond = TermAsWritten;
3922       break;
3923     }
3924   }
3925   if (!FailedCond)
3926     FailedCond = Cond->IgnoreParenImpCasts();
3927 
3928   std::string Description;
3929   {
3930     llvm::raw_string_ostream Out(Description);
3931     PrintingPolicy Policy = getPrintingPolicy();
3932     Policy.PrintCanonicalTypes = true;
3933     FailedBooleanConditionPrinterHelper Helper(Policy);
3934     FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3935   }
3936   return { FailedCond, Description };
3937 }
3938 
3939 QualType Sema::CheckTemplateIdType(TemplateName Name,
3940                                    SourceLocation TemplateLoc,
3941                                    TemplateArgumentListInfo &TemplateArgs) {
3942   DependentTemplateName *DTN
3943     = Name.getUnderlying().getAsDependentTemplateName();
3944   if (DTN && DTN->isIdentifier())
3945     // When building a template-id where the template-name is dependent,
3946     // assume the template is a type template. Either our assumption is
3947     // correct, or the code is ill-formed and will be diagnosed when the
3948     // dependent name is substituted.
3949     return Context.getDependentTemplateSpecializationType(
3950         ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
3951         TemplateArgs.arguments());
3952 
3953   if (Name.getAsAssumedTemplateName() &&
3954       resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3955     return QualType();
3956 
3957   TemplateDecl *Template = Name.getAsTemplateDecl();
3958   if (!Template || isa<FunctionTemplateDecl>(Template) ||
3959       isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3960     // We might have a substituted template template parameter pack. If so,
3961     // build a template specialization type for it.
3962     if (Name.getAsSubstTemplateTemplateParmPack())
3963       return Context.getTemplateSpecializationType(Name,
3964                                                    TemplateArgs.arguments());
3965 
3966     Diag(TemplateLoc, diag::err_template_id_not_a_type)
3967       << Name;
3968     NoteAllFoundTemplates(Name);
3969     return QualType();
3970   }
3971 
3972   // Check that the template argument list is well-formed for this
3973   // template.
3974   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3975   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false,
3976                                 SugaredConverted, CanonicalConverted,
3977                                 /*UpdateArgsWithConversions=*/true))
3978     return QualType();
3979 
3980   QualType CanonType;
3981 
3982   if (TypeAliasTemplateDecl *AliasTemplate =
3983           dyn_cast<TypeAliasTemplateDecl>(Template)) {
3984 
3985     // Find the canonical type for this type alias template specialization.
3986     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3987     if (Pattern->isInvalidDecl())
3988       return QualType();
3989 
3990     // Only substitute for the innermost template argument list.
3991     MultiLevelTemplateArgumentList TemplateArgLists;
3992     TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted,
3993                                                /*Final=*/false);
3994     TemplateArgLists.addOuterRetainedLevels(
3995         AliasTemplate->getTemplateParameters()->getDepth());
3996 
3997     LocalInstantiationScope Scope(*this);
3998     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3999     if (Inst.isInvalid())
4000       return QualType();
4001 
4002     CanonType = SubstType(Pattern->getUnderlyingType(),
4003                           TemplateArgLists, AliasTemplate->getLocation(),
4004                           AliasTemplate->getDeclName());
4005     if (CanonType.isNull()) {
4006       // If this was enable_if and we failed to find the nested type
4007       // within enable_if in a SFINAE context, dig out the specific
4008       // enable_if condition that failed and present that instead.
4009       if (isEnableIfAliasTemplate(AliasTemplate)) {
4010         if (auto DeductionInfo = isSFINAEContext()) {
4011           if (*DeductionInfo &&
4012               (*DeductionInfo)->hasSFINAEDiagnostic() &&
4013               (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
4014                 diag::err_typename_nested_not_found_enable_if &&
4015               TemplateArgs[0].getArgument().getKind()
4016                 == TemplateArgument::Expression) {
4017             Expr *FailedCond;
4018             std::string FailedDescription;
4019             std::tie(FailedCond, FailedDescription) =
4020               findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
4021 
4022             // Remove the old SFINAE diagnostic.
4023             PartialDiagnosticAt OldDiag =
4024               {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
4025             (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
4026 
4027             // Add a new SFINAE diagnostic specifying which condition
4028             // failed.
4029             (*DeductionInfo)->addSFINAEDiagnostic(
4030               OldDiag.first,
4031               PDiag(diag::err_typename_nested_not_found_requirement)
4032                 << FailedDescription
4033                 << FailedCond->getSourceRange());
4034           }
4035         }
4036       }
4037 
4038       return QualType();
4039     }
4040   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
4041     CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted,
4042                                            TemplateLoc, TemplateArgs);
4043   } else if (Name.isDependent() ||
4044              TemplateSpecializationType::anyDependentTemplateArguments(
4045                  TemplateArgs, CanonicalConverted)) {
4046     // This class template specialization is a dependent
4047     // type. Therefore, its canonical type is another class template
4048     // specialization type that contains all of the converted
4049     // arguments in canonical form. This ensures that, e.g., A<T> and
4050     // A<T, T> have identical types when A is declared as:
4051     //
4052     //   template<typename T, typename U = T> struct A;
4053     CanonType = Context.getCanonicalTemplateSpecializationType(
4054         Name, CanonicalConverted);
4055 
4056     // This might work out to be a current instantiation, in which
4057     // case the canonical type needs to be the InjectedClassNameType.
4058     //
4059     // TODO: in theory this could be a simple hashtable lookup; most
4060     // changes to CurContext don't change the set of current
4061     // instantiations.
4062     if (isa<ClassTemplateDecl>(Template)) {
4063       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
4064         // If we get out to a namespace, we're done.
4065         if (Ctx->isFileContext()) break;
4066 
4067         // If this isn't a record, keep looking.
4068         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
4069         if (!Record) continue;
4070 
4071         // Look for one of the two cases with InjectedClassNameTypes
4072         // and check whether it's the same template.
4073         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
4074             !Record->getDescribedClassTemplate())
4075           continue;
4076 
4077         // Fetch the injected class name type and check whether its
4078         // injected type is equal to the type we just built.
4079         QualType ICNT = Context.getTypeDeclType(Record);
4080         QualType Injected = cast<InjectedClassNameType>(ICNT)
4081           ->getInjectedSpecializationType();
4082 
4083         if (CanonType != Injected->getCanonicalTypeInternal())
4084           continue;
4085 
4086         // If so, the canonical type of this TST is the injected
4087         // class name type of the record we just found.
4088         assert(ICNT.isCanonical());
4089         CanonType = ICNT;
4090         break;
4091       }
4092     }
4093   } else if (ClassTemplateDecl *ClassTemplate =
4094                  dyn_cast<ClassTemplateDecl>(Template)) {
4095     // Find the class template specialization declaration that
4096     // corresponds to these arguments.
4097     void *InsertPos = nullptr;
4098     ClassTemplateSpecializationDecl *Decl =
4099         ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
4100     if (!Decl) {
4101       // This is the first time we have referenced this class template
4102       // specialization. Create the canonical declaration and add it to
4103       // the set of specializations.
4104       Decl = ClassTemplateSpecializationDecl::Create(
4105           Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
4106           ClassTemplate->getDeclContext(),
4107           ClassTemplate->getTemplatedDecl()->getBeginLoc(),
4108           ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted,
4109           nullptr);
4110       ClassTemplate->AddSpecialization(Decl, InsertPos);
4111       if (ClassTemplate->isOutOfLine())
4112         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
4113     }
4114 
4115     if (Decl->getSpecializationKind() == TSK_Undeclared &&
4116         ClassTemplate->getTemplatedDecl()->hasAttrs()) {
4117       InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
4118       if (!Inst.isInvalid()) {
4119         MultiLevelTemplateArgumentList TemplateArgLists(Template,
4120                                                         CanonicalConverted,
4121                                                         /*Final=*/false);
4122         InstantiateAttrsForDecl(TemplateArgLists,
4123                                 ClassTemplate->getTemplatedDecl(), Decl);
4124       }
4125     }
4126 
4127     // Diagnose uses of this specialization.
4128     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
4129 
4130     CanonType = Context.getTypeDeclType(Decl);
4131     assert(isa<RecordType>(CanonType) &&
4132            "type of non-dependent specialization is not a RecordType");
4133   } else {
4134     llvm_unreachable("Unhandled template kind");
4135   }
4136 
4137   // Build the fully-sugared type for this class template
4138   // specialization, which refers back to the class template
4139   // specialization we created or found.
4140   return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(),
4141                                                CanonType);
4142 }
4143 
4144 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
4145                                            TemplateNameKind &TNK,
4146                                            SourceLocation NameLoc,
4147                                            IdentifierInfo *&II) {
4148   assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
4149 
4150   TemplateName Name = ParsedName.get();
4151   auto *ATN = Name.getAsAssumedTemplateName();
4152   assert(ATN && "not an assumed template name");
4153   II = ATN->getDeclName().getAsIdentifierInfo();
4154 
4155   if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
4156     // Resolved to a type template name.
4157     ParsedName = TemplateTy::make(Name);
4158     TNK = TNK_Type_template;
4159   }
4160 }
4161 
4162 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
4163                                             SourceLocation NameLoc,
4164                                             bool Diagnose) {
4165   // We assumed this undeclared identifier to be an (ADL-only) function
4166   // template name, but it was used in a context where a type was required.
4167   // Try to typo-correct it now.
4168   AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
4169   assert(ATN && "not an assumed template name");
4170 
4171   LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
4172   struct CandidateCallback : CorrectionCandidateCallback {
4173     bool ValidateCandidate(const TypoCorrection &TC) override {
4174       return TC.getCorrectionDecl() &&
4175              getAsTypeTemplateDecl(TC.getCorrectionDecl());
4176     }
4177     std::unique_ptr<CorrectionCandidateCallback> clone() override {
4178       return std::make_unique<CandidateCallback>(*this);
4179     }
4180   } FilterCCC;
4181 
4182   TypoCorrection Corrected =
4183       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
4184                   FilterCCC, CTK_ErrorRecovery);
4185   if (Corrected && Corrected.getFoundDecl()) {
4186     diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
4187                                 << ATN->getDeclName());
4188     Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
4189     return false;
4190   }
4191 
4192   if (Diagnose)
4193     Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
4194   return true;
4195 }
4196 
4197 TypeResult Sema::ActOnTemplateIdType(
4198     Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
4199     TemplateTy TemplateD, IdentifierInfo *TemplateII,
4200     SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
4201     ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
4202     bool IsCtorOrDtorName, bool IsClassName,
4203     ImplicitTypenameContext AllowImplicitTypename) {
4204   if (SS.isInvalid())
4205     return true;
4206 
4207   if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
4208     DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
4209 
4210     // C++ [temp.res]p3:
4211     //   A qualified-id that refers to a type and in which the
4212     //   nested-name-specifier depends on a template-parameter (14.6.2)
4213     //   shall be prefixed by the keyword typename to indicate that the
4214     //   qualified-id denotes a type, forming an
4215     //   elaborated-type-specifier (7.1.5.3).
4216     if (!LookupCtx && isDependentScopeSpecifier(SS)) {
4217       // C++2a relaxes some of those restrictions in [temp.res]p5.
4218       if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
4219         if (getLangOpts().CPlusPlus20)
4220           Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
4221         else
4222           Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
4223               << SS.getScopeRep() << TemplateII->getName()
4224               << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
4225       } else
4226         Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
4227             << SS.getScopeRep() << TemplateII->getName();
4228 
4229       // FIXME: This is not quite correct recovery as we don't transform SS
4230       // into the corresponding dependent form (and we don't diagnose missing
4231       // 'template' keywords within SS as a result).
4232       return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
4233                                TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
4234                                TemplateArgsIn, RAngleLoc);
4235     }
4236 
4237     // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
4238     // it's not actually allowed to be used as a type in most cases. Because
4239     // we annotate it before we know whether it's valid, we have to check for
4240     // this case here.
4241     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4242     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
4243       Diag(TemplateIILoc,
4244            TemplateKWLoc.isInvalid()
4245                ? diag::err_out_of_line_qualified_id_type_names_constructor
4246                : diag::ext_out_of_line_qualified_id_type_names_constructor)
4247         << TemplateII << 0 /*injected-class-name used as template name*/
4248         << 1 /*if any keyword was present, it was 'template'*/;
4249     }
4250   }
4251 
4252   TemplateName Template = TemplateD.get();
4253   if (Template.getAsAssumedTemplateName() &&
4254       resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
4255     return true;
4256 
4257   // Translate the parser's template argument list in our AST format.
4258   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4259   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4260 
4261   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4262     assert(SS.getScopeRep() == DTN->getQualifier());
4263     QualType T = Context.getDependentTemplateSpecializationType(
4264         ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
4265         TemplateArgs.arguments());
4266     // Build type-source information.
4267     TypeLocBuilder TLB;
4268     DependentTemplateSpecializationTypeLoc SpecTL
4269       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4270     SpecTL.setElaboratedKeywordLoc(SourceLocation());
4271     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4272     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4273     SpecTL.setTemplateNameLoc(TemplateIILoc);
4274     SpecTL.setLAngleLoc(LAngleLoc);
4275     SpecTL.setRAngleLoc(RAngleLoc);
4276     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4277       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4278     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4279   }
4280 
4281   QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
4282   if (SpecTy.isNull())
4283     return true;
4284 
4285   // Build type-source information.
4286   TypeLocBuilder TLB;
4287   TemplateSpecializationTypeLoc SpecTL =
4288       TLB.push<TemplateSpecializationTypeLoc>(SpecTy);
4289   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4290   SpecTL.setTemplateNameLoc(TemplateIILoc);
4291   SpecTL.setLAngleLoc(LAngleLoc);
4292   SpecTL.setRAngleLoc(RAngleLoc);
4293   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4294     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4295 
4296   // Create an elaborated-type-specifier containing the nested-name-specifier.
4297   QualType ElTy =
4298       getElaboratedType(ElaboratedTypeKeyword::None,
4299                         !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy);
4300   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy);
4301   ElabTL.setElaboratedKeywordLoc(SourceLocation());
4302   if (!ElabTL.isEmpty())
4303     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4304   return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy));
4305 }
4306 
4307 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4308                                         TypeSpecifierType TagSpec,
4309                                         SourceLocation TagLoc,
4310                                         CXXScopeSpec &SS,
4311                                         SourceLocation TemplateKWLoc,
4312                                         TemplateTy TemplateD,
4313                                         SourceLocation TemplateLoc,
4314                                         SourceLocation LAngleLoc,
4315                                         ASTTemplateArgsPtr TemplateArgsIn,
4316                                         SourceLocation RAngleLoc) {
4317   if (SS.isInvalid())
4318     return TypeResult(true);
4319 
4320   TemplateName Template = TemplateD.get();
4321 
4322   // Translate the parser's template argument list in our AST format.
4323   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4324   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4325 
4326   // Determine the tag kind
4327   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4328   ElaboratedTypeKeyword Keyword
4329     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4330 
4331   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4332     assert(SS.getScopeRep() == DTN->getQualifier());
4333     QualType T = Context.getDependentTemplateSpecializationType(
4334         Keyword, DTN->getQualifier(), DTN->getIdentifier(),
4335         TemplateArgs.arguments());
4336 
4337     // Build type-source information.
4338     TypeLocBuilder TLB;
4339     DependentTemplateSpecializationTypeLoc SpecTL
4340       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4341     SpecTL.setElaboratedKeywordLoc(TagLoc);
4342     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4343     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4344     SpecTL.setTemplateNameLoc(TemplateLoc);
4345     SpecTL.setLAngleLoc(LAngleLoc);
4346     SpecTL.setRAngleLoc(RAngleLoc);
4347     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4348       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4349     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4350   }
4351 
4352   if (TypeAliasTemplateDecl *TAT =
4353         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4354     // C++0x [dcl.type.elab]p2:
4355     //   If the identifier resolves to a typedef-name or the simple-template-id
4356     //   resolves to an alias template specialization, the
4357     //   elaborated-type-specifier is ill-formed.
4358     Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4359         << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind);
4360     Diag(TAT->getLocation(), diag::note_declared_at);
4361   }
4362 
4363   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4364   if (Result.isNull())
4365     return TypeResult(true);
4366 
4367   // Check the tag kind
4368   if (const RecordType *RT = Result->getAs<RecordType>()) {
4369     RecordDecl *D = RT->getDecl();
4370 
4371     IdentifierInfo *Id = D->getIdentifier();
4372     assert(Id && "templated class must have an identifier");
4373 
4374     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4375                                       TagLoc, Id)) {
4376       Diag(TagLoc, diag::err_use_with_wrong_tag)
4377         << Result
4378         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4379       Diag(D->getLocation(), diag::note_previous_use);
4380     }
4381   }
4382 
4383   // Provide source-location information for the template specialization.
4384   TypeLocBuilder TLB;
4385   TemplateSpecializationTypeLoc SpecTL
4386     = TLB.push<TemplateSpecializationTypeLoc>(Result);
4387   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4388   SpecTL.setTemplateNameLoc(TemplateLoc);
4389   SpecTL.setLAngleLoc(LAngleLoc);
4390   SpecTL.setRAngleLoc(RAngleLoc);
4391   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4392     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4393 
4394   // Construct an elaborated type containing the nested-name-specifier (if any)
4395   // and tag keyword.
4396   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4397   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4398   ElabTL.setElaboratedKeywordLoc(TagLoc);
4399   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4400   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4401 }
4402 
4403 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4404                                              NamedDecl *PrevDecl,
4405                                              SourceLocation Loc,
4406                                              bool IsPartialSpecialization);
4407 
4408 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4409 
4410 static bool isTemplateArgumentTemplateParameter(
4411     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4412   switch (Arg.getKind()) {
4413   case TemplateArgument::Null:
4414   case TemplateArgument::NullPtr:
4415   case TemplateArgument::Integral:
4416   case TemplateArgument::Declaration:
4417   case TemplateArgument::Pack:
4418   case TemplateArgument::TemplateExpansion:
4419     return false;
4420 
4421   case TemplateArgument::Type: {
4422     QualType Type = Arg.getAsType();
4423     const TemplateTypeParmType *TPT =
4424         Arg.getAsType()->getAs<TemplateTypeParmType>();
4425     return TPT && !Type.hasQualifiers() &&
4426            TPT->getDepth() == Depth && TPT->getIndex() == Index;
4427   }
4428 
4429   case TemplateArgument::Expression: {
4430     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4431     if (!DRE || !DRE->getDecl())
4432       return false;
4433     const NonTypeTemplateParmDecl *NTTP =
4434         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4435     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4436   }
4437 
4438   case TemplateArgument::Template:
4439     const TemplateTemplateParmDecl *TTP =
4440         dyn_cast_or_null<TemplateTemplateParmDecl>(
4441             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4442     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4443   }
4444   llvm_unreachable("unexpected kind of template argument");
4445 }
4446 
4447 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4448                                     ArrayRef<TemplateArgument> Args) {
4449   if (Params->size() != Args.size())
4450     return false;
4451 
4452   unsigned Depth = Params->getDepth();
4453 
4454   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4455     TemplateArgument Arg = Args[I];
4456 
4457     // If the parameter is a pack expansion, the argument must be a pack
4458     // whose only element is a pack expansion.
4459     if (Params->getParam(I)->isParameterPack()) {
4460       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4461           !Arg.pack_begin()->isPackExpansion())
4462         return false;
4463       Arg = Arg.pack_begin()->getPackExpansionPattern();
4464     }
4465 
4466     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4467       return false;
4468   }
4469 
4470   return true;
4471 }
4472 
4473 template<typename PartialSpecDecl>
4474 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4475   if (Partial->getDeclContext()->isDependentContext())
4476     return;
4477 
4478   // FIXME: Get the TDK from deduction in order to provide better diagnostics
4479   // for non-substitution-failure issues?
4480   TemplateDeductionInfo Info(Partial->getLocation());
4481   if (S.isMoreSpecializedThanPrimary(Partial, Info))
4482     return;
4483 
4484   auto *Template = Partial->getSpecializedTemplate();
4485   S.Diag(Partial->getLocation(),
4486          diag::ext_partial_spec_not_more_specialized_than_primary)
4487       << isa<VarTemplateDecl>(Template);
4488 
4489   if (Info.hasSFINAEDiagnostic()) {
4490     PartialDiagnosticAt Diag = {SourceLocation(),
4491                                 PartialDiagnostic::NullDiagnostic()};
4492     Info.takeSFINAEDiagnostic(Diag);
4493     SmallString<128> SFINAEArgString;
4494     Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4495     S.Diag(Diag.first,
4496            diag::note_partial_spec_not_more_specialized_than_primary)
4497       << SFINAEArgString;
4498   }
4499 
4500   S.NoteTemplateLocation(*Template);
4501   SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4502   Template->getAssociatedConstraints(TemplateAC);
4503   Partial->getAssociatedConstraints(PartialAC);
4504   S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4505                                                   TemplateAC);
4506 }
4507 
4508 static void
4509 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4510                            const llvm::SmallBitVector &DeducibleParams) {
4511   for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4512     if (!DeducibleParams[I]) {
4513       NamedDecl *Param = TemplateParams->getParam(I);
4514       if (Param->getDeclName())
4515         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4516             << Param->getDeclName();
4517       else
4518         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4519             << "(anonymous)";
4520     }
4521   }
4522 }
4523 
4524 
4525 template<typename PartialSpecDecl>
4526 static void checkTemplatePartialSpecialization(Sema &S,
4527                                                PartialSpecDecl *Partial) {
4528   // C++1z [temp.class.spec]p8: (DR1495)
4529   //   - The specialization shall be more specialized than the primary
4530   //     template (14.5.5.2).
4531   checkMoreSpecializedThanPrimary(S, Partial);
4532 
4533   // C++ [temp.class.spec]p8: (DR1315)
4534   //   - Each template-parameter shall appear at least once in the
4535   //     template-id outside a non-deduced context.
4536   // C++1z [temp.class.spec.match]p3 (P0127R2)
4537   //   If the template arguments of a partial specialization cannot be
4538   //   deduced because of the structure of its template-parameter-list
4539   //   and the template-id, the program is ill-formed.
4540   auto *TemplateParams = Partial->getTemplateParameters();
4541   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4542   S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4543                                TemplateParams->getDepth(), DeducibleParams);
4544 
4545   if (!DeducibleParams.all()) {
4546     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4547     S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4548       << isa<VarTemplatePartialSpecializationDecl>(Partial)
4549       << (NumNonDeducible > 1)
4550       << SourceRange(Partial->getLocation(),
4551                      Partial->getTemplateArgsAsWritten()->RAngleLoc);
4552     noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4553   }
4554 }
4555 
4556 void Sema::CheckTemplatePartialSpecialization(
4557     ClassTemplatePartialSpecializationDecl *Partial) {
4558   checkTemplatePartialSpecialization(*this, Partial);
4559 }
4560 
4561 void Sema::CheckTemplatePartialSpecialization(
4562     VarTemplatePartialSpecializationDecl *Partial) {
4563   checkTemplatePartialSpecialization(*this, Partial);
4564 }
4565 
4566 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4567   // C++1z [temp.param]p11:
4568   //   A template parameter of a deduction guide template that does not have a
4569   //   default-argument shall be deducible from the parameter-type-list of the
4570   //   deduction guide template.
4571   auto *TemplateParams = TD->getTemplateParameters();
4572   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4573   MarkDeducedTemplateParameters(TD, DeducibleParams);
4574   for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4575     // A parameter pack is deducible (to an empty pack).
4576     auto *Param = TemplateParams->getParam(I);
4577     if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4578       DeducibleParams[I] = true;
4579   }
4580 
4581   if (!DeducibleParams.all()) {
4582     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4583     Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4584       << (NumNonDeducible > 1);
4585     noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4586   }
4587 }
4588 
4589 DeclResult Sema::ActOnVarTemplateSpecialization(
4590     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4591     TemplateParameterList *TemplateParams, StorageClass SC,
4592     bool IsPartialSpecialization) {
4593   // D must be variable template id.
4594   assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4595          "Variable template specialization is declared with a template id.");
4596 
4597   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4598   TemplateArgumentListInfo TemplateArgs =
4599       makeTemplateArgumentListInfo(*this, *TemplateId);
4600   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4601   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4602   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4603 
4604   TemplateName Name = TemplateId->Template.get();
4605 
4606   // The template-id must name a variable template.
4607   VarTemplateDecl *VarTemplate =
4608       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4609   if (!VarTemplate) {
4610     NamedDecl *FnTemplate;
4611     if (auto *OTS = Name.getAsOverloadedTemplate())
4612       FnTemplate = *OTS->begin();
4613     else
4614       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4615     if (FnTemplate)
4616       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4617                << FnTemplate->getDeclName();
4618     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4619              << IsPartialSpecialization;
4620   }
4621 
4622   // Check for unexpanded parameter packs in any of the template arguments.
4623   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4624     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4625                                         IsPartialSpecialization
4626                                             ? UPPC_PartialSpecialization
4627                                             : UPPC_ExplicitSpecialization))
4628       return true;
4629 
4630   // Check that the template argument list is well-formed for this
4631   // template.
4632   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4633   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4634                                 false, SugaredConverted, CanonicalConverted,
4635                                 /*UpdateArgsWithConversions=*/true))
4636     return true;
4637 
4638   // Find the variable template (partial) specialization declaration that
4639   // corresponds to these arguments.
4640   if (IsPartialSpecialization) {
4641     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4642                                                TemplateArgs.size(),
4643                                                CanonicalConverted))
4644       return true;
4645 
4646     // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4647     // also do them during instantiation.
4648     if (!Name.isDependent() &&
4649         !TemplateSpecializationType::anyDependentTemplateArguments(
4650             TemplateArgs, CanonicalConverted)) {
4651       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4652           << VarTemplate->getDeclName();
4653       IsPartialSpecialization = false;
4654     }
4655 
4656     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4657                                 CanonicalConverted) &&
4658         (!Context.getLangOpts().CPlusPlus20 ||
4659          !TemplateParams->hasAssociatedConstraints())) {
4660       // C++ [temp.class.spec]p9b3:
4661       //
4662       //   -- The argument list of the specialization shall not be identical
4663       //      to the implicit argument list of the primary template.
4664       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4665         << /*variable template*/ 1
4666         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4667         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4668       // FIXME: Recover from this by treating the declaration as a redeclaration
4669       // of the primary template.
4670       return true;
4671     }
4672   }
4673 
4674   void *InsertPos = nullptr;
4675   VarTemplateSpecializationDecl *PrevDecl = nullptr;
4676 
4677   if (IsPartialSpecialization)
4678     PrevDecl = VarTemplate->findPartialSpecialization(
4679         CanonicalConverted, TemplateParams, InsertPos);
4680   else
4681     PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos);
4682 
4683   VarTemplateSpecializationDecl *Specialization = nullptr;
4684 
4685   // Check whether we can declare a variable template specialization in
4686   // the current scope.
4687   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4688                                        TemplateNameLoc,
4689                                        IsPartialSpecialization))
4690     return true;
4691 
4692   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4693     // Since the only prior variable template specialization with these
4694     // arguments was referenced but not declared,  reuse that
4695     // declaration node as our own, updating its source location and
4696     // the list of outer template parameters to reflect our new declaration.
4697     Specialization = PrevDecl;
4698     Specialization->setLocation(TemplateNameLoc);
4699     PrevDecl = nullptr;
4700   } else if (IsPartialSpecialization) {
4701     // Create a new class template partial specialization declaration node.
4702     VarTemplatePartialSpecializationDecl *PrevPartial =
4703         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4704     VarTemplatePartialSpecializationDecl *Partial =
4705         VarTemplatePartialSpecializationDecl::Create(
4706             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4707             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4708             CanonicalConverted, TemplateArgs);
4709 
4710     if (!PrevPartial)
4711       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4712     Specialization = Partial;
4713 
4714     // If we are providing an explicit specialization of a member variable
4715     // template specialization, make a note of that.
4716     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4717       PrevPartial->setMemberSpecialization();
4718 
4719     CheckTemplatePartialSpecialization(Partial);
4720   } else {
4721     // Create a new class template specialization declaration node for
4722     // this explicit specialization or friend declaration.
4723     Specialization = VarTemplateSpecializationDecl::Create(
4724         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4725         VarTemplate, DI->getType(), DI, SC, CanonicalConverted);
4726     Specialization->setTemplateArgsInfo(TemplateArgs);
4727 
4728     if (!PrevDecl)
4729       VarTemplate->AddSpecialization(Specialization, InsertPos);
4730   }
4731 
4732   // C++ [temp.expl.spec]p6:
4733   //   If a template, a member template or the member of a class template is
4734   //   explicitly specialized then that specialization shall be declared
4735   //   before the first use of that specialization that would cause an implicit
4736   //   instantiation to take place, in every translation unit in which such a
4737   //   use occurs; no diagnostic is required.
4738   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4739     bool Okay = false;
4740     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4741       // Is there any previous explicit specialization declaration?
4742       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4743         Okay = true;
4744         break;
4745       }
4746     }
4747 
4748     if (!Okay) {
4749       SourceRange Range(TemplateNameLoc, RAngleLoc);
4750       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4751           << Name << Range;
4752 
4753       Diag(PrevDecl->getPointOfInstantiation(),
4754            diag::note_instantiation_required_here)
4755           << (PrevDecl->getTemplateSpecializationKind() !=
4756               TSK_ImplicitInstantiation);
4757       return true;
4758     }
4759   }
4760 
4761   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4762   Specialization->setLexicalDeclContext(CurContext);
4763 
4764   // Add the specialization into its lexical context, so that it can
4765   // be seen when iterating through the list of declarations in that
4766   // context. However, specializations are not found by name lookup.
4767   CurContext->addDecl(Specialization);
4768 
4769   // Note that this is an explicit specialization.
4770   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4771 
4772   if (PrevDecl) {
4773     // Check that this isn't a redefinition of this specialization,
4774     // merging with previous declarations.
4775     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4776                           forRedeclarationInCurContext());
4777     PrevSpec.addDecl(PrevDecl);
4778     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4779   } else if (Specialization->isStaticDataMember() &&
4780              Specialization->isOutOfLine()) {
4781     Specialization->setAccess(VarTemplate->getAccess());
4782   }
4783 
4784   return Specialization;
4785 }
4786 
4787 namespace {
4788 /// A partial specialization whose template arguments have matched
4789 /// a given template-id.
4790 struct PartialSpecMatchResult {
4791   VarTemplatePartialSpecializationDecl *Partial;
4792   TemplateArgumentList *Args;
4793 };
4794 } // end anonymous namespace
4795 
4796 DeclResult
4797 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4798                          SourceLocation TemplateNameLoc,
4799                          const TemplateArgumentListInfo &TemplateArgs) {
4800   assert(Template && "A variable template id without template?");
4801 
4802   // Check that the template argument list is well-formed for this template.
4803   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4804   if (CheckTemplateArgumentList(
4805           Template, TemplateNameLoc,
4806           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4807           SugaredConverted, CanonicalConverted,
4808           /*UpdateArgsWithConversions=*/true))
4809     return true;
4810 
4811   // Produce a placeholder value if the specialization is dependent.
4812   if (Template->getDeclContext()->isDependentContext() ||
4813       TemplateSpecializationType::anyDependentTemplateArguments(
4814           TemplateArgs, CanonicalConverted))
4815     return DeclResult();
4816 
4817   // Find the variable template specialization declaration that
4818   // corresponds to these arguments.
4819   void *InsertPos = nullptr;
4820   if (VarTemplateSpecializationDecl *Spec =
4821           Template->findSpecialization(CanonicalConverted, InsertPos)) {
4822     checkSpecializationReachability(TemplateNameLoc, Spec);
4823     // If we already have a variable template specialization, return it.
4824     return Spec;
4825   }
4826 
4827   // This is the first time we have referenced this variable template
4828   // specialization. Create the canonical declaration and add it to
4829   // the set of specializations, based on the closest partial specialization
4830   // that it represents. That is,
4831   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4832   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4833                                        CanonicalConverted);
4834   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4835   bool AmbiguousPartialSpec = false;
4836   typedef PartialSpecMatchResult MatchResult;
4837   SmallVector<MatchResult, 4> Matched;
4838   SourceLocation PointOfInstantiation = TemplateNameLoc;
4839   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4840                                             /*ForTakingAddress=*/false);
4841 
4842   // 1. Attempt to find the closest partial specialization that this
4843   // specializes, if any.
4844   // TODO: Unify with InstantiateClassTemplateSpecialization()?
4845   //       Perhaps better after unification of DeduceTemplateArguments() and
4846   //       getMoreSpecializedPartialSpecialization().
4847   SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4848   Template->getPartialSpecializations(PartialSpecs);
4849 
4850   for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4851     VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4852     TemplateDeductionInfo Info(FailedCandidates.getLocation());
4853 
4854     if (TemplateDeductionResult Result =
4855             DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4856       // Store the failed-deduction information for use in diagnostics, later.
4857       // TODO: Actually use the failed-deduction info?
4858       FailedCandidates.addCandidate().set(
4859           DeclAccessPair::make(Template, AS_public), Partial,
4860           MakeDeductionFailureInfo(Context, Result, Info));
4861       (void)Result;
4862     } else {
4863       Matched.push_back(PartialSpecMatchResult());
4864       Matched.back().Partial = Partial;
4865       Matched.back().Args = Info.takeCanonical();
4866     }
4867   }
4868 
4869   if (Matched.size() >= 1) {
4870     SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4871     if (Matched.size() == 1) {
4872       //   -- If exactly one matching specialization is found, the
4873       //      instantiation is generated from that specialization.
4874       // We don't need to do anything for this.
4875     } else {
4876       //   -- If more than one matching specialization is found, the
4877       //      partial order rules (14.5.4.2) are used to determine
4878       //      whether one of the specializations is more specialized
4879       //      than the others. If none of the specializations is more
4880       //      specialized than all of the other matching
4881       //      specializations, then the use of the variable template is
4882       //      ambiguous and the program is ill-formed.
4883       for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4884                                                  PEnd = Matched.end();
4885            P != PEnd; ++P) {
4886         if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4887                                                     PointOfInstantiation) ==
4888             P->Partial)
4889           Best = P;
4890       }
4891 
4892       // Determine if the best partial specialization is more specialized than
4893       // the others.
4894       for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4895                                                  PEnd = Matched.end();
4896            P != PEnd; ++P) {
4897         if (P != Best && getMoreSpecializedPartialSpecialization(
4898                              P->Partial, Best->Partial,
4899                              PointOfInstantiation) != Best->Partial) {
4900           AmbiguousPartialSpec = true;
4901           break;
4902         }
4903       }
4904     }
4905 
4906     // Instantiate using the best variable template partial specialization.
4907     InstantiationPattern = Best->Partial;
4908     InstantiationArgs = Best->Args;
4909   } else {
4910     //   -- If no match is found, the instantiation is generated
4911     //      from the primary template.
4912     // InstantiationPattern = Template->getTemplatedDecl();
4913   }
4914 
4915   // 2. Create the canonical declaration.
4916   // Note that we do not instantiate a definition until we see an odr-use
4917   // in DoMarkVarDeclReferenced().
4918   // FIXME: LateAttrs et al.?
4919   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4920       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4921       CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4922   if (!Decl)
4923     return true;
4924 
4925   if (AmbiguousPartialSpec) {
4926     // Partial ordering did not produce a clear winner. Complain.
4927     Decl->setInvalidDecl();
4928     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4929         << Decl;
4930 
4931     // Print the matching partial specializations.
4932     for (MatchResult P : Matched)
4933       Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4934           << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4935                                              *P.Args);
4936     return true;
4937   }
4938 
4939   if (VarTemplatePartialSpecializationDecl *D =
4940           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4941     Decl->setInstantiationOf(D, InstantiationArgs);
4942 
4943   checkSpecializationReachability(TemplateNameLoc, Decl);
4944 
4945   assert(Decl && "No variable template specialization?");
4946   return Decl;
4947 }
4948 
4949 ExprResult
4950 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4951                          const DeclarationNameInfo &NameInfo,
4952                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
4953                          const TemplateArgumentListInfo *TemplateArgs) {
4954 
4955   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4956                                        *TemplateArgs);
4957   if (Decl.isInvalid())
4958     return ExprError();
4959 
4960   if (!Decl.get())
4961     return ExprResult();
4962 
4963   VarDecl *Var = cast<VarDecl>(Decl.get());
4964   if (!Var->getTemplateSpecializationKind())
4965     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4966                                        NameInfo.getLoc());
4967 
4968   // Build an ordinary singleton decl ref.
4969   return BuildDeclarationNameExpr(SS, NameInfo, Var,
4970                                   /*FoundD=*/nullptr, TemplateArgs);
4971 }
4972 
4973 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4974                                             SourceLocation Loc) {
4975   Diag(Loc, diag::err_template_missing_args)
4976     << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4977   if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4978     NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange());
4979   }
4980 }
4981 
4982 ExprResult
4983 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4984                              SourceLocation TemplateKWLoc,
4985                              const DeclarationNameInfo &ConceptNameInfo,
4986                              NamedDecl *FoundDecl,
4987                              ConceptDecl *NamedConcept,
4988                              const TemplateArgumentListInfo *TemplateArgs) {
4989   assert(NamedConcept && "A concept template id without a template?");
4990 
4991   llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4992   if (CheckTemplateArgumentList(
4993           NamedConcept, ConceptNameInfo.getLoc(),
4994           const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
4995           /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted,
4996           /*UpdateArgsWithConversions=*/false))
4997     return ExprError();
4998 
4999   auto *CSD = ImplicitConceptSpecializationDecl::Create(
5000       Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(),
5001       CanonicalConverted);
5002   ConstraintSatisfaction Satisfaction;
5003   bool AreArgsDependent =
5004       TemplateSpecializationType::anyDependentTemplateArguments(
5005           *TemplateArgs, CanonicalConverted);
5006   MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted,
5007                                        /*Final=*/false);
5008   LocalInstantiationScope Scope(*this);
5009 
5010   EnterExpressionEvaluationContext EECtx{
5011       *this, ExpressionEvaluationContext::ConstantEvaluated, CSD};
5012 
5013   if (!AreArgsDependent &&
5014       CheckConstraintSatisfaction(
5015           NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL,
5016           SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
5017                       TemplateArgs->getRAngleLoc()),
5018           Satisfaction))
5019     return ExprError();
5020   auto *CL = ConceptReference::Create(
5021       Context,
5022       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
5023       TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
5024       ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs));
5025   return ConceptSpecializationExpr::Create(
5026       Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction);
5027 }
5028 
5029 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
5030                                      SourceLocation TemplateKWLoc,
5031                                      LookupResult &R,
5032                                      bool RequiresADL,
5033                                  const TemplateArgumentListInfo *TemplateArgs) {
5034   // FIXME: Can we do any checking at this point? I guess we could check the
5035   // template arguments that we have against the template name, if the template
5036   // name refers to a single template. That's not a terribly common case,
5037   // though.
5038   // foo<int> could identify a single function unambiguously
5039   // This approach does NOT work, since f<int>(1);
5040   // gets resolved prior to resorting to overload resolution
5041   // i.e., template<class T> void f(double);
5042   //       vs template<class T, class U> void f(U);
5043 
5044   // These should be filtered out by our callers.
5045   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
5046 
5047   // Non-function templates require a template argument list.
5048   if (auto *TD = R.getAsSingle<TemplateDecl>()) {
5049     if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
5050       diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
5051       return ExprError();
5052     }
5053   }
5054   bool KnownDependent = false;
5055   // In C++1y, check variable template ids.
5056   if (R.getAsSingle<VarTemplateDecl>()) {
5057     ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
5058                                         R.getAsSingle<VarTemplateDecl>(),
5059                                         TemplateKWLoc, TemplateArgs);
5060     if (Res.isInvalid() || Res.isUsable())
5061       return Res;
5062     // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
5063     KnownDependent = true;
5064   }
5065 
5066   if (R.getAsSingle<ConceptDecl>()) {
5067     return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
5068                                   R.getFoundDecl(),
5069                                   R.getAsSingle<ConceptDecl>(), TemplateArgs);
5070   }
5071 
5072   // We don't want lookup warnings at this point.
5073   R.suppressDiagnostics();
5074 
5075   UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
5076       Context, R.getNamingClass(), SS.getWithLocInContext(Context),
5077       TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs,
5078       R.begin(), R.end(), KnownDependent);
5079 
5080   return ULE;
5081 }
5082 
5083 // We actually only call this from template instantiation.
5084 ExprResult
5085 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
5086                                    SourceLocation TemplateKWLoc,
5087                                    const DeclarationNameInfo &NameInfo,
5088                              const TemplateArgumentListInfo *TemplateArgs) {
5089 
5090   assert(TemplateArgs || TemplateKWLoc.isValid());
5091   DeclContext *DC;
5092   if (!(DC = computeDeclContext(SS, false)) ||
5093       DC->isDependentContext() ||
5094       RequireCompleteDeclContext(SS, DC))
5095     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
5096 
5097   bool MemberOfUnknownSpecialization;
5098   LookupResult R(*this, NameInfo, LookupOrdinaryName);
5099   if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
5100                          /*Entering*/false, MemberOfUnknownSpecialization,
5101                          TemplateKWLoc))
5102     return ExprError();
5103 
5104   if (R.isAmbiguous())
5105     return ExprError();
5106 
5107   if (R.empty()) {
5108     Diag(NameInfo.getLoc(), diag::err_no_member)
5109       << NameInfo.getName() << DC << SS.getRange();
5110     return ExprError();
5111   }
5112 
5113   auto DiagnoseTypeTemplateDecl = [&](TemplateDecl *Temp,
5114                                       bool isTypeAliasTemplateDecl) {
5115     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
5116         << SS.getScopeRep() << NameInfo.getName().getAsString() << SS.getRange()
5117         << isTypeAliasTemplateDecl;
5118     Diag(Temp->getLocation(), diag::note_referenced_type_template) << 0;
5119     return ExprError();
5120   };
5121 
5122   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>())
5123     return DiagnoseTypeTemplateDecl(Temp, false);
5124 
5125   if (TypeAliasTemplateDecl *Temp = R.getAsSingle<TypeAliasTemplateDecl>())
5126     return DiagnoseTypeTemplateDecl(Temp, true);
5127 
5128   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
5129 }
5130 
5131 /// Form a template name from a name that is syntactically required to name a
5132 /// template, either due to use of the 'template' keyword or because a name in
5133 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
5134 ///
5135 /// This action forms a template name given the name of the template and its
5136 /// optional scope specifier. This is used when the 'template' keyword is used
5137 /// or when the parsing context unambiguously treats a following '<' as
5138 /// introducing a template argument list. Note that this may produce a
5139 /// non-dependent template name if we can perform the lookup now and identify
5140 /// the named template.
5141 ///
5142 /// For example, given "x.MetaFun::template apply", the scope specifier
5143 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
5144 /// of the "template" keyword, and "apply" is the \p Name.
5145 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
5146                                          CXXScopeSpec &SS,
5147                                          SourceLocation TemplateKWLoc,
5148                                          const UnqualifiedId &Name,
5149                                          ParsedType ObjectType,
5150                                          bool EnteringContext,
5151                                          TemplateTy &Result,
5152                                          bool AllowInjectedClassName) {
5153   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
5154     Diag(TemplateKWLoc,
5155          getLangOpts().CPlusPlus11 ?
5156            diag::warn_cxx98_compat_template_outside_of_template :
5157            diag::ext_template_outside_of_template)
5158       << FixItHint::CreateRemoval(TemplateKWLoc);
5159 
5160   if (SS.isInvalid())
5161     return TNK_Non_template;
5162 
5163   // Figure out where isTemplateName is going to look.
5164   DeclContext *LookupCtx = nullptr;
5165   if (SS.isNotEmpty())
5166     LookupCtx = computeDeclContext(SS, EnteringContext);
5167   else if (ObjectType)
5168     LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
5169 
5170   // C++0x [temp.names]p5:
5171   //   If a name prefixed by the keyword template is not the name of
5172   //   a template, the program is ill-formed. [Note: the keyword
5173   //   template may not be applied to non-template members of class
5174   //   templates. -end note ] [ Note: as is the case with the
5175   //   typename prefix, the template prefix is allowed in cases
5176   //   where it is not strictly necessary; i.e., when the
5177   //   nested-name-specifier or the expression on the left of the ->
5178   //   or . is not dependent on a template-parameter, or the use
5179   //   does not appear in the scope of a template. -end note]
5180   //
5181   // Note: C++03 was more strict here, because it banned the use of
5182   // the "template" keyword prior to a template-name that was not a
5183   // dependent name. C++ DR468 relaxed this requirement (the
5184   // "template" keyword is now permitted). We follow the C++0x
5185   // rules, even in C++03 mode with a warning, retroactively applying the DR.
5186   bool MemberOfUnknownSpecialization;
5187   TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
5188                                         ObjectType, EnteringContext, Result,
5189                                         MemberOfUnknownSpecialization);
5190   if (TNK != TNK_Non_template) {
5191     // We resolved this to a (non-dependent) template name. Return it.
5192     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
5193     if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
5194         Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
5195         Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
5196       // C++14 [class.qual]p2:
5197       //   In a lookup in which function names are not ignored and the
5198       //   nested-name-specifier nominates a class C, if the name specified
5199       //   [...] is the injected-class-name of C, [...] the name is instead
5200       //   considered to name the constructor
5201       //
5202       // We don't get here if naming the constructor would be valid, so we
5203       // just reject immediately and recover by treating the
5204       // injected-class-name as naming the template.
5205       Diag(Name.getBeginLoc(),
5206            diag::ext_out_of_line_qualified_id_type_names_constructor)
5207           << Name.Identifier
5208           << 0 /*injected-class-name used as template name*/
5209           << TemplateKWLoc.isValid();
5210     }
5211     return TNK;
5212   }
5213 
5214   if (!MemberOfUnknownSpecialization) {
5215     // Didn't find a template name, and the lookup wasn't dependent.
5216     // Do the lookup again to determine if this is a "nothing found" case or
5217     // a "not a template" case. FIXME: Refactor isTemplateName so we don't
5218     // need to do this.
5219     DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
5220     LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
5221                    LookupOrdinaryName);
5222     bool MOUS;
5223     // Tell LookupTemplateName that we require a template so that it diagnoses
5224     // cases where it finds a non-template.
5225     RequiredTemplateKind RTK = TemplateKWLoc.isValid()
5226                                    ? RequiredTemplateKind(TemplateKWLoc)
5227                                    : TemplateNameIsRequired;
5228     if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
5229                             RTK, nullptr, /*AllowTypoCorrection=*/false) &&
5230         !R.isAmbiguous()) {
5231       if (LookupCtx)
5232         Diag(Name.getBeginLoc(), diag::err_no_member)
5233             << DNI.getName() << LookupCtx << SS.getRange();
5234       else
5235         Diag(Name.getBeginLoc(), diag::err_undeclared_use)
5236             << DNI.getName() << SS.getRange();
5237     }
5238     return TNK_Non_template;
5239   }
5240 
5241   NestedNameSpecifier *Qualifier = SS.getScopeRep();
5242 
5243   switch (Name.getKind()) {
5244   case UnqualifiedIdKind::IK_Identifier:
5245     Result = TemplateTy::make(
5246         Context.getDependentTemplateName(Qualifier, Name.Identifier));
5247     return TNK_Dependent_template_name;
5248 
5249   case UnqualifiedIdKind::IK_OperatorFunctionId:
5250     Result = TemplateTy::make(Context.getDependentTemplateName(
5251         Qualifier, Name.OperatorFunctionId.Operator));
5252     return TNK_Function_template;
5253 
5254   case UnqualifiedIdKind::IK_LiteralOperatorId:
5255     // This is a kind of template name, but can never occur in a dependent
5256     // scope (literal operators can only be declared at namespace scope).
5257     break;
5258 
5259   default:
5260     break;
5261   }
5262 
5263   // This name cannot possibly name a dependent template. Diagnose this now
5264   // rather than building a dependent template name that can never be valid.
5265   Diag(Name.getBeginLoc(),
5266        diag::err_template_kw_refers_to_dependent_non_template)
5267       << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5268       << TemplateKWLoc.isValid() << TemplateKWLoc;
5269   return TNK_Non_template;
5270 }
5271 
5272 bool Sema::CheckTemplateTypeArgument(
5273     TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
5274     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5275     SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
5276   const TemplateArgument &Arg = AL.getArgument();
5277   QualType ArgType;
5278   TypeSourceInfo *TSI = nullptr;
5279 
5280   // Check template type parameter.
5281   switch(Arg.getKind()) {
5282   case TemplateArgument::Type:
5283     // C++ [temp.arg.type]p1:
5284     //   A template-argument for a template-parameter which is a
5285     //   type shall be a type-id.
5286     ArgType = Arg.getAsType();
5287     TSI = AL.getTypeSourceInfo();
5288     break;
5289   case TemplateArgument::Template:
5290   case TemplateArgument::TemplateExpansion: {
5291     // We have a template type parameter but the template argument
5292     // is a template without any arguments.
5293     SourceRange SR = AL.getSourceRange();
5294     TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5295     diagnoseMissingTemplateArguments(Name, SR.getEnd());
5296     return true;
5297   }
5298   case TemplateArgument::Expression: {
5299     // We have a template type parameter but the template argument is an
5300     // expression; see if maybe it is missing the "typename" keyword.
5301     CXXScopeSpec SS;
5302     DeclarationNameInfo NameInfo;
5303 
5304    if (DependentScopeDeclRefExpr *ArgExpr =
5305                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
5306       SS.Adopt(ArgExpr->getQualifierLoc());
5307       NameInfo = ArgExpr->getNameInfo();
5308     } else if (CXXDependentScopeMemberExpr *ArgExpr =
5309                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
5310       if (ArgExpr->isImplicitAccess()) {
5311         SS.Adopt(ArgExpr->getQualifierLoc());
5312         NameInfo = ArgExpr->getMemberNameInfo();
5313       }
5314     }
5315 
5316     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5317       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5318       LookupParsedName(Result, CurScope, &SS);
5319 
5320       if (Result.getAsSingle<TypeDecl>() ||
5321           Result.getResultKind() ==
5322               LookupResult::NotFoundInCurrentInstantiation) {
5323         assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
5324         // Suggest that the user add 'typename' before the NNS.
5325         SourceLocation Loc = AL.getSourceRange().getBegin();
5326         Diag(Loc, getLangOpts().MSVCCompat
5327                       ? diag::ext_ms_template_type_arg_missing_typename
5328                       : diag::err_template_arg_must_be_type_suggest)
5329             << FixItHint::CreateInsertion(Loc, "typename ");
5330         NoteTemplateParameterLocation(*Param);
5331 
5332         // Recover by synthesizing a type using the location information that we
5333         // already have.
5334         ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename,
5335                                                SS.getScopeRep(), II);
5336         TypeLocBuilder TLB;
5337         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5338         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5339         TL.setQualifierLoc(SS.getWithLocInContext(Context));
5340         TL.setNameLoc(NameInfo.getLoc());
5341         TSI = TLB.getTypeSourceInfo(Context, ArgType);
5342 
5343         // Overwrite our input TemplateArgumentLoc so that we can recover
5344         // properly.
5345         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5346                                  TemplateArgumentLocInfo(TSI));
5347 
5348         break;
5349       }
5350     }
5351     // fallthrough
5352     [[fallthrough]];
5353   }
5354   default: {
5355     // We have a template type parameter but the template argument
5356     // is not a type.
5357     SourceRange SR = AL.getSourceRange();
5358     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5359     NoteTemplateParameterLocation(*Param);
5360 
5361     return true;
5362   }
5363   }
5364 
5365   if (CheckTemplateArgument(TSI))
5366     return true;
5367 
5368   // Objective-C ARC:
5369   //   If an explicitly-specified template argument type is a lifetime type
5370   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5371   if (getLangOpts().ObjCAutoRefCount &&
5372       ArgType->isObjCLifetimeType() &&
5373       !ArgType.getObjCLifetime()) {
5374     Qualifiers Qs;
5375     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5376     ArgType = Context.getQualifiedType(ArgType, Qs);
5377   }
5378 
5379   SugaredConverted.push_back(TemplateArgument(ArgType));
5380   CanonicalConverted.push_back(
5381       TemplateArgument(Context.getCanonicalType(ArgType)));
5382   return false;
5383 }
5384 
5385 /// Substitute template arguments into the default template argument for
5386 /// the given template type parameter.
5387 ///
5388 /// \param SemaRef the semantic analysis object for which we are performing
5389 /// the substitution.
5390 ///
5391 /// \param Template the template that we are synthesizing template arguments
5392 /// for.
5393 ///
5394 /// \param TemplateLoc the location of the template name that started the
5395 /// template-id we are checking.
5396 ///
5397 /// \param RAngleLoc the location of the right angle bracket ('>') that
5398 /// terminates the template-id.
5399 ///
5400 /// \param Param the template template parameter whose default we are
5401 /// substituting into.
5402 ///
5403 /// \param Converted the list of template arguments provided for template
5404 /// parameters that precede \p Param in the template parameter list.
5405 /// \returns the substituted template argument, or NULL if an error occurred.
5406 static TypeSourceInfo *SubstDefaultTemplateArgument(
5407     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5408     SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
5409     ArrayRef<TemplateArgument> SugaredConverted,
5410     ArrayRef<TemplateArgument> CanonicalConverted) {
5411   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5412 
5413   // If the argument type is dependent, instantiate it now based
5414   // on the previously-computed template arguments.
5415   if (ArgType->getType()->isInstantiationDependentType()) {
5416     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5417                                      SugaredConverted,
5418                                      SourceRange(TemplateLoc, RAngleLoc));
5419     if (Inst.isInvalid())
5420       return nullptr;
5421 
5422     // Only substitute for the innermost template argument list.
5423     MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5424                                                     /*Final=*/true);
5425     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5426       TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5427 
5428     bool ForLambdaCallOperator = false;
5429     if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5430       ForLambdaCallOperator = Rec->isLambda();
5431     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5432                                    !ForLambdaCallOperator);
5433     ArgType =
5434         SemaRef.SubstType(ArgType, TemplateArgLists,
5435                           Param->getDefaultArgumentLoc(), Param->getDeclName());
5436   }
5437 
5438   return ArgType;
5439 }
5440 
5441 /// Substitute template arguments into the default template argument for
5442 /// the given non-type template parameter.
5443 ///
5444 /// \param SemaRef the semantic analysis object for which we are performing
5445 /// the substitution.
5446 ///
5447 /// \param Template the template that we are synthesizing template arguments
5448 /// for.
5449 ///
5450 /// \param TemplateLoc the location of the template name that started the
5451 /// template-id we are checking.
5452 ///
5453 /// \param RAngleLoc the location of the right angle bracket ('>') that
5454 /// terminates the template-id.
5455 ///
5456 /// \param Param the non-type template parameter whose default we are
5457 /// substituting into.
5458 ///
5459 /// \param Converted the list of template arguments provided for template
5460 /// parameters that precede \p Param in the template parameter list.
5461 ///
5462 /// \returns the substituted template argument, or NULL if an error occurred.
5463 static ExprResult SubstDefaultTemplateArgument(
5464     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5465     SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
5466     ArrayRef<TemplateArgument> SugaredConverted,
5467     ArrayRef<TemplateArgument> CanonicalConverted) {
5468   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5469                                    SugaredConverted,
5470                                    SourceRange(TemplateLoc, RAngleLoc));
5471   if (Inst.isInvalid())
5472     return ExprError();
5473 
5474   // Only substitute for the innermost template argument list.
5475   MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5476                                                   /*Final=*/true);
5477   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5478     TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5479 
5480   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5481   EnterExpressionEvaluationContext ConstantEvaluated(
5482       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5483   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5484 }
5485 
5486 /// Substitute template arguments into the default template argument for
5487 /// the given template template parameter.
5488 ///
5489 /// \param SemaRef the semantic analysis object for which we are performing
5490 /// the substitution.
5491 ///
5492 /// \param Template the template that we are synthesizing template arguments
5493 /// for.
5494 ///
5495 /// \param TemplateLoc the location of the template name that started the
5496 /// template-id we are checking.
5497 ///
5498 /// \param RAngleLoc the location of the right angle bracket ('>') that
5499 /// terminates the template-id.
5500 ///
5501 /// \param Param the template template parameter whose default we are
5502 /// substituting into.
5503 ///
5504 /// \param Converted the list of template arguments provided for template
5505 /// parameters that precede \p Param in the template parameter list.
5506 ///
5507 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5508 /// source-location information) that precedes the template name.
5509 ///
5510 /// \returns the substituted template argument, or NULL if an error occurred.
5511 static TemplateName SubstDefaultTemplateArgument(
5512     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5513     SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
5514     ArrayRef<TemplateArgument> SugaredConverted,
5515     ArrayRef<TemplateArgument> CanonicalConverted,
5516     NestedNameSpecifierLoc &QualifierLoc) {
5517   Sema::InstantiatingTemplate Inst(
5518       SemaRef, TemplateLoc, TemplateParameter(Param), Template,
5519       SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
5520   if (Inst.isInvalid())
5521     return TemplateName();
5522 
5523   // Only substitute for the innermost template argument list.
5524   MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5525                                                   /*Final=*/true);
5526   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5527     TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5528 
5529   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5530   // Substitute into the nested-name-specifier first,
5531   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5532   if (QualifierLoc) {
5533     QualifierLoc =
5534         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5535     if (!QualifierLoc)
5536       return TemplateName();
5537   }
5538 
5539   return SemaRef.SubstTemplateName(
5540              QualifierLoc,
5541              Param->getDefaultArgument().getArgument().getAsTemplate(),
5542              Param->getDefaultArgument().getTemplateNameLoc(),
5543              TemplateArgLists);
5544 }
5545 
5546 /// If the given template parameter has a default template
5547 /// argument, substitute into that default template argument and
5548 /// return the corresponding template argument.
5549 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
5550     TemplateDecl *Template, SourceLocation TemplateLoc,
5551     SourceLocation RAngleLoc, Decl *Param,
5552     ArrayRef<TemplateArgument> SugaredConverted,
5553     ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
5554   HasDefaultArg = false;
5555 
5556   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5557     if (!hasReachableDefaultArgument(TypeParm))
5558       return TemplateArgumentLoc();
5559 
5560     HasDefaultArg = true;
5561     TypeSourceInfo *DI = SubstDefaultTemplateArgument(
5562         *this, Template, TemplateLoc, RAngleLoc, TypeParm, SugaredConverted,
5563         CanonicalConverted);
5564     if (DI)
5565       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5566 
5567     return TemplateArgumentLoc();
5568   }
5569 
5570   if (NonTypeTemplateParmDecl *NonTypeParm
5571         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5572     if (!hasReachableDefaultArgument(NonTypeParm))
5573       return TemplateArgumentLoc();
5574 
5575     HasDefaultArg = true;
5576     ExprResult Arg = SubstDefaultTemplateArgument(
5577         *this, Template, TemplateLoc, RAngleLoc, NonTypeParm, SugaredConverted,
5578         CanonicalConverted);
5579     if (Arg.isInvalid())
5580       return TemplateArgumentLoc();
5581 
5582     Expr *ArgE = Arg.getAs<Expr>();
5583     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5584   }
5585 
5586   TemplateTemplateParmDecl *TempTempParm
5587     = cast<TemplateTemplateParmDecl>(Param);
5588   if (!hasReachableDefaultArgument(TempTempParm))
5589     return TemplateArgumentLoc();
5590 
5591   HasDefaultArg = true;
5592   NestedNameSpecifierLoc QualifierLoc;
5593   TemplateName TName = SubstDefaultTemplateArgument(
5594       *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted,
5595       CanonicalConverted, QualifierLoc);
5596   if (TName.isNull())
5597     return TemplateArgumentLoc();
5598 
5599   return TemplateArgumentLoc(
5600       Context, TemplateArgument(TName),
5601       TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5602       TempTempParm->getDefaultArgument().getTemplateNameLoc());
5603 }
5604 
5605 /// Convert a template-argument that we parsed as a type into a template, if
5606 /// possible. C++ permits injected-class-names to perform dual service as
5607 /// template template arguments and as template type arguments.
5608 static TemplateArgumentLoc
5609 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5610   // Extract and step over any surrounding nested-name-specifier.
5611   NestedNameSpecifierLoc QualLoc;
5612   if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5613     if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None)
5614       return TemplateArgumentLoc();
5615 
5616     QualLoc = ETLoc.getQualifierLoc();
5617     TLoc = ETLoc.getNamedTypeLoc();
5618   }
5619   // If this type was written as an injected-class-name, it can be used as a
5620   // template template argument.
5621   if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5622     return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5623                                QualLoc, InjLoc.getNameLoc());
5624 
5625   // If this type was written as an injected-class-name, it may have been
5626   // converted to a RecordType during instantiation. If the RecordType is
5627   // *not* wrapped in a TemplateSpecializationType and denotes a class
5628   // template specialization, it must have come from an injected-class-name.
5629   if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5630     if (auto *CTSD =
5631             dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5632       return TemplateArgumentLoc(Context,
5633                                  TemplateName(CTSD->getSpecializedTemplate()),
5634                                  QualLoc, RecLoc.getNameLoc());
5635 
5636   return TemplateArgumentLoc();
5637 }
5638 
5639 /// Check that the given template argument corresponds to the given
5640 /// template parameter.
5641 ///
5642 /// \param Param The template parameter against which the argument will be
5643 /// checked.
5644 ///
5645 /// \param Arg The template argument, which may be updated due to conversions.
5646 ///
5647 /// \param Template The template in which the template argument resides.
5648 ///
5649 /// \param TemplateLoc The location of the template name for the template
5650 /// whose argument list we're matching.
5651 ///
5652 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5653 /// the template argument list.
5654 ///
5655 /// \param ArgumentPackIndex The index into the argument pack where this
5656 /// argument will be placed. Only valid if the parameter is a parameter pack.
5657 ///
5658 /// \param Converted The checked, converted argument will be added to the
5659 /// end of this small vector.
5660 ///
5661 /// \param CTAK Describes how we arrived at this particular template argument:
5662 /// explicitly written, deduced, etc.
5663 ///
5664 /// \returns true on error, false otherwise.
5665 bool Sema::CheckTemplateArgument(
5666     NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template,
5667     SourceLocation TemplateLoc, SourceLocation RAngleLoc,
5668     unsigned ArgumentPackIndex,
5669     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5670     SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5671     CheckTemplateArgumentKind CTAK) {
5672   // Check template type parameters.
5673   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5674     return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted,
5675                                      CanonicalConverted);
5676 
5677   // Check non-type template parameters.
5678   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5679     // Do substitution on the type of the non-type template parameter
5680     // with the template arguments we've seen thus far.  But if the
5681     // template has a dependent context then we cannot substitute yet.
5682     QualType NTTPType = NTTP->getType();
5683     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5684       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5685 
5686     if (NTTPType->isInstantiationDependentType() &&
5687         !isa<TemplateTemplateParmDecl>(Template) &&
5688         !Template->getDeclContext()->isDependentContext()) {
5689       // Do substitution on the type of the non-type template parameter.
5690       InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
5691                                  SugaredConverted,
5692                                  SourceRange(TemplateLoc, RAngleLoc));
5693       if (Inst.isInvalid())
5694         return true;
5695 
5696       MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted,
5697                                            /*Final=*/true);
5698       // If the parameter is a pack expansion, expand this slice of the pack.
5699       if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5700         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5701                                                            ArgumentPackIndex);
5702         NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
5703                              NTTP->getDeclName());
5704       } else {
5705         NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
5706                              NTTP->getDeclName());
5707       }
5708 
5709       // If that worked, check the non-type template parameter type
5710       // for validity.
5711       if (!NTTPType.isNull())
5712         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5713                                                      NTTP->getLocation());
5714       if (NTTPType.isNull())
5715         return true;
5716     }
5717 
5718     switch (Arg.getArgument().getKind()) {
5719     case TemplateArgument::Null:
5720       llvm_unreachable("Should never see a NULL template argument here");
5721 
5722     case TemplateArgument::Expression: {
5723       Expr *E = Arg.getArgument().getAsExpr();
5724       TemplateArgument SugaredResult, CanonicalResult;
5725       unsigned CurSFINAEErrors = NumSFINAEErrors;
5726       ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult,
5727                                              CanonicalResult, CTAK);
5728       if (Res.isInvalid())
5729         return true;
5730       // If the current template argument causes an error, give up now.
5731       if (CurSFINAEErrors < NumSFINAEErrors)
5732         return true;
5733 
5734       // If the resulting expression is new, then use it in place of the
5735       // old expression in the template argument.
5736       if (Res.get() != E) {
5737         TemplateArgument TA(Res.get());
5738         Arg = TemplateArgumentLoc(TA, Res.get());
5739       }
5740 
5741       SugaredConverted.push_back(SugaredResult);
5742       CanonicalConverted.push_back(CanonicalResult);
5743       break;
5744     }
5745 
5746     case TemplateArgument::Declaration:
5747     case TemplateArgument::Integral:
5748     case TemplateArgument::NullPtr:
5749       // We've already checked this template argument, so just copy
5750       // it to the list of converted arguments.
5751       SugaredConverted.push_back(Arg.getArgument());
5752       CanonicalConverted.push_back(
5753           Context.getCanonicalTemplateArgument(Arg.getArgument()));
5754       break;
5755 
5756     case TemplateArgument::Template:
5757     case TemplateArgument::TemplateExpansion:
5758       // We were given a template template argument. It may not be ill-formed;
5759       // see below.
5760       if (DependentTemplateName *DTN
5761             = Arg.getArgument().getAsTemplateOrTemplatePattern()
5762                                               .getAsDependentTemplateName()) {
5763         // We have a template argument such as \c T::template X, which we
5764         // parsed as a template template argument. However, since we now
5765         // know that we need a non-type template argument, convert this
5766         // template name into an expression.
5767 
5768         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5769                                      Arg.getTemplateNameLoc());
5770 
5771         CXXScopeSpec SS;
5772         SS.Adopt(Arg.getTemplateQualifierLoc());
5773         // FIXME: the template-template arg was a DependentTemplateName,
5774         // so it was provided with a template keyword. However, its source
5775         // location is not stored in the template argument structure.
5776         SourceLocation TemplateKWLoc;
5777         ExprResult E = DependentScopeDeclRefExpr::Create(
5778             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5779             nullptr);
5780 
5781         // If we parsed the template argument as a pack expansion, create a
5782         // pack expansion expression.
5783         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5784           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5785           if (E.isInvalid())
5786             return true;
5787         }
5788 
5789         TemplateArgument SugaredResult, CanonicalResult;
5790         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult,
5791                                   CanonicalResult, CTAK_Specified);
5792         if (E.isInvalid())
5793           return true;
5794 
5795         SugaredConverted.push_back(SugaredResult);
5796         CanonicalConverted.push_back(CanonicalResult);
5797         break;
5798       }
5799 
5800       // We have a template argument that actually does refer to a class
5801       // template, alias template, or template template parameter, and
5802       // therefore cannot be a non-type template argument.
5803       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5804         << Arg.getSourceRange();
5805       NoteTemplateParameterLocation(*Param);
5806 
5807       return true;
5808 
5809     case TemplateArgument::Type: {
5810       // We have a non-type template parameter but the template
5811       // argument is a type.
5812 
5813       // C++ [temp.arg]p2:
5814       //   In a template-argument, an ambiguity between a type-id and
5815       //   an expression is resolved to a type-id, regardless of the
5816       //   form of the corresponding template-parameter.
5817       //
5818       // We warn specifically about this case, since it can be rather
5819       // confusing for users.
5820       QualType T = Arg.getArgument().getAsType();
5821       SourceRange SR = Arg.getSourceRange();
5822       if (T->isFunctionType())
5823         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5824       else
5825         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5826       NoteTemplateParameterLocation(*Param);
5827       return true;
5828     }
5829 
5830     case TemplateArgument::Pack:
5831       llvm_unreachable("Caller must expand template argument packs");
5832     }
5833 
5834     return false;
5835   }
5836 
5837 
5838   // Check template template parameters.
5839   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5840 
5841   TemplateParameterList *Params = TempParm->getTemplateParameters();
5842   if (TempParm->isExpandedParameterPack())
5843     Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5844 
5845   // Substitute into the template parameter list of the template
5846   // template parameter, since previously-supplied template arguments
5847   // may appear within the template template parameter.
5848   //
5849   // FIXME: Skip this if the parameters aren't instantiation-dependent.
5850   {
5851     // Set up a template instantiation context.
5852     LocalInstantiationScope Scope(*this);
5853     InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
5854                                SugaredConverted,
5855                                SourceRange(TemplateLoc, RAngleLoc));
5856     if (Inst.isInvalid())
5857       return true;
5858 
5859     Params =
5860         SubstTemplateParams(Params, CurContext,
5861                             MultiLevelTemplateArgumentList(
5862                                 Template, SugaredConverted, /*Final=*/true),
5863                             /*EvaluateConstraints=*/false);
5864     if (!Params)
5865       return true;
5866   }
5867 
5868   // C++1z [temp.local]p1: (DR1004)
5869   //   When [the injected-class-name] is used [...] as a template-argument for
5870   //   a template template-parameter [...] it refers to the class template
5871   //   itself.
5872   if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5873     TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5874         Context, Arg.getTypeSourceInfo()->getTypeLoc());
5875     if (!ConvertedArg.getArgument().isNull())
5876       Arg = ConvertedArg;
5877   }
5878 
5879   switch (Arg.getArgument().getKind()) {
5880   case TemplateArgument::Null:
5881     llvm_unreachable("Should never see a NULL template argument here");
5882 
5883   case TemplateArgument::Template:
5884   case TemplateArgument::TemplateExpansion:
5885     if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5886       return true;
5887 
5888     SugaredConverted.push_back(Arg.getArgument());
5889     CanonicalConverted.push_back(
5890         Context.getCanonicalTemplateArgument(Arg.getArgument()));
5891     break;
5892 
5893   case TemplateArgument::Expression:
5894   case TemplateArgument::Type:
5895     // We have a template template parameter but the template
5896     // argument does not refer to a template.
5897     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5898       << getLangOpts().CPlusPlus11;
5899     return true;
5900 
5901   case TemplateArgument::Declaration:
5902     llvm_unreachable("Declaration argument with template template parameter");
5903   case TemplateArgument::Integral:
5904     llvm_unreachable("Integral argument with template template parameter");
5905   case TemplateArgument::NullPtr:
5906     llvm_unreachable("Null pointer argument with template template parameter");
5907 
5908   case TemplateArgument::Pack:
5909     llvm_unreachable("Caller must expand template argument packs");
5910   }
5911 
5912   return false;
5913 }
5914 
5915 /// Diagnose a missing template argument.
5916 template<typename TemplateParmDecl>
5917 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5918                                     TemplateDecl *TD,
5919                                     const TemplateParmDecl *D,
5920                                     TemplateArgumentListInfo &Args) {
5921   // Dig out the most recent declaration of the template parameter; there may be
5922   // declarations of the template that are more recent than TD.
5923   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5924                                  ->getTemplateParameters()
5925                                  ->getParam(D->getIndex()));
5926 
5927   // If there's a default argument that's not reachable, diagnose that we're
5928   // missing a module import.
5929   llvm::SmallVector<Module*, 8> Modules;
5930   if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5931     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5932                             D->getDefaultArgumentLoc(), Modules,
5933                             Sema::MissingImportKind::DefaultArgument,
5934                             /*Recover*/true);
5935     return true;
5936   }
5937 
5938   // FIXME: If there's a more recent default argument that *is* visible,
5939   // diagnose that it was declared too late.
5940 
5941   TemplateParameterList *Params = TD->getTemplateParameters();
5942 
5943   S.Diag(Loc, diag::err_template_arg_list_different_arity)
5944     << /*not enough args*/0
5945     << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5946     << TD;
5947   S.NoteTemplateLocation(*TD, Params->getSourceRange());
5948   return true;
5949 }
5950 
5951 /// Check that the given template argument list is well-formed
5952 /// for specializing the given template.
5953 bool Sema::CheckTemplateArgumentList(
5954     TemplateDecl *Template, SourceLocation TemplateLoc,
5955     TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5956     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5957     SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5958     bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5959 
5960   if (ConstraintsNotSatisfied)
5961     *ConstraintsNotSatisfied = false;
5962 
5963   // Make a copy of the template arguments for processing.  Only make the
5964   // changes at the end when successful in matching the arguments to the
5965   // template.
5966   TemplateArgumentListInfo NewArgs = TemplateArgs;
5967 
5968   TemplateParameterList *Params = GetTemplateParameterList(Template);
5969 
5970   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5971 
5972   // C++ [temp.arg]p1:
5973   //   [...] The type and form of each template-argument specified in
5974   //   a template-id shall match the type and form specified for the
5975   //   corresponding parameter declared by the template in its
5976   //   template-parameter-list.
5977   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5978   SmallVector<TemplateArgument, 2> SugaredArgumentPack;
5979   SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
5980   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5981   LocalInstantiationScope InstScope(*this, true);
5982   for (TemplateParameterList::iterator Param = Params->begin(),
5983                                        ParamEnd = Params->end();
5984        Param != ParamEnd; /* increment in loop */) {
5985     // If we have an expanded parameter pack, make sure we don't have too
5986     // many arguments.
5987     if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5988       if (*Expansions == SugaredArgumentPack.size()) {
5989         // We're done with this parameter pack. Pack up its arguments and add
5990         // them to the list.
5991         SugaredConverted.push_back(
5992             TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5993         SugaredArgumentPack.clear();
5994 
5995         CanonicalConverted.push_back(
5996             TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5997         CanonicalArgumentPack.clear();
5998 
5999         // This argument is assigned to the next parameter.
6000         ++Param;
6001         continue;
6002       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
6003         // Not enough arguments for this parameter pack.
6004         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6005           << /*not enough args*/0
6006           << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6007           << Template;
6008         NoteTemplateLocation(*Template, Params->getSourceRange());
6009         return true;
6010       }
6011     }
6012 
6013     if (ArgIdx < NumArgs) {
6014       // Check the template argument we were given.
6015       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc,
6016                                 RAngleLoc, SugaredArgumentPack.size(),
6017                                 SugaredConverted, CanonicalConverted,
6018                                 CTAK_Specified))
6019         return true;
6020 
6021       CanonicalConverted.back().setIsDefaulted(
6022           clang::isSubstitutedDefaultArgument(
6023               Context, NewArgs[ArgIdx].getArgument(), *Param,
6024               CanonicalConverted, Params->getDepth()));
6025 
6026       bool PackExpansionIntoNonPack =
6027           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
6028           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
6029       if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
6030                                        isa<ConceptDecl>(Template))) {
6031         // Core issue 1430: we have a pack expansion as an argument to an
6032         // alias template, and it's not part of a parameter pack. This
6033         // can't be canonicalized, so reject it now.
6034         // As for concepts - we cannot normalize constraints where this
6035         // situation exists.
6036         Diag(NewArgs[ArgIdx].getLocation(),
6037              diag::err_template_expansion_into_fixed_list)
6038           << (isa<ConceptDecl>(Template) ? 1 : 0)
6039           << NewArgs[ArgIdx].getSourceRange();
6040         NoteTemplateParameterLocation(**Param);
6041         return true;
6042       }
6043 
6044       // We're now done with this argument.
6045       ++ArgIdx;
6046 
6047       if ((*Param)->isTemplateParameterPack()) {
6048         // The template parameter was a template parameter pack, so take the
6049         // deduced argument and place it on the argument pack. Note that we
6050         // stay on the same template parameter so that we can deduce more
6051         // arguments.
6052         SugaredArgumentPack.push_back(SugaredConverted.pop_back_val());
6053         CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val());
6054       } else {
6055         // Move to the next template parameter.
6056         ++Param;
6057       }
6058 
6059       // If we just saw a pack expansion into a non-pack, then directly convert
6060       // the remaining arguments, because we don't know what parameters they'll
6061       // match up with.
6062       if (PackExpansionIntoNonPack) {
6063         if (!SugaredArgumentPack.empty()) {
6064           // If we were part way through filling in an expanded parameter pack,
6065           // fall back to just producing individual arguments.
6066           SugaredConverted.insert(SugaredConverted.end(),
6067                                   SugaredArgumentPack.begin(),
6068                                   SugaredArgumentPack.end());
6069           SugaredArgumentPack.clear();
6070 
6071           CanonicalConverted.insert(CanonicalConverted.end(),
6072                                     CanonicalArgumentPack.begin(),
6073                                     CanonicalArgumentPack.end());
6074           CanonicalArgumentPack.clear();
6075         }
6076 
6077         while (ArgIdx < NumArgs) {
6078           const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument();
6079           SugaredConverted.push_back(Arg);
6080           CanonicalConverted.push_back(
6081               Context.getCanonicalTemplateArgument(Arg));
6082           ++ArgIdx;
6083         }
6084 
6085         return false;
6086       }
6087 
6088       continue;
6089     }
6090 
6091     // If we're checking a partial template argument list, we're done.
6092     if (PartialTemplateArgs) {
6093       if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) {
6094         SugaredConverted.push_back(
6095             TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6096         CanonicalConverted.push_back(
6097             TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6098       }
6099       return false;
6100     }
6101 
6102     // If we have a template parameter pack with no more corresponding
6103     // arguments, just break out now and we'll fill in the argument pack below.
6104     if ((*Param)->isTemplateParameterPack()) {
6105       assert(!getExpandedPackSize(*Param) &&
6106              "Should have dealt with this already");
6107 
6108       // A non-expanded parameter pack before the end of the parameter list
6109       // only occurs for an ill-formed template parameter list, unless we've
6110       // got a partial argument list for a function template, so just bail out.
6111       if (Param + 1 != ParamEnd) {
6112         assert(
6113             (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) &&
6114             "Concept templates must have parameter packs at the end.");
6115         return true;
6116       }
6117 
6118       SugaredConverted.push_back(
6119           TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6120       SugaredArgumentPack.clear();
6121 
6122       CanonicalConverted.push_back(
6123           TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6124       CanonicalArgumentPack.clear();
6125 
6126       ++Param;
6127       continue;
6128     }
6129 
6130     // Check whether we have a default argument.
6131     TemplateArgumentLoc Arg;
6132 
6133     // Retrieve the default template argument from the template
6134     // parameter. For each kind of template parameter, we substitute the
6135     // template arguments provided thus far and any "outer" template arguments
6136     // (when the template parameter was part of a nested template) into
6137     // the default argument.
6138     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
6139       if (!hasReachableDefaultArgument(TTP))
6140         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
6141                                        NewArgs);
6142 
6143       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(
6144           *this, Template, TemplateLoc, RAngleLoc, TTP, SugaredConverted,
6145           CanonicalConverted);
6146       if (!ArgType)
6147         return true;
6148 
6149       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
6150                                 ArgType);
6151     } else if (NonTypeTemplateParmDecl *NTTP
6152                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
6153       if (!hasReachableDefaultArgument(NTTP))
6154         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
6155                                        NewArgs);
6156 
6157       ExprResult E = SubstDefaultTemplateArgument(
6158           *this, Template, TemplateLoc, RAngleLoc, NTTP, SugaredConverted,
6159           CanonicalConverted);
6160       if (E.isInvalid())
6161         return true;
6162 
6163       Expr *Ex = E.getAs<Expr>();
6164       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
6165     } else {
6166       TemplateTemplateParmDecl *TempParm
6167         = cast<TemplateTemplateParmDecl>(*Param);
6168 
6169       if (!hasReachableDefaultArgument(TempParm))
6170         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
6171                                        NewArgs);
6172 
6173       NestedNameSpecifierLoc QualifierLoc;
6174       TemplateName Name = SubstDefaultTemplateArgument(
6175           *this, Template, TemplateLoc, RAngleLoc, TempParm, SugaredConverted,
6176           CanonicalConverted, QualifierLoc);
6177       if (Name.isNull())
6178         return true;
6179 
6180       Arg = TemplateArgumentLoc(
6181           Context, TemplateArgument(Name), QualifierLoc,
6182           TempParm->getDefaultArgument().getTemplateNameLoc());
6183     }
6184 
6185     // Introduce an instantiation record that describes where we are using
6186     // the default template argument. We're not actually instantiating a
6187     // template here, we just create this object to put a note into the
6188     // context stack.
6189     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param,
6190                                SugaredConverted,
6191                                SourceRange(TemplateLoc, RAngleLoc));
6192     if (Inst.isInvalid())
6193       return true;
6194 
6195     // Check the default template argument.
6196     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0,
6197                               SugaredConverted, CanonicalConverted,
6198                               CTAK_Specified))
6199       return true;
6200 
6201     CanonicalConverted.back().setIsDefaulted(true);
6202 
6203     // Core issue 150 (assumed resolution): if this is a template template
6204     // parameter, keep track of the default template arguments from the
6205     // template definition.
6206     if (isTemplateTemplateParameter)
6207       NewArgs.addArgument(Arg);
6208 
6209     // Move to the next template parameter and argument.
6210     ++Param;
6211     ++ArgIdx;
6212   }
6213 
6214   // If we're performing a partial argument substitution, allow any trailing
6215   // pack expansions; they might be empty. This can happen even if
6216   // PartialTemplateArgs is false (the list of arguments is complete but
6217   // still dependent).
6218   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
6219       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
6220     while (ArgIdx < NumArgs &&
6221            NewArgs[ArgIdx].getArgument().isPackExpansion()) {
6222       const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument();
6223       SugaredConverted.push_back(Arg);
6224       CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg));
6225     }
6226   }
6227 
6228   // If we have any leftover arguments, then there were too many arguments.
6229   // Complain and fail.
6230   if (ArgIdx < NumArgs) {
6231     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6232         << /*too many args*/1
6233         << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6234         << Template
6235         << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
6236     NoteTemplateLocation(*Template, Params->getSourceRange());
6237     return true;
6238   }
6239 
6240   // No problems found with the new argument list, propagate changes back
6241   // to caller.
6242   if (UpdateArgsWithConversions)
6243     TemplateArgs = std::move(NewArgs);
6244 
6245   if (!PartialTemplateArgs) {
6246     TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
6247                                            CanonicalConverted);
6248     // Setup the context/ThisScope for the case where we are needing to
6249     // re-instantiate constraints outside of normal instantiation.
6250     DeclContext *NewContext = Template->getDeclContext();
6251 
6252     // If this template is in a template, make sure we extract the templated
6253     // decl.
6254     if (auto *TD = dyn_cast<TemplateDecl>(NewContext))
6255       NewContext = Decl::castToDeclContext(TD->getTemplatedDecl());
6256     auto *RD = dyn_cast<CXXRecordDecl>(NewContext);
6257 
6258     Qualifiers ThisQuals;
6259     if (const auto *Method =
6260             dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl()))
6261       ThisQuals = Method->getMethodQualifiers();
6262 
6263     ContextRAII Context(*this, NewContext);
6264     CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr);
6265 
6266     MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs(
6267         Template, NewContext, /*Final=*/false, &StackTemplateArgs,
6268         /*RelativeToPrimary=*/true,
6269         /*Pattern=*/nullptr,
6270         /*ForConceptInstantiation=*/true);
6271     if (EnsureTemplateArgumentListConstraints(
6272             Template, MLTAL,
6273             SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) {
6274       if (ConstraintsNotSatisfied)
6275         *ConstraintsNotSatisfied = true;
6276       return true;
6277     }
6278   }
6279 
6280   return false;
6281 }
6282 
6283 namespace {
6284   class UnnamedLocalNoLinkageFinder
6285     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
6286   {
6287     Sema &S;
6288     SourceRange SR;
6289 
6290     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
6291 
6292   public:
6293     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
6294 
6295     bool Visit(QualType T) {
6296       return T.isNull() ? false : inherited::Visit(T.getTypePtr());
6297     }
6298 
6299 #define TYPE(Class, Parent) \
6300     bool Visit##Class##Type(const Class##Type *);
6301 #define ABSTRACT_TYPE(Class, Parent) \
6302     bool Visit##Class##Type(const Class##Type *) { return false; }
6303 #define NON_CANONICAL_TYPE(Class, Parent) \
6304     bool Visit##Class##Type(const Class##Type *) { return false; }
6305 #include "clang/AST/TypeNodes.inc"
6306 
6307     bool VisitTagDecl(const TagDecl *Tag);
6308     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
6309   };
6310 } // end anonymous namespace
6311 
6312 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
6313   return false;
6314 }
6315 
6316 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
6317   return Visit(T->getElementType());
6318 }
6319 
6320 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
6321   return Visit(T->getPointeeType());
6322 }
6323 
6324 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
6325                                                     const BlockPointerType* T) {
6326   return Visit(T->getPointeeType());
6327 }
6328 
6329 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
6330                                                 const LValueReferenceType* T) {
6331   return Visit(T->getPointeeType());
6332 }
6333 
6334 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
6335                                                 const RValueReferenceType* T) {
6336   return Visit(T->getPointeeType());
6337 }
6338 
6339 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
6340                                                   const MemberPointerType* T) {
6341   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
6342 }
6343 
6344 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
6345                                                   const ConstantArrayType* T) {
6346   return Visit(T->getElementType());
6347 }
6348 
6349 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6350                                                  const IncompleteArrayType* T) {
6351   return Visit(T->getElementType());
6352 }
6353 
6354 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6355                                                    const VariableArrayType* T) {
6356   return Visit(T->getElementType());
6357 }
6358 
6359 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6360                                             const DependentSizedArrayType* T) {
6361   return Visit(T->getElementType());
6362 }
6363 
6364 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6365                                          const DependentSizedExtVectorType* T) {
6366   return Visit(T->getElementType());
6367 }
6368 
6369 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6370     const DependentSizedMatrixType *T) {
6371   return Visit(T->getElementType());
6372 }
6373 
6374 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6375     const DependentAddressSpaceType *T) {
6376   return Visit(T->getPointeeType());
6377 }
6378 
6379 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6380   return Visit(T->getElementType());
6381 }
6382 
6383 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6384     const DependentVectorType *T) {
6385   return Visit(T->getElementType());
6386 }
6387 
6388 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6389   return Visit(T->getElementType());
6390 }
6391 
6392 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6393     const ConstantMatrixType *T) {
6394   return Visit(T->getElementType());
6395 }
6396 
6397 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6398                                                   const FunctionProtoType* T) {
6399   for (const auto &A : T->param_types()) {
6400     if (Visit(A))
6401       return true;
6402   }
6403 
6404   return Visit(T->getReturnType());
6405 }
6406 
6407 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6408                                                const FunctionNoProtoType* T) {
6409   return Visit(T->getReturnType());
6410 }
6411 
6412 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6413                                                   const UnresolvedUsingType*) {
6414   return false;
6415 }
6416 
6417 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6418   return false;
6419 }
6420 
6421 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6422   return Visit(T->getUnmodifiedType());
6423 }
6424 
6425 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6426   return false;
6427 }
6428 
6429 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6430                                                     const UnaryTransformType*) {
6431   return false;
6432 }
6433 
6434 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6435   return Visit(T->getDeducedType());
6436 }
6437 
6438 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6439     const DeducedTemplateSpecializationType *T) {
6440   return Visit(T->getDeducedType());
6441 }
6442 
6443 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6444   return VisitTagDecl(T->getDecl());
6445 }
6446 
6447 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6448   return VisitTagDecl(T->getDecl());
6449 }
6450 
6451 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6452                                                  const TemplateTypeParmType*) {
6453   return false;
6454 }
6455 
6456 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6457                                         const SubstTemplateTypeParmPackType *) {
6458   return false;
6459 }
6460 
6461 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6462                                             const TemplateSpecializationType*) {
6463   return false;
6464 }
6465 
6466 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6467                                               const InjectedClassNameType* T) {
6468   return VisitTagDecl(T->getDecl());
6469 }
6470 
6471 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6472                                                    const DependentNameType* T) {
6473   return VisitNestedNameSpecifier(T->getQualifier());
6474 }
6475 
6476 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6477                                  const DependentTemplateSpecializationType* T) {
6478   if (auto *Q = T->getQualifier())
6479     return VisitNestedNameSpecifier(Q);
6480   return false;
6481 }
6482 
6483 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6484                                                    const PackExpansionType* T) {
6485   return Visit(T->getPattern());
6486 }
6487 
6488 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6489   return false;
6490 }
6491 
6492 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6493                                                    const ObjCInterfaceType *) {
6494   return false;
6495 }
6496 
6497 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6498                                                 const ObjCObjectPointerType *) {
6499   return false;
6500 }
6501 
6502 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6503   return Visit(T->getValueType());
6504 }
6505 
6506 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6507   return false;
6508 }
6509 
6510 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
6511   return false;
6512 }
6513 
6514 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
6515     const DependentBitIntType *T) {
6516   return false;
6517 }
6518 
6519 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6520   if (Tag->getDeclContext()->isFunctionOrMethod()) {
6521     S.Diag(SR.getBegin(),
6522            S.getLangOpts().CPlusPlus11 ?
6523              diag::warn_cxx98_compat_template_arg_local_type :
6524              diag::ext_template_arg_local_type)
6525       << S.Context.getTypeDeclType(Tag) << SR;
6526     return true;
6527   }
6528 
6529   if (!Tag->hasNameForLinkage()) {
6530     S.Diag(SR.getBegin(),
6531            S.getLangOpts().CPlusPlus11 ?
6532              diag::warn_cxx98_compat_template_arg_unnamed_type :
6533              diag::ext_template_arg_unnamed_type) << SR;
6534     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6535     return true;
6536   }
6537 
6538   return false;
6539 }
6540 
6541 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6542                                                     NestedNameSpecifier *NNS) {
6543   assert(NNS);
6544   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6545     return true;
6546 
6547   switch (NNS->getKind()) {
6548   case NestedNameSpecifier::Identifier:
6549   case NestedNameSpecifier::Namespace:
6550   case NestedNameSpecifier::NamespaceAlias:
6551   case NestedNameSpecifier::Global:
6552   case NestedNameSpecifier::Super:
6553     return false;
6554 
6555   case NestedNameSpecifier::TypeSpec:
6556   case NestedNameSpecifier::TypeSpecWithTemplate:
6557     return Visit(QualType(NNS->getAsType(), 0));
6558   }
6559   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6560 }
6561 
6562 /// Check a template argument against its corresponding
6563 /// template type parameter.
6564 ///
6565 /// This routine implements the semantics of C++ [temp.arg.type]. It
6566 /// returns true if an error occurred, and false otherwise.
6567 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6568   assert(ArgInfo && "invalid TypeSourceInfo");
6569   QualType Arg = ArgInfo->getType();
6570   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6571   QualType CanonArg = Context.getCanonicalType(Arg);
6572 
6573   if (CanonArg->isVariablyModifiedType()) {
6574     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6575   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6576     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6577   }
6578 
6579   // C++03 [temp.arg.type]p2:
6580   //   A local type, a type with no linkage, an unnamed type or a type
6581   //   compounded from any of these types shall not be used as a
6582   //   template-argument for a template type-parameter.
6583   //
6584   // C++11 allows these, and even in C++03 we allow them as an extension with
6585   // a warning.
6586   if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) {
6587     UnnamedLocalNoLinkageFinder Finder(*this, SR);
6588     (void)Finder.Visit(CanonArg);
6589   }
6590 
6591   return false;
6592 }
6593 
6594 enum NullPointerValueKind {
6595   NPV_NotNullPointer,
6596   NPV_NullPointer,
6597   NPV_Error
6598 };
6599 
6600 /// Determine whether the given template argument is a null pointer
6601 /// value of the appropriate type.
6602 static NullPointerValueKind
6603 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6604                                    QualType ParamType, Expr *Arg,
6605                                    Decl *Entity = nullptr) {
6606   if (Arg->isValueDependent() || Arg->isTypeDependent())
6607     return NPV_NotNullPointer;
6608 
6609   // dllimport'd entities aren't constant but are available inside of template
6610   // arguments.
6611   if (Entity && Entity->hasAttr<DLLImportAttr>())
6612     return NPV_NotNullPointer;
6613 
6614   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6615     llvm_unreachable(
6616         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6617 
6618   if (!S.getLangOpts().CPlusPlus11)
6619     return NPV_NotNullPointer;
6620 
6621   // Determine whether we have a constant expression.
6622   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6623   if (ArgRV.isInvalid())
6624     return NPV_Error;
6625   Arg = ArgRV.get();
6626 
6627   Expr::EvalResult EvalResult;
6628   SmallVector<PartialDiagnosticAt, 8> Notes;
6629   EvalResult.Diag = &Notes;
6630   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6631       EvalResult.HasSideEffects) {
6632     SourceLocation DiagLoc = Arg->getExprLoc();
6633 
6634     // If our only note is the usual "invalid subexpression" note, just point
6635     // the caret at its location rather than producing an essentially
6636     // redundant note.
6637     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6638         diag::note_invalid_subexpr_in_const_expr) {
6639       DiagLoc = Notes[0].first;
6640       Notes.clear();
6641     }
6642 
6643     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6644       << Arg->getType() << Arg->getSourceRange();
6645     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6646       S.Diag(Notes[I].first, Notes[I].second);
6647 
6648     S.NoteTemplateParameterLocation(*Param);
6649     return NPV_Error;
6650   }
6651 
6652   // C++11 [temp.arg.nontype]p1:
6653   //   - an address constant expression of type std::nullptr_t
6654   if (Arg->getType()->isNullPtrType())
6655     return NPV_NullPointer;
6656 
6657   //   - a constant expression that evaluates to a null pointer value (4.10); or
6658   //   - a constant expression that evaluates to a null member pointer value
6659   //     (4.11); or
6660   if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) ||
6661       (EvalResult.Val.isMemberPointer() &&
6662        !EvalResult.Val.getMemberPointerDecl())) {
6663     // If our expression has an appropriate type, we've succeeded.
6664     bool ObjCLifetimeConversion;
6665     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6666         S.IsQualificationConversion(Arg->getType(), ParamType, false,
6667                                      ObjCLifetimeConversion))
6668       return NPV_NullPointer;
6669 
6670     // The types didn't match, but we know we got a null pointer; complain,
6671     // then recover as if the types were correct.
6672     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6673       << Arg->getType() << ParamType << Arg->getSourceRange();
6674     S.NoteTemplateParameterLocation(*Param);
6675     return NPV_NullPointer;
6676   }
6677 
6678   if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) {
6679     // We found a pointer that isn't null, but doesn't refer to an object.
6680     // We could just return NPV_NotNullPointer, but we can print a better
6681     // message with the information we have here.
6682     S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid)
6683       << EvalResult.Val.getAsString(S.Context, ParamType);
6684     S.NoteTemplateParameterLocation(*Param);
6685     return NPV_Error;
6686   }
6687 
6688   // If we don't have a null pointer value, but we do have a NULL pointer
6689   // constant, suggest a cast to the appropriate type.
6690   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6691     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6692     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6693         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6694         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6695                                       ")");
6696     S.NoteTemplateParameterLocation(*Param);
6697     return NPV_NullPointer;
6698   }
6699 
6700   // FIXME: If we ever want to support general, address-constant expressions
6701   // as non-type template arguments, we should return the ExprResult here to
6702   // be interpreted by the caller.
6703   return NPV_NotNullPointer;
6704 }
6705 
6706 /// Checks whether the given template argument is compatible with its
6707 /// template parameter.
6708 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6709     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6710     Expr *Arg, QualType ArgType) {
6711   bool ObjCLifetimeConversion;
6712   if (ParamType->isPointerType() &&
6713       !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6714       S.IsQualificationConversion(ArgType, ParamType, false,
6715                                   ObjCLifetimeConversion)) {
6716     // For pointer-to-object types, qualification conversions are
6717     // permitted.
6718   } else {
6719     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6720       if (!ParamRef->getPointeeType()->isFunctionType()) {
6721         // C++ [temp.arg.nontype]p5b3:
6722         //   For a non-type template-parameter of type reference to
6723         //   object, no conversions apply. The type referred to by the
6724         //   reference may be more cv-qualified than the (otherwise
6725         //   identical) type of the template- argument. The
6726         //   template-parameter is bound directly to the
6727         //   template-argument, which shall be an lvalue.
6728 
6729         // FIXME: Other qualifiers?
6730         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6731         unsigned ArgQuals = ArgType.getCVRQualifiers();
6732 
6733         if ((ParamQuals | ArgQuals) != ParamQuals) {
6734           S.Diag(Arg->getBeginLoc(),
6735                  diag::err_template_arg_ref_bind_ignores_quals)
6736               << ParamType << Arg->getType() << Arg->getSourceRange();
6737           S.NoteTemplateParameterLocation(*Param);
6738           return true;
6739         }
6740       }
6741     }
6742 
6743     // At this point, the template argument refers to an object or
6744     // function with external linkage. We now need to check whether the
6745     // argument and parameter types are compatible.
6746     if (!S.Context.hasSameUnqualifiedType(ArgType,
6747                                           ParamType.getNonReferenceType())) {
6748       // We can't perform this conversion or binding.
6749       if (ParamType->isReferenceType())
6750         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6751             << ParamType << ArgIn->getType() << Arg->getSourceRange();
6752       else
6753         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6754             << ArgIn->getType() << ParamType << Arg->getSourceRange();
6755       S.NoteTemplateParameterLocation(*Param);
6756       return true;
6757     }
6758   }
6759 
6760   return false;
6761 }
6762 
6763 /// Checks whether the given template argument is the address
6764 /// of an object or function according to C++ [temp.arg.nontype]p1.
6765 static bool CheckTemplateArgumentAddressOfObjectOrFunction(
6766     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6767     TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) {
6768   bool Invalid = false;
6769   Expr *Arg = ArgIn;
6770   QualType ArgType = Arg->getType();
6771 
6772   bool AddressTaken = false;
6773   SourceLocation AddrOpLoc;
6774   if (S.getLangOpts().MicrosoftExt) {
6775     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6776     // dereference and address-of operators.
6777     Arg = Arg->IgnoreParenCasts();
6778 
6779     bool ExtWarnMSTemplateArg = false;
6780     UnaryOperatorKind FirstOpKind;
6781     SourceLocation FirstOpLoc;
6782     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6783       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6784       if (UnOpKind == UO_Deref)
6785         ExtWarnMSTemplateArg = true;
6786       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6787         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6788         if (!AddrOpLoc.isValid()) {
6789           FirstOpKind = UnOpKind;
6790           FirstOpLoc = UnOp->getOperatorLoc();
6791         }
6792       } else
6793         break;
6794     }
6795     if (FirstOpLoc.isValid()) {
6796       if (ExtWarnMSTemplateArg)
6797         S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6798             << ArgIn->getSourceRange();
6799 
6800       if (FirstOpKind == UO_AddrOf)
6801         AddressTaken = true;
6802       else if (Arg->getType()->isPointerType()) {
6803         // We cannot let pointers get dereferenced here, that is obviously not a
6804         // constant expression.
6805         assert(FirstOpKind == UO_Deref);
6806         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6807             << Arg->getSourceRange();
6808       }
6809     }
6810   } else {
6811     // See through any implicit casts we added to fix the type.
6812     Arg = Arg->IgnoreImpCasts();
6813 
6814     // C++ [temp.arg.nontype]p1:
6815     //
6816     //   A template-argument for a non-type, non-template
6817     //   template-parameter shall be one of: [...]
6818     //
6819     //     -- the address of an object or function with external
6820     //        linkage, including function templates and function
6821     //        template-ids but excluding non-static class members,
6822     //        expressed as & id-expression where the & is optional if
6823     //        the name refers to a function or array, or if the
6824     //        corresponding template-parameter is a reference; or
6825 
6826     // In C++98/03 mode, give an extension warning on any extra parentheses.
6827     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6828     bool ExtraParens = false;
6829     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6830       if (!Invalid && !ExtraParens) {
6831         S.Diag(Arg->getBeginLoc(),
6832                S.getLangOpts().CPlusPlus11
6833                    ? diag::warn_cxx98_compat_template_arg_extra_parens
6834                    : diag::ext_template_arg_extra_parens)
6835             << Arg->getSourceRange();
6836         ExtraParens = true;
6837       }
6838 
6839       Arg = Parens->getSubExpr();
6840     }
6841 
6842     while (SubstNonTypeTemplateParmExpr *subst =
6843                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6844       Arg = subst->getReplacement()->IgnoreImpCasts();
6845 
6846     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6847       if (UnOp->getOpcode() == UO_AddrOf) {
6848         Arg = UnOp->getSubExpr();
6849         AddressTaken = true;
6850         AddrOpLoc = UnOp->getOperatorLoc();
6851       }
6852     }
6853 
6854     while (SubstNonTypeTemplateParmExpr *subst =
6855                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6856       Arg = subst->getReplacement()->IgnoreImpCasts();
6857   }
6858 
6859   ValueDecl *Entity = nullptr;
6860   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6861     Entity = DRE->getDecl();
6862   else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6863     Entity = CUE->getGuidDecl();
6864 
6865   // If our parameter has pointer type, check for a null template value.
6866   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6867     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6868                                                Entity)) {
6869     case NPV_NullPointer:
6870       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6871       SugaredConverted = TemplateArgument(ParamType,
6872                                           /*isNullPtr=*/true);
6873       CanonicalConverted =
6874           TemplateArgument(S.Context.getCanonicalType(ParamType),
6875                            /*isNullPtr=*/true);
6876       return false;
6877 
6878     case NPV_Error:
6879       return true;
6880 
6881     case NPV_NotNullPointer:
6882       break;
6883     }
6884   }
6885 
6886   // Stop checking the precise nature of the argument if it is value dependent,
6887   // it should be checked when instantiated.
6888   if (Arg->isValueDependent()) {
6889     SugaredConverted = TemplateArgument(ArgIn);
6890     CanonicalConverted =
6891         S.Context.getCanonicalTemplateArgument(SugaredConverted);
6892     return false;
6893   }
6894 
6895   if (!Entity) {
6896     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6897         << Arg->getSourceRange();
6898     S.NoteTemplateParameterLocation(*Param);
6899     return true;
6900   }
6901 
6902   // Cannot refer to non-static data members
6903   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6904     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6905         << Entity << Arg->getSourceRange();
6906     S.NoteTemplateParameterLocation(*Param);
6907     return true;
6908   }
6909 
6910   // Cannot refer to non-static member functions
6911   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6912     if (!Method->isStatic()) {
6913       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6914           << Method << Arg->getSourceRange();
6915       S.NoteTemplateParameterLocation(*Param);
6916       return true;
6917     }
6918   }
6919 
6920   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6921   VarDecl *Var = dyn_cast<VarDecl>(Entity);
6922   MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6923 
6924   // A non-type template argument must refer to an object or function.
6925   if (!Func && !Var && !Guid) {
6926     // We found something, but we don't know specifically what it is.
6927     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6928         << Arg->getSourceRange();
6929     S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6930     return true;
6931   }
6932 
6933   // Address / reference template args must have external linkage in C++98.
6934   if (Entity->getFormalLinkage() == Linkage::Internal) {
6935     S.Diag(Arg->getBeginLoc(),
6936            S.getLangOpts().CPlusPlus11
6937                ? diag::warn_cxx98_compat_template_arg_object_internal
6938                : diag::ext_template_arg_object_internal)
6939         << !Func << Entity << Arg->getSourceRange();
6940     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6941       << !Func;
6942   } else if (!Entity->hasLinkage()) {
6943     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6944         << !Func << Entity << Arg->getSourceRange();
6945     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6946       << !Func;
6947     return true;
6948   }
6949 
6950   if (Var) {
6951     // A value of reference type is not an object.
6952     if (Var->getType()->isReferenceType()) {
6953       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6954           << Var->getType() << Arg->getSourceRange();
6955       S.NoteTemplateParameterLocation(*Param);
6956       return true;
6957     }
6958 
6959     // A template argument must have static storage duration.
6960     if (Var->getTLSKind()) {
6961       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6962           << Arg->getSourceRange();
6963       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6964       return true;
6965     }
6966   }
6967 
6968   if (AddressTaken && ParamType->isReferenceType()) {
6969     // If we originally had an address-of operator, but the
6970     // parameter has reference type, complain and (if things look
6971     // like they will work) drop the address-of operator.
6972     if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6973                                           ParamType.getNonReferenceType())) {
6974       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6975         << ParamType;
6976       S.NoteTemplateParameterLocation(*Param);
6977       return true;
6978     }
6979 
6980     S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6981       << ParamType
6982       << FixItHint::CreateRemoval(AddrOpLoc);
6983     S.NoteTemplateParameterLocation(*Param);
6984 
6985     ArgType = Entity->getType();
6986   }
6987 
6988   // If the template parameter has pointer type, either we must have taken the
6989   // address or the argument must decay to a pointer.
6990   if (!AddressTaken && ParamType->isPointerType()) {
6991     if (Func) {
6992       // Function-to-pointer decay.
6993       ArgType = S.Context.getPointerType(Func->getType());
6994     } else if (Entity->getType()->isArrayType()) {
6995       // Array-to-pointer decay.
6996       ArgType = S.Context.getArrayDecayedType(Entity->getType());
6997     } else {
6998       // If the template parameter has pointer type but the address of
6999       // this object was not taken, complain and (possibly) recover by
7000       // taking the address of the entity.
7001       ArgType = S.Context.getPointerType(Entity->getType());
7002       if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
7003         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
7004           << ParamType;
7005         S.NoteTemplateParameterLocation(*Param);
7006         return true;
7007       }
7008 
7009       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
7010         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
7011 
7012       S.NoteTemplateParameterLocation(*Param);
7013     }
7014   }
7015 
7016   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
7017                                                      Arg, ArgType))
7018     return true;
7019 
7020   // Create the template argument.
7021   SugaredConverted = TemplateArgument(Entity, ParamType);
7022   CanonicalConverted =
7023       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
7024                        S.Context.getCanonicalType(ParamType));
7025   S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
7026   return false;
7027 }
7028 
7029 /// Checks whether the given template argument is a pointer to
7030 /// member constant according to C++ [temp.arg.nontype]p1.
7031 static bool
7032 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param,
7033                                      QualType ParamType, Expr *&ResultArg,
7034                                      TemplateArgument &SugaredConverted,
7035                                      TemplateArgument &CanonicalConverted) {
7036   bool Invalid = false;
7037 
7038   Expr *Arg = ResultArg;
7039   bool ObjCLifetimeConversion;
7040 
7041   // C++ [temp.arg.nontype]p1:
7042   //
7043   //   A template-argument for a non-type, non-template
7044   //   template-parameter shall be one of: [...]
7045   //
7046   //     -- a pointer to member expressed as described in 5.3.1.
7047   DeclRefExpr *DRE = nullptr;
7048 
7049   // In C++98/03 mode, give an extension warning on any extra parentheses.
7050   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
7051   bool ExtraParens = false;
7052   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
7053     if (!Invalid && !ExtraParens) {
7054       S.Diag(Arg->getBeginLoc(),
7055              S.getLangOpts().CPlusPlus11
7056                  ? diag::warn_cxx98_compat_template_arg_extra_parens
7057                  : diag::ext_template_arg_extra_parens)
7058           << Arg->getSourceRange();
7059       ExtraParens = true;
7060     }
7061 
7062     Arg = Parens->getSubExpr();
7063   }
7064 
7065   while (SubstNonTypeTemplateParmExpr *subst =
7066            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
7067     Arg = subst->getReplacement()->IgnoreImpCasts();
7068 
7069   // A pointer-to-member constant written &Class::member.
7070   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
7071     if (UnOp->getOpcode() == UO_AddrOf) {
7072       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
7073       if (DRE && !DRE->getQualifier())
7074         DRE = nullptr;
7075     }
7076   }
7077   // A constant of pointer-to-member type.
7078   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
7079     ValueDecl *VD = DRE->getDecl();
7080     if (VD->getType()->isMemberPointerType()) {
7081       if (isa<NonTypeTemplateParmDecl>(VD)) {
7082         if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7083           SugaredConverted = TemplateArgument(Arg);
7084           CanonicalConverted =
7085               S.Context.getCanonicalTemplateArgument(SugaredConverted);
7086         } else {
7087           SugaredConverted = TemplateArgument(VD, ParamType);
7088           CanonicalConverted =
7089               TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7090                                S.Context.getCanonicalType(ParamType));
7091         }
7092         return Invalid;
7093       }
7094     }
7095 
7096     DRE = nullptr;
7097   }
7098 
7099   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
7100 
7101   // Check for a null pointer value.
7102   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
7103                                              Entity)) {
7104   case NPV_Error:
7105     return true;
7106   case NPV_NullPointer:
7107     S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7108     SugaredConverted = TemplateArgument(ParamType,
7109                                         /*isNullPtr*/ true);
7110     CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType),
7111                                           /*isNullPtr*/ true);
7112     return false;
7113   case NPV_NotNullPointer:
7114     break;
7115   }
7116 
7117   if (S.IsQualificationConversion(ResultArg->getType(),
7118                                   ParamType.getNonReferenceType(), false,
7119                                   ObjCLifetimeConversion)) {
7120     ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
7121                                     ResultArg->getValueKind())
7122                     .get();
7123   } else if (!S.Context.hasSameUnqualifiedType(
7124                  ResultArg->getType(), ParamType.getNonReferenceType())) {
7125     // We can't perform this conversion.
7126     S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
7127         << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
7128     S.NoteTemplateParameterLocation(*Param);
7129     return true;
7130   }
7131 
7132   if (!DRE)
7133     return S.Diag(Arg->getBeginLoc(),
7134                   diag::err_template_arg_not_pointer_to_member_form)
7135            << Arg->getSourceRange();
7136 
7137   if (isa<FieldDecl>(DRE->getDecl()) ||
7138       isa<IndirectFieldDecl>(DRE->getDecl()) ||
7139       isa<CXXMethodDecl>(DRE->getDecl())) {
7140     assert((isa<FieldDecl>(DRE->getDecl()) ||
7141             isa<IndirectFieldDecl>(DRE->getDecl()) ||
7142             cast<CXXMethodDecl>(DRE->getDecl())
7143                 ->isImplicitObjectMemberFunction()) &&
7144            "Only non-static member pointers can make it here");
7145 
7146     // Okay: this is the address of a non-static member, and therefore
7147     // a member pointer constant.
7148     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7149       SugaredConverted = TemplateArgument(Arg);
7150       CanonicalConverted =
7151           S.Context.getCanonicalTemplateArgument(SugaredConverted);
7152     } else {
7153       ValueDecl *D = DRE->getDecl();
7154       SugaredConverted = TemplateArgument(D, ParamType);
7155       CanonicalConverted =
7156           TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()),
7157                            S.Context.getCanonicalType(ParamType));
7158     }
7159     return Invalid;
7160   }
7161 
7162   // We found something else, but we don't know specifically what it is.
7163   S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
7164       << Arg->getSourceRange();
7165   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
7166   return true;
7167 }
7168 
7169 /// Check a template argument against its corresponding
7170 /// non-type template parameter.
7171 ///
7172 /// This routine implements the semantics of C++ [temp.arg.nontype].
7173 /// If an error occurred, it returns ExprError(); otherwise, it
7174 /// returns the converted template argument. \p ParamType is the
7175 /// type of the non-type template parameter after it has been instantiated.
7176 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7177                                        QualType ParamType, Expr *Arg,
7178                                        TemplateArgument &SugaredConverted,
7179                                        TemplateArgument &CanonicalConverted,
7180                                        CheckTemplateArgumentKind CTAK) {
7181   SourceLocation StartLoc = Arg->getBeginLoc();
7182 
7183   // If the parameter type somehow involves auto, deduce the type now.
7184   DeducedType *DeducedT = ParamType->getContainedDeducedType();
7185   if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
7186     // During template argument deduction, we allow 'decltype(auto)' to
7187     // match an arbitrary dependent argument.
7188     // FIXME: The language rules don't say what happens in this case.
7189     // FIXME: We get an opaque dependent type out of decltype(auto) if the
7190     // expression is merely instantiation-dependent; is this enough?
7191     if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
7192       auto *AT = dyn_cast<AutoType>(DeducedT);
7193       if (AT && AT->isDecltypeAuto()) {
7194         SugaredConverted = TemplateArgument(Arg);
7195         CanonicalConverted = TemplateArgument(
7196             Context.getCanonicalTemplateArgument(SugaredConverted));
7197         return Arg;
7198       }
7199     }
7200 
7201     // When checking a deduced template argument, deduce from its type even if
7202     // the type is dependent, in order to check the types of non-type template
7203     // arguments line up properly in partial ordering.
7204     Expr *DeductionArg = Arg;
7205     if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
7206       DeductionArg = PE->getPattern();
7207     TypeSourceInfo *TSI =
7208         Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
7209     if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
7210       InitializedEntity Entity =
7211           InitializedEntity::InitializeTemplateParameter(ParamType, Param);
7212       InitializationKind Kind = InitializationKind::CreateForInit(
7213           DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
7214       Expr *Inits[1] = {DeductionArg};
7215       ParamType =
7216           DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
7217       if (ParamType.isNull())
7218         return ExprError();
7219     } else {
7220       TemplateDeductionInfo Info(DeductionArg->getExprLoc(),
7221                                  Param->getDepth() + 1);
7222       ParamType = QualType();
7223       TemplateDeductionResult Result =
7224           DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info,
7225                          /*DependentDeduction=*/true,
7226                          // We do not check constraints right now because the
7227                          // immediately-declared constraint of the auto type is
7228                          // also an associated constraint, and will be checked
7229                          // along with the other associated constraints after
7230                          // checking the template argument list.
7231                          /*IgnoreConstraints=*/true);
7232       if (Result == TDK_AlreadyDiagnosed) {
7233         if (ParamType.isNull())
7234           return ExprError();
7235       } else if (Result != TDK_Success) {
7236         Diag(Arg->getExprLoc(),
7237              diag::err_non_type_template_parm_type_deduction_failure)
7238             << Param->getDeclName() << Param->getType() << Arg->getType()
7239             << Arg->getSourceRange();
7240         NoteTemplateParameterLocation(*Param);
7241         return ExprError();
7242       }
7243     }
7244     // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
7245     // an error. The error message normally references the parameter
7246     // declaration, but here we'll pass the argument location because that's
7247     // where the parameter type is deduced.
7248     ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
7249     if (ParamType.isNull()) {
7250       NoteTemplateParameterLocation(*Param);
7251       return ExprError();
7252     }
7253   }
7254 
7255   // We should have already dropped all cv-qualifiers by now.
7256   assert(!ParamType.hasQualifiers() &&
7257          "non-type template parameter type cannot be qualified");
7258 
7259   // FIXME: When Param is a reference, should we check that Arg is an lvalue?
7260   if (CTAK == CTAK_Deduced &&
7261       (ParamType->isReferenceType()
7262            ? !Context.hasSameType(ParamType.getNonReferenceType(),
7263                                   Arg->getType())
7264            : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
7265     // FIXME: If either type is dependent, we skip the check. This isn't
7266     // correct, since during deduction we're supposed to have replaced each
7267     // template parameter with some unique (non-dependent) placeholder.
7268     // FIXME: If the argument type contains 'auto', we carry on and fail the
7269     // type check in order to force specific types to be more specialized than
7270     // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
7271     // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
7272     if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
7273         !Arg->getType()->getContainedDeducedType()) {
7274       SugaredConverted = TemplateArgument(Arg);
7275       CanonicalConverted = TemplateArgument(
7276           Context.getCanonicalTemplateArgument(SugaredConverted));
7277       return Arg;
7278     }
7279     // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
7280     // we should actually be checking the type of the template argument in P,
7281     // not the type of the template argument deduced from A, against the
7282     // template parameter type.
7283     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
7284       << Arg->getType()
7285       << ParamType.getUnqualifiedType();
7286     NoteTemplateParameterLocation(*Param);
7287     return ExprError();
7288   }
7289 
7290   // If either the parameter has a dependent type or the argument is
7291   // type-dependent, there's nothing we can check now.
7292   if (ParamType->isDependentType() || Arg->isTypeDependent()) {
7293     // Force the argument to the type of the parameter to maintain invariants.
7294     auto *PE = dyn_cast<PackExpansionExpr>(Arg);
7295     if (PE)
7296       Arg = PE->getPattern();
7297     ExprResult E = ImpCastExprToType(
7298         Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
7299         ParamType->isLValueReferenceType()   ? VK_LValue
7300         : ParamType->isRValueReferenceType() ? VK_XValue
7301                                              : VK_PRValue);
7302     if (E.isInvalid())
7303       return ExprError();
7304     if (PE) {
7305       // Recreate a pack expansion if we unwrapped one.
7306       E = new (Context)
7307           PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
7308                             PE->getNumExpansions());
7309     }
7310     SugaredConverted = TemplateArgument(E.get());
7311     CanonicalConverted = TemplateArgument(
7312         Context.getCanonicalTemplateArgument(SugaredConverted));
7313     return E;
7314   }
7315 
7316   QualType CanonParamType = Context.getCanonicalType(ParamType);
7317   // Avoid making a copy when initializing a template parameter of class type
7318   // from a template parameter object of the same type. This is going beyond
7319   // the standard, but is required for soundness: in
7320   //   template<A a> struct X { X *p; X<a> *q; };
7321   // ... we need p and q to have the same type.
7322   //
7323   // Similarly, don't inject a call to a copy constructor when initializing
7324   // from a template parameter of the same type.
7325   Expr *InnerArg = Arg->IgnoreParenImpCasts();
7326   if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
7327       Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
7328     NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
7329     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
7330 
7331       SugaredConverted = TemplateArgument(TPO, ParamType);
7332       CanonicalConverted =
7333           TemplateArgument(TPO->getCanonicalDecl(), CanonParamType);
7334       return Arg;
7335     }
7336     if (isa<NonTypeTemplateParmDecl>(ND)) {
7337       SugaredConverted = TemplateArgument(Arg);
7338       CanonicalConverted =
7339           Context.getCanonicalTemplateArgument(SugaredConverted);
7340       return Arg;
7341     }
7342   }
7343 
7344   // The initialization of the parameter from the argument is
7345   // a constant-evaluated context.
7346   EnterExpressionEvaluationContext ConstantEvaluated(
7347       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7348 
7349   bool IsConvertedConstantExpression = true;
7350   if (isa<InitListExpr>(Arg) || ParamType->isRecordType()) {
7351     InitializationKind Kind = InitializationKind::CreateForInit(
7352         Arg->getBeginLoc(), /*DirectInit=*/false, Arg);
7353     Expr *Inits[1] = {Arg};
7354     InitializedEntity Entity =
7355         InitializedEntity::InitializeTemplateParameter(ParamType, Param);
7356     InitializationSequence InitSeq(*this, Entity, Kind, Inits);
7357     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Inits);
7358     if (Result.isInvalid() || !Result.get())
7359       return ExprError();
7360     Result = ActOnConstantExpression(Result.get());
7361     if (Result.isInvalid() || !Result.get())
7362       return ExprError();
7363     Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(),
7364                               /*DiscardedValue=*/false,
7365                               /*IsConstexpr=*/true, /*IsTemplateArgument=*/true)
7366               .get();
7367     IsConvertedConstantExpression = false;
7368   }
7369 
7370   if (getLangOpts().CPlusPlus17) {
7371     // C++17 [temp.arg.nontype]p1:
7372     //   A template-argument for a non-type template parameter shall be
7373     //   a converted constant expression of the type of the template-parameter.
7374     APValue Value;
7375     ExprResult ArgResult;
7376     if (IsConvertedConstantExpression) {
7377       ArgResult = BuildConvertedConstantExpression(Arg, ParamType,
7378                                                    CCEK_TemplateArg, Param);
7379       if (ArgResult.isInvalid())
7380         return ExprError();
7381     } else {
7382       ArgResult = Arg;
7383     }
7384 
7385     // For a value-dependent argument, CheckConvertedConstantExpression is
7386     // permitted (and expected) to be unable to determine a value.
7387     if (ArgResult.get()->isValueDependent()) {
7388       SugaredConverted = TemplateArgument(ArgResult.get());
7389       CanonicalConverted =
7390           Context.getCanonicalTemplateArgument(SugaredConverted);
7391       return ArgResult;
7392     }
7393 
7394     APValue PreNarrowingValue;
7395     ArgResult = EvaluateConvertedConstantExpression(
7396         ArgResult.get(), ParamType, Value, CCEK_TemplateArg, /*RequireInt=*/
7397         false, PreNarrowingValue);
7398     if (ArgResult.isInvalid())
7399       return ExprError();
7400 
7401     // Convert the APValue to a TemplateArgument.
7402     switch (Value.getKind()) {
7403     case APValue::None:
7404       assert(ParamType->isNullPtrType());
7405       SugaredConverted = TemplateArgument(ParamType, /*isNullPtr=*/true);
7406       CanonicalConverted = TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7407       break;
7408     case APValue::Indeterminate:
7409       llvm_unreachable("result of constant evaluation should be initialized");
7410       break;
7411     case APValue::Int:
7412       assert(ParamType->isIntegralOrEnumerationType());
7413       SugaredConverted = TemplateArgument(Context, Value.getInt(), ParamType);
7414       CanonicalConverted =
7415           TemplateArgument(Context, Value.getInt(), CanonParamType);
7416       break;
7417     case APValue::MemberPointer: {
7418       assert(ParamType->isMemberPointerType());
7419 
7420       // FIXME: We need TemplateArgument representation and mangling for these.
7421       if (!Value.getMemberPointerPath().empty()) {
7422         Diag(Arg->getBeginLoc(),
7423              diag::err_template_arg_member_ptr_base_derived_not_supported)
7424             << Value.getMemberPointerDecl() << ParamType
7425             << Arg->getSourceRange();
7426         return ExprError();
7427       }
7428 
7429       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
7430       SugaredConverted = VD ? TemplateArgument(VD, ParamType)
7431                             : TemplateArgument(ParamType, /*isNullPtr=*/true);
7432       CanonicalConverted =
7433           VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7434                                 CanonParamType)
7435              : TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7436       break;
7437     }
7438     case APValue::LValue: {
7439       //   For a non-type template-parameter of pointer or reference type,
7440       //   the value of the constant expression shall not refer to
7441       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7442              ParamType->isNullPtrType());
7443       // -- a temporary object
7444       // -- a string literal
7445       // -- the result of a typeid expression, or
7446       // -- a predefined __func__ variable
7447       APValue::LValueBase Base = Value.getLValueBase();
7448       auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7449       if (Base &&
7450           (!VD ||
7451            isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
7452         Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7453             << Arg->getSourceRange();
7454         return ExprError();
7455       }
7456       // -- a subobject
7457       // FIXME: Until C++20
7458       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
7459           VD && VD->getType()->isArrayType() &&
7460           Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7461           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7462         // Per defect report (no number yet):
7463         //   ... other than a pointer to the first element of a complete array
7464         //       object.
7465       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7466                  Value.isLValueOnePastTheEnd()) {
7467         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7468           << Value.getAsString(Context, ParamType);
7469         return ExprError();
7470       }
7471       assert((VD || !ParamType->isReferenceType()) &&
7472              "null reference should not be a constant expression");
7473       assert((!VD || !ParamType->isNullPtrType()) &&
7474              "non-null value of type nullptr_t?");
7475 
7476       SugaredConverted = VD ? TemplateArgument(VD, ParamType)
7477                             : TemplateArgument(ParamType, /*isNullPtr=*/true);
7478       CanonicalConverted =
7479           VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7480                                 CanonParamType)
7481              : TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7482       break;
7483     }
7484     case APValue::Struct:
7485     case APValue::Union: {
7486       // Get or create the corresponding template parameter object.
7487       TemplateParamObjectDecl *D =
7488           Context.getTemplateParamObjectDecl(ParamType, Value);
7489       SugaredConverted = TemplateArgument(D, ParamType);
7490       CanonicalConverted =
7491           TemplateArgument(D->getCanonicalDecl(), CanonParamType);
7492       break;
7493     }
7494     case APValue::AddrLabelDiff:
7495       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7496     case APValue::FixedPoint:
7497     case APValue::Float:
7498     case APValue::ComplexInt:
7499     case APValue::ComplexFloat:
7500     case APValue::Vector:
7501     case APValue::Array:
7502       return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7503              << ParamType;
7504     }
7505 
7506     return ArgResult.get();
7507   }
7508 
7509   // C++ [temp.arg.nontype]p5:
7510   //   The following conversions are performed on each expression used
7511   //   as a non-type template-argument. If a non-type
7512   //   template-argument cannot be converted to the type of the
7513   //   corresponding template-parameter then the program is
7514   //   ill-formed.
7515   if (ParamType->isIntegralOrEnumerationType()) {
7516     // C++11:
7517     //   -- for a non-type template-parameter of integral or
7518     //      enumeration type, conversions permitted in a converted
7519     //      constant expression are applied.
7520     //
7521     // C++98:
7522     //   -- for a non-type template-parameter of integral or
7523     //      enumeration type, integral promotions (4.5) and integral
7524     //      conversions (4.7) are applied.
7525 
7526     if (getLangOpts().CPlusPlus11) {
7527       // C++ [temp.arg.nontype]p1:
7528       //   A template-argument for a non-type, non-template template-parameter
7529       //   shall be one of:
7530       //
7531       //     -- for a non-type template-parameter of integral or enumeration
7532       //        type, a converted constant expression of the type of the
7533       //        template-parameter; or
7534       llvm::APSInt Value;
7535       ExprResult ArgResult =
7536         CheckConvertedConstantExpression(Arg, ParamType, Value,
7537                                          CCEK_TemplateArg);
7538       if (ArgResult.isInvalid())
7539         return ExprError();
7540 
7541       // We can't check arbitrary value-dependent arguments.
7542       if (ArgResult.get()->isValueDependent()) {
7543         SugaredConverted = TemplateArgument(ArgResult.get());
7544         CanonicalConverted =
7545             Context.getCanonicalTemplateArgument(SugaredConverted);
7546         return ArgResult;
7547       }
7548 
7549       // Widen the argument value to sizeof(parameter type). This is almost
7550       // always a no-op, except when the parameter type is bool. In
7551       // that case, this may extend the argument from 1 bit to 8 bits.
7552       QualType IntegerType = ParamType;
7553       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7554         IntegerType = Enum->getDecl()->getIntegerType();
7555       Value = Value.extOrTrunc(IntegerType->isBitIntType()
7556                                    ? Context.getIntWidth(IntegerType)
7557                                    : Context.getTypeSize(IntegerType));
7558 
7559       SugaredConverted = TemplateArgument(Context, Value, ParamType);
7560       CanonicalConverted =
7561           TemplateArgument(Context, Value, Context.getCanonicalType(ParamType));
7562       return ArgResult;
7563     }
7564 
7565     ExprResult ArgResult = DefaultLvalueConversion(Arg);
7566     if (ArgResult.isInvalid())
7567       return ExprError();
7568     Arg = ArgResult.get();
7569 
7570     QualType ArgType = Arg->getType();
7571 
7572     // C++ [temp.arg.nontype]p1:
7573     //   A template-argument for a non-type, non-template
7574     //   template-parameter shall be one of:
7575     //
7576     //     -- an integral constant-expression of integral or enumeration
7577     //        type; or
7578     //     -- the name of a non-type template-parameter; or
7579     llvm::APSInt Value;
7580     if (!ArgType->isIntegralOrEnumerationType()) {
7581       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7582           << ArgType << Arg->getSourceRange();
7583       NoteTemplateParameterLocation(*Param);
7584       return ExprError();
7585     } else if (!Arg->isValueDependent()) {
7586       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7587         QualType T;
7588 
7589       public:
7590         TmplArgICEDiagnoser(QualType T) : T(T) { }
7591 
7592         SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7593                                              SourceLocation Loc) override {
7594           return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7595         }
7596       } Diagnoser(ArgType);
7597 
7598       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7599       if (!Arg)
7600         return ExprError();
7601     }
7602 
7603     // From here on out, all we care about is the unqualified form
7604     // of the argument type.
7605     ArgType = ArgType.getUnqualifiedType();
7606 
7607     // Try to convert the argument to the parameter's type.
7608     if (Context.hasSameType(ParamType, ArgType)) {
7609       // Okay: no conversion necessary
7610     } else if (ParamType->isBooleanType()) {
7611       // This is an integral-to-boolean conversion.
7612       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7613     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7614                !ParamType->isEnumeralType()) {
7615       // This is an integral promotion or conversion.
7616       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7617     } else {
7618       // We can't perform this conversion.
7619       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7620           << Arg->getType() << ParamType << Arg->getSourceRange();
7621       NoteTemplateParameterLocation(*Param);
7622       return ExprError();
7623     }
7624 
7625     // Add the value of this argument to the list of converted
7626     // arguments. We use the bitwidth and signedness of the template
7627     // parameter.
7628     if (Arg->isValueDependent()) {
7629       // The argument is value-dependent. Create a new
7630       // TemplateArgument with the converted expression.
7631       SugaredConverted = TemplateArgument(Arg);
7632       CanonicalConverted =
7633           Context.getCanonicalTemplateArgument(SugaredConverted);
7634       return Arg;
7635     }
7636 
7637     QualType IntegerType = ParamType;
7638     if (const EnumType *Enum = IntegerType->getAs<EnumType>()) {
7639       IntegerType = Enum->getDecl()->getIntegerType();
7640     }
7641 
7642     if (ParamType->isBooleanType()) {
7643       // Value must be zero or one.
7644       Value = Value != 0;
7645       unsigned AllowedBits = Context.getTypeSize(IntegerType);
7646       if (Value.getBitWidth() != AllowedBits)
7647         Value = Value.extOrTrunc(AllowedBits);
7648       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7649     } else {
7650       llvm::APSInt OldValue = Value;
7651 
7652       // Coerce the template argument's value to the value it will have
7653       // based on the template parameter's type.
7654       unsigned AllowedBits = IntegerType->isBitIntType()
7655                                  ? Context.getIntWidth(IntegerType)
7656                                  : Context.getTypeSize(IntegerType);
7657       if (Value.getBitWidth() != AllowedBits)
7658         Value = Value.extOrTrunc(AllowedBits);
7659       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7660 
7661       // Complain if an unsigned parameter received a negative value.
7662       if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7663           (OldValue.isSigned() && OldValue.isNegative())) {
7664         Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7665             << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7666             << Arg->getSourceRange();
7667         NoteTemplateParameterLocation(*Param);
7668       }
7669 
7670       // Complain if we overflowed the template parameter's type.
7671       unsigned RequiredBits;
7672       if (IntegerType->isUnsignedIntegerOrEnumerationType())
7673         RequiredBits = OldValue.getActiveBits();
7674       else if (OldValue.isUnsigned())
7675         RequiredBits = OldValue.getActiveBits() + 1;
7676       else
7677         RequiredBits = OldValue.getSignificantBits();
7678       if (RequiredBits > AllowedBits) {
7679         Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7680             << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7681             << Arg->getSourceRange();
7682         NoteTemplateParameterLocation(*Param);
7683       }
7684     }
7685 
7686     QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType;
7687     SugaredConverted = TemplateArgument(Context, Value, T);
7688     CanonicalConverted =
7689         TemplateArgument(Context, Value, Context.getCanonicalType(T));
7690     return Arg;
7691   }
7692 
7693   QualType ArgType = Arg->getType();
7694   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7695 
7696   // Handle pointer-to-function, reference-to-function, and
7697   // pointer-to-member-function all in (roughly) the same way.
7698   if (// -- For a non-type template-parameter of type pointer to
7699       //    function, only the function-to-pointer conversion (4.3) is
7700       //    applied. If the template-argument represents a set of
7701       //    overloaded functions (or a pointer to such), the matching
7702       //    function is selected from the set (13.4).
7703       (ParamType->isPointerType() &&
7704        ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7705       // -- For a non-type template-parameter of type reference to
7706       //    function, no conversions apply. If the template-argument
7707       //    represents a set of overloaded functions, the matching
7708       //    function is selected from the set (13.4).
7709       (ParamType->isReferenceType() &&
7710        ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7711       // -- For a non-type template-parameter of type pointer to
7712       //    member function, no conversions apply. If the
7713       //    template-argument represents a set of overloaded member
7714       //    functions, the matching member function is selected from
7715       //    the set (13.4).
7716       (ParamType->isMemberPointerType() &&
7717        ParamType->castAs<MemberPointerType>()->getPointeeType()
7718          ->isFunctionType())) {
7719 
7720     if (Arg->getType() == Context.OverloadTy) {
7721       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7722                                                                 true,
7723                                                                 FoundResult)) {
7724         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7725           return ExprError();
7726 
7727         ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7728         if (Res.isInvalid())
7729           return ExprError();
7730         Arg = Res.get();
7731         ArgType = Arg->getType();
7732       } else
7733         return ExprError();
7734     }
7735 
7736     if (!ParamType->isMemberPointerType()) {
7737       if (CheckTemplateArgumentAddressOfObjectOrFunction(
7738               *this, Param, ParamType, Arg, SugaredConverted,
7739               CanonicalConverted))
7740         return ExprError();
7741       return Arg;
7742     }
7743 
7744     if (CheckTemplateArgumentPointerToMember(
7745             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7746       return ExprError();
7747     return Arg;
7748   }
7749 
7750   if (ParamType->isPointerType()) {
7751     //   -- for a non-type template-parameter of type pointer to
7752     //      object, qualification conversions (4.4) and the
7753     //      array-to-pointer conversion (4.2) are applied.
7754     // C++0x also allows a value of std::nullptr_t.
7755     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7756            "Only object pointers allowed here");
7757 
7758     if (CheckTemplateArgumentAddressOfObjectOrFunction(
7759             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7760       return ExprError();
7761     return Arg;
7762   }
7763 
7764   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7765     //   -- For a non-type template-parameter of type reference to
7766     //      object, no conversions apply. The type referred to by the
7767     //      reference may be more cv-qualified than the (otherwise
7768     //      identical) type of the template-argument. The
7769     //      template-parameter is bound directly to the
7770     //      template-argument, which must be an lvalue.
7771     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7772            "Only object references allowed here");
7773 
7774     if (Arg->getType() == Context.OverloadTy) {
7775       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7776                                                  ParamRefType->getPointeeType(),
7777                                                                 true,
7778                                                                 FoundResult)) {
7779         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7780           return ExprError();
7781         ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7782         if (Res.isInvalid())
7783           return ExprError();
7784         Arg = Res.get();
7785         ArgType = Arg->getType();
7786       } else
7787         return ExprError();
7788     }
7789 
7790     if (CheckTemplateArgumentAddressOfObjectOrFunction(
7791             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7792       return ExprError();
7793     return Arg;
7794   }
7795 
7796   // Deal with parameters of type std::nullptr_t.
7797   if (ParamType->isNullPtrType()) {
7798     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7799       SugaredConverted = TemplateArgument(Arg);
7800       CanonicalConverted =
7801           Context.getCanonicalTemplateArgument(SugaredConverted);
7802       return Arg;
7803     }
7804 
7805     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7806     case NPV_NotNullPointer:
7807       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7808         << Arg->getType() << ParamType;
7809       NoteTemplateParameterLocation(*Param);
7810       return ExprError();
7811 
7812     case NPV_Error:
7813       return ExprError();
7814 
7815     case NPV_NullPointer:
7816       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7817       SugaredConverted = TemplateArgument(ParamType,
7818                                           /*isNullPtr=*/true);
7819       CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType),
7820                                             /*isNullPtr=*/true);
7821       return Arg;
7822     }
7823   }
7824 
7825   //     -- For a non-type template-parameter of type pointer to data
7826   //        member, qualification conversions (4.4) are applied.
7827   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7828 
7829   if (CheckTemplateArgumentPointerToMember(
7830           *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7831     return ExprError();
7832   return Arg;
7833 }
7834 
7835 static void DiagnoseTemplateParameterListArityMismatch(
7836     Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7837     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7838 
7839 /// Check a template argument against its corresponding
7840 /// template template parameter.
7841 ///
7842 /// This routine implements the semantics of C++ [temp.arg.template].
7843 /// It returns true if an error occurred, and false otherwise.
7844 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7845                                          TemplateParameterList *Params,
7846                                          TemplateArgumentLoc &Arg) {
7847   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7848   TemplateDecl *Template = Name.getAsTemplateDecl();
7849   if (!Template) {
7850     // Any dependent template name is fine.
7851     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7852     return false;
7853   }
7854 
7855   if (Template->isInvalidDecl())
7856     return true;
7857 
7858   // C++0x [temp.arg.template]p1:
7859   //   A template-argument for a template template-parameter shall be
7860   //   the name of a class template or an alias template, expressed as an
7861   //   id-expression. When the template-argument names a class template, only
7862   //   primary class templates are considered when matching the
7863   //   template template argument with the corresponding parameter;
7864   //   partial specializations are not considered even if their
7865   //   parameter lists match that of the template template parameter.
7866   //
7867   // Note that we also allow template template parameters here, which
7868   // will happen when we are dealing with, e.g., class template
7869   // partial specializations.
7870   if (!isa<ClassTemplateDecl>(Template) &&
7871       !isa<TemplateTemplateParmDecl>(Template) &&
7872       !isa<TypeAliasTemplateDecl>(Template) &&
7873       !isa<BuiltinTemplateDecl>(Template)) {
7874     assert(isa<FunctionTemplateDecl>(Template) &&
7875            "Only function templates are possible here");
7876     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7877     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7878       << Template;
7879   }
7880 
7881   // C++1z [temp.arg.template]p3: (DR 150)
7882   //   A template-argument matches a template template-parameter P when P
7883   //   is at least as specialized as the template-argument A.
7884   // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7885   //  defect report resolution from C++17 and shouldn't be introduced by
7886   //  concepts.
7887   if (getLangOpts().RelaxedTemplateTemplateArgs) {
7888     // Quick check for the common case:
7889     //   If P contains a parameter pack, then A [...] matches P if each of A's
7890     //   template parameters matches the corresponding template parameter in
7891     //   the template-parameter-list of P.
7892     if (TemplateParameterListsAreEqual(
7893             Template->getTemplateParameters(), Params, false,
7894             TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7895         // If the argument has no associated constraints, then the parameter is
7896         // definitely at least as specialized as the argument.
7897         // Otherwise - we need a more thorough check.
7898         !Template->hasAssociatedConstraints())
7899       return false;
7900 
7901     if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7902                                                           Arg.getLocation())) {
7903       // P2113
7904       // C++20[temp.func.order]p2
7905       //   [...] If both deductions succeed, the partial ordering selects the
7906       // more constrained template (if one exists) as determined below.
7907       SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7908       Params->getAssociatedConstraints(ParamsAC);
7909       // C++2a[temp.arg.template]p3
7910       //   [...] In this comparison, if P is unconstrained, the constraints on A
7911       //   are not considered.
7912       if (ParamsAC.empty())
7913         return false;
7914 
7915       Template->getAssociatedConstraints(TemplateAC);
7916 
7917       bool IsParamAtLeastAsConstrained;
7918       if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7919                                  IsParamAtLeastAsConstrained))
7920         return true;
7921       if (!IsParamAtLeastAsConstrained) {
7922         Diag(Arg.getLocation(),
7923              diag::err_template_template_parameter_not_at_least_as_constrained)
7924             << Template << Param << Arg.getSourceRange();
7925         Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7926         Diag(Template->getLocation(), diag::note_entity_declared_at)
7927             << Template;
7928         MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7929                                                       TemplateAC);
7930         return true;
7931       }
7932       return false;
7933     }
7934     // FIXME: Produce better diagnostics for deduction failures.
7935   }
7936 
7937   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7938                                          Params,
7939                                          true,
7940                                          TPL_TemplateTemplateArgumentMatch,
7941                                          Arg.getLocation());
7942 }
7943 
7944 static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl,
7945                                                 unsigned HereDiagID,
7946                                                 unsigned ExternalDiagID) {
7947   if (Decl.getLocation().isValid())
7948     return S.Diag(Decl.getLocation(), HereDiagID);
7949 
7950   SmallString<128> Str;
7951   llvm::raw_svector_ostream Out(Str);
7952   PrintingPolicy PP = S.getPrintingPolicy();
7953   PP.TerseOutput = 1;
7954   Decl.print(Out, PP);
7955   return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str();
7956 }
7957 
7958 void Sema::NoteTemplateLocation(const NamedDecl &Decl,
7959                                 std::optional<SourceRange> ParamRange) {
7960   SemaDiagnosticBuilder DB =
7961       noteLocation(*this, Decl, diag::note_template_decl_here,
7962                    diag::note_template_decl_external);
7963   if (ParamRange && ParamRange->isValid()) {
7964     assert(Decl.getLocation().isValid() &&
7965            "Parameter range has location when Decl does not");
7966     DB << *ParamRange;
7967   }
7968 }
7969 
7970 void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) {
7971   noteLocation(*this, Decl, diag::note_template_param_here,
7972                diag::note_template_param_external);
7973 }
7974 
7975 /// Given a non-type template argument that refers to a
7976 /// declaration and the type of its corresponding non-type template
7977 /// parameter, produce an expression that properly refers to that
7978 /// declaration.
7979 ExprResult
7980 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7981                                               QualType ParamType,
7982                                               SourceLocation Loc) {
7983   // C++ [temp.param]p8:
7984   //
7985   //   A non-type template-parameter of type "array of T" or
7986   //   "function returning T" is adjusted to be of type "pointer to
7987   //   T" or "pointer to function returning T", respectively.
7988   if (ParamType->isArrayType())
7989     ParamType = Context.getArrayDecayedType(ParamType);
7990   else if (ParamType->isFunctionType())
7991     ParamType = Context.getPointerType(ParamType);
7992 
7993   // For a NULL non-type template argument, return nullptr casted to the
7994   // parameter's type.
7995   if (Arg.getKind() == TemplateArgument::NullPtr) {
7996     return ImpCastExprToType(
7997              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7998                              ParamType,
7999                              ParamType->getAs<MemberPointerType>()
8000                                ? CK_NullToMemberPointer
8001                                : CK_NullToPointer);
8002   }
8003   assert(Arg.getKind() == TemplateArgument::Declaration &&
8004          "Only declaration template arguments permitted here");
8005 
8006   ValueDecl *VD = Arg.getAsDecl();
8007 
8008   CXXScopeSpec SS;
8009   if (ParamType->isMemberPointerType()) {
8010     // If this is a pointer to member, we need to use a qualified name to
8011     // form a suitable pointer-to-member constant.
8012     assert(VD->getDeclContext()->isRecord() &&
8013            (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
8014             isa<IndirectFieldDecl>(VD)));
8015     QualType ClassType
8016       = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
8017     NestedNameSpecifier *Qualifier
8018       = NestedNameSpecifier::Create(Context, nullptr, false,
8019                                     ClassType.getTypePtr());
8020     SS.MakeTrivial(Context, Qualifier, Loc);
8021   }
8022 
8023   ExprResult RefExpr = BuildDeclarationNameExpr(
8024       SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8025   if (RefExpr.isInvalid())
8026     return ExprError();
8027 
8028   // For a pointer, the argument declaration is the pointee. Take its address.
8029   QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
8030   if (ParamType->isPointerType() && !ElemT.isNull() &&
8031       Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
8032     // Decay an array argument if we want a pointer to its first element.
8033     RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
8034     if (RefExpr.isInvalid())
8035       return ExprError();
8036   } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
8037     // For any other pointer, take the address (or form a pointer-to-member).
8038     RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
8039     if (RefExpr.isInvalid())
8040       return ExprError();
8041   } else if (ParamType->isRecordType()) {
8042     assert(isa<TemplateParamObjectDecl>(VD) &&
8043            "arg for class template param not a template parameter object");
8044     // No conversions apply in this case.
8045     return RefExpr;
8046   } else {
8047     assert(ParamType->isReferenceType() &&
8048            "unexpected type for decl template argument");
8049   }
8050 
8051   // At this point we should have the right value category.
8052   assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
8053          "value kind mismatch for non-type template argument");
8054 
8055   // The type of the template parameter can differ from the type of the
8056   // argument in various ways; convert it now if necessary.
8057   QualType DestExprType = ParamType.getNonLValueExprType(Context);
8058   if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
8059     CastKind CK;
8060     QualType Ignored;
8061     if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
8062         IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
8063       CK = CK_NoOp;
8064     } else if (ParamType->isVoidPointerType() &&
8065                RefExpr.get()->getType()->isPointerType()) {
8066       CK = CK_BitCast;
8067     } else {
8068       // FIXME: Pointers to members can need conversion derived-to-base or
8069       // base-to-derived conversions. We currently don't retain enough
8070       // information to convert properly (we need to track a cast path or
8071       // subobject number in the template argument).
8072       llvm_unreachable(
8073           "unexpected conversion required for non-type template argument");
8074     }
8075     RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
8076                                 RefExpr.get()->getValueKind());
8077   }
8078 
8079   return RefExpr;
8080 }
8081 
8082 /// Construct a new expression that refers to the given
8083 /// integral template argument with the given source-location
8084 /// information.
8085 ///
8086 /// This routine takes care of the mapping from an integral template
8087 /// argument (which may have any integral type) to the appropriate
8088 /// literal value.
8089 ExprResult
8090 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
8091                                                   SourceLocation Loc) {
8092   assert(Arg.getKind() == TemplateArgument::Integral &&
8093          "Operation is only valid for integral template arguments");
8094   QualType OrigT = Arg.getIntegralType();
8095 
8096   // If this is an enum type that we're instantiating, we need to use an integer
8097   // type the same size as the enumerator.  We don't want to build an
8098   // IntegerLiteral with enum type.  The integer type of an enum type can be of
8099   // any integral type with C++11 enum classes, make sure we create the right
8100   // type of literal for it.
8101   QualType T = OrigT;
8102   if (const EnumType *ET = OrigT->getAs<EnumType>())
8103     T = ET->getDecl()->getIntegerType();
8104 
8105   Expr *E;
8106   if (T->isAnyCharacterType()) {
8107     CharacterLiteralKind Kind;
8108     if (T->isWideCharType())
8109       Kind = CharacterLiteralKind::Wide;
8110     else if (T->isChar8Type() && getLangOpts().Char8)
8111       Kind = CharacterLiteralKind::UTF8;
8112     else if (T->isChar16Type())
8113       Kind = CharacterLiteralKind::UTF16;
8114     else if (T->isChar32Type())
8115       Kind = CharacterLiteralKind::UTF32;
8116     else
8117       Kind = CharacterLiteralKind::Ascii;
8118 
8119     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
8120                                        Kind, T, Loc);
8121   } else if (T->isBooleanType()) {
8122     E = CXXBoolLiteralExpr::Create(Context, Arg.getAsIntegral().getBoolValue(),
8123                                    T, Loc);
8124   } else if (T->isNullPtrType()) {
8125     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
8126   } else {
8127     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
8128   }
8129 
8130   if (OrigT->isEnumeralType()) {
8131     // FIXME: This is a hack. We need a better way to handle substituted
8132     // non-type template parameters.
8133     E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E,
8134                                nullptr, CurFPFeatureOverrides(),
8135                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
8136                                Loc, Loc);
8137   }
8138 
8139   return E;
8140 }
8141 
8142 /// Match two template parameters within template parameter lists.
8143 static bool MatchTemplateParameterKind(
8144     Sema &S, NamedDecl *New,
8145     const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old,
8146     const NamedDecl *OldInstFrom, bool Complain,
8147     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8148   // Check the actual kind (type, non-type, template).
8149   if (Old->getKind() != New->getKind()) {
8150     if (Complain) {
8151       unsigned NextDiag = diag::err_template_param_different_kind;
8152       if (TemplateArgLoc.isValid()) {
8153         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8154         NextDiag = diag::note_template_param_different_kind;
8155       }
8156       S.Diag(New->getLocation(), NextDiag)
8157         << (Kind != Sema::TPL_TemplateMatch);
8158       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
8159         << (Kind != Sema::TPL_TemplateMatch);
8160     }
8161 
8162     return false;
8163   }
8164 
8165   // Check that both are parameter packs or neither are parameter packs.
8166   // However, if we are matching a template template argument to a
8167   // template template parameter, the template template parameter can have
8168   // a parameter pack where the template template argument does not.
8169   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
8170       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
8171         Old->isTemplateParameterPack())) {
8172     if (Complain) {
8173       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
8174       if (TemplateArgLoc.isValid()) {
8175         S.Diag(TemplateArgLoc,
8176              diag::err_template_arg_template_params_mismatch);
8177         NextDiag = diag::note_template_parameter_pack_non_pack;
8178       }
8179 
8180       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
8181                       : isa<NonTypeTemplateParmDecl>(New)? 1
8182                       : 2;
8183       S.Diag(New->getLocation(), NextDiag)
8184         << ParamKind << New->isParameterPack();
8185       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
8186         << ParamKind << Old->isParameterPack();
8187     }
8188 
8189     return false;
8190   }
8191 
8192   // For non-type template parameters, check the type of the parameter.
8193   if (NonTypeTemplateParmDecl *OldNTTP
8194                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
8195     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
8196 
8197     // If we are matching a template template argument to a template
8198     // template parameter and one of the non-type template parameter types
8199     // is dependent, then we must wait until template instantiation time
8200     // to actually compare the arguments.
8201     if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
8202         (!OldNTTP->getType()->isDependentType() &&
8203          !NewNTTP->getType()->isDependentType())) {
8204       // C++20 [temp.over.link]p6:
8205       //   Two [non-type] template-parameters are equivalent [if] they have
8206       //   equivalent types ignoring the use of type-constraints for
8207       //   placeholder types
8208       QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType());
8209       QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType());
8210       if (!S.Context.hasSameType(OldType, NewType)) {
8211         if (Complain) {
8212           unsigned NextDiag = diag::err_template_nontype_parm_different_type;
8213           if (TemplateArgLoc.isValid()) {
8214             S.Diag(TemplateArgLoc,
8215                    diag::err_template_arg_template_params_mismatch);
8216             NextDiag = diag::note_template_nontype_parm_different_type;
8217           }
8218           S.Diag(NewNTTP->getLocation(), NextDiag)
8219             << NewNTTP->getType()
8220             << (Kind != Sema::TPL_TemplateMatch);
8221           S.Diag(OldNTTP->getLocation(),
8222                  diag::note_template_nontype_parm_prev_declaration)
8223             << OldNTTP->getType();
8224         }
8225 
8226         return false;
8227       }
8228     }
8229   }
8230   // For template template parameters, check the template parameter types.
8231   // The template parameter lists of template template
8232   // parameters must agree.
8233   else if (TemplateTemplateParmDecl *OldTTP =
8234                dyn_cast<TemplateTemplateParmDecl>(Old)) {
8235     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
8236     if (!S.TemplateParameterListsAreEqual(
8237             NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom,
8238             OldTTP->getTemplateParameters(), Complain,
8239             (Kind == Sema::TPL_TemplateMatch
8240                  ? Sema::TPL_TemplateTemplateParmMatch
8241                  : Kind),
8242             TemplateArgLoc))
8243       return false;
8244   }
8245 
8246   if (Kind != Sema::TPL_TemplateParamsEquivalent &&
8247       Kind != Sema::TPL_TemplateTemplateArgumentMatch &&
8248       !isa<TemplateTemplateParmDecl>(Old)) {
8249     const Expr *NewC = nullptr, *OldC = nullptr;
8250 
8251     if (isa<TemplateTypeParmDecl>(New)) {
8252       if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
8253         NewC = TC->getImmediatelyDeclaredConstraint();
8254       if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
8255         OldC = TC->getImmediatelyDeclaredConstraint();
8256     } else if (isa<NonTypeTemplateParmDecl>(New)) {
8257       if (const Expr *E = cast<NonTypeTemplateParmDecl>(New)
8258                               ->getPlaceholderTypeConstraint())
8259         NewC = E;
8260       if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old)
8261                               ->getPlaceholderTypeConstraint())
8262         OldC = E;
8263     } else
8264       llvm_unreachable("unexpected template parameter type");
8265 
8266     auto Diagnose = [&] {
8267       S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
8268            diag::err_template_different_type_constraint);
8269       S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
8270            diag::note_template_prev_declaration) << /*declaration*/0;
8271     };
8272 
8273     if (!NewC != !OldC) {
8274       if (Complain)
8275         Diagnose();
8276       return false;
8277     }
8278 
8279     if (NewC) {
8280       if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom,
8281                                            NewC)) {
8282         if (Complain)
8283           Diagnose();
8284         return false;
8285       }
8286     }
8287   }
8288 
8289   return true;
8290 }
8291 
8292 /// Diagnose a known arity mismatch when comparing template argument
8293 /// lists.
8294 static
8295 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
8296                                                 TemplateParameterList *New,
8297                                                 TemplateParameterList *Old,
8298                                       Sema::TemplateParameterListEqualKind Kind,
8299                                                 SourceLocation TemplateArgLoc) {
8300   unsigned NextDiag = diag::err_template_param_list_different_arity;
8301   if (TemplateArgLoc.isValid()) {
8302     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8303     NextDiag = diag::note_template_param_list_different_arity;
8304   }
8305   S.Diag(New->getTemplateLoc(), NextDiag)
8306     << (New->size() > Old->size())
8307     << (Kind != Sema::TPL_TemplateMatch)
8308     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
8309   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
8310     << (Kind != Sema::TPL_TemplateMatch)
8311     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
8312 }
8313 
8314 /// Determine whether the given template parameter lists are
8315 /// equivalent.
8316 ///
8317 /// \param New  The new template parameter list, typically written in the
8318 /// source code as part of a new template declaration.
8319 ///
8320 /// \param Old  The old template parameter list, typically found via
8321 /// name lookup of the template declared with this template parameter
8322 /// list.
8323 ///
8324 /// \param Complain  If true, this routine will produce a diagnostic if
8325 /// the template parameter lists are not equivalent.
8326 ///
8327 /// \param Kind describes how we are to match the template parameter lists.
8328 ///
8329 /// \param TemplateArgLoc If this source location is valid, then we
8330 /// are actually checking the template parameter list of a template
8331 /// argument (New) against the template parameter list of its
8332 /// corresponding template template parameter (Old). We produce
8333 /// slightly different diagnostics in this scenario.
8334 ///
8335 /// \returns True if the template parameter lists are equal, false
8336 /// otherwise.
8337 bool Sema::TemplateParameterListsAreEqual(
8338     const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
8339     const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
8340     TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8341   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
8342     if (Complain)
8343       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8344                                                  TemplateArgLoc);
8345 
8346     return false;
8347   }
8348 
8349   // C++0x [temp.arg.template]p3:
8350   //   A template-argument matches a template template-parameter (call it P)
8351   //   when each of the template parameters in the template-parameter-list of
8352   //   the template-argument's corresponding class template or alias template
8353   //   (call it A) matches the corresponding template parameter in the
8354   //   template-parameter-list of P. [...]
8355   TemplateParameterList::iterator NewParm = New->begin();
8356   TemplateParameterList::iterator NewParmEnd = New->end();
8357   for (TemplateParameterList::iterator OldParm = Old->begin(),
8358                                     OldParmEnd = Old->end();
8359        OldParm != OldParmEnd; ++OldParm) {
8360     if (Kind != TPL_TemplateTemplateArgumentMatch ||
8361         !(*OldParm)->isTemplateParameterPack()) {
8362       if (NewParm == NewParmEnd) {
8363         if (Complain)
8364           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8365                                                      TemplateArgLoc);
8366 
8367         return false;
8368       }
8369 
8370       if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8371                                       OldInstFrom, Complain, Kind,
8372                                       TemplateArgLoc))
8373         return false;
8374 
8375       ++NewParm;
8376       continue;
8377     }
8378 
8379     // C++0x [temp.arg.template]p3:
8380     //   [...] When P's template- parameter-list contains a template parameter
8381     //   pack (14.5.3), the template parameter pack will match zero or more
8382     //   template parameters or template parameter packs in the
8383     //   template-parameter-list of A with the same type and form as the
8384     //   template parameter pack in P (ignoring whether those template
8385     //   parameters are template parameter packs).
8386     for (; NewParm != NewParmEnd; ++NewParm) {
8387       if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8388                                       OldInstFrom, Complain, Kind,
8389                                       TemplateArgLoc))
8390         return false;
8391     }
8392   }
8393 
8394   // Make sure we exhausted all of the arguments.
8395   if (NewParm != NewParmEnd) {
8396     if (Complain)
8397       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8398                                                  TemplateArgLoc);
8399 
8400     return false;
8401   }
8402 
8403   if (Kind != TPL_TemplateTemplateArgumentMatch &&
8404       Kind != TPL_TemplateParamsEquivalent) {
8405     const Expr *NewRC = New->getRequiresClause();
8406     const Expr *OldRC = Old->getRequiresClause();
8407 
8408     auto Diagnose = [&] {
8409       Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
8410            diag::err_template_different_requires_clause);
8411       Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
8412            diag::note_template_prev_declaration) << /*declaration*/0;
8413     };
8414 
8415     if (!NewRC != !OldRC) {
8416       if (Complain)
8417         Diagnose();
8418       return false;
8419     }
8420 
8421     if (NewRC) {
8422       if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom,
8423                                          NewRC)) {
8424         if (Complain)
8425           Diagnose();
8426         return false;
8427       }
8428     }
8429   }
8430 
8431   return true;
8432 }
8433 
8434 /// Check whether a template can be declared within this scope.
8435 ///
8436 /// If the template declaration is valid in this scope, returns
8437 /// false. Otherwise, issues a diagnostic and returns true.
8438 bool
8439 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
8440   if (!S)
8441     return false;
8442 
8443   // Find the nearest enclosing declaration scope.
8444   while ((S->getFlags() & Scope::DeclScope) == 0 ||
8445          (S->getFlags() & Scope::TemplateParamScope) != 0)
8446     S = S->getParent();
8447 
8448   // C++ [temp.pre]p6: [P2096]
8449   //   A template, explicit specialization, or partial specialization shall not
8450   //   have C linkage.
8451   DeclContext *Ctx = S->getEntity();
8452   if (Ctx && Ctx->isExternCContext()) {
8453     Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
8454         << TemplateParams->getSourceRange();
8455     if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
8456       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
8457     return true;
8458   }
8459   Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
8460 
8461   // C++ [temp]p2:
8462   //   A template-declaration can appear only as a namespace scope or
8463   //   class scope declaration.
8464   // C++ [temp.expl.spec]p3:
8465   //   An explicit specialization may be declared in any scope in which the
8466   //   corresponding primary template may be defined.
8467   // C++ [temp.class.spec]p6: [P2096]
8468   //   A partial specialization may be declared in any scope in which the
8469   //   corresponding primary template may be defined.
8470   if (Ctx) {
8471     if (Ctx->isFileContext())
8472       return false;
8473     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
8474       // C++ [temp.mem]p2:
8475       //   A local class shall not have member templates.
8476       if (RD->isLocalClass())
8477         return Diag(TemplateParams->getTemplateLoc(),
8478                     diag::err_template_inside_local_class)
8479           << TemplateParams->getSourceRange();
8480       else
8481         return false;
8482     }
8483   }
8484 
8485   return Diag(TemplateParams->getTemplateLoc(),
8486               diag::err_template_outside_namespace_or_class_scope)
8487     << TemplateParams->getSourceRange();
8488 }
8489 
8490 /// Determine what kind of template specialization the given declaration
8491 /// is.
8492 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
8493   if (!D)
8494     return TSK_Undeclared;
8495 
8496   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
8497     return Record->getTemplateSpecializationKind();
8498   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
8499     return Function->getTemplateSpecializationKind();
8500   if (VarDecl *Var = dyn_cast<VarDecl>(D))
8501     return Var->getTemplateSpecializationKind();
8502 
8503   return TSK_Undeclared;
8504 }
8505 
8506 /// Check whether a specialization is well-formed in the current
8507 /// context.
8508 ///
8509 /// This routine determines whether a template specialization can be declared
8510 /// in the current context (C++ [temp.expl.spec]p2).
8511 ///
8512 /// \param S the semantic analysis object for which this check is being
8513 /// performed.
8514 ///
8515 /// \param Specialized the entity being specialized or instantiated, which
8516 /// may be a kind of template (class template, function template, etc.) or
8517 /// a member of a class template (member function, static data member,
8518 /// member class).
8519 ///
8520 /// \param PrevDecl the previous declaration of this entity, if any.
8521 ///
8522 /// \param Loc the location of the explicit specialization or instantiation of
8523 /// this entity.
8524 ///
8525 /// \param IsPartialSpecialization whether this is a partial specialization of
8526 /// a class template.
8527 ///
8528 /// \returns true if there was an error that we cannot recover from, false
8529 /// otherwise.
8530 static bool CheckTemplateSpecializationScope(Sema &S,
8531                                              NamedDecl *Specialized,
8532                                              NamedDecl *PrevDecl,
8533                                              SourceLocation Loc,
8534                                              bool IsPartialSpecialization) {
8535   // Keep these "kind" numbers in sync with the %select statements in the
8536   // various diagnostics emitted by this routine.
8537   int EntityKind = 0;
8538   if (isa<ClassTemplateDecl>(Specialized))
8539     EntityKind = IsPartialSpecialization? 1 : 0;
8540   else if (isa<VarTemplateDecl>(Specialized))
8541     EntityKind = IsPartialSpecialization ? 3 : 2;
8542   else if (isa<FunctionTemplateDecl>(Specialized))
8543     EntityKind = 4;
8544   else if (isa<CXXMethodDecl>(Specialized))
8545     EntityKind = 5;
8546   else if (isa<VarDecl>(Specialized))
8547     EntityKind = 6;
8548   else if (isa<RecordDecl>(Specialized))
8549     EntityKind = 7;
8550   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8551     EntityKind = 8;
8552   else {
8553     S.Diag(Loc, diag::err_template_spec_unknown_kind)
8554       << S.getLangOpts().CPlusPlus11;
8555     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8556     return true;
8557   }
8558 
8559   // C++ [temp.expl.spec]p2:
8560   //   An explicit specialization may be declared in any scope in which
8561   //   the corresponding primary template may be defined.
8562   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8563     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8564       << Specialized;
8565     return true;
8566   }
8567 
8568   // C++ [temp.class.spec]p6:
8569   //   A class template partial specialization may be declared in any
8570   //   scope in which the primary template may be defined.
8571   DeclContext *SpecializedContext =
8572       Specialized->getDeclContext()->getRedeclContext();
8573   DeclContext *DC = S.CurContext->getRedeclContext();
8574 
8575   // Make sure that this redeclaration (or definition) occurs in the same
8576   // scope or an enclosing namespace.
8577   if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8578                             : DC->Equals(SpecializedContext))) {
8579     if (isa<TranslationUnitDecl>(SpecializedContext))
8580       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8581         << EntityKind << Specialized;
8582     else {
8583       auto *ND = cast<NamedDecl>(SpecializedContext);
8584       int Diag = diag::err_template_spec_redecl_out_of_scope;
8585       if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8586         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8587       S.Diag(Loc, Diag) << EntityKind << Specialized
8588                         << ND << isa<CXXRecordDecl>(ND);
8589     }
8590 
8591     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8592 
8593     // Don't allow specializing in the wrong class during error recovery.
8594     // Otherwise, things can go horribly wrong.
8595     if (DC->isRecord())
8596       return true;
8597   }
8598 
8599   return false;
8600 }
8601 
8602 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8603   if (!E->isTypeDependent())
8604     return SourceLocation();
8605   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8606   Checker.TraverseStmt(E);
8607   if (Checker.MatchLoc.isInvalid())
8608     return E->getSourceRange();
8609   return Checker.MatchLoc;
8610 }
8611 
8612 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8613   if (!TL.getType()->isDependentType())
8614     return SourceLocation();
8615   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8616   Checker.TraverseTypeLoc(TL);
8617   if (Checker.MatchLoc.isInvalid())
8618     return TL.getSourceRange();
8619   return Checker.MatchLoc;
8620 }
8621 
8622 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8623 /// that checks non-type template partial specialization arguments.
8624 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8625     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8626     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8627   for (unsigned I = 0; I != NumArgs; ++I) {
8628     if (Args[I].getKind() == TemplateArgument::Pack) {
8629       if (CheckNonTypeTemplatePartialSpecializationArgs(
8630               S, TemplateNameLoc, Param, Args[I].pack_begin(),
8631               Args[I].pack_size(), IsDefaultArgument))
8632         return true;
8633 
8634       continue;
8635     }
8636 
8637     if (Args[I].getKind() != TemplateArgument::Expression)
8638       continue;
8639 
8640     Expr *ArgExpr = Args[I].getAsExpr();
8641 
8642     // We can have a pack expansion of any of the bullets below.
8643     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8644       ArgExpr = Expansion->getPattern();
8645 
8646     // Strip off any implicit casts we added as part of type checking.
8647     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8648       ArgExpr = ICE->getSubExpr();
8649 
8650     // C++ [temp.class.spec]p8:
8651     //   A non-type argument is non-specialized if it is the name of a
8652     //   non-type parameter. All other non-type arguments are
8653     //   specialized.
8654     //
8655     // Below, we check the two conditions that only apply to
8656     // specialized non-type arguments, so skip any non-specialized
8657     // arguments.
8658     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8659       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8660         continue;
8661 
8662     // C++ [temp.class.spec]p9:
8663     //   Within the argument list of a class template partial
8664     //   specialization, the following restrictions apply:
8665     //     -- A partially specialized non-type argument expression
8666     //        shall not involve a template parameter of the partial
8667     //        specialization except when the argument expression is a
8668     //        simple identifier.
8669     //     -- The type of a template parameter corresponding to a
8670     //        specialized non-type argument shall not be dependent on a
8671     //        parameter of the specialization.
8672     // DR1315 removes the first bullet, leaving an incoherent set of rules.
8673     // We implement a compromise between the original rules and DR1315:
8674     //     --  A specialized non-type template argument shall not be
8675     //         type-dependent and the corresponding template parameter
8676     //         shall have a non-dependent type.
8677     SourceRange ParamUseRange =
8678         findTemplateParameterInType(Param->getDepth(), ArgExpr);
8679     if (ParamUseRange.isValid()) {
8680       if (IsDefaultArgument) {
8681         S.Diag(TemplateNameLoc,
8682                diag::err_dependent_non_type_arg_in_partial_spec);
8683         S.Diag(ParamUseRange.getBegin(),
8684                diag::note_dependent_non_type_default_arg_in_partial_spec)
8685           << ParamUseRange;
8686       } else {
8687         S.Diag(ParamUseRange.getBegin(),
8688                diag::err_dependent_non_type_arg_in_partial_spec)
8689           << ParamUseRange;
8690       }
8691       return true;
8692     }
8693 
8694     ParamUseRange = findTemplateParameter(
8695         Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8696     if (ParamUseRange.isValid()) {
8697       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8698              diag::err_dependent_typed_non_type_arg_in_partial_spec)
8699           << Param->getType();
8700       S.NoteTemplateParameterLocation(*Param);
8701       return true;
8702     }
8703   }
8704 
8705   return false;
8706 }
8707 
8708 /// Check the non-type template arguments of a class template
8709 /// partial specialization according to C++ [temp.class.spec]p9.
8710 ///
8711 /// \param TemplateNameLoc the location of the template name.
8712 /// \param PrimaryTemplate the template parameters of the primary class
8713 ///        template.
8714 /// \param NumExplicit the number of explicitly-specified template arguments.
8715 /// \param TemplateArgs the template arguments of the class template
8716 ///        partial specialization.
8717 ///
8718 /// \returns \c true if there was an error, \c false otherwise.
8719 bool Sema::CheckTemplatePartialSpecializationArgs(
8720     SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8721     unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8722   // We have to be conservative when checking a template in a dependent
8723   // context.
8724   if (PrimaryTemplate->getDeclContext()->isDependentContext())
8725     return false;
8726 
8727   TemplateParameterList *TemplateParams =
8728       PrimaryTemplate->getTemplateParameters();
8729   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8730     NonTypeTemplateParmDecl *Param
8731       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8732     if (!Param)
8733       continue;
8734 
8735     if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8736                                                       Param, &TemplateArgs[I],
8737                                                       1, I >= NumExplicit))
8738       return true;
8739   }
8740 
8741   return false;
8742 }
8743 
8744 DeclResult Sema::ActOnClassTemplateSpecialization(
8745     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8746     SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8747     TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8748     MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8749   assert(TUK != TUK_Reference && "References are not specializations");
8750 
8751   // NOTE: KWLoc is the location of the tag keyword. This will instead
8752   // store the location of the outermost template keyword in the declaration.
8753   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8754     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8755   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8756   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8757   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8758 
8759   // Find the class template we're specializing
8760   TemplateName Name = TemplateId.Template.get();
8761   ClassTemplateDecl *ClassTemplate
8762     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8763 
8764   if (!ClassTemplate) {
8765     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8766       << (Name.getAsTemplateDecl() &&
8767           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8768     return true;
8769   }
8770 
8771   bool isMemberSpecialization = false;
8772   bool isPartialSpecialization = false;
8773 
8774   // Check the validity of the template headers that introduce this
8775   // template.
8776   // FIXME: We probably shouldn't complain about these headers for
8777   // friend declarations.
8778   bool Invalid = false;
8779   TemplateParameterList *TemplateParams =
8780       MatchTemplateParametersToScopeSpecifier(
8781           KWLoc, TemplateNameLoc, SS, &TemplateId,
8782           TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8783           Invalid);
8784   if (Invalid)
8785     return true;
8786 
8787   // Check that we can declare a template specialization here.
8788   if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8789     return true;
8790 
8791   if (TemplateParams && TemplateParams->size() > 0) {
8792     isPartialSpecialization = true;
8793 
8794     if (TUK == TUK_Friend) {
8795       Diag(KWLoc, diag::err_partial_specialization_friend)
8796         << SourceRange(LAngleLoc, RAngleLoc);
8797       return true;
8798     }
8799 
8800     // C++ [temp.class.spec]p10:
8801     //   The template parameter list of a specialization shall not
8802     //   contain default template argument values.
8803     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8804       Decl *Param = TemplateParams->getParam(I);
8805       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8806         if (TTP->hasDefaultArgument()) {
8807           Diag(TTP->getDefaultArgumentLoc(),
8808                diag::err_default_arg_in_partial_spec);
8809           TTP->removeDefaultArgument();
8810         }
8811       } else if (NonTypeTemplateParmDecl *NTTP
8812                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8813         if (Expr *DefArg = NTTP->getDefaultArgument()) {
8814           Diag(NTTP->getDefaultArgumentLoc(),
8815                diag::err_default_arg_in_partial_spec)
8816             << DefArg->getSourceRange();
8817           NTTP->removeDefaultArgument();
8818         }
8819       } else {
8820         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8821         if (TTP->hasDefaultArgument()) {
8822           Diag(TTP->getDefaultArgument().getLocation(),
8823                diag::err_default_arg_in_partial_spec)
8824             << TTP->getDefaultArgument().getSourceRange();
8825           TTP->removeDefaultArgument();
8826         }
8827       }
8828     }
8829   } else if (TemplateParams) {
8830     if (TUK == TUK_Friend)
8831       Diag(KWLoc, diag::err_template_spec_friend)
8832         << FixItHint::CreateRemoval(
8833                                 SourceRange(TemplateParams->getTemplateLoc(),
8834                                             TemplateParams->getRAngleLoc()))
8835         << SourceRange(LAngleLoc, RAngleLoc);
8836   } else {
8837     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8838   }
8839 
8840   // Check that the specialization uses the same tag kind as the
8841   // original template.
8842   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8843   assert(Kind != TagTypeKind::Enum &&
8844          "Invalid enum tag in class template spec!");
8845   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8846                                     Kind, TUK == TUK_Definition, KWLoc,
8847                                     ClassTemplate->getIdentifier())) {
8848     Diag(KWLoc, diag::err_use_with_wrong_tag)
8849       << ClassTemplate
8850       << FixItHint::CreateReplacement(KWLoc,
8851                             ClassTemplate->getTemplatedDecl()->getKindName());
8852     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8853          diag::note_previous_use);
8854     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8855   }
8856 
8857   // Translate the parser's template argument list in our AST format.
8858   TemplateArgumentListInfo TemplateArgs =
8859       makeTemplateArgumentListInfo(*this, TemplateId);
8860 
8861   // Check for unexpanded parameter packs in any of the template arguments.
8862   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8863     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8864                                         isPartialSpecialization
8865                                             ? UPPC_PartialSpecialization
8866                                             : UPPC_ExplicitSpecialization))
8867       return true;
8868 
8869   // Check that the template argument list is well-formed for this
8870   // template.
8871   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
8872   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
8873                                 false, SugaredConverted, CanonicalConverted,
8874                                 /*UpdateArgsWithConversions=*/true))
8875     return true;
8876 
8877   // Find the class template (partial) specialization declaration that
8878   // corresponds to these arguments.
8879   if (isPartialSpecialization) {
8880     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8881                                                TemplateArgs.size(),
8882                                                CanonicalConverted))
8883       return true;
8884 
8885     // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8886     // also do it during instantiation.
8887     if (!Name.isDependent() &&
8888         !TemplateSpecializationType::anyDependentTemplateArguments(
8889             TemplateArgs, CanonicalConverted)) {
8890       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8891         << ClassTemplate->getDeclName();
8892       isPartialSpecialization = false;
8893     }
8894   }
8895 
8896   void *InsertPos = nullptr;
8897   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8898 
8899   if (isPartialSpecialization)
8900     PrevDecl = ClassTemplate->findPartialSpecialization(
8901         CanonicalConverted, TemplateParams, InsertPos);
8902   else
8903     PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
8904 
8905   ClassTemplateSpecializationDecl *Specialization = nullptr;
8906 
8907   // Check whether we can declare a class template specialization in
8908   // the current scope.
8909   if (TUK != TUK_Friend &&
8910       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8911                                        TemplateNameLoc,
8912                                        isPartialSpecialization))
8913     return true;
8914 
8915   // The canonical type
8916   QualType CanonType;
8917   if (isPartialSpecialization) {
8918     // Build the canonical type that describes the converted template
8919     // arguments of the class template partial specialization.
8920     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8921     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8922                                                       CanonicalConverted);
8923 
8924     if (Context.hasSameType(CanonType,
8925                         ClassTemplate->getInjectedClassNameSpecialization()) &&
8926         (!Context.getLangOpts().CPlusPlus20 ||
8927          !TemplateParams->hasAssociatedConstraints())) {
8928       // C++ [temp.class.spec]p9b3:
8929       //
8930       //   -- The argument list of the specialization shall not be identical
8931       //      to the implicit argument list of the primary template.
8932       //
8933       // This rule has since been removed, because it's redundant given DR1495,
8934       // but we keep it because it produces better diagnostics and recovery.
8935       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8936         << /*class template*/0 << (TUK == TUK_Definition)
8937         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8938       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8939                                 ClassTemplate->getIdentifier(),
8940                                 TemplateNameLoc,
8941                                 Attr,
8942                                 TemplateParams,
8943                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8944                                 /*FriendLoc*/SourceLocation(),
8945                                 TemplateParameterLists.size() - 1,
8946                                 TemplateParameterLists.data());
8947     }
8948 
8949     // Create a new class template partial specialization declaration node.
8950     ClassTemplatePartialSpecializationDecl *PrevPartial
8951       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8952     ClassTemplatePartialSpecializationDecl *Partial =
8953         ClassTemplatePartialSpecializationDecl::Create(
8954             Context, Kind, ClassTemplate->getDeclContext(), KWLoc,
8955             TemplateNameLoc, TemplateParams, ClassTemplate, CanonicalConverted,
8956             TemplateArgs, CanonType, PrevPartial);
8957     SetNestedNameSpecifier(*this, Partial, SS);
8958     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8959       Partial->setTemplateParameterListsInfo(
8960           Context, TemplateParameterLists.drop_back(1));
8961     }
8962 
8963     if (!PrevPartial)
8964       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8965     Specialization = Partial;
8966 
8967     // If we are providing an explicit specialization of a member class
8968     // template specialization, make a note of that.
8969     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8970       PrevPartial->setMemberSpecialization();
8971 
8972     CheckTemplatePartialSpecialization(Partial);
8973   } else {
8974     // Create a new class template specialization declaration node for
8975     // this explicit specialization or friend declaration.
8976     Specialization = ClassTemplateSpecializationDecl::Create(
8977         Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
8978         ClassTemplate, CanonicalConverted, PrevDecl);
8979     SetNestedNameSpecifier(*this, Specialization, SS);
8980     if (TemplateParameterLists.size() > 0) {
8981       Specialization->setTemplateParameterListsInfo(Context,
8982                                                     TemplateParameterLists);
8983     }
8984 
8985     if (!PrevDecl)
8986       ClassTemplate->AddSpecialization(Specialization, InsertPos);
8987 
8988     if (CurContext->isDependentContext()) {
8989       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8990       CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8991                                                         CanonicalConverted);
8992     } else {
8993       CanonType = Context.getTypeDeclType(Specialization);
8994     }
8995   }
8996 
8997   // C++ [temp.expl.spec]p6:
8998   //   If a template, a member template or the member of a class template is
8999   //   explicitly specialized then that specialization shall be declared
9000   //   before the first use of that specialization that would cause an implicit
9001   //   instantiation to take place, in every translation unit in which such a
9002   //   use occurs; no diagnostic is required.
9003   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
9004     bool Okay = false;
9005     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9006       // Is there any previous explicit specialization declaration?
9007       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
9008         Okay = true;
9009         break;
9010       }
9011     }
9012 
9013     if (!Okay) {
9014       SourceRange Range(TemplateNameLoc, RAngleLoc);
9015       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
9016         << Context.getTypeDeclType(Specialization) << Range;
9017 
9018       Diag(PrevDecl->getPointOfInstantiation(),
9019            diag::note_instantiation_required_here)
9020         << (PrevDecl->getTemplateSpecializationKind()
9021                                                 != TSK_ImplicitInstantiation);
9022       return true;
9023     }
9024   }
9025 
9026   // If this is not a friend, note that this is an explicit specialization.
9027   if (TUK != TUK_Friend)
9028     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
9029 
9030   // Check that this isn't a redefinition of this specialization.
9031   if (TUK == TUK_Definition) {
9032     RecordDecl *Def = Specialization->getDefinition();
9033     NamedDecl *Hidden = nullptr;
9034     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
9035       SkipBody->ShouldSkip = true;
9036       SkipBody->Previous = Def;
9037       makeMergedDefinitionVisible(Hidden);
9038     } else if (Def) {
9039       SourceRange Range(TemplateNameLoc, RAngleLoc);
9040       Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
9041       Diag(Def->getLocation(), diag::note_previous_definition);
9042       Specialization->setInvalidDecl();
9043       return true;
9044     }
9045   }
9046 
9047   ProcessDeclAttributeList(S, Specialization, Attr);
9048 
9049   // Add alignment attributes if necessary; these attributes are checked when
9050   // the ASTContext lays out the structure.
9051   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
9052     AddAlignmentAttributesForRecord(Specialization);
9053     AddMsStructLayoutForRecord(Specialization);
9054   }
9055 
9056   if (ModulePrivateLoc.isValid())
9057     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
9058       << (isPartialSpecialization? 1 : 0)
9059       << FixItHint::CreateRemoval(ModulePrivateLoc);
9060 
9061   // Build the fully-sugared type for this class template
9062   // specialization as the user wrote in the specialization
9063   // itself. This means that we'll pretty-print the type retrieved
9064   // from the specialization's declaration the way that the user
9065   // actually wrote the specialization, rather than formatting the
9066   // name based on the "canonical" representation used to store the
9067   // template arguments in the specialization.
9068   TypeSourceInfo *WrittenTy
9069     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9070                                                 TemplateArgs, CanonType);
9071   if (TUK != TUK_Friend) {
9072     Specialization->setTypeAsWritten(WrittenTy);
9073     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
9074   }
9075 
9076   // C++ [temp.expl.spec]p9:
9077   //   A template explicit specialization is in the scope of the
9078   //   namespace in which the template was defined.
9079   //
9080   // We actually implement this paragraph where we set the semantic
9081   // context (in the creation of the ClassTemplateSpecializationDecl),
9082   // but we also maintain the lexical context where the actual
9083   // definition occurs.
9084   Specialization->setLexicalDeclContext(CurContext);
9085 
9086   // We may be starting the definition of this specialization.
9087   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
9088     Specialization->startDefinition();
9089 
9090   if (TUK == TUK_Friend) {
9091     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
9092                                             TemplateNameLoc,
9093                                             WrittenTy,
9094                                             /*FIXME:*/KWLoc);
9095     Friend->setAccess(AS_public);
9096     CurContext->addDecl(Friend);
9097   } else {
9098     // Add the specialization into its lexical context, so that it can
9099     // be seen when iterating through the list of declarations in that
9100     // context. However, specializations are not found by name lookup.
9101     CurContext->addDecl(Specialization);
9102   }
9103 
9104   if (SkipBody && SkipBody->ShouldSkip)
9105     return SkipBody->Previous;
9106 
9107   return Specialization;
9108 }
9109 
9110 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
9111                               MultiTemplateParamsArg TemplateParameterLists,
9112                                     Declarator &D) {
9113   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
9114   ActOnDocumentableDecl(NewDecl);
9115   return NewDecl;
9116 }
9117 
9118 Decl *Sema::ActOnConceptDefinition(Scope *S,
9119                               MultiTemplateParamsArg TemplateParameterLists,
9120                                    IdentifierInfo *Name, SourceLocation NameLoc,
9121                                    Expr *ConstraintExpr) {
9122   DeclContext *DC = CurContext;
9123 
9124   if (!DC->getRedeclContext()->isFileContext()) {
9125     Diag(NameLoc,
9126       diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
9127     return nullptr;
9128   }
9129 
9130   if (TemplateParameterLists.size() > 1) {
9131     Diag(NameLoc, diag::err_concept_extra_headers);
9132     return nullptr;
9133   }
9134 
9135   TemplateParameterList *Params = TemplateParameterLists.front();
9136 
9137   if (Params->size() == 0) {
9138     Diag(NameLoc, diag::err_concept_no_parameters);
9139     return nullptr;
9140   }
9141 
9142   // Ensure that the parameter pack, if present, is the last parameter in the
9143   // template.
9144   for (TemplateParameterList::const_iterator ParamIt = Params->begin(),
9145                                              ParamEnd = Params->end();
9146        ParamIt != ParamEnd; ++ParamIt) {
9147     Decl const *Param = *ParamIt;
9148     if (Param->isParameterPack()) {
9149       if (++ParamIt == ParamEnd)
9150         break;
9151       Diag(Param->getLocation(),
9152            diag::err_template_param_pack_must_be_last_template_parameter);
9153       return nullptr;
9154     }
9155   }
9156 
9157   if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
9158     return nullptr;
9159 
9160   ConceptDecl *NewDecl =
9161       ConceptDecl::Create(Context, DC, NameLoc, Name, Params, ConstraintExpr);
9162 
9163   if (NewDecl->hasAssociatedConstraints()) {
9164     // C++2a [temp.concept]p4:
9165     // A concept shall not have associated constraints.
9166     Diag(NameLoc, diag::err_concept_no_associated_constraints);
9167     NewDecl->setInvalidDecl();
9168   }
9169 
9170   // Check for conflicting previous declaration.
9171   DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
9172   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9173                         forRedeclarationInCurContext());
9174   LookupName(Previous, S);
9175   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
9176                        /*AllowInlineNamespace*/false);
9177   bool AddToScope = true;
9178   CheckConceptRedefinition(NewDecl, Previous, AddToScope);
9179 
9180   ActOnDocumentableDecl(NewDecl);
9181   if (AddToScope)
9182     PushOnScopeChains(NewDecl, S);
9183   return NewDecl;
9184 }
9185 
9186 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
9187                                     LookupResult &Previous, bool &AddToScope) {
9188   AddToScope = true;
9189 
9190   if (Previous.empty())
9191     return;
9192 
9193   auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
9194   if (!OldConcept) {
9195     auto *Old = Previous.getRepresentativeDecl();
9196     Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
9197         << NewDecl->getDeclName();
9198     notePreviousDefinition(Old, NewDecl->getLocation());
9199     AddToScope = false;
9200     return;
9201   }
9202   // Check if we can merge with a concept declaration.
9203   bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
9204   if (!IsSame) {
9205     Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
9206         << NewDecl->getDeclName();
9207     notePreviousDefinition(OldConcept, NewDecl->getLocation());
9208     AddToScope = false;
9209     return;
9210   }
9211   if (hasReachableDefinition(OldConcept) &&
9212       IsRedefinitionInModule(NewDecl, OldConcept)) {
9213     Diag(NewDecl->getLocation(), diag::err_redefinition)
9214         << NewDecl->getDeclName();
9215     notePreviousDefinition(OldConcept, NewDecl->getLocation());
9216     AddToScope = false;
9217     return;
9218   }
9219   if (!Previous.isSingleResult()) {
9220     // FIXME: we should produce an error in case of ambig and failed lookups.
9221     //        Other decls (e.g. namespaces) also have this shortcoming.
9222     return;
9223   }
9224   // We unwrap canonical decl late to check for module visibility.
9225   Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
9226 }
9227 
9228 /// \brief Strips various properties off an implicit instantiation
9229 /// that has just been explicitly specialized.
9230 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) {
9231   if (MinGW || (isa<FunctionDecl>(D) &&
9232                 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) {
9233     D->dropAttr<DLLImportAttr>();
9234     D->dropAttr<DLLExportAttr>();
9235   }
9236 
9237   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
9238     FD->setInlineSpecified(false);
9239 }
9240 
9241 /// Compute the diagnostic location for an explicit instantiation
9242 //  declaration or definition.
9243 static SourceLocation DiagLocForExplicitInstantiation(
9244     NamedDecl* D, SourceLocation PointOfInstantiation) {
9245   // Explicit instantiations following a specialization have no effect and
9246   // hence no PointOfInstantiation. In that case, walk decl backwards
9247   // until a valid name loc is found.
9248   SourceLocation PrevDiagLoc = PointOfInstantiation;
9249   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
9250        Prev = Prev->getPreviousDecl()) {
9251     PrevDiagLoc = Prev->getLocation();
9252   }
9253   assert(PrevDiagLoc.isValid() &&
9254          "Explicit instantiation without point of instantiation?");
9255   return PrevDiagLoc;
9256 }
9257 
9258 /// Diagnose cases where we have an explicit template specialization
9259 /// before/after an explicit template instantiation, producing diagnostics
9260 /// for those cases where they are required and determining whether the
9261 /// new specialization/instantiation will have any effect.
9262 ///
9263 /// \param NewLoc the location of the new explicit specialization or
9264 /// instantiation.
9265 ///
9266 /// \param NewTSK the kind of the new explicit specialization or instantiation.
9267 ///
9268 /// \param PrevDecl the previous declaration of the entity.
9269 ///
9270 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
9271 ///
9272 /// \param PrevPointOfInstantiation if valid, indicates where the previous
9273 /// declaration was instantiated (either implicitly or explicitly).
9274 ///
9275 /// \param HasNoEffect will be set to true to indicate that the new
9276 /// specialization or instantiation has no effect and should be ignored.
9277 ///
9278 /// \returns true if there was an error that should prevent the introduction of
9279 /// the new declaration into the AST, false otherwise.
9280 bool
9281 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
9282                                              TemplateSpecializationKind NewTSK,
9283                                              NamedDecl *PrevDecl,
9284                                              TemplateSpecializationKind PrevTSK,
9285                                         SourceLocation PrevPointOfInstantiation,
9286                                              bool &HasNoEffect) {
9287   HasNoEffect = false;
9288 
9289   switch (NewTSK) {
9290   case TSK_Undeclared:
9291   case TSK_ImplicitInstantiation:
9292     assert(
9293         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
9294         "previous declaration must be implicit!");
9295     return false;
9296 
9297   case TSK_ExplicitSpecialization:
9298     switch (PrevTSK) {
9299     case TSK_Undeclared:
9300     case TSK_ExplicitSpecialization:
9301       // Okay, we're just specializing something that is either already
9302       // explicitly specialized or has merely been mentioned without any
9303       // instantiation.
9304       return false;
9305 
9306     case TSK_ImplicitInstantiation:
9307       if (PrevPointOfInstantiation.isInvalid()) {
9308         // The declaration itself has not actually been instantiated, so it is
9309         // still okay to specialize it.
9310         StripImplicitInstantiation(
9311             PrevDecl,
9312             Context.getTargetInfo().getTriple().isWindowsGNUEnvironment());
9313         return false;
9314       }
9315       // Fall through
9316       [[fallthrough]];
9317 
9318     case TSK_ExplicitInstantiationDeclaration:
9319     case TSK_ExplicitInstantiationDefinition:
9320       assert((PrevTSK == TSK_ImplicitInstantiation ||
9321               PrevPointOfInstantiation.isValid()) &&
9322              "Explicit instantiation without point of instantiation?");
9323 
9324       // C++ [temp.expl.spec]p6:
9325       //   If a template, a member template or the member of a class template
9326       //   is explicitly specialized then that specialization shall be declared
9327       //   before the first use of that specialization that would cause an
9328       //   implicit instantiation to take place, in every translation unit in
9329       //   which such a use occurs; no diagnostic is required.
9330       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9331         // Is there any previous explicit specialization declaration?
9332         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
9333           return false;
9334       }
9335 
9336       Diag(NewLoc, diag::err_specialization_after_instantiation)
9337         << PrevDecl;
9338       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
9339         << (PrevTSK != TSK_ImplicitInstantiation);
9340 
9341       return true;
9342     }
9343     llvm_unreachable("The switch over PrevTSK must be exhaustive.");
9344 
9345   case TSK_ExplicitInstantiationDeclaration:
9346     switch (PrevTSK) {
9347     case TSK_ExplicitInstantiationDeclaration:
9348       // This explicit instantiation declaration is redundant (that's okay).
9349       HasNoEffect = true;
9350       return false;
9351 
9352     case TSK_Undeclared:
9353     case TSK_ImplicitInstantiation:
9354       // We're explicitly instantiating something that may have already been
9355       // implicitly instantiated; that's fine.
9356       return false;
9357 
9358     case TSK_ExplicitSpecialization:
9359       // C++0x [temp.explicit]p4:
9360       //   For a given set of template parameters, if an explicit instantiation
9361       //   of a template appears after a declaration of an explicit
9362       //   specialization for that template, the explicit instantiation has no
9363       //   effect.
9364       HasNoEffect = true;
9365       return false;
9366 
9367     case TSK_ExplicitInstantiationDefinition:
9368       // C++0x [temp.explicit]p10:
9369       //   If an entity is the subject of both an explicit instantiation
9370       //   declaration and an explicit instantiation definition in the same
9371       //   translation unit, the definition shall follow the declaration.
9372       Diag(NewLoc,
9373            diag::err_explicit_instantiation_declaration_after_definition);
9374 
9375       // Explicit instantiations following a specialization have no effect and
9376       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
9377       // until a valid name loc is found.
9378       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9379            diag::note_explicit_instantiation_definition_here);
9380       HasNoEffect = true;
9381       return false;
9382     }
9383     llvm_unreachable("Unexpected TemplateSpecializationKind!");
9384 
9385   case TSK_ExplicitInstantiationDefinition:
9386     switch (PrevTSK) {
9387     case TSK_Undeclared:
9388     case TSK_ImplicitInstantiation:
9389       // We're explicitly instantiating something that may have already been
9390       // implicitly instantiated; that's fine.
9391       return false;
9392 
9393     case TSK_ExplicitSpecialization:
9394       // C++ DR 259, C++0x [temp.explicit]p4:
9395       //   For a given set of template parameters, if an explicit
9396       //   instantiation of a template appears after a declaration of
9397       //   an explicit specialization for that template, the explicit
9398       //   instantiation has no effect.
9399       Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
9400         << PrevDecl;
9401       Diag(PrevDecl->getLocation(),
9402            diag::note_previous_template_specialization);
9403       HasNoEffect = true;
9404       return false;
9405 
9406     case TSK_ExplicitInstantiationDeclaration:
9407       // We're explicitly instantiating a definition for something for which we
9408       // were previously asked to suppress instantiations. That's fine.
9409 
9410       // C++0x [temp.explicit]p4:
9411       //   For a given set of template parameters, if an explicit instantiation
9412       //   of a template appears after a declaration of an explicit
9413       //   specialization for that template, the explicit instantiation has no
9414       //   effect.
9415       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9416         // Is there any previous explicit specialization declaration?
9417         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
9418           HasNoEffect = true;
9419           break;
9420         }
9421       }
9422 
9423       return false;
9424 
9425     case TSK_ExplicitInstantiationDefinition:
9426       // C++0x [temp.spec]p5:
9427       //   For a given template and a given set of template-arguments,
9428       //     - an explicit instantiation definition shall appear at most once
9429       //       in a program,
9430 
9431       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
9432       Diag(NewLoc, (getLangOpts().MSVCCompat)
9433                        ? diag::ext_explicit_instantiation_duplicate
9434                        : diag::err_explicit_instantiation_duplicate)
9435           << PrevDecl;
9436       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9437            diag::note_previous_explicit_instantiation);
9438       HasNoEffect = true;
9439       return false;
9440     }
9441   }
9442 
9443   llvm_unreachable("Missing specialization/instantiation case?");
9444 }
9445 
9446 /// Perform semantic analysis for the given dependent function
9447 /// template specialization.
9448 ///
9449 /// The only possible way to get a dependent function template specialization
9450 /// is with a friend declaration, like so:
9451 ///
9452 /// \code
9453 ///   template \<class T> void foo(T);
9454 ///   template \<class T> class A {
9455 ///     friend void foo<>(T);
9456 ///   };
9457 /// \endcode
9458 ///
9459 /// There really isn't any useful analysis we can do here, so we
9460 /// just store the information.
9461 bool Sema::CheckDependentFunctionTemplateSpecialization(
9462     FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
9463     LookupResult &Previous) {
9464   // Remove anything from Previous that isn't a function template in
9465   // the correct context.
9466   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9467   LookupResult::Filter F = Previous.makeFilter();
9468   enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
9469   SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
9470   while (F.hasNext()) {
9471     NamedDecl *D = F.next()->getUnderlyingDecl();
9472     if (!isa<FunctionTemplateDecl>(D)) {
9473       F.erase();
9474       DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
9475       continue;
9476     }
9477 
9478     if (!FDLookupContext->InEnclosingNamespaceSetOf(
9479             D->getDeclContext()->getRedeclContext())) {
9480       F.erase();
9481       DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
9482       continue;
9483     }
9484   }
9485   F.done();
9486 
9487   bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None;
9488   if (Previous.empty()) {
9489     Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match)
9490         << IsFriend;
9491     for (auto &P : DiscardedCandidates)
9492       Diag(P.second->getLocation(),
9493            diag::note_dependent_function_template_spec_discard_reason)
9494           << P.first << IsFriend;
9495     return true;
9496   }
9497 
9498   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
9499                                          ExplicitTemplateArgs);
9500   return false;
9501 }
9502 
9503 /// Perform semantic analysis for the given function template
9504 /// specialization.
9505 ///
9506 /// This routine performs all of the semantic analysis required for an
9507 /// explicit function template specialization. On successful completion,
9508 /// the function declaration \p FD will become a function template
9509 /// specialization.
9510 ///
9511 /// \param FD the function declaration, which will be updated to become a
9512 /// function template specialization.
9513 ///
9514 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
9515 /// if any. Note that this may be valid info even when 0 arguments are
9516 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
9517 /// as it anyway contains info on the angle brackets locations.
9518 ///
9519 /// \param Previous the set of declarations that may be specialized by
9520 /// this function specialization.
9521 ///
9522 /// \param QualifiedFriend whether this is a lookup for a qualified friend
9523 /// declaration with no explicit template argument list that might be
9524 /// befriending a function template specialization.
9525 bool Sema::CheckFunctionTemplateSpecialization(
9526     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
9527     LookupResult &Previous, bool QualifiedFriend) {
9528   // The set of function template specializations that could match this
9529   // explicit function template specialization.
9530   UnresolvedSet<8> Candidates;
9531   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
9532                                             /*ForTakingAddress=*/false);
9533 
9534   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
9535       ConvertedTemplateArgs;
9536 
9537   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9538   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9539          I != E; ++I) {
9540     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
9541     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
9542       // Only consider templates found within the same semantic lookup scope as
9543       // FD.
9544       if (!FDLookupContext->InEnclosingNamespaceSetOf(
9545                                 Ovl->getDeclContext()->getRedeclContext()))
9546         continue;
9547 
9548       // When matching a constexpr member function template specialization
9549       // against the primary template, we don't yet know whether the
9550       // specialization has an implicit 'const' (because we don't know whether
9551       // it will be a static member function until we know which template it
9552       // specializes), so adjust it now assuming it specializes this template.
9553       QualType FT = FD->getType();
9554       if (FD->isConstexpr()) {
9555         CXXMethodDecl *OldMD =
9556           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
9557         if (OldMD && OldMD->isConst()) {
9558           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9559           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9560           EPI.TypeQuals.addConst();
9561           FT = Context.getFunctionType(FPT->getReturnType(),
9562                                        FPT->getParamTypes(), EPI);
9563         }
9564       }
9565 
9566       TemplateArgumentListInfo Args;
9567       if (ExplicitTemplateArgs)
9568         Args = *ExplicitTemplateArgs;
9569 
9570       // C++ [temp.expl.spec]p11:
9571       //   A trailing template-argument can be left unspecified in the
9572       //   template-id naming an explicit function template specialization
9573       //   provided it can be deduced from the function argument type.
9574       // Perform template argument deduction to determine whether we may be
9575       // specializing this template.
9576       // FIXME: It is somewhat wasteful to build
9577       TemplateDeductionInfo Info(FailedCandidates.getLocation());
9578       FunctionDecl *Specialization = nullptr;
9579       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9580               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9581               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9582               Info)) {
9583         // Template argument deduction failed; record why it failed, so
9584         // that we can provide nifty diagnostics.
9585         FailedCandidates.addCandidate().set(
9586             I.getPair(), FunTmpl->getTemplatedDecl(),
9587             MakeDeductionFailureInfo(Context, TDK, Info));
9588         (void)TDK;
9589         continue;
9590       }
9591 
9592       // Target attributes are part of the cuda function signature, so
9593       // the deduced template's cuda target must match that of the
9594       // specialization.  Given that C++ template deduction does not
9595       // take target attributes into account, we reject candidates
9596       // here that have a different target.
9597       if (LangOpts.CUDA &&
9598           IdentifyCUDATarget(Specialization,
9599                              /* IgnoreImplicitHDAttr = */ true) !=
9600               IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9601         FailedCandidates.addCandidate().set(
9602             I.getPair(), FunTmpl->getTemplatedDecl(),
9603             MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9604         continue;
9605       }
9606 
9607       // Record this candidate.
9608       if (ExplicitTemplateArgs)
9609         ConvertedTemplateArgs[Specialization] = std::move(Args);
9610       Candidates.addDecl(Specialization, I.getAccess());
9611     }
9612   }
9613 
9614   // For a qualified friend declaration (with no explicit marker to indicate
9615   // that a template specialization was intended), note all (template and
9616   // non-template) candidates.
9617   if (QualifiedFriend && Candidates.empty()) {
9618     Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9619         << FD->getDeclName() << FDLookupContext;
9620     // FIXME: We should form a single candidate list and diagnose all
9621     // candidates at once, to get proper sorting and limiting.
9622     for (auto *OldND : Previous) {
9623       if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9624         NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9625     }
9626     FailedCandidates.NoteCandidates(*this, FD->getLocation());
9627     return true;
9628   }
9629 
9630   // Find the most specialized function template.
9631   UnresolvedSetIterator Result = getMostSpecialized(
9632       Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9633       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9634       PDiag(diag::err_function_template_spec_ambiguous)
9635           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9636       PDiag(diag::note_function_template_spec_matched));
9637 
9638   if (Result == Candidates.end())
9639     return true;
9640 
9641   // Ignore access information;  it doesn't figure into redeclaration checking.
9642   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9643 
9644   FunctionTemplateSpecializationInfo *SpecInfo
9645     = Specialization->getTemplateSpecializationInfo();
9646   assert(SpecInfo && "Function template specialization info missing?");
9647 
9648   // Note: do not overwrite location info if previous template
9649   // specialization kind was explicit.
9650   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9651   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9652     Specialization->setLocation(FD->getLocation());
9653     Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9654     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9655     // function can differ from the template declaration with respect to
9656     // the constexpr specifier.
9657     // FIXME: We need an update record for this AST mutation.
9658     // FIXME: What if there are multiple such prior declarations (for instance,
9659     // from different modules)?
9660     Specialization->setConstexprKind(FD->getConstexprKind());
9661   }
9662 
9663   // FIXME: Check if the prior specialization has a point of instantiation.
9664   // If so, we have run afoul of .
9665 
9666   // If this is a friend declaration, then we're not really declaring
9667   // an explicit specialization.
9668   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9669 
9670   // Check the scope of this explicit specialization.
9671   if (!isFriend &&
9672       CheckTemplateSpecializationScope(*this,
9673                                        Specialization->getPrimaryTemplate(),
9674                                        Specialization, FD->getLocation(),
9675                                        false))
9676     return true;
9677 
9678   // C++ [temp.expl.spec]p6:
9679   //   If a template, a member template or the member of a class template is
9680   //   explicitly specialized then that specialization shall be declared
9681   //   before the first use of that specialization that would cause an implicit
9682   //   instantiation to take place, in every translation unit in which such a
9683   //   use occurs; no diagnostic is required.
9684   bool HasNoEffect = false;
9685   if (!isFriend &&
9686       CheckSpecializationInstantiationRedecl(FD->getLocation(),
9687                                              TSK_ExplicitSpecialization,
9688                                              Specialization,
9689                                    SpecInfo->getTemplateSpecializationKind(),
9690                                          SpecInfo->getPointOfInstantiation(),
9691                                              HasNoEffect))
9692     return true;
9693 
9694   // Mark the prior declaration as an explicit specialization, so that later
9695   // clients know that this is an explicit specialization.
9696   if (!isFriend) {
9697     // Since explicit specializations do not inherit '=delete' from their
9698     // primary function template - check if the 'specialization' that was
9699     // implicitly generated (during template argument deduction for partial
9700     // ordering) from the most specialized of all the function templates that
9701     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
9702     // first check that it was implicitly generated during template argument
9703     // deduction by making sure it wasn't referenced, and then reset the deleted
9704     // flag to not-deleted, so that we can inherit that information from 'FD'.
9705     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9706         !Specialization->getCanonicalDecl()->isReferenced()) {
9707       // FIXME: This assert will not hold in the presence of modules.
9708       assert(
9709           Specialization->getCanonicalDecl() == Specialization &&
9710           "This must be the only existing declaration of this specialization");
9711       // FIXME: We need an update record for this AST mutation.
9712       Specialization->setDeletedAsWritten(false);
9713     }
9714     // FIXME: We need an update record for this AST mutation.
9715     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9716     MarkUnusedFileScopedDecl(Specialization);
9717   }
9718 
9719   // Turn the given function declaration into a function template
9720   // specialization, with the template arguments from the previous
9721   // specialization.
9722   // Take copies of (semantic and syntactic) template argument lists.
9723   const TemplateArgumentList* TemplArgs = new (Context)
9724     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9725   FD->setFunctionTemplateSpecialization(
9726       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9727       SpecInfo->getTemplateSpecializationKind(),
9728       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9729 
9730   // A function template specialization inherits the target attributes
9731   // of its template.  (We require the attributes explicitly in the
9732   // code to match, but a template may have implicit attributes by
9733   // virtue e.g. of being constexpr, and it passes these implicit
9734   // attributes on to its specializations.)
9735   if (LangOpts.CUDA)
9736     inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9737 
9738   // The "previous declaration" for this function template specialization is
9739   // the prior function template specialization.
9740   Previous.clear();
9741   Previous.addDecl(Specialization);
9742   return false;
9743 }
9744 
9745 /// Perform semantic analysis for the given non-template member
9746 /// specialization.
9747 ///
9748 /// This routine performs all of the semantic analysis required for an
9749 /// explicit member function specialization. On successful completion,
9750 /// the function declaration \p FD will become a member function
9751 /// specialization.
9752 ///
9753 /// \param Member the member declaration, which will be updated to become a
9754 /// specialization.
9755 ///
9756 /// \param Previous the set of declarations, one of which may be specialized
9757 /// by this function specialization;  the set will be modified to contain the
9758 /// redeclared member.
9759 bool
9760 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9761   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9762 
9763   // Try to find the member we are instantiating.
9764   NamedDecl *FoundInstantiation = nullptr;
9765   NamedDecl *Instantiation = nullptr;
9766   NamedDecl *InstantiatedFrom = nullptr;
9767   MemberSpecializationInfo *MSInfo = nullptr;
9768 
9769   if (Previous.empty()) {
9770     // Nowhere to look anyway.
9771   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9772     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9773            I != E; ++I) {
9774       NamedDecl *D = (*I)->getUnderlyingDecl();
9775       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9776         QualType Adjusted = Function->getType();
9777         if (!hasExplicitCallingConv(Adjusted))
9778           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9779         // This doesn't handle deduced return types, but both function
9780         // declarations should be undeduced at this point.
9781         if (Context.hasSameType(Adjusted, Method->getType())) {
9782           FoundInstantiation = *I;
9783           Instantiation = Method;
9784           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9785           MSInfo = Method->getMemberSpecializationInfo();
9786           break;
9787         }
9788       }
9789     }
9790   } else if (isa<VarDecl>(Member)) {
9791     VarDecl *PrevVar;
9792     if (Previous.isSingleResult() &&
9793         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9794       if (PrevVar->isStaticDataMember()) {
9795         FoundInstantiation = Previous.getRepresentativeDecl();
9796         Instantiation = PrevVar;
9797         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9798         MSInfo = PrevVar->getMemberSpecializationInfo();
9799       }
9800   } else if (isa<RecordDecl>(Member)) {
9801     CXXRecordDecl *PrevRecord;
9802     if (Previous.isSingleResult() &&
9803         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9804       FoundInstantiation = Previous.getRepresentativeDecl();
9805       Instantiation = PrevRecord;
9806       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9807       MSInfo = PrevRecord->getMemberSpecializationInfo();
9808     }
9809   } else if (isa<EnumDecl>(Member)) {
9810     EnumDecl *PrevEnum;
9811     if (Previous.isSingleResult() &&
9812         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9813       FoundInstantiation = Previous.getRepresentativeDecl();
9814       Instantiation = PrevEnum;
9815       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9816       MSInfo = PrevEnum->getMemberSpecializationInfo();
9817     }
9818   }
9819 
9820   if (!Instantiation) {
9821     // There is no previous declaration that matches. Since member
9822     // specializations are always out-of-line, the caller will complain about
9823     // this mismatch later.
9824     return false;
9825   }
9826 
9827   // A member specialization in a friend declaration isn't really declaring
9828   // an explicit specialization, just identifying a specific (possibly implicit)
9829   // specialization. Don't change the template specialization kind.
9830   //
9831   // FIXME: Is this really valid? Other compilers reject.
9832   if (Member->getFriendObjectKind() != Decl::FOK_None) {
9833     // Preserve instantiation information.
9834     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9835       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9836                                       cast<CXXMethodDecl>(InstantiatedFrom),
9837         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9838     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9839       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9840                                       cast<CXXRecordDecl>(InstantiatedFrom),
9841         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9842     }
9843 
9844     Previous.clear();
9845     Previous.addDecl(FoundInstantiation);
9846     return false;
9847   }
9848 
9849   // Make sure that this is a specialization of a member.
9850   if (!InstantiatedFrom) {
9851     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9852       << Member;
9853     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9854     return true;
9855   }
9856 
9857   // C++ [temp.expl.spec]p6:
9858   //   If a template, a member template or the member of a class template is
9859   //   explicitly specialized then that specialization shall be declared
9860   //   before the first use of that specialization that would cause an implicit
9861   //   instantiation to take place, in every translation unit in which such a
9862   //   use occurs; no diagnostic is required.
9863   assert(MSInfo && "Member specialization info missing?");
9864 
9865   bool HasNoEffect = false;
9866   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9867                                              TSK_ExplicitSpecialization,
9868                                              Instantiation,
9869                                      MSInfo->getTemplateSpecializationKind(),
9870                                            MSInfo->getPointOfInstantiation(),
9871                                              HasNoEffect))
9872     return true;
9873 
9874   // Check the scope of this explicit specialization.
9875   if (CheckTemplateSpecializationScope(*this,
9876                                        InstantiatedFrom,
9877                                        Instantiation, Member->getLocation(),
9878                                        false))
9879     return true;
9880 
9881   // Note that this member specialization is an "instantiation of" the
9882   // corresponding member of the original template.
9883   if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9884     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9885     if (InstantiationFunction->getTemplateSpecializationKind() ==
9886           TSK_ImplicitInstantiation) {
9887       // Explicit specializations of member functions of class templates do not
9888       // inherit '=delete' from the member function they are specializing.
9889       if (InstantiationFunction->isDeleted()) {
9890         // FIXME: This assert will not hold in the presence of modules.
9891         assert(InstantiationFunction->getCanonicalDecl() ==
9892                InstantiationFunction);
9893         // FIXME: We need an update record for this AST mutation.
9894         InstantiationFunction->setDeletedAsWritten(false);
9895       }
9896     }
9897 
9898     MemberFunction->setInstantiationOfMemberFunction(
9899         cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9900   } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9901     MemberVar->setInstantiationOfStaticDataMember(
9902         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9903   } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9904     MemberClass->setInstantiationOfMemberClass(
9905         cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9906   } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9907     MemberEnum->setInstantiationOfMemberEnum(
9908         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9909   } else {
9910     llvm_unreachable("unknown member specialization kind");
9911   }
9912 
9913   // Save the caller the trouble of having to figure out which declaration
9914   // this specialization matches.
9915   Previous.clear();
9916   Previous.addDecl(FoundInstantiation);
9917   return false;
9918 }
9919 
9920 /// Complete the explicit specialization of a member of a class template by
9921 /// updating the instantiated member to be marked as an explicit specialization.
9922 ///
9923 /// \param OrigD The member declaration instantiated from the template.
9924 /// \param Loc The location of the explicit specialization of the member.
9925 template<typename DeclT>
9926 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9927                                              SourceLocation Loc) {
9928   if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9929     return;
9930 
9931   // FIXME: Inform AST mutation listeners of this AST mutation.
9932   // FIXME: If there are multiple in-class declarations of the member (from
9933   // multiple modules, or a declaration and later definition of a member type),
9934   // should we update all of them?
9935   OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9936   OrigD->setLocation(Loc);
9937 }
9938 
9939 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9940                                         LookupResult &Previous) {
9941   NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9942   if (Instantiation == Member)
9943     return;
9944 
9945   if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9946     completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9947   else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9948     completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9949   else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9950     completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9951   else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9952     completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9953   else
9954     llvm_unreachable("unknown member specialization kind");
9955 }
9956 
9957 /// Check the scope of an explicit instantiation.
9958 ///
9959 /// \returns true if a serious error occurs, false otherwise.
9960 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9961                                             SourceLocation InstLoc,
9962                                             bool WasQualifiedName) {
9963   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9964   DeclContext *CurContext = S.CurContext->getRedeclContext();
9965 
9966   if (CurContext->isRecord()) {
9967     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9968       << D;
9969     return true;
9970   }
9971 
9972   // C++11 [temp.explicit]p3:
9973   //   An explicit instantiation shall appear in an enclosing namespace of its
9974   //   template. If the name declared in the explicit instantiation is an
9975   //   unqualified name, the explicit instantiation shall appear in the
9976   //   namespace where its template is declared or, if that namespace is inline
9977   //   (7.3.1), any namespace from its enclosing namespace set.
9978   //
9979   // This is DR275, which we do not retroactively apply to C++98/03.
9980   if (WasQualifiedName) {
9981     if (CurContext->Encloses(OrigContext))
9982       return false;
9983   } else {
9984     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9985       return false;
9986   }
9987 
9988   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9989     if (WasQualifiedName)
9990       S.Diag(InstLoc,
9991              S.getLangOpts().CPlusPlus11?
9992                diag::err_explicit_instantiation_out_of_scope :
9993                diag::warn_explicit_instantiation_out_of_scope_0x)
9994         << D << NS;
9995     else
9996       S.Diag(InstLoc,
9997              S.getLangOpts().CPlusPlus11?
9998                diag::err_explicit_instantiation_unqualified_wrong_namespace :
9999                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
10000         << D << NS;
10001   } else
10002     S.Diag(InstLoc,
10003            S.getLangOpts().CPlusPlus11?
10004              diag::err_explicit_instantiation_must_be_global :
10005              diag::warn_explicit_instantiation_must_be_global_0x)
10006       << D;
10007   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
10008   return false;
10009 }
10010 
10011 /// Common checks for whether an explicit instantiation of \p D is valid.
10012 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
10013                                        SourceLocation InstLoc,
10014                                        bool WasQualifiedName,
10015                                        TemplateSpecializationKind TSK) {
10016   // C++ [temp.explicit]p13:
10017   //   An explicit instantiation declaration shall not name a specialization of
10018   //   a template with internal linkage.
10019   if (TSK == TSK_ExplicitInstantiationDeclaration &&
10020       D->getFormalLinkage() == Linkage::Internal) {
10021     S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
10022     return true;
10023   }
10024 
10025   // C++11 [temp.explicit]p3: [DR 275]
10026   //   An explicit instantiation shall appear in an enclosing namespace of its
10027   //   template.
10028   if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
10029     return true;
10030 
10031   return false;
10032 }
10033 
10034 /// Determine whether the given scope specifier has a template-id in it.
10035 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
10036   if (!SS.isSet())
10037     return false;
10038 
10039   // C++11 [temp.explicit]p3:
10040   //   If the explicit instantiation is for a member function, a member class
10041   //   or a static data member of a class template specialization, the name of
10042   //   the class template specialization in the qualified-id for the member
10043   //   name shall be a simple-template-id.
10044   //
10045   // C++98 has the same restriction, just worded differently.
10046   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
10047        NNS = NNS->getPrefix())
10048     if (const Type *T = NNS->getAsType())
10049       if (isa<TemplateSpecializationType>(T))
10050         return true;
10051 
10052   return false;
10053 }
10054 
10055 /// Make a dllexport or dllimport attr on a class template specialization take
10056 /// effect.
10057 static void dllExportImportClassTemplateSpecialization(
10058     Sema &S, ClassTemplateSpecializationDecl *Def) {
10059   auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
10060   assert(A && "dllExportImportClassTemplateSpecialization called "
10061               "on Def without dllexport or dllimport");
10062 
10063   // We reject explicit instantiations in class scope, so there should
10064   // never be any delayed exported classes to worry about.
10065   assert(S.DelayedDllExportClasses.empty() &&
10066          "delayed exports present at explicit instantiation");
10067   S.checkClassLevelDLLAttribute(Def);
10068 
10069   // Propagate attribute to base class templates.
10070   for (auto &B : Def->bases()) {
10071     if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
10072             B.getType()->getAsCXXRecordDecl()))
10073       S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
10074   }
10075 
10076   S.referenceDLLExportedClassMethods();
10077 }
10078 
10079 // Explicit instantiation of a class template specialization
10080 DeclResult Sema::ActOnExplicitInstantiation(
10081     Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
10082     unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
10083     TemplateTy TemplateD, SourceLocation TemplateNameLoc,
10084     SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
10085     SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
10086   // Find the class template we're specializing
10087   TemplateName Name = TemplateD.get();
10088   TemplateDecl *TD = Name.getAsTemplateDecl();
10089   // Check that the specialization uses the same tag kind as the
10090   // original template.
10091   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10092   assert(Kind != TagTypeKind::Enum &&
10093          "Invalid enum tag in class template explicit instantiation!");
10094 
10095   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
10096 
10097   if (!ClassTemplate) {
10098     NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
10099     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag)
10100         << TD << NTK << llvm::to_underlying(Kind);
10101     Diag(TD->getLocation(), diag::note_previous_use);
10102     return true;
10103   }
10104 
10105   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
10106                                     Kind, /*isDefinition*/false, KWLoc,
10107                                     ClassTemplate->getIdentifier())) {
10108     Diag(KWLoc, diag::err_use_with_wrong_tag)
10109       << ClassTemplate
10110       << FixItHint::CreateReplacement(KWLoc,
10111                             ClassTemplate->getTemplatedDecl()->getKindName());
10112     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
10113          diag::note_previous_use);
10114     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
10115   }
10116 
10117   // C++0x [temp.explicit]p2:
10118   //   There are two forms of explicit instantiation: an explicit instantiation
10119   //   definition and an explicit instantiation declaration. An explicit
10120   //   instantiation declaration begins with the extern keyword. [...]
10121   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
10122                                        ? TSK_ExplicitInstantiationDefinition
10123                                        : TSK_ExplicitInstantiationDeclaration;
10124 
10125   if (TSK == TSK_ExplicitInstantiationDeclaration &&
10126       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10127     // Check for dllexport class template instantiation declarations,
10128     // except for MinGW mode.
10129     for (const ParsedAttr &AL : Attr) {
10130       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10131         Diag(ExternLoc,
10132              diag::warn_attribute_dllexport_explicit_instantiation_decl);
10133         Diag(AL.getLoc(), diag::note_attribute);
10134         break;
10135       }
10136     }
10137 
10138     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
10139       Diag(ExternLoc,
10140            diag::warn_attribute_dllexport_explicit_instantiation_decl);
10141       Diag(A->getLocation(), diag::note_attribute);
10142     }
10143   }
10144 
10145   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10146   // instantiation declarations for most purposes.
10147   bool DLLImportExplicitInstantiationDef = false;
10148   if (TSK == TSK_ExplicitInstantiationDefinition &&
10149       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
10150     // Check for dllimport class template instantiation definitions.
10151     bool DLLImport =
10152         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
10153     for (const ParsedAttr &AL : Attr) {
10154       if (AL.getKind() == ParsedAttr::AT_DLLImport)
10155         DLLImport = true;
10156       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10157         // dllexport trumps dllimport here.
10158         DLLImport = false;
10159         break;
10160       }
10161     }
10162     if (DLLImport) {
10163       TSK = TSK_ExplicitInstantiationDeclaration;
10164       DLLImportExplicitInstantiationDef = true;
10165     }
10166   }
10167 
10168   // Translate the parser's template argument list in our AST format.
10169   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10170   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10171 
10172   // Check that the template argument list is well-formed for this
10173   // template.
10174   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
10175   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
10176                                 false, SugaredConverted, CanonicalConverted,
10177                                 /*UpdateArgsWithConversions=*/true))
10178     return true;
10179 
10180   // Find the class template specialization declaration that
10181   // corresponds to these arguments.
10182   void *InsertPos = nullptr;
10183   ClassTemplateSpecializationDecl *PrevDecl =
10184       ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
10185 
10186   TemplateSpecializationKind PrevDecl_TSK
10187     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
10188 
10189   if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
10190       Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10191     // Check for dllexport class template instantiation definitions in MinGW
10192     // mode, if a previous declaration of the instantiation was seen.
10193     for (const ParsedAttr &AL : Attr) {
10194       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10195         Diag(AL.getLoc(),
10196              diag::warn_attribute_dllexport_explicit_instantiation_def);
10197         break;
10198       }
10199     }
10200   }
10201 
10202   if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
10203                                  SS.isSet(), TSK))
10204     return true;
10205 
10206   ClassTemplateSpecializationDecl *Specialization = nullptr;
10207 
10208   bool HasNoEffect = false;
10209   if (PrevDecl) {
10210     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
10211                                                PrevDecl, PrevDecl_TSK,
10212                                             PrevDecl->getPointOfInstantiation(),
10213                                                HasNoEffect))
10214       return PrevDecl;
10215 
10216     // Even though HasNoEffect == true means that this explicit instantiation
10217     // has no effect on semantics, we go on to put its syntax in the AST.
10218 
10219     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
10220         PrevDecl_TSK == TSK_Undeclared) {
10221       // Since the only prior class template specialization with these
10222       // arguments was referenced but not declared, reuse that
10223       // declaration node as our own, updating the source location
10224       // for the template name to reflect our new declaration.
10225       // (Other source locations will be updated later.)
10226       Specialization = PrevDecl;
10227       Specialization->setLocation(TemplateNameLoc);
10228       PrevDecl = nullptr;
10229     }
10230 
10231     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10232         DLLImportExplicitInstantiationDef) {
10233       // The new specialization might add a dllimport attribute.
10234       HasNoEffect = false;
10235     }
10236   }
10237 
10238   if (!Specialization) {
10239     // Create a new class template specialization declaration node for
10240     // this explicit specialization.
10241     Specialization = ClassTemplateSpecializationDecl::Create(
10242         Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
10243         ClassTemplate, CanonicalConverted, PrevDecl);
10244     SetNestedNameSpecifier(*this, Specialization, SS);
10245 
10246     // A MSInheritanceAttr attached to the previous declaration must be
10247     // propagated to the new node prior to instantiation.
10248     if (PrevDecl) {
10249       if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) {
10250         auto *Clone = A->clone(getASTContext());
10251         Clone->setInherited(true);
10252         Specialization->addAttr(Clone);
10253         Consumer.AssignInheritanceModel(Specialization);
10254       }
10255     }
10256 
10257     if (!HasNoEffect && !PrevDecl) {
10258       // Insert the new specialization.
10259       ClassTemplate->AddSpecialization(Specialization, InsertPos);
10260     }
10261   }
10262 
10263   // Build the fully-sugared type for this explicit instantiation as
10264   // the user wrote in the explicit instantiation itself. This means
10265   // that we'll pretty-print the type retrieved from the
10266   // specialization's declaration the way that the user actually wrote
10267   // the explicit instantiation, rather than formatting the name based
10268   // on the "canonical" representation used to store the template
10269   // arguments in the specialization.
10270   TypeSourceInfo *WrittenTy
10271     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
10272                                                 TemplateArgs,
10273                                   Context.getTypeDeclType(Specialization));
10274   Specialization->setTypeAsWritten(WrittenTy);
10275 
10276   // Set source locations for keywords.
10277   Specialization->setExternLoc(ExternLoc);
10278   Specialization->setTemplateKeywordLoc(TemplateLoc);
10279   Specialization->setBraceRange(SourceRange());
10280 
10281   bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
10282   ProcessDeclAttributeList(S, Specialization, Attr);
10283 
10284   // Add the explicit instantiation into its lexical context. However,
10285   // since explicit instantiations are never found by name lookup, we
10286   // just put it into the declaration context directly.
10287   Specialization->setLexicalDeclContext(CurContext);
10288   CurContext->addDecl(Specialization);
10289 
10290   // Syntax is now OK, so return if it has no other effect on semantics.
10291   if (HasNoEffect) {
10292     // Set the template specialization kind.
10293     Specialization->setTemplateSpecializationKind(TSK);
10294     return Specialization;
10295   }
10296 
10297   // C++ [temp.explicit]p3:
10298   //   A definition of a class template or class member template
10299   //   shall be in scope at the point of the explicit instantiation of
10300   //   the class template or class member template.
10301   //
10302   // This check comes when we actually try to perform the
10303   // instantiation.
10304   ClassTemplateSpecializationDecl *Def
10305     = cast_or_null<ClassTemplateSpecializationDecl>(
10306                                               Specialization->getDefinition());
10307   if (!Def)
10308     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
10309   else if (TSK == TSK_ExplicitInstantiationDefinition) {
10310     MarkVTableUsed(TemplateNameLoc, Specialization, true);
10311     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
10312   }
10313 
10314   // Instantiate the members of this class template specialization.
10315   Def = cast_or_null<ClassTemplateSpecializationDecl>(
10316                                        Specialization->getDefinition());
10317   if (Def) {
10318     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
10319     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
10320     // TSK_ExplicitInstantiationDefinition
10321     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
10322         (TSK == TSK_ExplicitInstantiationDefinition ||
10323          DLLImportExplicitInstantiationDef)) {
10324       // FIXME: Need to notify the ASTMutationListener that we did this.
10325       Def->setTemplateSpecializationKind(TSK);
10326 
10327       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
10328           (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10329            !Context.getTargetInfo().getTriple().isPS())) {
10330         // An explicit instantiation definition can add a dll attribute to a
10331         // template with a previous instantiation declaration. MinGW doesn't
10332         // allow this.
10333         auto *A = cast<InheritableAttr>(
10334             getDLLAttr(Specialization)->clone(getASTContext()));
10335         A->setInherited(true);
10336         Def->addAttr(A);
10337         dllExportImportClassTemplateSpecialization(*this, Def);
10338       }
10339     }
10340 
10341     // Fix a TSK_ImplicitInstantiation followed by a
10342     // TSK_ExplicitInstantiationDefinition
10343     bool NewlyDLLExported =
10344         !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
10345     if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
10346         (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10347          !Context.getTargetInfo().getTriple().isPS())) {
10348       // An explicit instantiation definition can add a dll attribute to a
10349       // template with a previous implicit instantiation. MinGW doesn't allow
10350       // this. We limit clang to only adding dllexport, to avoid potentially
10351       // strange codegen behavior. For example, if we extend this conditional
10352       // to dllimport, and we have a source file calling a method on an
10353       // implicitly instantiated template class instance and then declaring a
10354       // dllimport explicit instantiation definition for the same template
10355       // class, the codegen for the method call will not respect the dllimport,
10356       // while it will with cl. The Def will already have the DLL attribute,
10357       // since the Def and Specialization will be the same in the case of
10358       // Old_TSK == TSK_ImplicitInstantiation, and we already added the
10359       // attribute to the Specialization; we just need to make it take effect.
10360       assert(Def == Specialization &&
10361              "Def and Specialization should match for implicit instantiation");
10362       dllExportImportClassTemplateSpecialization(*this, Def);
10363     }
10364 
10365     // In MinGW mode, export the template instantiation if the declaration
10366     // was marked dllexport.
10367     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10368         Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
10369         PrevDecl->hasAttr<DLLExportAttr>()) {
10370       dllExportImportClassTemplateSpecialization(*this, Def);
10371     }
10372 
10373     // Set the template specialization kind. Make sure it is set before
10374     // instantiating the members which will trigger ASTConsumer callbacks.
10375     Specialization->setTemplateSpecializationKind(TSK);
10376     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
10377   } else {
10378 
10379     // Set the template specialization kind.
10380     Specialization->setTemplateSpecializationKind(TSK);
10381   }
10382 
10383   return Specialization;
10384 }
10385 
10386 // Explicit instantiation of a member class of a class template.
10387 DeclResult
10388 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
10389                                  SourceLocation TemplateLoc, unsigned TagSpec,
10390                                  SourceLocation KWLoc, CXXScopeSpec &SS,
10391                                  IdentifierInfo *Name, SourceLocation NameLoc,
10392                                  const ParsedAttributesView &Attr) {
10393 
10394   bool Owned = false;
10395   bool IsDependent = false;
10396   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, KWLoc, SS, Name,
10397                NameLoc, Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(),
10398                MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(),
10399                false, TypeResult(), /*IsTypeSpecifier*/ false,
10400                /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get();
10401   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
10402 
10403   if (!TagD)
10404     return true;
10405 
10406   TagDecl *Tag = cast<TagDecl>(TagD);
10407   assert(!Tag->isEnum() && "shouldn't see enumerations here");
10408 
10409   if (Tag->isInvalidDecl())
10410     return true;
10411 
10412   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
10413   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
10414   if (!Pattern) {
10415     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
10416       << Context.getTypeDeclType(Record);
10417     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
10418     return true;
10419   }
10420 
10421   // C++0x [temp.explicit]p2:
10422   //   If the explicit instantiation is for a class or member class, the
10423   //   elaborated-type-specifier in the declaration shall include a
10424   //   simple-template-id.
10425   //
10426   // C++98 has the same restriction, just worded differently.
10427   if (!ScopeSpecifierHasTemplateId(SS))
10428     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
10429       << Record << SS.getRange();
10430 
10431   // C++0x [temp.explicit]p2:
10432   //   There are two forms of explicit instantiation: an explicit instantiation
10433   //   definition and an explicit instantiation declaration. An explicit
10434   //   instantiation declaration begins with the extern keyword. [...]
10435   TemplateSpecializationKind TSK
10436     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10437                            : TSK_ExplicitInstantiationDeclaration;
10438 
10439   CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
10440 
10441   // Verify that it is okay to explicitly instantiate here.
10442   CXXRecordDecl *PrevDecl
10443     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
10444   if (!PrevDecl && Record->getDefinition())
10445     PrevDecl = Record;
10446   if (PrevDecl) {
10447     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
10448     bool HasNoEffect = false;
10449     assert(MSInfo && "No member specialization information?");
10450     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
10451                                                PrevDecl,
10452                                         MSInfo->getTemplateSpecializationKind(),
10453                                              MSInfo->getPointOfInstantiation(),
10454                                                HasNoEffect))
10455       return true;
10456     if (HasNoEffect)
10457       return TagD;
10458   }
10459 
10460   CXXRecordDecl *RecordDef
10461     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10462   if (!RecordDef) {
10463     // C++ [temp.explicit]p3:
10464     //   A definition of a member class of a class template shall be in scope
10465     //   at the point of an explicit instantiation of the member class.
10466     CXXRecordDecl *Def
10467       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
10468     if (!Def) {
10469       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
10470         << 0 << Record->getDeclName() << Record->getDeclContext();
10471       Diag(Pattern->getLocation(), diag::note_forward_declaration)
10472         << Pattern;
10473       return true;
10474     } else {
10475       if (InstantiateClass(NameLoc, Record, Def,
10476                            getTemplateInstantiationArgs(Record),
10477                            TSK))
10478         return true;
10479 
10480       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10481       if (!RecordDef)
10482         return true;
10483     }
10484   }
10485 
10486   // Instantiate all of the members of the class.
10487   InstantiateClassMembers(NameLoc, RecordDef,
10488                           getTemplateInstantiationArgs(Record), TSK);
10489 
10490   if (TSK == TSK_ExplicitInstantiationDefinition)
10491     MarkVTableUsed(NameLoc, RecordDef, true);
10492 
10493   // FIXME: We don't have any representation for explicit instantiations of
10494   // member classes. Such a representation is not needed for compilation, but it
10495   // should be available for clients that want to see all of the declarations in
10496   // the source code.
10497   return TagD;
10498 }
10499 
10500 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
10501                                             SourceLocation ExternLoc,
10502                                             SourceLocation TemplateLoc,
10503                                             Declarator &D) {
10504   // Explicit instantiations always require a name.
10505   // TODO: check if/when DNInfo should replace Name.
10506   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10507   DeclarationName Name = NameInfo.getName();
10508   if (!Name) {
10509     if (!D.isInvalidType())
10510       Diag(D.getDeclSpec().getBeginLoc(),
10511            diag::err_explicit_instantiation_requires_name)
10512           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
10513 
10514     return true;
10515   }
10516 
10517   // The scope passed in may not be a decl scope.  Zip up the scope tree until
10518   // we find one that is.
10519   while ((S->getFlags() & Scope::DeclScope) == 0 ||
10520          (S->getFlags() & Scope::TemplateParamScope) != 0)
10521     S = S->getParent();
10522 
10523   // Determine the type of the declaration.
10524   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
10525   QualType R = T->getType();
10526   if (R.isNull())
10527     return true;
10528 
10529   // C++ [dcl.stc]p1:
10530   //   A storage-class-specifier shall not be specified in [...] an explicit
10531   //   instantiation (14.7.2) directive.
10532   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
10533     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
10534       << Name;
10535     return true;
10536   } else if (D.getDeclSpec().getStorageClassSpec()
10537                                                 != DeclSpec::SCS_unspecified) {
10538     // Complain about then remove the storage class specifier.
10539     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
10540       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10541 
10542     D.getMutableDeclSpec().ClearStorageClassSpecs();
10543   }
10544 
10545   // C++0x [temp.explicit]p1:
10546   //   [...] An explicit instantiation of a function template shall not use the
10547   //   inline or constexpr specifiers.
10548   // Presumably, this also applies to member functions of class templates as
10549   // well.
10550   if (D.getDeclSpec().isInlineSpecified())
10551     Diag(D.getDeclSpec().getInlineSpecLoc(),
10552          getLangOpts().CPlusPlus11 ?
10553            diag::err_explicit_instantiation_inline :
10554            diag::warn_explicit_instantiation_inline_0x)
10555       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10556   if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
10557     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
10558     // not already specified.
10559     Diag(D.getDeclSpec().getConstexprSpecLoc(),
10560          diag::err_explicit_instantiation_constexpr);
10561 
10562   // A deduction guide is not on the list of entities that can be explicitly
10563   // instantiated.
10564   if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10565     Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10566         << /*explicit instantiation*/ 0;
10567     return true;
10568   }
10569 
10570   // C++0x [temp.explicit]p2:
10571   //   There are two forms of explicit instantiation: an explicit instantiation
10572   //   definition and an explicit instantiation declaration. An explicit
10573   //   instantiation declaration begins with the extern keyword. [...]
10574   TemplateSpecializationKind TSK
10575     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10576                            : TSK_ExplicitInstantiationDeclaration;
10577 
10578   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10579   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10580 
10581   if (!R->isFunctionType()) {
10582     // C++ [temp.explicit]p1:
10583     //   A [...] static data member of a class template can be explicitly
10584     //   instantiated from the member definition associated with its class
10585     //   template.
10586     // C++1y [temp.explicit]p1:
10587     //   A [...] variable [...] template specialization can be explicitly
10588     //   instantiated from its template.
10589     if (Previous.isAmbiguous())
10590       return true;
10591 
10592     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10593     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10594 
10595     if (!PrevTemplate) {
10596       if (!Prev || !Prev->isStaticDataMember()) {
10597         // We expect to see a static data member here.
10598         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10599             << Name;
10600         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10601              P != PEnd; ++P)
10602           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10603         return true;
10604       }
10605 
10606       if (!Prev->getInstantiatedFromStaticDataMember()) {
10607         // FIXME: Check for explicit specialization?
10608         Diag(D.getIdentifierLoc(),
10609              diag::err_explicit_instantiation_data_member_not_instantiated)
10610             << Prev;
10611         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10612         // FIXME: Can we provide a note showing where this was declared?
10613         return true;
10614       }
10615     } else {
10616       // Explicitly instantiate a variable template.
10617 
10618       // C++1y [dcl.spec.auto]p6:
10619       //   ... A program that uses auto or decltype(auto) in a context not
10620       //   explicitly allowed in this section is ill-formed.
10621       //
10622       // This includes auto-typed variable template instantiations.
10623       if (R->isUndeducedType()) {
10624         Diag(T->getTypeLoc().getBeginLoc(),
10625              diag::err_auto_not_allowed_var_inst);
10626         return true;
10627       }
10628 
10629       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10630         // C++1y [temp.explicit]p3:
10631         //   If the explicit instantiation is for a variable, the unqualified-id
10632         //   in the declaration shall be a template-id.
10633         Diag(D.getIdentifierLoc(),
10634              diag::err_explicit_instantiation_without_template_id)
10635           << PrevTemplate;
10636         Diag(PrevTemplate->getLocation(),
10637              diag::note_explicit_instantiation_here);
10638         return true;
10639       }
10640 
10641       // Translate the parser's template argument list into our AST format.
10642       TemplateArgumentListInfo TemplateArgs =
10643           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10644 
10645       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10646                                           D.getIdentifierLoc(), TemplateArgs);
10647       if (Res.isInvalid())
10648         return true;
10649 
10650       if (!Res.isUsable()) {
10651         // We somehow specified dependent template arguments in an explicit
10652         // instantiation. This should probably only happen during error
10653         // recovery.
10654         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10655         return true;
10656       }
10657 
10658       // Ignore access control bits, we don't need them for redeclaration
10659       // checking.
10660       Prev = cast<VarDecl>(Res.get());
10661     }
10662 
10663     // C++0x [temp.explicit]p2:
10664     //   If the explicit instantiation is for a member function, a member class
10665     //   or a static data member of a class template specialization, the name of
10666     //   the class template specialization in the qualified-id for the member
10667     //   name shall be a simple-template-id.
10668     //
10669     // C++98 has the same restriction, just worded differently.
10670     //
10671     // This does not apply to variable template specializations, where the
10672     // template-id is in the unqualified-id instead.
10673     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10674       Diag(D.getIdentifierLoc(),
10675            diag::ext_explicit_instantiation_without_qualified_id)
10676         << Prev << D.getCXXScopeSpec().getRange();
10677 
10678     CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10679 
10680     // Verify that it is okay to explicitly instantiate here.
10681     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10682     SourceLocation POI = Prev->getPointOfInstantiation();
10683     bool HasNoEffect = false;
10684     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10685                                                PrevTSK, POI, HasNoEffect))
10686       return true;
10687 
10688     if (!HasNoEffect) {
10689       // Instantiate static data member or variable template.
10690       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10691       // Merge attributes.
10692       ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10693       if (TSK == TSK_ExplicitInstantiationDefinition)
10694         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10695     }
10696 
10697     // Check the new variable specialization against the parsed input.
10698     if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10699       Diag(T->getTypeLoc().getBeginLoc(),
10700            diag::err_invalid_var_template_spec_type)
10701           << 0 << PrevTemplate << R << Prev->getType();
10702       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10703           << 2 << PrevTemplate->getDeclName();
10704       return true;
10705     }
10706 
10707     // FIXME: Create an ExplicitInstantiation node?
10708     return (Decl*) nullptr;
10709   }
10710 
10711   // If the declarator is a template-id, translate the parser's template
10712   // argument list into our AST format.
10713   bool HasExplicitTemplateArgs = false;
10714   TemplateArgumentListInfo TemplateArgs;
10715   if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10716     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10717     HasExplicitTemplateArgs = true;
10718   }
10719 
10720   // C++ [temp.explicit]p1:
10721   //   A [...] function [...] can be explicitly instantiated from its template.
10722   //   A member function [...] of a class template can be explicitly
10723   //  instantiated from the member definition associated with its class
10724   //  template.
10725   UnresolvedSet<8> TemplateMatches;
10726   FunctionDecl *NonTemplateMatch = nullptr;
10727   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10728   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10729        P != PEnd; ++P) {
10730     NamedDecl *Prev = *P;
10731     if (!HasExplicitTemplateArgs) {
10732       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10733         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10734                                                 /*AdjustExceptionSpec*/true);
10735         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10736           if (Method->getPrimaryTemplate()) {
10737             TemplateMatches.addDecl(Method, P.getAccess());
10738           } else {
10739             // FIXME: Can this assert ever happen?  Needs a test.
10740             assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10741             NonTemplateMatch = Method;
10742           }
10743         }
10744       }
10745     }
10746 
10747     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10748     if (!FunTmpl)
10749       continue;
10750 
10751     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10752     FunctionDecl *Specialization = nullptr;
10753     if (TemplateDeductionResult TDK
10754           = DeduceTemplateArguments(FunTmpl,
10755                                (HasExplicitTemplateArgs ? &TemplateArgs
10756                                                         : nullptr),
10757                                     R, Specialization, Info)) {
10758       // Keep track of almost-matches.
10759       FailedCandidates.addCandidate()
10760           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10761                MakeDeductionFailureInfo(Context, TDK, Info));
10762       (void)TDK;
10763       continue;
10764     }
10765 
10766     // Target attributes are part of the cuda function signature, so
10767     // the cuda target of the instantiated function must match that of its
10768     // template.  Given that C++ template deduction does not take
10769     // target attributes into account, we reject candidates here that
10770     // have a different target.
10771     if (LangOpts.CUDA &&
10772         IdentifyCUDATarget(Specialization,
10773                            /* IgnoreImplicitHDAttr = */ true) !=
10774             IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10775       FailedCandidates.addCandidate().set(
10776           P.getPair(), FunTmpl->getTemplatedDecl(),
10777           MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10778       continue;
10779     }
10780 
10781     TemplateMatches.addDecl(Specialization, P.getAccess());
10782   }
10783 
10784   FunctionDecl *Specialization = NonTemplateMatch;
10785   if (!Specialization) {
10786     // Find the most specialized function template specialization.
10787     UnresolvedSetIterator Result = getMostSpecialized(
10788         TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10789         D.getIdentifierLoc(),
10790         PDiag(diag::err_explicit_instantiation_not_known) << Name,
10791         PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10792         PDiag(diag::note_explicit_instantiation_candidate));
10793 
10794     if (Result == TemplateMatches.end())
10795       return true;
10796 
10797     // Ignore access control bits, we don't need them for redeclaration checking.
10798     Specialization = cast<FunctionDecl>(*Result);
10799   }
10800 
10801   // C++11 [except.spec]p4
10802   // In an explicit instantiation an exception-specification may be specified,
10803   // but is not required.
10804   // If an exception-specification is specified in an explicit instantiation
10805   // directive, it shall be compatible with the exception-specifications of
10806   // other declarations of that function.
10807   if (auto *FPT = R->getAs<FunctionProtoType>())
10808     if (FPT->hasExceptionSpec()) {
10809       unsigned DiagID =
10810           diag::err_mismatched_exception_spec_explicit_instantiation;
10811       if (getLangOpts().MicrosoftExt)
10812         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10813       bool Result = CheckEquivalentExceptionSpec(
10814           PDiag(DiagID) << Specialization->getType(),
10815           PDiag(diag::note_explicit_instantiation_here),
10816           Specialization->getType()->getAs<FunctionProtoType>(),
10817           Specialization->getLocation(), FPT, D.getBeginLoc());
10818       // In Microsoft mode, mismatching exception specifications just cause a
10819       // warning.
10820       if (!getLangOpts().MicrosoftExt && Result)
10821         return true;
10822     }
10823 
10824   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10825     Diag(D.getIdentifierLoc(),
10826          diag::err_explicit_instantiation_member_function_not_instantiated)
10827       << Specialization
10828       << (Specialization->getTemplateSpecializationKind() ==
10829           TSK_ExplicitSpecialization);
10830     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10831     return true;
10832   }
10833 
10834   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10835   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10836     PrevDecl = Specialization;
10837 
10838   if (PrevDecl) {
10839     bool HasNoEffect = false;
10840     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10841                                                PrevDecl,
10842                                      PrevDecl->getTemplateSpecializationKind(),
10843                                           PrevDecl->getPointOfInstantiation(),
10844                                                HasNoEffect))
10845       return true;
10846 
10847     // FIXME: We may still want to build some representation of this
10848     // explicit specialization.
10849     if (HasNoEffect)
10850       return (Decl*) nullptr;
10851   }
10852 
10853   // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10854   // functions
10855   //     valarray<size_t>::valarray(size_t) and
10856   //     valarray<size_t>::~valarray()
10857   // that it declared to have internal linkage with the internal_linkage
10858   // attribute. Ignore the explicit instantiation declaration in this case.
10859   if (Specialization->hasAttr<InternalLinkageAttr>() &&
10860       TSK == TSK_ExplicitInstantiationDeclaration) {
10861     if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10862       if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10863           RD->isInStdNamespace())
10864         return (Decl*) nullptr;
10865   }
10866 
10867   ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10868 
10869   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10870   // instantiation declarations.
10871   if (TSK == TSK_ExplicitInstantiationDefinition &&
10872       Specialization->hasAttr<DLLImportAttr>() &&
10873       Context.getTargetInfo().getCXXABI().isMicrosoft())
10874     TSK = TSK_ExplicitInstantiationDeclaration;
10875 
10876   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10877 
10878   if (Specialization->isDefined()) {
10879     // Let the ASTConsumer know that this function has been explicitly
10880     // instantiated now, and its linkage might have changed.
10881     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10882   } else if (TSK == TSK_ExplicitInstantiationDefinition)
10883     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10884 
10885   // C++0x [temp.explicit]p2:
10886   //   If the explicit instantiation is for a member function, a member class
10887   //   or a static data member of a class template specialization, the name of
10888   //   the class template specialization in the qualified-id for the member
10889   //   name shall be a simple-template-id.
10890   //
10891   // C++98 has the same restriction, just worded differently.
10892   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10893   if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10894       D.getCXXScopeSpec().isSet() &&
10895       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10896     Diag(D.getIdentifierLoc(),
10897          diag::ext_explicit_instantiation_without_qualified_id)
10898     << Specialization << D.getCXXScopeSpec().getRange();
10899 
10900   CheckExplicitInstantiation(
10901       *this,
10902       FunTmpl ? (NamedDecl *)FunTmpl
10903               : Specialization->getInstantiatedFromMemberFunction(),
10904       D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10905 
10906   // FIXME: Create some kind of ExplicitInstantiationDecl here.
10907   return (Decl*) nullptr;
10908 }
10909 
10910 TypeResult
10911 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10912                         const CXXScopeSpec &SS, IdentifierInfo *Name,
10913                         SourceLocation TagLoc, SourceLocation NameLoc) {
10914   // This has to hold, because SS is expected to be defined.
10915   assert(Name && "Expected a name in a dependent tag");
10916 
10917   NestedNameSpecifier *NNS = SS.getScopeRep();
10918   if (!NNS)
10919     return true;
10920 
10921   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10922 
10923   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10924     Diag(NameLoc, diag::err_dependent_tag_decl)
10925         << (TUK == TUK_Definition) << llvm::to_underlying(Kind)
10926         << SS.getRange();
10927     return true;
10928   }
10929 
10930   // Create the resulting type.
10931   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10932   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10933 
10934   // Create type-source location information for this type.
10935   TypeLocBuilder TLB;
10936   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10937   TL.setElaboratedKeywordLoc(TagLoc);
10938   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10939   TL.setNameLoc(NameLoc);
10940   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10941 }
10942 
10943 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10944                                    const CXXScopeSpec &SS,
10945                                    const IdentifierInfo &II,
10946                                    SourceLocation IdLoc,
10947                                    ImplicitTypenameContext IsImplicitTypename) {
10948   if (SS.isInvalid())
10949     return true;
10950 
10951   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10952     Diag(TypenameLoc,
10953          getLangOpts().CPlusPlus11 ?
10954            diag::warn_cxx98_compat_typename_outside_of_template :
10955            diag::ext_typename_outside_of_template)
10956       << FixItHint::CreateRemoval(TypenameLoc);
10957 
10958   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10959   TypeSourceInfo *TSI = nullptr;
10960   QualType T =
10961       CheckTypenameType((TypenameLoc.isValid() ||
10962                          IsImplicitTypename == ImplicitTypenameContext::Yes)
10963                             ? ElaboratedTypeKeyword::Typename
10964                             : ElaboratedTypeKeyword::None,
10965                         TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10966                         /*DeducedTSTContext=*/true);
10967   if (T.isNull())
10968     return true;
10969   return CreateParsedType(T, TSI);
10970 }
10971 
10972 TypeResult
10973 Sema::ActOnTypenameType(Scope *S,
10974                         SourceLocation TypenameLoc,
10975                         const CXXScopeSpec &SS,
10976                         SourceLocation TemplateKWLoc,
10977                         TemplateTy TemplateIn,
10978                         IdentifierInfo *TemplateII,
10979                         SourceLocation TemplateIILoc,
10980                         SourceLocation LAngleLoc,
10981                         ASTTemplateArgsPtr TemplateArgsIn,
10982                         SourceLocation RAngleLoc) {
10983   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10984     Diag(TypenameLoc,
10985          getLangOpts().CPlusPlus11 ?
10986            diag::warn_cxx98_compat_typename_outside_of_template :
10987            diag::ext_typename_outside_of_template)
10988       << FixItHint::CreateRemoval(TypenameLoc);
10989 
10990   // Strangely, non-type results are not ignored by this lookup, so the
10991   // program is ill-formed if it finds an injected-class-name.
10992   if (TypenameLoc.isValid()) {
10993     auto *LookupRD =
10994         dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10995     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10996       Diag(TemplateIILoc,
10997            diag::ext_out_of_line_qualified_id_type_names_constructor)
10998         << TemplateII << 0 /*injected-class-name used as template name*/
10999         << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
11000     }
11001   }
11002 
11003   // Translate the parser's template argument list in our AST format.
11004   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
11005   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
11006 
11007   TemplateName Template = TemplateIn.get();
11008   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
11009     // Construct a dependent template specialization type.
11010     assert(DTN && "dependent template has non-dependent name?");
11011     assert(DTN->getQualifier() == SS.getScopeRep());
11012     QualType T = Context.getDependentTemplateSpecializationType(
11013         ElaboratedTypeKeyword::Typename, DTN->getQualifier(),
11014         DTN->getIdentifier(), TemplateArgs.arguments());
11015 
11016     // Create source-location information for this type.
11017     TypeLocBuilder Builder;
11018     DependentTemplateSpecializationTypeLoc SpecTL
11019     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
11020     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
11021     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
11022     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
11023     SpecTL.setTemplateNameLoc(TemplateIILoc);
11024     SpecTL.setLAngleLoc(LAngleLoc);
11025     SpecTL.setRAngleLoc(RAngleLoc);
11026     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
11027       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
11028     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
11029   }
11030 
11031   QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
11032   if (T.isNull())
11033     return true;
11034 
11035   // Provide source-location information for the template specialization type.
11036   TypeLocBuilder Builder;
11037   TemplateSpecializationTypeLoc SpecTL
11038     = Builder.push<TemplateSpecializationTypeLoc>(T);
11039   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
11040   SpecTL.setTemplateNameLoc(TemplateIILoc);
11041   SpecTL.setLAngleLoc(LAngleLoc);
11042   SpecTL.setRAngleLoc(RAngleLoc);
11043   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
11044     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
11045 
11046   T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename,
11047                                 SS.getScopeRep(), T);
11048   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
11049   TL.setElaboratedKeywordLoc(TypenameLoc);
11050   TL.setQualifierLoc(SS.getWithLocInContext(Context));
11051 
11052   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
11053   return CreateParsedType(T, TSI);
11054 }
11055 
11056 
11057 /// Determine whether this failed name lookup should be treated as being
11058 /// disabled by a usage of std::enable_if.
11059 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
11060                        SourceRange &CondRange, Expr *&Cond) {
11061   // We must be looking for a ::type...
11062   if (!II.isStr("type"))
11063     return false;
11064 
11065   // ... within an explicitly-written template specialization...
11066   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
11067     return false;
11068   TypeLoc EnableIfTy = NNS.getTypeLoc();
11069   TemplateSpecializationTypeLoc EnableIfTSTLoc =
11070       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
11071   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
11072     return false;
11073   const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
11074 
11075   // ... which names a complete class template declaration...
11076   const TemplateDecl *EnableIfDecl =
11077     EnableIfTST->getTemplateName().getAsTemplateDecl();
11078   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
11079     return false;
11080 
11081   // ... called "enable_if".
11082   const IdentifierInfo *EnableIfII =
11083     EnableIfDecl->getDeclName().getAsIdentifierInfo();
11084   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
11085     return false;
11086 
11087   // Assume the first template argument is the condition.
11088   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
11089 
11090   // Dig out the condition.
11091   Cond = nullptr;
11092   if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
11093         != TemplateArgument::Expression)
11094     return true;
11095 
11096   Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
11097 
11098   // Ignore Boolean literals; they add no value.
11099   if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
11100     Cond = nullptr;
11101 
11102   return true;
11103 }
11104 
11105 QualType
11106 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11107                         SourceLocation KeywordLoc,
11108                         NestedNameSpecifierLoc QualifierLoc,
11109                         const IdentifierInfo &II,
11110                         SourceLocation IILoc,
11111                         TypeSourceInfo **TSI,
11112                         bool DeducedTSTContext) {
11113   QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
11114                                  DeducedTSTContext);
11115   if (T.isNull())
11116     return QualType();
11117 
11118   *TSI = Context.CreateTypeSourceInfo(T);
11119   if (isa<DependentNameType>(T)) {
11120     DependentNameTypeLoc TL =
11121         (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
11122     TL.setElaboratedKeywordLoc(KeywordLoc);
11123     TL.setQualifierLoc(QualifierLoc);
11124     TL.setNameLoc(IILoc);
11125   } else {
11126     ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
11127     TL.setElaboratedKeywordLoc(KeywordLoc);
11128     TL.setQualifierLoc(QualifierLoc);
11129     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
11130   }
11131   return T;
11132 }
11133 
11134 /// Build the type that describes a C++ typename specifier,
11135 /// e.g., "typename T::type".
11136 QualType
11137 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11138                         SourceLocation KeywordLoc,
11139                         NestedNameSpecifierLoc QualifierLoc,
11140                         const IdentifierInfo &II,
11141                         SourceLocation IILoc, bool DeducedTSTContext) {
11142   CXXScopeSpec SS;
11143   SS.Adopt(QualifierLoc);
11144 
11145   DeclContext *Ctx = nullptr;
11146   if (QualifierLoc) {
11147     Ctx = computeDeclContext(SS);
11148     if (!Ctx) {
11149       // If the nested-name-specifier is dependent and couldn't be
11150       // resolved to a type, build a typename type.
11151       assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
11152       return Context.getDependentNameType(Keyword,
11153                                           QualifierLoc.getNestedNameSpecifier(),
11154                                           &II);
11155     }
11156 
11157     // If the nested-name-specifier refers to the current instantiation,
11158     // the "typename" keyword itself is superfluous. In C++03, the
11159     // program is actually ill-formed. However, DR 382 (in C++0x CD1)
11160     // allows such extraneous "typename" keywords, and we retroactively
11161     // apply this DR to C++03 code with only a warning. In any case we continue.
11162 
11163     if (RequireCompleteDeclContext(SS, Ctx))
11164       return QualType();
11165   }
11166 
11167   DeclarationName Name(&II);
11168   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
11169   if (Ctx)
11170     LookupQualifiedName(Result, Ctx, SS);
11171   else
11172     LookupName(Result, CurScope);
11173   unsigned DiagID = 0;
11174   Decl *Referenced = nullptr;
11175   switch (Result.getResultKind()) {
11176   case LookupResult::NotFound: {
11177     // If we're looking up 'type' within a template named 'enable_if', produce
11178     // a more specific diagnostic.
11179     SourceRange CondRange;
11180     Expr *Cond = nullptr;
11181     if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
11182       // If we have a condition, narrow it down to the specific failed
11183       // condition.
11184       if (Cond) {
11185         Expr *FailedCond;
11186         std::string FailedDescription;
11187         std::tie(FailedCond, FailedDescription) =
11188           findFailedBooleanCondition(Cond);
11189 
11190         Diag(FailedCond->getExprLoc(),
11191              diag::err_typename_nested_not_found_requirement)
11192           << FailedDescription
11193           << FailedCond->getSourceRange();
11194         return QualType();
11195       }
11196 
11197       Diag(CondRange.getBegin(),
11198            diag::err_typename_nested_not_found_enable_if)
11199           << Ctx << CondRange;
11200       return QualType();
11201     }
11202 
11203     DiagID = Ctx ? diag::err_typename_nested_not_found
11204                  : diag::err_unknown_typename;
11205     break;
11206   }
11207 
11208   case LookupResult::FoundUnresolvedValue: {
11209     // We found a using declaration that is a value. Most likely, the using
11210     // declaration itself is meant to have the 'typename' keyword.
11211     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11212                           IILoc);
11213     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
11214       << Name << Ctx << FullRange;
11215     if (UnresolvedUsingValueDecl *Using
11216           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
11217       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
11218       Diag(Loc, diag::note_using_value_decl_missing_typename)
11219         << FixItHint::CreateInsertion(Loc, "typename ");
11220     }
11221   }
11222   // Fall through to create a dependent typename type, from which we can recover
11223   // better.
11224   [[fallthrough]];
11225 
11226   case LookupResult::NotFoundInCurrentInstantiation:
11227     // Okay, it's a member of an unknown instantiation.
11228     return Context.getDependentNameType(Keyword,
11229                                         QualifierLoc.getNestedNameSpecifier(),
11230                                         &II);
11231 
11232   case LookupResult::Found:
11233     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
11234       // C++ [class.qual]p2:
11235       //   In a lookup in which function names are not ignored and the
11236       //   nested-name-specifier nominates a class C, if the name specified
11237       //   after the nested-name-specifier, when looked up in C, is the
11238       //   injected-class-name of C [...] then the name is instead considered
11239       //   to name the constructor of class C.
11240       //
11241       // Unlike in an elaborated-type-specifier, function names are not ignored
11242       // in typename-specifier lookup. However, they are ignored in all the
11243       // contexts where we form a typename type with no keyword (that is, in
11244       // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
11245       //
11246       // FIXME: That's not strictly true: mem-initializer-id lookup does not
11247       // ignore functions, but that appears to be an oversight.
11248       auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
11249       auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
11250       if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD &&
11251           FoundRD->isInjectedClassName() &&
11252           declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
11253         Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
11254             << &II << 1 << 0 /*'typename' keyword used*/;
11255 
11256       // We found a type. Build an ElaboratedType, since the
11257       // typename-specifier was just sugar.
11258       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
11259       return Context.getElaboratedType(Keyword,
11260                                        QualifierLoc.getNestedNameSpecifier(),
11261                                        Context.getTypeDeclType(Type));
11262     }
11263 
11264     // C++ [dcl.type.simple]p2:
11265     //   A type-specifier of the form
11266     //     typename[opt] nested-name-specifier[opt] template-name
11267     //   is a placeholder for a deduced class type [...].
11268     if (getLangOpts().CPlusPlus17) {
11269       if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
11270         if (!DeducedTSTContext) {
11271           QualType T(QualifierLoc
11272                          ? QualifierLoc.getNestedNameSpecifier()->getAsType()
11273                          : nullptr, 0);
11274           if (!T.isNull())
11275             Diag(IILoc, diag::err_dependent_deduced_tst)
11276               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
11277           else
11278             Diag(IILoc, diag::err_deduced_tst)
11279               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
11280           NoteTemplateLocation(*TD);
11281           return QualType();
11282         }
11283         return Context.getElaboratedType(
11284             Keyword, QualifierLoc.getNestedNameSpecifier(),
11285             Context.getDeducedTemplateSpecializationType(TemplateName(TD),
11286                                                          QualType(), false));
11287       }
11288     }
11289 
11290     DiagID = Ctx ? diag::err_typename_nested_not_type
11291                  : diag::err_typename_not_type;
11292     Referenced = Result.getFoundDecl();
11293     break;
11294 
11295   case LookupResult::FoundOverloaded:
11296     DiagID = Ctx ? diag::err_typename_nested_not_type
11297                  : diag::err_typename_not_type;
11298     Referenced = *Result.begin();
11299     break;
11300 
11301   case LookupResult::Ambiguous:
11302     return QualType();
11303   }
11304 
11305   // If we get here, it's because name lookup did not find a
11306   // type. Emit an appropriate diagnostic and return an error.
11307   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11308                         IILoc);
11309   if (Ctx)
11310     Diag(IILoc, DiagID) << FullRange << Name << Ctx;
11311   else
11312     Diag(IILoc, DiagID) << FullRange << Name;
11313   if (Referenced)
11314     Diag(Referenced->getLocation(),
11315          Ctx ? diag::note_typename_member_refers_here
11316              : diag::note_typename_refers_here)
11317       << Name;
11318   return QualType();
11319 }
11320 
11321 namespace {
11322   // See Sema::RebuildTypeInCurrentInstantiation
11323   class CurrentInstantiationRebuilder
11324     : public TreeTransform<CurrentInstantiationRebuilder> {
11325     SourceLocation Loc;
11326     DeclarationName Entity;
11327 
11328   public:
11329     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
11330 
11331     CurrentInstantiationRebuilder(Sema &SemaRef,
11332                                   SourceLocation Loc,
11333                                   DeclarationName Entity)
11334     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
11335       Loc(Loc), Entity(Entity) { }
11336 
11337     /// Determine whether the given type \p T has already been
11338     /// transformed.
11339     ///
11340     /// For the purposes of type reconstruction, a type has already been
11341     /// transformed if it is NULL or if it is not dependent.
11342     bool AlreadyTransformed(QualType T) {
11343       return T.isNull() || !T->isInstantiationDependentType();
11344     }
11345 
11346     /// Returns the location of the entity whose type is being
11347     /// rebuilt.
11348     SourceLocation getBaseLocation() { return Loc; }
11349 
11350     /// Returns the name of the entity whose type is being rebuilt.
11351     DeclarationName getBaseEntity() { return Entity; }
11352 
11353     /// Sets the "base" location and entity when that
11354     /// information is known based on another transformation.
11355     void setBase(SourceLocation Loc, DeclarationName Entity) {
11356       this->Loc = Loc;
11357       this->Entity = Entity;
11358     }
11359 
11360     ExprResult TransformLambdaExpr(LambdaExpr *E) {
11361       // Lambdas never need to be transformed.
11362       return E;
11363     }
11364   };
11365 } // end anonymous namespace
11366 
11367 /// Rebuilds a type within the context of the current instantiation.
11368 ///
11369 /// The type \p T is part of the type of an out-of-line member definition of
11370 /// a class template (or class template partial specialization) that was parsed
11371 /// and constructed before we entered the scope of the class template (or
11372 /// partial specialization thereof). This routine will rebuild that type now
11373 /// that we have entered the declarator's scope, which may produce different
11374 /// canonical types, e.g.,
11375 ///
11376 /// \code
11377 /// template<typename T>
11378 /// struct X {
11379 ///   typedef T* pointer;
11380 ///   pointer data();
11381 /// };
11382 ///
11383 /// template<typename T>
11384 /// typename X<T>::pointer X<T>::data() { ... }
11385 /// \endcode
11386 ///
11387 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
11388 /// since we do not know that we can look into X<T> when we parsed the type.
11389 /// This function will rebuild the type, performing the lookup of "pointer"
11390 /// in X<T> and returning an ElaboratedType whose canonical type is the same
11391 /// as the canonical type of T*, allowing the return types of the out-of-line
11392 /// definition and the declaration to match.
11393 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
11394                                                         SourceLocation Loc,
11395                                                         DeclarationName Name) {
11396   if (!T || !T->getType()->isInstantiationDependentType())
11397     return T;
11398 
11399   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
11400   return Rebuilder.TransformType(T);
11401 }
11402 
11403 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
11404   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
11405                                           DeclarationName());
11406   return Rebuilder.TransformExpr(E);
11407 }
11408 
11409 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
11410   if (SS.isInvalid())
11411     return true;
11412 
11413   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11414   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
11415                                           DeclarationName());
11416   NestedNameSpecifierLoc Rebuilt
11417     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
11418   if (!Rebuilt)
11419     return true;
11420 
11421   SS.Adopt(Rebuilt);
11422   return false;
11423 }
11424 
11425 /// Rebuild the template parameters now that we know we're in a current
11426 /// instantiation.
11427 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
11428                                                TemplateParameterList *Params) {
11429   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11430     Decl *Param = Params->getParam(I);
11431 
11432     // There is nothing to rebuild in a type parameter.
11433     if (isa<TemplateTypeParmDecl>(Param))
11434       continue;
11435 
11436     // Rebuild the template parameter list of a template template parameter.
11437     if (TemplateTemplateParmDecl *TTP
11438         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
11439       if (RebuildTemplateParamsInCurrentInstantiation(
11440             TTP->getTemplateParameters()))
11441         return true;
11442 
11443       continue;
11444     }
11445 
11446     // Rebuild the type of a non-type template parameter.
11447     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
11448     TypeSourceInfo *NewTSI
11449       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
11450                                           NTTP->getLocation(),
11451                                           NTTP->getDeclName());
11452     if (!NewTSI)
11453       return true;
11454 
11455     if (NewTSI->getType()->isUndeducedType()) {
11456       // C++17 [temp.dep.expr]p3:
11457       //   An id-expression is type-dependent if it contains
11458       //    - an identifier associated by name lookup with a non-type
11459       //      template-parameter declared with a type that contains a
11460       //      placeholder type (7.1.7.4),
11461       NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
11462     }
11463 
11464     if (NewTSI != NTTP->getTypeSourceInfo()) {
11465       NTTP->setTypeSourceInfo(NewTSI);
11466       NTTP->setType(NewTSI->getType());
11467     }
11468   }
11469 
11470   return false;
11471 }
11472 
11473 /// Produces a formatted string that describes the binding of
11474 /// template parameters to template arguments.
11475 std::string
11476 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11477                                       const TemplateArgumentList &Args) {
11478   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
11479 }
11480 
11481 std::string
11482 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11483                                       const TemplateArgument *Args,
11484                                       unsigned NumArgs) {
11485   SmallString<128> Str;
11486   llvm::raw_svector_ostream Out(Str);
11487 
11488   if (!Params || Params->size() == 0 || NumArgs == 0)
11489     return std::string();
11490 
11491   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11492     if (I >= NumArgs)
11493       break;
11494 
11495     if (I == 0)
11496       Out << "[with ";
11497     else
11498       Out << ", ";
11499 
11500     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
11501       Out << Id->getName();
11502     } else {
11503       Out << '$' << I;
11504     }
11505 
11506     Out << " = ";
11507     Args[I].print(getPrintingPolicy(), Out,
11508                   TemplateParameterList::shouldIncludeTypeForArgument(
11509                       getPrintingPolicy(), Params, I));
11510   }
11511 
11512   Out << ']';
11513   return std::string(Out.str());
11514 }
11515 
11516 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
11517                                     CachedTokens &Toks) {
11518   if (!FD)
11519     return;
11520 
11521   auto LPT = std::make_unique<LateParsedTemplate>();
11522 
11523   // Take tokens to avoid allocations
11524   LPT->Toks.swap(Toks);
11525   LPT->D = FnD;
11526   LPT->FPO = getCurFPFeatures();
11527   LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
11528 
11529   FD->setLateTemplateParsed(true);
11530 }
11531 
11532 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
11533   if (!FD)
11534     return;
11535   FD->setLateTemplateParsed(false);
11536 }
11537 
11538 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
11539   DeclContext *DC = CurContext;
11540 
11541   while (DC) {
11542     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
11543       const FunctionDecl *FD = RD->isLocalClass();
11544       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
11545     } else if (DC->isTranslationUnit() || DC->isNamespace())
11546       return false;
11547 
11548     DC = DC->getParent();
11549   }
11550   return false;
11551 }
11552 
11553 namespace {
11554 /// Walk the path from which a declaration was instantiated, and check
11555 /// that every explicit specialization along that path is visible. This enforces
11556 /// C++ [temp.expl.spec]/6:
11557 ///
11558 ///   If a template, a member template or a member of a class template is
11559 ///   explicitly specialized then that specialization shall be declared before
11560 ///   the first use of that specialization that would cause an implicit
11561 ///   instantiation to take place, in every translation unit in which such a
11562 ///   use occurs; no diagnostic is required.
11563 ///
11564 /// and also C++ [temp.class.spec]/1:
11565 ///
11566 ///   A partial specialization shall be declared before the first use of a
11567 ///   class template specialization that would make use of the partial
11568 ///   specialization as the result of an implicit or explicit instantiation
11569 ///   in every translation unit in which such a use occurs; no diagnostic is
11570 ///   required.
11571 class ExplicitSpecializationVisibilityChecker {
11572   Sema &S;
11573   SourceLocation Loc;
11574   llvm::SmallVector<Module *, 8> Modules;
11575   Sema::AcceptableKind Kind;
11576 
11577 public:
11578   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
11579                                           Sema::AcceptableKind Kind)
11580       : S(S), Loc(Loc), Kind(Kind) {}
11581 
11582   void check(NamedDecl *ND) {
11583     if (auto *FD = dyn_cast<FunctionDecl>(ND))
11584       return checkImpl(FD);
11585     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11586       return checkImpl(RD);
11587     if (auto *VD = dyn_cast<VarDecl>(ND))
11588       return checkImpl(VD);
11589     if (auto *ED = dyn_cast<EnumDecl>(ND))
11590       return checkImpl(ED);
11591   }
11592 
11593 private:
11594   void diagnose(NamedDecl *D, bool IsPartialSpec) {
11595     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11596                               : Sema::MissingImportKind::ExplicitSpecialization;
11597     const bool Recover = true;
11598 
11599     // If we got a custom set of modules (because only a subset of the
11600     // declarations are interesting), use them, otherwise let
11601     // diagnoseMissingImport intelligently pick some.
11602     if (Modules.empty())
11603       S.diagnoseMissingImport(Loc, D, Kind, Recover);
11604     else
11605       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11606   }
11607 
11608   bool CheckMemberSpecialization(const NamedDecl *D) {
11609     return Kind == Sema::AcceptableKind::Visible
11610                ? S.hasVisibleMemberSpecialization(D)
11611                : S.hasReachableMemberSpecialization(D);
11612   }
11613 
11614   bool CheckExplicitSpecialization(const NamedDecl *D) {
11615     return Kind == Sema::AcceptableKind::Visible
11616                ? S.hasVisibleExplicitSpecialization(D)
11617                : S.hasReachableExplicitSpecialization(D);
11618   }
11619 
11620   bool CheckDeclaration(const NamedDecl *D) {
11621     return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
11622                                                  : S.hasReachableDeclaration(D);
11623   }
11624 
11625   // Check a specific declaration. There are three problematic cases:
11626   //
11627   //  1) The declaration is an explicit specialization of a template
11628   //     specialization.
11629   //  2) The declaration is an explicit specialization of a member of an
11630   //     templated class.
11631   //  3) The declaration is an instantiation of a template, and that template
11632   //     is an explicit specialization of a member of a templated class.
11633   //
11634   // We don't need to go any deeper than that, as the instantiation of the
11635   // surrounding class / etc is not triggered by whatever triggered this
11636   // instantiation, and thus should be checked elsewhere.
11637   template<typename SpecDecl>
11638   void checkImpl(SpecDecl *Spec) {
11639     bool IsHiddenExplicitSpecialization = false;
11640     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11641       IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
11642                                            ? !CheckMemberSpecialization(Spec)
11643                                            : !CheckExplicitSpecialization(Spec);
11644     } else {
11645       checkInstantiated(Spec);
11646     }
11647 
11648     if (IsHiddenExplicitSpecialization)
11649       diagnose(Spec->getMostRecentDecl(), false);
11650   }
11651 
11652   void checkInstantiated(FunctionDecl *FD) {
11653     if (auto *TD = FD->getPrimaryTemplate())
11654       checkTemplate(TD);
11655   }
11656 
11657   void checkInstantiated(CXXRecordDecl *RD) {
11658     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11659     if (!SD)
11660       return;
11661 
11662     auto From = SD->getSpecializedTemplateOrPartial();
11663     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11664       checkTemplate(TD);
11665     else if (auto *TD =
11666                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11667       if (!CheckDeclaration(TD))
11668         diagnose(TD, true);
11669       checkTemplate(TD);
11670     }
11671   }
11672 
11673   void checkInstantiated(VarDecl *RD) {
11674     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11675     if (!SD)
11676       return;
11677 
11678     auto From = SD->getSpecializedTemplateOrPartial();
11679     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11680       checkTemplate(TD);
11681     else if (auto *TD =
11682                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11683       if (!CheckDeclaration(TD))
11684         diagnose(TD, true);
11685       checkTemplate(TD);
11686     }
11687   }
11688 
11689   void checkInstantiated(EnumDecl *FD) {}
11690 
11691   template<typename TemplDecl>
11692   void checkTemplate(TemplDecl *TD) {
11693     if (TD->isMemberSpecialization()) {
11694       if (!CheckMemberSpecialization(TD))
11695         diagnose(TD->getMostRecentDecl(), false);
11696     }
11697   }
11698 };
11699 } // end anonymous namespace
11700 
11701 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11702   if (!getLangOpts().Modules)
11703     return;
11704 
11705   ExplicitSpecializationVisibilityChecker(*this, Loc,
11706                                           Sema::AcceptableKind::Visible)
11707       .check(Spec);
11708 }
11709 
11710 void Sema::checkSpecializationReachability(SourceLocation Loc,
11711                                            NamedDecl *Spec) {
11712   if (!getLangOpts().CPlusPlusModules)
11713     return checkSpecializationVisibility(Loc, Spec);
11714 
11715   ExplicitSpecializationVisibilityChecker(*this, Loc,
11716                                           Sema::AcceptableKind::Reachable)
11717       .check(Spec);
11718 }
11719 
11720 /// Returns the top most location responsible for the definition of \p N.
11721 /// If \p N is a a template specialization, this is the location
11722 /// of the top of the instantiation stack.
11723 /// Otherwise, the location of \p N is returned.
11724 SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const {
11725   if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty())
11726     return N->getLocation();
11727   if (const auto *FD = dyn_cast<FunctionDecl>(N)) {
11728     if (!FD->isFunctionTemplateSpecialization())
11729       return FD->getLocation();
11730   } else if (!isa<ClassTemplateSpecializationDecl,
11731                   VarTemplateSpecializationDecl>(N)) {
11732     return N->getLocation();
11733   }
11734   for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) {
11735     if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid())
11736       continue;
11737     return CSC.PointOfInstantiation;
11738   }
11739   return N->getLocation();
11740 }
11741