1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ overloading. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/CXXInheritance.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/DependenceFlags.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/TypeOrdering.h" 21 #include "clang/Basic/Diagnostic.h" 22 #include "clang/Basic/DiagnosticOptions.h" 23 #include "clang/Basic/PartialDiagnostic.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/Overload.h" 29 #include "clang/Sema/SemaInternal.h" 30 #include "clang/Sema/Template.h" 31 #include "clang/Sema/TemplateDeduction.h" 32 #include "llvm/ADT/DenseSet.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallString.h" 37 #include <algorithm> 38 #include <cstdlib> 39 40 using namespace clang; 41 using namespace sema; 42 43 using AllowedExplicit = Sema::AllowedExplicit; 44 45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { 46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { 47 return P->hasAttr<PassObjectSizeAttr>(); 48 }); 49 } 50 51 /// A convenience routine for creating a decayed reference to a function. 52 static ExprResult 53 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, 54 const Expr *Base, bool HadMultipleCandidates, 55 SourceLocation Loc = SourceLocation(), 56 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 57 if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) 58 return ExprError(); 59 // If FoundDecl is different from Fn (such as if one is a template 60 // and the other a specialization), make sure DiagnoseUseOfDecl is 61 // called on both. 62 // FIXME: This would be more comprehensively addressed by modifying 63 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 64 // being used. 65 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) 66 return ExprError(); 67 DeclRefExpr *DRE = new (S.Context) 68 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); 69 if (HadMultipleCandidates) 70 DRE->setHadMultipleCandidates(true); 71 72 S.MarkDeclRefReferenced(DRE, Base); 73 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { 74 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 75 S.ResolveExceptionSpec(Loc, FPT); 76 DRE->setType(Fn->getType()); 77 } 78 } 79 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), 80 CK_FunctionToPointerDecay); 81 } 82 83 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 84 bool InOverloadResolution, 85 StandardConversionSequence &SCS, 86 bool CStyle, 87 bool AllowObjCWritebackConversion); 88 89 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 90 QualType &ToType, 91 bool InOverloadResolution, 92 StandardConversionSequence &SCS, 93 bool CStyle); 94 static OverloadingResult 95 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 96 UserDefinedConversionSequence& User, 97 OverloadCandidateSet& Conversions, 98 AllowedExplicit AllowExplicit, 99 bool AllowObjCConversionOnExplicit); 100 101 static ImplicitConversionSequence::CompareKind 102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 103 const StandardConversionSequence& SCS1, 104 const StandardConversionSequence& SCS2); 105 106 static ImplicitConversionSequence::CompareKind 107 CompareQualificationConversions(Sema &S, 108 const StandardConversionSequence& SCS1, 109 const StandardConversionSequence& SCS2); 110 111 static ImplicitConversionSequence::CompareKind 112 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 113 const StandardConversionSequence& SCS1, 114 const StandardConversionSequence& SCS2); 115 116 /// GetConversionRank - Retrieve the implicit conversion rank 117 /// corresponding to the given implicit conversion kind. 118 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { 119 static const ImplicitConversionRank 120 Rank[(int)ICK_Num_Conversion_Kinds] = { 121 ICR_Exact_Match, 122 ICR_Exact_Match, 123 ICR_Exact_Match, 124 ICR_Exact_Match, 125 ICR_Exact_Match, 126 ICR_Exact_Match, 127 ICR_Promotion, 128 ICR_Promotion, 129 ICR_Promotion, 130 ICR_Conversion, 131 ICR_Conversion, 132 ICR_Conversion, 133 ICR_Conversion, 134 ICR_Conversion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_OCL_Scalar_Widening, 142 ICR_Complex_Real_Conversion, 143 ICR_Conversion, 144 ICR_Conversion, 145 ICR_Writeback_Conversion, 146 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- 147 // it was omitted by the patch that added 148 // ICK_Zero_Event_Conversion 149 ICR_C_Conversion, 150 ICR_C_Conversion_Extension 151 }; 152 return Rank[(int)Kind]; 153 } 154 155 /// GetImplicitConversionName - Return the name of this kind of 156 /// implicit conversion. 157 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 158 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 159 "No conversion", 160 "Lvalue-to-rvalue", 161 "Array-to-pointer", 162 "Function-to-pointer", 163 "Function pointer conversion", 164 "Qualification", 165 "Integral promotion", 166 "Floating point promotion", 167 "Complex promotion", 168 "Integral conversion", 169 "Floating conversion", 170 "Complex conversion", 171 "Floating-integral conversion", 172 "Pointer conversion", 173 "Pointer-to-member conversion", 174 "Boolean conversion", 175 "Compatible-types conversion", 176 "Derived-to-base conversion", 177 "Vector conversion", 178 "SVE Vector conversion", 179 "Vector splat", 180 "Complex-real conversion", 181 "Block Pointer conversion", 182 "Transparent Union Conversion", 183 "Writeback conversion", 184 "OpenCL Zero Event Conversion", 185 "C specific type conversion", 186 "Incompatible pointer conversion" 187 }; 188 return Name[Kind]; 189 } 190 191 /// StandardConversionSequence - Set the standard conversion 192 /// sequence to the identity conversion. 193 void StandardConversionSequence::setAsIdentityConversion() { 194 First = ICK_Identity; 195 Second = ICK_Identity; 196 Third = ICK_Identity; 197 DeprecatedStringLiteralToCharPtr = false; 198 QualificationIncludesObjCLifetime = false; 199 ReferenceBinding = false; 200 DirectBinding = false; 201 IsLvalueReference = true; 202 BindsToFunctionLvalue = false; 203 BindsToRvalue = false; 204 BindsImplicitObjectArgumentWithoutRefQualifier = false; 205 ObjCLifetimeConversionBinding = false; 206 CopyConstructor = nullptr; 207 } 208 209 /// getRank - Retrieve the rank of this standard conversion sequence 210 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 211 /// implicit conversions. 212 ImplicitConversionRank StandardConversionSequence::getRank() const { 213 ImplicitConversionRank Rank = ICR_Exact_Match; 214 if (GetConversionRank(First) > Rank) 215 Rank = GetConversionRank(First); 216 if (GetConversionRank(Second) > Rank) 217 Rank = GetConversionRank(Second); 218 if (GetConversionRank(Third) > Rank) 219 Rank = GetConversionRank(Third); 220 return Rank; 221 } 222 223 /// isPointerConversionToBool - Determines whether this conversion is 224 /// a conversion of a pointer or pointer-to-member to bool. This is 225 /// used as part of the ranking of standard conversion sequences 226 /// (C++ 13.3.3.2p4). 227 bool StandardConversionSequence::isPointerConversionToBool() const { 228 // Note that FromType has not necessarily been transformed by the 229 // array-to-pointer or function-to-pointer implicit conversions, so 230 // check for their presence as well as checking whether FromType is 231 // a pointer. 232 if (getToType(1)->isBooleanType() && 233 (getFromType()->isPointerType() || 234 getFromType()->isMemberPointerType() || 235 getFromType()->isObjCObjectPointerType() || 236 getFromType()->isBlockPointerType() || 237 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 238 return true; 239 240 return false; 241 } 242 243 /// isPointerConversionToVoidPointer - Determines whether this 244 /// conversion is a conversion of a pointer to a void pointer. This is 245 /// used as part of the ranking of standard conversion sequences (C++ 246 /// 13.3.3.2p4). 247 bool 248 StandardConversionSequence:: 249 isPointerConversionToVoidPointer(ASTContext& Context) const { 250 QualType FromType = getFromType(); 251 QualType ToType = getToType(1); 252 253 // Note that FromType has not necessarily been transformed by the 254 // array-to-pointer implicit conversion, so check for its presence 255 // and redo the conversion to get a pointer. 256 if (First == ICK_Array_To_Pointer) 257 FromType = Context.getArrayDecayedType(FromType); 258 259 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 260 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 261 return ToPtrType->getPointeeType()->isVoidType(); 262 263 return false; 264 } 265 266 /// Skip any implicit casts which could be either part of a narrowing conversion 267 /// or after one in an implicit conversion. 268 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, 269 const Expr *Converted) { 270 // We can have cleanups wrapping the converted expression; these need to be 271 // preserved so that destructors run if necessary. 272 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { 273 Expr *Inner = 274 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); 275 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), 276 EWC->getObjects()); 277 } 278 279 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 280 switch (ICE->getCastKind()) { 281 case CK_NoOp: 282 case CK_IntegralCast: 283 case CK_IntegralToBoolean: 284 case CK_IntegralToFloating: 285 case CK_BooleanToSignedIntegral: 286 case CK_FloatingToIntegral: 287 case CK_FloatingToBoolean: 288 case CK_FloatingCast: 289 Converted = ICE->getSubExpr(); 290 continue; 291 292 default: 293 return Converted; 294 } 295 } 296 297 return Converted; 298 } 299 300 /// Check if this standard conversion sequence represents a narrowing 301 /// conversion, according to C++11 [dcl.init.list]p7. 302 /// 303 /// \param Ctx The AST context. 304 /// \param Converted The result of applying this standard conversion sequence. 305 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 306 /// value of the expression prior to the narrowing conversion. 307 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the 308 /// type of the expression prior to the narrowing conversion. 309 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions 310 /// from floating point types to integral types should be ignored. 311 NarrowingKind StandardConversionSequence::getNarrowingKind( 312 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, 313 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { 314 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); 315 316 // C++11 [dcl.init.list]p7: 317 // A narrowing conversion is an implicit conversion ... 318 QualType FromType = getToType(0); 319 QualType ToType = getToType(1); 320 321 // A conversion to an enumeration type is narrowing if the conversion to 322 // the underlying type is narrowing. This only arises for expressions of 323 // the form 'Enum{init}'. 324 if (auto *ET = ToType->getAs<EnumType>()) 325 ToType = ET->getDecl()->getIntegerType(); 326 327 switch (Second) { 328 // 'bool' is an integral type; dispatch to the right place to handle it. 329 case ICK_Boolean_Conversion: 330 if (FromType->isRealFloatingType()) 331 goto FloatingIntegralConversion; 332 if (FromType->isIntegralOrUnscopedEnumerationType()) 333 goto IntegralConversion; 334 // -- from a pointer type or pointer-to-member type to bool, or 335 return NK_Type_Narrowing; 336 337 // -- from a floating-point type to an integer type, or 338 // 339 // -- from an integer type or unscoped enumeration type to a floating-point 340 // type, except where the source is a constant expression and the actual 341 // value after conversion will fit into the target type and will produce 342 // the original value when converted back to the original type, or 343 case ICK_Floating_Integral: 344 FloatingIntegralConversion: 345 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 346 return NK_Type_Narrowing; 347 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 348 ToType->isRealFloatingType()) { 349 if (IgnoreFloatToIntegralConversion) 350 return NK_Not_Narrowing; 351 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 352 assert(Initializer && "Unknown conversion expression"); 353 354 // If it's value-dependent, we can't tell whether it's narrowing. 355 if (Initializer->isValueDependent()) 356 return NK_Dependent_Narrowing; 357 358 if (Optional<llvm::APSInt> IntConstantValue = 359 Initializer->getIntegerConstantExpr(Ctx)) { 360 // Convert the integer to the floating type. 361 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 362 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), 363 llvm::APFloat::rmNearestTiesToEven); 364 // And back. 365 llvm::APSInt ConvertedValue = *IntConstantValue; 366 bool ignored; 367 Result.convertToInteger(ConvertedValue, 368 llvm::APFloat::rmTowardZero, &ignored); 369 // If the resulting value is different, this was a narrowing conversion. 370 if (*IntConstantValue != ConvertedValue) { 371 ConstantValue = APValue(*IntConstantValue); 372 ConstantType = Initializer->getType(); 373 return NK_Constant_Narrowing; 374 } 375 } else { 376 // Variables are always narrowings. 377 return NK_Variable_Narrowing; 378 } 379 } 380 return NK_Not_Narrowing; 381 382 // -- from long double to double or float, or from double to float, except 383 // where the source is a constant expression and the actual value after 384 // conversion is within the range of values that can be represented (even 385 // if it cannot be represented exactly), or 386 case ICK_Floating_Conversion: 387 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 388 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 389 // FromType is larger than ToType. 390 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 391 392 // If it's value-dependent, we can't tell whether it's narrowing. 393 if (Initializer->isValueDependent()) 394 return NK_Dependent_Narrowing; 395 396 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 397 // Constant! 398 assert(ConstantValue.isFloat()); 399 llvm::APFloat FloatVal = ConstantValue.getFloat(); 400 // Convert the source value into the target type. 401 bool ignored; 402 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 403 Ctx.getFloatTypeSemantics(ToType), 404 llvm::APFloat::rmNearestTiesToEven, &ignored); 405 // If there was no overflow, the source value is within the range of 406 // values that can be represented. 407 if (ConvertStatus & llvm::APFloat::opOverflow) { 408 ConstantType = Initializer->getType(); 409 return NK_Constant_Narrowing; 410 } 411 } else { 412 return NK_Variable_Narrowing; 413 } 414 } 415 return NK_Not_Narrowing; 416 417 // -- from an integer type or unscoped enumeration type to an integer type 418 // that cannot represent all the values of the original type, except where 419 // the source is a constant expression and the actual value after 420 // conversion will fit into the target type and will produce the original 421 // value when converted back to the original type. 422 case ICK_Integral_Conversion: 423 IntegralConversion: { 424 assert(FromType->isIntegralOrUnscopedEnumerationType()); 425 assert(ToType->isIntegralOrUnscopedEnumerationType()); 426 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 427 const unsigned FromWidth = Ctx.getIntWidth(FromType); 428 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 429 const unsigned ToWidth = Ctx.getIntWidth(ToType); 430 431 if (FromWidth > ToWidth || 432 (FromWidth == ToWidth && FromSigned != ToSigned) || 433 (FromSigned && !ToSigned)) { 434 // Not all values of FromType can be represented in ToType. 435 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 436 437 // If it's value-dependent, we can't tell whether it's narrowing. 438 if (Initializer->isValueDependent()) 439 return NK_Dependent_Narrowing; 440 441 Optional<llvm::APSInt> OptInitializerValue; 442 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { 443 // Such conversions on variables are always narrowing. 444 return NK_Variable_Narrowing; 445 } 446 llvm::APSInt &InitializerValue = *OptInitializerValue; 447 bool Narrowing = false; 448 if (FromWidth < ToWidth) { 449 // Negative -> unsigned is narrowing. Otherwise, more bits is never 450 // narrowing. 451 if (InitializerValue.isSigned() && InitializerValue.isNegative()) 452 Narrowing = true; 453 } else { 454 // Add a bit to the InitializerValue so we don't have to worry about 455 // signed vs. unsigned comparisons. 456 InitializerValue = InitializerValue.extend( 457 InitializerValue.getBitWidth() + 1); 458 // Convert the initializer to and from the target width and signed-ness. 459 llvm::APSInt ConvertedValue = InitializerValue; 460 ConvertedValue = ConvertedValue.trunc(ToWidth); 461 ConvertedValue.setIsSigned(ToSigned); 462 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 463 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 464 // If the result is different, this was a narrowing conversion. 465 if (ConvertedValue != InitializerValue) 466 Narrowing = true; 467 } 468 if (Narrowing) { 469 ConstantType = Initializer->getType(); 470 ConstantValue = APValue(InitializerValue); 471 return NK_Constant_Narrowing; 472 } 473 } 474 return NK_Not_Narrowing; 475 } 476 477 default: 478 // Other kinds of conversions are not narrowings. 479 return NK_Not_Narrowing; 480 } 481 } 482 483 /// dump - Print this standard conversion sequence to standard 484 /// error. Useful for debugging overloading issues. 485 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { 486 raw_ostream &OS = llvm::errs(); 487 bool PrintedSomething = false; 488 if (First != ICK_Identity) { 489 OS << GetImplicitConversionName(First); 490 PrintedSomething = true; 491 } 492 493 if (Second != ICK_Identity) { 494 if (PrintedSomething) { 495 OS << " -> "; 496 } 497 OS << GetImplicitConversionName(Second); 498 499 if (CopyConstructor) { 500 OS << " (by copy constructor)"; 501 } else if (DirectBinding) { 502 OS << " (direct reference binding)"; 503 } else if (ReferenceBinding) { 504 OS << " (reference binding)"; 505 } 506 PrintedSomething = true; 507 } 508 509 if (Third != ICK_Identity) { 510 if (PrintedSomething) { 511 OS << " -> "; 512 } 513 OS << GetImplicitConversionName(Third); 514 PrintedSomething = true; 515 } 516 517 if (!PrintedSomething) { 518 OS << "No conversions required"; 519 } 520 } 521 522 /// dump - Print this user-defined conversion sequence to standard 523 /// error. Useful for debugging overloading issues. 524 void UserDefinedConversionSequence::dump() const { 525 raw_ostream &OS = llvm::errs(); 526 if (Before.First || Before.Second || Before.Third) { 527 Before.dump(); 528 OS << " -> "; 529 } 530 if (ConversionFunction) 531 OS << '\'' << *ConversionFunction << '\''; 532 else 533 OS << "aggregate initialization"; 534 if (After.First || After.Second || After.Third) { 535 OS << " -> "; 536 After.dump(); 537 } 538 } 539 540 /// dump - Print this implicit conversion sequence to standard 541 /// error. Useful for debugging overloading issues. 542 void ImplicitConversionSequence::dump() const { 543 raw_ostream &OS = llvm::errs(); 544 if (isStdInitializerListElement()) 545 OS << "Worst std::initializer_list element conversion: "; 546 switch (ConversionKind) { 547 case StandardConversion: 548 OS << "Standard conversion: "; 549 Standard.dump(); 550 break; 551 case UserDefinedConversion: 552 OS << "User-defined conversion: "; 553 UserDefined.dump(); 554 break; 555 case EllipsisConversion: 556 OS << "Ellipsis conversion"; 557 break; 558 case AmbiguousConversion: 559 OS << "Ambiguous conversion"; 560 break; 561 case BadConversion: 562 OS << "Bad conversion"; 563 break; 564 } 565 566 OS << "\n"; 567 } 568 569 void AmbiguousConversionSequence::construct() { 570 new (&conversions()) ConversionSet(); 571 } 572 573 void AmbiguousConversionSequence::destruct() { 574 conversions().~ConversionSet(); 575 } 576 577 void 578 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 579 FromTypePtr = O.FromTypePtr; 580 ToTypePtr = O.ToTypePtr; 581 new (&conversions()) ConversionSet(O.conversions()); 582 } 583 584 namespace { 585 // Structure used by DeductionFailureInfo to store 586 // template argument information. 587 struct DFIArguments { 588 TemplateArgument FirstArg; 589 TemplateArgument SecondArg; 590 }; 591 // Structure used by DeductionFailureInfo to store 592 // template parameter and template argument information. 593 struct DFIParamWithArguments : DFIArguments { 594 TemplateParameter Param; 595 }; 596 // Structure used by DeductionFailureInfo to store template argument 597 // information and the index of the problematic call argument. 598 struct DFIDeducedMismatchArgs : DFIArguments { 599 TemplateArgumentList *TemplateArgs; 600 unsigned CallArgIndex; 601 }; 602 // Structure used by DeductionFailureInfo to store information about 603 // unsatisfied constraints. 604 struct CNSInfo { 605 TemplateArgumentList *TemplateArgs; 606 ConstraintSatisfaction Satisfaction; 607 }; 608 } 609 610 /// Convert from Sema's representation of template deduction information 611 /// to the form used in overload-candidate information. 612 DeductionFailureInfo 613 clang::MakeDeductionFailureInfo(ASTContext &Context, 614 Sema::TemplateDeductionResult TDK, 615 TemplateDeductionInfo &Info) { 616 DeductionFailureInfo Result; 617 Result.Result = static_cast<unsigned>(TDK); 618 Result.HasDiagnostic = false; 619 switch (TDK) { 620 case Sema::TDK_Invalid: 621 case Sema::TDK_InstantiationDepth: 622 case Sema::TDK_TooManyArguments: 623 case Sema::TDK_TooFewArguments: 624 case Sema::TDK_MiscellaneousDeductionFailure: 625 case Sema::TDK_CUDATargetMismatch: 626 Result.Data = nullptr; 627 break; 628 629 case Sema::TDK_Incomplete: 630 case Sema::TDK_InvalidExplicitArguments: 631 Result.Data = Info.Param.getOpaqueValue(); 632 break; 633 634 case Sema::TDK_DeducedMismatch: 635 case Sema::TDK_DeducedMismatchNested: { 636 // FIXME: Should allocate from normal heap so that we can free this later. 637 auto *Saved = new (Context) DFIDeducedMismatchArgs; 638 Saved->FirstArg = Info.FirstArg; 639 Saved->SecondArg = Info.SecondArg; 640 Saved->TemplateArgs = Info.take(); 641 Saved->CallArgIndex = Info.CallArgIndex; 642 Result.Data = Saved; 643 break; 644 } 645 646 case Sema::TDK_NonDeducedMismatch: { 647 // FIXME: Should allocate from normal heap so that we can free this later. 648 DFIArguments *Saved = new (Context) DFIArguments; 649 Saved->FirstArg = Info.FirstArg; 650 Saved->SecondArg = Info.SecondArg; 651 Result.Data = Saved; 652 break; 653 } 654 655 case Sema::TDK_IncompletePack: 656 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. 657 case Sema::TDK_Inconsistent: 658 case Sema::TDK_Underqualified: { 659 // FIXME: Should allocate from normal heap so that we can free this later. 660 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 661 Saved->Param = Info.Param; 662 Saved->FirstArg = Info.FirstArg; 663 Saved->SecondArg = Info.SecondArg; 664 Result.Data = Saved; 665 break; 666 } 667 668 case Sema::TDK_SubstitutionFailure: 669 Result.Data = Info.take(); 670 if (Info.hasSFINAEDiagnostic()) { 671 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( 672 SourceLocation(), PartialDiagnostic::NullDiagnostic()); 673 Info.takeSFINAEDiagnostic(*Diag); 674 Result.HasDiagnostic = true; 675 } 676 break; 677 678 case Sema::TDK_ConstraintsNotSatisfied: { 679 CNSInfo *Saved = new (Context) CNSInfo; 680 Saved->TemplateArgs = Info.take(); 681 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; 682 Result.Data = Saved; 683 break; 684 } 685 686 case Sema::TDK_Success: 687 case Sema::TDK_NonDependentConversionFailure: 688 llvm_unreachable("not a deduction failure"); 689 } 690 691 return Result; 692 } 693 694 void DeductionFailureInfo::Destroy() { 695 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 696 case Sema::TDK_Success: 697 case Sema::TDK_Invalid: 698 case Sema::TDK_InstantiationDepth: 699 case Sema::TDK_Incomplete: 700 case Sema::TDK_TooManyArguments: 701 case Sema::TDK_TooFewArguments: 702 case Sema::TDK_InvalidExplicitArguments: 703 case Sema::TDK_CUDATargetMismatch: 704 case Sema::TDK_NonDependentConversionFailure: 705 break; 706 707 case Sema::TDK_IncompletePack: 708 case Sema::TDK_Inconsistent: 709 case Sema::TDK_Underqualified: 710 case Sema::TDK_DeducedMismatch: 711 case Sema::TDK_DeducedMismatchNested: 712 case Sema::TDK_NonDeducedMismatch: 713 // FIXME: Destroy the data? 714 Data = nullptr; 715 break; 716 717 case Sema::TDK_SubstitutionFailure: 718 // FIXME: Destroy the template argument list? 719 Data = nullptr; 720 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 721 Diag->~PartialDiagnosticAt(); 722 HasDiagnostic = false; 723 } 724 break; 725 726 case Sema::TDK_ConstraintsNotSatisfied: 727 // FIXME: Destroy the template argument list? 728 Data = nullptr; 729 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 730 Diag->~PartialDiagnosticAt(); 731 HasDiagnostic = false; 732 } 733 break; 734 735 // Unhandled 736 case Sema::TDK_MiscellaneousDeductionFailure: 737 break; 738 } 739 } 740 741 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { 742 if (HasDiagnostic) 743 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); 744 return nullptr; 745 } 746 747 TemplateParameter DeductionFailureInfo::getTemplateParameter() { 748 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 749 case Sema::TDK_Success: 750 case Sema::TDK_Invalid: 751 case Sema::TDK_InstantiationDepth: 752 case Sema::TDK_TooManyArguments: 753 case Sema::TDK_TooFewArguments: 754 case Sema::TDK_SubstitutionFailure: 755 case Sema::TDK_DeducedMismatch: 756 case Sema::TDK_DeducedMismatchNested: 757 case Sema::TDK_NonDeducedMismatch: 758 case Sema::TDK_CUDATargetMismatch: 759 case Sema::TDK_NonDependentConversionFailure: 760 case Sema::TDK_ConstraintsNotSatisfied: 761 return TemplateParameter(); 762 763 case Sema::TDK_Incomplete: 764 case Sema::TDK_InvalidExplicitArguments: 765 return TemplateParameter::getFromOpaqueValue(Data); 766 767 case Sema::TDK_IncompletePack: 768 case Sema::TDK_Inconsistent: 769 case Sema::TDK_Underqualified: 770 return static_cast<DFIParamWithArguments*>(Data)->Param; 771 772 // Unhandled 773 case Sema::TDK_MiscellaneousDeductionFailure: 774 break; 775 } 776 777 return TemplateParameter(); 778 } 779 780 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { 781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 782 case Sema::TDK_Success: 783 case Sema::TDK_Invalid: 784 case Sema::TDK_InstantiationDepth: 785 case Sema::TDK_TooManyArguments: 786 case Sema::TDK_TooFewArguments: 787 case Sema::TDK_Incomplete: 788 case Sema::TDK_IncompletePack: 789 case Sema::TDK_InvalidExplicitArguments: 790 case Sema::TDK_Inconsistent: 791 case Sema::TDK_Underqualified: 792 case Sema::TDK_NonDeducedMismatch: 793 case Sema::TDK_CUDATargetMismatch: 794 case Sema::TDK_NonDependentConversionFailure: 795 return nullptr; 796 797 case Sema::TDK_DeducedMismatch: 798 case Sema::TDK_DeducedMismatchNested: 799 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; 800 801 case Sema::TDK_SubstitutionFailure: 802 return static_cast<TemplateArgumentList*>(Data); 803 804 case Sema::TDK_ConstraintsNotSatisfied: 805 return static_cast<CNSInfo*>(Data)->TemplateArgs; 806 807 // Unhandled 808 case Sema::TDK_MiscellaneousDeductionFailure: 809 break; 810 } 811 812 return nullptr; 813 } 814 815 const TemplateArgument *DeductionFailureInfo::getFirstArg() { 816 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 817 case Sema::TDK_Success: 818 case Sema::TDK_Invalid: 819 case Sema::TDK_InstantiationDepth: 820 case Sema::TDK_Incomplete: 821 case Sema::TDK_TooManyArguments: 822 case Sema::TDK_TooFewArguments: 823 case Sema::TDK_InvalidExplicitArguments: 824 case Sema::TDK_SubstitutionFailure: 825 case Sema::TDK_CUDATargetMismatch: 826 case Sema::TDK_NonDependentConversionFailure: 827 case Sema::TDK_ConstraintsNotSatisfied: 828 return nullptr; 829 830 case Sema::TDK_IncompletePack: 831 case Sema::TDK_Inconsistent: 832 case Sema::TDK_Underqualified: 833 case Sema::TDK_DeducedMismatch: 834 case Sema::TDK_DeducedMismatchNested: 835 case Sema::TDK_NonDeducedMismatch: 836 return &static_cast<DFIArguments*>(Data)->FirstArg; 837 838 // Unhandled 839 case Sema::TDK_MiscellaneousDeductionFailure: 840 break; 841 } 842 843 return nullptr; 844 } 845 846 const TemplateArgument *DeductionFailureInfo::getSecondArg() { 847 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 848 case Sema::TDK_Success: 849 case Sema::TDK_Invalid: 850 case Sema::TDK_InstantiationDepth: 851 case Sema::TDK_Incomplete: 852 case Sema::TDK_IncompletePack: 853 case Sema::TDK_TooManyArguments: 854 case Sema::TDK_TooFewArguments: 855 case Sema::TDK_InvalidExplicitArguments: 856 case Sema::TDK_SubstitutionFailure: 857 case Sema::TDK_CUDATargetMismatch: 858 case Sema::TDK_NonDependentConversionFailure: 859 case Sema::TDK_ConstraintsNotSatisfied: 860 return nullptr; 861 862 case Sema::TDK_Inconsistent: 863 case Sema::TDK_Underqualified: 864 case Sema::TDK_DeducedMismatch: 865 case Sema::TDK_DeducedMismatchNested: 866 case Sema::TDK_NonDeducedMismatch: 867 return &static_cast<DFIArguments*>(Data)->SecondArg; 868 869 // Unhandled 870 case Sema::TDK_MiscellaneousDeductionFailure: 871 break; 872 } 873 874 return nullptr; 875 } 876 877 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { 878 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 879 case Sema::TDK_DeducedMismatch: 880 case Sema::TDK_DeducedMismatchNested: 881 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; 882 883 default: 884 return llvm::None; 885 } 886 } 887 888 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 889 OverloadedOperatorKind Op) { 890 if (!AllowRewrittenCandidates) 891 return false; 892 return Op == OO_EqualEqual || Op == OO_Spaceship; 893 } 894 895 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 896 ASTContext &Ctx, const FunctionDecl *FD) { 897 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator())) 898 return false; 899 // Don't bother adding a reversed candidate that can never be a better 900 // match than the non-reversed version. 901 return FD->getNumParams() != 2 || 902 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), 903 FD->getParamDecl(1)->getType()) || 904 FD->hasAttr<EnableIfAttr>(); 905 } 906 907 void OverloadCandidateSet::destroyCandidates() { 908 for (iterator i = begin(), e = end(); i != e; ++i) { 909 for (auto &C : i->Conversions) 910 C.~ImplicitConversionSequence(); 911 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) 912 i->DeductionFailure.Destroy(); 913 } 914 } 915 916 void OverloadCandidateSet::clear(CandidateSetKind CSK) { 917 destroyCandidates(); 918 SlabAllocator.Reset(); 919 NumInlineBytesUsed = 0; 920 Candidates.clear(); 921 Functions.clear(); 922 Kind = CSK; 923 } 924 925 namespace { 926 class UnbridgedCastsSet { 927 struct Entry { 928 Expr **Addr; 929 Expr *Saved; 930 }; 931 SmallVector<Entry, 2> Entries; 932 933 public: 934 void save(Sema &S, Expr *&E) { 935 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 936 Entry entry = { &E, E }; 937 Entries.push_back(entry); 938 E = S.stripARCUnbridgedCast(E); 939 } 940 941 void restore() { 942 for (SmallVectorImpl<Entry>::iterator 943 i = Entries.begin(), e = Entries.end(); i != e; ++i) 944 *i->Addr = i->Saved; 945 } 946 }; 947 } 948 949 /// checkPlaceholderForOverload - Do any interesting placeholder-like 950 /// preprocessing on the given expression. 951 /// 952 /// \param unbridgedCasts a collection to which to add unbridged casts; 953 /// without this, they will be immediately diagnosed as errors 954 /// 955 /// Return true on unrecoverable error. 956 static bool 957 checkPlaceholderForOverload(Sema &S, Expr *&E, 958 UnbridgedCastsSet *unbridgedCasts = nullptr) { 959 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 960 // We can't handle overloaded expressions here because overload 961 // resolution might reasonably tweak them. 962 if (placeholder->getKind() == BuiltinType::Overload) return false; 963 964 // If the context potentially accepts unbridged ARC casts, strip 965 // the unbridged cast and add it to the collection for later restoration. 966 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 967 unbridgedCasts) { 968 unbridgedCasts->save(S, E); 969 return false; 970 } 971 972 // Go ahead and check everything else. 973 ExprResult result = S.CheckPlaceholderExpr(E); 974 if (result.isInvalid()) 975 return true; 976 977 E = result.get(); 978 return false; 979 } 980 981 // Nothing to do. 982 return false; 983 } 984 985 /// checkArgPlaceholdersForOverload - Check a set of call operands for 986 /// placeholders. 987 static bool checkArgPlaceholdersForOverload(Sema &S, 988 MultiExprArg Args, 989 UnbridgedCastsSet &unbridged) { 990 for (unsigned i = 0, e = Args.size(); i != e; ++i) 991 if (checkPlaceholderForOverload(S, Args[i], &unbridged)) 992 return true; 993 994 return false; 995 } 996 997 /// Determine whether the given New declaration is an overload of the 998 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if 999 /// New and Old cannot be overloaded, e.g., if New has the same signature as 1000 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't 1001 /// functions (or function templates) at all. When it does return Ovl_Match or 1002 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be 1003 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying 1004 /// declaration. 1005 /// 1006 /// Example: Given the following input: 1007 /// 1008 /// void f(int, float); // #1 1009 /// void f(int, int); // #2 1010 /// int f(int, int); // #3 1011 /// 1012 /// When we process #1, there is no previous declaration of "f", so IsOverload 1013 /// will not be used. 1014 /// 1015 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing 1016 /// the parameter types, we see that #1 and #2 are overloaded (since they have 1017 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is 1018 /// unchanged. 1019 /// 1020 /// When we process #3, Old is an overload set containing #1 and #2. We compare 1021 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then 1022 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of 1023 /// functions are not part of the signature), IsOverload returns Ovl_Match and 1024 /// MatchedDecl will be set to point to the FunctionDecl for #2. 1025 /// 1026 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class 1027 /// by a using declaration. The rules for whether to hide shadow declarations 1028 /// ignore some properties which otherwise figure into a function template's 1029 /// signature. 1030 Sema::OverloadKind 1031 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 1032 NamedDecl *&Match, bool NewIsUsingDecl) { 1033 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 1034 I != E; ++I) { 1035 NamedDecl *OldD = *I; 1036 1037 bool OldIsUsingDecl = false; 1038 if (isa<UsingShadowDecl>(OldD)) { 1039 OldIsUsingDecl = true; 1040 1041 // We can always introduce two using declarations into the same 1042 // context, even if they have identical signatures. 1043 if (NewIsUsingDecl) continue; 1044 1045 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 1046 } 1047 1048 // A using-declaration does not conflict with another declaration 1049 // if one of them is hidden. 1050 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) 1051 continue; 1052 1053 // If either declaration was introduced by a using declaration, 1054 // we'll need to use slightly different rules for matching. 1055 // Essentially, these rules are the normal rules, except that 1056 // function templates hide function templates with different 1057 // return types or template parameter lists. 1058 bool UseMemberUsingDeclRules = 1059 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && 1060 !New->getFriendObjectKind(); 1061 1062 if (FunctionDecl *OldF = OldD->getAsFunction()) { 1063 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 1064 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 1065 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 1066 continue; 1067 } 1068 1069 if (!isa<FunctionTemplateDecl>(OldD) && 1070 !shouldLinkPossiblyHiddenDecl(*I, New)) 1071 continue; 1072 1073 Match = *I; 1074 return Ovl_Match; 1075 } 1076 1077 // Builtins that have custom typechecking or have a reference should 1078 // not be overloadable or redeclarable. 1079 if (!getASTContext().canBuiltinBeRedeclared(OldF)) { 1080 Match = *I; 1081 return Ovl_NonFunction; 1082 } 1083 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { 1084 // We can overload with these, which can show up when doing 1085 // redeclaration checks for UsingDecls. 1086 assert(Old.getLookupKind() == LookupUsingDeclName); 1087 } else if (isa<TagDecl>(OldD)) { 1088 // We can always overload with tags by hiding them. 1089 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { 1090 // Optimistically assume that an unresolved using decl will 1091 // overload; if it doesn't, we'll have to diagnose during 1092 // template instantiation. 1093 // 1094 // Exception: if the scope is dependent and this is not a class 1095 // member, the using declaration can only introduce an enumerator. 1096 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { 1097 Match = *I; 1098 return Ovl_NonFunction; 1099 } 1100 } else { 1101 // (C++ 13p1): 1102 // Only function declarations can be overloaded; object and type 1103 // declarations cannot be overloaded. 1104 Match = *I; 1105 return Ovl_NonFunction; 1106 } 1107 } 1108 1109 // C++ [temp.friend]p1: 1110 // For a friend function declaration that is not a template declaration: 1111 // -- if the name of the friend is a qualified or unqualified template-id, 1112 // [...], otherwise 1113 // -- if the name of the friend is a qualified-id and a matching 1114 // non-template function is found in the specified class or namespace, 1115 // the friend declaration refers to that function, otherwise, 1116 // -- if the name of the friend is a qualified-id and a matching function 1117 // template is found in the specified class or namespace, the friend 1118 // declaration refers to the deduced specialization of that function 1119 // template, otherwise 1120 // -- the name shall be an unqualified-id [...] 1121 // If we get here for a qualified friend declaration, we've just reached the 1122 // third bullet. If the type of the friend is dependent, skip this lookup 1123 // until instantiation. 1124 if (New->getFriendObjectKind() && New->getQualifier() && 1125 !New->getDescribedFunctionTemplate() && 1126 !New->getDependentSpecializationInfo() && 1127 !New->getType()->isDependentType()) { 1128 LookupResult TemplateSpecResult(LookupResult::Temporary, Old); 1129 TemplateSpecResult.addAllDecls(Old); 1130 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, 1131 /*QualifiedFriend*/true)) { 1132 New->setInvalidDecl(); 1133 return Ovl_Overload; 1134 } 1135 1136 Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); 1137 return Ovl_Match; 1138 } 1139 1140 return Ovl_Overload; 1141 } 1142 1143 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 1144 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, 1145 bool ConsiderRequiresClauses) { 1146 // C++ [basic.start.main]p2: This function shall not be overloaded. 1147 if (New->isMain()) 1148 return false; 1149 1150 // MSVCRT user defined entry points cannot be overloaded. 1151 if (New->isMSVCRTEntryPoint()) 1152 return false; 1153 1154 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 1155 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 1156 1157 // C++ [temp.fct]p2: 1158 // A function template can be overloaded with other function templates 1159 // and with normal (non-template) functions. 1160 if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) 1161 return true; 1162 1163 // Is the function New an overload of the function Old? 1164 QualType OldQType = Context.getCanonicalType(Old->getType()); 1165 QualType NewQType = Context.getCanonicalType(New->getType()); 1166 1167 // Compare the signatures (C++ 1.3.10) of the two functions to 1168 // determine whether they are overloads. If we find any mismatch 1169 // in the signature, they are overloads. 1170 1171 // If either of these functions is a K&R-style function (no 1172 // prototype), then we consider them to have matching signatures. 1173 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 1174 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 1175 return false; 1176 1177 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); 1178 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); 1179 1180 // The signature of a function includes the types of its 1181 // parameters (C++ 1.3.10), which includes the presence or absence 1182 // of the ellipsis; see C++ DR 357). 1183 if (OldQType != NewQType && 1184 (OldType->getNumParams() != NewType->getNumParams() || 1185 OldType->isVariadic() != NewType->isVariadic() || 1186 !FunctionParamTypesAreEqual(OldType, NewType))) 1187 return true; 1188 1189 // C++ [temp.over.link]p4: 1190 // The signature of a function template consists of its function 1191 // signature, its return type and its template parameter list. The names 1192 // of the template parameters are significant only for establishing the 1193 // relationship between the template parameters and the rest of the 1194 // signature. 1195 // 1196 // We check the return type and template parameter lists for function 1197 // templates first; the remaining checks follow. 1198 // 1199 // However, we don't consider either of these when deciding whether 1200 // a member introduced by a shadow declaration is hidden. 1201 if (!UseMemberUsingDeclRules && NewTemplate && 1202 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 1203 OldTemplate->getTemplateParameters(), 1204 false, TPL_TemplateMatch) || 1205 !Context.hasSameType(Old->getDeclaredReturnType(), 1206 New->getDeclaredReturnType()))) 1207 return true; 1208 1209 // If the function is a class member, its signature includes the 1210 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 1211 // 1212 // As part of this, also check whether one of the member functions 1213 // is static, in which case they are not overloads (C++ 1214 // 13.1p2). While not part of the definition of the signature, 1215 // this check is important to determine whether these functions 1216 // can be overloaded. 1217 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 1218 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 1219 if (OldMethod && NewMethod && 1220 !OldMethod->isStatic() && !NewMethod->isStatic()) { 1221 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { 1222 if (!UseMemberUsingDeclRules && 1223 (OldMethod->getRefQualifier() == RQ_None || 1224 NewMethod->getRefQualifier() == RQ_None)) { 1225 // C++0x [over.load]p2: 1226 // - Member function declarations with the same name and the same 1227 // parameter-type-list as well as member function template 1228 // declarations with the same name, the same parameter-type-list, and 1229 // the same template parameter lists cannot be overloaded if any of 1230 // them, but not all, have a ref-qualifier (8.3.5). 1231 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 1232 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 1233 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 1234 } 1235 return true; 1236 } 1237 1238 // We may not have applied the implicit const for a constexpr member 1239 // function yet (because we haven't yet resolved whether this is a static 1240 // or non-static member function). Add it now, on the assumption that this 1241 // is a redeclaration of OldMethod. 1242 auto OldQuals = OldMethod->getMethodQualifiers(); 1243 auto NewQuals = NewMethod->getMethodQualifiers(); 1244 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && 1245 !isa<CXXConstructorDecl>(NewMethod)) 1246 NewQuals.addConst(); 1247 // We do not allow overloading based off of '__restrict'. 1248 OldQuals.removeRestrict(); 1249 NewQuals.removeRestrict(); 1250 if (OldQuals != NewQuals) 1251 return true; 1252 } 1253 1254 // Though pass_object_size is placed on parameters and takes an argument, we 1255 // consider it to be a function-level modifier for the sake of function 1256 // identity. Either the function has one or more parameters with 1257 // pass_object_size or it doesn't. 1258 if (functionHasPassObjectSizeParams(New) != 1259 functionHasPassObjectSizeParams(Old)) 1260 return true; 1261 1262 // enable_if attributes are an order-sensitive part of the signature. 1263 for (specific_attr_iterator<EnableIfAttr> 1264 NewI = New->specific_attr_begin<EnableIfAttr>(), 1265 NewE = New->specific_attr_end<EnableIfAttr>(), 1266 OldI = Old->specific_attr_begin<EnableIfAttr>(), 1267 OldE = Old->specific_attr_end<EnableIfAttr>(); 1268 NewI != NewE || OldI != OldE; ++NewI, ++OldI) { 1269 if (NewI == NewE || OldI == OldE) 1270 return true; 1271 llvm::FoldingSetNodeID NewID, OldID; 1272 NewI->getCond()->Profile(NewID, Context, true); 1273 OldI->getCond()->Profile(OldID, Context, true); 1274 if (NewID != OldID) 1275 return true; 1276 } 1277 1278 if (getLangOpts().CUDA && ConsiderCudaAttrs) { 1279 // Don't allow overloading of destructors. (In theory we could, but it 1280 // would be a giant change to clang.) 1281 if (!isa<CXXDestructorDecl>(New)) { 1282 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), 1283 OldTarget = IdentifyCUDATarget(Old); 1284 if (NewTarget != CFT_InvalidTarget) { 1285 assert((OldTarget != CFT_InvalidTarget) && 1286 "Unexpected invalid target."); 1287 1288 // Allow overloading of functions with same signature and different CUDA 1289 // target attributes. 1290 if (NewTarget != OldTarget) 1291 return true; 1292 } 1293 } 1294 } 1295 1296 if (ConsiderRequiresClauses) { 1297 Expr *NewRC = New->getTrailingRequiresClause(), 1298 *OldRC = Old->getTrailingRequiresClause(); 1299 if ((NewRC != nullptr) != (OldRC != nullptr)) 1300 // RC are most certainly different - these are overloads. 1301 return true; 1302 1303 if (NewRC) { 1304 llvm::FoldingSetNodeID NewID, OldID; 1305 NewRC->Profile(NewID, Context, /*Canonical=*/true); 1306 OldRC->Profile(OldID, Context, /*Canonical=*/true); 1307 if (NewID != OldID) 1308 // RCs are not equivalent - these are overloads. 1309 return true; 1310 } 1311 } 1312 1313 // The signatures match; this is not an overload. 1314 return false; 1315 } 1316 1317 /// Tries a user-defined conversion from From to ToType. 1318 /// 1319 /// Produces an implicit conversion sequence for when a standard conversion 1320 /// is not an option. See TryImplicitConversion for more information. 1321 static ImplicitConversionSequence 1322 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1323 bool SuppressUserConversions, 1324 AllowedExplicit AllowExplicit, 1325 bool InOverloadResolution, 1326 bool CStyle, 1327 bool AllowObjCWritebackConversion, 1328 bool AllowObjCConversionOnExplicit) { 1329 ImplicitConversionSequence ICS; 1330 1331 if (SuppressUserConversions) { 1332 // We're not in the case above, so there is no conversion that 1333 // we can perform. 1334 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1335 return ICS; 1336 } 1337 1338 // Attempt user-defined conversion. 1339 OverloadCandidateSet Conversions(From->getExprLoc(), 1340 OverloadCandidateSet::CSK_Normal); 1341 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, 1342 Conversions, AllowExplicit, 1343 AllowObjCConversionOnExplicit)) { 1344 case OR_Success: 1345 case OR_Deleted: 1346 ICS.setUserDefined(); 1347 // C++ [over.ics.user]p4: 1348 // A conversion of an expression of class type to the same class 1349 // type is given Exact Match rank, and a conversion of an 1350 // expression of class type to a base class of that type is 1351 // given Conversion rank, in spite of the fact that a copy 1352 // constructor (i.e., a user-defined conversion function) is 1353 // called for those cases. 1354 if (CXXConstructorDecl *Constructor 1355 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1356 QualType FromCanon 1357 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1358 QualType ToCanon 1359 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1360 if (Constructor->isCopyConstructor() && 1361 (FromCanon == ToCanon || 1362 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { 1363 // Turn this into a "standard" conversion sequence, so that it 1364 // gets ranked with standard conversion sequences. 1365 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; 1366 ICS.setStandard(); 1367 ICS.Standard.setAsIdentityConversion(); 1368 ICS.Standard.setFromType(From->getType()); 1369 ICS.Standard.setAllToTypes(ToType); 1370 ICS.Standard.CopyConstructor = Constructor; 1371 ICS.Standard.FoundCopyConstructor = Found; 1372 if (ToCanon != FromCanon) 1373 ICS.Standard.Second = ICK_Derived_To_Base; 1374 } 1375 } 1376 break; 1377 1378 case OR_Ambiguous: 1379 ICS.setAmbiguous(); 1380 ICS.Ambiguous.setFromType(From->getType()); 1381 ICS.Ambiguous.setToType(ToType); 1382 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1383 Cand != Conversions.end(); ++Cand) 1384 if (Cand->Best) 1385 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 1386 break; 1387 1388 // Fall through. 1389 case OR_No_Viable_Function: 1390 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1391 break; 1392 } 1393 1394 return ICS; 1395 } 1396 1397 /// TryImplicitConversion - Attempt to perform an implicit conversion 1398 /// from the given expression (Expr) to the given type (ToType). This 1399 /// function returns an implicit conversion sequence that can be used 1400 /// to perform the initialization. Given 1401 /// 1402 /// void f(float f); 1403 /// void g(int i) { f(i); } 1404 /// 1405 /// this routine would produce an implicit conversion sequence to 1406 /// describe the initialization of f from i, which will be a standard 1407 /// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1408 /// 4.1) followed by a floating-integral conversion (C++ 4.9). 1409 // 1410 /// Note that this routine only determines how the conversion can be 1411 /// performed; it does not actually perform the conversion. As such, 1412 /// it will not produce any diagnostics if no conversion is available, 1413 /// but will instead return an implicit conversion sequence of kind 1414 /// "BadConversion". 1415 /// 1416 /// If @p SuppressUserConversions, then user-defined conversions are 1417 /// not permitted. 1418 /// If @p AllowExplicit, then explicit user-defined conversions are 1419 /// permitted. 1420 /// 1421 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1422 /// writeback conversion, which allows __autoreleasing id* parameters to 1423 /// be initialized with __strong id* or __weak id* arguments. 1424 static ImplicitConversionSequence 1425 TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1426 bool SuppressUserConversions, 1427 AllowedExplicit AllowExplicit, 1428 bool InOverloadResolution, 1429 bool CStyle, 1430 bool AllowObjCWritebackConversion, 1431 bool AllowObjCConversionOnExplicit) { 1432 ImplicitConversionSequence ICS; 1433 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1434 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1435 ICS.setStandard(); 1436 return ICS; 1437 } 1438 1439 if (!S.getLangOpts().CPlusPlus) { 1440 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1441 return ICS; 1442 } 1443 1444 // C++ [over.ics.user]p4: 1445 // A conversion of an expression of class type to the same class 1446 // type is given Exact Match rank, and a conversion of an 1447 // expression of class type to a base class of that type is 1448 // given Conversion rank, in spite of the fact that a copy/move 1449 // constructor (i.e., a user-defined conversion function) is 1450 // called for those cases. 1451 QualType FromType = From->getType(); 1452 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1453 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1454 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { 1455 ICS.setStandard(); 1456 ICS.Standard.setAsIdentityConversion(); 1457 ICS.Standard.setFromType(FromType); 1458 ICS.Standard.setAllToTypes(ToType); 1459 1460 // We don't actually check at this point whether there is a valid 1461 // copy/move constructor, since overloading just assumes that it 1462 // exists. When we actually perform initialization, we'll find the 1463 // appropriate constructor to copy the returned object, if needed. 1464 ICS.Standard.CopyConstructor = nullptr; 1465 1466 // Determine whether this is considered a derived-to-base conversion. 1467 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1468 ICS.Standard.Second = ICK_Derived_To_Base; 1469 1470 return ICS; 1471 } 1472 1473 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1474 AllowExplicit, InOverloadResolution, CStyle, 1475 AllowObjCWritebackConversion, 1476 AllowObjCConversionOnExplicit); 1477 } 1478 1479 ImplicitConversionSequence 1480 Sema::TryImplicitConversion(Expr *From, QualType ToType, 1481 bool SuppressUserConversions, 1482 AllowedExplicit AllowExplicit, 1483 bool InOverloadResolution, 1484 bool CStyle, 1485 bool AllowObjCWritebackConversion) { 1486 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, 1487 AllowExplicit, InOverloadResolution, CStyle, 1488 AllowObjCWritebackConversion, 1489 /*AllowObjCConversionOnExplicit=*/false); 1490 } 1491 1492 /// PerformImplicitConversion - Perform an implicit conversion of the 1493 /// expression From to the type ToType. Returns the 1494 /// converted expression. Flavor is the kind of conversion we're 1495 /// performing, used in the error message. If @p AllowExplicit, 1496 /// explicit user-defined conversions are permitted. 1497 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1498 AssignmentAction Action, 1499 bool AllowExplicit) { 1500 if (checkPlaceholderForOverload(*this, From)) 1501 return ExprError(); 1502 1503 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1504 bool AllowObjCWritebackConversion 1505 = getLangOpts().ObjCAutoRefCount && 1506 (Action == AA_Passing || Action == AA_Sending); 1507 if (getLangOpts().ObjC) 1508 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, 1509 From->getType(), From); 1510 ImplicitConversionSequence ICS = ::TryImplicitConversion( 1511 *this, From, ToType, 1512 /*SuppressUserConversions=*/false, 1513 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, 1514 /*InOverloadResolution=*/false, 1515 /*CStyle=*/false, AllowObjCWritebackConversion, 1516 /*AllowObjCConversionOnExplicit=*/false); 1517 return PerformImplicitConversion(From, ToType, ICS, Action); 1518 } 1519 1520 /// Determine whether the conversion from FromType to ToType is a valid 1521 /// conversion that strips "noexcept" or "noreturn" off the nested function 1522 /// type. 1523 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, 1524 QualType &ResultTy) { 1525 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1526 return false; 1527 1528 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1529 // or F(t noexcept) -> F(t) 1530 // where F adds one of the following at most once: 1531 // - a pointer 1532 // - a member pointer 1533 // - a block pointer 1534 // Changes here need matching changes in FindCompositePointerType. 1535 CanQualType CanTo = Context.getCanonicalType(ToType); 1536 CanQualType CanFrom = Context.getCanonicalType(FromType); 1537 Type::TypeClass TyClass = CanTo->getTypeClass(); 1538 if (TyClass != CanFrom->getTypeClass()) return false; 1539 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1540 if (TyClass == Type::Pointer) { 1541 CanTo = CanTo.castAs<PointerType>()->getPointeeType(); 1542 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); 1543 } else if (TyClass == Type::BlockPointer) { 1544 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); 1545 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); 1546 } else if (TyClass == Type::MemberPointer) { 1547 auto ToMPT = CanTo.castAs<MemberPointerType>(); 1548 auto FromMPT = CanFrom.castAs<MemberPointerType>(); 1549 // A function pointer conversion cannot change the class of the function. 1550 if (ToMPT->getClass() != FromMPT->getClass()) 1551 return false; 1552 CanTo = ToMPT->getPointeeType(); 1553 CanFrom = FromMPT->getPointeeType(); 1554 } else { 1555 return false; 1556 } 1557 1558 TyClass = CanTo->getTypeClass(); 1559 if (TyClass != CanFrom->getTypeClass()) return false; 1560 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1561 return false; 1562 } 1563 1564 const auto *FromFn = cast<FunctionType>(CanFrom); 1565 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); 1566 1567 const auto *ToFn = cast<FunctionType>(CanTo); 1568 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); 1569 1570 bool Changed = false; 1571 1572 // Drop 'noreturn' if not present in target type. 1573 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { 1574 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); 1575 Changed = true; 1576 } 1577 1578 // Drop 'noexcept' if not present in target type. 1579 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { 1580 const auto *ToFPT = cast<FunctionProtoType>(ToFn); 1581 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { 1582 FromFn = cast<FunctionType>( 1583 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), 1584 EST_None) 1585 .getTypePtr()); 1586 Changed = true; 1587 } 1588 1589 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid 1590 // only if the ExtParameterInfo lists of the two function prototypes can be 1591 // merged and the merged list is identical to ToFPT's ExtParameterInfo list. 1592 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 1593 bool CanUseToFPT, CanUseFromFPT; 1594 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, 1595 CanUseFromFPT, NewParamInfos) && 1596 CanUseToFPT && !CanUseFromFPT) { 1597 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); 1598 ExtInfo.ExtParameterInfos = 1599 NewParamInfos.empty() ? nullptr : NewParamInfos.data(); 1600 QualType QT = Context.getFunctionType(FromFPT->getReturnType(), 1601 FromFPT->getParamTypes(), ExtInfo); 1602 FromFn = QT->getAs<FunctionType>(); 1603 Changed = true; 1604 } 1605 } 1606 1607 if (!Changed) 1608 return false; 1609 1610 assert(QualType(FromFn, 0).isCanonical()); 1611 if (QualType(FromFn, 0) != CanTo) return false; 1612 1613 ResultTy = ToType; 1614 return true; 1615 } 1616 1617 /// Determine whether the conversion from FromType to ToType is a valid 1618 /// vector conversion. 1619 /// 1620 /// \param ICK Will be set to the vector conversion kind, if this is a vector 1621 /// conversion. 1622 static bool IsVectorConversion(Sema &S, QualType FromType, 1623 QualType ToType, ImplicitConversionKind &ICK) { 1624 // We need at least one of these types to be a vector type to have a vector 1625 // conversion. 1626 if (!ToType->isVectorType() && !FromType->isVectorType()) 1627 return false; 1628 1629 // Identical types require no conversions. 1630 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) 1631 return false; 1632 1633 // There are no conversions between extended vector types, only identity. 1634 if (ToType->isExtVectorType()) { 1635 // There are no conversions between extended vector types other than the 1636 // identity conversion. 1637 if (FromType->isExtVectorType()) 1638 return false; 1639 1640 // Vector splat from any arithmetic type to a vector. 1641 if (FromType->isArithmeticType()) { 1642 ICK = ICK_Vector_Splat; 1643 return true; 1644 } 1645 } 1646 1647 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType()) 1648 if (S.Context.areCompatibleSveTypes(FromType, ToType) || 1649 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { 1650 ICK = ICK_SVE_Vector_Conversion; 1651 return true; 1652 } 1653 1654 // We can perform the conversion between vector types in the following cases: 1655 // 1)vector types are equivalent AltiVec and GCC vector types 1656 // 2)lax vector conversions are permitted and the vector types are of the 1657 // same size 1658 // 3)the destination type does not have the ARM MVE strict-polymorphism 1659 // attribute, which inhibits lax vector conversion for overload resolution 1660 // only 1661 if (ToType->isVectorType() && FromType->isVectorType()) { 1662 if (S.Context.areCompatibleVectorTypes(FromType, ToType) || 1663 (S.isLaxVectorConversion(FromType, ToType) && 1664 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { 1665 ICK = ICK_Vector_Conversion; 1666 return true; 1667 } 1668 } 1669 1670 return false; 1671 } 1672 1673 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 1674 bool InOverloadResolution, 1675 StandardConversionSequence &SCS, 1676 bool CStyle); 1677 1678 /// IsStandardConversion - Determines whether there is a standard 1679 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1680 /// expression From to the type ToType. Standard conversion sequences 1681 /// only consider non-class types; for conversions that involve class 1682 /// types, use TryImplicitConversion. If a conversion exists, SCS will 1683 /// contain the standard conversion sequence required to perform this 1684 /// conversion and this routine will return true. Otherwise, this 1685 /// routine will return false and the value of SCS is unspecified. 1686 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1687 bool InOverloadResolution, 1688 StandardConversionSequence &SCS, 1689 bool CStyle, 1690 bool AllowObjCWritebackConversion) { 1691 QualType FromType = From->getType(); 1692 1693 // Standard conversions (C++ [conv]) 1694 SCS.setAsIdentityConversion(); 1695 SCS.IncompatibleObjC = false; 1696 SCS.setFromType(FromType); 1697 SCS.CopyConstructor = nullptr; 1698 1699 // There are no standard conversions for class types in C++, so 1700 // abort early. When overloading in C, however, we do permit them. 1701 if (S.getLangOpts().CPlusPlus && 1702 (FromType->isRecordType() || ToType->isRecordType())) 1703 return false; 1704 1705 // The first conversion can be an lvalue-to-rvalue conversion, 1706 // array-to-pointer conversion, or function-to-pointer conversion 1707 // (C++ 4p1). 1708 1709 if (FromType == S.Context.OverloadTy) { 1710 DeclAccessPair AccessPair; 1711 if (FunctionDecl *Fn 1712 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1713 AccessPair)) { 1714 // We were able to resolve the address of the overloaded function, 1715 // so we can convert to the type of that function. 1716 FromType = Fn->getType(); 1717 SCS.setFromType(FromType); 1718 1719 // we can sometimes resolve &foo<int> regardless of ToType, so check 1720 // if the type matches (identity) or we are converting to bool 1721 if (!S.Context.hasSameUnqualifiedType( 1722 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1723 QualType resultTy; 1724 // if the function type matches except for [[noreturn]], it's ok 1725 if (!S.IsFunctionConversion(FromType, 1726 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1727 // otherwise, only a boolean conversion is standard 1728 if (!ToType->isBooleanType()) 1729 return false; 1730 } 1731 1732 // Check if the "from" expression is taking the address of an overloaded 1733 // function and recompute the FromType accordingly. Take advantage of the 1734 // fact that non-static member functions *must* have such an address-of 1735 // expression. 1736 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1737 if (Method && !Method->isStatic()) { 1738 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1739 "Non-unary operator on non-static member address"); 1740 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1741 == UO_AddrOf && 1742 "Non-address-of operator on non-static member address"); 1743 const Type *ClassType 1744 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1745 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1746 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1747 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1748 UO_AddrOf && 1749 "Non-address-of operator for overloaded function expression"); 1750 FromType = S.Context.getPointerType(FromType); 1751 } 1752 1753 // Check that we've computed the proper type after overload resolution. 1754 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't 1755 // be calling it from within an NDEBUG block. 1756 assert(S.Context.hasSameType( 1757 FromType, 1758 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1759 } else { 1760 return false; 1761 } 1762 } 1763 // Lvalue-to-rvalue conversion (C++11 4.1): 1764 // A glvalue (3.10) of a non-function, non-array type T can 1765 // be converted to a prvalue. 1766 bool argIsLValue = From->isGLValue(); 1767 if (argIsLValue && 1768 !FromType->isFunctionType() && !FromType->isArrayType() && 1769 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1770 SCS.First = ICK_Lvalue_To_Rvalue; 1771 1772 // C11 6.3.2.1p2: 1773 // ... if the lvalue has atomic type, the value has the non-atomic version 1774 // of the type of the lvalue ... 1775 if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) 1776 FromType = Atomic->getValueType(); 1777 1778 // If T is a non-class type, the type of the rvalue is the 1779 // cv-unqualified version of T. Otherwise, the type of the rvalue 1780 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1781 // just strip the qualifiers because they don't matter. 1782 FromType = FromType.getUnqualifiedType(); 1783 } else if (FromType->isArrayType()) { 1784 // Array-to-pointer conversion (C++ 4.2) 1785 SCS.First = ICK_Array_To_Pointer; 1786 1787 // An lvalue or rvalue of type "array of N T" or "array of unknown 1788 // bound of T" can be converted to an rvalue of type "pointer to 1789 // T" (C++ 4.2p1). 1790 FromType = S.Context.getArrayDecayedType(FromType); 1791 1792 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1793 // This conversion is deprecated in C++03 (D.4) 1794 SCS.DeprecatedStringLiteralToCharPtr = true; 1795 1796 // For the purpose of ranking in overload resolution 1797 // (13.3.3.1.1), this conversion is considered an 1798 // array-to-pointer conversion followed by a qualification 1799 // conversion (4.4). (C++ 4.2p2) 1800 SCS.Second = ICK_Identity; 1801 SCS.Third = ICK_Qualification; 1802 SCS.QualificationIncludesObjCLifetime = false; 1803 SCS.setAllToTypes(FromType); 1804 return true; 1805 } 1806 } else if (FromType->isFunctionType() && argIsLValue) { 1807 // Function-to-pointer conversion (C++ 4.3). 1808 SCS.First = ICK_Function_To_Pointer; 1809 1810 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) 1811 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) 1812 if (!S.checkAddressOfFunctionIsAvailable(FD)) 1813 return false; 1814 1815 // An lvalue of function type T can be converted to an rvalue of 1816 // type "pointer to T." The result is a pointer to the 1817 // function. (C++ 4.3p1). 1818 FromType = S.Context.getPointerType(FromType); 1819 } else { 1820 // We don't require any conversions for the first step. 1821 SCS.First = ICK_Identity; 1822 } 1823 SCS.setToType(0, FromType); 1824 1825 // The second conversion can be an integral promotion, floating 1826 // point promotion, integral conversion, floating point conversion, 1827 // floating-integral conversion, pointer conversion, 1828 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1829 // For overloading in C, this can also be a "compatible-type" 1830 // conversion. 1831 bool IncompatibleObjC = false; 1832 ImplicitConversionKind SecondICK = ICK_Identity; 1833 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1834 // The unqualified versions of the types are the same: there's no 1835 // conversion to do. 1836 SCS.Second = ICK_Identity; 1837 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1838 // Integral promotion (C++ 4.5). 1839 SCS.Second = ICK_Integral_Promotion; 1840 FromType = ToType.getUnqualifiedType(); 1841 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1842 // Floating point promotion (C++ 4.6). 1843 SCS.Second = ICK_Floating_Promotion; 1844 FromType = ToType.getUnqualifiedType(); 1845 } else if (S.IsComplexPromotion(FromType, ToType)) { 1846 // Complex promotion (Clang extension) 1847 SCS.Second = ICK_Complex_Promotion; 1848 FromType = ToType.getUnqualifiedType(); 1849 } else if (ToType->isBooleanType() && 1850 (FromType->isArithmeticType() || 1851 FromType->isAnyPointerType() || 1852 FromType->isBlockPointerType() || 1853 FromType->isMemberPointerType())) { 1854 // Boolean conversions (C++ 4.12). 1855 SCS.Second = ICK_Boolean_Conversion; 1856 FromType = S.Context.BoolTy; 1857 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1858 ToType->isIntegralType(S.Context)) { 1859 // Integral conversions (C++ 4.7). 1860 SCS.Second = ICK_Integral_Conversion; 1861 FromType = ToType.getUnqualifiedType(); 1862 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { 1863 // Complex conversions (C99 6.3.1.6) 1864 SCS.Second = ICK_Complex_Conversion; 1865 FromType = ToType.getUnqualifiedType(); 1866 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1867 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1868 // Complex-real conversions (C99 6.3.1.7) 1869 SCS.Second = ICK_Complex_Real; 1870 FromType = ToType.getUnqualifiedType(); 1871 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1872 // FIXME: disable conversions between long double and __float128 if 1873 // their representation is different until there is back end support 1874 // We of course allow this conversion if long double is really double. 1875 1876 // Conversions between bfloat and other floats are not permitted. 1877 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) 1878 return false; 1879 if (&S.Context.getFloatTypeSemantics(FromType) != 1880 &S.Context.getFloatTypeSemantics(ToType)) { 1881 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty && 1882 ToType == S.Context.LongDoubleTy) || 1883 (FromType == S.Context.LongDoubleTy && 1884 ToType == S.Context.Float128Ty)); 1885 if (Float128AndLongDouble && 1886 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == 1887 &llvm::APFloat::PPCDoubleDouble())) 1888 return false; 1889 } 1890 // Floating point conversions (C++ 4.8). 1891 SCS.Second = ICK_Floating_Conversion; 1892 FromType = ToType.getUnqualifiedType(); 1893 } else if ((FromType->isRealFloatingType() && 1894 ToType->isIntegralType(S.Context)) || 1895 (FromType->isIntegralOrUnscopedEnumerationType() && 1896 ToType->isRealFloatingType())) { 1897 // Conversions between bfloat and int are not permitted. 1898 if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) 1899 return false; 1900 1901 // Floating-integral conversions (C++ 4.9). 1902 SCS.Second = ICK_Floating_Integral; 1903 FromType = ToType.getUnqualifiedType(); 1904 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1905 SCS.Second = ICK_Block_Pointer_Conversion; 1906 } else if (AllowObjCWritebackConversion && 1907 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1908 SCS.Second = ICK_Writeback_Conversion; 1909 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1910 FromType, IncompatibleObjC)) { 1911 // Pointer conversions (C++ 4.10). 1912 SCS.Second = ICK_Pointer_Conversion; 1913 SCS.IncompatibleObjC = IncompatibleObjC; 1914 FromType = FromType.getUnqualifiedType(); 1915 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1916 InOverloadResolution, FromType)) { 1917 // Pointer to member conversions (4.11). 1918 SCS.Second = ICK_Pointer_Member; 1919 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { 1920 SCS.Second = SecondICK; 1921 FromType = ToType.getUnqualifiedType(); 1922 } else if (!S.getLangOpts().CPlusPlus && 1923 S.Context.typesAreCompatible(ToType, FromType)) { 1924 // Compatible conversions (Clang extension for C function overloading) 1925 SCS.Second = ICK_Compatible_Conversion; 1926 FromType = ToType.getUnqualifiedType(); 1927 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1928 InOverloadResolution, 1929 SCS, CStyle)) { 1930 SCS.Second = ICK_TransparentUnionConversion; 1931 FromType = ToType; 1932 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, 1933 CStyle)) { 1934 // tryAtomicConversion has updated the standard conversion sequence 1935 // appropriately. 1936 return true; 1937 } else if (ToType->isEventT() && 1938 From->isIntegerConstantExpr(S.getASTContext()) && 1939 From->EvaluateKnownConstInt(S.getASTContext()) == 0) { 1940 SCS.Second = ICK_Zero_Event_Conversion; 1941 FromType = ToType; 1942 } else if (ToType->isQueueT() && 1943 From->isIntegerConstantExpr(S.getASTContext()) && 1944 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { 1945 SCS.Second = ICK_Zero_Queue_Conversion; 1946 FromType = ToType; 1947 } else if (ToType->isSamplerT() && 1948 From->isIntegerConstantExpr(S.getASTContext())) { 1949 SCS.Second = ICK_Compatible_Conversion; 1950 FromType = ToType; 1951 } else { 1952 // No second conversion required. 1953 SCS.Second = ICK_Identity; 1954 } 1955 SCS.setToType(1, FromType); 1956 1957 // The third conversion can be a function pointer conversion or a 1958 // qualification conversion (C++ [conv.fctptr], [conv.qual]). 1959 bool ObjCLifetimeConversion; 1960 if (S.IsFunctionConversion(FromType, ToType, FromType)) { 1961 // Function pointer conversions (removing 'noexcept') including removal of 1962 // 'noreturn' (Clang extension). 1963 SCS.Third = ICK_Function_Conversion; 1964 } else if (S.IsQualificationConversion(FromType, ToType, CStyle, 1965 ObjCLifetimeConversion)) { 1966 SCS.Third = ICK_Qualification; 1967 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1968 FromType = ToType; 1969 } else { 1970 // No conversion required 1971 SCS.Third = ICK_Identity; 1972 } 1973 1974 // C++ [over.best.ics]p6: 1975 // [...] Any difference in top-level cv-qualification is 1976 // subsumed by the initialization itself and does not constitute 1977 // a conversion. [...] 1978 QualType CanonFrom = S.Context.getCanonicalType(FromType); 1979 QualType CanonTo = S.Context.getCanonicalType(ToType); 1980 if (CanonFrom.getLocalUnqualifiedType() 1981 == CanonTo.getLocalUnqualifiedType() && 1982 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { 1983 FromType = ToType; 1984 CanonFrom = CanonTo; 1985 } 1986 1987 SCS.setToType(2, FromType); 1988 1989 if (CanonFrom == CanonTo) 1990 return true; 1991 1992 // If we have not converted the argument type to the parameter type, 1993 // this is a bad conversion sequence, unless we're resolving an overload in C. 1994 if (S.getLangOpts().CPlusPlus || !InOverloadResolution) 1995 return false; 1996 1997 ExprResult ER = ExprResult{From}; 1998 Sema::AssignConvertType Conv = 1999 S.CheckSingleAssignmentConstraints(ToType, ER, 2000 /*Diagnose=*/false, 2001 /*DiagnoseCFAudited=*/false, 2002 /*ConvertRHS=*/false); 2003 ImplicitConversionKind SecondConv; 2004 switch (Conv) { 2005 case Sema::Compatible: 2006 SecondConv = ICK_C_Only_Conversion; 2007 break; 2008 // For our purposes, discarding qualifiers is just as bad as using an 2009 // incompatible pointer. Note that an IncompatiblePointer conversion can drop 2010 // qualifiers, as well. 2011 case Sema::CompatiblePointerDiscardsQualifiers: 2012 case Sema::IncompatiblePointer: 2013 case Sema::IncompatiblePointerSign: 2014 SecondConv = ICK_Incompatible_Pointer_Conversion; 2015 break; 2016 default: 2017 return false; 2018 } 2019 2020 // First can only be an lvalue conversion, so we pretend that this was the 2021 // second conversion. First should already be valid from earlier in the 2022 // function. 2023 SCS.Second = SecondConv; 2024 SCS.setToType(1, ToType); 2025 2026 // Third is Identity, because Second should rank us worse than any other 2027 // conversion. This could also be ICK_Qualification, but it's simpler to just 2028 // lump everything in with the second conversion, and we don't gain anything 2029 // from making this ICK_Qualification. 2030 SCS.Third = ICK_Identity; 2031 SCS.setToType(2, ToType); 2032 return true; 2033 } 2034 2035 static bool 2036 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 2037 QualType &ToType, 2038 bool InOverloadResolution, 2039 StandardConversionSequence &SCS, 2040 bool CStyle) { 2041 2042 const RecordType *UT = ToType->getAsUnionType(); 2043 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 2044 return false; 2045 // The field to initialize within the transparent union. 2046 RecordDecl *UD = UT->getDecl(); 2047 // It's compatible if the expression matches any of the fields. 2048 for (const auto *it : UD->fields()) { 2049 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 2050 CStyle, /*AllowObjCWritebackConversion=*/false)) { 2051 ToType = it->getType(); 2052 return true; 2053 } 2054 } 2055 return false; 2056 } 2057 2058 /// IsIntegralPromotion - Determines whether the conversion from the 2059 /// expression From (whose potentially-adjusted type is FromType) to 2060 /// ToType is an integral promotion (C++ 4.5). If so, returns true and 2061 /// sets PromotedType to the promoted type. 2062 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 2063 const BuiltinType *To = ToType->getAs<BuiltinType>(); 2064 // All integers are built-in. 2065 if (!To) { 2066 return false; 2067 } 2068 2069 // An rvalue of type char, signed char, unsigned char, short int, or 2070 // unsigned short int can be converted to an rvalue of type int if 2071 // int can represent all the values of the source type; otherwise, 2072 // the source rvalue can be converted to an rvalue of type unsigned 2073 // int (C++ 4.5p1). 2074 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 2075 !FromType->isEnumeralType()) { 2076 if (// We can promote any signed, promotable integer type to an int 2077 (FromType->isSignedIntegerType() || 2078 // We can promote any unsigned integer type whose size is 2079 // less than int to an int. 2080 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { 2081 return To->getKind() == BuiltinType::Int; 2082 } 2083 2084 return To->getKind() == BuiltinType::UInt; 2085 } 2086 2087 // C++11 [conv.prom]p3: 2088 // A prvalue of an unscoped enumeration type whose underlying type is not 2089 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 2090 // following types that can represent all the values of the enumeration 2091 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 2092 // unsigned int, long int, unsigned long int, long long int, or unsigned 2093 // long long int. If none of the types in that list can represent all the 2094 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 2095 // type can be converted to an rvalue a prvalue of the extended integer type 2096 // with lowest integer conversion rank (4.13) greater than the rank of long 2097 // long in which all the values of the enumeration can be represented. If 2098 // there are two such extended types, the signed one is chosen. 2099 // C++11 [conv.prom]p4: 2100 // A prvalue of an unscoped enumeration type whose underlying type is fixed 2101 // can be converted to a prvalue of its underlying type. Moreover, if 2102 // integral promotion can be applied to its underlying type, a prvalue of an 2103 // unscoped enumeration type whose underlying type is fixed can also be 2104 // converted to a prvalue of the promoted underlying type. 2105 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 2106 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 2107 // provided for a scoped enumeration. 2108 if (FromEnumType->getDecl()->isScoped()) 2109 return false; 2110 2111 // We can perform an integral promotion to the underlying type of the enum, 2112 // even if that's not the promoted type. Note that the check for promoting 2113 // the underlying type is based on the type alone, and does not consider 2114 // the bitfield-ness of the actual source expression. 2115 if (FromEnumType->getDecl()->isFixed()) { 2116 QualType Underlying = FromEnumType->getDecl()->getIntegerType(); 2117 return Context.hasSameUnqualifiedType(Underlying, ToType) || 2118 IsIntegralPromotion(nullptr, Underlying, ToType); 2119 } 2120 2121 // We have already pre-calculated the promotion type, so this is trivial. 2122 if (ToType->isIntegerType() && 2123 isCompleteType(From->getBeginLoc(), FromType)) 2124 return Context.hasSameUnqualifiedType( 2125 ToType, FromEnumType->getDecl()->getPromotionType()); 2126 2127 // C++ [conv.prom]p5: 2128 // If the bit-field has an enumerated type, it is treated as any other 2129 // value of that type for promotion purposes. 2130 // 2131 // ... so do not fall through into the bit-field checks below in C++. 2132 if (getLangOpts().CPlusPlus) 2133 return false; 2134 } 2135 2136 // C++0x [conv.prom]p2: 2137 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 2138 // to an rvalue a prvalue of the first of the following types that can 2139 // represent all the values of its underlying type: int, unsigned int, 2140 // long int, unsigned long int, long long int, or unsigned long long int. 2141 // If none of the types in that list can represent all the values of its 2142 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 2143 // or wchar_t can be converted to an rvalue a prvalue of its underlying 2144 // type. 2145 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 2146 ToType->isIntegerType()) { 2147 // Determine whether the type we're converting from is signed or 2148 // unsigned. 2149 bool FromIsSigned = FromType->isSignedIntegerType(); 2150 uint64_t FromSize = Context.getTypeSize(FromType); 2151 2152 // The types we'll try to promote to, in the appropriate 2153 // order. Try each of these types. 2154 QualType PromoteTypes[6] = { 2155 Context.IntTy, Context.UnsignedIntTy, 2156 Context.LongTy, Context.UnsignedLongTy , 2157 Context.LongLongTy, Context.UnsignedLongLongTy 2158 }; 2159 for (int Idx = 0; Idx < 6; ++Idx) { 2160 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 2161 if (FromSize < ToSize || 2162 (FromSize == ToSize && 2163 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 2164 // We found the type that we can promote to. If this is the 2165 // type we wanted, we have a promotion. Otherwise, no 2166 // promotion. 2167 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 2168 } 2169 } 2170 } 2171 2172 // An rvalue for an integral bit-field (9.6) can be converted to an 2173 // rvalue of type int if int can represent all the values of the 2174 // bit-field; otherwise, it can be converted to unsigned int if 2175 // unsigned int can represent all the values of the bit-field. If 2176 // the bit-field is larger yet, no integral promotion applies to 2177 // it. If the bit-field has an enumerated type, it is treated as any 2178 // other value of that type for promotion purposes (C++ 4.5p3). 2179 // FIXME: We should delay checking of bit-fields until we actually perform the 2180 // conversion. 2181 // 2182 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be 2183 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum 2184 // bit-fields and those whose underlying type is larger than int) for GCC 2185 // compatibility. 2186 if (From) { 2187 if (FieldDecl *MemberDecl = From->getSourceBitField()) { 2188 Optional<llvm::APSInt> BitWidth; 2189 if (FromType->isIntegralType(Context) && 2190 (BitWidth = 2191 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { 2192 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); 2193 ToSize = Context.getTypeSize(ToType); 2194 2195 // Are we promoting to an int from a bitfield that fits in an int? 2196 if (*BitWidth < ToSize || 2197 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { 2198 return To->getKind() == BuiltinType::Int; 2199 } 2200 2201 // Are we promoting to an unsigned int from an unsigned bitfield 2202 // that fits into an unsigned int? 2203 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { 2204 return To->getKind() == BuiltinType::UInt; 2205 } 2206 2207 return false; 2208 } 2209 } 2210 } 2211 2212 // An rvalue of type bool can be converted to an rvalue of type int, 2213 // with false becoming zero and true becoming one (C++ 4.5p4). 2214 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 2215 return true; 2216 } 2217 2218 return false; 2219 } 2220 2221 /// IsFloatingPointPromotion - Determines whether the conversion from 2222 /// FromType to ToType is a floating point promotion (C++ 4.6). If so, 2223 /// returns true and sets PromotedType to the promoted type. 2224 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 2225 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 2226 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 2227 /// An rvalue of type float can be converted to an rvalue of type 2228 /// double. (C++ 4.6p1). 2229 if (FromBuiltin->getKind() == BuiltinType::Float && 2230 ToBuiltin->getKind() == BuiltinType::Double) 2231 return true; 2232 2233 // C99 6.3.1.5p1: 2234 // When a float is promoted to double or long double, or a 2235 // double is promoted to long double [...]. 2236 if (!getLangOpts().CPlusPlus && 2237 (FromBuiltin->getKind() == BuiltinType::Float || 2238 FromBuiltin->getKind() == BuiltinType::Double) && 2239 (ToBuiltin->getKind() == BuiltinType::LongDouble || 2240 ToBuiltin->getKind() == BuiltinType::Float128)) 2241 return true; 2242 2243 // Half can be promoted to float. 2244 if (!getLangOpts().NativeHalfType && 2245 FromBuiltin->getKind() == BuiltinType::Half && 2246 ToBuiltin->getKind() == BuiltinType::Float) 2247 return true; 2248 } 2249 2250 return false; 2251 } 2252 2253 /// Determine if a conversion is a complex promotion. 2254 /// 2255 /// A complex promotion is defined as a complex -> complex conversion 2256 /// where the conversion between the underlying real types is a 2257 /// floating-point or integral promotion. 2258 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 2259 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 2260 if (!FromComplex) 2261 return false; 2262 2263 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 2264 if (!ToComplex) 2265 return false; 2266 2267 return IsFloatingPointPromotion(FromComplex->getElementType(), 2268 ToComplex->getElementType()) || 2269 IsIntegralPromotion(nullptr, FromComplex->getElementType(), 2270 ToComplex->getElementType()); 2271 } 2272 2273 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 2274 /// the pointer type FromPtr to a pointer to type ToPointee, with the 2275 /// same type qualifiers as FromPtr has on its pointee type. ToType, 2276 /// if non-empty, will be a pointer to ToType that may or may not have 2277 /// the right set of qualifiers on its pointee. 2278 /// 2279 static QualType 2280 BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 2281 QualType ToPointee, QualType ToType, 2282 ASTContext &Context, 2283 bool StripObjCLifetime = false) { 2284 assert((FromPtr->getTypeClass() == Type::Pointer || 2285 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 2286 "Invalid similarly-qualified pointer type"); 2287 2288 /// Conversions to 'id' subsume cv-qualifier conversions. 2289 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 2290 return ToType.getUnqualifiedType(); 2291 2292 QualType CanonFromPointee 2293 = Context.getCanonicalType(FromPtr->getPointeeType()); 2294 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 2295 Qualifiers Quals = CanonFromPointee.getQualifiers(); 2296 2297 if (StripObjCLifetime) 2298 Quals.removeObjCLifetime(); 2299 2300 // Exact qualifier match -> return the pointer type we're converting to. 2301 if (CanonToPointee.getLocalQualifiers() == Quals) { 2302 // ToType is exactly what we need. Return it. 2303 if (!ToType.isNull()) 2304 return ToType.getUnqualifiedType(); 2305 2306 // Build a pointer to ToPointee. It has the right qualifiers 2307 // already. 2308 if (isa<ObjCObjectPointerType>(ToType)) 2309 return Context.getObjCObjectPointerType(ToPointee); 2310 return Context.getPointerType(ToPointee); 2311 } 2312 2313 // Just build a canonical type that has the right qualifiers. 2314 QualType QualifiedCanonToPointee 2315 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 2316 2317 if (isa<ObjCObjectPointerType>(ToType)) 2318 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 2319 return Context.getPointerType(QualifiedCanonToPointee); 2320 } 2321 2322 static bool isNullPointerConstantForConversion(Expr *Expr, 2323 bool InOverloadResolution, 2324 ASTContext &Context) { 2325 // Handle value-dependent integral null pointer constants correctly. 2326 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 2327 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 2328 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 2329 return !InOverloadResolution; 2330 2331 return Expr->isNullPointerConstant(Context, 2332 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2333 : Expr::NPC_ValueDependentIsNull); 2334 } 2335 2336 /// IsPointerConversion - Determines whether the conversion of the 2337 /// expression From, which has the (possibly adjusted) type FromType, 2338 /// can be converted to the type ToType via a pointer conversion (C++ 2339 /// 4.10). If so, returns true and places the converted type (that 2340 /// might differ from ToType in its cv-qualifiers at some level) into 2341 /// ConvertedType. 2342 /// 2343 /// This routine also supports conversions to and from block pointers 2344 /// and conversions with Objective-C's 'id', 'id<protocols...>', and 2345 /// pointers to interfaces. FIXME: Once we've determined the 2346 /// appropriate overloading rules for Objective-C, we may want to 2347 /// split the Objective-C checks into a different routine; however, 2348 /// GCC seems to consider all of these conversions to be pointer 2349 /// conversions, so for now they live here. IncompatibleObjC will be 2350 /// set if the conversion is an allowed Objective-C conversion that 2351 /// should result in a warning. 2352 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 2353 bool InOverloadResolution, 2354 QualType& ConvertedType, 2355 bool &IncompatibleObjC) { 2356 IncompatibleObjC = false; 2357 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 2358 IncompatibleObjC)) 2359 return true; 2360 2361 // Conversion from a null pointer constant to any Objective-C pointer type. 2362 if (ToType->isObjCObjectPointerType() && 2363 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2364 ConvertedType = ToType; 2365 return true; 2366 } 2367 2368 // Blocks: Block pointers can be converted to void*. 2369 if (FromType->isBlockPointerType() && ToType->isPointerType() && 2370 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { 2371 ConvertedType = ToType; 2372 return true; 2373 } 2374 // Blocks: A null pointer constant can be converted to a block 2375 // pointer type. 2376 if (ToType->isBlockPointerType() && 2377 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2378 ConvertedType = ToType; 2379 return true; 2380 } 2381 2382 // If the left-hand-side is nullptr_t, the right side can be a null 2383 // pointer constant. 2384 if (ToType->isNullPtrType() && 2385 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2386 ConvertedType = ToType; 2387 return true; 2388 } 2389 2390 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 2391 if (!ToTypePtr) 2392 return false; 2393 2394 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 2395 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2396 ConvertedType = ToType; 2397 return true; 2398 } 2399 2400 // Beyond this point, both types need to be pointers 2401 // , including objective-c pointers. 2402 QualType ToPointeeType = ToTypePtr->getPointeeType(); 2403 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 2404 !getLangOpts().ObjCAutoRefCount) { 2405 ConvertedType = BuildSimilarlyQualifiedPointerType( 2406 FromType->getAs<ObjCObjectPointerType>(), 2407 ToPointeeType, 2408 ToType, Context); 2409 return true; 2410 } 2411 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 2412 if (!FromTypePtr) 2413 return false; 2414 2415 QualType FromPointeeType = FromTypePtr->getPointeeType(); 2416 2417 // If the unqualified pointee types are the same, this can't be a 2418 // pointer conversion, so don't do all of the work below. 2419 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 2420 return false; 2421 2422 // An rvalue of type "pointer to cv T," where T is an object type, 2423 // can be converted to an rvalue of type "pointer to cv void" (C++ 2424 // 4.10p2). 2425 if (FromPointeeType->isIncompleteOrObjectType() && 2426 ToPointeeType->isVoidType()) { 2427 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2428 ToPointeeType, 2429 ToType, Context, 2430 /*StripObjCLifetime=*/true); 2431 return true; 2432 } 2433 2434 // MSVC allows implicit function to void* type conversion. 2435 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && 2436 ToPointeeType->isVoidType()) { 2437 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2438 ToPointeeType, 2439 ToType, Context); 2440 return true; 2441 } 2442 2443 // When we're overloading in C, we allow a special kind of pointer 2444 // conversion for compatible-but-not-identical pointee types. 2445 if (!getLangOpts().CPlusPlus && 2446 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 2447 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2448 ToPointeeType, 2449 ToType, Context); 2450 return true; 2451 } 2452 2453 // C++ [conv.ptr]p3: 2454 // 2455 // An rvalue of type "pointer to cv D," where D is a class type, 2456 // can be converted to an rvalue of type "pointer to cv B," where 2457 // B is a base class (clause 10) of D. If B is an inaccessible 2458 // (clause 11) or ambiguous (10.2) base class of D, a program that 2459 // necessitates this conversion is ill-formed. The result of the 2460 // conversion is a pointer to the base class sub-object of the 2461 // derived class object. The null pointer value is converted to 2462 // the null pointer value of the destination type. 2463 // 2464 // Note that we do not check for ambiguity or inaccessibility 2465 // here. That is handled by CheckPointerConversion. 2466 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && 2467 ToPointeeType->isRecordType() && 2468 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 2469 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { 2470 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2471 ToPointeeType, 2472 ToType, Context); 2473 return true; 2474 } 2475 2476 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 2477 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 2478 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2479 ToPointeeType, 2480 ToType, Context); 2481 return true; 2482 } 2483 2484 return false; 2485 } 2486 2487 /// Adopt the given qualifiers for the given type. 2488 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 2489 Qualifiers TQs = T.getQualifiers(); 2490 2491 // Check whether qualifiers already match. 2492 if (TQs == Qs) 2493 return T; 2494 2495 if (Qs.compatiblyIncludes(TQs)) 2496 return Context.getQualifiedType(T, Qs); 2497 2498 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 2499 } 2500 2501 /// isObjCPointerConversion - Determines whether this is an 2502 /// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2503 /// with the same arguments and return values. 2504 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2505 QualType& ConvertedType, 2506 bool &IncompatibleObjC) { 2507 if (!getLangOpts().ObjC) 2508 return false; 2509 2510 // The set of qualifiers on the type we're converting from. 2511 Qualifiers FromQualifiers = FromType.getQualifiers(); 2512 2513 // First, we handle all conversions on ObjC object pointer types. 2514 const ObjCObjectPointerType* ToObjCPtr = 2515 ToType->getAs<ObjCObjectPointerType>(); 2516 const ObjCObjectPointerType *FromObjCPtr = 2517 FromType->getAs<ObjCObjectPointerType>(); 2518 2519 if (ToObjCPtr && FromObjCPtr) { 2520 // If the pointee types are the same (ignoring qualifications), 2521 // then this is not a pointer conversion. 2522 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2523 FromObjCPtr->getPointeeType())) 2524 return false; 2525 2526 // Conversion between Objective-C pointers. 2527 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2528 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2529 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2530 if (getLangOpts().CPlusPlus && LHS && RHS && 2531 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2532 FromObjCPtr->getPointeeType())) 2533 return false; 2534 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2535 ToObjCPtr->getPointeeType(), 2536 ToType, Context); 2537 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2538 return true; 2539 } 2540 2541 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2542 // Okay: this is some kind of implicit downcast of Objective-C 2543 // interfaces, which is permitted. However, we're going to 2544 // complain about it. 2545 IncompatibleObjC = true; 2546 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2547 ToObjCPtr->getPointeeType(), 2548 ToType, Context); 2549 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2550 return true; 2551 } 2552 } 2553 // Beyond this point, both types need to be C pointers or block pointers. 2554 QualType ToPointeeType; 2555 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2556 ToPointeeType = ToCPtr->getPointeeType(); 2557 else if (const BlockPointerType *ToBlockPtr = 2558 ToType->getAs<BlockPointerType>()) { 2559 // Objective C++: We're able to convert from a pointer to any object 2560 // to a block pointer type. 2561 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2562 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2563 return true; 2564 } 2565 ToPointeeType = ToBlockPtr->getPointeeType(); 2566 } 2567 else if (FromType->getAs<BlockPointerType>() && 2568 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2569 // Objective C++: We're able to convert from a block pointer type to a 2570 // pointer to any object. 2571 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2572 return true; 2573 } 2574 else 2575 return false; 2576 2577 QualType FromPointeeType; 2578 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2579 FromPointeeType = FromCPtr->getPointeeType(); 2580 else if (const BlockPointerType *FromBlockPtr = 2581 FromType->getAs<BlockPointerType>()) 2582 FromPointeeType = FromBlockPtr->getPointeeType(); 2583 else 2584 return false; 2585 2586 // If we have pointers to pointers, recursively check whether this 2587 // is an Objective-C conversion. 2588 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2589 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2590 IncompatibleObjC)) { 2591 // We always complain about this conversion. 2592 IncompatibleObjC = true; 2593 ConvertedType = Context.getPointerType(ConvertedType); 2594 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2595 return true; 2596 } 2597 // Allow conversion of pointee being objective-c pointer to another one; 2598 // as in I* to id. 2599 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2600 ToPointeeType->getAs<ObjCObjectPointerType>() && 2601 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2602 IncompatibleObjC)) { 2603 2604 ConvertedType = Context.getPointerType(ConvertedType); 2605 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2606 return true; 2607 } 2608 2609 // If we have pointers to functions or blocks, check whether the only 2610 // differences in the argument and result types are in Objective-C 2611 // pointer conversions. If so, we permit the conversion (but 2612 // complain about it). 2613 const FunctionProtoType *FromFunctionType 2614 = FromPointeeType->getAs<FunctionProtoType>(); 2615 const FunctionProtoType *ToFunctionType 2616 = ToPointeeType->getAs<FunctionProtoType>(); 2617 if (FromFunctionType && ToFunctionType) { 2618 // If the function types are exactly the same, this isn't an 2619 // Objective-C pointer conversion. 2620 if (Context.getCanonicalType(FromPointeeType) 2621 == Context.getCanonicalType(ToPointeeType)) 2622 return false; 2623 2624 // Perform the quick checks that will tell us whether these 2625 // function types are obviously different. 2626 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2627 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2628 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) 2629 return false; 2630 2631 bool HasObjCConversion = false; 2632 if (Context.getCanonicalType(FromFunctionType->getReturnType()) == 2633 Context.getCanonicalType(ToFunctionType->getReturnType())) { 2634 // Okay, the types match exactly. Nothing to do. 2635 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), 2636 ToFunctionType->getReturnType(), 2637 ConvertedType, IncompatibleObjC)) { 2638 // Okay, we have an Objective-C pointer conversion. 2639 HasObjCConversion = true; 2640 } else { 2641 // Function types are too different. Abort. 2642 return false; 2643 } 2644 2645 // Check argument types. 2646 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2647 ArgIdx != NumArgs; ++ArgIdx) { 2648 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2649 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2650 if (Context.getCanonicalType(FromArgType) 2651 == Context.getCanonicalType(ToArgType)) { 2652 // Okay, the types match exactly. Nothing to do. 2653 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2654 ConvertedType, IncompatibleObjC)) { 2655 // Okay, we have an Objective-C pointer conversion. 2656 HasObjCConversion = true; 2657 } else { 2658 // Argument types are too different. Abort. 2659 return false; 2660 } 2661 } 2662 2663 if (HasObjCConversion) { 2664 // We had an Objective-C conversion. Allow this pointer 2665 // conversion, but complain about it. 2666 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2667 IncompatibleObjC = true; 2668 return true; 2669 } 2670 } 2671 2672 return false; 2673 } 2674 2675 /// Determine whether this is an Objective-C writeback conversion, 2676 /// used for parameter passing when performing automatic reference counting. 2677 /// 2678 /// \param FromType The type we're converting form. 2679 /// 2680 /// \param ToType The type we're converting to. 2681 /// 2682 /// \param ConvertedType The type that will be produced after applying 2683 /// this conversion. 2684 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2685 QualType &ConvertedType) { 2686 if (!getLangOpts().ObjCAutoRefCount || 2687 Context.hasSameUnqualifiedType(FromType, ToType)) 2688 return false; 2689 2690 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2691 QualType ToPointee; 2692 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2693 ToPointee = ToPointer->getPointeeType(); 2694 else 2695 return false; 2696 2697 Qualifiers ToQuals = ToPointee.getQualifiers(); 2698 if (!ToPointee->isObjCLifetimeType() || 2699 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2700 !ToQuals.withoutObjCLifetime().empty()) 2701 return false; 2702 2703 // Argument must be a pointer to __strong to __weak. 2704 QualType FromPointee; 2705 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2706 FromPointee = FromPointer->getPointeeType(); 2707 else 2708 return false; 2709 2710 Qualifiers FromQuals = FromPointee.getQualifiers(); 2711 if (!FromPointee->isObjCLifetimeType() || 2712 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2713 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2714 return false; 2715 2716 // Make sure that we have compatible qualifiers. 2717 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2718 if (!ToQuals.compatiblyIncludes(FromQuals)) 2719 return false; 2720 2721 // Remove qualifiers from the pointee type we're converting from; they 2722 // aren't used in the compatibility check belong, and we'll be adding back 2723 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2724 FromPointee = FromPointee.getUnqualifiedType(); 2725 2726 // The unqualified form of the pointee types must be compatible. 2727 ToPointee = ToPointee.getUnqualifiedType(); 2728 bool IncompatibleObjC; 2729 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2730 FromPointee = ToPointee; 2731 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2732 IncompatibleObjC)) 2733 return false; 2734 2735 /// Construct the type we're converting to, which is a pointer to 2736 /// __autoreleasing pointee. 2737 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2738 ConvertedType = Context.getPointerType(FromPointee); 2739 return true; 2740 } 2741 2742 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2743 QualType& ConvertedType) { 2744 QualType ToPointeeType; 2745 if (const BlockPointerType *ToBlockPtr = 2746 ToType->getAs<BlockPointerType>()) 2747 ToPointeeType = ToBlockPtr->getPointeeType(); 2748 else 2749 return false; 2750 2751 QualType FromPointeeType; 2752 if (const BlockPointerType *FromBlockPtr = 2753 FromType->getAs<BlockPointerType>()) 2754 FromPointeeType = FromBlockPtr->getPointeeType(); 2755 else 2756 return false; 2757 // We have pointer to blocks, check whether the only 2758 // differences in the argument and result types are in Objective-C 2759 // pointer conversions. If so, we permit the conversion. 2760 2761 const FunctionProtoType *FromFunctionType 2762 = FromPointeeType->getAs<FunctionProtoType>(); 2763 const FunctionProtoType *ToFunctionType 2764 = ToPointeeType->getAs<FunctionProtoType>(); 2765 2766 if (!FromFunctionType || !ToFunctionType) 2767 return false; 2768 2769 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2770 return true; 2771 2772 // Perform the quick checks that will tell us whether these 2773 // function types are obviously different. 2774 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2775 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2776 return false; 2777 2778 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2779 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2780 if (FromEInfo != ToEInfo) 2781 return false; 2782 2783 bool IncompatibleObjC = false; 2784 if (Context.hasSameType(FromFunctionType->getReturnType(), 2785 ToFunctionType->getReturnType())) { 2786 // Okay, the types match exactly. Nothing to do. 2787 } else { 2788 QualType RHS = FromFunctionType->getReturnType(); 2789 QualType LHS = ToFunctionType->getReturnType(); 2790 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && 2791 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2792 LHS = LHS.getUnqualifiedType(); 2793 2794 if (Context.hasSameType(RHS,LHS)) { 2795 // OK exact match. 2796 } else if (isObjCPointerConversion(RHS, LHS, 2797 ConvertedType, IncompatibleObjC)) { 2798 if (IncompatibleObjC) 2799 return false; 2800 // Okay, we have an Objective-C pointer conversion. 2801 } 2802 else 2803 return false; 2804 } 2805 2806 // Check argument types. 2807 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2808 ArgIdx != NumArgs; ++ArgIdx) { 2809 IncompatibleObjC = false; 2810 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2811 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2812 if (Context.hasSameType(FromArgType, ToArgType)) { 2813 // Okay, the types match exactly. Nothing to do. 2814 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2815 ConvertedType, IncompatibleObjC)) { 2816 if (IncompatibleObjC) 2817 return false; 2818 // Okay, we have an Objective-C pointer conversion. 2819 } else 2820 // Argument types are too different. Abort. 2821 return false; 2822 } 2823 2824 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 2825 bool CanUseToFPT, CanUseFromFPT; 2826 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, 2827 CanUseToFPT, CanUseFromFPT, 2828 NewParamInfos)) 2829 return false; 2830 2831 ConvertedType = ToType; 2832 return true; 2833 } 2834 2835 enum { 2836 ft_default, 2837 ft_different_class, 2838 ft_parameter_arity, 2839 ft_parameter_mismatch, 2840 ft_return_type, 2841 ft_qualifer_mismatch, 2842 ft_noexcept 2843 }; 2844 2845 /// Attempts to get the FunctionProtoType from a Type. Handles 2846 /// MemberFunctionPointers properly. 2847 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { 2848 if (auto *FPT = FromType->getAs<FunctionProtoType>()) 2849 return FPT; 2850 2851 if (auto *MPT = FromType->getAs<MemberPointerType>()) 2852 return MPT->getPointeeType()->getAs<FunctionProtoType>(); 2853 2854 return nullptr; 2855 } 2856 2857 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2858 /// function types. Catches different number of parameter, mismatch in 2859 /// parameter types, and different return types. 2860 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2861 QualType FromType, QualType ToType) { 2862 // If either type is not valid, include no extra info. 2863 if (FromType.isNull() || ToType.isNull()) { 2864 PDiag << ft_default; 2865 return; 2866 } 2867 2868 // Get the function type from the pointers. 2869 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2870 const auto *FromMember = FromType->castAs<MemberPointerType>(), 2871 *ToMember = ToType->castAs<MemberPointerType>(); 2872 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { 2873 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2874 << QualType(FromMember->getClass(), 0); 2875 return; 2876 } 2877 FromType = FromMember->getPointeeType(); 2878 ToType = ToMember->getPointeeType(); 2879 } 2880 2881 if (FromType->isPointerType()) 2882 FromType = FromType->getPointeeType(); 2883 if (ToType->isPointerType()) 2884 ToType = ToType->getPointeeType(); 2885 2886 // Remove references. 2887 FromType = FromType.getNonReferenceType(); 2888 ToType = ToType.getNonReferenceType(); 2889 2890 // Don't print extra info for non-specialized template functions. 2891 if (FromType->isInstantiationDependentType() && 2892 !FromType->getAs<TemplateSpecializationType>()) { 2893 PDiag << ft_default; 2894 return; 2895 } 2896 2897 // No extra info for same types. 2898 if (Context.hasSameType(FromType, ToType)) { 2899 PDiag << ft_default; 2900 return; 2901 } 2902 2903 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), 2904 *ToFunction = tryGetFunctionProtoType(ToType); 2905 2906 // Both types need to be function types. 2907 if (!FromFunction || !ToFunction) { 2908 PDiag << ft_default; 2909 return; 2910 } 2911 2912 if (FromFunction->getNumParams() != ToFunction->getNumParams()) { 2913 PDiag << ft_parameter_arity << ToFunction->getNumParams() 2914 << FromFunction->getNumParams(); 2915 return; 2916 } 2917 2918 // Handle different parameter types. 2919 unsigned ArgPos; 2920 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2921 PDiag << ft_parameter_mismatch << ArgPos + 1 2922 << ToFunction->getParamType(ArgPos) 2923 << FromFunction->getParamType(ArgPos); 2924 return; 2925 } 2926 2927 // Handle different return type. 2928 if (!Context.hasSameType(FromFunction->getReturnType(), 2929 ToFunction->getReturnType())) { 2930 PDiag << ft_return_type << ToFunction->getReturnType() 2931 << FromFunction->getReturnType(); 2932 return; 2933 } 2934 2935 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { 2936 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() 2937 << FromFunction->getMethodQuals(); 2938 return; 2939 } 2940 2941 // Handle exception specification differences on canonical type (in C++17 2942 // onwards). 2943 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) 2944 ->isNothrow() != 2945 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) 2946 ->isNothrow()) { 2947 PDiag << ft_noexcept; 2948 return; 2949 } 2950 2951 // Unable to find a difference, so add no extra info. 2952 PDiag << ft_default; 2953 } 2954 2955 /// FunctionParamTypesAreEqual - This routine checks two function proto types 2956 /// for equality of their argument types. Caller has already checked that 2957 /// they have same number of arguments. If the parameters are different, 2958 /// ArgPos will have the parameter index of the first different parameter. 2959 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, 2960 const FunctionProtoType *NewType, 2961 unsigned *ArgPos) { 2962 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), 2963 N = NewType->param_type_begin(), 2964 E = OldType->param_type_end(); 2965 O && (O != E); ++O, ++N) { 2966 // Ignore address spaces in pointee type. This is to disallow overloading 2967 // on __ptr32/__ptr64 address spaces. 2968 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType()); 2969 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType()); 2970 2971 if (!Context.hasSameType(Old, New)) { 2972 if (ArgPos) 2973 *ArgPos = O - OldType->param_type_begin(); 2974 return false; 2975 } 2976 } 2977 return true; 2978 } 2979 2980 /// CheckPointerConversion - Check the pointer conversion from the 2981 /// expression From to the type ToType. This routine checks for 2982 /// ambiguous or inaccessible derived-to-base pointer 2983 /// conversions for which IsPointerConversion has already returned 2984 /// true. It returns true and produces a diagnostic if there was an 2985 /// error, or returns false otherwise. 2986 bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2987 CastKind &Kind, 2988 CXXCastPath& BasePath, 2989 bool IgnoreBaseAccess, 2990 bool Diagnose) { 2991 QualType FromType = From->getType(); 2992 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2993 2994 Kind = CK_BitCast; 2995 2996 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && 2997 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == 2998 Expr::NPCK_ZeroExpression) { 2999 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) 3000 DiagRuntimeBehavior(From->getExprLoc(), From, 3001 PDiag(diag::warn_impcast_bool_to_null_pointer) 3002 << ToType << From->getSourceRange()); 3003 else if (!isUnevaluatedContext()) 3004 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) 3005 << ToType << From->getSourceRange(); 3006 } 3007 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 3008 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 3009 QualType FromPointeeType = FromPtrType->getPointeeType(), 3010 ToPointeeType = ToPtrType->getPointeeType(); 3011 3012 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 3013 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 3014 // We must have a derived-to-base conversion. Check an 3015 // ambiguous or inaccessible conversion. 3016 unsigned InaccessibleID = 0; 3017 unsigned AmbiguousID = 0; 3018 if (Diagnose) { 3019 InaccessibleID = diag::err_upcast_to_inaccessible_base; 3020 AmbiguousID = diag::err_ambiguous_derived_to_base_conv; 3021 } 3022 if (CheckDerivedToBaseConversion( 3023 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, 3024 From->getExprLoc(), From->getSourceRange(), DeclarationName(), 3025 &BasePath, IgnoreBaseAccess)) 3026 return true; 3027 3028 // The conversion was successful. 3029 Kind = CK_DerivedToBase; 3030 } 3031 3032 if (Diagnose && !IsCStyleOrFunctionalCast && 3033 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { 3034 assert(getLangOpts().MSVCCompat && 3035 "this should only be possible with MSVCCompat!"); 3036 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) 3037 << From->getSourceRange(); 3038 } 3039 } 3040 } else if (const ObjCObjectPointerType *ToPtrType = 3041 ToType->getAs<ObjCObjectPointerType>()) { 3042 if (const ObjCObjectPointerType *FromPtrType = 3043 FromType->getAs<ObjCObjectPointerType>()) { 3044 // Objective-C++ conversions are always okay. 3045 // FIXME: We should have a different class of conversions for the 3046 // Objective-C++ implicit conversions. 3047 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 3048 return false; 3049 } else if (FromType->isBlockPointerType()) { 3050 Kind = CK_BlockPointerToObjCPointerCast; 3051 } else { 3052 Kind = CK_CPointerToObjCPointerCast; 3053 } 3054 } else if (ToType->isBlockPointerType()) { 3055 if (!FromType->isBlockPointerType()) 3056 Kind = CK_AnyPointerToBlockPointerCast; 3057 } 3058 3059 // We shouldn't fall into this case unless it's valid for other 3060 // reasons. 3061 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 3062 Kind = CK_NullToPointer; 3063 3064 return false; 3065 } 3066 3067 /// IsMemberPointerConversion - Determines whether the conversion of the 3068 /// expression From, which has the (possibly adjusted) type FromType, can be 3069 /// converted to the type ToType via a member pointer conversion (C++ 4.11). 3070 /// If so, returns true and places the converted type (that might differ from 3071 /// ToType in its cv-qualifiers at some level) into ConvertedType. 3072 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 3073 QualType ToType, 3074 bool InOverloadResolution, 3075 QualType &ConvertedType) { 3076 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 3077 if (!ToTypePtr) 3078 return false; 3079 3080 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 3081 if (From->isNullPointerConstant(Context, 3082 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 3083 : Expr::NPC_ValueDependentIsNull)) { 3084 ConvertedType = ToType; 3085 return true; 3086 } 3087 3088 // Otherwise, both types have to be member pointers. 3089 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 3090 if (!FromTypePtr) 3091 return false; 3092 3093 // A pointer to member of B can be converted to a pointer to member of D, 3094 // where D is derived from B (C++ 4.11p2). 3095 QualType FromClass(FromTypePtr->getClass(), 0); 3096 QualType ToClass(ToTypePtr->getClass(), 0); 3097 3098 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 3099 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { 3100 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 3101 ToClass.getTypePtr()); 3102 return true; 3103 } 3104 3105 return false; 3106 } 3107 3108 /// CheckMemberPointerConversion - Check the member pointer conversion from the 3109 /// expression From to the type ToType. This routine checks for ambiguous or 3110 /// virtual or inaccessible base-to-derived member pointer conversions 3111 /// for which IsMemberPointerConversion has already returned true. It returns 3112 /// true and produces a diagnostic if there was an error, or returns false 3113 /// otherwise. 3114 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 3115 CastKind &Kind, 3116 CXXCastPath &BasePath, 3117 bool IgnoreBaseAccess) { 3118 QualType FromType = From->getType(); 3119 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 3120 if (!FromPtrType) { 3121 // This must be a null pointer to member pointer conversion 3122 assert(From->isNullPointerConstant(Context, 3123 Expr::NPC_ValueDependentIsNull) && 3124 "Expr must be null pointer constant!"); 3125 Kind = CK_NullToMemberPointer; 3126 return false; 3127 } 3128 3129 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 3130 assert(ToPtrType && "No member pointer cast has a target type " 3131 "that is not a member pointer."); 3132 3133 QualType FromClass = QualType(FromPtrType->getClass(), 0); 3134 QualType ToClass = QualType(ToPtrType->getClass(), 0); 3135 3136 // FIXME: What about dependent types? 3137 assert(FromClass->isRecordType() && "Pointer into non-class."); 3138 assert(ToClass->isRecordType() && "Pointer into non-class."); 3139 3140 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3141 /*DetectVirtual=*/true); 3142 bool DerivationOkay = 3143 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); 3144 assert(DerivationOkay && 3145 "Should not have been called if derivation isn't OK."); 3146 (void)DerivationOkay; 3147 3148 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 3149 getUnqualifiedType())) { 3150 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3151 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 3152 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 3153 return true; 3154 } 3155 3156 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 3157 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 3158 << FromClass << ToClass << QualType(VBase, 0) 3159 << From->getSourceRange(); 3160 return true; 3161 } 3162 3163 if (!IgnoreBaseAccess) 3164 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 3165 Paths.front(), 3166 diag::err_downcast_from_inaccessible_base); 3167 3168 // Must be a base to derived member conversion. 3169 BuildBasePathArray(Paths, BasePath); 3170 Kind = CK_BaseToDerivedMemberPointer; 3171 return false; 3172 } 3173 3174 /// Determine whether the lifetime conversion between the two given 3175 /// qualifiers sets is nontrivial. 3176 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, 3177 Qualifiers ToQuals) { 3178 // Converting anything to const __unsafe_unretained is trivial. 3179 if (ToQuals.hasConst() && 3180 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) 3181 return false; 3182 3183 return true; 3184 } 3185 3186 /// Perform a single iteration of the loop for checking if a qualification 3187 /// conversion is valid. 3188 /// 3189 /// Specifically, check whether any change between the qualifiers of \p 3190 /// FromType and \p ToType is permissible, given knowledge about whether every 3191 /// outer layer is const-qualified. 3192 static bool isQualificationConversionStep(QualType FromType, QualType ToType, 3193 bool CStyle, bool IsTopLevel, 3194 bool &PreviousToQualsIncludeConst, 3195 bool &ObjCLifetimeConversion) { 3196 Qualifiers FromQuals = FromType.getQualifiers(); 3197 Qualifiers ToQuals = ToType.getQualifiers(); 3198 3199 // Ignore __unaligned qualifier if this type is void. 3200 if (ToType.getUnqualifiedType()->isVoidType()) 3201 FromQuals.removeUnaligned(); 3202 3203 // Objective-C ARC: 3204 // Check Objective-C lifetime conversions. 3205 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { 3206 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 3207 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) 3208 ObjCLifetimeConversion = true; 3209 FromQuals.removeObjCLifetime(); 3210 ToQuals.removeObjCLifetime(); 3211 } else { 3212 // Qualification conversions cannot cast between different 3213 // Objective-C lifetime qualifiers. 3214 return false; 3215 } 3216 } 3217 3218 // Allow addition/removal of GC attributes but not changing GC attributes. 3219 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 3220 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 3221 FromQuals.removeObjCGCAttr(); 3222 ToQuals.removeObjCGCAttr(); 3223 } 3224 3225 // -- for every j > 0, if const is in cv 1,j then const is in cv 3226 // 2,j, and similarly for volatile. 3227 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 3228 return false; 3229 3230 // If address spaces mismatch: 3231 // - in top level it is only valid to convert to addr space that is a 3232 // superset in all cases apart from C-style casts where we allow 3233 // conversions between overlapping address spaces. 3234 // - in non-top levels it is not a valid conversion. 3235 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && 3236 (!IsTopLevel || 3237 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || 3238 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) 3239 return false; 3240 3241 // -- if the cv 1,j and cv 2,j are different, then const is in 3242 // every cv for 0 < k < j. 3243 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && 3244 !PreviousToQualsIncludeConst) 3245 return false; 3246 3247 // Keep track of whether all prior cv-qualifiers in the "to" type 3248 // include const. 3249 PreviousToQualsIncludeConst = 3250 PreviousToQualsIncludeConst && ToQuals.hasConst(); 3251 return true; 3252 } 3253 3254 /// IsQualificationConversion - Determines whether the conversion from 3255 /// an rvalue of type FromType to ToType is a qualification conversion 3256 /// (C++ 4.4). 3257 /// 3258 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate 3259 /// when the qualification conversion involves a change in the Objective-C 3260 /// object lifetime. 3261 bool 3262 Sema::IsQualificationConversion(QualType FromType, QualType ToType, 3263 bool CStyle, bool &ObjCLifetimeConversion) { 3264 FromType = Context.getCanonicalType(FromType); 3265 ToType = Context.getCanonicalType(ToType); 3266 ObjCLifetimeConversion = false; 3267 3268 // If FromType and ToType are the same type, this is not a 3269 // qualification conversion. 3270 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 3271 return false; 3272 3273 // (C++ 4.4p4): 3274 // A conversion can add cv-qualifiers at levels other than the first 3275 // in multi-level pointers, subject to the following rules: [...] 3276 bool PreviousToQualsIncludeConst = true; 3277 bool UnwrappedAnyPointer = false; 3278 while (Context.UnwrapSimilarTypes(FromType, ToType)) { 3279 if (!isQualificationConversionStep( 3280 FromType, ToType, CStyle, !UnwrappedAnyPointer, 3281 PreviousToQualsIncludeConst, ObjCLifetimeConversion)) 3282 return false; 3283 UnwrappedAnyPointer = true; 3284 } 3285 3286 // We are left with FromType and ToType being the pointee types 3287 // after unwrapping the original FromType and ToType the same number 3288 // of times. If we unwrapped any pointers, and if FromType and 3289 // ToType have the same unqualified type (since we checked 3290 // qualifiers above), then this is a qualification conversion. 3291 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 3292 } 3293 3294 /// - Determine whether this is a conversion from a scalar type to an 3295 /// atomic type. 3296 /// 3297 /// If successful, updates \c SCS's second and third steps in the conversion 3298 /// sequence to finish the conversion. 3299 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 3300 bool InOverloadResolution, 3301 StandardConversionSequence &SCS, 3302 bool CStyle) { 3303 const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); 3304 if (!ToAtomic) 3305 return false; 3306 3307 StandardConversionSequence InnerSCS; 3308 if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 3309 InOverloadResolution, InnerSCS, 3310 CStyle, /*AllowObjCWritebackConversion=*/false)) 3311 return false; 3312 3313 SCS.Second = InnerSCS.Second; 3314 SCS.setToType(1, InnerSCS.getToType(1)); 3315 SCS.Third = InnerSCS.Third; 3316 SCS.QualificationIncludesObjCLifetime 3317 = InnerSCS.QualificationIncludesObjCLifetime; 3318 SCS.setToType(2, InnerSCS.getToType(2)); 3319 return true; 3320 } 3321 3322 static bool isFirstArgumentCompatibleWithType(ASTContext &Context, 3323 CXXConstructorDecl *Constructor, 3324 QualType Type) { 3325 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); 3326 if (CtorType->getNumParams() > 0) { 3327 QualType FirstArg = CtorType->getParamType(0); 3328 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) 3329 return true; 3330 } 3331 return false; 3332 } 3333 3334 static OverloadingResult 3335 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, 3336 CXXRecordDecl *To, 3337 UserDefinedConversionSequence &User, 3338 OverloadCandidateSet &CandidateSet, 3339 bool AllowExplicit) { 3340 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3341 for (auto *D : S.LookupConstructors(To)) { 3342 auto Info = getConstructorInfo(D); 3343 if (!Info) 3344 continue; 3345 3346 bool Usable = !Info.Constructor->isInvalidDecl() && 3347 S.isInitListConstructor(Info.Constructor); 3348 if (Usable) { 3349 // If the first argument is (a reference to) the target type, 3350 // suppress conversions. 3351 bool SuppressUserConversions = isFirstArgumentCompatibleWithType( 3352 S.Context, Info.Constructor, ToType); 3353 if (Info.ConstructorTmpl) 3354 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3355 /*ExplicitArgs*/ nullptr, From, 3356 CandidateSet, SuppressUserConversions, 3357 /*PartialOverloading*/ false, 3358 AllowExplicit); 3359 else 3360 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, 3361 CandidateSet, SuppressUserConversions, 3362 /*PartialOverloading*/ false, AllowExplicit); 3363 } 3364 } 3365 3366 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3367 3368 OverloadCandidateSet::iterator Best; 3369 switch (auto Result = 3370 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3371 case OR_Deleted: 3372 case OR_Success: { 3373 // Record the standard conversion we used and the conversion function. 3374 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 3375 QualType ThisType = Constructor->getThisType(); 3376 // Initializer lists don't have conversions as such. 3377 User.Before.setAsIdentityConversion(); 3378 User.HadMultipleCandidates = HadMultipleCandidates; 3379 User.ConversionFunction = Constructor; 3380 User.FoundConversionFunction = Best->FoundDecl; 3381 User.After.setAsIdentityConversion(); 3382 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3383 User.After.setAllToTypes(ToType); 3384 return Result; 3385 } 3386 3387 case OR_No_Viable_Function: 3388 return OR_No_Viable_Function; 3389 case OR_Ambiguous: 3390 return OR_Ambiguous; 3391 } 3392 3393 llvm_unreachable("Invalid OverloadResult!"); 3394 } 3395 3396 /// Determines whether there is a user-defined conversion sequence 3397 /// (C++ [over.ics.user]) that converts expression From to the type 3398 /// ToType. If such a conversion exists, User will contain the 3399 /// user-defined conversion sequence that performs such a conversion 3400 /// and this routine will return true. Otherwise, this routine returns 3401 /// false and User is unspecified. 3402 /// 3403 /// \param AllowExplicit true if the conversion should consider C++0x 3404 /// "explicit" conversion functions as well as non-explicit conversion 3405 /// functions (C++0x [class.conv.fct]p2). 3406 /// 3407 /// \param AllowObjCConversionOnExplicit true if the conversion should 3408 /// allow an extra Objective-C pointer conversion on uses of explicit 3409 /// constructors. Requires \c AllowExplicit to also be set. 3410 static OverloadingResult 3411 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 3412 UserDefinedConversionSequence &User, 3413 OverloadCandidateSet &CandidateSet, 3414 AllowedExplicit AllowExplicit, 3415 bool AllowObjCConversionOnExplicit) { 3416 assert(AllowExplicit != AllowedExplicit::None || 3417 !AllowObjCConversionOnExplicit); 3418 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3419 3420 // Whether we will only visit constructors. 3421 bool ConstructorsOnly = false; 3422 3423 // If the type we are conversion to is a class type, enumerate its 3424 // constructors. 3425 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 3426 // C++ [over.match.ctor]p1: 3427 // When objects of class type are direct-initialized (8.5), or 3428 // copy-initialized from an expression of the same or a 3429 // derived class type (8.5), overload resolution selects the 3430 // constructor. [...] For copy-initialization, the candidate 3431 // functions are all the converting constructors (12.3.1) of 3432 // that class. The argument list is the expression-list within 3433 // the parentheses of the initializer. 3434 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 3435 (From->getType()->getAs<RecordType>() && 3436 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) 3437 ConstructorsOnly = true; 3438 3439 if (!S.isCompleteType(From->getExprLoc(), ToType)) { 3440 // We're not going to find any constructors. 3441 } else if (CXXRecordDecl *ToRecordDecl 3442 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 3443 3444 Expr **Args = &From; 3445 unsigned NumArgs = 1; 3446 bool ListInitializing = false; 3447 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 3448 // But first, see if there is an init-list-constructor that will work. 3449 OverloadingResult Result = IsInitializerListConstructorConversion( 3450 S, From, ToType, ToRecordDecl, User, CandidateSet, 3451 AllowExplicit == AllowedExplicit::All); 3452 if (Result != OR_No_Viable_Function) 3453 return Result; 3454 // Never mind. 3455 CandidateSet.clear( 3456 OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3457 3458 // If we're list-initializing, we pass the individual elements as 3459 // arguments, not the entire list. 3460 Args = InitList->getInits(); 3461 NumArgs = InitList->getNumInits(); 3462 ListInitializing = true; 3463 } 3464 3465 for (auto *D : S.LookupConstructors(ToRecordDecl)) { 3466 auto Info = getConstructorInfo(D); 3467 if (!Info) 3468 continue; 3469 3470 bool Usable = !Info.Constructor->isInvalidDecl(); 3471 if (!ListInitializing) 3472 Usable = Usable && Info.Constructor->isConvertingConstructor( 3473 /*AllowExplicit*/ true); 3474 if (Usable) { 3475 bool SuppressUserConversions = !ConstructorsOnly; 3476 if (SuppressUserConversions && ListInitializing) { 3477 SuppressUserConversions = false; 3478 if (NumArgs == 1) { 3479 // If the first argument is (a reference to) the target type, 3480 // suppress conversions. 3481 SuppressUserConversions = isFirstArgumentCompatibleWithType( 3482 S.Context, Info.Constructor, ToType); 3483 } 3484 } 3485 if (Info.ConstructorTmpl) 3486 S.AddTemplateOverloadCandidate( 3487 Info.ConstructorTmpl, Info.FoundDecl, 3488 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), 3489 CandidateSet, SuppressUserConversions, 3490 /*PartialOverloading*/ false, 3491 AllowExplicit == AllowedExplicit::All); 3492 else 3493 // Allow one user-defined conversion when user specifies a 3494 // From->ToType conversion via an static cast (c-style, etc). 3495 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 3496 llvm::makeArrayRef(Args, NumArgs), 3497 CandidateSet, SuppressUserConversions, 3498 /*PartialOverloading*/ false, 3499 AllowExplicit == AllowedExplicit::All); 3500 } 3501 } 3502 } 3503 } 3504 3505 // Enumerate conversion functions, if we're allowed to. 3506 if (ConstructorsOnly || isa<InitListExpr>(From)) { 3507 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { 3508 // No conversion functions from incomplete types. 3509 } else if (const RecordType *FromRecordType = 3510 From->getType()->getAs<RecordType>()) { 3511 if (CXXRecordDecl *FromRecordDecl 3512 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 3513 // Add all of the conversion functions as candidates. 3514 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); 3515 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3516 DeclAccessPair FoundDecl = I.getPair(); 3517 NamedDecl *D = FoundDecl.getDecl(); 3518 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 3519 if (isa<UsingShadowDecl>(D)) 3520 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3521 3522 CXXConversionDecl *Conv; 3523 FunctionTemplateDecl *ConvTemplate; 3524 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 3525 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3526 else 3527 Conv = cast<CXXConversionDecl>(D); 3528 3529 if (ConvTemplate) 3530 S.AddTemplateConversionCandidate( 3531 ConvTemplate, FoundDecl, ActingContext, From, ToType, 3532 CandidateSet, AllowObjCConversionOnExplicit, 3533 AllowExplicit != AllowedExplicit::None); 3534 else 3535 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, 3536 CandidateSet, AllowObjCConversionOnExplicit, 3537 AllowExplicit != AllowedExplicit::None); 3538 } 3539 } 3540 } 3541 3542 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3543 3544 OverloadCandidateSet::iterator Best; 3545 switch (auto Result = 3546 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3547 case OR_Success: 3548 case OR_Deleted: 3549 // Record the standard conversion we used and the conversion function. 3550 if (CXXConstructorDecl *Constructor 3551 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 3552 // C++ [over.ics.user]p1: 3553 // If the user-defined conversion is specified by a 3554 // constructor (12.3.1), the initial standard conversion 3555 // sequence converts the source type to the type required by 3556 // the argument of the constructor. 3557 // 3558 QualType ThisType = Constructor->getThisType(); 3559 if (isa<InitListExpr>(From)) { 3560 // Initializer lists don't have conversions as such. 3561 User.Before.setAsIdentityConversion(); 3562 } else { 3563 if (Best->Conversions[0].isEllipsis()) 3564 User.EllipsisConversion = true; 3565 else { 3566 User.Before = Best->Conversions[0].Standard; 3567 User.EllipsisConversion = false; 3568 } 3569 } 3570 User.HadMultipleCandidates = HadMultipleCandidates; 3571 User.ConversionFunction = Constructor; 3572 User.FoundConversionFunction = Best->FoundDecl; 3573 User.After.setAsIdentityConversion(); 3574 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3575 User.After.setAllToTypes(ToType); 3576 return Result; 3577 } 3578 if (CXXConversionDecl *Conversion 3579 = dyn_cast<CXXConversionDecl>(Best->Function)) { 3580 // C++ [over.ics.user]p1: 3581 // 3582 // [...] If the user-defined conversion is specified by a 3583 // conversion function (12.3.2), the initial standard 3584 // conversion sequence converts the source type to the 3585 // implicit object parameter of the conversion function. 3586 User.Before = Best->Conversions[0].Standard; 3587 User.HadMultipleCandidates = HadMultipleCandidates; 3588 User.ConversionFunction = Conversion; 3589 User.FoundConversionFunction = Best->FoundDecl; 3590 User.EllipsisConversion = false; 3591 3592 // C++ [over.ics.user]p2: 3593 // The second standard conversion sequence converts the 3594 // result of the user-defined conversion to the target type 3595 // for the sequence. Since an implicit conversion sequence 3596 // is an initialization, the special rules for 3597 // initialization by user-defined conversion apply when 3598 // selecting the best user-defined conversion for a 3599 // user-defined conversion sequence (see 13.3.3 and 3600 // 13.3.3.1). 3601 User.After = Best->FinalConversion; 3602 return Result; 3603 } 3604 llvm_unreachable("Not a constructor or conversion function?"); 3605 3606 case OR_No_Viable_Function: 3607 return OR_No_Viable_Function; 3608 3609 case OR_Ambiguous: 3610 return OR_Ambiguous; 3611 } 3612 3613 llvm_unreachable("Invalid OverloadResult!"); 3614 } 3615 3616 bool 3617 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 3618 ImplicitConversionSequence ICS; 3619 OverloadCandidateSet CandidateSet(From->getExprLoc(), 3620 OverloadCandidateSet::CSK_Normal); 3621 OverloadingResult OvResult = 3622 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 3623 CandidateSet, AllowedExplicit::None, false); 3624 3625 if (!(OvResult == OR_Ambiguous || 3626 (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) 3627 return false; 3628 3629 auto Cands = CandidateSet.CompleteCandidates( 3630 *this, 3631 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, 3632 From); 3633 if (OvResult == OR_Ambiguous) 3634 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) 3635 << From->getType() << ToType << From->getSourceRange(); 3636 else { // OR_No_Viable_Function && !CandidateSet.empty() 3637 if (!RequireCompleteType(From->getBeginLoc(), ToType, 3638 diag::err_typecheck_nonviable_condition_incomplete, 3639 From->getType(), From->getSourceRange())) 3640 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) 3641 << false << From->getType() << From->getSourceRange() << ToType; 3642 } 3643 3644 CandidateSet.NoteCandidates( 3645 *this, From, Cands); 3646 return true; 3647 } 3648 3649 // Helper for compareConversionFunctions that gets the FunctionType that the 3650 // conversion-operator return value 'points' to, or nullptr. 3651 static const FunctionType * 3652 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { 3653 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); 3654 const PointerType *RetPtrTy = 3655 ConvFuncTy->getReturnType()->getAs<PointerType>(); 3656 3657 if (!RetPtrTy) 3658 return nullptr; 3659 3660 return RetPtrTy->getPointeeType()->getAs<FunctionType>(); 3661 } 3662 3663 /// Compare the user-defined conversion functions or constructors 3664 /// of two user-defined conversion sequences to determine whether any ordering 3665 /// is possible. 3666 static ImplicitConversionSequence::CompareKind 3667 compareConversionFunctions(Sema &S, FunctionDecl *Function1, 3668 FunctionDecl *Function2) { 3669 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); 3670 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); 3671 if (!Conv1 || !Conv2) 3672 return ImplicitConversionSequence::Indistinguishable; 3673 3674 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) 3675 return ImplicitConversionSequence::Indistinguishable; 3676 3677 // Objective-C++: 3678 // If both conversion functions are implicitly-declared conversions from 3679 // a lambda closure type to a function pointer and a block pointer, 3680 // respectively, always prefer the conversion to a function pointer, 3681 // because the function pointer is more lightweight and is more likely 3682 // to keep code working. 3683 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { 3684 bool Block1 = Conv1->getConversionType()->isBlockPointerType(); 3685 bool Block2 = Conv2->getConversionType()->isBlockPointerType(); 3686 if (Block1 != Block2) 3687 return Block1 ? ImplicitConversionSequence::Worse 3688 : ImplicitConversionSequence::Better; 3689 } 3690 3691 // In order to support multiple calling conventions for the lambda conversion 3692 // operator (such as when the free and member function calling convention is 3693 // different), prefer the 'free' mechanism, followed by the calling-convention 3694 // of operator(). The latter is in place to support the MSVC-like solution of 3695 // defining ALL of the possible conversions in regards to calling-convention. 3696 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); 3697 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); 3698 3699 if (Conv1FuncRet && Conv2FuncRet && 3700 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { 3701 CallingConv Conv1CC = Conv1FuncRet->getCallConv(); 3702 CallingConv Conv2CC = Conv2FuncRet->getCallConv(); 3703 3704 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); 3705 const FunctionProtoType *CallOpProto = 3706 CallOp->getType()->getAs<FunctionProtoType>(); 3707 3708 CallingConv CallOpCC = 3709 CallOp->getType()->getAs<FunctionType>()->getCallConv(); 3710 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 3711 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 3712 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 3713 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 3714 3715 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; 3716 for (CallingConv CC : PrefOrder) { 3717 if (Conv1CC == CC) 3718 return ImplicitConversionSequence::Better; 3719 if (Conv2CC == CC) 3720 return ImplicitConversionSequence::Worse; 3721 } 3722 } 3723 3724 return ImplicitConversionSequence::Indistinguishable; 3725 } 3726 3727 static bool hasDeprecatedStringLiteralToCharPtrConversion( 3728 const ImplicitConversionSequence &ICS) { 3729 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || 3730 (ICS.isUserDefined() && 3731 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); 3732 } 3733 3734 /// CompareImplicitConversionSequences - Compare two implicit 3735 /// conversion sequences to determine whether one is better than the 3736 /// other or if they are indistinguishable (C++ 13.3.3.2). 3737 static ImplicitConversionSequence::CompareKind 3738 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, 3739 const ImplicitConversionSequence& ICS1, 3740 const ImplicitConversionSequence& ICS2) 3741 { 3742 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 3743 // conversion sequences (as defined in 13.3.3.1) 3744 // -- a standard conversion sequence (13.3.3.1.1) is a better 3745 // conversion sequence than a user-defined conversion sequence or 3746 // an ellipsis conversion sequence, and 3747 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3748 // conversion sequence than an ellipsis conversion sequence 3749 // (13.3.3.1.3). 3750 // 3751 // C++0x [over.best.ics]p10: 3752 // For the purpose of ranking implicit conversion sequences as 3753 // described in 13.3.3.2, the ambiguous conversion sequence is 3754 // treated as a user-defined sequence that is indistinguishable 3755 // from any other user-defined conversion sequence. 3756 3757 // String literal to 'char *' conversion has been deprecated in C++03. It has 3758 // been removed from C++11. We still accept this conversion, if it happens at 3759 // the best viable function. Otherwise, this conversion is considered worse 3760 // than ellipsis conversion. Consider this as an extension; this is not in the 3761 // standard. For example: 3762 // 3763 // int &f(...); // #1 3764 // void f(char*); // #2 3765 // void g() { int &r = f("foo"); } 3766 // 3767 // In C++03, we pick #2 as the best viable function. 3768 // In C++11, we pick #1 as the best viable function, because ellipsis 3769 // conversion is better than string-literal to char* conversion (since there 3770 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't 3771 // convert arguments, #2 would be the best viable function in C++11. 3772 // If the best viable function has this conversion, a warning will be issued 3773 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. 3774 3775 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 3776 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != 3777 hasDeprecatedStringLiteralToCharPtrConversion(ICS2)) 3778 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) 3779 ? ImplicitConversionSequence::Worse 3780 : ImplicitConversionSequence::Better; 3781 3782 if (ICS1.getKindRank() < ICS2.getKindRank()) 3783 return ImplicitConversionSequence::Better; 3784 if (ICS2.getKindRank() < ICS1.getKindRank()) 3785 return ImplicitConversionSequence::Worse; 3786 3787 // The following checks require both conversion sequences to be of 3788 // the same kind. 3789 if (ICS1.getKind() != ICS2.getKind()) 3790 return ImplicitConversionSequence::Indistinguishable; 3791 3792 ImplicitConversionSequence::CompareKind Result = 3793 ImplicitConversionSequence::Indistinguishable; 3794 3795 // Two implicit conversion sequences of the same form are 3796 // indistinguishable conversion sequences unless one of the 3797 // following rules apply: (C++ 13.3.3.2p3): 3798 3799 // List-initialization sequence L1 is a better conversion sequence than 3800 // list-initialization sequence L2 if: 3801 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, 3802 // if not that, 3803 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T", 3804 // and N1 is smaller than N2., 3805 // even if one of the other rules in this paragraph would otherwise apply. 3806 if (!ICS1.isBad()) { 3807 if (ICS1.isStdInitializerListElement() && 3808 !ICS2.isStdInitializerListElement()) 3809 return ImplicitConversionSequence::Better; 3810 if (!ICS1.isStdInitializerListElement() && 3811 ICS2.isStdInitializerListElement()) 3812 return ImplicitConversionSequence::Worse; 3813 } 3814 3815 if (ICS1.isStandard()) 3816 // Standard conversion sequence S1 is a better conversion sequence than 3817 // standard conversion sequence S2 if [...] 3818 Result = CompareStandardConversionSequences(S, Loc, 3819 ICS1.Standard, ICS2.Standard); 3820 else if (ICS1.isUserDefined()) { 3821 // User-defined conversion sequence U1 is a better conversion 3822 // sequence than another user-defined conversion sequence U2 if 3823 // they contain the same user-defined conversion function or 3824 // constructor and if the second standard conversion sequence of 3825 // U1 is better than the second standard conversion sequence of 3826 // U2 (C++ 13.3.3.2p3). 3827 if (ICS1.UserDefined.ConversionFunction == 3828 ICS2.UserDefined.ConversionFunction) 3829 Result = CompareStandardConversionSequences(S, Loc, 3830 ICS1.UserDefined.After, 3831 ICS2.UserDefined.After); 3832 else 3833 Result = compareConversionFunctions(S, 3834 ICS1.UserDefined.ConversionFunction, 3835 ICS2.UserDefined.ConversionFunction); 3836 } 3837 3838 return Result; 3839 } 3840 3841 // Per 13.3.3.2p3, compare the given standard conversion sequences to 3842 // determine if one is a proper subset of the other. 3843 static ImplicitConversionSequence::CompareKind 3844 compareStandardConversionSubsets(ASTContext &Context, 3845 const StandardConversionSequence& SCS1, 3846 const StandardConversionSequence& SCS2) { 3847 ImplicitConversionSequence::CompareKind Result 3848 = ImplicitConversionSequence::Indistinguishable; 3849 3850 // the identity conversion sequence is considered to be a subsequence of 3851 // any non-identity conversion sequence 3852 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 3853 return ImplicitConversionSequence::Better; 3854 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 3855 return ImplicitConversionSequence::Worse; 3856 3857 if (SCS1.Second != SCS2.Second) { 3858 if (SCS1.Second == ICK_Identity) 3859 Result = ImplicitConversionSequence::Better; 3860 else if (SCS2.Second == ICK_Identity) 3861 Result = ImplicitConversionSequence::Worse; 3862 else 3863 return ImplicitConversionSequence::Indistinguishable; 3864 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) 3865 return ImplicitConversionSequence::Indistinguishable; 3866 3867 if (SCS1.Third == SCS2.Third) { 3868 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 3869 : ImplicitConversionSequence::Indistinguishable; 3870 } 3871 3872 if (SCS1.Third == ICK_Identity) 3873 return Result == ImplicitConversionSequence::Worse 3874 ? ImplicitConversionSequence::Indistinguishable 3875 : ImplicitConversionSequence::Better; 3876 3877 if (SCS2.Third == ICK_Identity) 3878 return Result == ImplicitConversionSequence::Better 3879 ? ImplicitConversionSequence::Indistinguishable 3880 : ImplicitConversionSequence::Worse; 3881 3882 return ImplicitConversionSequence::Indistinguishable; 3883 } 3884 3885 /// Determine whether one of the given reference bindings is better 3886 /// than the other based on what kind of bindings they are. 3887 static bool 3888 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 3889 const StandardConversionSequence &SCS2) { 3890 // C++0x [over.ics.rank]p3b4: 3891 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 3892 // implicit object parameter of a non-static member function declared 3893 // without a ref-qualifier, and *either* S1 binds an rvalue reference 3894 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 3895 // lvalue reference to a function lvalue and S2 binds an rvalue 3896 // reference*. 3897 // 3898 // FIXME: Rvalue references. We're going rogue with the above edits, 3899 // because the semantics in the current C++0x working paper (N3225 at the 3900 // time of this writing) break the standard definition of std::forward 3901 // and std::reference_wrapper when dealing with references to functions. 3902 // Proposed wording changes submitted to CWG for consideration. 3903 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 3904 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 3905 return false; 3906 3907 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 3908 SCS2.IsLvalueReference) || 3909 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 3910 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); 3911 } 3912 3913 enum class FixedEnumPromotion { 3914 None, 3915 ToUnderlyingType, 3916 ToPromotedUnderlyingType 3917 }; 3918 3919 /// Returns kind of fixed enum promotion the \a SCS uses. 3920 static FixedEnumPromotion 3921 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { 3922 3923 if (SCS.Second != ICK_Integral_Promotion) 3924 return FixedEnumPromotion::None; 3925 3926 QualType FromType = SCS.getFromType(); 3927 if (!FromType->isEnumeralType()) 3928 return FixedEnumPromotion::None; 3929 3930 EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl(); 3931 if (!Enum->isFixed()) 3932 return FixedEnumPromotion::None; 3933 3934 QualType UnderlyingType = Enum->getIntegerType(); 3935 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) 3936 return FixedEnumPromotion::ToUnderlyingType; 3937 3938 return FixedEnumPromotion::ToPromotedUnderlyingType; 3939 } 3940 3941 /// CompareStandardConversionSequences - Compare two standard 3942 /// conversion sequences to determine whether one is better than the 3943 /// other or if they are indistinguishable (C++ 13.3.3.2p3). 3944 static ImplicitConversionSequence::CompareKind 3945 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 3946 const StandardConversionSequence& SCS1, 3947 const StandardConversionSequence& SCS2) 3948 { 3949 // Standard conversion sequence S1 is a better conversion sequence 3950 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 3951 3952 // -- S1 is a proper subsequence of S2 (comparing the conversion 3953 // sequences in the canonical form defined by 13.3.3.1.1, 3954 // excluding any Lvalue Transformation; the identity conversion 3955 // sequence is considered to be a subsequence of any 3956 // non-identity conversion sequence) or, if not that, 3957 if (ImplicitConversionSequence::CompareKind CK 3958 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 3959 return CK; 3960 3961 // -- the rank of S1 is better than the rank of S2 (by the rules 3962 // defined below), or, if not that, 3963 ImplicitConversionRank Rank1 = SCS1.getRank(); 3964 ImplicitConversionRank Rank2 = SCS2.getRank(); 3965 if (Rank1 < Rank2) 3966 return ImplicitConversionSequence::Better; 3967 else if (Rank2 < Rank1) 3968 return ImplicitConversionSequence::Worse; 3969 3970 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 3971 // are indistinguishable unless one of the following rules 3972 // applies: 3973 3974 // A conversion that is not a conversion of a pointer, or 3975 // pointer to member, to bool is better than another conversion 3976 // that is such a conversion. 3977 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 3978 return SCS2.isPointerConversionToBool() 3979 ? ImplicitConversionSequence::Better 3980 : ImplicitConversionSequence::Worse; 3981 3982 // C++14 [over.ics.rank]p4b2: 3983 // This is retroactively applied to C++11 by CWG 1601. 3984 // 3985 // A conversion that promotes an enumeration whose underlying type is fixed 3986 // to its underlying type is better than one that promotes to the promoted 3987 // underlying type, if the two are different. 3988 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); 3989 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); 3990 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && 3991 FEP1 != FEP2) 3992 return FEP1 == FixedEnumPromotion::ToUnderlyingType 3993 ? ImplicitConversionSequence::Better 3994 : ImplicitConversionSequence::Worse; 3995 3996 // C++ [over.ics.rank]p4b2: 3997 // 3998 // If class B is derived directly or indirectly from class A, 3999 // conversion of B* to A* is better than conversion of B* to 4000 // void*, and conversion of A* to void* is better than conversion 4001 // of B* to void*. 4002 bool SCS1ConvertsToVoid 4003 = SCS1.isPointerConversionToVoidPointer(S.Context); 4004 bool SCS2ConvertsToVoid 4005 = SCS2.isPointerConversionToVoidPointer(S.Context); 4006 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 4007 // Exactly one of the conversion sequences is a conversion to 4008 // a void pointer; it's the worse conversion. 4009 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 4010 : ImplicitConversionSequence::Worse; 4011 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 4012 // Neither conversion sequence converts to a void pointer; compare 4013 // their derived-to-base conversions. 4014 if (ImplicitConversionSequence::CompareKind DerivedCK 4015 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) 4016 return DerivedCK; 4017 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 4018 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 4019 // Both conversion sequences are conversions to void 4020 // pointers. Compare the source types to determine if there's an 4021 // inheritance relationship in their sources. 4022 QualType FromType1 = SCS1.getFromType(); 4023 QualType FromType2 = SCS2.getFromType(); 4024 4025 // Adjust the types we're converting from via the array-to-pointer 4026 // conversion, if we need to. 4027 if (SCS1.First == ICK_Array_To_Pointer) 4028 FromType1 = S.Context.getArrayDecayedType(FromType1); 4029 if (SCS2.First == ICK_Array_To_Pointer) 4030 FromType2 = S.Context.getArrayDecayedType(FromType2); 4031 4032 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 4033 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 4034 4035 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4036 return ImplicitConversionSequence::Better; 4037 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4038 return ImplicitConversionSequence::Worse; 4039 4040 // Objective-C++: If one interface is more specific than the 4041 // other, it is the better one. 4042 const ObjCObjectPointerType* FromObjCPtr1 4043 = FromType1->getAs<ObjCObjectPointerType>(); 4044 const ObjCObjectPointerType* FromObjCPtr2 4045 = FromType2->getAs<ObjCObjectPointerType>(); 4046 if (FromObjCPtr1 && FromObjCPtr2) { 4047 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 4048 FromObjCPtr2); 4049 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 4050 FromObjCPtr1); 4051 if (AssignLeft != AssignRight) { 4052 return AssignLeft? ImplicitConversionSequence::Better 4053 : ImplicitConversionSequence::Worse; 4054 } 4055 } 4056 } 4057 4058 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4059 // Check for a better reference binding based on the kind of bindings. 4060 if (isBetterReferenceBindingKind(SCS1, SCS2)) 4061 return ImplicitConversionSequence::Better; 4062 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 4063 return ImplicitConversionSequence::Worse; 4064 } 4065 4066 // Compare based on qualification conversions (C++ 13.3.3.2p3, 4067 // bullet 3). 4068 if (ImplicitConversionSequence::CompareKind QualCK 4069 = CompareQualificationConversions(S, SCS1, SCS2)) 4070 return QualCK; 4071 4072 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4073 // C++ [over.ics.rank]p3b4: 4074 // -- S1 and S2 are reference bindings (8.5.3), and the types to 4075 // which the references refer are the same type except for 4076 // top-level cv-qualifiers, and the type to which the reference 4077 // initialized by S2 refers is more cv-qualified than the type 4078 // to which the reference initialized by S1 refers. 4079 QualType T1 = SCS1.getToType(2); 4080 QualType T2 = SCS2.getToType(2); 4081 T1 = S.Context.getCanonicalType(T1); 4082 T2 = S.Context.getCanonicalType(T2); 4083 Qualifiers T1Quals, T2Quals; 4084 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4085 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4086 if (UnqualT1 == UnqualT2) { 4087 // Objective-C++ ARC: If the references refer to objects with different 4088 // lifetimes, prefer bindings that don't change lifetime. 4089 if (SCS1.ObjCLifetimeConversionBinding != 4090 SCS2.ObjCLifetimeConversionBinding) { 4091 return SCS1.ObjCLifetimeConversionBinding 4092 ? ImplicitConversionSequence::Worse 4093 : ImplicitConversionSequence::Better; 4094 } 4095 4096 // If the type is an array type, promote the element qualifiers to the 4097 // type for comparison. 4098 if (isa<ArrayType>(T1) && T1Quals) 4099 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 4100 if (isa<ArrayType>(T2) && T2Quals) 4101 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 4102 if (T2.isMoreQualifiedThan(T1)) 4103 return ImplicitConversionSequence::Better; 4104 if (T1.isMoreQualifiedThan(T2)) 4105 return ImplicitConversionSequence::Worse; 4106 } 4107 } 4108 4109 // In Microsoft mode, prefer an integral conversion to a 4110 // floating-to-integral conversion if the integral conversion 4111 // is between types of the same size. 4112 // For example: 4113 // void f(float); 4114 // void f(int); 4115 // int main { 4116 // long a; 4117 // f(a); 4118 // } 4119 // Here, MSVC will call f(int) instead of generating a compile error 4120 // as clang will do in standard mode. 4121 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion && 4122 SCS2.Second == ICK_Floating_Integral && 4123 S.Context.getTypeSize(SCS1.getFromType()) == 4124 S.Context.getTypeSize(SCS1.getToType(2))) 4125 return ImplicitConversionSequence::Better; 4126 4127 // Prefer a compatible vector conversion over a lax vector conversion 4128 // For example: 4129 // 4130 // typedef float __v4sf __attribute__((__vector_size__(16))); 4131 // void f(vector float); 4132 // void f(vector signed int); 4133 // int main() { 4134 // __v4sf a; 4135 // f(a); 4136 // } 4137 // Here, we'd like to choose f(vector float) and not 4138 // report an ambiguous call error 4139 if (SCS1.Second == ICK_Vector_Conversion && 4140 SCS2.Second == ICK_Vector_Conversion) { 4141 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4142 SCS1.getFromType(), SCS1.getToType(2)); 4143 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4144 SCS2.getFromType(), SCS2.getToType(2)); 4145 4146 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) 4147 return SCS1IsCompatibleVectorConversion 4148 ? ImplicitConversionSequence::Better 4149 : ImplicitConversionSequence::Worse; 4150 } 4151 4152 if (SCS1.Second == ICK_SVE_Vector_Conversion && 4153 SCS2.Second == ICK_SVE_Vector_Conversion) { 4154 bool SCS1IsCompatibleSVEVectorConversion = 4155 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); 4156 bool SCS2IsCompatibleSVEVectorConversion = 4157 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); 4158 4159 if (SCS1IsCompatibleSVEVectorConversion != 4160 SCS2IsCompatibleSVEVectorConversion) 4161 return SCS1IsCompatibleSVEVectorConversion 4162 ? ImplicitConversionSequence::Better 4163 : ImplicitConversionSequence::Worse; 4164 } 4165 4166 return ImplicitConversionSequence::Indistinguishable; 4167 } 4168 4169 /// CompareQualificationConversions - Compares two standard conversion 4170 /// sequences to determine whether they can be ranked based on their 4171 /// qualification conversions (C++ 13.3.3.2p3 bullet 3). 4172 static ImplicitConversionSequence::CompareKind 4173 CompareQualificationConversions(Sema &S, 4174 const StandardConversionSequence& SCS1, 4175 const StandardConversionSequence& SCS2) { 4176 // C++ 13.3.3.2p3: 4177 // -- S1 and S2 differ only in their qualification conversion and 4178 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 4179 // cv-qualification signature of type T1 is a proper subset of 4180 // the cv-qualification signature of type T2, and S1 is not the 4181 // deprecated string literal array-to-pointer conversion (4.2). 4182 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 4183 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 4184 return ImplicitConversionSequence::Indistinguishable; 4185 4186 // FIXME: the example in the standard doesn't use a qualification 4187 // conversion (!) 4188 QualType T1 = SCS1.getToType(2); 4189 QualType T2 = SCS2.getToType(2); 4190 T1 = S.Context.getCanonicalType(T1); 4191 T2 = S.Context.getCanonicalType(T2); 4192 assert(!T1->isReferenceType() && !T2->isReferenceType()); 4193 Qualifiers T1Quals, T2Quals; 4194 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4195 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4196 4197 // If the types are the same, we won't learn anything by unwrapping 4198 // them. 4199 if (UnqualT1 == UnqualT2) 4200 return ImplicitConversionSequence::Indistinguishable; 4201 4202 ImplicitConversionSequence::CompareKind Result 4203 = ImplicitConversionSequence::Indistinguishable; 4204 4205 // Objective-C++ ARC: 4206 // Prefer qualification conversions not involving a change in lifetime 4207 // to qualification conversions that do not change lifetime. 4208 if (SCS1.QualificationIncludesObjCLifetime != 4209 SCS2.QualificationIncludesObjCLifetime) { 4210 Result = SCS1.QualificationIncludesObjCLifetime 4211 ? ImplicitConversionSequence::Worse 4212 : ImplicitConversionSequence::Better; 4213 } 4214 4215 while (S.Context.UnwrapSimilarTypes(T1, T2)) { 4216 // Within each iteration of the loop, we check the qualifiers to 4217 // determine if this still looks like a qualification 4218 // conversion. Then, if all is well, we unwrap one more level of 4219 // pointers or pointers-to-members and do it all again 4220 // until there are no more pointers or pointers-to-members left 4221 // to unwrap. This essentially mimics what 4222 // IsQualificationConversion does, but here we're checking for a 4223 // strict subset of qualifiers. 4224 if (T1.getQualifiers().withoutObjCLifetime() == 4225 T2.getQualifiers().withoutObjCLifetime()) 4226 // The qualifiers are the same, so this doesn't tell us anything 4227 // about how the sequences rank. 4228 // ObjC ownership quals are omitted above as they interfere with 4229 // the ARC overload rule. 4230 ; 4231 else if (T2.isMoreQualifiedThan(T1)) { 4232 // T1 has fewer qualifiers, so it could be the better sequence. 4233 if (Result == ImplicitConversionSequence::Worse) 4234 // Neither has qualifiers that are a subset of the other's 4235 // qualifiers. 4236 return ImplicitConversionSequence::Indistinguishable; 4237 4238 Result = ImplicitConversionSequence::Better; 4239 } else if (T1.isMoreQualifiedThan(T2)) { 4240 // T2 has fewer qualifiers, so it could be the better sequence. 4241 if (Result == ImplicitConversionSequence::Better) 4242 // Neither has qualifiers that are a subset of the other's 4243 // qualifiers. 4244 return ImplicitConversionSequence::Indistinguishable; 4245 4246 Result = ImplicitConversionSequence::Worse; 4247 } else { 4248 // Qualifiers are disjoint. 4249 return ImplicitConversionSequence::Indistinguishable; 4250 } 4251 4252 // If the types after this point are equivalent, we're done. 4253 if (S.Context.hasSameUnqualifiedType(T1, T2)) 4254 break; 4255 } 4256 4257 // Check that the winning standard conversion sequence isn't using 4258 // the deprecated string literal array to pointer conversion. 4259 switch (Result) { 4260 case ImplicitConversionSequence::Better: 4261 if (SCS1.DeprecatedStringLiteralToCharPtr) 4262 Result = ImplicitConversionSequence::Indistinguishable; 4263 break; 4264 4265 case ImplicitConversionSequence::Indistinguishable: 4266 break; 4267 4268 case ImplicitConversionSequence::Worse: 4269 if (SCS2.DeprecatedStringLiteralToCharPtr) 4270 Result = ImplicitConversionSequence::Indistinguishable; 4271 break; 4272 } 4273 4274 return Result; 4275 } 4276 4277 /// CompareDerivedToBaseConversions - Compares two standard conversion 4278 /// sequences to determine whether they can be ranked based on their 4279 /// various kinds of derived-to-base conversions (C++ 4280 /// [over.ics.rank]p4b3). As part of these checks, we also look at 4281 /// conversions between Objective-C interface types. 4282 static ImplicitConversionSequence::CompareKind 4283 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 4284 const StandardConversionSequence& SCS1, 4285 const StandardConversionSequence& SCS2) { 4286 QualType FromType1 = SCS1.getFromType(); 4287 QualType ToType1 = SCS1.getToType(1); 4288 QualType FromType2 = SCS2.getFromType(); 4289 QualType ToType2 = SCS2.getToType(1); 4290 4291 // Adjust the types we're converting from via the array-to-pointer 4292 // conversion, if we need to. 4293 if (SCS1.First == ICK_Array_To_Pointer) 4294 FromType1 = S.Context.getArrayDecayedType(FromType1); 4295 if (SCS2.First == ICK_Array_To_Pointer) 4296 FromType2 = S.Context.getArrayDecayedType(FromType2); 4297 4298 // Canonicalize all of the types. 4299 FromType1 = S.Context.getCanonicalType(FromType1); 4300 ToType1 = S.Context.getCanonicalType(ToType1); 4301 FromType2 = S.Context.getCanonicalType(FromType2); 4302 ToType2 = S.Context.getCanonicalType(ToType2); 4303 4304 // C++ [over.ics.rank]p4b3: 4305 // 4306 // If class B is derived directly or indirectly from class A and 4307 // class C is derived directly or indirectly from B, 4308 // 4309 // Compare based on pointer conversions. 4310 if (SCS1.Second == ICK_Pointer_Conversion && 4311 SCS2.Second == ICK_Pointer_Conversion && 4312 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 4313 FromType1->isPointerType() && FromType2->isPointerType() && 4314 ToType1->isPointerType() && ToType2->isPointerType()) { 4315 QualType FromPointee1 = 4316 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4317 QualType ToPointee1 = 4318 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4319 QualType FromPointee2 = 4320 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4321 QualType ToPointee2 = 4322 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4323 4324 // -- conversion of C* to B* is better than conversion of C* to A*, 4325 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4326 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4327 return ImplicitConversionSequence::Better; 4328 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4329 return ImplicitConversionSequence::Worse; 4330 } 4331 4332 // -- conversion of B* to A* is better than conversion of C* to A*, 4333 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 4334 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4335 return ImplicitConversionSequence::Better; 4336 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4337 return ImplicitConversionSequence::Worse; 4338 } 4339 } else if (SCS1.Second == ICK_Pointer_Conversion && 4340 SCS2.Second == ICK_Pointer_Conversion) { 4341 const ObjCObjectPointerType *FromPtr1 4342 = FromType1->getAs<ObjCObjectPointerType>(); 4343 const ObjCObjectPointerType *FromPtr2 4344 = FromType2->getAs<ObjCObjectPointerType>(); 4345 const ObjCObjectPointerType *ToPtr1 4346 = ToType1->getAs<ObjCObjectPointerType>(); 4347 const ObjCObjectPointerType *ToPtr2 4348 = ToType2->getAs<ObjCObjectPointerType>(); 4349 4350 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 4351 // Apply the same conversion ranking rules for Objective-C pointer types 4352 // that we do for C++ pointers to class types. However, we employ the 4353 // Objective-C pseudo-subtyping relationship used for assignment of 4354 // Objective-C pointer types. 4355 bool FromAssignLeft 4356 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 4357 bool FromAssignRight 4358 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 4359 bool ToAssignLeft 4360 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 4361 bool ToAssignRight 4362 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 4363 4364 // A conversion to an a non-id object pointer type or qualified 'id' 4365 // type is better than a conversion to 'id'. 4366 if (ToPtr1->isObjCIdType() && 4367 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 4368 return ImplicitConversionSequence::Worse; 4369 if (ToPtr2->isObjCIdType() && 4370 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 4371 return ImplicitConversionSequence::Better; 4372 4373 // A conversion to a non-id object pointer type is better than a 4374 // conversion to a qualified 'id' type 4375 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 4376 return ImplicitConversionSequence::Worse; 4377 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 4378 return ImplicitConversionSequence::Better; 4379 4380 // A conversion to an a non-Class object pointer type or qualified 'Class' 4381 // type is better than a conversion to 'Class'. 4382 if (ToPtr1->isObjCClassType() && 4383 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 4384 return ImplicitConversionSequence::Worse; 4385 if (ToPtr2->isObjCClassType() && 4386 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 4387 return ImplicitConversionSequence::Better; 4388 4389 // A conversion to a non-Class object pointer type is better than a 4390 // conversion to a qualified 'Class' type. 4391 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 4392 return ImplicitConversionSequence::Worse; 4393 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 4394 return ImplicitConversionSequence::Better; 4395 4396 // -- "conversion of C* to B* is better than conversion of C* to A*," 4397 if (S.Context.hasSameType(FromType1, FromType2) && 4398 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 4399 (ToAssignLeft != ToAssignRight)) { 4400 if (FromPtr1->isSpecialized()) { 4401 // "conversion of B<A> * to B * is better than conversion of B * to 4402 // C *. 4403 bool IsFirstSame = 4404 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); 4405 bool IsSecondSame = 4406 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); 4407 if (IsFirstSame) { 4408 if (!IsSecondSame) 4409 return ImplicitConversionSequence::Better; 4410 } else if (IsSecondSame) 4411 return ImplicitConversionSequence::Worse; 4412 } 4413 return ToAssignLeft? ImplicitConversionSequence::Worse 4414 : ImplicitConversionSequence::Better; 4415 } 4416 4417 // -- "conversion of B* to A* is better than conversion of C* to A*," 4418 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 4419 (FromAssignLeft != FromAssignRight)) 4420 return FromAssignLeft? ImplicitConversionSequence::Better 4421 : ImplicitConversionSequence::Worse; 4422 } 4423 } 4424 4425 // Ranking of member-pointer types. 4426 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 4427 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 4428 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 4429 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); 4430 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); 4431 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); 4432 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); 4433 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 4434 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 4435 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 4436 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 4437 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 4438 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 4439 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 4440 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 4441 // conversion of A::* to B::* is better than conversion of A::* to C::*, 4442 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4443 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4444 return ImplicitConversionSequence::Worse; 4445 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4446 return ImplicitConversionSequence::Better; 4447 } 4448 // conversion of B::* to C::* is better than conversion of A::* to C::* 4449 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 4450 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4451 return ImplicitConversionSequence::Better; 4452 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4453 return ImplicitConversionSequence::Worse; 4454 } 4455 } 4456 4457 if (SCS1.Second == ICK_Derived_To_Base) { 4458 // -- conversion of C to B is better than conversion of C to A, 4459 // -- binding of an expression of type C to a reference of type 4460 // B& is better than binding an expression of type C to a 4461 // reference of type A&, 4462 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4463 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4464 if (S.IsDerivedFrom(Loc, ToType1, ToType2)) 4465 return ImplicitConversionSequence::Better; 4466 else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) 4467 return ImplicitConversionSequence::Worse; 4468 } 4469 4470 // -- conversion of B to A is better than conversion of C to A. 4471 // -- binding of an expression of type B to a reference of type 4472 // A& is better than binding an expression of type C to a 4473 // reference of type A&, 4474 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4475 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4476 if (S.IsDerivedFrom(Loc, FromType2, FromType1)) 4477 return ImplicitConversionSequence::Better; 4478 else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) 4479 return ImplicitConversionSequence::Worse; 4480 } 4481 } 4482 4483 return ImplicitConversionSequence::Indistinguishable; 4484 } 4485 4486 /// Determine whether the given type is valid, e.g., it is not an invalid 4487 /// C++ class. 4488 static bool isTypeValid(QualType T) { 4489 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) 4490 return !Record->isInvalidDecl(); 4491 4492 return true; 4493 } 4494 4495 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { 4496 if (!T.getQualifiers().hasUnaligned()) 4497 return T; 4498 4499 Qualifiers Q; 4500 T = Ctx.getUnqualifiedArrayType(T, Q); 4501 Q.removeUnaligned(); 4502 return Ctx.getQualifiedType(T, Q); 4503 } 4504 4505 /// CompareReferenceRelationship - Compare the two types T1 and T2 to 4506 /// determine whether they are reference-compatible, 4507 /// reference-related, or incompatible, for use in C++ initialization by 4508 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 4509 /// type, and the first type (T1) is the pointee type of the reference 4510 /// type being initialized. 4511 Sema::ReferenceCompareResult 4512 Sema::CompareReferenceRelationship(SourceLocation Loc, 4513 QualType OrigT1, QualType OrigT2, 4514 ReferenceConversions *ConvOut) { 4515 assert(!OrigT1->isReferenceType() && 4516 "T1 must be the pointee type of the reference type"); 4517 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 4518 4519 QualType T1 = Context.getCanonicalType(OrigT1); 4520 QualType T2 = Context.getCanonicalType(OrigT2); 4521 Qualifiers T1Quals, T2Quals; 4522 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 4523 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 4524 4525 ReferenceConversions ConvTmp; 4526 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; 4527 Conv = ReferenceConversions(); 4528 4529 // C++2a [dcl.init.ref]p4: 4530 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 4531 // reference-related to "cv2 T2" if T1 is similar to T2, or 4532 // T1 is a base class of T2. 4533 // "cv1 T1" is reference-compatible with "cv2 T2" if 4534 // a prvalue of type "pointer to cv2 T2" can be converted to the type 4535 // "pointer to cv1 T1" via a standard conversion sequence. 4536 4537 // Check for standard conversions we can apply to pointers: derived-to-base 4538 // conversions, ObjC pointer conversions, and function pointer conversions. 4539 // (Qualification conversions are checked last.) 4540 QualType ConvertedT2; 4541 if (UnqualT1 == UnqualT2) { 4542 // Nothing to do. 4543 } else if (isCompleteType(Loc, OrigT2) && 4544 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && 4545 IsDerivedFrom(Loc, UnqualT2, UnqualT1)) 4546 Conv |= ReferenceConversions::DerivedToBase; 4547 else if (UnqualT1->isObjCObjectOrInterfaceType() && 4548 UnqualT2->isObjCObjectOrInterfaceType() && 4549 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 4550 Conv |= ReferenceConversions::ObjC; 4551 else if (UnqualT2->isFunctionType() && 4552 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { 4553 Conv |= ReferenceConversions::Function; 4554 // No need to check qualifiers; function types don't have them. 4555 return Ref_Compatible; 4556 } 4557 bool ConvertedReferent = Conv != 0; 4558 4559 // We can have a qualification conversion. Compute whether the types are 4560 // similar at the same time. 4561 bool PreviousToQualsIncludeConst = true; 4562 bool TopLevel = true; 4563 do { 4564 if (T1 == T2) 4565 break; 4566 4567 // We will need a qualification conversion. 4568 Conv |= ReferenceConversions::Qualification; 4569 4570 // Track whether we performed a qualification conversion anywhere other 4571 // than the top level. This matters for ranking reference bindings in 4572 // overload resolution. 4573 if (!TopLevel) 4574 Conv |= ReferenceConversions::NestedQualification; 4575 4576 // MS compiler ignores __unaligned qualifier for references; do the same. 4577 T1 = withoutUnaligned(Context, T1); 4578 T2 = withoutUnaligned(Context, T2); 4579 4580 // If we find a qualifier mismatch, the types are not reference-compatible, 4581 // but are still be reference-related if they're similar. 4582 bool ObjCLifetimeConversion = false; 4583 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, 4584 PreviousToQualsIncludeConst, 4585 ObjCLifetimeConversion)) 4586 return (ConvertedReferent || Context.hasSimilarType(T1, T2)) 4587 ? Ref_Related 4588 : Ref_Incompatible; 4589 4590 // FIXME: Should we track this for any level other than the first? 4591 if (ObjCLifetimeConversion) 4592 Conv |= ReferenceConversions::ObjCLifetime; 4593 4594 TopLevel = false; 4595 } while (Context.UnwrapSimilarTypes(T1, T2)); 4596 4597 // At this point, if the types are reference-related, we must either have the 4598 // same inner type (ignoring qualifiers), or must have already worked out how 4599 // to convert the referent. 4600 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) 4601 ? Ref_Compatible 4602 : Ref_Incompatible; 4603 } 4604 4605 /// Look for a user-defined conversion to a value reference-compatible 4606 /// with DeclType. Return true if something definite is found. 4607 static bool 4608 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 4609 QualType DeclType, SourceLocation DeclLoc, 4610 Expr *Init, QualType T2, bool AllowRvalues, 4611 bool AllowExplicit) { 4612 assert(T2->isRecordType() && "Can only find conversions of record types."); 4613 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); 4614 4615 OverloadCandidateSet CandidateSet( 4616 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4617 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4618 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4619 NamedDecl *D = *I; 4620 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4621 if (isa<UsingShadowDecl>(D)) 4622 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4623 4624 FunctionTemplateDecl *ConvTemplate 4625 = dyn_cast<FunctionTemplateDecl>(D); 4626 CXXConversionDecl *Conv; 4627 if (ConvTemplate) 4628 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4629 else 4630 Conv = cast<CXXConversionDecl>(D); 4631 4632 if (AllowRvalues) { 4633 // If we are initializing an rvalue reference, don't permit conversion 4634 // functions that return lvalues. 4635 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 4636 const ReferenceType *RefType 4637 = Conv->getConversionType()->getAs<LValueReferenceType>(); 4638 if (RefType && !RefType->getPointeeType()->isFunctionType()) 4639 continue; 4640 } 4641 4642 if (!ConvTemplate && 4643 S.CompareReferenceRelationship( 4644 DeclLoc, 4645 Conv->getConversionType() 4646 .getNonReferenceType() 4647 .getUnqualifiedType(), 4648 DeclType.getNonReferenceType().getUnqualifiedType()) == 4649 Sema::Ref_Incompatible) 4650 continue; 4651 } else { 4652 // If the conversion function doesn't return a reference type, 4653 // it can't be considered for this conversion. An rvalue reference 4654 // is only acceptable if its referencee is a function type. 4655 4656 const ReferenceType *RefType = 4657 Conv->getConversionType()->getAs<ReferenceType>(); 4658 if (!RefType || 4659 (!RefType->isLValueReferenceType() && 4660 !RefType->getPointeeType()->isFunctionType())) 4661 continue; 4662 } 4663 4664 if (ConvTemplate) 4665 S.AddTemplateConversionCandidate( 4666 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4667 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4668 else 4669 S.AddConversionCandidate( 4670 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4671 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4672 } 4673 4674 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4675 4676 OverloadCandidateSet::iterator Best; 4677 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 4678 case OR_Success: 4679 // C++ [over.ics.ref]p1: 4680 // 4681 // [...] If the parameter binds directly to the result of 4682 // applying a conversion function to the argument 4683 // expression, the implicit conversion sequence is a 4684 // user-defined conversion sequence (13.3.3.1.2), with the 4685 // second standard conversion sequence either an identity 4686 // conversion or, if the conversion function returns an 4687 // entity of a type that is a derived class of the parameter 4688 // type, a derived-to-base Conversion. 4689 if (!Best->FinalConversion.DirectBinding) 4690 return false; 4691 4692 ICS.setUserDefined(); 4693 ICS.UserDefined.Before = Best->Conversions[0].Standard; 4694 ICS.UserDefined.After = Best->FinalConversion; 4695 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 4696 ICS.UserDefined.ConversionFunction = Best->Function; 4697 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 4698 ICS.UserDefined.EllipsisConversion = false; 4699 assert(ICS.UserDefined.After.ReferenceBinding && 4700 ICS.UserDefined.After.DirectBinding && 4701 "Expected a direct reference binding!"); 4702 return true; 4703 4704 case OR_Ambiguous: 4705 ICS.setAmbiguous(); 4706 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4707 Cand != CandidateSet.end(); ++Cand) 4708 if (Cand->Best) 4709 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 4710 return true; 4711 4712 case OR_No_Viable_Function: 4713 case OR_Deleted: 4714 // There was no suitable conversion, or we found a deleted 4715 // conversion; continue with other checks. 4716 return false; 4717 } 4718 4719 llvm_unreachable("Invalid OverloadResult!"); 4720 } 4721 4722 /// Compute an implicit conversion sequence for reference 4723 /// initialization. 4724 static ImplicitConversionSequence 4725 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 4726 SourceLocation DeclLoc, 4727 bool SuppressUserConversions, 4728 bool AllowExplicit) { 4729 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 4730 4731 // Most paths end in a failed conversion. 4732 ImplicitConversionSequence ICS; 4733 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4734 4735 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); 4736 QualType T2 = Init->getType(); 4737 4738 // If the initializer is the address of an overloaded function, try 4739 // to resolve the overloaded function. If all goes well, T2 is the 4740 // type of the resulting function. 4741 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4742 DeclAccessPair Found; 4743 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 4744 false, Found)) 4745 T2 = Fn->getType(); 4746 } 4747 4748 // Compute some basic properties of the types and the initializer. 4749 bool isRValRef = DeclType->isRValueReferenceType(); 4750 Expr::Classification InitCategory = Init->Classify(S.Context); 4751 4752 Sema::ReferenceConversions RefConv; 4753 Sema::ReferenceCompareResult RefRelationship = 4754 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); 4755 4756 auto SetAsReferenceBinding = [&](bool BindsDirectly) { 4757 ICS.setStandard(); 4758 ICS.Standard.First = ICK_Identity; 4759 // FIXME: A reference binding can be a function conversion too. We should 4760 // consider that when ordering reference-to-function bindings. 4761 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) 4762 ? ICK_Derived_To_Base 4763 : (RefConv & Sema::ReferenceConversions::ObjC) 4764 ? ICK_Compatible_Conversion 4765 : ICK_Identity; 4766 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank 4767 // a reference binding that performs a non-top-level qualification 4768 // conversion as a qualification conversion, not as an identity conversion. 4769 ICS.Standard.Third = (RefConv & 4770 Sema::ReferenceConversions::NestedQualification) 4771 ? ICK_Qualification 4772 : ICK_Identity; 4773 ICS.Standard.setFromType(T2); 4774 ICS.Standard.setToType(0, T2); 4775 ICS.Standard.setToType(1, T1); 4776 ICS.Standard.setToType(2, T1); 4777 ICS.Standard.ReferenceBinding = true; 4778 ICS.Standard.DirectBinding = BindsDirectly; 4779 ICS.Standard.IsLvalueReference = !isRValRef; 4780 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4781 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4782 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4783 ICS.Standard.ObjCLifetimeConversionBinding = 4784 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; 4785 ICS.Standard.CopyConstructor = nullptr; 4786 ICS.Standard.DeprecatedStringLiteralToCharPtr = false; 4787 }; 4788 4789 // C++0x [dcl.init.ref]p5: 4790 // A reference to type "cv1 T1" is initialized by an expression 4791 // of type "cv2 T2" as follows: 4792 4793 // -- If reference is an lvalue reference and the initializer expression 4794 if (!isRValRef) { 4795 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 4796 // reference-compatible with "cv2 T2," or 4797 // 4798 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 4799 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { 4800 // C++ [over.ics.ref]p1: 4801 // When a parameter of reference type binds directly (8.5.3) 4802 // to an argument expression, the implicit conversion sequence 4803 // is the identity conversion, unless the argument expression 4804 // has a type that is a derived class of the parameter type, 4805 // in which case the implicit conversion sequence is a 4806 // derived-to-base Conversion (13.3.3.1). 4807 SetAsReferenceBinding(/*BindsDirectly=*/true); 4808 4809 // Nothing more to do: the inaccessibility/ambiguity check for 4810 // derived-to-base conversions is suppressed when we're 4811 // computing the implicit conversion sequence (C++ 4812 // [over.best.ics]p2). 4813 return ICS; 4814 } 4815 4816 // -- has a class type (i.e., T2 is a class type), where T1 is 4817 // not reference-related to T2, and can be implicitly 4818 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 4819 // is reference-compatible with "cv3 T3" 92) (this 4820 // conversion is selected by enumerating the applicable 4821 // conversion functions (13.3.1.6) and choosing the best 4822 // one through overload resolution (13.3)), 4823 if (!SuppressUserConversions && T2->isRecordType() && 4824 S.isCompleteType(DeclLoc, T2) && 4825 RefRelationship == Sema::Ref_Incompatible) { 4826 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4827 Init, T2, /*AllowRvalues=*/false, 4828 AllowExplicit)) 4829 return ICS; 4830 } 4831 } 4832 4833 // -- Otherwise, the reference shall be an lvalue reference to a 4834 // non-volatile const type (i.e., cv1 shall be const), or the reference 4835 // shall be an rvalue reference. 4836 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { 4837 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) 4838 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); 4839 return ICS; 4840 } 4841 4842 // -- If the initializer expression 4843 // 4844 // -- is an xvalue, class prvalue, array prvalue or function 4845 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4846 if (RefRelationship == Sema::Ref_Compatible && 4847 (InitCategory.isXValue() || 4848 (InitCategory.isPRValue() && 4849 (T2->isRecordType() || T2->isArrayType())) || 4850 (InitCategory.isLValue() && T2->isFunctionType()))) { 4851 // In C++11, this is always a direct binding. In C++98/03, it's a direct 4852 // binding unless we're binding to a class prvalue. 4853 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4854 // allow the use of rvalue references in C++98/03 for the benefit of 4855 // standard library implementors; therefore, we need the xvalue check here. 4856 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || 4857 !(InitCategory.isPRValue() || T2->isRecordType())); 4858 return ICS; 4859 } 4860 4861 // -- has a class type (i.e., T2 is a class type), where T1 is not 4862 // reference-related to T2, and can be implicitly converted to 4863 // an xvalue, class prvalue, or function lvalue of type 4864 // "cv3 T3", where "cv1 T1" is reference-compatible with 4865 // "cv3 T3", 4866 // 4867 // then the reference is bound to the value of the initializer 4868 // expression in the first case and to the result of the conversion 4869 // in the second case (or, in either case, to an appropriate base 4870 // class subobject). 4871 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4872 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && 4873 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4874 Init, T2, /*AllowRvalues=*/true, 4875 AllowExplicit)) { 4876 // In the second case, if the reference is an rvalue reference 4877 // and the second standard conversion sequence of the 4878 // user-defined conversion sequence includes an lvalue-to-rvalue 4879 // conversion, the program is ill-formed. 4880 if (ICS.isUserDefined() && isRValRef && 4881 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4882 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4883 4884 return ICS; 4885 } 4886 4887 // A temporary of function type cannot be created; don't even try. 4888 if (T1->isFunctionType()) 4889 return ICS; 4890 4891 // -- Otherwise, a temporary of type "cv1 T1" is created and 4892 // initialized from the initializer expression using the 4893 // rules for a non-reference copy initialization (8.5). The 4894 // reference is then bound to the temporary. If T1 is 4895 // reference-related to T2, cv1 must be the same 4896 // cv-qualification as, or greater cv-qualification than, 4897 // cv2; otherwise, the program is ill-formed. 4898 if (RefRelationship == Sema::Ref_Related) { 4899 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4900 // we would be reference-compatible or reference-compatible with 4901 // added qualification. But that wasn't the case, so the reference 4902 // initialization fails. 4903 // 4904 // Note that we only want to check address spaces and cvr-qualifiers here. 4905 // ObjC GC, lifetime and unaligned qualifiers aren't important. 4906 Qualifiers T1Quals = T1.getQualifiers(); 4907 Qualifiers T2Quals = T2.getQualifiers(); 4908 T1Quals.removeObjCGCAttr(); 4909 T1Quals.removeObjCLifetime(); 4910 T2Quals.removeObjCGCAttr(); 4911 T2Quals.removeObjCLifetime(); 4912 // MS compiler ignores __unaligned qualifier for references; do the same. 4913 T1Quals.removeUnaligned(); 4914 T2Quals.removeUnaligned(); 4915 if (!T1Quals.compatiblyIncludes(T2Quals)) 4916 return ICS; 4917 } 4918 4919 // If at least one of the types is a class type, the types are not 4920 // related, and we aren't allowed any user conversions, the 4921 // reference binding fails. This case is important for breaking 4922 // recursion, since TryImplicitConversion below will attempt to 4923 // create a temporary through the use of a copy constructor. 4924 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4925 (T1->isRecordType() || T2->isRecordType())) 4926 return ICS; 4927 4928 // If T1 is reference-related to T2 and the reference is an rvalue 4929 // reference, the initializer expression shall not be an lvalue. 4930 if (RefRelationship >= Sema::Ref_Related && isRValRef && 4931 Init->Classify(S.Context).isLValue()) { 4932 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); 4933 return ICS; 4934 } 4935 4936 // C++ [over.ics.ref]p2: 4937 // When a parameter of reference type is not bound directly to 4938 // an argument expression, the conversion sequence is the one 4939 // required to convert the argument expression to the 4940 // underlying type of the reference according to 4941 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4942 // to copy-initializing a temporary of the underlying type with 4943 // the argument expression. Any difference in top-level 4944 // cv-qualification is subsumed by the initialization itself 4945 // and does not constitute a conversion. 4946 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4947 AllowedExplicit::None, 4948 /*InOverloadResolution=*/false, 4949 /*CStyle=*/false, 4950 /*AllowObjCWritebackConversion=*/false, 4951 /*AllowObjCConversionOnExplicit=*/false); 4952 4953 // Of course, that's still a reference binding. 4954 if (ICS.isStandard()) { 4955 ICS.Standard.ReferenceBinding = true; 4956 ICS.Standard.IsLvalueReference = !isRValRef; 4957 ICS.Standard.BindsToFunctionLvalue = false; 4958 ICS.Standard.BindsToRvalue = true; 4959 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4960 ICS.Standard.ObjCLifetimeConversionBinding = false; 4961 } else if (ICS.isUserDefined()) { 4962 const ReferenceType *LValRefType = 4963 ICS.UserDefined.ConversionFunction->getReturnType() 4964 ->getAs<LValueReferenceType>(); 4965 4966 // C++ [over.ics.ref]p3: 4967 // Except for an implicit object parameter, for which see 13.3.1, a 4968 // standard conversion sequence cannot be formed if it requires [...] 4969 // binding an rvalue reference to an lvalue other than a function 4970 // lvalue. 4971 // Note that the function case is not possible here. 4972 if (isRValRef && LValRefType) { 4973 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4974 return ICS; 4975 } 4976 4977 ICS.UserDefined.After.ReferenceBinding = true; 4978 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 4979 ICS.UserDefined.After.BindsToFunctionLvalue = false; 4980 ICS.UserDefined.After.BindsToRvalue = !LValRefType; 4981 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4982 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 4983 } 4984 4985 return ICS; 4986 } 4987 4988 static ImplicitConversionSequence 4989 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4990 bool SuppressUserConversions, 4991 bool InOverloadResolution, 4992 bool AllowObjCWritebackConversion, 4993 bool AllowExplicit = false); 4994 4995 /// TryListConversion - Try to copy-initialize a value of type ToType from the 4996 /// initializer list From. 4997 static ImplicitConversionSequence 4998 TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 4999 bool SuppressUserConversions, 5000 bool InOverloadResolution, 5001 bool AllowObjCWritebackConversion) { 5002 // C++11 [over.ics.list]p1: 5003 // When an argument is an initializer list, it is not an expression and 5004 // special rules apply for converting it to a parameter type. 5005 5006 ImplicitConversionSequence Result; 5007 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 5008 5009 // We need a complete type for what follows. Incomplete types can never be 5010 // initialized from init lists. 5011 if (!S.isCompleteType(From->getBeginLoc(), ToType)) 5012 return Result; 5013 5014 // Per DR1467: 5015 // If the parameter type is a class X and the initializer list has a single 5016 // element of type cv U, where U is X or a class derived from X, the 5017 // implicit conversion sequence is the one required to convert the element 5018 // to the parameter type. 5019 // 5020 // Otherwise, if the parameter type is a character array [... ] 5021 // and the initializer list has a single element that is an 5022 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the 5023 // implicit conversion sequence is the identity conversion. 5024 if (From->getNumInits() == 1) { 5025 if (ToType->isRecordType()) { 5026 QualType InitType = From->getInit(0)->getType(); 5027 if (S.Context.hasSameUnqualifiedType(InitType, ToType) || 5028 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) 5029 return TryCopyInitialization(S, From->getInit(0), ToType, 5030 SuppressUserConversions, 5031 InOverloadResolution, 5032 AllowObjCWritebackConversion); 5033 } 5034 5035 if (const auto *AT = S.Context.getAsArrayType(ToType)) { 5036 if (S.IsStringInit(From->getInit(0), AT)) { 5037 InitializedEntity Entity = 5038 InitializedEntity::InitializeParameter(S.Context, ToType, 5039 /*Consumed=*/false); 5040 if (S.CanPerformCopyInitialization(Entity, From)) { 5041 Result.setStandard(); 5042 Result.Standard.setAsIdentityConversion(); 5043 Result.Standard.setFromType(ToType); 5044 Result.Standard.setAllToTypes(ToType); 5045 return Result; 5046 } 5047 } 5048 } 5049 } 5050 5051 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). 5052 // C++11 [over.ics.list]p2: 5053 // If the parameter type is std::initializer_list<X> or "array of X" and 5054 // all the elements can be implicitly converted to X, the implicit 5055 // conversion sequence is the worst conversion necessary to convert an 5056 // element of the list to X. 5057 // 5058 // C++14 [over.ics.list]p3: 5059 // Otherwise, if the parameter type is "array of N X", if the initializer 5060 // list has exactly N elements or if it has fewer than N elements and X is 5061 // default-constructible, and if all the elements of the initializer list 5062 // can be implicitly converted to X, the implicit conversion sequence is 5063 // the worst conversion necessary to convert an element of the list to X. 5064 // 5065 // FIXME: We're missing a lot of these checks. 5066 bool toStdInitializerList = false; 5067 QualType X; 5068 if (ToType->isArrayType()) 5069 X = S.Context.getAsArrayType(ToType)->getElementType(); 5070 else 5071 toStdInitializerList = S.isStdInitializerList(ToType, &X); 5072 if (!X.isNull()) { 5073 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { 5074 Expr *Init = From->getInit(i); 5075 ImplicitConversionSequence ICS = 5076 TryCopyInitialization(S, Init, X, SuppressUserConversions, 5077 InOverloadResolution, 5078 AllowObjCWritebackConversion); 5079 // If a single element isn't convertible, fail. 5080 if (ICS.isBad()) { 5081 Result = ICS; 5082 break; 5083 } 5084 // Otherwise, look for the worst conversion. 5085 if (Result.isBad() || CompareImplicitConversionSequences( 5086 S, From->getBeginLoc(), ICS, Result) == 5087 ImplicitConversionSequence::Worse) 5088 Result = ICS; 5089 } 5090 5091 // For an empty list, we won't have computed any conversion sequence. 5092 // Introduce the identity conversion sequence. 5093 if (From->getNumInits() == 0) { 5094 Result.setStandard(); 5095 Result.Standard.setAsIdentityConversion(); 5096 Result.Standard.setFromType(ToType); 5097 Result.Standard.setAllToTypes(ToType); 5098 } 5099 5100 Result.setStdInitializerListElement(toStdInitializerList); 5101 return Result; 5102 } 5103 5104 // C++14 [over.ics.list]p4: 5105 // C++11 [over.ics.list]p3: 5106 // Otherwise, if the parameter is a non-aggregate class X and overload 5107 // resolution chooses a single best constructor [...] the implicit 5108 // conversion sequence is a user-defined conversion sequence. If multiple 5109 // constructors are viable but none is better than the others, the 5110 // implicit conversion sequence is a user-defined conversion sequence. 5111 if (ToType->isRecordType() && !ToType->isAggregateType()) { 5112 // This function can deal with initializer lists. 5113 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 5114 AllowedExplicit::None, 5115 InOverloadResolution, /*CStyle=*/false, 5116 AllowObjCWritebackConversion, 5117 /*AllowObjCConversionOnExplicit=*/false); 5118 } 5119 5120 // C++14 [over.ics.list]p5: 5121 // C++11 [over.ics.list]p4: 5122 // Otherwise, if the parameter has an aggregate type which can be 5123 // initialized from the initializer list [...] the implicit conversion 5124 // sequence is a user-defined conversion sequence. 5125 if (ToType->isAggregateType()) { 5126 // Type is an aggregate, argument is an init list. At this point it comes 5127 // down to checking whether the initialization works. 5128 // FIXME: Find out whether this parameter is consumed or not. 5129 InitializedEntity Entity = 5130 InitializedEntity::InitializeParameter(S.Context, ToType, 5131 /*Consumed=*/false); 5132 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, 5133 From)) { 5134 Result.setUserDefined(); 5135 Result.UserDefined.Before.setAsIdentityConversion(); 5136 // Initializer lists don't have a type. 5137 Result.UserDefined.Before.setFromType(QualType()); 5138 Result.UserDefined.Before.setAllToTypes(QualType()); 5139 5140 Result.UserDefined.After.setAsIdentityConversion(); 5141 Result.UserDefined.After.setFromType(ToType); 5142 Result.UserDefined.After.setAllToTypes(ToType); 5143 Result.UserDefined.ConversionFunction = nullptr; 5144 } 5145 return Result; 5146 } 5147 5148 // C++14 [over.ics.list]p6: 5149 // C++11 [over.ics.list]p5: 5150 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 5151 if (ToType->isReferenceType()) { 5152 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 5153 // mention initializer lists in any way. So we go by what list- 5154 // initialization would do and try to extrapolate from that. 5155 5156 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); 5157 5158 // If the initializer list has a single element that is reference-related 5159 // to the parameter type, we initialize the reference from that. 5160 if (From->getNumInits() == 1) { 5161 Expr *Init = From->getInit(0); 5162 5163 QualType T2 = Init->getType(); 5164 5165 // If the initializer is the address of an overloaded function, try 5166 // to resolve the overloaded function. If all goes well, T2 is the 5167 // type of the resulting function. 5168 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 5169 DeclAccessPair Found; 5170 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 5171 Init, ToType, false, Found)) 5172 T2 = Fn->getType(); 5173 } 5174 5175 // Compute some basic properties of the types and the initializer. 5176 Sema::ReferenceCompareResult RefRelationship = 5177 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); 5178 5179 if (RefRelationship >= Sema::Ref_Related) { 5180 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), 5181 SuppressUserConversions, 5182 /*AllowExplicit=*/false); 5183 } 5184 } 5185 5186 // Otherwise, we bind the reference to a temporary created from the 5187 // initializer list. 5188 Result = TryListConversion(S, From, T1, SuppressUserConversions, 5189 InOverloadResolution, 5190 AllowObjCWritebackConversion); 5191 if (Result.isFailure()) 5192 return Result; 5193 assert(!Result.isEllipsis() && 5194 "Sub-initialization cannot result in ellipsis conversion."); 5195 5196 // Can we even bind to a temporary? 5197 if (ToType->isRValueReferenceType() || 5198 (T1.isConstQualified() && !T1.isVolatileQualified())) { 5199 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 5200 Result.UserDefined.After; 5201 SCS.ReferenceBinding = true; 5202 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 5203 SCS.BindsToRvalue = true; 5204 SCS.BindsToFunctionLvalue = false; 5205 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5206 SCS.ObjCLifetimeConversionBinding = false; 5207 } else 5208 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 5209 From, ToType); 5210 return Result; 5211 } 5212 5213 // C++14 [over.ics.list]p7: 5214 // C++11 [over.ics.list]p6: 5215 // Otherwise, if the parameter type is not a class: 5216 if (!ToType->isRecordType()) { 5217 // - if the initializer list has one element that is not itself an 5218 // initializer list, the implicit conversion sequence is the one 5219 // required to convert the element to the parameter type. 5220 unsigned NumInits = From->getNumInits(); 5221 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) 5222 Result = TryCopyInitialization(S, From->getInit(0), ToType, 5223 SuppressUserConversions, 5224 InOverloadResolution, 5225 AllowObjCWritebackConversion); 5226 // - if the initializer list has no elements, the implicit conversion 5227 // sequence is the identity conversion. 5228 else if (NumInits == 0) { 5229 Result.setStandard(); 5230 Result.Standard.setAsIdentityConversion(); 5231 Result.Standard.setFromType(ToType); 5232 Result.Standard.setAllToTypes(ToType); 5233 } 5234 return Result; 5235 } 5236 5237 // C++14 [over.ics.list]p8: 5238 // C++11 [over.ics.list]p7: 5239 // In all cases other than those enumerated above, no conversion is possible 5240 return Result; 5241 } 5242 5243 /// TryCopyInitialization - Try to copy-initialize a value of type 5244 /// ToType from the expression From. Return the implicit conversion 5245 /// sequence required to pass this argument, which may be a bad 5246 /// conversion sequence (meaning that the argument cannot be passed to 5247 /// a parameter of this type). If @p SuppressUserConversions, then we 5248 /// do not permit any user-defined conversion sequences. 5249 static ImplicitConversionSequence 5250 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 5251 bool SuppressUserConversions, 5252 bool InOverloadResolution, 5253 bool AllowObjCWritebackConversion, 5254 bool AllowExplicit) { 5255 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 5256 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 5257 InOverloadResolution,AllowObjCWritebackConversion); 5258 5259 if (ToType->isReferenceType()) 5260 return TryReferenceInit(S, From, ToType, 5261 /*FIXME:*/ From->getBeginLoc(), 5262 SuppressUserConversions, AllowExplicit); 5263 5264 return TryImplicitConversion(S, From, ToType, 5265 SuppressUserConversions, 5266 AllowedExplicit::None, 5267 InOverloadResolution, 5268 /*CStyle=*/false, 5269 AllowObjCWritebackConversion, 5270 /*AllowObjCConversionOnExplicit=*/false); 5271 } 5272 5273 static bool TryCopyInitialization(const CanQualType FromQTy, 5274 const CanQualType ToQTy, 5275 Sema &S, 5276 SourceLocation Loc, 5277 ExprValueKind FromVK) { 5278 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 5279 ImplicitConversionSequence ICS = 5280 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 5281 5282 return !ICS.isBad(); 5283 } 5284 5285 /// TryObjectArgumentInitialization - Try to initialize the object 5286 /// parameter of the given member function (@c Method) from the 5287 /// expression @p From. 5288 static ImplicitConversionSequence 5289 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, 5290 Expr::Classification FromClassification, 5291 CXXMethodDecl *Method, 5292 CXXRecordDecl *ActingContext) { 5293 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 5294 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 5295 // const volatile object. 5296 Qualifiers Quals = Method->getMethodQualifiers(); 5297 if (isa<CXXDestructorDecl>(Method)) { 5298 Quals.addConst(); 5299 Quals.addVolatile(); 5300 } 5301 5302 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); 5303 5304 // Set up the conversion sequence as a "bad" conversion, to allow us 5305 // to exit early. 5306 ImplicitConversionSequence ICS; 5307 5308 // We need to have an object of class type. 5309 if (const PointerType *PT = FromType->getAs<PointerType>()) { 5310 FromType = PT->getPointeeType(); 5311 5312 // When we had a pointer, it's implicitly dereferenced, so we 5313 // better have an lvalue. 5314 assert(FromClassification.isLValue()); 5315 } 5316 5317 assert(FromType->isRecordType()); 5318 5319 // C++0x [over.match.funcs]p4: 5320 // For non-static member functions, the type of the implicit object 5321 // parameter is 5322 // 5323 // - "lvalue reference to cv X" for functions declared without a 5324 // ref-qualifier or with the & ref-qualifier 5325 // - "rvalue reference to cv X" for functions declared with the && 5326 // ref-qualifier 5327 // 5328 // where X is the class of which the function is a member and cv is the 5329 // cv-qualification on the member function declaration. 5330 // 5331 // However, when finding an implicit conversion sequence for the argument, we 5332 // are not allowed to perform user-defined conversions 5333 // (C++ [over.match.funcs]p5). We perform a simplified version of 5334 // reference binding here, that allows class rvalues to bind to 5335 // non-constant references. 5336 5337 // First check the qualifiers. 5338 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 5339 if (ImplicitParamType.getCVRQualifiers() 5340 != FromTypeCanon.getLocalCVRQualifiers() && 5341 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 5342 ICS.setBad(BadConversionSequence::bad_qualifiers, 5343 FromType, ImplicitParamType); 5344 return ICS; 5345 } 5346 5347 if (FromTypeCanon.hasAddressSpace()) { 5348 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); 5349 Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); 5350 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { 5351 ICS.setBad(BadConversionSequence::bad_qualifiers, 5352 FromType, ImplicitParamType); 5353 return ICS; 5354 } 5355 } 5356 5357 // Check that we have either the same type or a derived type. It 5358 // affects the conversion rank. 5359 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 5360 ImplicitConversionKind SecondKind; 5361 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 5362 SecondKind = ICK_Identity; 5363 } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) 5364 SecondKind = ICK_Derived_To_Base; 5365 else { 5366 ICS.setBad(BadConversionSequence::unrelated_class, 5367 FromType, ImplicitParamType); 5368 return ICS; 5369 } 5370 5371 // Check the ref-qualifier. 5372 switch (Method->getRefQualifier()) { 5373 case RQ_None: 5374 // Do nothing; we don't care about lvalueness or rvalueness. 5375 break; 5376 5377 case RQ_LValue: 5378 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { 5379 // non-const lvalue reference cannot bind to an rvalue 5380 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 5381 ImplicitParamType); 5382 return ICS; 5383 } 5384 break; 5385 5386 case RQ_RValue: 5387 if (!FromClassification.isRValue()) { 5388 // rvalue reference cannot bind to an lvalue 5389 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 5390 ImplicitParamType); 5391 return ICS; 5392 } 5393 break; 5394 } 5395 5396 // Success. Mark this as a reference binding. 5397 ICS.setStandard(); 5398 ICS.Standard.setAsIdentityConversion(); 5399 ICS.Standard.Second = SecondKind; 5400 ICS.Standard.setFromType(FromType); 5401 ICS.Standard.setAllToTypes(ImplicitParamType); 5402 ICS.Standard.ReferenceBinding = true; 5403 ICS.Standard.DirectBinding = true; 5404 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 5405 ICS.Standard.BindsToFunctionLvalue = false; 5406 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 5407 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 5408 = (Method->getRefQualifier() == RQ_None); 5409 return ICS; 5410 } 5411 5412 /// PerformObjectArgumentInitialization - Perform initialization of 5413 /// the implicit object parameter for the given Method with the given 5414 /// expression. 5415 ExprResult 5416 Sema::PerformObjectArgumentInitialization(Expr *From, 5417 NestedNameSpecifier *Qualifier, 5418 NamedDecl *FoundDecl, 5419 CXXMethodDecl *Method) { 5420 QualType FromRecordType, DestType; 5421 QualType ImplicitParamRecordType = 5422 Method->getThisType()->castAs<PointerType>()->getPointeeType(); 5423 5424 Expr::Classification FromClassification; 5425 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 5426 FromRecordType = PT->getPointeeType(); 5427 DestType = Method->getThisType(); 5428 FromClassification = Expr::Classification::makeSimpleLValue(); 5429 } else { 5430 FromRecordType = From->getType(); 5431 DestType = ImplicitParamRecordType; 5432 FromClassification = From->Classify(Context); 5433 5434 // When performing member access on an rvalue, materialize a temporary. 5435 if (From->isRValue()) { 5436 From = CreateMaterializeTemporaryExpr(FromRecordType, From, 5437 Method->getRefQualifier() != 5438 RefQualifierKind::RQ_RValue); 5439 } 5440 } 5441 5442 // Note that we always use the true parent context when performing 5443 // the actual argument initialization. 5444 ImplicitConversionSequence ICS = TryObjectArgumentInitialization( 5445 *this, From->getBeginLoc(), From->getType(), FromClassification, Method, 5446 Method->getParent()); 5447 if (ICS.isBad()) { 5448 switch (ICS.Bad.Kind) { 5449 case BadConversionSequence::bad_qualifiers: { 5450 Qualifiers FromQs = FromRecordType.getQualifiers(); 5451 Qualifiers ToQs = DestType.getQualifiers(); 5452 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5453 if (CVR) { 5454 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) 5455 << Method->getDeclName() << FromRecordType << (CVR - 1) 5456 << From->getSourceRange(); 5457 Diag(Method->getLocation(), diag::note_previous_decl) 5458 << Method->getDeclName(); 5459 return ExprError(); 5460 } 5461 break; 5462 } 5463 5464 case BadConversionSequence::lvalue_ref_to_rvalue: 5465 case BadConversionSequence::rvalue_ref_to_lvalue: { 5466 bool IsRValueQualified = 5467 Method->getRefQualifier() == RefQualifierKind::RQ_RValue; 5468 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) 5469 << Method->getDeclName() << FromClassification.isRValue() 5470 << IsRValueQualified; 5471 Diag(Method->getLocation(), diag::note_previous_decl) 5472 << Method->getDeclName(); 5473 return ExprError(); 5474 } 5475 5476 case BadConversionSequence::no_conversion: 5477 case BadConversionSequence::unrelated_class: 5478 break; 5479 } 5480 5481 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) 5482 << ImplicitParamRecordType << FromRecordType 5483 << From->getSourceRange(); 5484 } 5485 5486 if (ICS.Standard.Second == ICK_Derived_To_Base) { 5487 ExprResult FromRes = 5488 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 5489 if (FromRes.isInvalid()) 5490 return ExprError(); 5491 From = FromRes.get(); 5492 } 5493 5494 if (!Context.hasSameType(From->getType(), DestType)) { 5495 CastKind CK; 5496 QualType PteeTy = DestType->getPointeeType(); 5497 LangAS DestAS = 5498 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); 5499 if (FromRecordType.getAddressSpace() != DestAS) 5500 CK = CK_AddressSpaceConversion; 5501 else 5502 CK = CK_NoOp; 5503 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); 5504 } 5505 return From; 5506 } 5507 5508 /// TryContextuallyConvertToBool - Attempt to contextually convert the 5509 /// expression From to bool (C++0x [conv]p3). 5510 static ImplicitConversionSequence 5511 TryContextuallyConvertToBool(Sema &S, Expr *From) { 5512 // C++ [dcl.init]/17.8: 5513 // - Otherwise, if the initialization is direct-initialization, the source 5514 // type is std::nullptr_t, and the destination type is bool, the initial 5515 // value of the object being initialized is false. 5516 if (From->getType()->isNullPtrType()) 5517 return ImplicitConversionSequence::getNullptrToBool(From->getType(), 5518 S.Context.BoolTy, 5519 From->isGLValue()); 5520 5521 // All other direct-initialization of bool is equivalent to an implicit 5522 // conversion to bool in which explicit conversions are permitted. 5523 return TryImplicitConversion(S, From, S.Context.BoolTy, 5524 /*SuppressUserConversions=*/false, 5525 AllowedExplicit::Conversions, 5526 /*InOverloadResolution=*/false, 5527 /*CStyle=*/false, 5528 /*AllowObjCWritebackConversion=*/false, 5529 /*AllowObjCConversionOnExplicit=*/false); 5530 } 5531 5532 /// PerformContextuallyConvertToBool - Perform a contextual conversion 5533 /// of the expression From to bool (C++0x [conv]p3). 5534 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 5535 if (checkPlaceholderForOverload(*this, From)) 5536 return ExprError(); 5537 5538 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 5539 if (!ICS.isBad()) 5540 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 5541 5542 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 5543 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) 5544 << From->getType() << From->getSourceRange(); 5545 return ExprError(); 5546 } 5547 5548 /// Check that the specified conversion is permitted in a converted constant 5549 /// expression, according to C++11 [expr.const]p3. Return true if the conversion 5550 /// is acceptable. 5551 static bool CheckConvertedConstantConversions(Sema &S, 5552 StandardConversionSequence &SCS) { 5553 // Since we know that the target type is an integral or unscoped enumeration 5554 // type, most conversion kinds are impossible. All possible First and Third 5555 // conversions are fine. 5556 switch (SCS.Second) { 5557 case ICK_Identity: 5558 case ICK_Integral_Promotion: 5559 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. 5560 case ICK_Zero_Queue_Conversion: 5561 return true; 5562 5563 case ICK_Boolean_Conversion: 5564 // Conversion from an integral or unscoped enumeration type to bool is 5565 // classified as ICK_Boolean_Conversion, but it's also arguably an integral 5566 // conversion, so we allow it in a converted constant expression. 5567 // 5568 // FIXME: Per core issue 1407, we should not allow this, but that breaks 5569 // a lot of popular code. We should at least add a warning for this 5570 // (non-conforming) extension. 5571 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 5572 SCS.getToType(2)->isBooleanType(); 5573 5574 case ICK_Pointer_Conversion: 5575 case ICK_Pointer_Member: 5576 // C++1z: null pointer conversions and null member pointer conversions are 5577 // only permitted if the source type is std::nullptr_t. 5578 return SCS.getFromType()->isNullPtrType(); 5579 5580 case ICK_Floating_Promotion: 5581 case ICK_Complex_Promotion: 5582 case ICK_Floating_Conversion: 5583 case ICK_Complex_Conversion: 5584 case ICK_Floating_Integral: 5585 case ICK_Compatible_Conversion: 5586 case ICK_Derived_To_Base: 5587 case ICK_Vector_Conversion: 5588 case ICK_SVE_Vector_Conversion: 5589 case ICK_Vector_Splat: 5590 case ICK_Complex_Real: 5591 case ICK_Block_Pointer_Conversion: 5592 case ICK_TransparentUnionConversion: 5593 case ICK_Writeback_Conversion: 5594 case ICK_Zero_Event_Conversion: 5595 case ICK_C_Only_Conversion: 5596 case ICK_Incompatible_Pointer_Conversion: 5597 return false; 5598 5599 case ICK_Lvalue_To_Rvalue: 5600 case ICK_Array_To_Pointer: 5601 case ICK_Function_To_Pointer: 5602 llvm_unreachable("found a first conversion kind in Second"); 5603 5604 case ICK_Function_Conversion: 5605 case ICK_Qualification: 5606 llvm_unreachable("found a third conversion kind in Second"); 5607 5608 case ICK_Num_Conversion_Kinds: 5609 break; 5610 } 5611 5612 llvm_unreachable("unknown conversion kind"); 5613 } 5614 5615 /// CheckConvertedConstantExpression - Check that the expression From is a 5616 /// converted constant expression of type T, perform the conversion and produce 5617 /// the converted expression, per C++11 [expr.const]p3. 5618 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, 5619 QualType T, APValue &Value, 5620 Sema::CCEKind CCE, 5621 bool RequireInt, 5622 NamedDecl *Dest) { 5623 assert(S.getLangOpts().CPlusPlus11 && 5624 "converted constant expression outside C++11"); 5625 5626 if (checkPlaceholderForOverload(S, From)) 5627 return ExprError(); 5628 5629 // C++1z [expr.const]p3: 5630 // A converted constant expression of type T is an expression, 5631 // implicitly converted to type T, where the converted 5632 // expression is a constant expression and the implicit conversion 5633 // sequence contains only [... list of conversions ...]. 5634 // C++1z [stmt.if]p2: 5635 // If the if statement is of the form if constexpr, the value of the 5636 // condition shall be a contextually converted constant expression of type 5637 // bool. 5638 ImplicitConversionSequence ICS = 5639 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool 5640 ? TryContextuallyConvertToBool(S, From) 5641 : TryCopyInitialization(S, From, T, 5642 /*SuppressUserConversions=*/false, 5643 /*InOverloadResolution=*/false, 5644 /*AllowObjCWritebackConversion=*/false, 5645 /*AllowExplicit=*/false); 5646 StandardConversionSequence *SCS = nullptr; 5647 switch (ICS.getKind()) { 5648 case ImplicitConversionSequence::StandardConversion: 5649 SCS = &ICS.Standard; 5650 break; 5651 case ImplicitConversionSequence::UserDefinedConversion: 5652 if (T->isRecordType()) 5653 SCS = &ICS.UserDefined.Before; 5654 else 5655 SCS = &ICS.UserDefined.After; 5656 break; 5657 case ImplicitConversionSequence::AmbiguousConversion: 5658 case ImplicitConversionSequence::BadConversion: 5659 if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) 5660 return S.Diag(From->getBeginLoc(), 5661 diag::err_typecheck_converted_constant_expression) 5662 << From->getType() << From->getSourceRange() << T; 5663 return ExprError(); 5664 5665 case ImplicitConversionSequence::EllipsisConversion: 5666 llvm_unreachable("ellipsis conversion in converted constant expression"); 5667 } 5668 5669 // Check that we would only use permitted conversions. 5670 if (!CheckConvertedConstantConversions(S, *SCS)) { 5671 return S.Diag(From->getBeginLoc(), 5672 diag::err_typecheck_converted_constant_expression_disallowed) 5673 << From->getType() << From->getSourceRange() << T; 5674 } 5675 // [...] and where the reference binding (if any) binds directly. 5676 if (SCS->ReferenceBinding && !SCS->DirectBinding) { 5677 return S.Diag(From->getBeginLoc(), 5678 diag::err_typecheck_converted_constant_expression_indirect) 5679 << From->getType() << From->getSourceRange() << T; 5680 } 5681 5682 // Usually we can simply apply the ImplicitConversionSequence we formed 5683 // earlier, but that's not guaranteed to work when initializing an object of 5684 // class type. 5685 ExprResult Result; 5686 if (T->isRecordType()) { 5687 assert(CCE == Sema::CCEK_TemplateArg && 5688 "unexpected class type converted constant expr"); 5689 Result = S.PerformCopyInitialization( 5690 InitializedEntity::InitializeTemplateParameter( 5691 T, cast<NonTypeTemplateParmDecl>(Dest)), 5692 SourceLocation(), From); 5693 } else { 5694 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); 5695 } 5696 if (Result.isInvalid()) 5697 return Result; 5698 5699 // C++2a [intro.execution]p5: 5700 // A full-expression is [...] a constant-expression [...] 5701 Result = 5702 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), 5703 /*DiscardedValue=*/false, /*IsConstexpr=*/true); 5704 if (Result.isInvalid()) 5705 return Result; 5706 5707 // Check for a narrowing implicit conversion. 5708 bool ReturnPreNarrowingValue = false; 5709 APValue PreNarrowingValue; 5710 QualType PreNarrowingType; 5711 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, 5712 PreNarrowingType)) { 5713 case NK_Dependent_Narrowing: 5714 // Implicit conversion to a narrower type, but the expression is 5715 // value-dependent so we can't tell whether it's actually narrowing. 5716 case NK_Variable_Narrowing: 5717 // Implicit conversion to a narrower type, and the value is not a constant 5718 // expression. We'll diagnose this in a moment. 5719 case NK_Not_Narrowing: 5720 break; 5721 5722 case NK_Constant_Narrowing: 5723 if (CCE == Sema::CCEK_ArrayBound && 5724 PreNarrowingType->isIntegralOrEnumerationType() && 5725 PreNarrowingValue.isInt()) { 5726 // Don't diagnose array bound narrowing here; we produce more precise 5727 // errors by allowing the un-narrowed value through. 5728 ReturnPreNarrowingValue = true; 5729 break; 5730 } 5731 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5732 << CCE << /*Constant*/ 1 5733 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; 5734 break; 5735 5736 case NK_Type_Narrowing: 5737 // FIXME: It would be better to diagnose that the expression is not a 5738 // constant expression. 5739 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5740 << CCE << /*Constant*/ 0 << From->getType() << T; 5741 break; 5742 } 5743 5744 if (Result.get()->isValueDependent()) { 5745 Value = APValue(); 5746 return Result; 5747 } 5748 5749 // Check the expression is a constant expression. 5750 SmallVector<PartialDiagnosticAt, 8> Notes; 5751 Expr::EvalResult Eval; 5752 Eval.Diag = &Notes; 5753 5754 ConstantExprKind Kind; 5755 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) 5756 Kind = ConstantExprKind::ClassTemplateArgument; 5757 else if (CCE == Sema::CCEK_TemplateArg) 5758 Kind = ConstantExprKind::NonClassTemplateArgument; 5759 else 5760 Kind = ConstantExprKind::Normal; 5761 5762 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) || 5763 (RequireInt && !Eval.Val.isInt())) { 5764 // The expression can't be folded, so we can't keep it at this position in 5765 // the AST. 5766 Result = ExprError(); 5767 } else { 5768 Value = Eval.Val; 5769 5770 if (Notes.empty()) { 5771 // It's a constant expression. 5772 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value); 5773 if (ReturnPreNarrowingValue) 5774 Value = std::move(PreNarrowingValue); 5775 return E; 5776 } 5777 } 5778 5779 // It's not a constant expression. Produce an appropriate diagnostic. 5780 if (Notes.size() == 1 && 5781 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { 5782 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 5783 } else if (!Notes.empty() && Notes[0].second.getDiagID() == 5784 diag::note_constexpr_invalid_template_arg) { 5785 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); 5786 for (unsigned I = 0; I < Notes.size(); ++I) 5787 S.Diag(Notes[I].first, Notes[I].second); 5788 } else { 5789 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) 5790 << CCE << From->getSourceRange(); 5791 for (unsigned I = 0; I < Notes.size(); ++I) 5792 S.Diag(Notes[I].first, Notes[I].second); 5793 } 5794 return ExprError(); 5795 } 5796 5797 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5798 APValue &Value, CCEKind CCE, 5799 NamedDecl *Dest) { 5800 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, 5801 Dest); 5802 } 5803 5804 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5805 llvm::APSInt &Value, 5806 CCEKind CCE) { 5807 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 5808 5809 APValue V; 5810 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, 5811 /*Dest=*/nullptr); 5812 if (!R.isInvalid() && !R.get()->isValueDependent()) 5813 Value = V.getInt(); 5814 return R; 5815 } 5816 5817 5818 /// dropPointerConversions - If the given standard conversion sequence 5819 /// involves any pointer conversions, remove them. This may change 5820 /// the result type of the conversion sequence. 5821 static void dropPointerConversion(StandardConversionSequence &SCS) { 5822 if (SCS.Second == ICK_Pointer_Conversion) { 5823 SCS.Second = ICK_Identity; 5824 SCS.Third = ICK_Identity; 5825 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 5826 } 5827 } 5828 5829 /// TryContextuallyConvertToObjCPointer - Attempt to contextually 5830 /// convert the expression From to an Objective-C pointer type. 5831 static ImplicitConversionSequence 5832 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 5833 // Do an implicit conversion to 'id'. 5834 QualType Ty = S.Context.getObjCIdType(); 5835 ImplicitConversionSequence ICS 5836 = TryImplicitConversion(S, From, Ty, 5837 // FIXME: Are these flags correct? 5838 /*SuppressUserConversions=*/false, 5839 AllowedExplicit::Conversions, 5840 /*InOverloadResolution=*/false, 5841 /*CStyle=*/false, 5842 /*AllowObjCWritebackConversion=*/false, 5843 /*AllowObjCConversionOnExplicit=*/true); 5844 5845 // Strip off any final conversions to 'id'. 5846 switch (ICS.getKind()) { 5847 case ImplicitConversionSequence::BadConversion: 5848 case ImplicitConversionSequence::AmbiguousConversion: 5849 case ImplicitConversionSequence::EllipsisConversion: 5850 break; 5851 5852 case ImplicitConversionSequence::UserDefinedConversion: 5853 dropPointerConversion(ICS.UserDefined.After); 5854 break; 5855 5856 case ImplicitConversionSequence::StandardConversion: 5857 dropPointerConversion(ICS.Standard); 5858 break; 5859 } 5860 5861 return ICS; 5862 } 5863 5864 /// PerformContextuallyConvertToObjCPointer - Perform a contextual 5865 /// conversion of the expression From to an Objective-C pointer type. 5866 /// Returns a valid but null ExprResult if no conversion sequence exists. 5867 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 5868 if (checkPlaceholderForOverload(*this, From)) 5869 return ExprError(); 5870 5871 QualType Ty = Context.getObjCIdType(); 5872 ImplicitConversionSequence ICS = 5873 TryContextuallyConvertToObjCPointer(*this, From); 5874 if (!ICS.isBad()) 5875 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 5876 return ExprResult(); 5877 } 5878 5879 /// Determine whether the provided type is an integral type, or an enumeration 5880 /// type of a permitted flavor. 5881 bool Sema::ICEConvertDiagnoser::match(QualType T) { 5882 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() 5883 : T->isIntegralOrUnscopedEnumerationType(); 5884 } 5885 5886 static ExprResult 5887 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, 5888 Sema::ContextualImplicitConverter &Converter, 5889 QualType T, UnresolvedSetImpl &ViableConversions) { 5890 5891 if (Converter.Suppress) 5892 return ExprError(); 5893 5894 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); 5895 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5896 CXXConversionDecl *Conv = 5897 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 5898 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 5899 Converter.noteAmbiguous(SemaRef, Conv, ConvTy); 5900 } 5901 return From; 5902 } 5903 5904 static bool 5905 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5906 Sema::ContextualImplicitConverter &Converter, 5907 QualType T, bool HadMultipleCandidates, 5908 UnresolvedSetImpl &ExplicitConversions) { 5909 if (ExplicitConversions.size() == 1 && !Converter.Suppress) { 5910 DeclAccessPair Found = ExplicitConversions[0]; 5911 CXXConversionDecl *Conversion = 5912 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5913 5914 // The user probably meant to invoke the given explicit 5915 // conversion; use it. 5916 QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); 5917 std::string TypeStr; 5918 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); 5919 5920 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) 5921 << FixItHint::CreateInsertion(From->getBeginLoc(), 5922 "static_cast<" + TypeStr + ">(") 5923 << FixItHint::CreateInsertion( 5924 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); 5925 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); 5926 5927 // If we aren't in a SFINAE context, build a call to the 5928 // explicit conversion function. 5929 if (SemaRef.isSFINAEContext()) 5930 return true; 5931 5932 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5933 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5934 HadMultipleCandidates); 5935 if (Result.isInvalid()) 5936 return true; 5937 // Record usage of conversion in an implicit cast. 5938 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5939 CK_UserDefinedConversion, Result.get(), 5940 nullptr, Result.get()->getValueKind(), 5941 SemaRef.CurFPFeatureOverrides()); 5942 } 5943 return false; 5944 } 5945 5946 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5947 Sema::ContextualImplicitConverter &Converter, 5948 QualType T, bool HadMultipleCandidates, 5949 DeclAccessPair &Found) { 5950 CXXConversionDecl *Conversion = 5951 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5952 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5953 5954 QualType ToType = Conversion->getConversionType().getNonReferenceType(); 5955 if (!Converter.SuppressConversion) { 5956 if (SemaRef.isSFINAEContext()) 5957 return true; 5958 5959 Converter.diagnoseConversion(SemaRef, Loc, T, ToType) 5960 << From->getSourceRange(); 5961 } 5962 5963 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5964 HadMultipleCandidates); 5965 if (Result.isInvalid()) 5966 return true; 5967 // Record usage of conversion in an implicit cast. 5968 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5969 CK_UserDefinedConversion, Result.get(), 5970 nullptr, Result.get()->getValueKind(), 5971 SemaRef.CurFPFeatureOverrides()); 5972 return false; 5973 } 5974 5975 static ExprResult finishContextualImplicitConversion( 5976 Sema &SemaRef, SourceLocation Loc, Expr *From, 5977 Sema::ContextualImplicitConverter &Converter) { 5978 if (!Converter.match(From->getType()) && !Converter.Suppress) 5979 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) 5980 << From->getSourceRange(); 5981 5982 return SemaRef.DefaultLvalueConversion(From); 5983 } 5984 5985 static void 5986 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, 5987 UnresolvedSetImpl &ViableConversions, 5988 OverloadCandidateSet &CandidateSet) { 5989 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5990 DeclAccessPair FoundDecl = ViableConversions[I]; 5991 NamedDecl *D = FoundDecl.getDecl(); 5992 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5993 if (isa<UsingShadowDecl>(D)) 5994 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5995 5996 CXXConversionDecl *Conv; 5997 FunctionTemplateDecl *ConvTemplate; 5998 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 5999 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6000 else 6001 Conv = cast<CXXConversionDecl>(D); 6002 6003 if (ConvTemplate) 6004 SemaRef.AddTemplateConversionCandidate( 6005 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, 6006 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); 6007 else 6008 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, 6009 ToType, CandidateSet, 6010 /*AllowObjCConversionOnExplicit=*/false, 6011 /*AllowExplicit*/ true); 6012 } 6013 } 6014 6015 /// Attempt to convert the given expression to a type which is accepted 6016 /// by the given converter. 6017 /// 6018 /// This routine will attempt to convert an expression of class type to a 6019 /// type accepted by the specified converter. In C++11 and before, the class 6020 /// must have a single non-explicit conversion function converting to a matching 6021 /// type. In C++1y, there can be multiple such conversion functions, but only 6022 /// one target type. 6023 /// 6024 /// \param Loc The source location of the construct that requires the 6025 /// conversion. 6026 /// 6027 /// \param From The expression we're converting from. 6028 /// 6029 /// \param Converter Used to control and diagnose the conversion process. 6030 /// 6031 /// \returns The expression, converted to an integral or enumeration type if 6032 /// successful. 6033 ExprResult Sema::PerformContextualImplicitConversion( 6034 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { 6035 // We can't perform any more checking for type-dependent expressions. 6036 if (From->isTypeDependent()) 6037 return From; 6038 6039 // Process placeholders immediately. 6040 if (From->hasPlaceholderType()) { 6041 ExprResult result = CheckPlaceholderExpr(From); 6042 if (result.isInvalid()) 6043 return result; 6044 From = result.get(); 6045 } 6046 6047 // If the expression already has a matching type, we're golden. 6048 QualType T = From->getType(); 6049 if (Converter.match(T)) 6050 return DefaultLvalueConversion(From); 6051 6052 // FIXME: Check for missing '()' if T is a function type? 6053 6054 // We can only perform contextual implicit conversions on objects of class 6055 // type. 6056 const RecordType *RecordTy = T->getAs<RecordType>(); 6057 if (!RecordTy || !getLangOpts().CPlusPlus) { 6058 if (!Converter.Suppress) 6059 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); 6060 return From; 6061 } 6062 6063 // We must have a complete class type. 6064 struct TypeDiagnoserPartialDiag : TypeDiagnoser { 6065 ContextualImplicitConverter &Converter; 6066 Expr *From; 6067 6068 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) 6069 : Converter(Converter), From(From) {} 6070 6071 void diagnose(Sema &S, SourceLocation Loc, QualType T) override { 6072 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); 6073 } 6074 } IncompleteDiagnoser(Converter, From); 6075 6076 if (Converter.Suppress ? !isCompleteType(Loc, T) 6077 : RequireCompleteType(Loc, T, IncompleteDiagnoser)) 6078 return From; 6079 6080 // Look for a conversion to an integral or enumeration type. 6081 UnresolvedSet<4> 6082 ViableConversions; // These are *potentially* viable in C++1y. 6083 UnresolvedSet<4> ExplicitConversions; 6084 const auto &Conversions = 6085 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 6086 6087 bool HadMultipleCandidates = 6088 (std::distance(Conversions.begin(), Conversions.end()) > 1); 6089 6090 // To check that there is only one target type, in C++1y: 6091 QualType ToType; 6092 bool HasUniqueTargetType = true; 6093 6094 // Collect explicit or viable (potentially in C++1y) conversions. 6095 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 6096 NamedDecl *D = (*I)->getUnderlyingDecl(); 6097 CXXConversionDecl *Conversion; 6098 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 6099 if (ConvTemplate) { 6100 if (getLangOpts().CPlusPlus14) 6101 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6102 else 6103 continue; // C++11 does not consider conversion operator templates(?). 6104 } else 6105 Conversion = cast<CXXConversionDecl>(D); 6106 6107 assert((!ConvTemplate || getLangOpts().CPlusPlus14) && 6108 "Conversion operator templates are considered potentially " 6109 "viable in C++1y"); 6110 6111 QualType CurToType = Conversion->getConversionType().getNonReferenceType(); 6112 if (Converter.match(CurToType) || ConvTemplate) { 6113 6114 if (Conversion->isExplicit()) { 6115 // FIXME: For C++1y, do we need this restriction? 6116 // cf. diagnoseNoViableConversion() 6117 if (!ConvTemplate) 6118 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 6119 } else { 6120 if (!ConvTemplate && getLangOpts().CPlusPlus14) { 6121 if (ToType.isNull()) 6122 ToType = CurToType.getUnqualifiedType(); 6123 else if (HasUniqueTargetType && 6124 (CurToType.getUnqualifiedType() != ToType)) 6125 HasUniqueTargetType = false; 6126 } 6127 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 6128 } 6129 } 6130 } 6131 6132 if (getLangOpts().CPlusPlus14) { 6133 // C++1y [conv]p6: 6134 // ... An expression e of class type E appearing in such a context 6135 // is said to be contextually implicitly converted to a specified 6136 // type T and is well-formed if and only if e can be implicitly 6137 // converted to a type T that is determined as follows: E is searched 6138 // for conversion functions whose return type is cv T or reference to 6139 // cv T such that T is allowed by the context. There shall be 6140 // exactly one such T. 6141 6142 // If no unique T is found: 6143 if (ToType.isNull()) { 6144 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6145 HadMultipleCandidates, 6146 ExplicitConversions)) 6147 return ExprError(); 6148 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6149 } 6150 6151 // If more than one unique Ts are found: 6152 if (!HasUniqueTargetType) 6153 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6154 ViableConversions); 6155 6156 // If one unique T is found: 6157 // First, build a candidate set from the previously recorded 6158 // potentially viable conversions. 6159 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6160 collectViableConversionCandidates(*this, From, ToType, ViableConversions, 6161 CandidateSet); 6162 6163 // Then, perform overload resolution over the candidate set. 6164 OverloadCandidateSet::iterator Best; 6165 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { 6166 case OR_Success: { 6167 // Apply this conversion. 6168 DeclAccessPair Found = 6169 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); 6170 if (recordConversion(*this, Loc, From, Converter, T, 6171 HadMultipleCandidates, Found)) 6172 return ExprError(); 6173 break; 6174 } 6175 case OR_Ambiguous: 6176 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6177 ViableConversions); 6178 case OR_No_Viable_Function: 6179 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6180 HadMultipleCandidates, 6181 ExplicitConversions)) 6182 return ExprError(); 6183 LLVM_FALLTHROUGH; 6184 case OR_Deleted: 6185 // We'll complain below about a non-integral condition type. 6186 break; 6187 } 6188 } else { 6189 switch (ViableConversions.size()) { 6190 case 0: { 6191 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6192 HadMultipleCandidates, 6193 ExplicitConversions)) 6194 return ExprError(); 6195 6196 // We'll complain below about a non-integral condition type. 6197 break; 6198 } 6199 case 1: { 6200 // Apply this conversion. 6201 DeclAccessPair Found = ViableConversions[0]; 6202 if (recordConversion(*this, Loc, From, Converter, T, 6203 HadMultipleCandidates, Found)) 6204 return ExprError(); 6205 break; 6206 } 6207 default: 6208 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6209 ViableConversions); 6210 } 6211 } 6212 6213 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6214 } 6215 6216 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is 6217 /// an acceptable non-member overloaded operator for a call whose 6218 /// arguments have types T1 (and, if non-empty, T2). This routine 6219 /// implements the check in C++ [over.match.oper]p3b2 concerning 6220 /// enumeration types. 6221 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, 6222 FunctionDecl *Fn, 6223 ArrayRef<Expr *> Args) { 6224 QualType T1 = Args[0]->getType(); 6225 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); 6226 6227 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) 6228 return true; 6229 6230 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) 6231 return true; 6232 6233 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); 6234 if (Proto->getNumParams() < 1) 6235 return false; 6236 6237 if (T1->isEnumeralType()) { 6238 QualType ArgType = Proto->getParamType(0).getNonReferenceType(); 6239 if (Context.hasSameUnqualifiedType(T1, ArgType)) 6240 return true; 6241 } 6242 6243 if (Proto->getNumParams() < 2) 6244 return false; 6245 6246 if (!T2.isNull() && T2->isEnumeralType()) { 6247 QualType ArgType = Proto->getParamType(1).getNonReferenceType(); 6248 if (Context.hasSameUnqualifiedType(T2, ArgType)) 6249 return true; 6250 } 6251 6252 return false; 6253 } 6254 6255 /// AddOverloadCandidate - Adds the given function to the set of 6256 /// candidate functions, using the given function call arguments. If 6257 /// @p SuppressUserConversions, then don't allow user-defined 6258 /// conversions via constructors or conversion operators. 6259 /// 6260 /// \param PartialOverloading true if we are performing "partial" overloading 6261 /// based on an incomplete set of function arguments. This feature is used by 6262 /// code completion. 6263 void Sema::AddOverloadCandidate( 6264 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, 6265 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 6266 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, 6267 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, 6268 OverloadCandidateParamOrder PO) { 6269 const FunctionProtoType *Proto 6270 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 6271 assert(Proto && "Functions without a prototype cannot be overloaded"); 6272 assert(!Function->getDescribedFunctionTemplate() && 6273 "Use AddTemplateOverloadCandidate for function templates"); 6274 6275 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 6276 if (!isa<CXXConstructorDecl>(Method)) { 6277 // If we get here, it's because we're calling a member function 6278 // that is named without a member access expression (e.g., 6279 // "this->f") that was either written explicitly or created 6280 // implicitly. This can happen with a qualified call to a member 6281 // function, e.g., X::f(). We use an empty type for the implied 6282 // object argument (C++ [over.call.func]p3), and the acting context 6283 // is irrelevant. 6284 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), 6285 Expr::Classification::makeSimpleLValue(), Args, 6286 CandidateSet, SuppressUserConversions, 6287 PartialOverloading, EarlyConversions, PO); 6288 return; 6289 } 6290 // We treat a constructor like a non-member function, since its object 6291 // argument doesn't participate in overload resolution. 6292 } 6293 6294 if (!CandidateSet.isNewCandidate(Function, PO)) 6295 return; 6296 6297 // C++11 [class.copy]p11: [DR1402] 6298 // A defaulted move constructor that is defined as deleted is ignored by 6299 // overload resolution. 6300 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); 6301 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && 6302 Constructor->isMoveConstructor()) 6303 return; 6304 6305 // Overload resolution is always an unevaluated context. 6306 EnterExpressionEvaluationContext Unevaluated( 6307 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6308 6309 // C++ [over.match.oper]p3: 6310 // if no operand has a class type, only those non-member functions in the 6311 // lookup set that have a first parameter of type T1 or "reference to 6312 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there 6313 // is a right operand) a second parameter of type T2 or "reference to 6314 // (possibly cv-qualified) T2", when T2 is an enumeration type, are 6315 // candidate functions. 6316 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && 6317 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) 6318 return; 6319 6320 // Add this candidate 6321 OverloadCandidate &Candidate = 6322 CandidateSet.addCandidate(Args.size(), EarlyConversions); 6323 Candidate.FoundDecl = FoundDecl; 6324 Candidate.Function = Function; 6325 Candidate.Viable = true; 6326 Candidate.RewriteKind = 6327 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); 6328 Candidate.IsSurrogate = false; 6329 Candidate.IsADLCandidate = IsADLCandidate; 6330 Candidate.IgnoreObjectArgument = false; 6331 Candidate.ExplicitCallArguments = Args.size(); 6332 6333 // Explicit functions are not actually candidates at all if we're not 6334 // allowing them in this context, but keep them around so we can point 6335 // to them in diagnostics. 6336 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { 6337 Candidate.Viable = false; 6338 Candidate.FailureKind = ovl_fail_explicit; 6339 return; 6340 } 6341 6342 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() && 6343 !Function->getAttr<TargetAttr>()->isDefaultVersion()) { 6344 Candidate.Viable = false; 6345 Candidate.FailureKind = ovl_non_default_multiversion_function; 6346 return; 6347 } 6348 6349 if (Constructor) { 6350 // C++ [class.copy]p3: 6351 // A member function template is never instantiated to perform the copy 6352 // of a class object to an object of its class type. 6353 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 6354 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && 6355 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 6356 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), 6357 ClassType))) { 6358 Candidate.Viable = false; 6359 Candidate.FailureKind = ovl_fail_illegal_constructor; 6360 return; 6361 } 6362 6363 // C++ [over.match.funcs]p8: (proposed DR resolution) 6364 // A constructor inherited from class type C that has a first parameter 6365 // of type "reference to P" (including such a constructor instantiated 6366 // from a template) is excluded from the set of candidate functions when 6367 // constructing an object of type cv D if the argument list has exactly 6368 // one argument and D is reference-related to P and P is reference-related 6369 // to C. 6370 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); 6371 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && 6372 Constructor->getParamDecl(0)->getType()->isReferenceType()) { 6373 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); 6374 QualType C = Context.getRecordType(Constructor->getParent()); 6375 QualType D = Context.getRecordType(Shadow->getParent()); 6376 SourceLocation Loc = Args.front()->getExprLoc(); 6377 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && 6378 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { 6379 Candidate.Viable = false; 6380 Candidate.FailureKind = ovl_fail_inhctor_slice; 6381 return; 6382 } 6383 } 6384 6385 // Check that the constructor is capable of constructing an object in the 6386 // destination address space. 6387 if (!Qualifiers::isAddressSpaceSupersetOf( 6388 Constructor->getMethodQualifiers().getAddressSpace(), 6389 CandidateSet.getDestAS())) { 6390 Candidate.Viable = false; 6391 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; 6392 } 6393 } 6394 6395 unsigned NumParams = Proto->getNumParams(); 6396 6397 // (C++ 13.3.2p2): A candidate function having fewer than m 6398 // parameters is viable only if it has an ellipsis in its parameter 6399 // list (8.3.5). 6400 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6401 !Proto->isVariadic()) { 6402 Candidate.Viable = false; 6403 Candidate.FailureKind = ovl_fail_too_many_arguments; 6404 return; 6405 } 6406 6407 // (C++ 13.3.2p2): A candidate function having more than m parameters 6408 // is viable only if the (m+1)st parameter has a default argument 6409 // (8.3.6). For the purposes of overload resolution, the 6410 // parameter list is truncated on the right, so that there are 6411 // exactly m parameters. 6412 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 6413 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6414 // Not enough arguments. 6415 Candidate.Viable = false; 6416 Candidate.FailureKind = ovl_fail_too_few_arguments; 6417 return; 6418 } 6419 6420 // (CUDA B.1): Check for invalid calls between targets. 6421 if (getLangOpts().CUDA) 6422 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6423 // Skip the check for callers that are implicit members, because in this 6424 // case we may not yet know what the member's target is; the target is 6425 // inferred for the member automatically, based on the bases and fields of 6426 // the class. 6427 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) { 6428 Candidate.Viable = false; 6429 Candidate.FailureKind = ovl_fail_bad_target; 6430 return; 6431 } 6432 6433 if (Function->getTrailingRequiresClause()) { 6434 ConstraintSatisfaction Satisfaction; 6435 if (CheckFunctionConstraints(Function, Satisfaction) || 6436 !Satisfaction.IsSatisfied) { 6437 Candidate.Viable = false; 6438 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 6439 return; 6440 } 6441 } 6442 6443 // Determine the implicit conversion sequences for each of the 6444 // arguments. 6445 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6446 unsigned ConvIdx = 6447 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; 6448 if (Candidate.Conversions[ConvIdx].isInitialized()) { 6449 // We already formed a conversion sequence for this parameter during 6450 // template argument deduction. 6451 } else if (ArgIdx < NumParams) { 6452 // (C++ 13.3.2p3): for F to be a viable function, there shall 6453 // exist for each argument an implicit conversion sequence 6454 // (13.3.3.1) that converts that argument to the corresponding 6455 // parameter of F. 6456 QualType ParamType = Proto->getParamType(ArgIdx); 6457 Candidate.Conversions[ConvIdx] = TryCopyInitialization( 6458 *this, Args[ArgIdx], ParamType, SuppressUserConversions, 6459 /*InOverloadResolution=*/true, 6460 /*AllowObjCWritebackConversion=*/ 6461 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); 6462 if (Candidate.Conversions[ConvIdx].isBad()) { 6463 Candidate.Viable = false; 6464 Candidate.FailureKind = ovl_fail_bad_conversion; 6465 return; 6466 } 6467 } else { 6468 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6469 // argument for which there is no corresponding parameter is 6470 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 6471 Candidate.Conversions[ConvIdx].setEllipsis(); 6472 } 6473 } 6474 6475 if (EnableIfAttr *FailedAttr = 6476 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { 6477 Candidate.Viable = false; 6478 Candidate.FailureKind = ovl_fail_enable_if; 6479 Candidate.DeductionFailure.Data = FailedAttr; 6480 return; 6481 } 6482 6483 if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) { 6484 Candidate.Viable = false; 6485 Candidate.FailureKind = ovl_fail_ext_disabled; 6486 return; 6487 } 6488 } 6489 6490 ObjCMethodDecl * 6491 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, 6492 SmallVectorImpl<ObjCMethodDecl *> &Methods) { 6493 if (Methods.size() <= 1) 6494 return nullptr; 6495 6496 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6497 bool Match = true; 6498 ObjCMethodDecl *Method = Methods[b]; 6499 unsigned NumNamedArgs = Sel.getNumArgs(); 6500 // Method might have more arguments than selector indicates. This is due 6501 // to addition of c-style arguments in method. 6502 if (Method->param_size() > NumNamedArgs) 6503 NumNamedArgs = Method->param_size(); 6504 if (Args.size() < NumNamedArgs) 6505 continue; 6506 6507 for (unsigned i = 0; i < NumNamedArgs; i++) { 6508 // We can't do any type-checking on a type-dependent argument. 6509 if (Args[i]->isTypeDependent()) { 6510 Match = false; 6511 break; 6512 } 6513 6514 ParmVarDecl *param = Method->parameters()[i]; 6515 Expr *argExpr = Args[i]; 6516 assert(argExpr && "SelectBestMethod(): missing expression"); 6517 6518 // Strip the unbridged-cast placeholder expression off unless it's 6519 // a consumed argument. 6520 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 6521 !param->hasAttr<CFConsumedAttr>()) 6522 argExpr = stripARCUnbridgedCast(argExpr); 6523 6524 // If the parameter is __unknown_anytype, move on to the next method. 6525 if (param->getType() == Context.UnknownAnyTy) { 6526 Match = false; 6527 break; 6528 } 6529 6530 ImplicitConversionSequence ConversionState 6531 = TryCopyInitialization(*this, argExpr, param->getType(), 6532 /*SuppressUserConversions*/false, 6533 /*InOverloadResolution=*/true, 6534 /*AllowObjCWritebackConversion=*/ 6535 getLangOpts().ObjCAutoRefCount, 6536 /*AllowExplicit*/false); 6537 // This function looks for a reasonably-exact match, so we consider 6538 // incompatible pointer conversions to be a failure here. 6539 if (ConversionState.isBad() || 6540 (ConversionState.isStandard() && 6541 ConversionState.Standard.Second == 6542 ICK_Incompatible_Pointer_Conversion)) { 6543 Match = false; 6544 break; 6545 } 6546 } 6547 // Promote additional arguments to variadic methods. 6548 if (Match && Method->isVariadic()) { 6549 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 6550 if (Args[i]->isTypeDependent()) { 6551 Match = false; 6552 break; 6553 } 6554 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 6555 nullptr); 6556 if (Arg.isInvalid()) { 6557 Match = false; 6558 break; 6559 } 6560 } 6561 } else { 6562 // Check for extra arguments to non-variadic methods. 6563 if (Args.size() != NumNamedArgs) 6564 Match = false; 6565 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { 6566 // Special case when selectors have no argument. In this case, select 6567 // one with the most general result type of 'id'. 6568 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6569 QualType ReturnT = Methods[b]->getReturnType(); 6570 if (ReturnT->isObjCIdType()) 6571 return Methods[b]; 6572 } 6573 } 6574 } 6575 6576 if (Match) 6577 return Method; 6578 } 6579 return nullptr; 6580 } 6581 6582 static bool convertArgsForAvailabilityChecks( 6583 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, 6584 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, 6585 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { 6586 if (ThisArg) { 6587 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); 6588 assert(!isa<CXXConstructorDecl>(Method) && 6589 "Shouldn't have `this` for ctors!"); 6590 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!"); 6591 ExprResult R = S.PerformObjectArgumentInitialization( 6592 ThisArg, /*Qualifier=*/nullptr, Method, Method); 6593 if (R.isInvalid()) 6594 return false; 6595 ConvertedThis = R.get(); 6596 } else { 6597 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { 6598 (void)MD; 6599 assert((MissingImplicitThis || MD->isStatic() || 6600 isa<CXXConstructorDecl>(MD)) && 6601 "Expected `this` for non-ctor instance methods"); 6602 } 6603 ConvertedThis = nullptr; 6604 } 6605 6606 // Ignore any variadic arguments. Converting them is pointless, since the 6607 // user can't refer to them in the function condition. 6608 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); 6609 6610 // Convert the arguments. 6611 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { 6612 ExprResult R; 6613 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 6614 S.Context, Function->getParamDecl(I)), 6615 SourceLocation(), Args[I]); 6616 6617 if (R.isInvalid()) 6618 return false; 6619 6620 ConvertedArgs.push_back(R.get()); 6621 } 6622 6623 if (Trap.hasErrorOccurred()) 6624 return false; 6625 6626 // Push default arguments if needed. 6627 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { 6628 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { 6629 ParmVarDecl *P = Function->getParamDecl(i); 6630 if (!P->hasDefaultArg()) 6631 return false; 6632 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); 6633 if (R.isInvalid()) 6634 return false; 6635 ConvertedArgs.push_back(R.get()); 6636 } 6637 6638 if (Trap.hasErrorOccurred()) 6639 return false; 6640 } 6641 return true; 6642 } 6643 6644 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, 6645 SourceLocation CallLoc, 6646 ArrayRef<Expr *> Args, 6647 bool MissingImplicitThis) { 6648 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); 6649 if (EnableIfAttrs.begin() == EnableIfAttrs.end()) 6650 return nullptr; 6651 6652 SFINAETrap Trap(*this); 6653 SmallVector<Expr *, 16> ConvertedArgs; 6654 // FIXME: We should look into making enable_if late-parsed. 6655 Expr *DiscardedThis; 6656 if (!convertArgsForAvailabilityChecks( 6657 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, 6658 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) 6659 return *EnableIfAttrs.begin(); 6660 6661 for (auto *EIA : EnableIfAttrs) { 6662 APValue Result; 6663 // FIXME: This doesn't consider value-dependent cases, because doing so is 6664 // very difficult. Ideally, we should handle them more gracefully. 6665 if (EIA->getCond()->isValueDependent() || 6666 !EIA->getCond()->EvaluateWithSubstitution( 6667 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) 6668 return EIA; 6669 6670 if (!Result.isInt() || !Result.getInt().getBoolValue()) 6671 return EIA; 6672 } 6673 return nullptr; 6674 } 6675 6676 template <typename CheckFn> 6677 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, 6678 bool ArgDependent, SourceLocation Loc, 6679 CheckFn &&IsSuccessful) { 6680 SmallVector<const DiagnoseIfAttr *, 8> Attrs; 6681 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { 6682 if (ArgDependent == DIA->getArgDependent()) 6683 Attrs.push_back(DIA); 6684 } 6685 6686 // Common case: No diagnose_if attributes, so we can quit early. 6687 if (Attrs.empty()) 6688 return false; 6689 6690 auto WarningBegin = std::stable_partition( 6691 Attrs.begin(), Attrs.end(), 6692 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); 6693 6694 // Note that diagnose_if attributes are late-parsed, so they appear in the 6695 // correct order (unlike enable_if attributes). 6696 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), 6697 IsSuccessful); 6698 if (ErrAttr != WarningBegin) { 6699 const DiagnoseIfAttr *DIA = *ErrAttr; 6700 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); 6701 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6702 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6703 return true; 6704 } 6705 6706 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) 6707 if (IsSuccessful(DIA)) { 6708 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); 6709 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6710 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6711 } 6712 6713 return false; 6714 } 6715 6716 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, 6717 const Expr *ThisArg, 6718 ArrayRef<const Expr *> Args, 6719 SourceLocation Loc) { 6720 return diagnoseDiagnoseIfAttrsWith( 6721 *this, Function, /*ArgDependent=*/true, Loc, 6722 [&](const DiagnoseIfAttr *DIA) { 6723 APValue Result; 6724 // It's sane to use the same Args for any redecl of this function, since 6725 // EvaluateWithSubstitution only cares about the position of each 6726 // argument in the arg list, not the ParmVarDecl* it maps to. 6727 if (!DIA->getCond()->EvaluateWithSubstitution( 6728 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) 6729 return false; 6730 return Result.isInt() && Result.getInt().getBoolValue(); 6731 }); 6732 } 6733 6734 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, 6735 SourceLocation Loc) { 6736 return diagnoseDiagnoseIfAttrsWith( 6737 *this, ND, /*ArgDependent=*/false, Loc, 6738 [&](const DiagnoseIfAttr *DIA) { 6739 bool Result; 6740 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && 6741 Result; 6742 }); 6743 } 6744 6745 /// Add all of the function declarations in the given function set to 6746 /// the overload candidate set. 6747 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 6748 ArrayRef<Expr *> Args, 6749 OverloadCandidateSet &CandidateSet, 6750 TemplateArgumentListInfo *ExplicitTemplateArgs, 6751 bool SuppressUserConversions, 6752 bool PartialOverloading, 6753 bool FirstArgumentIsBase) { 6754 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 6755 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 6756 ArrayRef<Expr *> FunctionArgs = Args; 6757 6758 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 6759 FunctionDecl *FD = 6760 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 6761 6762 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { 6763 QualType ObjectType; 6764 Expr::Classification ObjectClassification; 6765 if (Args.size() > 0) { 6766 if (Expr *E = Args[0]) { 6767 // Use the explicit base to restrict the lookup: 6768 ObjectType = E->getType(); 6769 // Pointers in the object arguments are implicitly dereferenced, so we 6770 // always classify them as l-values. 6771 if (!ObjectType.isNull() && ObjectType->isPointerType()) 6772 ObjectClassification = Expr::Classification::makeSimpleLValue(); 6773 else 6774 ObjectClassification = E->Classify(Context); 6775 } // .. else there is an implicit base. 6776 FunctionArgs = Args.slice(1); 6777 } 6778 if (FunTmpl) { 6779 AddMethodTemplateCandidate( 6780 FunTmpl, F.getPair(), 6781 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 6782 ExplicitTemplateArgs, ObjectType, ObjectClassification, 6783 FunctionArgs, CandidateSet, SuppressUserConversions, 6784 PartialOverloading); 6785 } else { 6786 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 6787 cast<CXXMethodDecl>(FD)->getParent(), ObjectType, 6788 ObjectClassification, FunctionArgs, CandidateSet, 6789 SuppressUserConversions, PartialOverloading); 6790 } 6791 } else { 6792 // This branch handles both standalone functions and static methods. 6793 6794 // Slice the first argument (which is the base) when we access 6795 // static method as non-static. 6796 if (Args.size() > 0 && 6797 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && 6798 !isa<CXXConstructorDecl>(FD)))) { 6799 assert(cast<CXXMethodDecl>(FD)->isStatic()); 6800 FunctionArgs = Args.slice(1); 6801 } 6802 if (FunTmpl) { 6803 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 6804 ExplicitTemplateArgs, FunctionArgs, 6805 CandidateSet, SuppressUserConversions, 6806 PartialOverloading); 6807 } else { 6808 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, 6809 SuppressUserConversions, PartialOverloading); 6810 } 6811 } 6812 } 6813 } 6814 6815 /// AddMethodCandidate - Adds a named decl (which is some kind of 6816 /// method) as a method candidate to the given overload set. 6817 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, 6818 Expr::Classification ObjectClassification, 6819 ArrayRef<Expr *> Args, 6820 OverloadCandidateSet &CandidateSet, 6821 bool SuppressUserConversions, 6822 OverloadCandidateParamOrder PO) { 6823 NamedDecl *Decl = FoundDecl.getDecl(); 6824 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 6825 6826 if (isa<UsingShadowDecl>(Decl)) 6827 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 6828 6829 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 6830 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 6831 "Expected a member function template"); 6832 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 6833 /*ExplicitArgs*/ nullptr, ObjectType, 6834 ObjectClassification, Args, CandidateSet, 6835 SuppressUserConversions, false, PO); 6836 } else { 6837 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 6838 ObjectType, ObjectClassification, Args, CandidateSet, 6839 SuppressUserConversions, false, None, PO); 6840 } 6841 } 6842 6843 /// AddMethodCandidate - Adds the given C++ member function to the set 6844 /// of candidate functions, using the given function call arguments 6845 /// and the object argument (@c Object). For example, in a call 6846 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 6847 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 6848 /// allow user-defined conversions via constructors or conversion 6849 /// operators. 6850 void 6851 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 6852 CXXRecordDecl *ActingContext, QualType ObjectType, 6853 Expr::Classification ObjectClassification, 6854 ArrayRef<Expr *> Args, 6855 OverloadCandidateSet &CandidateSet, 6856 bool SuppressUserConversions, 6857 bool PartialOverloading, 6858 ConversionSequenceList EarlyConversions, 6859 OverloadCandidateParamOrder PO) { 6860 const FunctionProtoType *Proto 6861 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 6862 assert(Proto && "Methods without a prototype cannot be overloaded"); 6863 assert(!isa<CXXConstructorDecl>(Method) && 6864 "Use AddOverloadCandidate for constructors"); 6865 6866 if (!CandidateSet.isNewCandidate(Method, PO)) 6867 return; 6868 6869 // C++11 [class.copy]p23: [DR1402] 6870 // A defaulted move assignment operator that is defined as deleted is 6871 // ignored by overload resolution. 6872 if (Method->isDefaulted() && Method->isDeleted() && 6873 Method->isMoveAssignmentOperator()) 6874 return; 6875 6876 // Overload resolution is always an unevaluated context. 6877 EnterExpressionEvaluationContext Unevaluated( 6878 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6879 6880 // Add this candidate 6881 OverloadCandidate &Candidate = 6882 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); 6883 Candidate.FoundDecl = FoundDecl; 6884 Candidate.Function = Method; 6885 Candidate.RewriteKind = 6886 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); 6887 Candidate.IsSurrogate = false; 6888 Candidate.IgnoreObjectArgument = false; 6889 Candidate.ExplicitCallArguments = Args.size(); 6890 6891 unsigned NumParams = Proto->getNumParams(); 6892 6893 // (C++ 13.3.2p2): A candidate function having fewer than m 6894 // parameters is viable only if it has an ellipsis in its parameter 6895 // list (8.3.5). 6896 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6897 !Proto->isVariadic()) { 6898 Candidate.Viable = false; 6899 Candidate.FailureKind = ovl_fail_too_many_arguments; 6900 return; 6901 } 6902 6903 // (C++ 13.3.2p2): A candidate function having more than m parameters 6904 // is viable only if the (m+1)st parameter has a default argument 6905 // (8.3.6). For the purposes of overload resolution, the 6906 // parameter list is truncated on the right, so that there are 6907 // exactly m parameters. 6908 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 6909 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6910 // Not enough arguments. 6911 Candidate.Viable = false; 6912 Candidate.FailureKind = ovl_fail_too_few_arguments; 6913 return; 6914 } 6915 6916 Candidate.Viable = true; 6917 6918 if (Method->isStatic() || ObjectType.isNull()) 6919 // The implicit object argument is ignored. 6920 Candidate.IgnoreObjectArgument = true; 6921 else { 6922 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 6923 // Determine the implicit conversion sequence for the object 6924 // parameter. 6925 Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization( 6926 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 6927 Method, ActingContext); 6928 if (Candidate.Conversions[ConvIdx].isBad()) { 6929 Candidate.Viable = false; 6930 Candidate.FailureKind = ovl_fail_bad_conversion; 6931 return; 6932 } 6933 } 6934 6935 // (CUDA B.1): Check for invalid calls between targets. 6936 if (getLangOpts().CUDA) 6937 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6938 if (!IsAllowedCUDACall(Caller, Method)) { 6939 Candidate.Viable = false; 6940 Candidate.FailureKind = ovl_fail_bad_target; 6941 return; 6942 } 6943 6944 if (Method->getTrailingRequiresClause()) { 6945 ConstraintSatisfaction Satisfaction; 6946 if (CheckFunctionConstraints(Method, Satisfaction) || 6947 !Satisfaction.IsSatisfied) { 6948 Candidate.Viable = false; 6949 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 6950 return; 6951 } 6952 } 6953 6954 // Determine the implicit conversion sequences for each of the 6955 // arguments. 6956 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6957 unsigned ConvIdx = 6958 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); 6959 if (Candidate.Conversions[ConvIdx].isInitialized()) { 6960 // We already formed a conversion sequence for this parameter during 6961 // template argument deduction. 6962 } else if (ArgIdx < NumParams) { 6963 // (C++ 13.3.2p3): for F to be a viable function, there shall 6964 // exist for each argument an implicit conversion sequence 6965 // (13.3.3.1) that converts that argument to the corresponding 6966 // parameter of F. 6967 QualType ParamType = Proto->getParamType(ArgIdx); 6968 Candidate.Conversions[ConvIdx] 6969 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 6970 SuppressUserConversions, 6971 /*InOverloadResolution=*/true, 6972 /*AllowObjCWritebackConversion=*/ 6973 getLangOpts().ObjCAutoRefCount); 6974 if (Candidate.Conversions[ConvIdx].isBad()) { 6975 Candidate.Viable = false; 6976 Candidate.FailureKind = ovl_fail_bad_conversion; 6977 return; 6978 } 6979 } else { 6980 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6981 // argument for which there is no corresponding parameter is 6982 // considered to "match the ellipsis" (C+ 13.3.3.1.3). 6983 Candidate.Conversions[ConvIdx].setEllipsis(); 6984 } 6985 } 6986 6987 if (EnableIfAttr *FailedAttr = 6988 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { 6989 Candidate.Viable = false; 6990 Candidate.FailureKind = ovl_fail_enable_if; 6991 Candidate.DeductionFailure.Data = FailedAttr; 6992 return; 6993 } 6994 6995 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() && 6996 !Method->getAttr<TargetAttr>()->isDefaultVersion()) { 6997 Candidate.Viable = false; 6998 Candidate.FailureKind = ovl_non_default_multiversion_function; 6999 } 7000 } 7001 7002 /// Add a C++ member function template as a candidate to the candidate 7003 /// set, using template argument deduction to produce an appropriate member 7004 /// function template specialization. 7005 void Sema::AddMethodTemplateCandidate( 7006 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, 7007 CXXRecordDecl *ActingContext, 7008 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, 7009 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, 7010 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7011 bool PartialOverloading, OverloadCandidateParamOrder PO) { 7012 if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) 7013 return; 7014 7015 // C++ [over.match.funcs]p7: 7016 // In each case where a candidate is a function template, candidate 7017 // function template specializations are generated using template argument 7018 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7019 // candidate functions in the usual way.113) A given name can refer to one 7020 // or more function templates and also to a set of overloaded non-template 7021 // functions. In such a case, the candidate functions generated from each 7022 // function template are combined with the set of non-template candidate 7023 // functions. 7024 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7025 FunctionDecl *Specialization = nullptr; 7026 ConversionSequenceList Conversions; 7027 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7028 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, 7029 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7030 return CheckNonDependentConversions( 7031 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, 7032 SuppressUserConversions, ActingContext, ObjectType, 7033 ObjectClassification, PO); 7034 })) { 7035 OverloadCandidate &Candidate = 7036 CandidateSet.addCandidate(Conversions.size(), Conversions); 7037 Candidate.FoundDecl = FoundDecl; 7038 Candidate.Function = MethodTmpl->getTemplatedDecl(); 7039 Candidate.Viable = false; 7040 Candidate.RewriteKind = 7041 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7042 Candidate.IsSurrogate = false; 7043 Candidate.IgnoreObjectArgument = 7044 cast<CXXMethodDecl>(Candidate.Function)->isStatic() || 7045 ObjectType.isNull(); 7046 Candidate.ExplicitCallArguments = Args.size(); 7047 if (Result == TDK_NonDependentConversionFailure) 7048 Candidate.FailureKind = ovl_fail_bad_conversion; 7049 else { 7050 Candidate.FailureKind = ovl_fail_bad_deduction; 7051 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7052 Info); 7053 } 7054 return; 7055 } 7056 7057 // Add the function template specialization produced by template argument 7058 // deduction as a candidate. 7059 assert(Specialization && "Missing member function template specialization?"); 7060 assert(isa<CXXMethodDecl>(Specialization) && 7061 "Specialization is not a member function?"); 7062 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 7063 ActingContext, ObjectType, ObjectClassification, Args, 7064 CandidateSet, SuppressUserConversions, PartialOverloading, 7065 Conversions, PO); 7066 } 7067 7068 /// Determine whether a given function template has a simple explicit specifier 7069 /// or a non-value-dependent explicit-specification that evaluates to true. 7070 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { 7071 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); 7072 } 7073 7074 /// Add a C++ function template specialization as a candidate 7075 /// in the candidate set, using template argument deduction to produce 7076 /// an appropriate function template specialization. 7077 void Sema::AddTemplateOverloadCandidate( 7078 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7079 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 7080 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7081 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, 7082 OverloadCandidateParamOrder PO) { 7083 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) 7084 return; 7085 7086 // If the function template has a non-dependent explicit specification, 7087 // exclude it now if appropriate; we are not permitted to perform deduction 7088 // and substitution in this case. 7089 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7090 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7091 Candidate.FoundDecl = FoundDecl; 7092 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7093 Candidate.Viable = false; 7094 Candidate.FailureKind = ovl_fail_explicit; 7095 return; 7096 } 7097 7098 // C++ [over.match.funcs]p7: 7099 // In each case where a candidate is a function template, candidate 7100 // function template specializations are generated using template argument 7101 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7102 // candidate functions in the usual way.113) A given name can refer to one 7103 // or more function templates and also to a set of overloaded non-template 7104 // functions. In such a case, the candidate functions generated from each 7105 // function template are combined with the set of non-template candidate 7106 // functions. 7107 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7108 FunctionDecl *Specialization = nullptr; 7109 ConversionSequenceList Conversions; 7110 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7111 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, 7112 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7113 return CheckNonDependentConversions( 7114 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, 7115 SuppressUserConversions, nullptr, QualType(), {}, PO); 7116 })) { 7117 OverloadCandidate &Candidate = 7118 CandidateSet.addCandidate(Conversions.size(), Conversions); 7119 Candidate.FoundDecl = FoundDecl; 7120 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7121 Candidate.Viable = false; 7122 Candidate.RewriteKind = 7123 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7124 Candidate.IsSurrogate = false; 7125 Candidate.IsADLCandidate = IsADLCandidate; 7126 // Ignore the object argument if there is one, since we don't have an object 7127 // type. 7128 Candidate.IgnoreObjectArgument = 7129 isa<CXXMethodDecl>(Candidate.Function) && 7130 !isa<CXXConstructorDecl>(Candidate.Function); 7131 Candidate.ExplicitCallArguments = Args.size(); 7132 if (Result == TDK_NonDependentConversionFailure) 7133 Candidate.FailureKind = ovl_fail_bad_conversion; 7134 else { 7135 Candidate.FailureKind = ovl_fail_bad_deduction; 7136 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7137 Info); 7138 } 7139 return; 7140 } 7141 7142 // Add the function template specialization produced by template argument 7143 // deduction as a candidate. 7144 assert(Specialization && "Missing function template specialization?"); 7145 AddOverloadCandidate( 7146 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, 7147 PartialOverloading, AllowExplicit, 7148 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO); 7149 } 7150 7151 /// Check that implicit conversion sequences can be formed for each argument 7152 /// whose corresponding parameter has a non-dependent type, per DR1391's 7153 /// [temp.deduct.call]p10. 7154 bool Sema::CheckNonDependentConversions( 7155 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, 7156 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, 7157 ConversionSequenceList &Conversions, bool SuppressUserConversions, 7158 CXXRecordDecl *ActingContext, QualType ObjectType, 7159 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { 7160 // FIXME: The cases in which we allow explicit conversions for constructor 7161 // arguments never consider calling a constructor template. It's not clear 7162 // that is correct. 7163 const bool AllowExplicit = false; 7164 7165 auto *FD = FunctionTemplate->getTemplatedDecl(); 7166 auto *Method = dyn_cast<CXXMethodDecl>(FD); 7167 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); 7168 unsigned ThisConversions = HasThisConversion ? 1 : 0; 7169 7170 Conversions = 7171 CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); 7172 7173 // Overload resolution is always an unevaluated context. 7174 EnterExpressionEvaluationContext Unevaluated( 7175 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7176 7177 // For a method call, check the 'this' conversion here too. DR1391 doesn't 7178 // require that, but this check should never result in a hard error, and 7179 // overload resolution is permitted to sidestep instantiations. 7180 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && 7181 !ObjectType.isNull()) { 7182 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 7183 Conversions[ConvIdx] = TryObjectArgumentInitialization( 7184 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 7185 Method, ActingContext); 7186 if (Conversions[ConvIdx].isBad()) 7187 return true; 7188 } 7189 7190 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; 7191 ++I) { 7192 QualType ParamType = ParamTypes[I]; 7193 if (!ParamType->isDependentType()) { 7194 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed 7195 ? 0 7196 : (ThisConversions + I); 7197 Conversions[ConvIdx] 7198 = TryCopyInitialization(*this, Args[I], ParamType, 7199 SuppressUserConversions, 7200 /*InOverloadResolution=*/true, 7201 /*AllowObjCWritebackConversion=*/ 7202 getLangOpts().ObjCAutoRefCount, 7203 AllowExplicit); 7204 if (Conversions[ConvIdx].isBad()) 7205 return true; 7206 } 7207 } 7208 7209 return false; 7210 } 7211 7212 /// Determine whether this is an allowable conversion from the result 7213 /// of an explicit conversion operator to the expected type, per C++ 7214 /// [over.match.conv]p1 and [over.match.ref]p1. 7215 /// 7216 /// \param ConvType The return type of the conversion function. 7217 /// 7218 /// \param ToType The type we are converting to. 7219 /// 7220 /// \param AllowObjCPointerConversion Allow a conversion from one 7221 /// Objective-C pointer to another. 7222 /// 7223 /// \returns true if the conversion is allowable, false otherwise. 7224 static bool isAllowableExplicitConversion(Sema &S, 7225 QualType ConvType, QualType ToType, 7226 bool AllowObjCPointerConversion) { 7227 QualType ToNonRefType = ToType.getNonReferenceType(); 7228 7229 // Easy case: the types are the same. 7230 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) 7231 return true; 7232 7233 // Allow qualification conversions. 7234 bool ObjCLifetimeConversion; 7235 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, 7236 ObjCLifetimeConversion)) 7237 return true; 7238 7239 // If we're not allowed to consider Objective-C pointer conversions, 7240 // we're done. 7241 if (!AllowObjCPointerConversion) 7242 return false; 7243 7244 // Is this an Objective-C pointer conversion? 7245 bool IncompatibleObjC = false; 7246 QualType ConvertedType; 7247 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, 7248 IncompatibleObjC); 7249 } 7250 7251 /// AddConversionCandidate - Add a C++ conversion function as a 7252 /// candidate in the candidate set (C++ [over.match.conv], 7253 /// C++ [over.match.copy]). From is the expression we're converting from, 7254 /// and ToType is the type that we're eventually trying to convert to 7255 /// (which may or may not be the same type as the type that the 7256 /// conversion function produces). 7257 void Sema::AddConversionCandidate( 7258 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, 7259 CXXRecordDecl *ActingContext, Expr *From, QualType ToType, 7260 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7261 bool AllowExplicit, bool AllowResultConversion) { 7262 assert(!Conversion->getDescribedFunctionTemplate() && 7263 "Conversion function templates use AddTemplateConversionCandidate"); 7264 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 7265 if (!CandidateSet.isNewCandidate(Conversion)) 7266 return; 7267 7268 // If the conversion function has an undeduced return type, trigger its 7269 // deduction now. 7270 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { 7271 if (DeduceReturnType(Conversion, From->getExprLoc())) 7272 return; 7273 ConvType = Conversion->getConversionType().getNonReferenceType(); 7274 } 7275 7276 // If we don't allow any conversion of the result type, ignore conversion 7277 // functions that don't convert to exactly (possibly cv-qualified) T. 7278 if (!AllowResultConversion && 7279 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) 7280 return; 7281 7282 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion 7283 // operator is only a candidate if its return type is the target type or 7284 // can be converted to the target type with a qualification conversion. 7285 // 7286 // FIXME: Include such functions in the candidate list and explain why we 7287 // can't select them. 7288 if (Conversion->isExplicit() && 7289 !isAllowableExplicitConversion(*this, ConvType, ToType, 7290 AllowObjCConversionOnExplicit)) 7291 return; 7292 7293 // Overload resolution is always an unevaluated context. 7294 EnterExpressionEvaluationContext Unevaluated( 7295 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7296 7297 // Add this candidate 7298 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 7299 Candidate.FoundDecl = FoundDecl; 7300 Candidate.Function = Conversion; 7301 Candidate.IsSurrogate = false; 7302 Candidate.IgnoreObjectArgument = false; 7303 Candidate.FinalConversion.setAsIdentityConversion(); 7304 Candidate.FinalConversion.setFromType(ConvType); 7305 Candidate.FinalConversion.setAllToTypes(ToType); 7306 Candidate.Viable = true; 7307 Candidate.ExplicitCallArguments = 1; 7308 7309 // Explicit functions are not actually candidates at all if we're not 7310 // allowing them in this context, but keep them around so we can point 7311 // to them in diagnostics. 7312 if (!AllowExplicit && Conversion->isExplicit()) { 7313 Candidate.Viable = false; 7314 Candidate.FailureKind = ovl_fail_explicit; 7315 return; 7316 } 7317 7318 // C++ [over.match.funcs]p4: 7319 // For conversion functions, the function is considered to be a member of 7320 // the class of the implicit implied object argument for the purpose of 7321 // defining the type of the implicit object parameter. 7322 // 7323 // Determine the implicit conversion sequence for the implicit 7324 // object parameter. 7325 QualType ImplicitParamType = From->getType(); 7326 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 7327 ImplicitParamType = FromPtrType->getPointeeType(); 7328 CXXRecordDecl *ConversionContext 7329 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl()); 7330 7331 Candidate.Conversions[0] = TryObjectArgumentInitialization( 7332 *this, CandidateSet.getLocation(), From->getType(), 7333 From->Classify(Context), Conversion, ConversionContext); 7334 7335 if (Candidate.Conversions[0].isBad()) { 7336 Candidate.Viable = false; 7337 Candidate.FailureKind = ovl_fail_bad_conversion; 7338 return; 7339 } 7340 7341 if (Conversion->getTrailingRequiresClause()) { 7342 ConstraintSatisfaction Satisfaction; 7343 if (CheckFunctionConstraints(Conversion, Satisfaction) || 7344 !Satisfaction.IsSatisfied) { 7345 Candidate.Viable = false; 7346 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 7347 return; 7348 } 7349 } 7350 7351 // We won't go through a user-defined type conversion function to convert a 7352 // derived to base as such conversions are given Conversion Rank. They only 7353 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 7354 QualType FromCanon 7355 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 7356 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 7357 if (FromCanon == ToCanon || 7358 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { 7359 Candidate.Viable = false; 7360 Candidate.FailureKind = ovl_fail_trivial_conversion; 7361 return; 7362 } 7363 7364 // To determine what the conversion from the result of calling the 7365 // conversion function to the type we're eventually trying to 7366 // convert to (ToType), we need to synthesize a call to the 7367 // conversion function and attempt copy initialization from it. This 7368 // makes sure that we get the right semantics with respect to 7369 // lvalues/rvalues and the type. Fortunately, we can allocate this 7370 // call on the stack and we don't need its arguments to be 7371 // well-formed. 7372 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), 7373 VK_LValue, From->getBeginLoc()); 7374 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 7375 Context.getPointerType(Conversion->getType()), 7376 CK_FunctionToPointerDecay, &ConversionRef, 7377 VK_RValue, FPOptionsOverride()); 7378 7379 QualType ConversionType = Conversion->getConversionType(); 7380 if (!isCompleteType(From->getBeginLoc(), ConversionType)) { 7381 Candidate.Viable = false; 7382 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7383 return; 7384 } 7385 7386 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 7387 7388 // Note that it is safe to allocate CallExpr on the stack here because 7389 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 7390 // allocator). 7391 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 7392 7393 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; 7394 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( 7395 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); 7396 7397 ImplicitConversionSequence ICS = 7398 TryCopyInitialization(*this, TheTemporaryCall, ToType, 7399 /*SuppressUserConversions=*/true, 7400 /*InOverloadResolution=*/false, 7401 /*AllowObjCWritebackConversion=*/false); 7402 7403 switch (ICS.getKind()) { 7404 case ImplicitConversionSequence::StandardConversion: 7405 Candidate.FinalConversion = ICS.Standard; 7406 7407 // C++ [over.ics.user]p3: 7408 // If the user-defined conversion is specified by a specialization of a 7409 // conversion function template, the second standard conversion sequence 7410 // shall have exact match rank. 7411 if (Conversion->getPrimaryTemplate() && 7412 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 7413 Candidate.Viable = false; 7414 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 7415 return; 7416 } 7417 7418 // C++0x [dcl.init.ref]p5: 7419 // In the second case, if the reference is an rvalue reference and 7420 // the second standard conversion sequence of the user-defined 7421 // conversion sequence includes an lvalue-to-rvalue conversion, the 7422 // program is ill-formed. 7423 if (ToType->isRValueReferenceType() && 7424 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 7425 Candidate.Viable = false; 7426 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7427 return; 7428 } 7429 break; 7430 7431 case ImplicitConversionSequence::BadConversion: 7432 Candidate.Viable = false; 7433 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7434 return; 7435 7436 default: 7437 llvm_unreachable( 7438 "Can only end up with a standard conversion sequence or failure"); 7439 } 7440 7441 if (EnableIfAttr *FailedAttr = 7442 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { 7443 Candidate.Viable = false; 7444 Candidate.FailureKind = ovl_fail_enable_if; 7445 Candidate.DeductionFailure.Data = FailedAttr; 7446 return; 7447 } 7448 7449 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() && 7450 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) { 7451 Candidate.Viable = false; 7452 Candidate.FailureKind = ovl_non_default_multiversion_function; 7453 } 7454 } 7455 7456 /// Adds a conversion function template specialization 7457 /// candidate to the overload set, using template argument deduction 7458 /// to deduce the template arguments of the conversion function 7459 /// template from the type that we are converting to (C++ 7460 /// [temp.deduct.conv]). 7461 void Sema::AddTemplateConversionCandidate( 7462 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7463 CXXRecordDecl *ActingDC, Expr *From, QualType ToType, 7464 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7465 bool AllowExplicit, bool AllowResultConversion) { 7466 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 7467 "Only conversion function templates permitted here"); 7468 7469 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 7470 return; 7471 7472 // If the function template has a non-dependent explicit specification, 7473 // exclude it now if appropriate; we are not permitted to perform deduction 7474 // and substitution in this case. 7475 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7476 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7477 Candidate.FoundDecl = FoundDecl; 7478 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7479 Candidate.Viable = false; 7480 Candidate.FailureKind = ovl_fail_explicit; 7481 return; 7482 } 7483 7484 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7485 CXXConversionDecl *Specialization = nullptr; 7486 if (TemplateDeductionResult Result 7487 = DeduceTemplateArguments(FunctionTemplate, ToType, 7488 Specialization, Info)) { 7489 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7490 Candidate.FoundDecl = FoundDecl; 7491 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7492 Candidate.Viable = false; 7493 Candidate.FailureKind = ovl_fail_bad_deduction; 7494 Candidate.IsSurrogate = false; 7495 Candidate.IgnoreObjectArgument = false; 7496 Candidate.ExplicitCallArguments = 1; 7497 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7498 Info); 7499 return; 7500 } 7501 7502 // Add the conversion function template specialization produced by 7503 // template argument deduction as a candidate. 7504 assert(Specialization && "Missing function template specialization?"); 7505 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 7506 CandidateSet, AllowObjCConversionOnExplicit, 7507 AllowExplicit, AllowResultConversion); 7508 } 7509 7510 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that 7511 /// converts the given @c Object to a function pointer via the 7512 /// conversion function @c Conversion, and then attempts to call it 7513 /// with the given arguments (C++ [over.call.object]p2-4). Proto is 7514 /// the type of function that we'll eventually be calling. 7515 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 7516 DeclAccessPair FoundDecl, 7517 CXXRecordDecl *ActingContext, 7518 const FunctionProtoType *Proto, 7519 Expr *Object, 7520 ArrayRef<Expr *> Args, 7521 OverloadCandidateSet& CandidateSet) { 7522 if (!CandidateSet.isNewCandidate(Conversion)) 7523 return; 7524 7525 // Overload resolution is always an unevaluated context. 7526 EnterExpressionEvaluationContext Unevaluated( 7527 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7528 7529 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); 7530 Candidate.FoundDecl = FoundDecl; 7531 Candidate.Function = nullptr; 7532 Candidate.Surrogate = Conversion; 7533 Candidate.Viable = true; 7534 Candidate.IsSurrogate = true; 7535 Candidate.IgnoreObjectArgument = false; 7536 Candidate.ExplicitCallArguments = Args.size(); 7537 7538 // Determine the implicit conversion sequence for the implicit 7539 // object parameter. 7540 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization( 7541 *this, CandidateSet.getLocation(), Object->getType(), 7542 Object->Classify(Context), Conversion, ActingContext); 7543 if (ObjectInit.isBad()) { 7544 Candidate.Viable = false; 7545 Candidate.FailureKind = ovl_fail_bad_conversion; 7546 Candidate.Conversions[0] = ObjectInit; 7547 return; 7548 } 7549 7550 // The first conversion is actually a user-defined conversion whose 7551 // first conversion is ObjectInit's standard conversion (which is 7552 // effectively a reference binding). Record it as such. 7553 Candidate.Conversions[0].setUserDefined(); 7554 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 7555 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 7556 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 7557 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 7558 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 7559 Candidate.Conversions[0].UserDefined.After 7560 = Candidate.Conversions[0].UserDefined.Before; 7561 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 7562 7563 // Find the 7564 unsigned NumParams = Proto->getNumParams(); 7565 7566 // (C++ 13.3.2p2): A candidate function having fewer than m 7567 // parameters is viable only if it has an ellipsis in its parameter 7568 // list (8.3.5). 7569 if (Args.size() > NumParams && !Proto->isVariadic()) { 7570 Candidate.Viable = false; 7571 Candidate.FailureKind = ovl_fail_too_many_arguments; 7572 return; 7573 } 7574 7575 // Function types don't have any default arguments, so just check if 7576 // we have enough arguments. 7577 if (Args.size() < NumParams) { 7578 // Not enough arguments. 7579 Candidate.Viable = false; 7580 Candidate.FailureKind = ovl_fail_too_few_arguments; 7581 return; 7582 } 7583 7584 // Determine the implicit conversion sequences for each of the 7585 // arguments. 7586 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7587 if (ArgIdx < NumParams) { 7588 // (C++ 13.3.2p3): for F to be a viable function, there shall 7589 // exist for each argument an implicit conversion sequence 7590 // (13.3.3.1) that converts that argument to the corresponding 7591 // parameter of F. 7592 QualType ParamType = Proto->getParamType(ArgIdx); 7593 Candidate.Conversions[ArgIdx + 1] 7594 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7595 /*SuppressUserConversions=*/false, 7596 /*InOverloadResolution=*/false, 7597 /*AllowObjCWritebackConversion=*/ 7598 getLangOpts().ObjCAutoRefCount); 7599 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 7600 Candidate.Viable = false; 7601 Candidate.FailureKind = ovl_fail_bad_conversion; 7602 return; 7603 } 7604 } else { 7605 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7606 // argument for which there is no corresponding parameter is 7607 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 7608 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 7609 } 7610 } 7611 7612 if (EnableIfAttr *FailedAttr = 7613 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { 7614 Candidate.Viable = false; 7615 Candidate.FailureKind = ovl_fail_enable_if; 7616 Candidate.DeductionFailure.Data = FailedAttr; 7617 return; 7618 } 7619 } 7620 7621 /// Add all of the non-member operator function declarations in the given 7622 /// function set to the overload candidate set. 7623 void Sema::AddNonMemberOperatorCandidates( 7624 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, 7625 OverloadCandidateSet &CandidateSet, 7626 TemplateArgumentListInfo *ExplicitTemplateArgs) { 7627 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 7628 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 7629 ArrayRef<Expr *> FunctionArgs = Args; 7630 7631 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 7632 FunctionDecl *FD = 7633 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 7634 7635 // Don't consider rewritten functions if we're not rewriting. 7636 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) 7637 continue; 7638 7639 assert(!isa<CXXMethodDecl>(FD) && 7640 "unqualified operator lookup found a member function"); 7641 7642 if (FunTmpl) { 7643 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, 7644 FunctionArgs, CandidateSet); 7645 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) 7646 AddTemplateOverloadCandidate( 7647 FunTmpl, F.getPair(), ExplicitTemplateArgs, 7648 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, 7649 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); 7650 } else { 7651 if (ExplicitTemplateArgs) 7652 continue; 7653 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); 7654 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) 7655 AddOverloadCandidate(FD, F.getPair(), 7656 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, 7657 false, false, true, false, ADLCallKind::NotADL, 7658 None, OverloadCandidateParamOrder::Reversed); 7659 } 7660 } 7661 } 7662 7663 /// Add overload candidates for overloaded operators that are 7664 /// member functions. 7665 /// 7666 /// Add the overloaded operator candidates that are member functions 7667 /// for the operator Op that was used in an operator expression such 7668 /// as "x Op y". , Args/NumArgs provides the operator arguments, and 7669 /// CandidateSet will store the added overload candidates. (C++ 7670 /// [over.match.oper]). 7671 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 7672 SourceLocation OpLoc, 7673 ArrayRef<Expr *> Args, 7674 OverloadCandidateSet &CandidateSet, 7675 OverloadCandidateParamOrder PO) { 7676 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7677 7678 // C++ [over.match.oper]p3: 7679 // For a unary operator @ with an operand of a type whose 7680 // cv-unqualified version is T1, and for a binary operator @ with 7681 // a left operand of a type whose cv-unqualified version is T1 and 7682 // a right operand of a type whose cv-unqualified version is T2, 7683 // three sets of candidate functions, designated member 7684 // candidates, non-member candidates and built-in candidates, are 7685 // constructed as follows: 7686 QualType T1 = Args[0]->getType(); 7687 7688 // -- If T1 is a complete class type or a class currently being 7689 // defined, the set of member candidates is the result of the 7690 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, 7691 // the set of member candidates is empty. 7692 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 7693 // Complete the type if it can be completed. 7694 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) 7695 return; 7696 // If the type is neither complete nor being defined, bail out now. 7697 if (!T1Rec->getDecl()->getDefinition()) 7698 return; 7699 7700 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 7701 LookupQualifiedName(Operators, T1Rec->getDecl()); 7702 Operators.suppressDiagnostics(); 7703 7704 for (LookupResult::iterator Oper = Operators.begin(), 7705 OperEnd = Operators.end(); 7706 Oper != OperEnd; 7707 ++Oper) 7708 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 7709 Args[0]->Classify(Context), Args.slice(1), 7710 CandidateSet, /*SuppressUserConversion=*/false, PO); 7711 } 7712 } 7713 7714 /// AddBuiltinCandidate - Add a candidate for a built-in 7715 /// operator. ResultTy and ParamTys are the result and parameter types 7716 /// of the built-in candidate, respectively. Args and NumArgs are the 7717 /// arguments being passed to the candidate. IsAssignmentOperator 7718 /// should be true when this built-in candidate is an assignment 7719 /// operator. NumContextualBoolArguments is the number of arguments 7720 /// (at the beginning of the argument list) that will be contextually 7721 /// converted to bool. 7722 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, 7723 OverloadCandidateSet& CandidateSet, 7724 bool IsAssignmentOperator, 7725 unsigned NumContextualBoolArguments) { 7726 // Overload resolution is always an unevaluated context. 7727 EnterExpressionEvaluationContext Unevaluated( 7728 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7729 7730 // Add this candidate 7731 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); 7732 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); 7733 Candidate.Function = nullptr; 7734 Candidate.IsSurrogate = false; 7735 Candidate.IgnoreObjectArgument = false; 7736 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); 7737 7738 // Determine the implicit conversion sequences for each of the 7739 // arguments. 7740 Candidate.Viable = true; 7741 Candidate.ExplicitCallArguments = Args.size(); 7742 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7743 // C++ [over.match.oper]p4: 7744 // For the built-in assignment operators, conversions of the 7745 // left operand are restricted as follows: 7746 // -- no temporaries are introduced to hold the left operand, and 7747 // -- no user-defined conversions are applied to the left 7748 // operand to achieve a type match with the left-most 7749 // parameter of a built-in candidate. 7750 // 7751 // We block these conversions by turning off user-defined 7752 // conversions, since that is the only way that initialization of 7753 // a reference to a non-class type can occur from something that 7754 // is not of the same type. 7755 if (ArgIdx < NumContextualBoolArguments) { 7756 assert(ParamTys[ArgIdx] == Context.BoolTy && 7757 "Contextual conversion to bool requires bool type"); 7758 Candidate.Conversions[ArgIdx] 7759 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 7760 } else { 7761 Candidate.Conversions[ArgIdx] 7762 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 7763 ArgIdx == 0 && IsAssignmentOperator, 7764 /*InOverloadResolution=*/false, 7765 /*AllowObjCWritebackConversion=*/ 7766 getLangOpts().ObjCAutoRefCount); 7767 } 7768 if (Candidate.Conversions[ArgIdx].isBad()) { 7769 Candidate.Viable = false; 7770 Candidate.FailureKind = ovl_fail_bad_conversion; 7771 break; 7772 } 7773 } 7774 } 7775 7776 namespace { 7777 7778 /// BuiltinCandidateTypeSet - A set of types that will be used for the 7779 /// candidate operator functions for built-in operators (C++ 7780 /// [over.built]). The types are separated into pointer types and 7781 /// enumeration types. 7782 class BuiltinCandidateTypeSet { 7783 /// TypeSet - A set of types. 7784 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>, 7785 llvm::SmallPtrSet<QualType, 8>> TypeSet; 7786 7787 /// PointerTypes - The set of pointer types that will be used in the 7788 /// built-in candidates. 7789 TypeSet PointerTypes; 7790 7791 /// MemberPointerTypes - The set of member pointer types that will be 7792 /// used in the built-in candidates. 7793 TypeSet MemberPointerTypes; 7794 7795 /// EnumerationTypes - The set of enumeration types that will be 7796 /// used in the built-in candidates. 7797 TypeSet EnumerationTypes; 7798 7799 /// The set of vector types that will be used in the built-in 7800 /// candidates. 7801 TypeSet VectorTypes; 7802 7803 /// The set of matrix types that will be used in the built-in 7804 /// candidates. 7805 TypeSet MatrixTypes; 7806 7807 /// A flag indicating non-record types are viable candidates 7808 bool HasNonRecordTypes; 7809 7810 /// A flag indicating whether either arithmetic or enumeration types 7811 /// were present in the candidate set. 7812 bool HasArithmeticOrEnumeralTypes; 7813 7814 /// A flag indicating whether the nullptr type was present in the 7815 /// candidate set. 7816 bool HasNullPtrType; 7817 7818 /// Sema - The semantic analysis instance where we are building the 7819 /// candidate type set. 7820 Sema &SemaRef; 7821 7822 /// Context - The AST context in which we will build the type sets. 7823 ASTContext &Context; 7824 7825 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7826 const Qualifiers &VisibleQuals); 7827 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 7828 7829 public: 7830 /// iterator - Iterates through the types that are part of the set. 7831 typedef TypeSet::iterator iterator; 7832 7833 BuiltinCandidateTypeSet(Sema &SemaRef) 7834 : HasNonRecordTypes(false), 7835 HasArithmeticOrEnumeralTypes(false), 7836 HasNullPtrType(false), 7837 SemaRef(SemaRef), 7838 Context(SemaRef.Context) { } 7839 7840 void AddTypesConvertedFrom(QualType Ty, 7841 SourceLocation Loc, 7842 bool AllowUserConversions, 7843 bool AllowExplicitConversions, 7844 const Qualifiers &VisibleTypeConversionsQuals); 7845 7846 llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } 7847 llvm::iterator_range<iterator> member_pointer_types() { 7848 return MemberPointerTypes; 7849 } 7850 llvm::iterator_range<iterator> enumeration_types() { 7851 return EnumerationTypes; 7852 } 7853 llvm::iterator_range<iterator> vector_types() { return VectorTypes; } 7854 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } 7855 7856 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } 7857 bool hasNonRecordTypes() { return HasNonRecordTypes; } 7858 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 7859 bool hasNullPtrType() const { return HasNullPtrType; } 7860 }; 7861 7862 } // end anonymous namespace 7863 7864 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 7865 /// the set of pointer types along with any more-qualified variants of 7866 /// that type. For example, if @p Ty is "int const *", this routine 7867 /// will add "int const *", "int const volatile *", "int const 7868 /// restrict *", and "int const volatile restrict *" to the set of 7869 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7870 /// false otherwise. 7871 /// 7872 /// FIXME: what to do about extended qualifiers? 7873 bool 7874 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7875 const Qualifiers &VisibleQuals) { 7876 7877 // Insert this type. 7878 if (!PointerTypes.insert(Ty)) 7879 return false; 7880 7881 QualType PointeeTy; 7882 const PointerType *PointerTy = Ty->getAs<PointerType>(); 7883 bool buildObjCPtr = false; 7884 if (!PointerTy) { 7885 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); 7886 PointeeTy = PTy->getPointeeType(); 7887 buildObjCPtr = true; 7888 } else { 7889 PointeeTy = PointerTy->getPointeeType(); 7890 } 7891 7892 // Don't add qualified variants of arrays. For one, they're not allowed 7893 // (the qualifier would sink to the element type), and for another, the 7894 // only overload situation where it matters is subscript or pointer +- int, 7895 // and those shouldn't have qualifier variants anyway. 7896 if (PointeeTy->isArrayType()) 7897 return true; 7898 7899 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 7900 bool hasVolatile = VisibleQuals.hasVolatile(); 7901 bool hasRestrict = VisibleQuals.hasRestrict(); 7902 7903 // Iterate through all strict supersets of BaseCVR. 7904 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 7905 if ((CVR | BaseCVR) != CVR) continue; 7906 // Skip over volatile if no volatile found anywhere in the types. 7907 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 7908 7909 // Skip over restrict if no restrict found anywhere in the types, or if 7910 // the type cannot be restrict-qualified. 7911 if ((CVR & Qualifiers::Restrict) && 7912 (!hasRestrict || 7913 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) 7914 continue; 7915 7916 // Build qualified pointee type. 7917 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 7918 7919 // Build qualified pointer type. 7920 QualType QPointerTy; 7921 if (!buildObjCPtr) 7922 QPointerTy = Context.getPointerType(QPointeeTy); 7923 else 7924 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); 7925 7926 // Insert qualified pointer type. 7927 PointerTypes.insert(QPointerTy); 7928 } 7929 7930 return true; 7931 } 7932 7933 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 7934 /// to the set of pointer types along with any more-qualified variants of 7935 /// that type. For example, if @p Ty is "int const *", this routine 7936 /// will add "int const *", "int const volatile *", "int const 7937 /// restrict *", and "int const volatile restrict *" to the set of 7938 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7939 /// false otherwise. 7940 /// 7941 /// FIXME: what to do about extended qualifiers? 7942 bool 7943 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 7944 QualType Ty) { 7945 // Insert this type. 7946 if (!MemberPointerTypes.insert(Ty)) 7947 return false; 7948 7949 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 7950 assert(PointerTy && "type was not a member pointer type!"); 7951 7952 QualType PointeeTy = PointerTy->getPointeeType(); 7953 // Don't add qualified variants of arrays. For one, they're not allowed 7954 // (the qualifier would sink to the element type), and for another, the 7955 // only overload situation where it matters is subscript or pointer +- int, 7956 // and those shouldn't have qualifier variants anyway. 7957 if (PointeeTy->isArrayType()) 7958 return true; 7959 const Type *ClassTy = PointerTy->getClass(); 7960 7961 // Iterate through all strict supersets of the pointee type's CVR 7962 // qualifiers. 7963 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 7964 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 7965 if ((CVR | BaseCVR) != CVR) continue; 7966 7967 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 7968 MemberPointerTypes.insert( 7969 Context.getMemberPointerType(QPointeeTy, ClassTy)); 7970 } 7971 7972 return true; 7973 } 7974 7975 /// AddTypesConvertedFrom - Add each of the types to which the type @p 7976 /// Ty can be implicit converted to the given set of @p Types. We're 7977 /// primarily interested in pointer types and enumeration types. We also 7978 /// take member pointer types, for the conditional operator. 7979 /// AllowUserConversions is true if we should look at the conversion 7980 /// functions of a class type, and AllowExplicitConversions if we 7981 /// should also include the explicit conversion functions of a class 7982 /// type. 7983 void 7984 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 7985 SourceLocation Loc, 7986 bool AllowUserConversions, 7987 bool AllowExplicitConversions, 7988 const Qualifiers &VisibleQuals) { 7989 // Only deal with canonical types. 7990 Ty = Context.getCanonicalType(Ty); 7991 7992 // Look through reference types; they aren't part of the type of an 7993 // expression for the purposes of conversions. 7994 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 7995 Ty = RefTy->getPointeeType(); 7996 7997 // If we're dealing with an array type, decay to the pointer. 7998 if (Ty->isArrayType()) 7999 Ty = SemaRef.Context.getArrayDecayedType(Ty); 8000 8001 // Otherwise, we don't care about qualifiers on the type. 8002 Ty = Ty.getLocalUnqualifiedType(); 8003 8004 // Flag if we ever add a non-record type. 8005 const RecordType *TyRec = Ty->getAs<RecordType>(); 8006 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 8007 8008 // Flag if we encounter an arithmetic type. 8009 HasArithmeticOrEnumeralTypes = 8010 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 8011 8012 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 8013 PointerTypes.insert(Ty); 8014 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 8015 // Insert our type, and its more-qualified variants, into the set 8016 // of types. 8017 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 8018 return; 8019 } else if (Ty->isMemberPointerType()) { 8020 // Member pointers are far easier, since the pointee can't be converted. 8021 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 8022 return; 8023 } else if (Ty->isEnumeralType()) { 8024 HasArithmeticOrEnumeralTypes = true; 8025 EnumerationTypes.insert(Ty); 8026 } else if (Ty->isVectorType()) { 8027 // We treat vector types as arithmetic types in many contexts as an 8028 // extension. 8029 HasArithmeticOrEnumeralTypes = true; 8030 VectorTypes.insert(Ty); 8031 } else if (Ty->isMatrixType()) { 8032 // Similar to vector types, we treat vector types as arithmetic types in 8033 // many contexts as an extension. 8034 HasArithmeticOrEnumeralTypes = true; 8035 MatrixTypes.insert(Ty); 8036 } else if (Ty->isNullPtrType()) { 8037 HasNullPtrType = true; 8038 } else if (AllowUserConversions && TyRec) { 8039 // No conversion functions in incomplete types. 8040 if (!SemaRef.isCompleteType(Loc, Ty)) 8041 return; 8042 8043 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8044 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8045 if (isa<UsingShadowDecl>(D)) 8046 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8047 8048 // Skip conversion function templates; they don't tell us anything 8049 // about which builtin types we can convert to. 8050 if (isa<FunctionTemplateDecl>(D)) 8051 continue; 8052 8053 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 8054 if (AllowExplicitConversions || !Conv->isExplicit()) { 8055 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 8056 VisibleQuals); 8057 } 8058 } 8059 } 8060 } 8061 /// Helper function for adjusting address spaces for the pointer or reference 8062 /// operands of builtin operators depending on the argument. 8063 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, 8064 Expr *Arg) { 8065 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); 8066 } 8067 8068 /// Helper function for AddBuiltinOperatorCandidates() that adds 8069 /// the volatile- and non-volatile-qualified assignment operators for the 8070 /// given type to the candidate set. 8071 static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 8072 QualType T, 8073 ArrayRef<Expr *> Args, 8074 OverloadCandidateSet &CandidateSet) { 8075 QualType ParamTypes[2]; 8076 8077 // T& operator=(T&, T) 8078 ParamTypes[0] = S.Context.getLValueReferenceType( 8079 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); 8080 ParamTypes[1] = T; 8081 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8082 /*IsAssignmentOperator=*/true); 8083 8084 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 8085 // volatile T& operator=(volatile T&, T) 8086 ParamTypes[0] = S.Context.getLValueReferenceType( 8087 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), 8088 Args[0])); 8089 ParamTypes[1] = T; 8090 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8091 /*IsAssignmentOperator=*/true); 8092 } 8093 } 8094 8095 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 8096 /// if any, found in visible type conversion functions found in ArgExpr's type. 8097 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 8098 Qualifiers VRQuals; 8099 const RecordType *TyRec; 8100 if (const MemberPointerType *RHSMPType = 8101 ArgExpr->getType()->getAs<MemberPointerType>()) 8102 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 8103 else 8104 TyRec = ArgExpr->getType()->getAs<RecordType>(); 8105 if (!TyRec) { 8106 // Just to be safe, assume the worst case. 8107 VRQuals.addVolatile(); 8108 VRQuals.addRestrict(); 8109 return VRQuals; 8110 } 8111 8112 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8113 if (!ClassDecl->hasDefinition()) 8114 return VRQuals; 8115 8116 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8117 if (isa<UsingShadowDecl>(D)) 8118 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8119 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 8120 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 8121 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 8122 CanTy = ResTypeRef->getPointeeType(); 8123 // Need to go down the pointer/mempointer chain and add qualifiers 8124 // as see them. 8125 bool done = false; 8126 while (!done) { 8127 if (CanTy.isRestrictQualified()) 8128 VRQuals.addRestrict(); 8129 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 8130 CanTy = ResTypePtr->getPointeeType(); 8131 else if (const MemberPointerType *ResTypeMPtr = 8132 CanTy->getAs<MemberPointerType>()) 8133 CanTy = ResTypeMPtr->getPointeeType(); 8134 else 8135 done = true; 8136 if (CanTy.isVolatileQualified()) 8137 VRQuals.addVolatile(); 8138 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 8139 return VRQuals; 8140 } 8141 } 8142 } 8143 return VRQuals; 8144 } 8145 8146 namespace { 8147 8148 /// Helper class to manage the addition of builtin operator overload 8149 /// candidates. It provides shared state and utility methods used throughout 8150 /// the process, as well as a helper method to add each group of builtin 8151 /// operator overloads from the standard to a candidate set. 8152 class BuiltinOperatorOverloadBuilder { 8153 // Common instance state available to all overload candidate addition methods. 8154 Sema &S; 8155 ArrayRef<Expr *> Args; 8156 Qualifiers VisibleTypeConversionsQuals; 8157 bool HasArithmeticOrEnumeralCandidateType; 8158 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 8159 OverloadCandidateSet &CandidateSet; 8160 8161 static constexpr int ArithmeticTypesCap = 24; 8162 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; 8163 8164 // Define some indices used to iterate over the arithmetic types in 8165 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic 8166 // types are that preserved by promotion (C++ [over.built]p2). 8167 unsigned FirstIntegralType, 8168 LastIntegralType; 8169 unsigned FirstPromotedIntegralType, 8170 LastPromotedIntegralType; 8171 unsigned FirstPromotedArithmeticType, 8172 LastPromotedArithmeticType; 8173 unsigned NumArithmeticTypes; 8174 8175 void InitArithmeticTypes() { 8176 // Start of promoted types. 8177 FirstPromotedArithmeticType = 0; 8178 ArithmeticTypes.push_back(S.Context.FloatTy); 8179 ArithmeticTypes.push_back(S.Context.DoubleTy); 8180 ArithmeticTypes.push_back(S.Context.LongDoubleTy); 8181 if (S.Context.getTargetInfo().hasFloat128Type()) 8182 ArithmeticTypes.push_back(S.Context.Float128Ty); 8183 8184 // Start of integral types. 8185 FirstIntegralType = ArithmeticTypes.size(); 8186 FirstPromotedIntegralType = ArithmeticTypes.size(); 8187 ArithmeticTypes.push_back(S.Context.IntTy); 8188 ArithmeticTypes.push_back(S.Context.LongTy); 8189 ArithmeticTypes.push_back(S.Context.LongLongTy); 8190 if (S.Context.getTargetInfo().hasInt128Type() || 8191 (S.Context.getAuxTargetInfo() && 8192 S.Context.getAuxTargetInfo()->hasInt128Type())) 8193 ArithmeticTypes.push_back(S.Context.Int128Ty); 8194 ArithmeticTypes.push_back(S.Context.UnsignedIntTy); 8195 ArithmeticTypes.push_back(S.Context.UnsignedLongTy); 8196 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); 8197 if (S.Context.getTargetInfo().hasInt128Type() || 8198 (S.Context.getAuxTargetInfo() && 8199 S.Context.getAuxTargetInfo()->hasInt128Type())) 8200 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); 8201 LastPromotedIntegralType = ArithmeticTypes.size(); 8202 LastPromotedArithmeticType = ArithmeticTypes.size(); 8203 // End of promoted types. 8204 8205 ArithmeticTypes.push_back(S.Context.BoolTy); 8206 ArithmeticTypes.push_back(S.Context.CharTy); 8207 ArithmeticTypes.push_back(S.Context.WCharTy); 8208 if (S.Context.getLangOpts().Char8) 8209 ArithmeticTypes.push_back(S.Context.Char8Ty); 8210 ArithmeticTypes.push_back(S.Context.Char16Ty); 8211 ArithmeticTypes.push_back(S.Context.Char32Ty); 8212 ArithmeticTypes.push_back(S.Context.SignedCharTy); 8213 ArithmeticTypes.push_back(S.Context.ShortTy); 8214 ArithmeticTypes.push_back(S.Context.UnsignedCharTy); 8215 ArithmeticTypes.push_back(S.Context.UnsignedShortTy); 8216 LastIntegralType = ArithmeticTypes.size(); 8217 NumArithmeticTypes = ArithmeticTypes.size(); 8218 // End of integral types. 8219 // FIXME: What about complex? What about half? 8220 8221 assert(ArithmeticTypes.size() <= ArithmeticTypesCap && 8222 "Enough inline storage for all arithmetic types."); 8223 } 8224 8225 /// Helper method to factor out the common pattern of adding overloads 8226 /// for '++' and '--' builtin operators. 8227 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 8228 bool HasVolatile, 8229 bool HasRestrict) { 8230 QualType ParamTypes[2] = { 8231 S.Context.getLValueReferenceType(CandidateTy), 8232 S.Context.IntTy 8233 }; 8234 8235 // Non-volatile version. 8236 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8237 8238 // Use a heuristic to reduce number of builtin candidates in the set: 8239 // add volatile version only if there are conversions to a volatile type. 8240 if (HasVolatile) { 8241 ParamTypes[0] = 8242 S.Context.getLValueReferenceType( 8243 S.Context.getVolatileType(CandidateTy)); 8244 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8245 } 8246 8247 // Add restrict version only if there are conversions to a restrict type 8248 // and our candidate type is a non-restrict-qualified pointer. 8249 if (HasRestrict && CandidateTy->isAnyPointerType() && 8250 !CandidateTy.isRestrictQualified()) { 8251 ParamTypes[0] 8252 = S.Context.getLValueReferenceType( 8253 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); 8254 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8255 8256 if (HasVolatile) { 8257 ParamTypes[0] 8258 = S.Context.getLValueReferenceType( 8259 S.Context.getCVRQualifiedType(CandidateTy, 8260 (Qualifiers::Volatile | 8261 Qualifiers::Restrict))); 8262 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8263 } 8264 } 8265 8266 } 8267 8268 /// Helper to add an overload candidate for a binary builtin with types \p L 8269 /// and \p R. 8270 void AddCandidate(QualType L, QualType R) { 8271 QualType LandR[2] = {L, R}; 8272 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8273 } 8274 8275 public: 8276 BuiltinOperatorOverloadBuilder( 8277 Sema &S, ArrayRef<Expr *> Args, 8278 Qualifiers VisibleTypeConversionsQuals, 8279 bool HasArithmeticOrEnumeralCandidateType, 8280 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 8281 OverloadCandidateSet &CandidateSet) 8282 : S(S), Args(Args), 8283 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 8284 HasArithmeticOrEnumeralCandidateType( 8285 HasArithmeticOrEnumeralCandidateType), 8286 CandidateTypes(CandidateTypes), 8287 CandidateSet(CandidateSet) { 8288 8289 InitArithmeticTypes(); 8290 } 8291 8292 // Increment is deprecated for bool since C++17. 8293 // 8294 // C++ [over.built]p3: 8295 // 8296 // For every pair (T, VQ), where T is an arithmetic type other 8297 // than bool, and VQ is either volatile or empty, there exist 8298 // candidate operator functions of the form 8299 // 8300 // VQ T& operator++(VQ T&); 8301 // T operator++(VQ T&, int); 8302 // 8303 // C++ [over.built]p4: 8304 // 8305 // For every pair (T, VQ), where T is an arithmetic type other 8306 // than bool, and VQ is either volatile or empty, there exist 8307 // candidate operator functions of the form 8308 // 8309 // VQ T& operator--(VQ T&); 8310 // T operator--(VQ T&, int); 8311 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 8312 if (!HasArithmeticOrEnumeralCandidateType) 8313 return; 8314 8315 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { 8316 const auto TypeOfT = ArithmeticTypes[Arith]; 8317 if (TypeOfT == S.Context.BoolTy) { 8318 if (Op == OO_MinusMinus) 8319 continue; 8320 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) 8321 continue; 8322 } 8323 addPlusPlusMinusMinusStyleOverloads( 8324 TypeOfT, 8325 VisibleTypeConversionsQuals.hasVolatile(), 8326 VisibleTypeConversionsQuals.hasRestrict()); 8327 } 8328 } 8329 8330 // C++ [over.built]p5: 8331 // 8332 // For every pair (T, VQ), where T is a cv-qualified or 8333 // cv-unqualified object type, and VQ is either volatile or 8334 // empty, there exist candidate operator functions of the form 8335 // 8336 // T*VQ& operator++(T*VQ&); 8337 // T*VQ& operator--(T*VQ&); 8338 // T* operator++(T*VQ&, int); 8339 // T* operator--(T*VQ&, int); 8340 void addPlusPlusMinusMinusPointerOverloads() { 8341 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8342 // Skip pointer types that aren't pointers to object types. 8343 if (!PtrTy->getPointeeType()->isObjectType()) 8344 continue; 8345 8346 addPlusPlusMinusMinusStyleOverloads( 8347 PtrTy, 8348 (!PtrTy.isVolatileQualified() && 8349 VisibleTypeConversionsQuals.hasVolatile()), 8350 (!PtrTy.isRestrictQualified() && 8351 VisibleTypeConversionsQuals.hasRestrict())); 8352 } 8353 } 8354 8355 // C++ [over.built]p6: 8356 // For every cv-qualified or cv-unqualified object type T, there 8357 // exist candidate operator functions of the form 8358 // 8359 // T& operator*(T*); 8360 // 8361 // C++ [over.built]p7: 8362 // For every function type T that does not have cv-qualifiers or a 8363 // ref-qualifier, there exist candidate operator functions of the form 8364 // T& operator*(T*); 8365 void addUnaryStarPointerOverloads() { 8366 for (QualType ParamTy : CandidateTypes[0].pointer_types()) { 8367 QualType PointeeTy = ParamTy->getPointeeType(); 8368 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 8369 continue; 8370 8371 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 8372 if (Proto->getMethodQuals() || Proto->getRefQualifier()) 8373 continue; 8374 8375 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8376 } 8377 } 8378 8379 // C++ [over.built]p9: 8380 // For every promoted arithmetic type T, there exist candidate 8381 // operator functions of the form 8382 // 8383 // T operator+(T); 8384 // T operator-(T); 8385 void addUnaryPlusOrMinusArithmeticOverloads() { 8386 if (!HasArithmeticOrEnumeralCandidateType) 8387 return; 8388 8389 for (unsigned Arith = FirstPromotedArithmeticType; 8390 Arith < LastPromotedArithmeticType; ++Arith) { 8391 QualType ArithTy = ArithmeticTypes[Arith]; 8392 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); 8393 } 8394 8395 // Extension: We also add these operators for vector types. 8396 for (QualType VecTy : CandidateTypes[0].vector_types()) 8397 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8398 } 8399 8400 // C++ [over.built]p8: 8401 // For every type T, there exist candidate operator functions of 8402 // the form 8403 // 8404 // T* operator+(T*); 8405 void addUnaryPlusPointerOverloads() { 8406 for (QualType ParamTy : CandidateTypes[0].pointer_types()) 8407 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8408 } 8409 8410 // C++ [over.built]p10: 8411 // For every promoted integral type T, there exist candidate 8412 // operator functions of the form 8413 // 8414 // T operator~(T); 8415 void addUnaryTildePromotedIntegralOverloads() { 8416 if (!HasArithmeticOrEnumeralCandidateType) 8417 return; 8418 8419 for (unsigned Int = FirstPromotedIntegralType; 8420 Int < LastPromotedIntegralType; ++Int) { 8421 QualType IntTy = ArithmeticTypes[Int]; 8422 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); 8423 } 8424 8425 // Extension: We also add this operator for vector types. 8426 for (QualType VecTy : CandidateTypes[0].vector_types()) 8427 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8428 } 8429 8430 // C++ [over.match.oper]p16: 8431 // For every pointer to member type T or type std::nullptr_t, there 8432 // exist candidate operator functions of the form 8433 // 8434 // bool operator==(T,T); 8435 // bool operator!=(T,T); 8436 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { 8437 /// Set of (canonical) types that we've already handled. 8438 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8439 8440 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8441 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8442 // Don't add the same builtin candidate twice. 8443 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8444 continue; 8445 8446 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 8447 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8448 } 8449 8450 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 8451 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 8452 if (AddedTypes.insert(NullPtrTy).second) { 8453 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 8454 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8455 } 8456 } 8457 } 8458 } 8459 8460 // C++ [over.built]p15: 8461 // 8462 // For every T, where T is an enumeration type or a pointer type, 8463 // there exist candidate operator functions of the form 8464 // 8465 // bool operator<(T, T); 8466 // bool operator>(T, T); 8467 // bool operator<=(T, T); 8468 // bool operator>=(T, T); 8469 // bool operator==(T, T); 8470 // bool operator!=(T, T); 8471 // R operator<=>(T, T) 8472 void addGenericBinaryPointerOrEnumeralOverloads() { 8473 // C++ [over.match.oper]p3: 8474 // [...]the built-in candidates include all of the candidate operator 8475 // functions defined in 13.6 that, compared to the given operator, [...] 8476 // do not have the same parameter-type-list as any non-template non-member 8477 // candidate. 8478 // 8479 // Note that in practice, this only affects enumeration types because there 8480 // aren't any built-in candidates of record type, and a user-defined operator 8481 // must have an operand of record or enumeration type. Also, the only other 8482 // overloaded operator with enumeration arguments, operator=, 8483 // cannot be overloaded for enumeration types, so this is the only place 8484 // where we must suppress candidates like this. 8485 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 8486 UserDefinedBinaryOperators; 8487 8488 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8489 if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { 8490 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 8491 CEnd = CandidateSet.end(); 8492 C != CEnd; ++C) { 8493 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 8494 continue; 8495 8496 if (C->Function->isFunctionTemplateSpecialization()) 8497 continue; 8498 8499 // We interpret "same parameter-type-list" as applying to the 8500 // "synthesized candidate, with the order of the two parameters 8501 // reversed", not to the original function. 8502 bool Reversed = C->isReversed(); 8503 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) 8504 ->getType() 8505 .getUnqualifiedType(); 8506 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) 8507 ->getType() 8508 .getUnqualifiedType(); 8509 8510 // Skip if either parameter isn't of enumeral type. 8511 if (!FirstParamType->isEnumeralType() || 8512 !SecondParamType->isEnumeralType()) 8513 continue; 8514 8515 // Add this operator to the set of known user-defined operators. 8516 UserDefinedBinaryOperators.insert( 8517 std::make_pair(S.Context.getCanonicalType(FirstParamType), 8518 S.Context.getCanonicalType(SecondParamType))); 8519 } 8520 } 8521 } 8522 8523 /// Set of (canonical) types that we've already handled. 8524 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8525 8526 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8527 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 8528 // Don't add the same builtin candidate twice. 8529 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8530 continue; 8531 8532 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8533 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8534 } 8535 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8536 CanQualType CanonType = S.Context.getCanonicalType(EnumTy); 8537 8538 // Don't add the same builtin candidate twice, or if a user defined 8539 // candidate exists. 8540 if (!AddedTypes.insert(CanonType).second || 8541 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 8542 CanonType))) 8543 continue; 8544 QualType ParamTypes[2] = {EnumTy, EnumTy}; 8545 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8546 } 8547 } 8548 } 8549 8550 // C++ [over.built]p13: 8551 // 8552 // For every cv-qualified or cv-unqualified object type T 8553 // there exist candidate operator functions of the form 8554 // 8555 // T* operator+(T*, ptrdiff_t); 8556 // T& operator[](T*, ptrdiff_t); [BELOW] 8557 // T* operator-(T*, ptrdiff_t); 8558 // T* operator+(ptrdiff_t, T*); 8559 // T& operator[](ptrdiff_t, T*); [BELOW] 8560 // 8561 // C++ [over.built]p14: 8562 // 8563 // For every T, where T is a pointer to object type, there 8564 // exist candidate operator functions of the form 8565 // 8566 // ptrdiff_t operator-(T, T); 8567 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 8568 /// Set of (canonical) types that we've already handled. 8569 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8570 8571 for (int Arg = 0; Arg < 2; ++Arg) { 8572 QualType AsymmetricParamTypes[2] = { 8573 S.Context.getPointerDiffType(), 8574 S.Context.getPointerDiffType(), 8575 }; 8576 for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { 8577 QualType PointeeTy = PtrTy->getPointeeType(); 8578 if (!PointeeTy->isObjectType()) 8579 continue; 8580 8581 AsymmetricParamTypes[Arg] = PtrTy; 8582 if (Arg == 0 || Op == OO_Plus) { 8583 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 8584 // T* operator+(ptrdiff_t, T*); 8585 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); 8586 } 8587 if (Op == OO_Minus) { 8588 // ptrdiff_t operator-(T, T); 8589 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8590 continue; 8591 8592 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8593 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8594 } 8595 } 8596 } 8597 } 8598 8599 // C++ [over.built]p12: 8600 // 8601 // For every pair of promoted arithmetic types L and R, there 8602 // exist candidate operator functions of the form 8603 // 8604 // LR operator*(L, R); 8605 // LR operator/(L, R); 8606 // LR operator+(L, R); 8607 // LR operator-(L, R); 8608 // bool operator<(L, R); 8609 // bool operator>(L, R); 8610 // bool operator<=(L, R); 8611 // bool operator>=(L, R); 8612 // bool operator==(L, R); 8613 // bool operator!=(L, R); 8614 // 8615 // where LR is the result of the usual arithmetic conversions 8616 // between types L and R. 8617 // 8618 // C++ [over.built]p24: 8619 // 8620 // For every pair of promoted arithmetic types L and R, there exist 8621 // candidate operator functions of the form 8622 // 8623 // LR operator?(bool, L, R); 8624 // 8625 // where LR is the result of the usual arithmetic conversions 8626 // between types L and R. 8627 // Our candidates ignore the first parameter. 8628 void addGenericBinaryArithmeticOverloads() { 8629 if (!HasArithmeticOrEnumeralCandidateType) 8630 return; 8631 8632 for (unsigned Left = FirstPromotedArithmeticType; 8633 Left < LastPromotedArithmeticType; ++Left) { 8634 for (unsigned Right = FirstPromotedArithmeticType; 8635 Right < LastPromotedArithmeticType; ++Right) { 8636 QualType LandR[2] = { ArithmeticTypes[Left], 8637 ArithmeticTypes[Right] }; 8638 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8639 } 8640 } 8641 8642 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 8643 // conditional operator for vector types. 8644 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8645 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { 8646 QualType LandR[2] = {Vec1Ty, Vec2Ty}; 8647 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8648 } 8649 } 8650 8651 /// Add binary operator overloads for each candidate matrix type M1, M2: 8652 /// * (M1, M1) -> M1 8653 /// * (M1, M1.getElementType()) -> M1 8654 /// * (M2.getElementType(), M2) -> M2 8655 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. 8656 void addMatrixBinaryArithmeticOverloads() { 8657 if (!HasArithmeticOrEnumeralCandidateType) 8658 return; 8659 8660 for (QualType M1 : CandidateTypes[0].matrix_types()) { 8661 AddCandidate(M1, cast<MatrixType>(M1)->getElementType()); 8662 AddCandidate(M1, M1); 8663 } 8664 8665 for (QualType M2 : CandidateTypes[1].matrix_types()) { 8666 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2); 8667 if (!CandidateTypes[0].containsMatrixType(M2)) 8668 AddCandidate(M2, M2); 8669 } 8670 } 8671 8672 // C++2a [over.built]p14: 8673 // 8674 // For every integral type T there exists a candidate operator function 8675 // of the form 8676 // 8677 // std::strong_ordering operator<=>(T, T) 8678 // 8679 // C++2a [over.built]p15: 8680 // 8681 // For every pair of floating-point types L and R, there exists a candidate 8682 // operator function of the form 8683 // 8684 // std::partial_ordering operator<=>(L, R); 8685 // 8686 // FIXME: The current specification for integral types doesn't play nice with 8687 // the direction of p0946r0, which allows mixed integral and unscoped-enum 8688 // comparisons. Under the current spec this can lead to ambiguity during 8689 // overload resolution. For example: 8690 // 8691 // enum A : int {a}; 8692 // auto x = (a <=> (long)42); 8693 // 8694 // error: call is ambiguous for arguments 'A' and 'long'. 8695 // note: candidate operator<=>(int, int) 8696 // note: candidate operator<=>(long, long) 8697 // 8698 // To avoid this error, this function deviates from the specification and adds 8699 // the mixed overloads `operator<=>(L, R)` where L and R are promoted 8700 // arithmetic types (the same as the generic relational overloads). 8701 // 8702 // For now this function acts as a placeholder. 8703 void addThreeWayArithmeticOverloads() { 8704 addGenericBinaryArithmeticOverloads(); 8705 } 8706 8707 // C++ [over.built]p17: 8708 // 8709 // For every pair of promoted integral types L and R, there 8710 // exist candidate operator functions of the form 8711 // 8712 // LR operator%(L, R); 8713 // LR operator&(L, R); 8714 // LR operator^(L, R); 8715 // LR operator|(L, R); 8716 // L operator<<(L, R); 8717 // L operator>>(L, R); 8718 // 8719 // where LR is the result of the usual arithmetic conversions 8720 // between types L and R. 8721 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 8722 if (!HasArithmeticOrEnumeralCandidateType) 8723 return; 8724 8725 for (unsigned Left = FirstPromotedIntegralType; 8726 Left < LastPromotedIntegralType; ++Left) { 8727 for (unsigned Right = FirstPromotedIntegralType; 8728 Right < LastPromotedIntegralType; ++Right) { 8729 QualType LandR[2] = { ArithmeticTypes[Left], 8730 ArithmeticTypes[Right] }; 8731 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8732 } 8733 } 8734 } 8735 8736 // C++ [over.built]p20: 8737 // 8738 // For every pair (T, VQ), where T is an enumeration or 8739 // pointer to member type and VQ is either volatile or 8740 // empty, there exist candidate operator functions of the form 8741 // 8742 // VQ T& operator=(VQ T&, T); 8743 void addAssignmentMemberPointerOrEnumeralOverloads() { 8744 /// Set of (canonical) types that we've already handled. 8745 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8746 8747 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 8748 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8749 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 8750 continue; 8751 8752 AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); 8753 } 8754 8755 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8756 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8757 continue; 8758 8759 AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); 8760 } 8761 } 8762 } 8763 8764 // C++ [over.built]p19: 8765 // 8766 // For every pair (T, VQ), where T is any type and VQ is either 8767 // volatile or empty, there exist candidate operator functions 8768 // of the form 8769 // 8770 // T*VQ& operator=(T*VQ&, T*); 8771 // 8772 // C++ [over.built]p21: 8773 // 8774 // For every pair (T, VQ), where T is a cv-qualified or 8775 // cv-unqualified object type and VQ is either volatile or 8776 // empty, there exist candidate operator functions of the form 8777 // 8778 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 8779 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 8780 void addAssignmentPointerOverloads(bool isEqualOp) { 8781 /// Set of (canonical) types that we've already handled. 8782 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8783 8784 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8785 // If this is operator=, keep track of the builtin candidates we added. 8786 if (isEqualOp) 8787 AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); 8788 else if (!PtrTy->getPointeeType()->isObjectType()) 8789 continue; 8790 8791 // non-volatile version 8792 QualType ParamTypes[2] = { 8793 S.Context.getLValueReferenceType(PtrTy), 8794 isEqualOp ? PtrTy : S.Context.getPointerDiffType(), 8795 }; 8796 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8797 /*IsAssignmentOperator=*/ isEqualOp); 8798 8799 bool NeedVolatile = !PtrTy.isVolatileQualified() && 8800 VisibleTypeConversionsQuals.hasVolatile(); 8801 if (NeedVolatile) { 8802 // volatile version 8803 ParamTypes[0] = 8804 S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); 8805 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8806 /*IsAssignmentOperator=*/isEqualOp); 8807 } 8808 8809 if (!PtrTy.isRestrictQualified() && 8810 VisibleTypeConversionsQuals.hasRestrict()) { 8811 // restrict version 8812 ParamTypes[0] = 8813 S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); 8814 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8815 /*IsAssignmentOperator=*/isEqualOp); 8816 8817 if (NeedVolatile) { 8818 // volatile restrict version 8819 ParamTypes[0] = 8820 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 8821 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 8822 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8823 /*IsAssignmentOperator=*/isEqualOp); 8824 } 8825 } 8826 } 8827 8828 if (isEqualOp) { 8829 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 8830 // Make sure we don't add the same candidate twice. 8831 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8832 continue; 8833 8834 QualType ParamTypes[2] = { 8835 S.Context.getLValueReferenceType(PtrTy), 8836 PtrTy, 8837 }; 8838 8839 // non-volatile version 8840 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8841 /*IsAssignmentOperator=*/true); 8842 8843 bool NeedVolatile = !PtrTy.isVolatileQualified() && 8844 VisibleTypeConversionsQuals.hasVolatile(); 8845 if (NeedVolatile) { 8846 // volatile version 8847 ParamTypes[0] = S.Context.getLValueReferenceType( 8848 S.Context.getVolatileType(PtrTy)); 8849 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8850 /*IsAssignmentOperator=*/true); 8851 } 8852 8853 if (!PtrTy.isRestrictQualified() && 8854 VisibleTypeConversionsQuals.hasRestrict()) { 8855 // restrict version 8856 ParamTypes[0] = S.Context.getLValueReferenceType( 8857 S.Context.getRestrictType(PtrTy)); 8858 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8859 /*IsAssignmentOperator=*/true); 8860 8861 if (NeedVolatile) { 8862 // volatile restrict version 8863 ParamTypes[0] = 8864 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 8865 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 8866 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8867 /*IsAssignmentOperator=*/true); 8868 } 8869 } 8870 } 8871 } 8872 } 8873 8874 // C++ [over.built]p18: 8875 // 8876 // For every triple (L, VQ, R), where L is an arithmetic type, 8877 // VQ is either volatile or empty, and R is a promoted 8878 // arithmetic type, there exist candidate operator functions of 8879 // the form 8880 // 8881 // VQ L& operator=(VQ L&, R); 8882 // VQ L& operator*=(VQ L&, R); 8883 // VQ L& operator/=(VQ L&, R); 8884 // VQ L& operator+=(VQ L&, R); 8885 // VQ L& operator-=(VQ L&, R); 8886 void addAssignmentArithmeticOverloads(bool isEqualOp) { 8887 if (!HasArithmeticOrEnumeralCandidateType) 8888 return; 8889 8890 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 8891 for (unsigned Right = FirstPromotedArithmeticType; 8892 Right < LastPromotedArithmeticType; ++Right) { 8893 QualType ParamTypes[2]; 8894 ParamTypes[1] = ArithmeticTypes[Right]; 8895 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 8896 S, ArithmeticTypes[Left], Args[0]); 8897 // Add this built-in operator as a candidate (VQ is empty). 8898 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); 8899 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8900 /*IsAssignmentOperator=*/isEqualOp); 8901 8902 // Add this built-in operator as a candidate (VQ is 'volatile'). 8903 if (VisibleTypeConversionsQuals.hasVolatile()) { 8904 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy); 8905 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8906 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8907 /*IsAssignmentOperator=*/isEqualOp); 8908 } 8909 } 8910 } 8911 8912 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 8913 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8914 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { 8915 QualType ParamTypes[2]; 8916 ParamTypes[1] = Vec2Ty; 8917 // Add this built-in operator as a candidate (VQ is empty). 8918 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); 8919 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8920 /*IsAssignmentOperator=*/isEqualOp); 8921 8922 // Add this built-in operator as a candidate (VQ is 'volatile'). 8923 if (VisibleTypeConversionsQuals.hasVolatile()) { 8924 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); 8925 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8926 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8927 /*IsAssignmentOperator=*/isEqualOp); 8928 } 8929 } 8930 } 8931 8932 // C++ [over.built]p22: 8933 // 8934 // For every triple (L, VQ, R), where L is an integral type, VQ 8935 // is either volatile or empty, and R is a promoted integral 8936 // type, there exist candidate operator functions of the form 8937 // 8938 // VQ L& operator%=(VQ L&, R); 8939 // VQ L& operator<<=(VQ L&, R); 8940 // VQ L& operator>>=(VQ L&, R); 8941 // VQ L& operator&=(VQ L&, R); 8942 // VQ L& operator^=(VQ L&, R); 8943 // VQ L& operator|=(VQ L&, R); 8944 void addAssignmentIntegralOverloads() { 8945 if (!HasArithmeticOrEnumeralCandidateType) 8946 return; 8947 8948 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 8949 for (unsigned Right = FirstPromotedIntegralType; 8950 Right < LastPromotedIntegralType; ++Right) { 8951 QualType ParamTypes[2]; 8952 ParamTypes[1] = ArithmeticTypes[Right]; 8953 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 8954 S, ArithmeticTypes[Left], Args[0]); 8955 // Add this built-in operator as a candidate (VQ is empty). 8956 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); 8957 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8958 if (VisibleTypeConversionsQuals.hasVolatile()) { 8959 // Add this built-in operator as a candidate (VQ is 'volatile'). 8960 ParamTypes[0] = LeftBaseTy; 8961 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 8962 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8963 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8964 } 8965 } 8966 } 8967 } 8968 8969 // C++ [over.operator]p23: 8970 // 8971 // There also exist candidate operator functions of the form 8972 // 8973 // bool operator!(bool); 8974 // bool operator&&(bool, bool); 8975 // bool operator||(bool, bool); 8976 void addExclaimOverload() { 8977 QualType ParamTy = S.Context.BoolTy; 8978 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, 8979 /*IsAssignmentOperator=*/false, 8980 /*NumContextualBoolArguments=*/1); 8981 } 8982 void addAmpAmpOrPipePipeOverload() { 8983 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 8984 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8985 /*IsAssignmentOperator=*/false, 8986 /*NumContextualBoolArguments=*/2); 8987 } 8988 8989 // C++ [over.built]p13: 8990 // 8991 // For every cv-qualified or cv-unqualified object type T there 8992 // exist candidate operator functions of the form 8993 // 8994 // T* operator+(T*, ptrdiff_t); [ABOVE] 8995 // T& operator[](T*, ptrdiff_t); 8996 // T* operator-(T*, ptrdiff_t); [ABOVE] 8997 // T* operator+(ptrdiff_t, T*); [ABOVE] 8998 // T& operator[](ptrdiff_t, T*); 8999 void addSubscriptOverloads() { 9000 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9001 QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; 9002 QualType PointeeType = PtrTy->getPointeeType(); 9003 if (!PointeeType->isObjectType()) 9004 continue; 9005 9006 // T& operator[](T*, ptrdiff_t) 9007 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9008 } 9009 9010 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 9011 QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; 9012 QualType PointeeType = PtrTy->getPointeeType(); 9013 if (!PointeeType->isObjectType()) 9014 continue; 9015 9016 // T& operator[](ptrdiff_t, T*) 9017 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9018 } 9019 } 9020 9021 // C++ [over.built]p11: 9022 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 9023 // C1 is the same type as C2 or is a derived class of C2, T is an object 9024 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 9025 // there exist candidate operator functions of the form 9026 // 9027 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 9028 // 9029 // where CV12 is the union of CV1 and CV2. 9030 void addArrowStarOverloads() { 9031 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9032 QualType C1Ty = PtrTy; 9033 QualType C1; 9034 QualifierCollector Q1; 9035 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 9036 if (!isa<RecordType>(C1)) 9037 continue; 9038 // heuristic to reduce number of builtin candidates in the set. 9039 // Add volatile/restrict version only if there are conversions to a 9040 // volatile/restrict type. 9041 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 9042 continue; 9043 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 9044 continue; 9045 for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { 9046 const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy); 9047 QualType C2 = QualType(mptr->getClass(), 0); 9048 C2 = C2.getUnqualifiedType(); 9049 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) 9050 break; 9051 QualType ParamTypes[2] = {PtrTy, MemPtrTy}; 9052 // build CV12 T& 9053 QualType T = mptr->getPointeeType(); 9054 if (!VisibleTypeConversionsQuals.hasVolatile() && 9055 T.isVolatileQualified()) 9056 continue; 9057 if (!VisibleTypeConversionsQuals.hasRestrict() && 9058 T.isRestrictQualified()) 9059 continue; 9060 T = Q1.apply(S.Context, T); 9061 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9062 } 9063 } 9064 } 9065 9066 // Note that we don't consider the first argument, since it has been 9067 // contextually converted to bool long ago. The candidates below are 9068 // therefore added as binary. 9069 // 9070 // C++ [over.built]p25: 9071 // For every type T, where T is a pointer, pointer-to-member, or scoped 9072 // enumeration type, there exist candidate operator functions of the form 9073 // 9074 // T operator?(bool, T, T); 9075 // 9076 void addConditionalOperatorOverloads() { 9077 /// Set of (canonical) types that we've already handled. 9078 llvm::SmallPtrSet<QualType, 8> AddedTypes; 9079 9080 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 9081 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 9082 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 9083 continue; 9084 9085 QualType ParamTypes[2] = {PtrTy, PtrTy}; 9086 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9087 } 9088 9089 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 9090 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 9091 continue; 9092 9093 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 9094 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9095 } 9096 9097 if (S.getLangOpts().CPlusPlus11) { 9098 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 9099 if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) 9100 continue; 9101 9102 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 9103 continue; 9104 9105 QualType ParamTypes[2] = {EnumTy, EnumTy}; 9106 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9107 } 9108 } 9109 } 9110 } 9111 }; 9112 9113 } // end anonymous namespace 9114 9115 /// AddBuiltinOperatorCandidates - Add the appropriate built-in 9116 /// operator overloads to the candidate set (C++ [over.built]), based 9117 /// on the operator @p Op and the arguments given. For example, if the 9118 /// operator is a binary '+', this routine might add "int 9119 /// operator+(int, int)" to cover integer addition. 9120 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 9121 SourceLocation OpLoc, 9122 ArrayRef<Expr *> Args, 9123 OverloadCandidateSet &CandidateSet) { 9124 // Find all of the types that the arguments can convert to, but only 9125 // if the operator we're looking at has built-in operator candidates 9126 // that make use of these types. Also record whether we encounter non-record 9127 // candidate types or either arithmetic or enumeral candidate types. 9128 Qualifiers VisibleTypeConversionsQuals; 9129 VisibleTypeConversionsQuals.addConst(); 9130 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) 9131 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 9132 9133 bool HasNonRecordCandidateType = false; 9134 bool HasArithmeticOrEnumeralCandidateType = false; 9135 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 9136 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 9137 CandidateTypes.emplace_back(*this); 9138 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 9139 OpLoc, 9140 true, 9141 (Op == OO_Exclaim || 9142 Op == OO_AmpAmp || 9143 Op == OO_PipePipe), 9144 VisibleTypeConversionsQuals); 9145 HasNonRecordCandidateType = HasNonRecordCandidateType || 9146 CandidateTypes[ArgIdx].hasNonRecordTypes(); 9147 HasArithmeticOrEnumeralCandidateType = 9148 HasArithmeticOrEnumeralCandidateType || 9149 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 9150 } 9151 9152 // Exit early when no non-record types have been added to the candidate set 9153 // for any of the arguments to the operator. 9154 // 9155 // We can't exit early for !, ||, or &&, since there we have always have 9156 // 'bool' overloads. 9157 if (!HasNonRecordCandidateType && 9158 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 9159 return; 9160 9161 // Setup an object to manage the common state for building overloads. 9162 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, 9163 VisibleTypeConversionsQuals, 9164 HasArithmeticOrEnumeralCandidateType, 9165 CandidateTypes, CandidateSet); 9166 9167 // Dispatch over the operation to add in only those overloads which apply. 9168 switch (Op) { 9169 case OO_None: 9170 case NUM_OVERLOADED_OPERATORS: 9171 llvm_unreachable("Expected an overloaded operator"); 9172 9173 case OO_New: 9174 case OO_Delete: 9175 case OO_Array_New: 9176 case OO_Array_Delete: 9177 case OO_Call: 9178 llvm_unreachable( 9179 "Special operators don't use AddBuiltinOperatorCandidates"); 9180 9181 case OO_Comma: 9182 case OO_Arrow: 9183 case OO_Coawait: 9184 // C++ [over.match.oper]p3: 9185 // -- For the operator ',', the unary operator '&', the 9186 // operator '->', or the operator 'co_await', the 9187 // built-in candidates set is empty. 9188 break; 9189 9190 case OO_Plus: // '+' is either unary or binary 9191 if (Args.size() == 1) 9192 OpBuilder.addUnaryPlusPointerOverloads(); 9193 LLVM_FALLTHROUGH; 9194 9195 case OO_Minus: // '-' is either unary or binary 9196 if (Args.size() == 1) { 9197 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 9198 } else { 9199 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 9200 OpBuilder.addGenericBinaryArithmeticOverloads(); 9201 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9202 } 9203 break; 9204 9205 case OO_Star: // '*' is either unary or binary 9206 if (Args.size() == 1) 9207 OpBuilder.addUnaryStarPointerOverloads(); 9208 else { 9209 OpBuilder.addGenericBinaryArithmeticOverloads(); 9210 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9211 } 9212 break; 9213 9214 case OO_Slash: 9215 OpBuilder.addGenericBinaryArithmeticOverloads(); 9216 break; 9217 9218 case OO_PlusPlus: 9219 case OO_MinusMinus: 9220 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 9221 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 9222 break; 9223 9224 case OO_EqualEqual: 9225 case OO_ExclaimEqual: 9226 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); 9227 LLVM_FALLTHROUGH; 9228 9229 case OO_Less: 9230 case OO_Greater: 9231 case OO_LessEqual: 9232 case OO_GreaterEqual: 9233 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(); 9234 OpBuilder.addGenericBinaryArithmeticOverloads(); 9235 break; 9236 9237 case OO_Spaceship: 9238 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(); 9239 OpBuilder.addThreeWayArithmeticOverloads(); 9240 break; 9241 9242 case OO_Percent: 9243 case OO_Caret: 9244 case OO_Pipe: 9245 case OO_LessLess: 9246 case OO_GreaterGreater: 9247 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 9248 break; 9249 9250 case OO_Amp: // '&' is either unary or binary 9251 if (Args.size() == 1) 9252 // C++ [over.match.oper]p3: 9253 // -- For the operator ',', the unary operator '&', or the 9254 // operator '->', the built-in candidates set is empty. 9255 break; 9256 9257 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 9258 break; 9259 9260 case OO_Tilde: 9261 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 9262 break; 9263 9264 case OO_Equal: 9265 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 9266 LLVM_FALLTHROUGH; 9267 9268 case OO_PlusEqual: 9269 case OO_MinusEqual: 9270 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 9271 LLVM_FALLTHROUGH; 9272 9273 case OO_StarEqual: 9274 case OO_SlashEqual: 9275 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 9276 break; 9277 9278 case OO_PercentEqual: 9279 case OO_LessLessEqual: 9280 case OO_GreaterGreaterEqual: 9281 case OO_AmpEqual: 9282 case OO_CaretEqual: 9283 case OO_PipeEqual: 9284 OpBuilder.addAssignmentIntegralOverloads(); 9285 break; 9286 9287 case OO_Exclaim: 9288 OpBuilder.addExclaimOverload(); 9289 break; 9290 9291 case OO_AmpAmp: 9292 case OO_PipePipe: 9293 OpBuilder.addAmpAmpOrPipePipeOverload(); 9294 break; 9295 9296 case OO_Subscript: 9297 OpBuilder.addSubscriptOverloads(); 9298 break; 9299 9300 case OO_ArrowStar: 9301 OpBuilder.addArrowStarOverloads(); 9302 break; 9303 9304 case OO_Conditional: 9305 OpBuilder.addConditionalOperatorOverloads(); 9306 OpBuilder.addGenericBinaryArithmeticOverloads(); 9307 break; 9308 } 9309 } 9310 9311 /// Add function candidates found via argument-dependent lookup 9312 /// to the set of overloading candidates. 9313 /// 9314 /// This routine performs argument-dependent name lookup based on the 9315 /// given function name (which may also be an operator name) and adds 9316 /// all of the overload candidates found by ADL to the overload 9317 /// candidate set (C++ [basic.lookup.argdep]). 9318 void 9319 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 9320 SourceLocation Loc, 9321 ArrayRef<Expr *> Args, 9322 TemplateArgumentListInfo *ExplicitTemplateArgs, 9323 OverloadCandidateSet& CandidateSet, 9324 bool PartialOverloading) { 9325 ADLResult Fns; 9326 9327 // FIXME: This approach for uniquing ADL results (and removing 9328 // redundant candidates from the set) relies on pointer-equality, 9329 // which means we need to key off the canonical decl. However, 9330 // always going back to the canonical decl might not get us the 9331 // right set of default arguments. What default arguments are 9332 // we supposed to consider on ADL candidates, anyway? 9333 9334 // FIXME: Pass in the explicit template arguments? 9335 ArgumentDependentLookup(Name, Loc, Args, Fns); 9336 9337 // Erase all of the candidates we already knew about. 9338 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 9339 CandEnd = CandidateSet.end(); 9340 Cand != CandEnd; ++Cand) 9341 if (Cand->Function) { 9342 Fns.erase(Cand->Function); 9343 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 9344 Fns.erase(FunTmpl); 9345 } 9346 9347 // For each of the ADL candidates we found, add it to the overload 9348 // set. 9349 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 9350 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 9351 9352 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 9353 if (ExplicitTemplateArgs) 9354 continue; 9355 9356 AddOverloadCandidate( 9357 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, 9358 PartialOverloading, /*AllowExplicit=*/true, 9359 /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL); 9360 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) { 9361 AddOverloadCandidate( 9362 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, 9363 /*SuppressUserConversions=*/false, PartialOverloading, 9364 /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false, 9365 ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed); 9366 } 9367 } else { 9368 auto *FTD = cast<FunctionTemplateDecl>(*I); 9369 AddTemplateOverloadCandidate( 9370 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, 9371 /*SuppressUserConversions=*/false, PartialOverloading, 9372 /*AllowExplicit=*/true, ADLCallKind::UsesADL); 9373 if (CandidateSet.getRewriteInfo().shouldAddReversed( 9374 Context, FTD->getTemplatedDecl())) { 9375 AddTemplateOverloadCandidate( 9376 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, 9377 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, 9378 /*AllowExplicit=*/true, ADLCallKind::UsesADL, 9379 OverloadCandidateParamOrder::Reversed); 9380 } 9381 } 9382 } 9383 } 9384 9385 namespace { 9386 enum class Comparison { Equal, Better, Worse }; 9387 } 9388 9389 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of 9390 /// overload resolution. 9391 /// 9392 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff 9393 /// Cand1's first N enable_if attributes have precisely the same conditions as 9394 /// Cand2's first N enable_if attributes (where N = the number of enable_if 9395 /// attributes on Cand2), and Cand1 has more than N enable_if attributes. 9396 /// 9397 /// Note that you can have a pair of candidates such that Cand1's enable_if 9398 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are 9399 /// worse than Cand1's. 9400 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, 9401 const FunctionDecl *Cand2) { 9402 // Common case: One (or both) decls don't have enable_if attrs. 9403 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); 9404 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); 9405 if (!Cand1Attr || !Cand2Attr) { 9406 if (Cand1Attr == Cand2Attr) 9407 return Comparison::Equal; 9408 return Cand1Attr ? Comparison::Better : Comparison::Worse; 9409 } 9410 9411 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); 9412 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); 9413 9414 llvm::FoldingSetNodeID Cand1ID, Cand2ID; 9415 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { 9416 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); 9417 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); 9418 9419 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 9420 // has fewer enable_if attributes than Cand2, and vice versa. 9421 if (!Cand1A) 9422 return Comparison::Worse; 9423 if (!Cand2A) 9424 return Comparison::Better; 9425 9426 Cand1ID.clear(); 9427 Cand2ID.clear(); 9428 9429 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); 9430 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); 9431 if (Cand1ID != Cand2ID) 9432 return Comparison::Worse; 9433 } 9434 9435 return Comparison::Equal; 9436 } 9437 9438 static Comparison 9439 isBetterMultiversionCandidate(const OverloadCandidate &Cand1, 9440 const OverloadCandidate &Cand2) { 9441 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || 9442 !Cand2.Function->isMultiVersion()) 9443 return Comparison::Equal; 9444 9445 // If both are invalid, they are equal. If one of them is invalid, the other 9446 // is better. 9447 if (Cand1.Function->isInvalidDecl()) { 9448 if (Cand2.Function->isInvalidDecl()) 9449 return Comparison::Equal; 9450 return Comparison::Worse; 9451 } 9452 if (Cand2.Function->isInvalidDecl()) 9453 return Comparison::Better; 9454 9455 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer 9456 // cpu_dispatch, else arbitrarily based on the identifiers. 9457 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); 9458 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); 9459 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); 9460 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); 9461 9462 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) 9463 return Comparison::Equal; 9464 9465 if (Cand1CPUDisp && !Cand2CPUDisp) 9466 return Comparison::Better; 9467 if (Cand2CPUDisp && !Cand1CPUDisp) 9468 return Comparison::Worse; 9469 9470 if (Cand1CPUSpec && Cand2CPUSpec) { 9471 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) 9472 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() 9473 ? Comparison::Better 9474 : Comparison::Worse; 9475 9476 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> 9477 FirstDiff = std::mismatch( 9478 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), 9479 Cand2CPUSpec->cpus_begin(), 9480 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { 9481 return LHS->getName() == RHS->getName(); 9482 }); 9483 9484 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() && 9485 "Two different cpu-specific versions should not have the same " 9486 "identifier list, otherwise they'd be the same decl!"); 9487 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() 9488 ? Comparison::Better 9489 : Comparison::Worse; 9490 } 9491 llvm_unreachable("No way to get here unless both had cpu_dispatch"); 9492 } 9493 9494 /// Compute the type of the implicit object parameter for the given function, 9495 /// if any. Returns None if there is no implicit object parameter, and a null 9496 /// QualType if there is a 'matches anything' implicit object parameter. 9497 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context, 9498 const FunctionDecl *F) { 9499 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F)) 9500 return llvm::None; 9501 9502 auto *M = cast<CXXMethodDecl>(F); 9503 // Static member functions' object parameters match all types. 9504 if (M->isStatic()) 9505 return QualType(); 9506 9507 QualType T = M->getThisObjectType(); 9508 if (M->getRefQualifier() == RQ_RValue) 9509 return Context.getRValueReferenceType(T); 9510 return Context.getLValueReferenceType(T); 9511 } 9512 9513 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1, 9514 const FunctionDecl *F2, unsigned NumParams) { 9515 if (declaresSameEntity(F1, F2)) 9516 return true; 9517 9518 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { 9519 if (First) { 9520 if (Optional<QualType> T = getImplicitObjectParamType(Context, F)) 9521 return *T; 9522 } 9523 assert(I < F->getNumParams()); 9524 return F->getParamDecl(I++)->getType(); 9525 }; 9526 9527 unsigned I1 = 0, I2 = 0; 9528 for (unsigned I = 0; I != NumParams; ++I) { 9529 QualType T1 = NextParam(F1, I1, I == 0); 9530 QualType T2 = NextParam(F2, I2, I == 0); 9531 if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2)) 9532 return false; 9533 } 9534 return true; 9535 } 9536 9537 /// isBetterOverloadCandidate - Determines whether the first overload 9538 /// candidate is a better candidate than the second (C++ 13.3.3p1). 9539 bool clang::isBetterOverloadCandidate( 9540 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, 9541 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { 9542 // Define viable functions to be better candidates than non-viable 9543 // functions. 9544 if (!Cand2.Viable) 9545 return Cand1.Viable; 9546 else if (!Cand1.Viable) 9547 return false; 9548 9549 // [CUDA] A function with 'never' preference is marked not viable, therefore 9550 // is never shown up here. The worst preference shown up here is 'wrong side', 9551 // e.g. an H function called by a HD function in device compilation. This is 9552 // valid AST as long as the HD function is not emitted, e.g. it is an inline 9553 // function which is called only by an H function. A deferred diagnostic will 9554 // be triggered if it is emitted. However a wrong-sided function is still 9555 // a viable candidate here. 9556 // 9557 // If Cand1 can be emitted and Cand2 cannot be emitted in the current 9558 // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 9559 // can be emitted, Cand1 is not better than Cand2. This rule should have 9560 // precedence over other rules. 9561 // 9562 // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then 9563 // other rules should be used to determine which is better. This is because 9564 // host/device based overloading resolution is mostly for determining 9565 // viability of a function. If two functions are both viable, other factors 9566 // should take precedence in preference, e.g. the standard-defined preferences 9567 // like argument conversion ranks or enable_if partial-ordering. The 9568 // preference for pass-object-size parameters is probably most similar to a 9569 // type-based-overloading decision and so should take priority. 9570 // 9571 // If other rules cannot determine which is better, CUDA preference will be 9572 // used again to determine which is better. 9573 // 9574 // TODO: Currently IdentifyCUDAPreference does not return correct values 9575 // for functions called in global variable initializers due to missing 9576 // correct context about device/host. Therefore we can only enforce this 9577 // rule when there is a caller. We should enforce this rule for functions 9578 // in global variable initializers once proper context is added. 9579 // 9580 // TODO: We can only enable the hostness based overloading resolution when 9581 // -fgpu-exclude-wrong-side-overloads is on since this requires deferring 9582 // overloading resolution diagnostics. 9583 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && 9584 S.getLangOpts().GPUExcludeWrongSideOverloads) { 9585 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) { 9586 bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller); 9587 bool IsCand1ImplicitHD = 9588 Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function); 9589 bool IsCand2ImplicitHD = 9590 Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function); 9591 auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function); 9592 auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function); 9593 assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never); 9594 // The implicit HD function may be a function in a system header which 9595 // is forced by pragma. In device compilation, if we prefer HD candidates 9596 // over wrong-sided candidates, overloading resolution may change, which 9597 // may result in non-deferrable diagnostics. As a workaround, we let 9598 // implicit HD candidates take equal preference as wrong-sided candidates. 9599 // This will preserve the overloading resolution. 9600 // TODO: We still need special handling of implicit HD functions since 9601 // they may incur other diagnostics to be deferred. We should make all 9602 // host/device related diagnostics deferrable and remove special handling 9603 // of implicit HD functions. 9604 auto EmitThreshold = 9605 (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && 9606 (IsCand1ImplicitHD || IsCand2ImplicitHD)) 9607 ? Sema::CFP_Never 9608 : Sema::CFP_WrongSide; 9609 auto Cand1Emittable = P1 > EmitThreshold; 9610 auto Cand2Emittable = P2 > EmitThreshold; 9611 if (Cand1Emittable && !Cand2Emittable) 9612 return true; 9613 if (!Cand1Emittable && Cand2Emittable) 9614 return false; 9615 } 9616 } 9617 9618 // C++ [over.match.best]p1: 9619 // 9620 // -- if F is a static member function, ICS1(F) is defined such 9621 // that ICS1(F) is neither better nor worse than ICS1(G) for 9622 // any function G, and, symmetrically, ICS1(G) is neither 9623 // better nor worse than ICS1(F). 9624 unsigned StartArg = 0; 9625 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 9626 StartArg = 1; 9627 9628 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { 9629 // We don't allow incompatible pointer conversions in C++. 9630 if (!S.getLangOpts().CPlusPlus) 9631 return ICS.isStandard() && 9632 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; 9633 9634 // The only ill-formed conversion we allow in C++ is the string literal to 9635 // char* conversion, which is only considered ill-formed after C++11. 9636 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 9637 hasDeprecatedStringLiteralToCharPtrConversion(ICS); 9638 }; 9639 9640 // Define functions that don't require ill-formed conversions for a given 9641 // argument to be better candidates than functions that do. 9642 unsigned NumArgs = Cand1.Conversions.size(); 9643 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 9644 bool HasBetterConversion = false; 9645 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9646 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); 9647 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); 9648 if (Cand1Bad != Cand2Bad) { 9649 if (Cand1Bad) 9650 return false; 9651 HasBetterConversion = true; 9652 } 9653 } 9654 9655 if (HasBetterConversion) 9656 return true; 9657 9658 // C++ [over.match.best]p1: 9659 // A viable function F1 is defined to be a better function than another 9660 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 9661 // conversion sequence than ICSi(F2), and then... 9662 bool HasWorseConversion = false; 9663 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9664 switch (CompareImplicitConversionSequences(S, Loc, 9665 Cand1.Conversions[ArgIdx], 9666 Cand2.Conversions[ArgIdx])) { 9667 case ImplicitConversionSequence::Better: 9668 // Cand1 has a better conversion sequence. 9669 HasBetterConversion = true; 9670 break; 9671 9672 case ImplicitConversionSequence::Worse: 9673 if (Cand1.Function && Cand2.Function && 9674 Cand1.isReversed() != Cand2.isReversed() && 9675 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function, 9676 NumArgs)) { 9677 // Work around large-scale breakage caused by considering reversed 9678 // forms of operator== in C++20: 9679 // 9680 // When comparing a function against a reversed function with the same 9681 // parameter types, if we have a better conversion for one argument and 9682 // a worse conversion for the other, the implicit conversion sequences 9683 // are treated as being equally good. 9684 // 9685 // This prevents a comparison function from being considered ambiguous 9686 // with a reversed form that is written in the same way. 9687 // 9688 // We diagnose this as an extension from CreateOverloadedBinOp. 9689 HasWorseConversion = true; 9690 break; 9691 } 9692 9693 // Cand1 can't be better than Cand2. 9694 return false; 9695 9696 case ImplicitConversionSequence::Indistinguishable: 9697 // Do nothing. 9698 break; 9699 } 9700 } 9701 9702 // -- for some argument j, ICSj(F1) is a better conversion sequence than 9703 // ICSj(F2), or, if not that, 9704 if (HasBetterConversion && !HasWorseConversion) 9705 return true; 9706 9707 // -- the context is an initialization by user-defined conversion 9708 // (see 8.5, 13.3.1.5) and the standard conversion sequence 9709 // from the return type of F1 to the destination type (i.e., 9710 // the type of the entity being initialized) is a better 9711 // conversion sequence than the standard conversion sequence 9712 // from the return type of F2 to the destination type. 9713 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && 9714 Cand1.Function && Cand2.Function && 9715 isa<CXXConversionDecl>(Cand1.Function) && 9716 isa<CXXConversionDecl>(Cand2.Function)) { 9717 // First check whether we prefer one of the conversion functions over the 9718 // other. This only distinguishes the results in non-standard, extension 9719 // cases such as the conversion from a lambda closure type to a function 9720 // pointer or block. 9721 ImplicitConversionSequence::CompareKind Result = 9722 compareConversionFunctions(S, Cand1.Function, Cand2.Function); 9723 if (Result == ImplicitConversionSequence::Indistinguishable) 9724 Result = CompareStandardConversionSequences(S, Loc, 9725 Cand1.FinalConversion, 9726 Cand2.FinalConversion); 9727 9728 if (Result != ImplicitConversionSequence::Indistinguishable) 9729 return Result == ImplicitConversionSequence::Better; 9730 9731 // FIXME: Compare kind of reference binding if conversion functions 9732 // convert to a reference type used in direct reference binding, per 9733 // C++14 [over.match.best]p1 section 2 bullet 3. 9734 } 9735 9736 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, 9737 // as combined with the resolution to CWG issue 243. 9738 // 9739 // When the context is initialization by constructor ([over.match.ctor] or 9740 // either phase of [over.match.list]), a constructor is preferred over 9741 // a conversion function. 9742 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && 9743 Cand1.Function && Cand2.Function && 9744 isa<CXXConstructorDecl>(Cand1.Function) != 9745 isa<CXXConstructorDecl>(Cand2.Function)) 9746 return isa<CXXConstructorDecl>(Cand1.Function); 9747 9748 // -- F1 is a non-template function and F2 is a function template 9749 // specialization, or, if not that, 9750 bool Cand1IsSpecialization = Cand1.Function && 9751 Cand1.Function->getPrimaryTemplate(); 9752 bool Cand2IsSpecialization = Cand2.Function && 9753 Cand2.Function->getPrimaryTemplate(); 9754 if (Cand1IsSpecialization != Cand2IsSpecialization) 9755 return Cand2IsSpecialization; 9756 9757 // -- F1 and F2 are function template specializations, and the function 9758 // template for F1 is more specialized than the template for F2 9759 // according to the partial ordering rules described in 14.5.5.2, or, 9760 // if not that, 9761 if (Cand1IsSpecialization && Cand2IsSpecialization) { 9762 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( 9763 Cand1.Function->getPrimaryTemplate(), 9764 Cand2.Function->getPrimaryTemplate(), Loc, 9765 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion 9766 : TPOC_Call, 9767 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments, 9768 Cand1.isReversed() ^ Cand2.isReversed())) 9769 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 9770 } 9771 9772 // -— F1 and F2 are non-template functions with the same 9773 // parameter-type-lists, and F1 is more constrained than F2 [...], 9774 if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization && 9775 !Cand2IsSpecialization && Cand1.Function->hasPrototype() && 9776 Cand2.Function->hasPrototype()) { 9777 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType()); 9778 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType()); 9779 if (PT1->getNumParams() == PT2->getNumParams() && 9780 PT1->isVariadic() == PT2->isVariadic() && 9781 S.FunctionParamTypesAreEqual(PT1, PT2)) { 9782 Expr *RC1 = Cand1.Function->getTrailingRequiresClause(); 9783 Expr *RC2 = Cand2.Function->getTrailingRequiresClause(); 9784 if (RC1 && RC2) { 9785 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 9786 if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function, 9787 {RC2}, AtLeastAsConstrained1) || 9788 S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function, 9789 {RC1}, AtLeastAsConstrained2)) 9790 return false; 9791 if (AtLeastAsConstrained1 != AtLeastAsConstrained2) 9792 return AtLeastAsConstrained1; 9793 } else if (RC1 || RC2) { 9794 return RC1 != nullptr; 9795 } 9796 } 9797 } 9798 9799 // -- F1 is a constructor for a class D, F2 is a constructor for a base 9800 // class B of D, and for all arguments the corresponding parameters of 9801 // F1 and F2 have the same type. 9802 // FIXME: Implement the "all parameters have the same type" check. 9803 bool Cand1IsInherited = 9804 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); 9805 bool Cand2IsInherited = 9806 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); 9807 if (Cand1IsInherited != Cand2IsInherited) 9808 return Cand2IsInherited; 9809 else if (Cand1IsInherited) { 9810 assert(Cand2IsInherited); 9811 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); 9812 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); 9813 if (Cand1Class->isDerivedFrom(Cand2Class)) 9814 return true; 9815 if (Cand2Class->isDerivedFrom(Cand1Class)) 9816 return false; 9817 // Inherited from sibling base classes: still ambiguous. 9818 } 9819 9820 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not 9821 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate 9822 // with reversed order of parameters and F1 is not 9823 // 9824 // We rank reversed + different operator as worse than just reversed, but 9825 // that comparison can never happen, because we only consider reversing for 9826 // the maximally-rewritten operator (== or <=>). 9827 if (Cand1.RewriteKind != Cand2.RewriteKind) 9828 return Cand1.RewriteKind < Cand2.RewriteKind; 9829 9830 // Check C++17 tie-breakers for deduction guides. 9831 { 9832 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); 9833 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); 9834 if (Guide1 && Guide2) { 9835 // -- F1 is generated from a deduction-guide and F2 is not 9836 if (Guide1->isImplicit() != Guide2->isImplicit()) 9837 return Guide2->isImplicit(); 9838 9839 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not 9840 if (Guide1->isCopyDeductionCandidate()) 9841 return true; 9842 } 9843 } 9844 9845 // Check for enable_if value-based overload resolution. 9846 if (Cand1.Function && Cand2.Function) { 9847 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); 9848 if (Cmp != Comparison::Equal) 9849 return Cmp == Comparison::Better; 9850 } 9851 9852 bool HasPS1 = Cand1.Function != nullptr && 9853 functionHasPassObjectSizeParams(Cand1.Function); 9854 bool HasPS2 = Cand2.Function != nullptr && 9855 functionHasPassObjectSizeParams(Cand2.Function); 9856 if (HasPS1 != HasPS2 && HasPS1) 9857 return true; 9858 9859 auto MV = isBetterMultiversionCandidate(Cand1, Cand2); 9860 if (MV == Comparison::Better) 9861 return true; 9862 if (MV == Comparison::Worse) 9863 return false; 9864 9865 // If other rules cannot determine which is better, CUDA preference is used 9866 // to determine which is better. 9867 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { 9868 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 9869 return S.IdentifyCUDAPreference(Caller, Cand1.Function) > 9870 S.IdentifyCUDAPreference(Caller, Cand2.Function); 9871 } 9872 9873 return false; 9874 } 9875 9876 /// Determine whether two declarations are "equivalent" for the purposes of 9877 /// name lookup and overload resolution. This applies when the same internal/no 9878 /// linkage entity is defined by two modules (probably by textually including 9879 /// the same header). In such a case, we don't consider the declarations to 9880 /// declare the same entity, but we also don't want lookups with both 9881 /// declarations visible to be ambiguous in some cases (this happens when using 9882 /// a modularized libstdc++). 9883 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, 9884 const NamedDecl *B) { 9885 auto *VA = dyn_cast_or_null<ValueDecl>(A); 9886 auto *VB = dyn_cast_or_null<ValueDecl>(B); 9887 if (!VA || !VB) 9888 return false; 9889 9890 // The declarations must be declaring the same name as an internal linkage 9891 // entity in different modules. 9892 if (!VA->getDeclContext()->getRedeclContext()->Equals( 9893 VB->getDeclContext()->getRedeclContext()) || 9894 getOwningModule(VA) == getOwningModule(VB) || 9895 VA->isExternallyVisible() || VB->isExternallyVisible()) 9896 return false; 9897 9898 // Check that the declarations appear to be equivalent. 9899 // 9900 // FIXME: Checking the type isn't really enough to resolve the ambiguity. 9901 // For constants and functions, we should check the initializer or body is 9902 // the same. For non-constant variables, we shouldn't allow it at all. 9903 if (Context.hasSameType(VA->getType(), VB->getType())) 9904 return true; 9905 9906 // Enum constants within unnamed enumerations will have different types, but 9907 // may still be similar enough to be interchangeable for our purposes. 9908 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { 9909 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { 9910 // Only handle anonymous enums. If the enumerations were named and 9911 // equivalent, they would have been merged to the same type. 9912 auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); 9913 auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); 9914 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || 9915 !Context.hasSameType(EnumA->getIntegerType(), 9916 EnumB->getIntegerType())) 9917 return false; 9918 // Allow this only if the value is the same for both enumerators. 9919 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); 9920 } 9921 } 9922 9923 // Nothing else is sufficiently similar. 9924 return false; 9925 } 9926 9927 void Sema::diagnoseEquivalentInternalLinkageDeclarations( 9928 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { 9929 assert(D && "Unknown declaration"); 9930 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; 9931 9932 Module *M = getOwningModule(D); 9933 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) 9934 << !M << (M ? M->getFullModuleName() : ""); 9935 9936 for (auto *E : Equiv) { 9937 Module *M = getOwningModule(E); 9938 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) 9939 << !M << (M ? M->getFullModuleName() : ""); 9940 } 9941 } 9942 9943 /// Computes the best viable function (C++ 13.3.3) 9944 /// within an overload candidate set. 9945 /// 9946 /// \param Loc The location of the function name (or operator symbol) for 9947 /// which overload resolution occurs. 9948 /// 9949 /// \param Best If overload resolution was successful or found a deleted 9950 /// function, \p Best points to the candidate function found. 9951 /// 9952 /// \returns The result of overload resolution. 9953 OverloadingResult 9954 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 9955 iterator &Best) { 9956 llvm::SmallVector<OverloadCandidate *, 16> Candidates; 9957 std::transform(begin(), end(), std::back_inserter(Candidates), 9958 [](OverloadCandidate &Cand) { return &Cand; }); 9959 9960 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but 9961 // are accepted by both clang and NVCC. However, during a particular 9962 // compilation mode only one call variant is viable. We need to 9963 // exclude non-viable overload candidates from consideration based 9964 // only on their host/device attributes. Specifically, if one 9965 // candidate call is WrongSide and the other is SameSide, we ignore 9966 // the WrongSide candidate. 9967 // We only need to remove wrong-sided candidates here if 9968 // -fgpu-exclude-wrong-side-overloads is off. When 9969 // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared 9970 // uniformly in isBetterOverloadCandidate. 9971 if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { 9972 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 9973 bool ContainsSameSideCandidate = 9974 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { 9975 // Check viable function only. 9976 return Cand->Viable && Cand->Function && 9977 S.IdentifyCUDAPreference(Caller, Cand->Function) == 9978 Sema::CFP_SameSide; 9979 }); 9980 if (ContainsSameSideCandidate) { 9981 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { 9982 // Check viable function only to avoid unnecessary data copying/moving. 9983 return Cand->Viable && Cand->Function && 9984 S.IdentifyCUDAPreference(Caller, Cand->Function) == 9985 Sema::CFP_WrongSide; 9986 }; 9987 llvm::erase_if(Candidates, IsWrongSideCandidate); 9988 } 9989 } 9990 9991 // Find the best viable function. 9992 Best = end(); 9993 for (auto *Cand : Candidates) { 9994 Cand->Best = false; 9995 if (Cand->Viable) 9996 if (Best == end() || 9997 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) 9998 Best = Cand; 9999 } 10000 10001 // If we didn't find any viable functions, abort. 10002 if (Best == end()) 10003 return OR_No_Viable_Function; 10004 10005 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; 10006 10007 llvm::SmallVector<OverloadCandidate*, 4> PendingBest; 10008 PendingBest.push_back(&*Best); 10009 Best->Best = true; 10010 10011 // Make sure that this function is better than every other viable 10012 // function. If not, we have an ambiguity. 10013 while (!PendingBest.empty()) { 10014 auto *Curr = PendingBest.pop_back_val(); 10015 for (auto *Cand : Candidates) { 10016 if (Cand->Viable && !Cand->Best && 10017 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { 10018 PendingBest.push_back(Cand); 10019 Cand->Best = true; 10020 10021 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, 10022 Curr->Function)) 10023 EquivalentCands.push_back(Cand->Function); 10024 else 10025 Best = end(); 10026 } 10027 } 10028 } 10029 10030 // If we found more than one best candidate, this is ambiguous. 10031 if (Best == end()) 10032 return OR_Ambiguous; 10033 10034 // Best is the best viable function. 10035 if (Best->Function && Best->Function->isDeleted()) 10036 return OR_Deleted; 10037 10038 if (!EquivalentCands.empty()) 10039 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, 10040 EquivalentCands); 10041 10042 return OR_Success; 10043 } 10044 10045 namespace { 10046 10047 enum OverloadCandidateKind { 10048 oc_function, 10049 oc_method, 10050 oc_reversed_binary_operator, 10051 oc_constructor, 10052 oc_implicit_default_constructor, 10053 oc_implicit_copy_constructor, 10054 oc_implicit_move_constructor, 10055 oc_implicit_copy_assignment, 10056 oc_implicit_move_assignment, 10057 oc_implicit_equality_comparison, 10058 oc_inherited_constructor 10059 }; 10060 10061 enum OverloadCandidateSelect { 10062 ocs_non_template, 10063 ocs_template, 10064 ocs_described_template, 10065 }; 10066 10067 static std::pair<OverloadCandidateKind, OverloadCandidateSelect> 10068 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn, 10069 OverloadCandidateRewriteKind CRK, 10070 std::string &Description) { 10071 10072 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); 10073 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 10074 isTemplate = true; 10075 Description = S.getTemplateArgumentBindingsText( 10076 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 10077 } 10078 10079 OverloadCandidateSelect Select = [&]() { 10080 if (!Description.empty()) 10081 return ocs_described_template; 10082 return isTemplate ? ocs_template : ocs_non_template; 10083 }(); 10084 10085 OverloadCandidateKind Kind = [&]() { 10086 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) 10087 return oc_implicit_equality_comparison; 10088 10089 if (CRK & CRK_Reversed) 10090 return oc_reversed_binary_operator; 10091 10092 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 10093 if (!Ctor->isImplicit()) { 10094 if (isa<ConstructorUsingShadowDecl>(Found)) 10095 return oc_inherited_constructor; 10096 else 10097 return oc_constructor; 10098 } 10099 10100 if (Ctor->isDefaultConstructor()) 10101 return oc_implicit_default_constructor; 10102 10103 if (Ctor->isMoveConstructor()) 10104 return oc_implicit_move_constructor; 10105 10106 assert(Ctor->isCopyConstructor() && 10107 "unexpected sort of implicit constructor"); 10108 return oc_implicit_copy_constructor; 10109 } 10110 10111 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 10112 // This actually gets spelled 'candidate function' for now, but 10113 // it doesn't hurt to split it out. 10114 if (!Meth->isImplicit()) 10115 return oc_method; 10116 10117 if (Meth->isMoveAssignmentOperator()) 10118 return oc_implicit_move_assignment; 10119 10120 if (Meth->isCopyAssignmentOperator()) 10121 return oc_implicit_copy_assignment; 10122 10123 assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); 10124 return oc_method; 10125 } 10126 10127 return oc_function; 10128 }(); 10129 10130 return std::make_pair(Kind, Select); 10131 } 10132 10133 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) { 10134 // FIXME: It'd be nice to only emit a note once per using-decl per overload 10135 // set. 10136 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) 10137 S.Diag(FoundDecl->getLocation(), 10138 diag::note_ovl_candidate_inherited_constructor) 10139 << Shadow->getNominatedBaseClass(); 10140 } 10141 10142 } // end anonymous namespace 10143 10144 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, 10145 const FunctionDecl *FD) { 10146 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { 10147 bool AlwaysTrue; 10148 if (EnableIf->getCond()->isValueDependent() || 10149 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) 10150 return false; 10151 if (!AlwaysTrue) 10152 return false; 10153 } 10154 return true; 10155 } 10156 10157 /// Returns true if we can take the address of the function. 10158 /// 10159 /// \param Complain - If true, we'll emit a diagnostic 10160 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are 10161 /// we in overload resolution? 10162 /// \param Loc - The location of the statement we're complaining about. Ignored 10163 /// if we're not complaining, or if we're in overload resolution. 10164 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, 10165 bool Complain, 10166 bool InOverloadResolution, 10167 SourceLocation Loc) { 10168 if (!isFunctionAlwaysEnabled(S.Context, FD)) { 10169 if (Complain) { 10170 if (InOverloadResolution) 10171 S.Diag(FD->getBeginLoc(), 10172 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); 10173 else 10174 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; 10175 } 10176 return false; 10177 } 10178 10179 if (FD->getTrailingRequiresClause()) { 10180 ConstraintSatisfaction Satisfaction; 10181 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) 10182 return false; 10183 if (!Satisfaction.IsSatisfied) { 10184 if (Complain) { 10185 if (InOverloadResolution) 10186 S.Diag(FD->getBeginLoc(), 10187 diag::note_ovl_candidate_unsatisfied_constraints); 10188 else 10189 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) 10190 << FD; 10191 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 10192 } 10193 return false; 10194 } 10195 } 10196 10197 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { 10198 return P->hasAttr<PassObjectSizeAttr>(); 10199 }); 10200 if (I == FD->param_end()) 10201 return true; 10202 10203 if (Complain) { 10204 // Add one to ParamNo because it's user-facing 10205 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; 10206 if (InOverloadResolution) 10207 S.Diag(FD->getLocation(), 10208 diag::note_ovl_candidate_has_pass_object_size_params) 10209 << ParamNo; 10210 else 10211 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) 10212 << FD << ParamNo; 10213 } 10214 return false; 10215 } 10216 10217 static bool checkAddressOfCandidateIsAvailable(Sema &S, 10218 const FunctionDecl *FD) { 10219 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, 10220 /*InOverloadResolution=*/true, 10221 /*Loc=*/SourceLocation()); 10222 } 10223 10224 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, 10225 bool Complain, 10226 SourceLocation Loc) { 10227 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, 10228 /*InOverloadResolution=*/false, 10229 Loc); 10230 } 10231 10232 // Don't print candidates other than the one that matches the calling 10233 // convention of the call operator, since that is guaranteed to exist. 10234 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) { 10235 const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn); 10236 10237 if (!ConvD) 10238 return false; 10239 const auto *RD = cast<CXXRecordDecl>(Fn->getParent()); 10240 if (!RD->isLambda()) 10241 return false; 10242 10243 CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); 10244 CallingConv CallOpCC = 10245 CallOp->getType()->getAs<FunctionType>()->getCallConv(); 10246 QualType ConvRTy = ConvD->getType()->getAs<FunctionType>()->getReturnType(); 10247 CallingConv ConvToCC = 10248 ConvRTy->getPointeeType()->getAs<FunctionType>()->getCallConv(); 10249 10250 return ConvToCC != CallOpCC; 10251 } 10252 10253 // Notes the location of an overload candidate. 10254 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, 10255 OverloadCandidateRewriteKind RewriteKind, 10256 QualType DestType, bool TakingAddress) { 10257 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) 10258 return; 10259 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && 10260 !Fn->getAttr<TargetAttr>()->isDefaultVersion()) 10261 return; 10262 if (shouldSkipNotingLambdaConversionDecl(Fn)) 10263 return; 10264 10265 std::string FnDesc; 10266 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = 10267 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); 10268 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 10269 << (unsigned)KSPair.first << (unsigned)KSPair.second 10270 << Fn << FnDesc; 10271 10272 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 10273 Diag(Fn->getLocation(), PD); 10274 MaybeEmitInheritedConstructorNote(*this, Found); 10275 } 10276 10277 static void 10278 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { 10279 // Perhaps the ambiguity was caused by two atomic constraints that are 10280 // 'identical' but not equivalent: 10281 // 10282 // void foo() requires (sizeof(T) > 4) { } // #1 10283 // void foo() requires (sizeof(T) > 4) && T::value { } // #2 10284 // 10285 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause 10286 // #2 to subsume #1, but these constraint are not considered equivalent 10287 // according to the subsumption rules because they are not the same 10288 // source-level construct. This behavior is quite confusing and we should try 10289 // to help the user figure out what happened. 10290 10291 SmallVector<const Expr *, 3> FirstAC, SecondAC; 10292 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; 10293 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { 10294 if (!I->Function) 10295 continue; 10296 SmallVector<const Expr *, 3> AC; 10297 if (auto *Template = I->Function->getPrimaryTemplate()) 10298 Template->getAssociatedConstraints(AC); 10299 else 10300 I->Function->getAssociatedConstraints(AC); 10301 if (AC.empty()) 10302 continue; 10303 if (FirstCand == nullptr) { 10304 FirstCand = I->Function; 10305 FirstAC = AC; 10306 } else if (SecondCand == nullptr) { 10307 SecondCand = I->Function; 10308 SecondAC = AC; 10309 } else { 10310 // We have more than one pair of constrained functions - this check is 10311 // expensive and we'd rather not try to diagnose it. 10312 return; 10313 } 10314 } 10315 if (!SecondCand) 10316 return; 10317 // The diagnostic can only happen if there are associated constraints on 10318 // both sides (there needs to be some identical atomic constraint). 10319 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, 10320 SecondCand, SecondAC)) 10321 // Just show the user one diagnostic, they'll probably figure it out 10322 // from here. 10323 return; 10324 } 10325 10326 // Notes the location of all overload candidates designated through 10327 // OverloadedExpr 10328 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, 10329 bool TakingAddress) { 10330 assert(OverloadedExpr->getType() == Context.OverloadTy); 10331 10332 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 10333 OverloadExpr *OvlExpr = Ovl.Expression; 10334 10335 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 10336 IEnd = OvlExpr->decls_end(); 10337 I != IEnd; ++I) { 10338 if (FunctionTemplateDecl *FunTmpl = 10339 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 10340 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, 10341 TakingAddress); 10342 } else if (FunctionDecl *Fun 10343 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 10344 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); 10345 } 10346 } 10347 } 10348 10349 /// Diagnoses an ambiguous conversion. The partial diagnostic is the 10350 /// "lead" diagnostic; it will be given two arguments, the source and 10351 /// target types of the conversion. 10352 void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 10353 Sema &S, 10354 SourceLocation CaretLoc, 10355 const PartialDiagnostic &PDiag) const { 10356 S.Diag(CaretLoc, PDiag) 10357 << Ambiguous.getFromType() << Ambiguous.getToType(); 10358 // FIXME: The note limiting machinery is borrowed from 10359 // OverloadCandidateSet::NoteCandidates; there's an opportunity for 10360 // refactoring here. 10361 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 10362 unsigned CandsShown = 0; 10363 AmbiguousConversionSequence::const_iterator I, E; 10364 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 10365 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 10366 break; 10367 ++CandsShown; 10368 S.NoteOverloadCandidate(I->first, I->second); 10369 } 10370 if (I != E) 10371 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); 10372 } 10373 10374 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, 10375 unsigned I, bool TakingCandidateAddress) { 10376 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 10377 assert(Conv.isBad()); 10378 assert(Cand->Function && "for now, candidate must be a function"); 10379 FunctionDecl *Fn = Cand->Function; 10380 10381 // There's a conversion slot for the object argument if this is a 10382 // non-constructor method. Note that 'I' corresponds the 10383 // conversion-slot index. 10384 bool isObjectArgument = false; 10385 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 10386 if (I == 0) 10387 isObjectArgument = true; 10388 else 10389 I--; 10390 } 10391 10392 std::string FnDesc; 10393 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10394 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), 10395 FnDesc); 10396 10397 Expr *FromExpr = Conv.Bad.FromExpr; 10398 QualType FromTy = Conv.Bad.getFromType(); 10399 QualType ToTy = Conv.Bad.getToType(); 10400 10401 if (FromTy == S.Context.OverloadTy) { 10402 assert(FromExpr && "overload set argument came from implicit argument?"); 10403 Expr *E = FromExpr->IgnoreParens(); 10404 if (isa<UnaryOperator>(E)) 10405 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 10406 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 10407 10408 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 10409 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10410 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy 10411 << Name << I + 1; 10412 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10413 return; 10414 } 10415 10416 // Do some hand-waving analysis to see if the non-viability is due 10417 // to a qualifier mismatch. 10418 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 10419 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 10420 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 10421 CToTy = RT->getPointeeType(); 10422 else { 10423 // TODO: detect and diagnose the full richness of const mismatches. 10424 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 10425 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { 10426 CFromTy = FromPT->getPointeeType(); 10427 CToTy = ToPT->getPointeeType(); 10428 } 10429 } 10430 10431 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 10432 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 10433 Qualifiers FromQs = CFromTy.getQualifiers(); 10434 Qualifiers ToQs = CToTy.getQualifiers(); 10435 10436 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 10437 if (isObjectArgument) 10438 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) 10439 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10440 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10441 << FromQs.getAddressSpace() << ToQs.getAddressSpace(); 10442 else 10443 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 10444 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10445 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10446 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 10447 << ToTy->isReferenceType() << I + 1; 10448 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10449 return; 10450 } 10451 10452 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10453 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 10454 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10455 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10456 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 10457 << (unsigned)isObjectArgument << I + 1; 10458 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10459 return; 10460 } 10461 10462 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 10463 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 10464 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10465 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10466 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 10467 << (unsigned)isObjectArgument << I + 1; 10468 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10469 return; 10470 } 10471 10472 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) { 10473 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned) 10474 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10475 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10476 << FromQs.hasUnaligned() << I + 1; 10477 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10478 return; 10479 } 10480 10481 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 10482 assert(CVR && "expected qualifiers mismatch"); 10483 10484 if (isObjectArgument) { 10485 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 10486 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10487 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10488 << (CVR - 1); 10489 } else { 10490 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 10491 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10492 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10493 << (CVR - 1) << I + 1; 10494 } 10495 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10496 return; 10497 } 10498 10499 if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || 10500 Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { 10501 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) 10502 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10503 << (unsigned)isObjectArgument << I + 1 10504 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) 10505 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()); 10506 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10507 return; 10508 } 10509 10510 // Special diagnostic for failure to convert an initializer list, since 10511 // telling the user that it has type void is not useful. 10512 if (FromExpr && isa<InitListExpr>(FromExpr)) { 10513 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 10514 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10515 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10516 << ToTy << (unsigned)isObjectArgument << I + 1; 10517 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10518 return; 10519 } 10520 10521 // Diagnose references or pointers to incomplete types differently, 10522 // since it's far from impossible that the incompleteness triggered 10523 // the failure. 10524 QualType TempFromTy = FromTy.getNonReferenceType(); 10525 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 10526 TempFromTy = PTy->getPointeeType(); 10527 if (TempFromTy->isIncompleteType()) { 10528 // Emit the generic diagnostic and, optionally, add the hints to it. 10529 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 10530 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10531 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10532 << ToTy << (unsigned)isObjectArgument << I + 1 10533 << (unsigned)(Cand->Fix.Kind); 10534 10535 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10536 return; 10537 } 10538 10539 // Diagnose base -> derived pointer conversions. 10540 unsigned BaseToDerivedConversion = 0; 10541 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 10542 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 10543 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10544 FromPtrTy->getPointeeType()) && 10545 !FromPtrTy->getPointeeType()->isIncompleteType() && 10546 !ToPtrTy->getPointeeType()->isIncompleteType() && 10547 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), 10548 FromPtrTy->getPointeeType())) 10549 BaseToDerivedConversion = 1; 10550 } 10551 } else if (const ObjCObjectPointerType *FromPtrTy 10552 = FromTy->getAs<ObjCObjectPointerType>()) { 10553 if (const ObjCObjectPointerType *ToPtrTy 10554 = ToTy->getAs<ObjCObjectPointerType>()) 10555 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 10556 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 10557 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10558 FromPtrTy->getPointeeType()) && 10559 FromIface->isSuperClassOf(ToIface)) 10560 BaseToDerivedConversion = 2; 10561 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 10562 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 10563 !FromTy->isIncompleteType() && 10564 !ToRefTy->getPointeeType()->isIncompleteType() && 10565 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { 10566 BaseToDerivedConversion = 3; 10567 } 10568 } 10569 10570 if (BaseToDerivedConversion) { 10571 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) 10572 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10573 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10574 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1; 10575 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10576 return; 10577 } 10578 10579 if (isa<ObjCObjectPointerType>(CFromTy) && 10580 isa<PointerType>(CToTy)) { 10581 Qualifiers FromQs = CFromTy.getQualifiers(); 10582 Qualifiers ToQs = CToTy.getQualifiers(); 10583 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10584 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 10585 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10586 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10587 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1; 10588 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10589 return; 10590 } 10591 } 10592 10593 if (TakingCandidateAddress && 10594 !checkAddressOfCandidateIsAvailable(S, Cand->Function)) 10595 return; 10596 10597 // Emit the generic diagnostic and, optionally, add the hints to it. 10598 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 10599 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10600 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10601 << ToTy << (unsigned)isObjectArgument << I + 1 10602 << (unsigned)(Cand->Fix.Kind); 10603 10604 // If we can fix the conversion, suggest the FixIts. 10605 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), 10606 HE = Cand->Fix.Hints.end(); HI != HE; ++HI) 10607 FDiag << *HI; 10608 S.Diag(Fn->getLocation(), FDiag); 10609 10610 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10611 } 10612 10613 /// Additional arity mismatch diagnosis specific to a function overload 10614 /// candidates. This is not covered by the more general DiagnoseArityMismatch() 10615 /// over a candidate in any candidate set. 10616 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, 10617 unsigned NumArgs) { 10618 FunctionDecl *Fn = Cand->Function; 10619 unsigned MinParams = Fn->getMinRequiredArguments(); 10620 10621 // With invalid overloaded operators, it's possible that we think we 10622 // have an arity mismatch when in fact it looks like we have the 10623 // right number of arguments, because only overloaded operators have 10624 // the weird behavior of overloading member and non-member functions. 10625 // Just don't report anything. 10626 if (Fn->isInvalidDecl() && 10627 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 10628 return true; 10629 10630 if (NumArgs < MinParams) { 10631 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 10632 (Cand->FailureKind == ovl_fail_bad_deduction && 10633 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 10634 } else { 10635 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 10636 (Cand->FailureKind == ovl_fail_bad_deduction && 10637 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 10638 } 10639 10640 return false; 10641 } 10642 10643 /// General arity mismatch diagnosis over a candidate in a candidate set. 10644 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, 10645 unsigned NumFormalArgs) { 10646 assert(isa<FunctionDecl>(D) && 10647 "The templated declaration should at least be a function" 10648 " when diagnosing bad template argument deduction due to too many" 10649 " or too few arguments"); 10650 10651 FunctionDecl *Fn = cast<FunctionDecl>(D); 10652 10653 // TODO: treat calls to a missing default constructor as a special case 10654 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); 10655 unsigned MinParams = Fn->getMinRequiredArguments(); 10656 10657 // at least / at most / exactly 10658 unsigned mode, modeCount; 10659 if (NumFormalArgs < MinParams) { 10660 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || 10661 FnTy->isTemplateVariadic()) 10662 mode = 0; // "at least" 10663 else 10664 mode = 2; // "exactly" 10665 modeCount = MinParams; 10666 } else { 10667 if (MinParams != FnTy->getNumParams()) 10668 mode = 1; // "at most" 10669 else 10670 mode = 2; // "exactly" 10671 modeCount = FnTy->getNumParams(); 10672 } 10673 10674 std::string Description; 10675 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10676 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); 10677 10678 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) 10679 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) 10680 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10681 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs; 10682 else 10683 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 10684 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10685 << Description << mode << modeCount << NumFormalArgs; 10686 10687 MaybeEmitInheritedConstructorNote(S, Found); 10688 } 10689 10690 /// Arity mismatch diagnosis specific to a function overload candidate. 10691 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 10692 unsigned NumFormalArgs) { 10693 if (!CheckArityMismatch(S, Cand, NumFormalArgs)) 10694 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); 10695 } 10696 10697 static TemplateDecl *getDescribedTemplate(Decl *Templated) { 10698 if (TemplateDecl *TD = Templated->getDescribedTemplate()) 10699 return TD; 10700 llvm_unreachable("Unsupported: Getting the described template declaration" 10701 " for bad deduction diagnosis"); 10702 } 10703 10704 /// Diagnose a failed template-argument deduction. 10705 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, 10706 DeductionFailureInfo &DeductionFailure, 10707 unsigned NumArgs, 10708 bool TakingCandidateAddress) { 10709 TemplateParameter Param = DeductionFailure.getTemplateParameter(); 10710 NamedDecl *ParamD; 10711 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 10712 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 10713 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 10714 switch (DeductionFailure.Result) { 10715 case Sema::TDK_Success: 10716 llvm_unreachable("TDK_success while diagnosing bad deduction"); 10717 10718 case Sema::TDK_Incomplete: { 10719 assert(ParamD && "no parameter found for incomplete deduction result"); 10720 S.Diag(Templated->getLocation(), 10721 diag::note_ovl_candidate_incomplete_deduction) 10722 << ParamD->getDeclName(); 10723 MaybeEmitInheritedConstructorNote(S, Found); 10724 return; 10725 } 10726 10727 case Sema::TDK_IncompletePack: { 10728 assert(ParamD && "no parameter found for incomplete deduction result"); 10729 S.Diag(Templated->getLocation(), 10730 diag::note_ovl_candidate_incomplete_deduction_pack) 10731 << ParamD->getDeclName() 10732 << (DeductionFailure.getFirstArg()->pack_size() + 1) 10733 << *DeductionFailure.getFirstArg(); 10734 MaybeEmitInheritedConstructorNote(S, Found); 10735 return; 10736 } 10737 10738 case Sema::TDK_Underqualified: { 10739 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 10740 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 10741 10742 QualType Param = DeductionFailure.getFirstArg()->getAsType(); 10743 10744 // Param will have been canonicalized, but it should just be a 10745 // qualified version of ParamD, so move the qualifiers to that. 10746 QualifierCollector Qs; 10747 Qs.strip(Param); 10748 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 10749 assert(S.Context.hasSameType(Param, NonCanonParam)); 10750 10751 // Arg has also been canonicalized, but there's nothing we can do 10752 // about that. It also doesn't matter as much, because it won't 10753 // have any template parameters in it (because deduction isn't 10754 // done on dependent types). 10755 QualType Arg = DeductionFailure.getSecondArg()->getAsType(); 10756 10757 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) 10758 << ParamD->getDeclName() << Arg << NonCanonParam; 10759 MaybeEmitInheritedConstructorNote(S, Found); 10760 return; 10761 } 10762 10763 case Sema::TDK_Inconsistent: { 10764 assert(ParamD && "no parameter found for inconsistent deduction result"); 10765 int which = 0; 10766 if (isa<TemplateTypeParmDecl>(ParamD)) 10767 which = 0; 10768 else if (isa<NonTypeTemplateParmDecl>(ParamD)) { 10769 // Deduction might have failed because we deduced arguments of two 10770 // different types for a non-type template parameter. 10771 // FIXME: Use a different TDK value for this. 10772 QualType T1 = 10773 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); 10774 QualType T2 = 10775 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); 10776 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { 10777 S.Diag(Templated->getLocation(), 10778 diag::note_ovl_candidate_inconsistent_deduction_types) 10779 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 10780 << *DeductionFailure.getSecondArg() << T2; 10781 MaybeEmitInheritedConstructorNote(S, Found); 10782 return; 10783 } 10784 10785 which = 1; 10786 } else { 10787 which = 2; 10788 } 10789 10790 // Tweak the diagnostic if the problem is that we deduced packs of 10791 // different arities. We'll print the actual packs anyway in case that 10792 // includes additional useful information. 10793 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && 10794 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && 10795 DeductionFailure.getFirstArg()->pack_size() != 10796 DeductionFailure.getSecondArg()->pack_size()) { 10797 which = 3; 10798 } 10799 10800 S.Diag(Templated->getLocation(), 10801 diag::note_ovl_candidate_inconsistent_deduction) 10802 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() 10803 << *DeductionFailure.getSecondArg(); 10804 MaybeEmitInheritedConstructorNote(S, Found); 10805 return; 10806 } 10807 10808 case Sema::TDK_InvalidExplicitArguments: 10809 assert(ParamD && "no parameter found for invalid explicit arguments"); 10810 if (ParamD->getDeclName()) 10811 S.Diag(Templated->getLocation(), 10812 diag::note_ovl_candidate_explicit_arg_mismatch_named) 10813 << ParamD->getDeclName(); 10814 else { 10815 int index = 0; 10816 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 10817 index = TTP->getIndex(); 10818 else if (NonTypeTemplateParmDecl *NTTP 10819 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 10820 index = NTTP->getIndex(); 10821 else 10822 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 10823 S.Diag(Templated->getLocation(), 10824 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 10825 << (index + 1); 10826 } 10827 MaybeEmitInheritedConstructorNote(S, Found); 10828 return; 10829 10830 case Sema::TDK_ConstraintsNotSatisfied: { 10831 // Format the template argument list into the argument string. 10832 SmallString<128> TemplateArgString; 10833 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); 10834 TemplateArgString = " "; 10835 TemplateArgString += S.getTemplateArgumentBindingsText( 10836 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10837 if (TemplateArgString.size() == 1) 10838 TemplateArgString.clear(); 10839 S.Diag(Templated->getLocation(), 10840 diag::note_ovl_candidate_unsatisfied_constraints) 10841 << TemplateArgString; 10842 10843 S.DiagnoseUnsatisfiedConstraint( 10844 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); 10845 return; 10846 } 10847 case Sema::TDK_TooManyArguments: 10848 case Sema::TDK_TooFewArguments: 10849 DiagnoseArityMismatch(S, Found, Templated, NumArgs); 10850 return; 10851 10852 case Sema::TDK_InstantiationDepth: 10853 S.Diag(Templated->getLocation(), 10854 diag::note_ovl_candidate_instantiation_depth); 10855 MaybeEmitInheritedConstructorNote(S, Found); 10856 return; 10857 10858 case Sema::TDK_SubstitutionFailure: { 10859 // Format the template argument list into the argument string. 10860 SmallString<128> TemplateArgString; 10861 if (TemplateArgumentList *Args = 10862 DeductionFailure.getTemplateArgumentList()) { 10863 TemplateArgString = " "; 10864 TemplateArgString += S.getTemplateArgumentBindingsText( 10865 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10866 if (TemplateArgString.size() == 1) 10867 TemplateArgString.clear(); 10868 } 10869 10870 // If this candidate was disabled by enable_if, say so. 10871 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); 10872 if (PDiag && PDiag->second.getDiagID() == 10873 diag::err_typename_nested_not_found_enable_if) { 10874 // FIXME: Use the source range of the condition, and the fully-qualified 10875 // name of the enable_if template. These are both present in PDiag. 10876 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) 10877 << "'enable_if'" << TemplateArgString; 10878 return; 10879 } 10880 10881 // We found a specific requirement that disabled the enable_if. 10882 if (PDiag && PDiag->second.getDiagID() == 10883 diag::err_typename_nested_not_found_requirement) { 10884 S.Diag(Templated->getLocation(), 10885 diag::note_ovl_candidate_disabled_by_requirement) 10886 << PDiag->second.getStringArg(0) << TemplateArgString; 10887 return; 10888 } 10889 10890 // Format the SFINAE diagnostic into the argument string. 10891 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s 10892 // formatted message in another diagnostic. 10893 SmallString<128> SFINAEArgString; 10894 SourceRange R; 10895 if (PDiag) { 10896 SFINAEArgString = ": "; 10897 R = SourceRange(PDiag->first, PDiag->first); 10898 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); 10899 } 10900 10901 S.Diag(Templated->getLocation(), 10902 diag::note_ovl_candidate_substitution_failure) 10903 << TemplateArgString << SFINAEArgString << R; 10904 MaybeEmitInheritedConstructorNote(S, Found); 10905 return; 10906 } 10907 10908 case Sema::TDK_DeducedMismatch: 10909 case Sema::TDK_DeducedMismatchNested: { 10910 // Format the template argument list into the argument string. 10911 SmallString<128> TemplateArgString; 10912 if (TemplateArgumentList *Args = 10913 DeductionFailure.getTemplateArgumentList()) { 10914 TemplateArgString = " "; 10915 TemplateArgString += S.getTemplateArgumentBindingsText( 10916 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10917 if (TemplateArgString.size() == 1) 10918 TemplateArgString.clear(); 10919 } 10920 10921 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) 10922 << (*DeductionFailure.getCallArgIndex() + 1) 10923 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() 10924 << TemplateArgString 10925 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); 10926 break; 10927 } 10928 10929 case Sema::TDK_NonDeducedMismatch: { 10930 // FIXME: Provide a source location to indicate what we couldn't match. 10931 TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); 10932 TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); 10933 if (FirstTA.getKind() == TemplateArgument::Template && 10934 SecondTA.getKind() == TemplateArgument::Template) { 10935 TemplateName FirstTN = FirstTA.getAsTemplate(); 10936 TemplateName SecondTN = SecondTA.getAsTemplate(); 10937 if (FirstTN.getKind() == TemplateName::Template && 10938 SecondTN.getKind() == TemplateName::Template) { 10939 if (FirstTN.getAsTemplateDecl()->getName() == 10940 SecondTN.getAsTemplateDecl()->getName()) { 10941 // FIXME: This fixes a bad diagnostic where both templates are named 10942 // the same. This particular case is a bit difficult since: 10943 // 1) It is passed as a string to the diagnostic printer. 10944 // 2) The diagnostic printer only attempts to find a better 10945 // name for types, not decls. 10946 // Ideally, this should folded into the diagnostic printer. 10947 S.Diag(Templated->getLocation(), 10948 diag::note_ovl_candidate_non_deduced_mismatch_qualified) 10949 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); 10950 return; 10951 } 10952 } 10953 } 10954 10955 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && 10956 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) 10957 return; 10958 10959 // FIXME: For generic lambda parameters, check if the function is a lambda 10960 // call operator, and if so, emit a prettier and more informative 10961 // diagnostic that mentions 'auto' and lambda in addition to 10962 // (or instead of?) the canonical template type parameters. 10963 S.Diag(Templated->getLocation(), 10964 diag::note_ovl_candidate_non_deduced_mismatch) 10965 << FirstTA << SecondTA; 10966 return; 10967 } 10968 // TODO: diagnose these individually, then kill off 10969 // note_ovl_candidate_bad_deduction, which is uselessly vague. 10970 case Sema::TDK_MiscellaneousDeductionFailure: 10971 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); 10972 MaybeEmitInheritedConstructorNote(S, Found); 10973 return; 10974 case Sema::TDK_CUDATargetMismatch: 10975 S.Diag(Templated->getLocation(), 10976 diag::note_cuda_ovl_candidate_target_mismatch); 10977 return; 10978 } 10979 } 10980 10981 /// Diagnose a failed template-argument deduction, for function calls. 10982 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 10983 unsigned NumArgs, 10984 bool TakingCandidateAddress) { 10985 unsigned TDK = Cand->DeductionFailure.Result; 10986 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { 10987 if (CheckArityMismatch(S, Cand, NumArgs)) 10988 return; 10989 } 10990 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern 10991 Cand->DeductionFailure, NumArgs, TakingCandidateAddress); 10992 } 10993 10994 /// CUDA: diagnose an invalid call across targets. 10995 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 10996 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 10997 FunctionDecl *Callee = Cand->Function; 10998 10999 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 11000 CalleeTarget = S.IdentifyCUDATarget(Callee); 11001 11002 std::string FnDesc; 11003 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11004 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, 11005 Cand->getRewriteKind(), FnDesc); 11006 11007 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 11008 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11009 << FnDesc /* Ignored */ 11010 << CalleeTarget << CallerTarget; 11011 11012 // This could be an implicit constructor for which we could not infer the 11013 // target due to a collsion. Diagnose that case. 11014 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); 11015 if (Meth != nullptr && Meth->isImplicit()) { 11016 CXXRecordDecl *ParentClass = Meth->getParent(); 11017 Sema::CXXSpecialMember CSM; 11018 11019 switch (FnKindPair.first) { 11020 default: 11021 return; 11022 case oc_implicit_default_constructor: 11023 CSM = Sema::CXXDefaultConstructor; 11024 break; 11025 case oc_implicit_copy_constructor: 11026 CSM = Sema::CXXCopyConstructor; 11027 break; 11028 case oc_implicit_move_constructor: 11029 CSM = Sema::CXXMoveConstructor; 11030 break; 11031 case oc_implicit_copy_assignment: 11032 CSM = Sema::CXXCopyAssignment; 11033 break; 11034 case oc_implicit_move_assignment: 11035 CSM = Sema::CXXMoveAssignment; 11036 break; 11037 }; 11038 11039 bool ConstRHS = false; 11040 if (Meth->getNumParams()) { 11041 if (const ReferenceType *RT = 11042 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { 11043 ConstRHS = RT->getPointeeType().isConstQualified(); 11044 } 11045 } 11046 11047 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, 11048 /* ConstRHS */ ConstRHS, 11049 /* Diagnose */ true); 11050 } 11051 } 11052 11053 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { 11054 FunctionDecl *Callee = Cand->Function; 11055 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); 11056 11057 S.Diag(Callee->getLocation(), 11058 diag::note_ovl_candidate_disabled_by_function_cond_attr) 11059 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 11060 } 11061 11062 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { 11063 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); 11064 assert(ES.isExplicit() && "not an explicit candidate"); 11065 11066 unsigned Kind; 11067 switch (Cand->Function->getDeclKind()) { 11068 case Decl::Kind::CXXConstructor: 11069 Kind = 0; 11070 break; 11071 case Decl::Kind::CXXConversion: 11072 Kind = 1; 11073 break; 11074 case Decl::Kind::CXXDeductionGuide: 11075 Kind = Cand->Function->isImplicit() ? 0 : 2; 11076 break; 11077 default: 11078 llvm_unreachable("invalid Decl"); 11079 } 11080 11081 // Note the location of the first (in-class) declaration; a redeclaration 11082 // (particularly an out-of-class definition) will typically lack the 11083 // 'explicit' specifier. 11084 // FIXME: This is probably a good thing to do for all 'candidate' notes. 11085 FunctionDecl *First = Cand->Function->getFirstDecl(); 11086 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) 11087 First = Pattern->getFirstDecl(); 11088 11089 S.Diag(First->getLocation(), 11090 diag::note_ovl_candidate_explicit) 11091 << Kind << (ES.getExpr() ? 1 : 0) 11092 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); 11093 } 11094 11095 static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) { 11096 FunctionDecl *Callee = Cand->Function; 11097 11098 S.Diag(Callee->getLocation(), 11099 diag::note_ovl_candidate_disabled_by_extension) 11100 << S.getOpenCLExtensionsFromDeclExtMap(Callee); 11101 } 11102 11103 /// Generates a 'note' diagnostic for an overload candidate. We've 11104 /// already generated a primary error at the call site. 11105 /// 11106 /// It really does need to be a single diagnostic with its caret 11107 /// pointed at the candidate declaration. Yes, this creates some 11108 /// major challenges of technical writing. Yes, this makes pointing 11109 /// out problems with specific arguments quite awkward. It's still 11110 /// better than generating twenty screens of text for every failed 11111 /// overload. 11112 /// 11113 /// It would be great to be able to express per-candidate problems 11114 /// more richly for those diagnostic clients that cared, but we'd 11115 /// still have to be just as careful with the default diagnostics. 11116 /// \param CtorDestAS Addr space of object being constructed (for ctor 11117 /// candidates only). 11118 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 11119 unsigned NumArgs, 11120 bool TakingCandidateAddress, 11121 LangAS CtorDestAS = LangAS::Default) { 11122 FunctionDecl *Fn = Cand->Function; 11123 if (shouldSkipNotingLambdaConversionDecl(Fn)) 11124 return; 11125 11126 // Note deleted candidates, but only if they're viable. 11127 if (Cand->Viable) { 11128 if (Fn->isDeleted()) { 11129 std::string FnDesc; 11130 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11131 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11132 Cand->getRewriteKind(), FnDesc); 11133 11134 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 11135 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 11136 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); 11137 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11138 return; 11139 } 11140 11141 // We don't really have anything else to say about viable candidates. 11142 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11143 return; 11144 } 11145 11146 switch (Cand->FailureKind) { 11147 case ovl_fail_too_many_arguments: 11148 case ovl_fail_too_few_arguments: 11149 return DiagnoseArityMismatch(S, Cand, NumArgs); 11150 11151 case ovl_fail_bad_deduction: 11152 return DiagnoseBadDeduction(S, Cand, NumArgs, 11153 TakingCandidateAddress); 11154 11155 case ovl_fail_illegal_constructor: { 11156 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) 11157 << (Fn->getPrimaryTemplate() ? 1 : 0); 11158 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11159 return; 11160 } 11161 11162 case ovl_fail_object_addrspace_mismatch: { 11163 Qualifiers QualsForPrinting; 11164 QualsForPrinting.setAddressSpace(CtorDestAS); 11165 S.Diag(Fn->getLocation(), 11166 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) 11167 << QualsForPrinting; 11168 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11169 return; 11170 } 11171 11172 case ovl_fail_trivial_conversion: 11173 case ovl_fail_bad_final_conversion: 11174 case ovl_fail_final_conversion_not_exact: 11175 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11176 11177 case ovl_fail_bad_conversion: { 11178 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 11179 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 11180 if (Cand->Conversions[I].isBad()) 11181 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); 11182 11183 // FIXME: this currently happens when we're called from SemaInit 11184 // when user-conversion overload fails. Figure out how to handle 11185 // those conditions and diagnose them well. 11186 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11187 } 11188 11189 case ovl_fail_bad_target: 11190 return DiagnoseBadTarget(S, Cand); 11191 11192 case ovl_fail_enable_if: 11193 return DiagnoseFailedEnableIfAttr(S, Cand); 11194 11195 case ovl_fail_explicit: 11196 return DiagnoseFailedExplicitSpec(S, Cand); 11197 11198 case ovl_fail_ext_disabled: 11199 return DiagnoseOpenCLExtensionDisabled(S, Cand); 11200 11201 case ovl_fail_inhctor_slice: 11202 // It's generally not interesting to note copy/move constructors here. 11203 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) 11204 return; 11205 S.Diag(Fn->getLocation(), 11206 diag::note_ovl_candidate_inherited_constructor_slice) 11207 << (Fn->getPrimaryTemplate() ? 1 : 0) 11208 << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); 11209 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11210 return; 11211 11212 case ovl_fail_addr_not_available: { 11213 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); 11214 (void)Available; 11215 assert(!Available); 11216 break; 11217 } 11218 case ovl_non_default_multiversion_function: 11219 // Do nothing, these should simply be ignored. 11220 break; 11221 11222 case ovl_fail_constraints_not_satisfied: { 11223 std::string FnDesc; 11224 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11225 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11226 Cand->getRewriteKind(), FnDesc); 11227 11228 S.Diag(Fn->getLocation(), 11229 diag::note_ovl_candidate_constraints_not_satisfied) 11230 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11231 << FnDesc /* Ignored */; 11232 ConstraintSatisfaction Satisfaction; 11233 if (S.CheckFunctionConstraints(Fn, Satisfaction)) 11234 break; 11235 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 11236 } 11237 } 11238 } 11239 11240 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 11241 if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) 11242 return; 11243 11244 // Desugar the type of the surrogate down to a function type, 11245 // retaining as many typedefs as possible while still showing 11246 // the function type (and, therefore, its parameter types). 11247 QualType FnType = Cand->Surrogate->getConversionType(); 11248 bool isLValueReference = false; 11249 bool isRValueReference = false; 11250 bool isPointer = false; 11251 if (const LValueReferenceType *FnTypeRef = 11252 FnType->getAs<LValueReferenceType>()) { 11253 FnType = FnTypeRef->getPointeeType(); 11254 isLValueReference = true; 11255 } else if (const RValueReferenceType *FnTypeRef = 11256 FnType->getAs<RValueReferenceType>()) { 11257 FnType = FnTypeRef->getPointeeType(); 11258 isRValueReference = true; 11259 } 11260 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 11261 FnType = FnTypePtr->getPointeeType(); 11262 isPointer = true; 11263 } 11264 // Desugar down to a function type. 11265 FnType = QualType(FnType->getAs<FunctionType>(), 0); 11266 // Reconstruct the pointer/reference as appropriate. 11267 if (isPointer) FnType = S.Context.getPointerType(FnType); 11268 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 11269 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 11270 11271 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 11272 << FnType; 11273 } 11274 11275 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, 11276 SourceLocation OpLoc, 11277 OverloadCandidate *Cand) { 11278 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 11279 std::string TypeStr("operator"); 11280 TypeStr += Opc; 11281 TypeStr += "("; 11282 TypeStr += Cand->BuiltinParamTypes[0].getAsString(); 11283 if (Cand->Conversions.size() == 1) { 11284 TypeStr += ")"; 11285 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11286 } else { 11287 TypeStr += ", "; 11288 TypeStr += Cand->BuiltinParamTypes[1].getAsString(); 11289 TypeStr += ")"; 11290 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11291 } 11292 } 11293 11294 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 11295 OverloadCandidate *Cand) { 11296 for (const ImplicitConversionSequence &ICS : Cand->Conversions) { 11297 if (ICS.isBad()) break; // all meaningless after first invalid 11298 if (!ICS.isAmbiguous()) continue; 11299 11300 ICS.DiagnoseAmbiguousConversion( 11301 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); 11302 } 11303 } 11304 11305 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 11306 if (Cand->Function) 11307 return Cand->Function->getLocation(); 11308 if (Cand->IsSurrogate) 11309 return Cand->Surrogate->getLocation(); 11310 return SourceLocation(); 11311 } 11312 11313 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { 11314 switch ((Sema::TemplateDeductionResult)DFI.Result) { 11315 case Sema::TDK_Success: 11316 case Sema::TDK_NonDependentConversionFailure: 11317 llvm_unreachable("non-deduction failure while diagnosing bad deduction"); 11318 11319 case Sema::TDK_Invalid: 11320 case Sema::TDK_Incomplete: 11321 case Sema::TDK_IncompletePack: 11322 return 1; 11323 11324 case Sema::TDK_Underqualified: 11325 case Sema::TDK_Inconsistent: 11326 return 2; 11327 11328 case Sema::TDK_SubstitutionFailure: 11329 case Sema::TDK_DeducedMismatch: 11330 case Sema::TDK_ConstraintsNotSatisfied: 11331 case Sema::TDK_DeducedMismatchNested: 11332 case Sema::TDK_NonDeducedMismatch: 11333 case Sema::TDK_MiscellaneousDeductionFailure: 11334 case Sema::TDK_CUDATargetMismatch: 11335 return 3; 11336 11337 case Sema::TDK_InstantiationDepth: 11338 return 4; 11339 11340 case Sema::TDK_InvalidExplicitArguments: 11341 return 5; 11342 11343 case Sema::TDK_TooManyArguments: 11344 case Sema::TDK_TooFewArguments: 11345 return 6; 11346 } 11347 llvm_unreachable("Unhandled deduction result"); 11348 } 11349 11350 namespace { 11351 struct CompareOverloadCandidatesForDisplay { 11352 Sema &S; 11353 SourceLocation Loc; 11354 size_t NumArgs; 11355 OverloadCandidateSet::CandidateSetKind CSK; 11356 11357 CompareOverloadCandidatesForDisplay( 11358 Sema &S, SourceLocation Loc, size_t NArgs, 11359 OverloadCandidateSet::CandidateSetKind CSK) 11360 : S(S), NumArgs(NArgs), CSK(CSK) {} 11361 11362 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { 11363 // If there are too many or too few arguments, that's the high-order bit we 11364 // want to sort by, even if the immediate failure kind was something else. 11365 if (C->FailureKind == ovl_fail_too_many_arguments || 11366 C->FailureKind == ovl_fail_too_few_arguments) 11367 return static_cast<OverloadFailureKind>(C->FailureKind); 11368 11369 if (C->Function) { 11370 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) 11371 return ovl_fail_too_many_arguments; 11372 if (NumArgs < C->Function->getMinRequiredArguments()) 11373 return ovl_fail_too_few_arguments; 11374 } 11375 11376 return static_cast<OverloadFailureKind>(C->FailureKind); 11377 } 11378 11379 bool operator()(const OverloadCandidate *L, 11380 const OverloadCandidate *R) { 11381 // Fast-path this check. 11382 if (L == R) return false; 11383 11384 // Order first by viability. 11385 if (L->Viable) { 11386 if (!R->Viable) return true; 11387 11388 // TODO: introduce a tri-valued comparison for overload 11389 // candidates. Would be more worthwhile if we had a sort 11390 // that could exploit it. 11391 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK)) 11392 return true; 11393 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK)) 11394 return false; 11395 } else if (R->Viable) 11396 return false; 11397 11398 assert(L->Viable == R->Viable); 11399 11400 // Criteria by which we can sort non-viable candidates: 11401 if (!L->Viable) { 11402 OverloadFailureKind LFailureKind = EffectiveFailureKind(L); 11403 OverloadFailureKind RFailureKind = EffectiveFailureKind(R); 11404 11405 // 1. Arity mismatches come after other candidates. 11406 if (LFailureKind == ovl_fail_too_many_arguments || 11407 LFailureKind == ovl_fail_too_few_arguments) { 11408 if (RFailureKind == ovl_fail_too_many_arguments || 11409 RFailureKind == ovl_fail_too_few_arguments) { 11410 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); 11411 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); 11412 if (LDist == RDist) { 11413 if (LFailureKind == RFailureKind) 11414 // Sort non-surrogates before surrogates. 11415 return !L->IsSurrogate && R->IsSurrogate; 11416 // Sort candidates requiring fewer parameters than there were 11417 // arguments given after candidates requiring more parameters 11418 // than there were arguments given. 11419 return LFailureKind == ovl_fail_too_many_arguments; 11420 } 11421 return LDist < RDist; 11422 } 11423 return false; 11424 } 11425 if (RFailureKind == ovl_fail_too_many_arguments || 11426 RFailureKind == ovl_fail_too_few_arguments) 11427 return true; 11428 11429 // 2. Bad conversions come first and are ordered by the number 11430 // of bad conversions and quality of good conversions. 11431 if (LFailureKind == ovl_fail_bad_conversion) { 11432 if (RFailureKind != ovl_fail_bad_conversion) 11433 return true; 11434 11435 // The conversion that can be fixed with a smaller number of changes, 11436 // comes first. 11437 unsigned numLFixes = L->Fix.NumConversionsFixed; 11438 unsigned numRFixes = R->Fix.NumConversionsFixed; 11439 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 11440 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 11441 if (numLFixes != numRFixes) { 11442 return numLFixes < numRFixes; 11443 } 11444 11445 // If there's any ordering between the defined conversions... 11446 // FIXME: this might not be transitive. 11447 assert(L->Conversions.size() == R->Conversions.size()); 11448 11449 int leftBetter = 0; 11450 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 11451 for (unsigned E = L->Conversions.size(); I != E; ++I) { 11452 switch (CompareImplicitConversionSequences(S, Loc, 11453 L->Conversions[I], 11454 R->Conversions[I])) { 11455 case ImplicitConversionSequence::Better: 11456 leftBetter++; 11457 break; 11458 11459 case ImplicitConversionSequence::Worse: 11460 leftBetter--; 11461 break; 11462 11463 case ImplicitConversionSequence::Indistinguishable: 11464 break; 11465 } 11466 } 11467 if (leftBetter > 0) return true; 11468 if (leftBetter < 0) return false; 11469 11470 } else if (RFailureKind == ovl_fail_bad_conversion) 11471 return false; 11472 11473 if (LFailureKind == ovl_fail_bad_deduction) { 11474 if (RFailureKind != ovl_fail_bad_deduction) 11475 return true; 11476 11477 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11478 return RankDeductionFailure(L->DeductionFailure) 11479 < RankDeductionFailure(R->DeductionFailure); 11480 } else if (RFailureKind == ovl_fail_bad_deduction) 11481 return false; 11482 11483 // TODO: others? 11484 } 11485 11486 // Sort everything else by location. 11487 SourceLocation LLoc = GetLocationForCandidate(L); 11488 SourceLocation RLoc = GetLocationForCandidate(R); 11489 11490 // Put candidates without locations (e.g. builtins) at the end. 11491 if (LLoc.isInvalid()) return false; 11492 if (RLoc.isInvalid()) return true; 11493 11494 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11495 } 11496 }; 11497 } 11498 11499 /// CompleteNonViableCandidate - Normally, overload resolution only 11500 /// computes up to the first bad conversion. Produces the FixIt set if 11501 /// possible. 11502 static void 11503 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 11504 ArrayRef<Expr *> Args, 11505 OverloadCandidateSet::CandidateSetKind CSK) { 11506 assert(!Cand->Viable); 11507 11508 // Don't do anything on failures other than bad conversion. 11509 if (Cand->FailureKind != ovl_fail_bad_conversion) 11510 return; 11511 11512 // We only want the FixIts if all the arguments can be corrected. 11513 bool Unfixable = false; 11514 // Use a implicit copy initialization to check conversion fixes. 11515 Cand->Fix.setConversionChecker(TryCopyInitialization); 11516 11517 // Attempt to fix the bad conversion. 11518 unsigned ConvCount = Cand->Conversions.size(); 11519 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; 11520 ++ConvIdx) { 11521 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 11522 if (Cand->Conversions[ConvIdx].isInitialized() && 11523 Cand->Conversions[ConvIdx].isBad()) { 11524 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11525 break; 11526 } 11527 } 11528 11529 // FIXME: this should probably be preserved from the overload 11530 // operation somehow. 11531 bool SuppressUserConversions = false; 11532 11533 unsigned ConvIdx = 0; 11534 unsigned ArgIdx = 0; 11535 ArrayRef<QualType> ParamTypes; 11536 bool Reversed = Cand->isReversed(); 11537 11538 if (Cand->IsSurrogate) { 11539 QualType ConvType 11540 = Cand->Surrogate->getConversionType().getNonReferenceType(); 11541 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 11542 ConvType = ConvPtrType->getPointeeType(); 11543 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); 11544 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11545 ConvIdx = 1; 11546 } else if (Cand->Function) { 11547 ParamTypes = 11548 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); 11549 if (isa<CXXMethodDecl>(Cand->Function) && 11550 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) { 11551 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11552 ConvIdx = 1; 11553 if (CSK == OverloadCandidateSet::CSK_Operator && 11554 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call) 11555 // Argument 0 is 'this', which doesn't have a corresponding parameter. 11556 ArgIdx = 1; 11557 } 11558 } else { 11559 // Builtin operator. 11560 assert(ConvCount <= 3); 11561 ParamTypes = Cand->BuiltinParamTypes; 11562 } 11563 11564 // Fill in the rest of the conversions. 11565 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; 11566 ConvIdx != ConvCount; 11567 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { 11568 assert(ArgIdx < Args.size() && "no argument for this arg conversion"); 11569 if (Cand->Conversions[ConvIdx].isInitialized()) { 11570 // We've already checked this conversion. 11571 } else if (ParamIdx < ParamTypes.size()) { 11572 if (ParamTypes[ParamIdx]->isDependentType()) 11573 Cand->Conversions[ConvIdx].setAsIdentityConversion( 11574 Args[ArgIdx]->getType()); 11575 else { 11576 Cand->Conversions[ConvIdx] = 11577 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], 11578 SuppressUserConversions, 11579 /*InOverloadResolution=*/true, 11580 /*AllowObjCWritebackConversion=*/ 11581 S.getLangOpts().ObjCAutoRefCount); 11582 // Store the FixIt in the candidate if it exists. 11583 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 11584 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11585 } 11586 } else 11587 Cand->Conversions[ConvIdx].setEllipsis(); 11588 } 11589 } 11590 11591 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( 11592 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 11593 SourceLocation OpLoc, 11594 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11595 // Sort the candidates by viability and position. Sorting directly would 11596 // be prohibitive, so we make a set of pointers and sort those. 11597 SmallVector<OverloadCandidate*, 32> Cands; 11598 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 11599 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11600 if (!Filter(*Cand)) 11601 continue; 11602 switch (OCD) { 11603 case OCD_AllCandidates: 11604 if (!Cand->Viable) { 11605 if (!Cand->Function && !Cand->IsSurrogate) { 11606 // This a non-viable builtin candidate. We do not, in general, 11607 // want to list every possible builtin candidate. 11608 continue; 11609 } 11610 CompleteNonViableCandidate(S, Cand, Args, Kind); 11611 } 11612 break; 11613 11614 case OCD_ViableCandidates: 11615 if (!Cand->Viable) 11616 continue; 11617 break; 11618 11619 case OCD_AmbiguousCandidates: 11620 if (!Cand->Best) 11621 continue; 11622 break; 11623 } 11624 11625 Cands.push_back(Cand); 11626 } 11627 11628 llvm::stable_sort( 11629 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); 11630 11631 return Cands; 11632 } 11633 11634 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, 11635 SourceLocation OpLoc) { 11636 bool DeferHint = false; 11637 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { 11638 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or 11639 // host device candidates. 11640 auto WrongSidedCands = 11641 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { 11642 return (Cand.Viable == false && 11643 Cand.FailureKind == ovl_fail_bad_target) || 11644 (Cand.Function->template hasAttr<CUDAHostAttr>() && 11645 Cand.Function->template hasAttr<CUDADeviceAttr>()); 11646 }); 11647 DeferHint = WrongSidedCands.size(); 11648 } 11649 return DeferHint; 11650 } 11651 11652 /// When overload resolution fails, prints diagnostic messages containing the 11653 /// candidates in the candidate set. 11654 void OverloadCandidateSet::NoteCandidates( 11655 PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, 11656 ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, 11657 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11658 11659 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); 11660 11661 S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); 11662 11663 NoteCandidates(S, Args, Cands, Opc, OpLoc); 11664 11665 if (OCD == OCD_AmbiguousCandidates) 11666 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); 11667 } 11668 11669 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, 11670 ArrayRef<OverloadCandidate *> Cands, 11671 StringRef Opc, SourceLocation OpLoc) { 11672 bool ReportedAmbiguousConversions = false; 11673 11674 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11675 unsigned CandsShown = 0; 11676 auto I = Cands.begin(), E = Cands.end(); 11677 for (; I != E; ++I) { 11678 OverloadCandidate *Cand = *I; 11679 11680 // Set an arbitrary limit on the number of candidate functions we'll spam 11681 // the user with. FIXME: This limit should depend on details of the 11682 // candidate list. 11683 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) { 11684 break; 11685 } 11686 ++CandsShown; 11687 11688 if (Cand->Function) 11689 NoteFunctionCandidate(S, Cand, Args.size(), 11690 /*TakingCandidateAddress=*/false, DestAS); 11691 else if (Cand->IsSurrogate) 11692 NoteSurrogateCandidate(S, Cand); 11693 else { 11694 assert(Cand->Viable && 11695 "Non-viable built-in candidates are not added to Cands."); 11696 // Generally we only see ambiguities including viable builtin 11697 // operators if overload resolution got screwed up by an 11698 // ambiguous user-defined conversion. 11699 // 11700 // FIXME: It's quite possible for different conversions to see 11701 // different ambiguities, though. 11702 if (!ReportedAmbiguousConversions) { 11703 NoteAmbiguousUserConversions(S, OpLoc, Cand); 11704 ReportedAmbiguousConversions = true; 11705 } 11706 11707 // If this is a viable builtin, print it. 11708 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 11709 } 11710 } 11711 11712 if (I != E) 11713 S.Diag(OpLoc, diag::note_ovl_too_many_candidates, 11714 shouldDeferDiags(S, Args, OpLoc)) 11715 << int(E - I); 11716 } 11717 11718 static SourceLocation 11719 GetLocationForCandidate(const TemplateSpecCandidate *Cand) { 11720 return Cand->Specialization ? Cand->Specialization->getLocation() 11721 : SourceLocation(); 11722 } 11723 11724 namespace { 11725 struct CompareTemplateSpecCandidatesForDisplay { 11726 Sema &S; 11727 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} 11728 11729 bool operator()(const TemplateSpecCandidate *L, 11730 const TemplateSpecCandidate *R) { 11731 // Fast-path this check. 11732 if (L == R) 11733 return false; 11734 11735 // Assuming that both candidates are not matches... 11736 11737 // Sort by the ranking of deduction failures. 11738 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11739 return RankDeductionFailure(L->DeductionFailure) < 11740 RankDeductionFailure(R->DeductionFailure); 11741 11742 // Sort everything else by location. 11743 SourceLocation LLoc = GetLocationForCandidate(L); 11744 SourceLocation RLoc = GetLocationForCandidate(R); 11745 11746 // Put candidates without locations (e.g. builtins) at the end. 11747 if (LLoc.isInvalid()) 11748 return false; 11749 if (RLoc.isInvalid()) 11750 return true; 11751 11752 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11753 } 11754 }; 11755 } 11756 11757 /// Diagnose a template argument deduction failure. 11758 /// We are treating these failures as overload failures due to bad 11759 /// deductions. 11760 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, 11761 bool ForTakingAddress) { 11762 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern 11763 DeductionFailure, /*NumArgs=*/0, ForTakingAddress); 11764 } 11765 11766 void TemplateSpecCandidateSet::destroyCandidates() { 11767 for (iterator i = begin(), e = end(); i != e; ++i) { 11768 i->DeductionFailure.Destroy(); 11769 } 11770 } 11771 11772 void TemplateSpecCandidateSet::clear() { 11773 destroyCandidates(); 11774 Candidates.clear(); 11775 } 11776 11777 /// NoteCandidates - When no template specialization match is found, prints 11778 /// diagnostic messages containing the non-matching specializations that form 11779 /// the candidate set. 11780 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with 11781 /// OCD == OCD_AllCandidates and Cand->Viable == false. 11782 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { 11783 // Sort the candidates by position (assuming no candidate is a match). 11784 // Sorting directly would be prohibitive, so we make a set of pointers 11785 // and sort those. 11786 SmallVector<TemplateSpecCandidate *, 32> Cands; 11787 Cands.reserve(size()); 11788 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11789 if (Cand->Specialization) 11790 Cands.push_back(Cand); 11791 // Otherwise, this is a non-matching builtin candidate. We do not, 11792 // in general, want to list every possible builtin candidate. 11793 } 11794 11795 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); 11796 11797 // FIXME: Perhaps rename OverloadsShown and getShowOverloads() 11798 // for generalization purposes (?). 11799 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11800 11801 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; 11802 unsigned CandsShown = 0; 11803 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 11804 TemplateSpecCandidate *Cand = *I; 11805 11806 // Set an arbitrary limit on the number of candidates we'll spam 11807 // the user with. FIXME: This limit should depend on details of the 11808 // candidate list. 11809 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 11810 break; 11811 ++CandsShown; 11812 11813 assert(Cand->Specialization && 11814 "Non-matching built-in candidates are not added to Cands."); 11815 Cand->NoteDeductionFailure(S, ForTakingAddress); 11816 } 11817 11818 if (I != E) 11819 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); 11820 } 11821 11822 // [PossiblyAFunctionType] --> [Return] 11823 // NonFunctionType --> NonFunctionType 11824 // R (A) --> R(A) 11825 // R (*)(A) --> R (A) 11826 // R (&)(A) --> R (A) 11827 // R (S::*)(A) --> R (A) 11828 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 11829 QualType Ret = PossiblyAFunctionType; 11830 if (const PointerType *ToTypePtr = 11831 PossiblyAFunctionType->getAs<PointerType>()) 11832 Ret = ToTypePtr->getPointeeType(); 11833 else if (const ReferenceType *ToTypeRef = 11834 PossiblyAFunctionType->getAs<ReferenceType>()) 11835 Ret = ToTypeRef->getPointeeType(); 11836 else if (const MemberPointerType *MemTypePtr = 11837 PossiblyAFunctionType->getAs<MemberPointerType>()) 11838 Ret = MemTypePtr->getPointeeType(); 11839 Ret = 11840 Context.getCanonicalType(Ret).getUnqualifiedType(); 11841 return Ret; 11842 } 11843 11844 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, 11845 bool Complain = true) { 11846 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && 11847 S.DeduceReturnType(FD, Loc, Complain)) 11848 return true; 11849 11850 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 11851 if (S.getLangOpts().CPlusPlus17 && 11852 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 11853 !S.ResolveExceptionSpec(Loc, FPT)) 11854 return true; 11855 11856 return false; 11857 } 11858 11859 namespace { 11860 // A helper class to help with address of function resolution 11861 // - allows us to avoid passing around all those ugly parameters 11862 class AddressOfFunctionResolver { 11863 Sema& S; 11864 Expr* SourceExpr; 11865 const QualType& TargetType; 11866 QualType TargetFunctionType; // Extracted function type from target type 11867 11868 bool Complain; 11869 //DeclAccessPair& ResultFunctionAccessPair; 11870 ASTContext& Context; 11871 11872 bool TargetTypeIsNonStaticMemberFunction; 11873 bool FoundNonTemplateFunction; 11874 bool StaticMemberFunctionFromBoundPointer; 11875 bool HasComplained; 11876 11877 OverloadExpr::FindResult OvlExprInfo; 11878 OverloadExpr *OvlExpr; 11879 TemplateArgumentListInfo OvlExplicitTemplateArgs; 11880 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 11881 TemplateSpecCandidateSet FailedCandidates; 11882 11883 public: 11884 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, 11885 const QualType &TargetType, bool Complain) 11886 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 11887 Complain(Complain), Context(S.getASTContext()), 11888 TargetTypeIsNonStaticMemberFunction( 11889 !!TargetType->getAs<MemberPointerType>()), 11890 FoundNonTemplateFunction(false), 11891 StaticMemberFunctionFromBoundPointer(false), 11892 HasComplained(false), 11893 OvlExprInfo(OverloadExpr::find(SourceExpr)), 11894 OvlExpr(OvlExprInfo.Expression), 11895 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { 11896 ExtractUnqualifiedFunctionTypeFromTargetType(); 11897 11898 if (TargetFunctionType->isFunctionType()) { 11899 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) 11900 if (!UME->isImplicitAccess() && 11901 !S.ResolveSingleFunctionTemplateSpecialization(UME)) 11902 StaticMemberFunctionFromBoundPointer = true; 11903 } else if (OvlExpr->hasExplicitTemplateArgs()) { 11904 DeclAccessPair dap; 11905 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( 11906 OvlExpr, false, &dap)) { 11907 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 11908 if (!Method->isStatic()) { 11909 // If the target type is a non-function type and the function found 11910 // is a non-static member function, pretend as if that was the 11911 // target, it's the only possible type to end up with. 11912 TargetTypeIsNonStaticMemberFunction = true; 11913 11914 // And skip adding the function if its not in the proper form. 11915 // We'll diagnose this due to an empty set of functions. 11916 if (!OvlExprInfo.HasFormOfMemberPointer) 11917 return; 11918 } 11919 11920 Matches.push_back(std::make_pair(dap, Fn)); 11921 } 11922 return; 11923 } 11924 11925 if (OvlExpr->hasExplicitTemplateArgs()) 11926 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); 11927 11928 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 11929 // C++ [over.over]p4: 11930 // If more than one function is selected, [...] 11931 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { 11932 if (FoundNonTemplateFunction) 11933 EliminateAllTemplateMatches(); 11934 else 11935 EliminateAllExceptMostSpecializedTemplate(); 11936 } 11937 } 11938 11939 if (S.getLangOpts().CUDA && Matches.size() > 1) 11940 EliminateSuboptimalCudaMatches(); 11941 } 11942 11943 bool hasComplained() const { return HasComplained; } 11944 11945 private: 11946 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { 11947 QualType Discard; 11948 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || 11949 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); 11950 } 11951 11952 /// \return true if A is considered a better overload candidate for the 11953 /// desired type than B. 11954 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { 11955 // If A doesn't have exactly the correct type, we don't want to classify it 11956 // as "better" than anything else. This way, the user is required to 11957 // disambiguate for us if there are multiple candidates and no exact match. 11958 return candidateHasExactlyCorrectType(A) && 11959 (!candidateHasExactlyCorrectType(B) || 11960 compareEnableIfAttrs(S, A, B) == Comparison::Better); 11961 } 11962 11963 /// \return true if we were able to eliminate all but one overload candidate, 11964 /// false otherwise. 11965 bool eliminiateSuboptimalOverloadCandidates() { 11966 // Same algorithm as overload resolution -- one pass to pick the "best", 11967 // another pass to be sure that nothing is better than the best. 11968 auto Best = Matches.begin(); 11969 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) 11970 if (isBetterCandidate(I->second, Best->second)) 11971 Best = I; 11972 11973 const FunctionDecl *BestFn = Best->second; 11974 auto IsBestOrInferiorToBest = [this, BestFn]( 11975 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { 11976 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); 11977 }; 11978 11979 // Note: We explicitly leave Matches unmodified if there isn't a clear best 11980 // option, so we can potentially give the user a better error 11981 if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) 11982 return false; 11983 Matches[0] = *Best; 11984 Matches.resize(1); 11985 return true; 11986 } 11987 11988 bool isTargetTypeAFunction() const { 11989 return TargetFunctionType->isFunctionType(); 11990 } 11991 11992 // [ToType] [Return] 11993 11994 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 11995 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 11996 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 11997 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 11998 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 11999 } 12000 12001 // return true if any matching specializations were found 12002 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 12003 const DeclAccessPair& CurAccessFunPair) { 12004 if (CXXMethodDecl *Method 12005 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 12006 // Skip non-static function templates when converting to pointer, and 12007 // static when converting to member pointer. 12008 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12009 return false; 12010 } 12011 else if (TargetTypeIsNonStaticMemberFunction) 12012 return false; 12013 12014 // C++ [over.over]p2: 12015 // If the name is a function template, template argument deduction is 12016 // done (14.8.2.2), and if the argument deduction succeeds, the 12017 // resulting template argument list is used to generate a single 12018 // function template specialization, which is added to the set of 12019 // overloaded functions considered. 12020 FunctionDecl *Specialization = nullptr; 12021 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12022 if (Sema::TemplateDeductionResult Result 12023 = S.DeduceTemplateArguments(FunctionTemplate, 12024 &OvlExplicitTemplateArgs, 12025 TargetFunctionType, Specialization, 12026 Info, /*IsAddressOfFunction*/true)) { 12027 // Make a note of the failed deduction for diagnostics. 12028 FailedCandidates.addCandidate() 12029 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), 12030 MakeDeductionFailureInfo(Context, Result, Info)); 12031 return false; 12032 } 12033 12034 // Template argument deduction ensures that we have an exact match or 12035 // compatible pointer-to-function arguments that would be adjusted by ICS. 12036 // This function template specicalization works. 12037 assert(S.isSameOrCompatibleFunctionType( 12038 Context.getCanonicalType(Specialization->getType()), 12039 Context.getCanonicalType(TargetFunctionType))); 12040 12041 if (!S.checkAddressOfFunctionIsAvailable(Specialization)) 12042 return false; 12043 12044 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 12045 return true; 12046 } 12047 12048 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 12049 const DeclAccessPair& CurAccessFunPair) { 12050 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 12051 // Skip non-static functions when converting to pointer, and static 12052 // when converting to member pointer. 12053 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12054 return false; 12055 } 12056 else if (TargetTypeIsNonStaticMemberFunction) 12057 return false; 12058 12059 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 12060 if (S.getLangOpts().CUDA) 12061 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 12062 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl)) 12063 return false; 12064 if (FunDecl->isMultiVersion()) { 12065 const auto *TA = FunDecl->getAttr<TargetAttr>(); 12066 if (TA && !TA->isDefaultVersion()) 12067 return false; 12068 } 12069 12070 // If any candidate has a placeholder return type, trigger its deduction 12071 // now. 12072 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), 12073 Complain)) { 12074 HasComplained |= Complain; 12075 return false; 12076 } 12077 12078 if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) 12079 return false; 12080 12081 // If we're in C, we need to support types that aren't exactly identical. 12082 if (!S.getLangOpts().CPlusPlus || 12083 candidateHasExactlyCorrectType(FunDecl)) { 12084 Matches.push_back(std::make_pair( 12085 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 12086 FoundNonTemplateFunction = true; 12087 return true; 12088 } 12089 } 12090 12091 return false; 12092 } 12093 12094 bool FindAllFunctionsThatMatchTargetTypeExactly() { 12095 bool Ret = false; 12096 12097 // If the overload expression doesn't have the form of a pointer to 12098 // member, don't try to convert it to a pointer-to-member type. 12099 if (IsInvalidFormOfPointerToMemberFunction()) 12100 return false; 12101 12102 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12103 E = OvlExpr->decls_end(); 12104 I != E; ++I) { 12105 // Look through any using declarations to find the underlying function. 12106 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 12107 12108 // C++ [over.over]p3: 12109 // Non-member functions and static member functions match 12110 // targets of type "pointer-to-function" or "reference-to-function." 12111 // Nonstatic member functions match targets of 12112 // type "pointer-to-member-function." 12113 // Note that according to DR 247, the containing class does not matter. 12114 if (FunctionTemplateDecl *FunctionTemplate 12115 = dyn_cast<FunctionTemplateDecl>(Fn)) { 12116 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 12117 Ret = true; 12118 } 12119 // If we have explicit template arguments supplied, skip non-templates. 12120 else if (!OvlExpr->hasExplicitTemplateArgs() && 12121 AddMatchingNonTemplateFunction(Fn, I.getPair())) 12122 Ret = true; 12123 } 12124 assert(Ret || Matches.empty()); 12125 return Ret; 12126 } 12127 12128 void EliminateAllExceptMostSpecializedTemplate() { 12129 // [...] and any given function template specialization F1 is 12130 // eliminated if the set contains a second function template 12131 // specialization whose function template is more specialized 12132 // than the function template of F1 according to the partial 12133 // ordering rules of 14.5.5.2. 12134 12135 // The algorithm specified above is quadratic. We instead use a 12136 // two-pass algorithm (similar to the one used to identify the 12137 // best viable function in an overload set) that identifies the 12138 // best function template (if it exists). 12139 12140 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 12141 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 12142 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 12143 12144 // TODO: It looks like FailedCandidates does not serve much purpose 12145 // here, since the no_viable diagnostic has index 0. 12146 UnresolvedSetIterator Result = S.getMostSpecialized( 12147 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, 12148 SourceExpr->getBeginLoc(), S.PDiag(), 12149 S.PDiag(diag::err_addr_ovl_ambiguous) 12150 << Matches[0].second->getDeclName(), 12151 S.PDiag(diag::note_ovl_candidate) 12152 << (unsigned)oc_function << (unsigned)ocs_described_template, 12153 Complain, TargetFunctionType); 12154 12155 if (Result != MatchesCopy.end()) { 12156 // Make it the first and only element 12157 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 12158 Matches[0].second = cast<FunctionDecl>(*Result); 12159 Matches.resize(1); 12160 } else 12161 HasComplained |= Complain; 12162 } 12163 12164 void EliminateAllTemplateMatches() { 12165 // [...] any function template specializations in the set are 12166 // eliminated if the set also contains a non-template function, [...] 12167 for (unsigned I = 0, N = Matches.size(); I != N; ) { 12168 if (Matches[I].second->getPrimaryTemplate() == nullptr) 12169 ++I; 12170 else { 12171 Matches[I] = Matches[--N]; 12172 Matches.resize(N); 12173 } 12174 } 12175 } 12176 12177 void EliminateSuboptimalCudaMatches() { 12178 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches); 12179 } 12180 12181 public: 12182 void ComplainNoMatchesFound() const { 12183 assert(Matches.empty()); 12184 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) 12185 << OvlExpr->getName() << TargetFunctionType 12186 << OvlExpr->getSourceRange(); 12187 if (FailedCandidates.empty()) 12188 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12189 /*TakingAddress=*/true); 12190 else { 12191 // We have some deduction failure messages. Use them to diagnose 12192 // the function templates, and diagnose the non-template candidates 12193 // normally. 12194 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12195 IEnd = OvlExpr->decls_end(); 12196 I != IEnd; ++I) 12197 if (FunctionDecl *Fun = 12198 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 12199 if (!functionHasPassObjectSizeParams(Fun)) 12200 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, 12201 /*TakingAddress=*/true); 12202 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); 12203 } 12204 } 12205 12206 bool IsInvalidFormOfPointerToMemberFunction() const { 12207 return TargetTypeIsNonStaticMemberFunction && 12208 !OvlExprInfo.HasFormOfMemberPointer; 12209 } 12210 12211 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 12212 // TODO: Should we condition this on whether any functions might 12213 // have matched, or is it more appropriate to do that in callers? 12214 // TODO: a fixit wouldn't hurt. 12215 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 12216 << TargetType << OvlExpr->getSourceRange(); 12217 } 12218 12219 bool IsStaticMemberFunctionFromBoundPointer() const { 12220 return StaticMemberFunctionFromBoundPointer; 12221 } 12222 12223 void ComplainIsStaticMemberFunctionFromBoundPointer() const { 12224 S.Diag(OvlExpr->getBeginLoc(), 12225 diag::err_invalid_form_pointer_member_function) 12226 << OvlExpr->getSourceRange(); 12227 } 12228 12229 void ComplainOfInvalidConversion() const { 12230 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) 12231 << OvlExpr->getName() << TargetType; 12232 } 12233 12234 void ComplainMultipleMatchesFound() const { 12235 assert(Matches.size() > 1); 12236 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) 12237 << OvlExpr->getName() << OvlExpr->getSourceRange(); 12238 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12239 /*TakingAddress=*/true); 12240 } 12241 12242 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 12243 12244 int getNumMatches() const { return Matches.size(); } 12245 12246 FunctionDecl* getMatchingFunctionDecl() const { 12247 if (Matches.size() != 1) return nullptr; 12248 return Matches[0].second; 12249 } 12250 12251 const DeclAccessPair* getMatchingFunctionAccessPair() const { 12252 if (Matches.size() != 1) return nullptr; 12253 return &Matches[0].first; 12254 } 12255 }; 12256 } 12257 12258 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of 12259 /// an overloaded function (C++ [over.over]), where @p From is an 12260 /// expression with overloaded function type and @p ToType is the type 12261 /// we're trying to resolve to. For example: 12262 /// 12263 /// @code 12264 /// int f(double); 12265 /// int f(int); 12266 /// 12267 /// int (*pfd)(double) = f; // selects f(double) 12268 /// @endcode 12269 /// 12270 /// This routine returns the resulting FunctionDecl if it could be 12271 /// resolved, and NULL otherwise. When @p Complain is true, this 12272 /// routine will emit diagnostics if there is an error. 12273 FunctionDecl * 12274 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 12275 QualType TargetType, 12276 bool Complain, 12277 DeclAccessPair &FoundResult, 12278 bool *pHadMultipleCandidates) { 12279 assert(AddressOfExpr->getType() == Context.OverloadTy); 12280 12281 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 12282 Complain); 12283 int NumMatches = Resolver.getNumMatches(); 12284 FunctionDecl *Fn = nullptr; 12285 bool ShouldComplain = Complain && !Resolver.hasComplained(); 12286 if (NumMatches == 0 && ShouldComplain) { 12287 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 12288 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 12289 else 12290 Resolver.ComplainNoMatchesFound(); 12291 } 12292 else if (NumMatches > 1 && ShouldComplain) 12293 Resolver.ComplainMultipleMatchesFound(); 12294 else if (NumMatches == 1) { 12295 Fn = Resolver.getMatchingFunctionDecl(); 12296 assert(Fn); 12297 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) 12298 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); 12299 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 12300 if (Complain) { 12301 if (Resolver.IsStaticMemberFunctionFromBoundPointer()) 12302 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); 12303 else 12304 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 12305 } 12306 } 12307 12308 if (pHadMultipleCandidates) 12309 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 12310 return Fn; 12311 } 12312 12313 /// Given an expression that refers to an overloaded function, try to 12314 /// resolve that function to a single function that can have its address taken. 12315 /// This will modify `Pair` iff it returns non-null. 12316 /// 12317 /// This routine can only succeed if from all of the candidates in the overload 12318 /// set for SrcExpr that can have their addresses taken, there is one candidate 12319 /// that is more constrained than the rest. 12320 FunctionDecl * 12321 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { 12322 OverloadExpr::FindResult R = OverloadExpr::find(E); 12323 OverloadExpr *Ovl = R.Expression; 12324 bool IsResultAmbiguous = false; 12325 FunctionDecl *Result = nullptr; 12326 DeclAccessPair DAP; 12327 SmallVector<FunctionDecl *, 2> AmbiguousDecls; 12328 12329 auto CheckMoreConstrained = 12330 [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> { 12331 SmallVector<const Expr *, 1> AC1, AC2; 12332 FD1->getAssociatedConstraints(AC1); 12333 FD2->getAssociatedConstraints(AC2); 12334 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 12335 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) 12336 return None; 12337 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) 12338 return None; 12339 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 12340 return None; 12341 return AtLeastAsConstrained1; 12342 }; 12343 12344 // Don't use the AddressOfResolver because we're specifically looking for 12345 // cases where we have one overload candidate that lacks 12346 // enable_if/pass_object_size/... 12347 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { 12348 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); 12349 if (!FD) 12350 return nullptr; 12351 12352 if (!checkAddressOfFunctionIsAvailable(FD)) 12353 continue; 12354 12355 // We have more than one result - see if it is more constrained than the 12356 // previous one. 12357 if (Result) { 12358 Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD, 12359 Result); 12360 if (!MoreConstrainedThanPrevious) { 12361 IsResultAmbiguous = true; 12362 AmbiguousDecls.push_back(FD); 12363 continue; 12364 } 12365 if (!*MoreConstrainedThanPrevious) 12366 continue; 12367 // FD is more constrained - replace Result with it. 12368 } 12369 IsResultAmbiguous = false; 12370 DAP = I.getPair(); 12371 Result = FD; 12372 } 12373 12374 if (IsResultAmbiguous) 12375 return nullptr; 12376 12377 if (Result) { 12378 SmallVector<const Expr *, 1> ResultAC; 12379 // We skipped over some ambiguous declarations which might be ambiguous with 12380 // the selected result. 12381 for (FunctionDecl *Skipped : AmbiguousDecls) 12382 if (!CheckMoreConstrained(Skipped, Result).hasValue()) 12383 return nullptr; 12384 Pair = DAP; 12385 } 12386 return Result; 12387 } 12388 12389 /// Given an overloaded function, tries to turn it into a non-overloaded 12390 /// function reference using resolveAddressOfSingleOverloadCandidate. This 12391 /// will perform access checks, diagnose the use of the resultant decl, and, if 12392 /// requested, potentially perform a function-to-pointer decay. 12393 /// 12394 /// Returns false if resolveAddressOfSingleOverloadCandidate fails. 12395 /// Otherwise, returns true. This may emit diagnostics and return true. 12396 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( 12397 ExprResult &SrcExpr, bool DoFunctionPointerConverion) { 12398 Expr *E = SrcExpr.get(); 12399 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload"); 12400 12401 DeclAccessPair DAP; 12402 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); 12403 if (!Found || Found->isCPUDispatchMultiVersion() || 12404 Found->isCPUSpecificMultiVersion()) 12405 return false; 12406 12407 // Emitting multiple diagnostics for a function that is both inaccessible and 12408 // unavailable is consistent with our behavior elsewhere. So, always check 12409 // for both. 12410 DiagnoseUseOfDecl(Found, E->getExprLoc()); 12411 CheckAddressOfMemberAccess(E, DAP); 12412 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found); 12413 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType()) 12414 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); 12415 else 12416 SrcExpr = Fixed; 12417 return true; 12418 } 12419 12420 /// Given an expression that refers to an overloaded function, try to 12421 /// resolve that overloaded function expression down to a single function. 12422 /// 12423 /// This routine can only resolve template-ids that refer to a single function 12424 /// template, where that template-id refers to a single template whose template 12425 /// arguments are either provided by the template-id or have defaults, 12426 /// as described in C++0x [temp.arg.explicit]p3. 12427 /// 12428 /// If no template-ids are found, no diagnostics are emitted and NULL is 12429 /// returned. 12430 FunctionDecl * 12431 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 12432 bool Complain, 12433 DeclAccessPair *FoundResult) { 12434 // C++ [over.over]p1: 12435 // [...] [Note: any redundant set of parentheses surrounding the 12436 // overloaded function name is ignored (5.1). ] 12437 // C++ [over.over]p1: 12438 // [...] The overloaded function name can be preceded by the & 12439 // operator. 12440 12441 // If we didn't actually find any template-ids, we're done. 12442 if (!ovl->hasExplicitTemplateArgs()) 12443 return nullptr; 12444 12445 TemplateArgumentListInfo ExplicitTemplateArgs; 12446 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 12447 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); 12448 12449 // Look through all of the overloaded functions, searching for one 12450 // whose type matches exactly. 12451 FunctionDecl *Matched = nullptr; 12452 for (UnresolvedSetIterator I = ovl->decls_begin(), 12453 E = ovl->decls_end(); I != E; ++I) { 12454 // C++0x [temp.arg.explicit]p3: 12455 // [...] In contexts where deduction is done and fails, or in contexts 12456 // where deduction is not done, if a template argument list is 12457 // specified and it, along with any default template arguments, 12458 // identifies a single function template specialization, then the 12459 // template-id is an lvalue for the function template specialization. 12460 FunctionTemplateDecl *FunctionTemplate 12461 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 12462 12463 // C++ [over.over]p2: 12464 // If the name is a function template, template argument deduction is 12465 // done (14.8.2.2), and if the argument deduction succeeds, the 12466 // resulting template argument list is used to generate a single 12467 // function template specialization, which is added to the set of 12468 // overloaded functions considered. 12469 FunctionDecl *Specialization = nullptr; 12470 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12471 if (TemplateDeductionResult Result 12472 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 12473 Specialization, Info, 12474 /*IsAddressOfFunction*/true)) { 12475 // Make a note of the failed deduction for diagnostics. 12476 // TODO: Actually use the failed-deduction info? 12477 FailedCandidates.addCandidate() 12478 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(), 12479 MakeDeductionFailureInfo(Context, Result, Info)); 12480 continue; 12481 } 12482 12483 assert(Specialization && "no specialization and no error?"); 12484 12485 // Multiple matches; we can't resolve to a single declaration. 12486 if (Matched) { 12487 if (Complain) { 12488 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 12489 << ovl->getName(); 12490 NoteAllOverloadCandidates(ovl); 12491 } 12492 return nullptr; 12493 } 12494 12495 Matched = Specialization; 12496 if (FoundResult) *FoundResult = I.getPair(); 12497 } 12498 12499 if (Matched && 12500 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) 12501 return nullptr; 12502 12503 return Matched; 12504 } 12505 12506 // Resolve and fix an overloaded expression that can be resolved 12507 // because it identifies a single function template specialization. 12508 // 12509 // Last three arguments should only be supplied if Complain = true 12510 // 12511 // Return true if it was logically possible to so resolve the 12512 // expression, regardless of whether or not it succeeded. Always 12513 // returns true if 'complain' is set. 12514 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 12515 ExprResult &SrcExpr, bool doFunctionPointerConverion, 12516 bool complain, SourceRange OpRangeForComplaining, 12517 QualType DestTypeForComplaining, 12518 unsigned DiagIDForComplaining) { 12519 assert(SrcExpr.get()->getType() == Context.OverloadTy); 12520 12521 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 12522 12523 DeclAccessPair found; 12524 ExprResult SingleFunctionExpression; 12525 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 12526 ovl.Expression, /*complain*/ false, &found)) { 12527 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { 12528 SrcExpr = ExprError(); 12529 return true; 12530 } 12531 12532 // It is only correct to resolve to an instance method if we're 12533 // resolving a form that's permitted to be a pointer to member. 12534 // Otherwise we'll end up making a bound member expression, which 12535 // is illegal in all the contexts we resolve like this. 12536 if (!ovl.HasFormOfMemberPointer && 12537 isa<CXXMethodDecl>(fn) && 12538 cast<CXXMethodDecl>(fn)->isInstance()) { 12539 if (!complain) return false; 12540 12541 Diag(ovl.Expression->getExprLoc(), 12542 diag::err_bound_member_function) 12543 << 0 << ovl.Expression->getSourceRange(); 12544 12545 // TODO: I believe we only end up here if there's a mix of 12546 // static and non-static candidates (otherwise the expression 12547 // would have 'bound member' type, not 'overload' type). 12548 // Ideally we would note which candidate was chosen and why 12549 // the static candidates were rejected. 12550 SrcExpr = ExprError(); 12551 return true; 12552 } 12553 12554 // Fix the expression to refer to 'fn'. 12555 SingleFunctionExpression = 12556 FixOverloadedFunctionReference(SrcExpr.get(), found, fn); 12557 12558 // If desired, do function-to-pointer decay. 12559 if (doFunctionPointerConverion) { 12560 SingleFunctionExpression = 12561 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); 12562 if (SingleFunctionExpression.isInvalid()) { 12563 SrcExpr = ExprError(); 12564 return true; 12565 } 12566 } 12567 } 12568 12569 if (!SingleFunctionExpression.isUsable()) { 12570 if (complain) { 12571 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 12572 << ovl.Expression->getName() 12573 << DestTypeForComplaining 12574 << OpRangeForComplaining 12575 << ovl.Expression->getQualifierLoc().getSourceRange(); 12576 NoteAllOverloadCandidates(SrcExpr.get()); 12577 12578 SrcExpr = ExprError(); 12579 return true; 12580 } 12581 12582 return false; 12583 } 12584 12585 SrcExpr = SingleFunctionExpression; 12586 return true; 12587 } 12588 12589 /// Add a single candidate to the overload set. 12590 static void AddOverloadedCallCandidate(Sema &S, 12591 DeclAccessPair FoundDecl, 12592 TemplateArgumentListInfo *ExplicitTemplateArgs, 12593 ArrayRef<Expr *> Args, 12594 OverloadCandidateSet &CandidateSet, 12595 bool PartialOverloading, 12596 bool KnownValid) { 12597 NamedDecl *Callee = FoundDecl.getDecl(); 12598 if (isa<UsingShadowDecl>(Callee)) 12599 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 12600 12601 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 12602 if (ExplicitTemplateArgs) { 12603 assert(!KnownValid && "Explicit template arguments?"); 12604 return; 12605 } 12606 // Prevent ill-formed function decls to be added as overload candidates. 12607 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) 12608 return; 12609 12610 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, 12611 /*SuppressUserConversions=*/false, 12612 PartialOverloading); 12613 return; 12614 } 12615 12616 if (FunctionTemplateDecl *FuncTemplate 12617 = dyn_cast<FunctionTemplateDecl>(Callee)) { 12618 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 12619 ExplicitTemplateArgs, Args, CandidateSet, 12620 /*SuppressUserConversions=*/false, 12621 PartialOverloading); 12622 return; 12623 } 12624 12625 assert(!KnownValid && "unhandled case in overloaded call candidate"); 12626 } 12627 12628 /// Add the overload candidates named by callee and/or found by argument 12629 /// dependent lookup to the given overload set. 12630 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 12631 ArrayRef<Expr *> Args, 12632 OverloadCandidateSet &CandidateSet, 12633 bool PartialOverloading) { 12634 12635 #ifndef NDEBUG 12636 // Verify that ArgumentDependentLookup is consistent with the rules 12637 // in C++0x [basic.lookup.argdep]p3: 12638 // 12639 // Let X be the lookup set produced by unqualified lookup (3.4.1) 12640 // and let Y be the lookup set produced by argument dependent 12641 // lookup (defined as follows). If X contains 12642 // 12643 // -- a declaration of a class member, or 12644 // 12645 // -- a block-scope function declaration that is not a 12646 // using-declaration, or 12647 // 12648 // -- a declaration that is neither a function or a function 12649 // template 12650 // 12651 // then Y is empty. 12652 12653 if (ULE->requiresADL()) { 12654 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12655 E = ULE->decls_end(); I != E; ++I) { 12656 assert(!(*I)->getDeclContext()->isRecord()); 12657 assert(isa<UsingShadowDecl>(*I) || 12658 !(*I)->getDeclContext()->isFunctionOrMethod()); 12659 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 12660 } 12661 } 12662 #endif 12663 12664 // It would be nice to avoid this copy. 12665 TemplateArgumentListInfo TABuffer; 12666 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12667 if (ULE->hasExplicitTemplateArgs()) { 12668 ULE->copyTemplateArgumentsInto(TABuffer); 12669 ExplicitTemplateArgs = &TABuffer; 12670 } 12671 12672 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12673 E = ULE->decls_end(); I != E; ++I) 12674 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 12675 CandidateSet, PartialOverloading, 12676 /*KnownValid*/ true); 12677 12678 if (ULE->requiresADL()) 12679 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), 12680 Args, ExplicitTemplateArgs, 12681 CandidateSet, PartialOverloading); 12682 } 12683 12684 /// Add the call candidates from the given set of lookup results to the given 12685 /// overload set. Non-function lookup results are ignored. 12686 void Sema::AddOverloadedCallCandidates( 12687 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, 12688 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { 12689 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12690 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 12691 CandidateSet, false, /*KnownValid*/ false); 12692 } 12693 12694 /// Determine whether a declaration with the specified name could be moved into 12695 /// a different namespace. 12696 static bool canBeDeclaredInNamespace(const DeclarationName &Name) { 12697 switch (Name.getCXXOverloadedOperator()) { 12698 case OO_New: case OO_Array_New: 12699 case OO_Delete: case OO_Array_Delete: 12700 return false; 12701 12702 default: 12703 return true; 12704 } 12705 } 12706 12707 /// Attempt to recover from an ill-formed use of a non-dependent name in a 12708 /// template, where the non-dependent name was declared after the template 12709 /// was defined. This is common in code written for a compilers which do not 12710 /// correctly implement two-stage name lookup. 12711 /// 12712 /// Returns true if a viable candidate was found and a diagnostic was issued. 12713 static bool DiagnoseTwoPhaseLookup( 12714 Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, 12715 LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, 12716 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 12717 CXXRecordDecl **FoundInClass = nullptr) { 12718 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) 12719 return false; 12720 12721 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 12722 if (DC->isTransparentContext()) 12723 continue; 12724 12725 SemaRef.LookupQualifiedName(R, DC); 12726 12727 if (!R.empty()) { 12728 R.suppressDiagnostics(); 12729 12730 OverloadCandidateSet Candidates(FnLoc, CSK); 12731 SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, 12732 Candidates); 12733 12734 OverloadCandidateSet::iterator Best; 12735 OverloadingResult OR = 12736 Candidates.BestViableFunction(SemaRef, FnLoc, Best); 12737 12738 if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) { 12739 // We either found non-function declarations or a best viable function 12740 // at class scope. A class-scope lookup result disables ADL. Don't 12741 // look past this, but let the caller know that we found something that 12742 // either is, or might be, usable in this class. 12743 if (FoundInClass) { 12744 *FoundInClass = RD; 12745 if (OR == OR_Success) { 12746 R.clear(); 12747 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); 12748 R.resolveKind(); 12749 } 12750 } 12751 return false; 12752 } 12753 12754 if (OR != OR_Success) { 12755 // There wasn't a unique best function or function template. 12756 return false; 12757 } 12758 12759 // Find the namespaces where ADL would have looked, and suggest 12760 // declaring the function there instead. 12761 Sema::AssociatedNamespaceSet AssociatedNamespaces; 12762 Sema::AssociatedClassSet AssociatedClasses; 12763 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, 12764 AssociatedNamespaces, 12765 AssociatedClasses); 12766 Sema::AssociatedNamespaceSet SuggestedNamespaces; 12767 if (canBeDeclaredInNamespace(R.getLookupName())) { 12768 DeclContext *Std = SemaRef.getStdNamespace(); 12769 for (Sema::AssociatedNamespaceSet::iterator 12770 it = AssociatedNamespaces.begin(), 12771 end = AssociatedNamespaces.end(); it != end; ++it) { 12772 // Never suggest declaring a function within namespace 'std'. 12773 if (Std && Std->Encloses(*it)) 12774 continue; 12775 12776 // Never suggest declaring a function within a namespace with a 12777 // reserved name, like __gnu_cxx. 12778 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); 12779 if (NS && 12780 NS->getQualifiedNameAsString().find("__") != std::string::npos) 12781 continue; 12782 12783 SuggestedNamespaces.insert(*it); 12784 } 12785 } 12786 12787 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 12788 << R.getLookupName(); 12789 if (SuggestedNamespaces.empty()) { 12790 SemaRef.Diag(Best->Function->getLocation(), 12791 diag::note_not_found_by_two_phase_lookup) 12792 << R.getLookupName() << 0; 12793 } else if (SuggestedNamespaces.size() == 1) { 12794 SemaRef.Diag(Best->Function->getLocation(), 12795 diag::note_not_found_by_two_phase_lookup) 12796 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 12797 } else { 12798 // FIXME: It would be useful to list the associated namespaces here, 12799 // but the diagnostics infrastructure doesn't provide a way to produce 12800 // a localized representation of a list of items. 12801 SemaRef.Diag(Best->Function->getLocation(), 12802 diag::note_not_found_by_two_phase_lookup) 12803 << R.getLookupName() << 2; 12804 } 12805 12806 // Try to recover by calling this function. 12807 return true; 12808 } 12809 12810 R.clear(); 12811 } 12812 12813 return false; 12814 } 12815 12816 /// Attempt to recover from ill-formed use of a non-dependent operator in a 12817 /// template, where the non-dependent operator was declared after the template 12818 /// was defined. 12819 /// 12820 /// Returns true if a viable candidate was found and a diagnostic was issued. 12821 static bool 12822 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 12823 SourceLocation OpLoc, 12824 ArrayRef<Expr *> Args) { 12825 DeclarationName OpName = 12826 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 12827 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 12828 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 12829 OverloadCandidateSet::CSK_Operator, 12830 /*ExplicitTemplateArgs=*/nullptr, Args); 12831 } 12832 12833 namespace { 12834 class BuildRecoveryCallExprRAII { 12835 Sema &SemaRef; 12836 public: 12837 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { 12838 assert(SemaRef.IsBuildingRecoveryCallExpr == false); 12839 SemaRef.IsBuildingRecoveryCallExpr = true; 12840 } 12841 12842 ~BuildRecoveryCallExprRAII() { 12843 SemaRef.IsBuildingRecoveryCallExpr = false; 12844 } 12845 }; 12846 12847 } 12848 12849 /// Attempts to recover from a call where no functions were found. 12850 /// 12851 /// This function will do one of three things: 12852 /// * Diagnose, recover, and return a recovery expression. 12853 /// * Diagnose, fail to recover, and return ExprError(). 12854 /// * Do not diagnose, do not recover, and return ExprResult(). The caller is 12855 /// expected to diagnose as appropriate. 12856 static ExprResult 12857 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 12858 UnresolvedLookupExpr *ULE, 12859 SourceLocation LParenLoc, 12860 MutableArrayRef<Expr *> Args, 12861 SourceLocation RParenLoc, 12862 bool EmptyLookup, bool AllowTypoCorrection) { 12863 // Do not try to recover if it is already building a recovery call. 12864 // This stops infinite loops for template instantiations like 12865 // 12866 // template <typename T> auto foo(T t) -> decltype(foo(t)) {} 12867 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} 12868 if (SemaRef.IsBuildingRecoveryCallExpr) 12869 return ExprResult(); 12870 BuildRecoveryCallExprRAII RCE(SemaRef); 12871 12872 CXXScopeSpec SS; 12873 SS.Adopt(ULE->getQualifierLoc()); 12874 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 12875 12876 TemplateArgumentListInfo TABuffer; 12877 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12878 if (ULE->hasExplicitTemplateArgs()) { 12879 ULE->copyTemplateArgumentsInto(TABuffer); 12880 ExplicitTemplateArgs = &TABuffer; 12881 } 12882 12883 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 12884 Sema::LookupOrdinaryName); 12885 CXXRecordDecl *FoundInClass = nullptr; 12886 if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 12887 OverloadCandidateSet::CSK_Normal, 12888 ExplicitTemplateArgs, Args, &FoundInClass)) { 12889 // OK, diagnosed a two-phase lookup issue. 12890 } else if (EmptyLookup) { 12891 // Try to recover from an empty lookup with typo correction. 12892 R.clear(); 12893 NoTypoCorrectionCCC NoTypoValidator{}; 12894 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), 12895 ExplicitTemplateArgs != nullptr, 12896 dyn_cast<MemberExpr>(Fn)); 12897 CorrectionCandidateCallback &Validator = 12898 AllowTypoCorrection 12899 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) 12900 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); 12901 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, 12902 Args)) 12903 return ExprError(); 12904 } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { 12905 // We found a usable declaration of the name in a dependent base of some 12906 // enclosing class. 12907 // FIXME: We should also explain why the candidates found by name lookup 12908 // were not viable. 12909 if (SemaRef.DiagnoseDependentMemberLookup(R)) 12910 return ExprError(); 12911 } else { 12912 // We had viable candidates and couldn't recover; let the caller diagnose 12913 // this. 12914 return ExprResult(); 12915 } 12916 12917 // If we get here, we should have issued a diagnostic and formed a recovery 12918 // lookup result. 12919 assert(!R.empty() && "lookup results empty despite recovery"); 12920 12921 // If recovery created an ambiguity, just bail out. 12922 if (R.isAmbiguous()) { 12923 R.suppressDiagnostics(); 12924 return ExprError(); 12925 } 12926 12927 // Build an implicit member call if appropriate. Just drop the 12928 // casts and such from the call, we don't really care. 12929 ExprResult NewFn = ExprError(); 12930 if ((*R.begin())->isCXXClassMember()) 12931 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, 12932 ExplicitTemplateArgs, S); 12933 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) 12934 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 12935 ExplicitTemplateArgs); 12936 else 12937 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 12938 12939 if (NewFn.isInvalid()) 12940 return ExprError(); 12941 12942 // This shouldn't cause an infinite loop because we're giving it 12943 // an expression with viable lookup results, which should never 12944 // end up here. 12945 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, 12946 MultiExprArg(Args.data(), Args.size()), 12947 RParenLoc); 12948 } 12949 12950 /// Constructs and populates an OverloadedCandidateSet from 12951 /// the given function. 12952 /// \returns true when an the ExprResult output parameter has been set. 12953 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, 12954 UnresolvedLookupExpr *ULE, 12955 MultiExprArg Args, 12956 SourceLocation RParenLoc, 12957 OverloadCandidateSet *CandidateSet, 12958 ExprResult *Result) { 12959 #ifndef NDEBUG 12960 if (ULE->requiresADL()) { 12961 // To do ADL, we must have found an unqualified name. 12962 assert(!ULE->getQualifier() && "qualified name with ADL"); 12963 12964 // We don't perform ADL for implicit declarations of builtins. 12965 // Verify that this was correctly set up. 12966 FunctionDecl *F; 12967 if (ULE->decls_begin() != ULE->decls_end() && 12968 ULE->decls_begin() + 1 == ULE->decls_end() && 12969 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 12970 F->getBuiltinID() && F->isImplicit()) 12971 llvm_unreachable("performing ADL for builtin"); 12972 12973 // We don't perform ADL in C. 12974 assert(getLangOpts().CPlusPlus && "ADL enabled in C"); 12975 } 12976 #endif 12977 12978 UnbridgedCastsSet UnbridgedCasts; 12979 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { 12980 *Result = ExprError(); 12981 return true; 12982 } 12983 12984 // Add the functions denoted by the callee to the set of candidate 12985 // functions, including those from argument-dependent lookup. 12986 AddOverloadedCallCandidates(ULE, Args, *CandidateSet); 12987 12988 if (getLangOpts().MSVCCompat && 12989 CurContext->isDependentContext() && !isSFINAEContext() && 12990 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 12991 12992 OverloadCandidateSet::iterator Best; 12993 if (CandidateSet->empty() || 12994 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == 12995 OR_No_Viable_Function) { 12996 // In Microsoft mode, if we are inside a template class member function 12997 // then create a type dependent CallExpr. The goal is to postpone name 12998 // lookup to instantiation time to be able to search into type dependent 12999 // base classes. 13000 CallExpr *CE = 13001 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_RValue, 13002 RParenLoc, CurFPFeatureOverrides()); 13003 CE->markDependentForPostponedNameLookup(); 13004 *Result = CE; 13005 return true; 13006 } 13007 } 13008 13009 if (CandidateSet->empty()) 13010 return false; 13011 13012 UnbridgedCasts.restore(); 13013 return false; 13014 } 13015 13016 // Guess at what the return type for an unresolvable overload should be. 13017 static QualType chooseRecoveryType(OverloadCandidateSet &CS, 13018 OverloadCandidateSet::iterator *Best) { 13019 llvm::Optional<QualType> Result; 13020 // Adjust Type after seeing a candidate. 13021 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { 13022 if (!Candidate.Function) 13023 return; 13024 if (Candidate.Function->isInvalidDecl()) 13025 return; 13026 QualType T = Candidate.Function->getReturnType(); 13027 if (T.isNull()) 13028 return; 13029 if (!Result) 13030 Result = T; 13031 else if (Result != T) 13032 Result = QualType(); 13033 }; 13034 13035 // Look for an unambiguous type from a progressively larger subset. 13036 // e.g. if types disagree, but all *viable* overloads return int, choose int. 13037 // 13038 // First, consider only the best candidate. 13039 if (Best && *Best != CS.end()) 13040 ConsiderCandidate(**Best); 13041 // Next, consider only viable candidates. 13042 if (!Result) 13043 for (const auto &C : CS) 13044 if (C.Viable) 13045 ConsiderCandidate(C); 13046 // Finally, consider all candidates. 13047 if (!Result) 13048 for (const auto &C : CS) 13049 ConsiderCandidate(C); 13050 13051 if (!Result) 13052 return QualType(); 13053 auto Value = Result.getValue(); 13054 if (Value.isNull() || Value->isUndeducedType()) 13055 return QualType(); 13056 return Value; 13057 } 13058 13059 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns 13060 /// the completed call expression. If overload resolution fails, emits 13061 /// diagnostics and returns ExprError() 13062 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 13063 UnresolvedLookupExpr *ULE, 13064 SourceLocation LParenLoc, 13065 MultiExprArg Args, 13066 SourceLocation RParenLoc, 13067 Expr *ExecConfig, 13068 OverloadCandidateSet *CandidateSet, 13069 OverloadCandidateSet::iterator *Best, 13070 OverloadingResult OverloadResult, 13071 bool AllowTypoCorrection) { 13072 switch (OverloadResult) { 13073 case OR_Success: { 13074 FunctionDecl *FDecl = (*Best)->Function; 13075 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); 13076 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) 13077 return ExprError(); 13078 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13079 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13080 ExecConfig, /*IsExecConfig=*/false, 13081 (*Best)->IsADLCandidate); 13082 } 13083 13084 case OR_No_Viable_Function: { 13085 // Try to recover by looking for viable functions which the user might 13086 // have meant to call. 13087 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, 13088 Args, RParenLoc, 13089 CandidateSet->empty(), 13090 AllowTypoCorrection); 13091 if (Recovery.isInvalid() || Recovery.isUsable()) 13092 return Recovery; 13093 13094 // If the user passes in a function that we can't take the address of, we 13095 // generally end up emitting really bad error messages. Here, we attempt to 13096 // emit better ones. 13097 for (const Expr *Arg : Args) { 13098 if (!Arg->getType()->isFunctionType()) 13099 continue; 13100 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { 13101 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 13102 if (FD && 13103 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 13104 Arg->getExprLoc())) 13105 return ExprError(); 13106 } 13107 } 13108 13109 CandidateSet->NoteCandidates( 13110 PartialDiagnosticAt( 13111 Fn->getBeginLoc(), 13112 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) 13113 << ULE->getName() << Fn->getSourceRange()), 13114 SemaRef, OCD_AllCandidates, Args); 13115 break; 13116 } 13117 13118 case OR_Ambiguous: 13119 CandidateSet->NoteCandidates( 13120 PartialDiagnosticAt(Fn->getBeginLoc(), 13121 SemaRef.PDiag(diag::err_ovl_ambiguous_call) 13122 << ULE->getName() << Fn->getSourceRange()), 13123 SemaRef, OCD_AmbiguousCandidates, Args); 13124 break; 13125 13126 case OR_Deleted: { 13127 CandidateSet->NoteCandidates( 13128 PartialDiagnosticAt(Fn->getBeginLoc(), 13129 SemaRef.PDiag(diag::err_ovl_deleted_call) 13130 << ULE->getName() << Fn->getSourceRange()), 13131 SemaRef, OCD_AllCandidates, Args); 13132 13133 // We emitted an error for the unavailable/deleted function call but keep 13134 // the call in the AST. 13135 FunctionDecl *FDecl = (*Best)->Function; 13136 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13137 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13138 ExecConfig, /*IsExecConfig=*/false, 13139 (*Best)->IsADLCandidate); 13140 } 13141 } 13142 13143 // Overload resolution failed, try to recover. 13144 SmallVector<Expr *, 8> SubExprs = {Fn}; 13145 SubExprs.append(Args.begin(), Args.end()); 13146 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, 13147 chooseRecoveryType(*CandidateSet, Best)); 13148 } 13149 13150 static void markUnaddressableCandidatesUnviable(Sema &S, 13151 OverloadCandidateSet &CS) { 13152 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { 13153 if (I->Viable && 13154 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { 13155 I->Viable = false; 13156 I->FailureKind = ovl_fail_addr_not_available; 13157 } 13158 } 13159 } 13160 13161 /// BuildOverloadedCallExpr - Given the call expression that calls Fn 13162 /// (which eventually refers to the declaration Func) and the call 13163 /// arguments Args/NumArgs, attempt to resolve the function call down 13164 /// to a specific function. If overload resolution succeeds, returns 13165 /// the call expression produced by overload resolution. 13166 /// Otherwise, emits diagnostics and returns ExprError. 13167 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, 13168 UnresolvedLookupExpr *ULE, 13169 SourceLocation LParenLoc, 13170 MultiExprArg Args, 13171 SourceLocation RParenLoc, 13172 Expr *ExecConfig, 13173 bool AllowTypoCorrection, 13174 bool CalleesAddressIsTaken) { 13175 OverloadCandidateSet CandidateSet(Fn->getExprLoc(), 13176 OverloadCandidateSet::CSK_Normal); 13177 ExprResult result; 13178 13179 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, 13180 &result)) 13181 return result; 13182 13183 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that 13184 // functions that aren't addressible are considered unviable. 13185 if (CalleesAddressIsTaken) 13186 markUnaddressableCandidatesUnviable(*this, CandidateSet); 13187 13188 OverloadCandidateSet::iterator Best; 13189 OverloadingResult OverloadResult = 13190 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); 13191 13192 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, 13193 ExecConfig, &CandidateSet, &Best, 13194 OverloadResult, AllowTypoCorrection); 13195 } 13196 13197 static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 13198 return Functions.size() > 1 || 13199 (Functions.size() == 1 && 13200 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl())); 13201 } 13202 13203 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, 13204 NestedNameSpecifierLoc NNSLoc, 13205 DeclarationNameInfo DNI, 13206 const UnresolvedSetImpl &Fns, 13207 bool PerformADL) { 13208 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, 13209 PerformADL, IsOverloaded(Fns), 13210 Fns.begin(), Fns.end()); 13211 } 13212 13213 /// Create a unary operation that may resolve to an overloaded 13214 /// operator. 13215 /// 13216 /// \param OpLoc The location of the operator itself (e.g., '*'). 13217 /// 13218 /// \param Opc The UnaryOperatorKind that describes this operator. 13219 /// 13220 /// \param Fns The set of non-member functions that will be 13221 /// considered by overload resolution. The caller needs to build this 13222 /// set based on the context using, e.g., 13223 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13224 /// set should not contain any member functions; those will be added 13225 /// by CreateOverloadedUnaryOp(). 13226 /// 13227 /// \param Input The input argument. 13228 ExprResult 13229 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, 13230 const UnresolvedSetImpl &Fns, 13231 Expr *Input, bool PerformADL) { 13232 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 13233 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 13234 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13235 // TODO: provide better source location info. 13236 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13237 13238 if (checkPlaceholderForOverload(*this, Input)) 13239 return ExprError(); 13240 13241 Expr *Args[2] = { Input, nullptr }; 13242 unsigned NumArgs = 1; 13243 13244 // For post-increment and post-decrement, add the implicit '0' as 13245 // the second argument, so that we know this is a post-increment or 13246 // post-decrement. 13247 if (Opc == UO_PostInc || Opc == UO_PostDec) { 13248 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13249 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 13250 SourceLocation()); 13251 NumArgs = 2; 13252 } 13253 13254 ArrayRef<Expr *> ArgsArray(Args, NumArgs); 13255 13256 if (Input->isTypeDependent()) { 13257 if (Fns.empty()) 13258 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, 13259 VK_RValue, OK_Ordinary, OpLoc, false, 13260 CurFPFeatureOverrides()); 13261 13262 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13263 ExprResult Fn = CreateUnresolvedLookupExpr( 13264 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); 13265 if (Fn.isInvalid()) 13266 return ExprError(); 13267 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, 13268 Context.DependentTy, VK_RValue, OpLoc, 13269 CurFPFeatureOverrides()); 13270 } 13271 13272 // Build an empty overload set. 13273 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); 13274 13275 // Add the candidates from the given function set. 13276 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); 13277 13278 // Add operator candidates that are member functions. 13279 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13280 13281 // Add candidates from ADL. 13282 if (PerformADL) { 13283 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, 13284 /*ExplicitTemplateArgs*/nullptr, 13285 CandidateSet); 13286 } 13287 13288 // Add builtin operator candidates. 13289 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13290 13291 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13292 13293 // Perform overload resolution. 13294 OverloadCandidateSet::iterator Best; 13295 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13296 case OR_Success: { 13297 // We found a built-in operator or an overloaded operator. 13298 FunctionDecl *FnDecl = Best->Function; 13299 13300 if (FnDecl) { 13301 Expr *Base = nullptr; 13302 // We matched an overloaded operator. Build a call to that 13303 // operator. 13304 13305 // Convert the arguments. 13306 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13307 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); 13308 13309 ExprResult InputRes = 13310 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, 13311 Best->FoundDecl, Method); 13312 if (InputRes.isInvalid()) 13313 return ExprError(); 13314 Base = Input = InputRes.get(); 13315 } else { 13316 // Convert the arguments. 13317 ExprResult InputInit 13318 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 13319 Context, 13320 FnDecl->getParamDecl(0)), 13321 SourceLocation(), 13322 Input); 13323 if (InputInit.isInvalid()) 13324 return ExprError(); 13325 Input = InputInit.get(); 13326 } 13327 13328 // Build the actual expression node. 13329 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, 13330 Base, HadMultipleCandidates, 13331 OpLoc); 13332 if (FnExpr.isInvalid()) 13333 return ExprError(); 13334 13335 // Determine the result type. 13336 QualType ResultTy = FnDecl->getReturnType(); 13337 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13338 ResultTy = ResultTy.getNonLValueExprType(Context); 13339 13340 Args[0] = Input; 13341 CallExpr *TheCall = CXXOperatorCallExpr::Create( 13342 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, 13343 CurFPFeatureOverrides(), Best->IsADLCandidate); 13344 13345 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) 13346 return ExprError(); 13347 13348 if (CheckFunctionCall(FnDecl, TheCall, 13349 FnDecl->getType()->castAs<FunctionProtoType>())) 13350 return ExprError(); 13351 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); 13352 } else { 13353 // We matched a built-in operator. Convert the arguments, then 13354 // break out so that we will build the appropriate built-in 13355 // operator node. 13356 ExprResult InputRes = PerformImplicitConversion( 13357 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, 13358 CCK_ForBuiltinOverloadedOp); 13359 if (InputRes.isInvalid()) 13360 return ExprError(); 13361 Input = InputRes.get(); 13362 break; 13363 } 13364 } 13365 13366 case OR_No_Viable_Function: 13367 // This is an erroneous use of an operator which can be overloaded by 13368 // a non-member function. Check for non-member operators which were 13369 // defined too late to be candidates. 13370 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) 13371 // FIXME: Recover by calling the found function. 13372 return ExprError(); 13373 13374 // No viable function; fall through to handling this as a 13375 // built-in operator, which will produce an error message for us. 13376 break; 13377 13378 case OR_Ambiguous: 13379 CandidateSet.NoteCandidates( 13380 PartialDiagnosticAt(OpLoc, 13381 PDiag(diag::err_ovl_ambiguous_oper_unary) 13382 << UnaryOperator::getOpcodeStr(Opc) 13383 << Input->getType() << Input->getSourceRange()), 13384 *this, OCD_AmbiguousCandidates, ArgsArray, 13385 UnaryOperator::getOpcodeStr(Opc), OpLoc); 13386 return ExprError(); 13387 13388 case OR_Deleted: 13389 CandidateSet.NoteCandidates( 13390 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 13391 << UnaryOperator::getOpcodeStr(Opc) 13392 << Input->getSourceRange()), 13393 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc), 13394 OpLoc); 13395 return ExprError(); 13396 } 13397 13398 // Either we found no viable overloaded operator or we matched a 13399 // built-in operator. In either case, fall through to trying to 13400 // build a built-in operation. 13401 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 13402 } 13403 13404 /// Perform lookup for an overloaded binary operator. 13405 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, 13406 OverloadedOperatorKind Op, 13407 const UnresolvedSetImpl &Fns, 13408 ArrayRef<Expr *> Args, bool PerformADL) { 13409 SourceLocation OpLoc = CandidateSet.getLocation(); 13410 13411 OverloadedOperatorKind ExtraOp = 13412 CandidateSet.getRewriteInfo().AllowRewrittenCandidates 13413 ? getRewrittenOverloadedOperator(Op) 13414 : OO_None; 13415 13416 // Add the candidates from the given function set. This also adds the 13417 // rewritten candidates using these functions if necessary. 13418 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); 13419 13420 // Add operator candidates that are member functions. 13421 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13422 if (CandidateSet.getRewriteInfo().shouldAddReversed(Op)) 13423 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, 13424 OverloadCandidateParamOrder::Reversed); 13425 13426 // In C++20, also add any rewritten member candidates. 13427 if (ExtraOp) { 13428 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); 13429 if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp)) 13430 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, 13431 CandidateSet, 13432 OverloadCandidateParamOrder::Reversed); 13433 } 13434 13435 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not 13436 // performed for an assignment operator (nor for operator[] nor operator->, 13437 // which don't get here). 13438 if (Op != OO_Equal && PerformADL) { 13439 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13440 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, 13441 /*ExplicitTemplateArgs*/ nullptr, 13442 CandidateSet); 13443 if (ExtraOp) { 13444 DeclarationName ExtraOpName = 13445 Context.DeclarationNames.getCXXOperatorName(ExtraOp); 13446 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, 13447 /*ExplicitTemplateArgs*/ nullptr, 13448 CandidateSet); 13449 } 13450 } 13451 13452 // Add builtin operator candidates. 13453 // 13454 // FIXME: We don't add any rewritten candidates here. This is strictly 13455 // incorrect; a builtin candidate could be hidden by a non-viable candidate, 13456 // resulting in our selecting a rewritten builtin candidate. For example: 13457 // 13458 // enum class E { e }; 13459 // bool operator!=(E, E) requires false; 13460 // bool k = E::e != E::e; 13461 // 13462 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But 13463 // it seems unreasonable to consider rewritten builtin candidates. A core 13464 // issue has been filed proposing to removed this requirement. 13465 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13466 } 13467 13468 /// Create a binary operation that may resolve to an overloaded 13469 /// operator. 13470 /// 13471 /// \param OpLoc The location of the operator itself (e.g., '+'). 13472 /// 13473 /// \param Opc The BinaryOperatorKind that describes this operator. 13474 /// 13475 /// \param Fns The set of non-member functions that will be 13476 /// considered by overload resolution. The caller needs to build this 13477 /// set based on the context using, e.g., 13478 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13479 /// set should not contain any member functions; those will be added 13480 /// by CreateOverloadedBinOp(). 13481 /// 13482 /// \param LHS Left-hand argument. 13483 /// \param RHS Right-hand argument. 13484 /// \param PerformADL Whether to consider operator candidates found by ADL. 13485 /// \param AllowRewrittenCandidates Whether to consider candidates found by 13486 /// C++20 operator rewrites. 13487 /// \param DefaultedFn If we are synthesizing a defaulted operator function, 13488 /// the function in question. Such a function is never a candidate in 13489 /// our overload resolution. This also enables synthesizing a three-way 13490 /// comparison from < and == as described in C++20 [class.spaceship]p1. 13491 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 13492 BinaryOperatorKind Opc, 13493 const UnresolvedSetImpl &Fns, Expr *LHS, 13494 Expr *RHS, bool PerformADL, 13495 bool AllowRewrittenCandidates, 13496 FunctionDecl *DefaultedFn) { 13497 Expr *Args[2] = { LHS, RHS }; 13498 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple 13499 13500 if (!getLangOpts().CPlusPlus20) 13501 AllowRewrittenCandidates = false; 13502 13503 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 13504 13505 // If either side is type-dependent, create an appropriate dependent 13506 // expression. 13507 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 13508 if (Fns.empty()) { 13509 // If there are no functions to store, just build a dependent 13510 // BinaryOperator or CompoundAssignment. 13511 if (BinaryOperator::isCompoundAssignmentOp(Opc)) 13512 return CompoundAssignOperator::Create( 13513 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, 13514 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, 13515 Context.DependentTy); 13516 return BinaryOperator::Create(Context, Args[0], Args[1], Opc, 13517 Context.DependentTy, VK_RValue, OK_Ordinary, 13518 OpLoc, CurFPFeatureOverrides()); 13519 } 13520 13521 // FIXME: save results of ADL from here? 13522 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13523 // TODO: provide better source location info in DNLoc component. 13524 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13525 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13526 ExprResult Fn = CreateUnresolvedLookupExpr( 13527 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); 13528 if (Fn.isInvalid()) 13529 return ExprError(); 13530 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, 13531 Context.DependentTy, VK_RValue, OpLoc, 13532 CurFPFeatureOverrides()); 13533 } 13534 13535 // Always do placeholder-like conversions on the RHS. 13536 if (checkPlaceholderForOverload(*this, Args[1])) 13537 return ExprError(); 13538 13539 // Do placeholder-like conversion on the LHS; note that we should 13540 // not get here with a PseudoObject LHS. 13541 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 13542 if (checkPlaceholderForOverload(*this, Args[0])) 13543 return ExprError(); 13544 13545 // If this is the assignment operator, we only perform overload resolution 13546 // if the left-hand side is a class or enumeration type. This is actually 13547 // a hack. The standard requires that we do overload resolution between the 13548 // various built-in candidates, but as DR507 points out, this can lead to 13549 // problems. So we do it this way, which pretty much follows what GCC does. 13550 // Note that we go the traditional code path for compound assignment forms. 13551 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 13552 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13553 13554 // If this is the .* operator, which is not overloadable, just 13555 // create a built-in binary operator. 13556 if (Opc == BO_PtrMemD) 13557 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13558 13559 // Build the overload set. 13560 OverloadCandidateSet CandidateSet( 13561 OpLoc, OverloadCandidateSet::CSK_Operator, 13562 OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates)); 13563 if (DefaultedFn) 13564 CandidateSet.exclude(DefaultedFn); 13565 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); 13566 13567 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13568 13569 // Perform overload resolution. 13570 OverloadCandidateSet::iterator Best; 13571 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13572 case OR_Success: { 13573 // We found a built-in operator or an overloaded operator. 13574 FunctionDecl *FnDecl = Best->Function; 13575 13576 bool IsReversed = Best->isReversed(); 13577 if (IsReversed) 13578 std::swap(Args[0], Args[1]); 13579 13580 if (FnDecl) { 13581 Expr *Base = nullptr; 13582 // We matched an overloaded operator. Build a call to that 13583 // operator. 13584 13585 OverloadedOperatorKind ChosenOp = 13586 FnDecl->getDeclName().getCXXOverloadedOperator(); 13587 13588 // C++2a [over.match.oper]p9: 13589 // If a rewritten operator== candidate is selected by overload 13590 // resolution for an operator@, its return type shall be cv bool 13591 if (Best->RewriteKind && ChosenOp == OO_EqualEqual && 13592 !FnDecl->getReturnType()->isBooleanType()) { 13593 bool IsExtension = 13594 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); 13595 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool 13596 : diag::err_ovl_rewrite_equalequal_not_bool) 13597 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) 13598 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13599 Diag(FnDecl->getLocation(), diag::note_declared_at); 13600 if (!IsExtension) 13601 return ExprError(); 13602 } 13603 13604 if (AllowRewrittenCandidates && !IsReversed && 13605 CandidateSet.getRewriteInfo().isReversible()) { 13606 // We could have reversed this operator, but didn't. Check if some 13607 // reversed form was a viable candidate, and if so, if it had a 13608 // better conversion for either parameter. If so, this call is 13609 // formally ambiguous, and allowing it is an extension. 13610 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; 13611 for (OverloadCandidate &Cand : CandidateSet) { 13612 if (Cand.Viable && Cand.Function && Cand.isReversed() && 13613 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) { 13614 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 13615 if (CompareImplicitConversionSequences( 13616 *this, OpLoc, Cand.Conversions[ArgIdx], 13617 Best->Conversions[ArgIdx]) == 13618 ImplicitConversionSequence::Better) { 13619 AmbiguousWith.push_back(Cand.Function); 13620 break; 13621 } 13622 } 13623 } 13624 } 13625 13626 if (!AmbiguousWith.empty()) { 13627 bool AmbiguousWithSelf = 13628 AmbiguousWith.size() == 1 && 13629 declaresSameEntity(AmbiguousWith.front(), FnDecl); 13630 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) 13631 << BinaryOperator::getOpcodeStr(Opc) 13632 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf 13633 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13634 if (AmbiguousWithSelf) { 13635 Diag(FnDecl->getLocation(), 13636 diag::note_ovl_ambiguous_oper_binary_reversed_self); 13637 } else { 13638 Diag(FnDecl->getLocation(), 13639 diag::note_ovl_ambiguous_oper_binary_selected_candidate); 13640 for (auto *F : AmbiguousWith) 13641 Diag(F->getLocation(), 13642 diag::note_ovl_ambiguous_oper_binary_reversed_candidate); 13643 } 13644 } 13645 } 13646 13647 // Convert the arguments. 13648 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13649 // Best->Access is only meaningful for class members. 13650 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 13651 13652 ExprResult Arg1 = 13653 PerformCopyInitialization( 13654 InitializedEntity::InitializeParameter(Context, 13655 FnDecl->getParamDecl(0)), 13656 SourceLocation(), Args[1]); 13657 if (Arg1.isInvalid()) 13658 return ExprError(); 13659 13660 ExprResult Arg0 = 13661 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 13662 Best->FoundDecl, Method); 13663 if (Arg0.isInvalid()) 13664 return ExprError(); 13665 Base = Args[0] = Arg0.getAs<Expr>(); 13666 Args[1] = RHS = Arg1.getAs<Expr>(); 13667 } else { 13668 // Convert the arguments. 13669 ExprResult Arg0 = PerformCopyInitialization( 13670 InitializedEntity::InitializeParameter(Context, 13671 FnDecl->getParamDecl(0)), 13672 SourceLocation(), Args[0]); 13673 if (Arg0.isInvalid()) 13674 return ExprError(); 13675 13676 ExprResult Arg1 = 13677 PerformCopyInitialization( 13678 InitializedEntity::InitializeParameter(Context, 13679 FnDecl->getParamDecl(1)), 13680 SourceLocation(), Args[1]); 13681 if (Arg1.isInvalid()) 13682 return ExprError(); 13683 Args[0] = LHS = Arg0.getAs<Expr>(); 13684 Args[1] = RHS = Arg1.getAs<Expr>(); 13685 } 13686 13687 // Build the actual expression node. 13688 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 13689 Best->FoundDecl, Base, 13690 HadMultipleCandidates, OpLoc); 13691 if (FnExpr.isInvalid()) 13692 return ExprError(); 13693 13694 // Determine the result type. 13695 QualType ResultTy = FnDecl->getReturnType(); 13696 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13697 ResultTy = ResultTy.getNonLValueExprType(Context); 13698 13699 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 13700 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, 13701 CurFPFeatureOverrides(), Best->IsADLCandidate); 13702 13703 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, 13704 FnDecl)) 13705 return ExprError(); 13706 13707 ArrayRef<const Expr *> ArgsArray(Args, 2); 13708 const Expr *ImplicitThis = nullptr; 13709 // Cut off the implicit 'this'. 13710 if (isa<CXXMethodDecl>(FnDecl)) { 13711 ImplicitThis = ArgsArray[0]; 13712 ArgsArray = ArgsArray.slice(1); 13713 } 13714 13715 // Check for a self move. 13716 if (Op == OO_Equal) 13717 DiagnoseSelfMove(Args[0], Args[1], OpLoc); 13718 13719 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, 13720 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), 13721 VariadicDoesNotApply); 13722 13723 ExprResult R = MaybeBindToTemporary(TheCall); 13724 if (R.isInvalid()) 13725 return ExprError(); 13726 13727 R = CheckForImmediateInvocation(R, FnDecl); 13728 if (R.isInvalid()) 13729 return ExprError(); 13730 13731 // For a rewritten candidate, we've already reversed the arguments 13732 // if needed. Perform the rest of the rewrite now. 13733 if ((Best->RewriteKind & CRK_DifferentOperator) || 13734 (Op == OO_Spaceship && IsReversed)) { 13735 if (Op == OO_ExclaimEqual) { 13736 assert(ChosenOp == OO_EqualEqual && "unexpected operator name"); 13737 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); 13738 } else { 13739 assert(ChosenOp == OO_Spaceship && "unexpected operator name"); 13740 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13741 Expr *ZeroLiteral = 13742 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); 13743 13744 Sema::CodeSynthesisContext Ctx; 13745 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; 13746 Ctx.Entity = FnDecl; 13747 pushCodeSynthesisContext(Ctx); 13748 13749 R = CreateOverloadedBinOp( 13750 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), 13751 IsReversed ? R.get() : ZeroLiteral, PerformADL, 13752 /*AllowRewrittenCandidates=*/false); 13753 13754 popCodeSynthesisContext(); 13755 } 13756 if (R.isInvalid()) 13757 return ExprError(); 13758 } else { 13759 assert(ChosenOp == Op && "unexpected operator name"); 13760 } 13761 13762 // Make a note in the AST if we did any rewriting. 13763 if (Best->RewriteKind != CRK_None) 13764 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); 13765 13766 return R; 13767 } else { 13768 // We matched a built-in operator. Convert the arguments, then 13769 // break out so that we will build the appropriate built-in 13770 // operator node. 13771 ExprResult ArgsRes0 = PerformImplicitConversion( 13772 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 13773 AA_Passing, CCK_ForBuiltinOverloadedOp); 13774 if (ArgsRes0.isInvalid()) 13775 return ExprError(); 13776 Args[0] = ArgsRes0.get(); 13777 13778 ExprResult ArgsRes1 = PerformImplicitConversion( 13779 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 13780 AA_Passing, CCK_ForBuiltinOverloadedOp); 13781 if (ArgsRes1.isInvalid()) 13782 return ExprError(); 13783 Args[1] = ArgsRes1.get(); 13784 break; 13785 } 13786 } 13787 13788 case OR_No_Viable_Function: { 13789 // C++ [over.match.oper]p9: 13790 // If the operator is the operator , [...] and there are no 13791 // viable functions, then the operator is assumed to be the 13792 // built-in operator and interpreted according to clause 5. 13793 if (Opc == BO_Comma) 13794 break; 13795 13796 // When defaulting an 'operator<=>', we can try to synthesize a three-way 13797 // compare result using '==' and '<'. 13798 if (DefaultedFn && Opc == BO_Cmp) { 13799 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], 13800 Args[1], DefaultedFn); 13801 if (E.isInvalid() || E.isUsable()) 13802 return E; 13803 } 13804 13805 // For class as left operand for assignment or compound assignment 13806 // operator do not fall through to handling in built-in, but report that 13807 // no overloaded assignment operator found 13808 ExprResult Result = ExprError(); 13809 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); 13810 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, 13811 Args, OpLoc); 13812 if (Args[0]->getType()->isRecordType() && 13813 Opc >= BO_Assign && Opc <= BO_OrAssign) { 13814 Diag(OpLoc, diag::err_ovl_no_viable_oper) 13815 << BinaryOperator::getOpcodeStr(Opc) 13816 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13817 if (Args[0]->getType()->isIncompleteType()) { 13818 Diag(OpLoc, diag::note_assign_lhs_incomplete) 13819 << Args[0]->getType() 13820 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13821 } 13822 } else { 13823 // This is an erroneous use of an operator which can be overloaded by 13824 // a non-member function. Check for non-member operators which were 13825 // defined too late to be candidates. 13826 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) 13827 // FIXME: Recover by calling the found function. 13828 return ExprError(); 13829 13830 // No viable function; try to create a built-in operation, which will 13831 // produce an error. Then, show the non-viable candidates. 13832 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13833 } 13834 assert(Result.isInvalid() && 13835 "C++ binary operator overloading is missing candidates!"); 13836 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); 13837 return Result; 13838 } 13839 13840 case OR_Ambiguous: 13841 CandidateSet.NoteCandidates( 13842 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 13843 << BinaryOperator::getOpcodeStr(Opc) 13844 << Args[0]->getType() 13845 << Args[1]->getType() 13846 << Args[0]->getSourceRange() 13847 << Args[1]->getSourceRange()), 13848 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 13849 OpLoc); 13850 return ExprError(); 13851 13852 case OR_Deleted: 13853 if (isImplicitlyDeleted(Best->Function)) { 13854 FunctionDecl *DeletedFD = Best->Function; 13855 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); 13856 if (DFK.isSpecialMember()) { 13857 Diag(OpLoc, diag::err_ovl_deleted_special_oper) 13858 << Args[0]->getType() << DFK.asSpecialMember(); 13859 } else { 13860 assert(DFK.isComparison()); 13861 Diag(OpLoc, diag::err_ovl_deleted_comparison) 13862 << Args[0]->getType() << DeletedFD; 13863 } 13864 13865 // The user probably meant to call this special member. Just 13866 // explain why it's deleted. 13867 NoteDeletedFunction(DeletedFD); 13868 return ExprError(); 13869 } 13870 CandidateSet.NoteCandidates( 13871 PartialDiagnosticAt( 13872 OpLoc, PDiag(diag::err_ovl_deleted_oper) 13873 << getOperatorSpelling(Best->Function->getDeclName() 13874 .getCXXOverloadedOperator()) 13875 << Args[0]->getSourceRange() 13876 << Args[1]->getSourceRange()), 13877 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 13878 OpLoc); 13879 return ExprError(); 13880 } 13881 13882 // We matched a built-in operator; build it. 13883 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13884 } 13885 13886 ExprResult Sema::BuildSynthesizedThreeWayComparison( 13887 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, 13888 FunctionDecl *DefaultedFn) { 13889 const ComparisonCategoryInfo *Info = 13890 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); 13891 // If we're not producing a known comparison category type, we can't 13892 // synthesize a three-way comparison. Let the caller diagnose this. 13893 if (!Info) 13894 return ExprResult((Expr*)nullptr); 13895 13896 // If we ever want to perform this synthesis more generally, we will need to 13897 // apply the temporary materialization conversion to the operands. 13898 assert(LHS->isGLValue() && RHS->isGLValue() && 13899 "cannot use prvalue expressions more than once"); 13900 Expr *OrigLHS = LHS; 13901 Expr *OrigRHS = RHS; 13902 13903 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to 13904 // each of them multiple times below. 13905 LHS = new (Context) 13906 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), 13907 LHS->getObjectKind(), LHS); 13908 RHS = new (Context) 13909 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), 13910 RHS->getObjectKind(), RHS); 13911 13912 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, 13913 DefaultedFn); 13914 if (Eq.isInvalid()) 13915 return ExprError(); 13916 13917 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, 13918 true, DefaultedFn); 13919 if (Less.isInvalid()) 13920 return ExprError(); 13921 13922 ExprResult Greater; 13923 if (Info->isPartial()) { 13924 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, 13925 DefaultedFn); 13926 if (Greater.isInvalid()) 13927 return ExprError(); 13928 } 13929 13930 // Form the list of comparisons we're going to perform. 13931 struct Comparison { 13932 ExprResult Cmp; 13933 ComparisonCategoryResult Result; 13934 } Comparisons[4] = 13935 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal 13936 : ComparisonCategoryResult::Equivalent}, 13937 {Less, ComparisonCategoryResult::Less}, 13938 {Greater, ComparisonCategoryResult::Greater}, 13939 {ExprResult(), ComparisonCategoryResult::Unordered}, 13940 }; 13941 13942 int I = Info->isPartial() ? 3 : 2; 13943 13944 // Combine the comparisons with suitable conditional expressions. 13945 ExprResult Result; 13946 for (; I >= 0; --I) { 13947 // Build a reference to the comparison category constant. 13948 auto *VI = Info->lookupValueInfo(Comparisons[I].Result); 13949 // FIXME: Missing a constant for a comparison category. Diagnose this? 13950 if (!VI) 13951 return ExprResult((Expr*)nullptr); 13952 ExprResult ThisResult = 13953 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); 13954 if (ThisResult.isInvalid()) 13955 return ExprError(); 13956 13957 // Build a conditional unless this is the final case. 13958 if (Result.get()) { 13959 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), 13960 ThisResult.get(), Result.get()); 13961 if (Result.isInvalid()) 13962 return ExprError(); 13963 } else { 13964 Result = ThisResult; 13965 } 13966 } 13967 13968 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to 13969 // bind the OpaqueValueExprs before they're (repeatedly) used. 13970 Expr *SyntacticForm = BinaryOperator::Create( 13971 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), 13972 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, 13973 CurFPFeatureOverrides()); 13974 Expr *SemanticForm[] = {LHS, RHS, Result.get()}; 13975 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); 13976 } 13977 13978 ExprResult 13979 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 13980 SourceLocation RLoc, 13981 Expr *Base, Expr *Idx) { 13982 Expr *Args[2] = { Base, Idx }; 13983 DeclarationName OpName = 13984 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 13985 13986 // If either side is type-dependent, create an appropriate dependent 13987 // expression. 13988 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 13989 13990 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13991 // CHECKME: no 'operator' keyword? 13992 DeclarationNameInfo OpNameInfo(OpName, LLoc); 13993 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 13994 ExprResult Fn = CreateUnresolvedLookupExpr( 13995 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); 13996 if (Fn.isInvalid()) 13997 return ExprError(); 13998 // Can't add any actual overloads yet 13999 14000 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, 14001 Context.DependentTy, VK_RValue, RLoc, 14002 CurFPFeatureOverrides()); 14003 } 14004 14005 // Handle placeholders on both operands. 14006 if (checkPlaceholderForOverload(*this, Args[0])) 14007 return ExprError(); 14008 if (checkPlaceholderForOverload(*this, Args[1])) 14009 return ExprError(); 14010 14011 // Build an empty overload set. 14012 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); 14013 14014 // Subscript can only be overloaded as a member function. 14015 14016 // Add operator candidates that are member functions. 14017 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14018 14019 // Add builtin operator candidates. 14020 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14021 14022 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14023 14024 // Perform overload resolution. 14025 OverloadCandidateSet::iterator Best; 14026 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 14027 case OR_Success: { 14028 // We found a built-in operator or an overloaded operator. 14029 FunctionDecl *FnDecl = Best->Function; 14030 14031 if (FnDecl) { 14032 // We matched an overloaded operator. Build a call to that 14033 // operator. 14034 14035 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 14036 14037 // Convert the arguments. 14038 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 14039 ExprResult Arg0 = 14040 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 14041 Best->FoundDecl, Method); 14042 if (Arg0.isInvalid()) 14043 return ExprError(); 14044 Args[0] = Arg0.get(); 14045 14046 // Convert the arguments. 14047 ExprResult InputInit 14048 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 14049 Context, 14050 FnDecl->getParamDecl(0)), 14051 SourceLocation(), 14052 Args[1]); 14053 if (InputInit.isInvalid()) 14054 return ExprError(); 14055 14056 Args[1] = InputInit.getAs<Expr>(); 14057 14058 // Build the actual expression node. 14059 DeclarationNameInfo OpLocInfo(OpName, LLoc); 14060 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14061 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 14062 Best->FoundDecl, 14063 Base, 14064 HadMultipleCandidates, 14065 OpLocInfo.getLoc(), 14066 OpLocInfo.getInfo()); 14067 if (FnExpr.isInvalid()) 14068 return ExprError(); 14069 14070 // Determine the result type 14071 QualType ResultTy = FnDecl->getReturnType(); 14072 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14073 ResultTy = ResultTy.getNonLValueExprType(Context); 14074 14075 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14076 Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc, 14077 CurFPFeatureOverrides()); 14078 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) 14079 return ExprError(); 14080 14081 if (CheckFunctionCall(Method, TheCall, 14082 Method->getType()->castAs<FunctionProtoType>())) 14083 return ExprError(); 14084 14085 return MaybeBindToTemporary(TheCall); 14086 } else { 14087 // We matched a built-in operator. Convert the arguments, then 14088 // break out so that we will build the appropriate built-in 14089 // operator node. 14090 ExprResult ArgsRes0 = PerformImplicitConversion( 14091 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 14092 AA_Passing, CCK_ForBuiltinOverloadedOp); 14093 if (ArgsRes0.isInvalid()) 14094 return ExprError(); 14095 Args[0] = ArgsRes0.get(); 14096 14097 ExprResult ArgsRes1 = PerformImplicitConversion( 14098 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 14099 AA_Passing, CCK_ForBuiltinOverloadedOp); 14100 if (ArgsRes1.isInvalid()) 14101 return ExprError(); 14102 Args[1] = ArgsRes1.get(); 14103 14104 break; 14105 } 14106 } 14107 14108 case OR_No_Viable_Function: { 14109 PartialDiagnostic PD = CandidateSet.empty() 14110 ? (PDiag(diag::err_ovl_no_oper) 14111 << Args[0]->getType() << /*subscript*/ 0 14112 << Args[0]->getSourceRange() << Args[1]->getSourceRange()) 14113 : (PDiag(diag::err_ovl_no_viable_subscript) 14114 << Args[0]->getType() << Args[0]->getSourceRange() 14115 << Args[1]->getSourceRange()); 14116 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, 14117 OCD_AllCandidates, Args, "[]", LLoc); 14118 return ExprError(); 14119 } 14120 14121 case OR_Ambiguous: 14122 CandidateSet.NoteCandidates( 14123 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 14124 << "[]" << Args[0]->getType() 14125 << Args[1]->getType() 14126 << Args[0]->getSourceRange() 14127 << Args[1]->getSourceRange()), 14128 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); 14129 return ExprError(); 14130 14131 case OR_Deleted: 14132 CandidateSet.NoteCandidates( 14133 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper) 14134 << "[]" << Args[0]->getSourceRange() 14135 << Args[1]->getSourceRange()), 14136 *this, OCD_AllCandidates, Args, "[]", LLoc); 14137 return ExprError(); 14138 } 14139 14140 // We matched a built-in operator; build it. 14141 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 14142 } 14143 14144 /// BuildCallToMemberFunction - Build a call to a member 14145 /// function. MemExpr is the expression that refers to the member 14146 /// function (and includes the object parameter), Args/NumArgs are the 14147 /// arguments to the function call (not including the object 14148 /// parameter). The caller needs to validate that the member 14149 /// expression refers to a non-static member function or an overloaded 14150 /// member function. 14151 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 14152 SourceLocation LParenLoc, 14153 MultiExprArg Args, 14154 SourceLocation RParenLoc, 14155 bool AllowRecovery) { 14156 assert(MemExprE->getType() == Context.BoundMemberTy || 14157 MemExprE->getType() == Context.OverloadTy); 14158 14159 // Dig out the member expression. This holds both the object 14160 // argument and the member function we're referring to. 14161 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 14162 14163 // Determine whether this is a call to a pointer-to-member function. 14164 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 14165 assert(op->getType() == Context.BoundMemberTy); 14166 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 14167 14168 QualType fnType = 14169 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 14170 14171 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 14172 QualType resultType = proto->getCallResultType(Context); 14173 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); 14174 14175 // Check that the object type isn't more qualified than the 14176 // member function we're calling. 14177 Qualifiers funcQuals = proto->getMethodQuals(); 14178 14179 QualType objectType = op->getLHS()->getType(); 14180 if (op->getOpcode() == BO_PtrMemI) 14181 objectType = objectType->castAs<PointerType>()->getPointeeType(); 14182 Qualifiers objectQuals = objectType.getQualifiers(); 14183 14184 Qualifiers difference = objectQuals - funcQuals; 14185 difference.removeObjCGCAttr(); 14186 difference.removeAddressSpace(); 14187 if (difference) { 14188 std::string qualsString = difference.getAsString(); 14189 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 14190 << fnType.getUnqualifiedType() 14191 << qualsString 14192 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 14193 } 14194 14195 CXXMemberCallExpr *call = CXXMemberCallExpr::Create( 14196 Context, MemExprE, Args, resultType, valueKind, RParenLoc, 14197 CurFPFeatureOverrides(), proto->getNumParams()); 14198 14199 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), 14200 call, nullptr)) 14201 return ExprError(); 14202 14203 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) 14204 return ExprError(); 14205 14206 if (CheckOtherCall(call, proto)) 14207 return ExprError(); 14208 14209 return MaybeBindToTemporary(call); 14210 } 14211 14212 // We only try to build a recovery expr at this level if we can preserve 14213 // the return type, otherwise we return ExprError() and let the caller 14214 // recover. 14215 auto BuildRecoveryExpr = [&](QualType Type) { 14216 if (!AllowRecovery) 14217 return ExprError(); 14218 std::vector<Expr *> SubExprs = {MemExprE}; 14219 llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); }); 14220 return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, 14221 Type); 14222 }; 14223 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) 14224 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue, 14225 RParenLoc, CurFPFeatureOverrides()); 14226 14227 UnbridgedCastsSet UnbridgedCasts; 14228 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14229 return ExprError(); 14230 14231 MemberExpr *MemExpr; 14232 CXXMethodDecl *Method = nullptr; 14233 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); 14234 NestedNameSpecifier *Qualifier = nullptr; 14235 if (isa<MemberExpr>(NakedMemExpr)) { 14236 MemExpr = cast<MemberExpr>(NakedMemExpr); 14237 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 14238 FoundDecl = MemExpr->getFoundDecl(); 14239 Qualifier = MemExpr->getQualifier(); 14240 UnbridgedCasts.restore(); 14241 } else { 14242 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 14243 Qualifier = UnresExpr->getQualifier(); 14244 14245 QualType ObjectType = UnresExpr->getBaseType(); 14246 Expr::Classification ObjectClassification 14247 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 14248 : UnresExpr->getBase()->Classify(Context); 14249 14250 // Add overload candidates 14251 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), 14252 OverloadCandidateSet::CSK_Normal); 14253 14254 // FIXME: avoid copy. 14255 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 14256 if (UnresExpr->hasExplicitTemplateArgs()) { 14257 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 14258 TemplateArgs = &TemplateArgsBuffer; 14259 } 14260 14261 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 14262 E = UnresExpr->decls_end(); I != E; ++I) { 14263 14264 NamedDecl *Func = *I; 14265 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 14266 if (isa<UsingShadowDecl>(Func)) 14267 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 14268 14269 14270 // Microsoft supports direct constructor calls. 14271 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 14272 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, 14273 CandidateSet, 14274 /*SuppressUserConversions*/ false); 14275 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 14276 // If explicit template arguments were provided, we can't call a 14277 // non-template member function. 14278 if (TemplateArgs) 14279 continue; 14280 14281 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 14282 ObjectClassification, Args, CandidateSet, 14283 /*SuppressUserConversions=*/false); 14284 } else { 14285 AddMethodTemplateCandidate( 14286 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC, 14287 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet, 14288 /*SuppressUserConversions=*/false); 14289 } 14290 } 14291 14292 DeclarationName DeclName = UnresExpr->getMemberName(); 14293 14294 UnbridgedCasts.restore(); 14295 14296 OverloadCandidateSet::iterator Best; 14297 bool Succeeded = false; 14298 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), 14299 Best)) { 14300 case OR_Success: 14301 Method = cast<CXXMethodDecl>(Best->Function); 14302 FoundDecl = Best->FoundDecl; 14303 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 14304 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc())) 14305 break; 14306 // If FoundDecl is different from Method (such as if one is a template 14307 // and the other a specialization), make sure DiagnoseUseOfDecl is 14308 // called on both. 14309 // FIXME: This would be more comprehensively addressed by modifying 14310 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 14311 // being used. 14312 if (Method != FoundDecl.getDecl() && 14313 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc())) 14314 break; 14315 Succeeded = true; 14316 break; 14317 14318 case OR_No_Viable_Function: 14319 CandidateSet.NoteCandidates( 14320 PartialDiagnosticAt( 14321 UnresExpr->getMemberLoc(), 14322 PDiag(diag::err_ovl_no_viable_member_function_in_call) 14323 << DeclName << MemExprE->getSourceRange()), 14324 *this, OCD_AllCandidates, Args); 14325 break; 14326 case OR_Ambiguous: 14327 CandidateSet.NoteCandidates( 14328 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14329 PDiag(diag::err_ovl_ambiguous_member_call) 14330 << DeclName << MemExprE->getSourceRange()), 14331 *this, OCD_AmbiguousCandidates, Args); 14332 break; 14333 case OR_Deleted: 14334 CandidateSet.NoteCandidates( 14335 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14336 PDiag(diag::err_ovl_deleted_member_call) 14337 << DeclName << MemExprE->getSourceRange()), 14338 *this, OCD_AllCandidates, Args); 14339 break; 14340 } 14341 // Overload resolution fails, try to recover. 14342 if (!Succeeded) 14343 return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); 14344 14345 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 14346 14347 // If overload resolution picked a static member, build a 14348 // non-member call based on that function. 14349 if (Method->isStatic()) { 14350 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, 14351 RParenLoc); 14352 } 14353 14354 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 14355 } 14356 14357 QualType ResultType = Method->getReturnType(); 14358 ExprValueKind VK = Expr::getValueKindForType(ResultType); 14359 ResultType = ResultType.getNonLValueExprType(Context); 14360 14361 assert(Method && "Member call to something that isn't a method?"); 14362 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14363 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create( 14364 Context, MemExprE, Args, ResultType, VK, RParenLoc, 14365 CurFPFeatureOverrides(), Proto->getNumParams()); 14366 14367 // Check for a valid return type. 14368 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), 14369 TheCall, Method)) 14370 return BuildRecoveryExpr(ResultType); 14371 14372 // Convert the object argument (for a non-static member function call). 14373 // We only need to do this if there was actually an overload; otherwise 14374 // it was done at lookup. 14375 if (!Method->isStatic()) { 14376 ExprResult ObjectArg = 14377 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 14378 FoundDecl, Method); 14379 if (ObjectArg.isInvalid()) 14380 return ExprError(); 14381 MemExpr->setBase(ObjectArg.get()); 14382 } 14383 14384 // Convert the rest of the arguments 14385 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, 14386 RParenLoc)) 14387 return BuildRecoveryExpr(ResultType); 14388 14389 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14390 14391 if (CheckFunctionCall(Method, TheCall, Proto)) 14392 return ExprError(); 14393 14394 // In the case the method to call was not selected by the overloading 14395 // resolution process, we still need to handle the enable_if attribute. Do 14396 // that here, so it will not hide previous -- and more relevant -- errors. 14397 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { 14398 if (const EnableIfAttr *Attr = 14399 CheckEnableIf(Method, LParenLoc, Args, true)) { 14400 Diag(MemE->getMemberLoc(), 14401 diag::err_ovl_no_viable_member_function_in_call) 14402 << Method << Method->getSourceRange(); 14403 Diag(Method->getLocation(), 14404 diag::note_ovl_candidate_disabled_by_function_cond_attr) 14405 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 14406 return ExprError(); 14407 } 14408 } 14409 14410 if ((isa<CXXConstructorDecl>(CurContext) || 14411 isa<CXXDestructorDecl>(CurContext)) && 14412 TheCall->getMethodDecl()->isPure()) { 14413 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 14414 14415 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && 14416 MemExpr->performsVirtualDispatch(getLangOpts())) { 14417 Diag(MemExpr->getBeginLoc(), 14418 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 14419 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 14420 << MD->getParent(); 14421 14422 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); 14423 if (getLangOpts().AppleKext) 14424 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) 14425 << MD->getParent() << MD->getDeclName(); 14426 } 14427 } 14428 14429 if (CXXDestructorDecl *DD = 14430 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) { 14431 // a->A::f() doesn't go through the vtable, except in AppleKext mode. 14432 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; 14433 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, 14434 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, 14435 MemExpr->getMemberLoc()); 14436 } 14437 14438 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), 14439 TheCall->getMethodDecl()); 14440 } 14441 14442 /// BuildCallToObjectOfClassType - Build a call to an object of class 14443 /// type (C++ [over.call.object]), which can end up invoking an 14444 /// overloaded function call operator (@c operator()) or performing a 14445 /// user-defined conversion on the object argument. 14446 ExprResult 14447 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 14448 SourceLocation LParenLoc, 14449 MultiExprArg Args, 14450 SourceLocation RParenLoc) { 14451 if (checkPlaceholderForOverload(*this, Obj)) 14452 return ExprError(); 14453 ExprResult Object = Obj; 14454 14455 UnbridgedCastsSet UnbridgedCasts; 14456 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14457 return ExprError(); 14458 14459 assert(Object.get()->getType()->isRecordType() && 14460 "Requires object type argument"); 14461 14462 // C++ [over.call.object]p1: 14463 // If the primary-expression E in the function call syntax 14464 // evaluates to a class object of type "cv T", then the set of 14465 // candidate functions includes at least the function call 14466 // operators of T. The function call operators of T are obtained by 14467 // ordinary lookup of the name operator() in the context of 14468 // (E).operator(). 14469 OverloadCandidateSet CandidateSet(LParenLoc, 14470 OverloadCandidateSet::CSK_Operator); 14471 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 14472 14473 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 14474 diag::err_incomplete_object_call, Object.get())) 14475 return true; 14476 14477 const auto *Record = Object.get()->getType()->castAs<RecordType>(); 14478 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 14479 LookupQualifiedName(R, Record->getDecl()); 14480 R.suppressDiagnostics(); 14481 14482 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14483 Oper != OperEnd; ++Oper) { 14484 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 14485 Object.get()->Classify(Context), Args, CandidateSet, 14486 /*SuppressUserConversion=*/false); 14487 } 14488 14489 // C++ [over.call.object]p2: 14490 // In addition, for each (non-explicit in C++0x) conversion function 14491 // declared in T of the form 14492 // 14493 // operator conversion-type-id () cv-qualifier; 14494 // 14495 // where cv-qualifier is the same cv-qualification as, or a 14496 // greater cv-qualification than, cv, and where conversion-type-id 14497 // denotes the type "pointer to function of (P1,...,Pn) returning 14498 // R", or the type "reference to pointer to function of 14499 // (P1,...,Pn) returning R", or the type "reference to function 14500 // of (P1,...,Pn) returning R", a surrogate call function [...] 14501 // is also considered as a candidate function. Similarly, 14502 // surrogate call functions are added to the set of candidate 14503 // functions for each conversion function declared in an 14504 // accessible base class provided the function is not hidden 14505 // within T by another intervening declaration. 14506 const auto &Conversions = 14507 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 14508 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 14509 NamedDecl *D = *I; 14510 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 14511 if (isa<UsingShadowDecl>(D)) 14512 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 14513 14514 // Skip over templated conversion functions; they aren't 14515 // surrogates. 14516 if (isa<FunctionTemplateDecl>(D)) 14517 continue; 14518 14519 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 14520 if (!Conv->isExplicit()) { 14521 // Strip the reference type (if any) and then the pointer type (if 14522 // any) to get down to what might be a function type. 14523 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 14524 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 14525 ConvType = ConvPtrType->getPointeeType(); 14526 14527 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 14528 { 14529 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 14530 Object.get(), Args, CandidateSet); 14531 } 14532 } 14533 } 14534 14535 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14536 14537 // Perform overload resolution. 14538 OverloadCandidateSet::iterator Best; 14539 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), 14540 Best)) { 14541 case OR_Success: 14542 // Overload resolution succeeded; we'll build the appropriate call 14543 // below. 14544 break; 14545 14546 case OR_No_Viable_Function: { 14547 PartialDiagnostic PD = 14548 CandidateSet.empty() 14549 ? (PDiag(diag::err_ovl_no_oper) 14550 << Object.get()->getType() << /*call*/ 1 14551 << Object.get()->getSourceRange()) 14552 : (PDiag(diag::err_ovl_no_viable_object_call) 14553 << Object.get()->getType() << Object.get()->getSourceRange()); 14554 CandidateSet.NoteCandidates( 14555 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, 14556 OCD_AllCandidates, Args); 14557 break; 14558 } 14559 case OR_Ambiguous: 14560 CandidateSet.NoteCandidates( 14561 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14562 PDiag(diag::err_ovl_ambiguous_object_call) 14563 << Object.get()->getType() 14564 << Object.get()->getSourceRange()), 14565 *this, OCD_AmbiguousCandidates, Args); 14566 break; 14567 14568 case OR_Deleted: 14569 CandidateSet.NoteCandidates( 14570 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14571 PDiag(diag::err_ovl_deleted_object_call) 14572 << Object.get()->getType() 14573 << Object.get()->getSourceRange()), 14574 *this, OCD_AllCandidates, Args); 14575 break; 14576 } 14577 14578 if (Best == CandidateSet.end()) 14579 return true; 14580 14581 UnbridgedCasts.restore(); 14582 14583 if (Best->Function == nullptr) { 14584 // Since there is no function declaration, this is one of the 14585 // surrogate candidates. Dig out the conversion function. 14586 CXXConversionDecl *Conv 14587 = cast<CXXConversionDecl>( 14588 Best->Conversions[0].UserDefined.ConversionFunction); 14589 14590 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, 14591 Best->FoundDecl); 14592 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) 14593 return ExprError(); 14594 assert(Conv == Best->FoundDecl.getDecl() && 14595 "Found Decl & conversion-to-functionptr should be same, right?!"); 14596 // We selected one of the surrogate functions that converts the 14597 // object parameter to a function pointer. Perform the conversion 14598 // on the object argument, then let BuildCallExpr finish the job. 14599 14600 // Create an implicit member expr to refer to the conversion operator. 14601 // and then call it. 14602 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 14603 Conv, HadMultipleCandidates); 14604 if (Call.isInvalid()) 14605 return ExprError(); 14606 // Record usage of conversion in an implicit cast. 14607 Call = ImplicitCastExpr::Create( 14608 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), 14609 nullptr, VK_RValue, CurFPFeatureOverrides()); 14610 14611 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); 14612 } 14613 14614 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); 14615 14616 // We found an overloaded operator(). Build a CXXOperatorCallExpr 14617 // that calls this method, using Object for the implicit object 14618 // parameter and passing along the remaining arguments. 14619 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 14620 14621 // An error diagnostic has already been printed when parsing the declaration. 14622 if (Method->isInvalidDecl()) 14623 return ExprError(); 14624 14625 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14626 unsigned NumParams = Proto->getNumParams(); 14627 14628 DeclarationNameInfo OpLocInfo( 14629 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); 14630 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); 14631 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 14632 Obj, HadMultipleCandidates, 14633 OpLocInfo.getLoc(), 14634 OpLocInfo.getInfo()); 14635 if (NewFn.isInvalid()) 14636 return true; 14637 14638 // The number of argument slots to allocate in the call. If we have default 14639 // arguments we need to allocate space for them as well. We additionally 14640 // need one more slot for the object parameter. 14641 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams); 14642 14643 // Build the full argument list for the method call (the implicit object 14644 // parameter is placed at the beginning of the list). 14645 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots); 14646 14647 bool IsError = false; 14648 14649 // Initialize the implicit object parameter. 14650 ExprResult ObjRes = 14651 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr, 14652 Best->FoundDecl, Method); 14653 if (ObjRes.isInvalid()) 14654 IsError = true; 14655 else 14656 Object = ObjRes; 14657 MethodArgs[0] = Object.get(); 14658 14659 // Check the argument types. 14660 for (unsigned i = 0; i != NumParams; i++) { 14661 Expr *Arg; 14662 if (i < Args.size()) { 14663 Arg = Args[i]; 14664 14665 // Pass the argument. 14666 14667 ExprResult InputInit 14668 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 14669 Context, 14670 Method->getParamDecl(i)), 14671 SourceLocation(), Arg); 14672 14673 IsError |= InputInit.isInvalid(); 14674 Arg = InputInit.getAs<Expr>(); 14675 } else { 14676 ExprResult DefArg 14677 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 14678 if (DefArg.isInvalid()) { 14679 IsError = true; 14680 break; 14681 } 14682 14683 Arg = DefArg.getAs<Expr>(); 14684 } 14685 14686 MethodArgs[i + 1] = Arg; 14687 } 14688 14689 // If this is a variadic call, handle args passed through "...". 14690 if (Proto->isVariadic()) { 14691 // Promote the arguments (C99 6.5.2.2p7). 14692 for (unsigned i = NumParams, e = Args.size(); i < e; i++) { 14693 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 14694 nullptr); 14695 IsError |= Arg.isInvalid(); 14696 MethodArgs[i + 1] = Arg.get(); 14697 } 14698 } 14699 14700 if (IsError) 14701 return true; 14702 14703 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14704 14705 // Once we've built TheCall, all of the expressions are properly owned. 14706 QualType ResultTy = Method->getReturnType(); 14707 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14708 ResultTy = ResultTy.getNonLValueExprType(Context); 14709 14710 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14711 Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, 14712 CurFPFeatureOverrides()); 14713 14714 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) 14715 return true; 14716 14717 if (CheckFunctionCall(Method, TheCall, Proto)) 14718 return true; 14719 14720 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); 14721 } 14722 14723 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 14724 /// (if one exists), where @c Base is an expression of class type and 14725 /// @c Member is the name of the member we're trying to find. 14726 ExprResult 14727 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, 14728 bool *NoArrowOperatorFound) { 14729 assert(Base->getType()->isRecordType() && 14730 "left-hand side must have class type"); 14731 14732 if (checkPlaceholderForOverload(*this, Base)) 14733 return ExprError(); 14734 14735 SourceLocation Loc = Base->getExprLoc(); 14736 14737 // C++ [over.ref]p1: 14738 // 14739 // [...] An expression x->m is interpreted as (x.operator->())->m 14740 // for a class object x of type T if T::operator->() exists and if 14741 // the operator is selected as the best match function by the 14742 // overload resolution mechanism (13.3). 14743 DeclarationName OpName = 14744 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 14745 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); 14746 14747 if (RequireCompleteType(Loc, Base->getType(), 14748 diag::err_typecheck_incomplete_tag, Base)) 14749 return ExprError(); 14750 14751 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 14752 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl()); 14753 R.suppressDiagnostics(); 14754 14755 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14756 Oper != OperEnd; ++Oper) { 14757 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 14758 None, CandidateSet, /*SuppressUserConversion=*/false); 14759 } 14760 14761 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14762 14763 // Perform overload resolution. 14764 OverloadCandidateSet::iterator Best; 14765 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 14766 case OR_Success: 14767 // Overload resolution succeeded; we'll build the call below. 14768 break; 14769 14770 case OR_No_Viable_Function: { 14771 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); 14772 if (CandidateSet.empty()) { 14773 QualType BaseType = Base->getType(); 14774 if (NoArrowOperatorFound) { 14775 // Report this specific error to the caller instead of emitting a 14776 // diagnostic, as requested. 14777 *NoArrowOperatorFound = true; 14778 return ExprError(); 14779 } 14780 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 14781 << BaseType << Base->getSourceRange(); 14782 if (BaseType->isRecordType() && !BaseType->isPointerType()) { 14783 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) 14784 << FixItHint::CreateReplacement(OpLoc, "."); 14785 } 14786 } else 14787 Diag(OpLoc, diag::err_ovl_no_viable_oper) 14788 << "operator->" << Base->getSourceRange(); 14789 CandidateSet.NoteCandidates(*this, Base, Cands); 14790 return ExprError(); 14791 } 14792 case OR_Ambiguous: 14793 CandidateSet.NoteCandidates( 14794 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) 14795 << "->" << Base->getType() 14796 << Base->getSourceRange()), 14797 *this, OCD_AmbiguousCandidates, Base); 14798 return ExprError(); 14799 14800 case OR_Deleted: 14801 CandidateSet.NoteCandidates( 14802 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 14803 << "->" << Base->getSourceRange()), 14804 *this, OCD_AllCandidates, Base); 14805 return ExprError(); 14806 } 14807 14808 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); 14809 14810 // Convert the object parameter. 14811 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 14812 ExprResult BaseResult = 14813 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, 14814 Best->FoundDecl, Method); 14815 if (BaseResult.isInvalid()) 14816 return ExprError(); 14817 Base = BaseResult.get(); 14818 14819 // Build the operator call. 14820 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 14821 Base, HadMultipleCandidates, OpLoc); 14822 if (FnExpr.isInvalid()) 14823 return ExprError(); 14824 14825 QualType ResultTy = Method->getReturnType(); 14826 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14827 ResultTy = ResultTy.getNonLValueExprType(Context); 14828 CXXOperatorCallExpr *TheCall = 14829 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, 14830 ResultTy, VK, OpLoc, CurFPFeatureOverrides()); 14831 14832 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) 14833 return ExprError(); 14834 14835 if (CheckFunctionCall(Method, TheCall, 14836 Method->getType()->castAs<FunctionProtoType>())) 14837 return ExprError(); 14838 14839 return MaybeBindToTemporary(TheCall); 14840 } 14841 14842 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to 14843 /// a literal operator described by the provided lookup results. 14844 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, 14845 DeclarationNameInfo &SuffixInfo, 14846 ArrayRef<Expr*> Args, 14847 SourceLocation LitEndLoc, 14848 TemplateArgumentListInfo *TemplateArgs) { 14849 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); 14850 14851 OverloadCandidateSet CandidateSet(UDSuffixLoc, 14852 OverloadCandidateSet::CSK_Normal); 14853 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, 14854 TemplateArgs); 14855 14856 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14857 14858 // Perform overload resolution. This will usually be trivial, but might need 14859 // to perform substitutions for a literal operator template. 14860 OverloadCandidateSet::iterator Best; 14861 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { 14862 case OR_Success: 14863 case OR_Deleted: 14864 break; 14865 14866 case OR_No_Viable_Function: 14867 CandidateSet.NoteCandidates( 14868 PartialDiagnosticAt(UDSuffixLoc, 14869 PDiag(diag::err_ovl_no_viable_function_in_call) 14870 << R.getLookupName()), 14871 *this, OCD_AllCandidates, Args); 14872 return ExprError(); 14873 14874 case OR_Ambiguous: 14875 CandidateSet.NoteCandidates( 14876 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) 14877 << R.getLookupName()), 14878 *this, OCD_AmbiguousCandidates, Args); 14879 return ExprError(); 14880 } 14881 14882 FunctionDecl *FD = Best->Function; 14883 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, 14884 nullptr, HadMultipleCandidates, 14885 SuffixInfo.getLoc(), 14886 SuffixInfo.getInfo()); 14887 if (Fn.isInvalid()) 14888 return true; 14889 14890 // Check the argument types. This should almost always be a no-op, except 14891 // that array-to-pointer decay is applied to string literals. 14892 Expr *ConvArgs[2]; 14893 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 14894 ExprResult InputInit = PerformCopyInitialization( 14895 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), 14896 SourceLocation(), Args[ArgIdx]); 14897 if (InputInit.isInvalid()) 14898 return true; 14899 ConvArgs[ArgIdx] = InputInit.get(); 14900 } 14901 14902 QualType ResultTy = FD->getReturnType(); 14903 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14904 ResultTy = ResultTy.getNonLValueExprType(Context); 14905 14906 UserDefinedLiteral *UDL = UserDefinedLiteral::Create( 14907 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy, 14908 VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); 14909 14910 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) 14911 return ExprError(); 14912 14913 if (CheckFunctionCall(FD, UDL, nullptr)) 14914 return ExprError(); 14915 14916 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); 14917 } 14918 14919 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the 14920 /// given LookupResult is non-empty, it is assumed to describe a member which 14921 /// will be invoked. Otherwise, the function will be found via argument 14922 /// dependent lookup. 14923 /// CallExpr is set to a valid expression and FRS_Success returned on success, 14924 /// otherwise CallExpr is set to ExprError() and some non-success value 14925 /// is returned. 14926 Sema::ForRangeStatus 14927 Sema::BuildForRangeBeginEndCall(SourceLocation Loc, 14928 SourceLocation RangeLoc, 14929 const DeclarationNameInfo &NameInfo, 14930 LookupResult &MemberLookup, 14931 OverloadCandidateSet *CandidateSet, 14932 Expr *Range, ExprResult *CallExpr) { 14933 Scope *S = nullptr; 14934 14935 CandidateSet->clear(OverloadCandidateSet::CSK_Normal); 14936 if (!MemberLookup.empty()) { 14937 ExprResult MemberRef = 14938 BuildMemberReferenceExpr(Range, Range->getType(), Loc, 14939 /*IsPtr=*/false, CXXScopeSpec(), 14940 /*TemplateKWLoc=*/SourceLocation(), 14941 /*FirstQualifierInScope=*/nullptr, 14942 MemberLookup, 14943 /*TemplateArgs=*/nullptr, S); 14944 if (MemberRef.isInvalid()) { 14945 *CallExpr = ExprError(); 14946 return FRS_DiagnosticIssued; 14947 } 14948 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr); 14949 if (CallExpr->isInvalid()) { 14950 *CallExpr = ExprError(); 14951 return FRS_DiagnosticIssued; 14952 } 14953 } else { 14954 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, 14955 NestedNameSpecifierLoc(), 14956 NameInfo, UnresolvedSet<0>()); 14957 if (FnR.isInvalid()) 14958 return FRS_DiagnosticIssued; 14959 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get()); 14960 14961 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, 14962 CandidateSet, CallExpr); 14963 if (CandidateSet->empty() || CandidateSetError) { 14964 *CallExpr = ExprError(); 14965 return FRS_NoViableFunction; 14966 } 14967 OverloadCandidateSet::iterator Best; 14968 OverloadingResult OverloadResult = 14969 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); 14970 14971 if (OverloadResult == OR_No_Viable_Function) { 14972 *CallExpr = ExprError(); 14973 return FRS_NoViableFunction; 14974 } 14975 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, 14976 Loc, nullptr, CandidateSet, &Best, 14977 OverloadResult, 14978 /*AllowTypoCorrection=*/false); 14979 if (CallExpr->isInvalid() || OverloadResult != OR_Success) { 14980 *CallExpr = ExprError(); 14981 return FRS_DiagnosticIssued; 14982 } 14983 } 14984 return FRS_Success; 14985 } 14986 14987 14988 /// FixOverloadedFunctionReference - E is an expression that refers to 14989 /// a C++ overloaded function (possibly with some parentheses and 14990 /// perhaps a '&' around it). We have resolved the overloaded function 14991 /// to the function declaration Fn, so patch up the expression E to 14992 /// refer (possibly indirectly) to Fn. Returns the new expr. 14993 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 14994 FunctionDecl *Fn) { 14995 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 14996 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 14997 Found, Fn); 14998 if (SubExpr == PE->getSubExpr()) 14999 return PE; 15000 15001 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 15002 } 15003 15004 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 15005 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 15006 Found, Fn); 15007 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 15008 SubExpr->getType()) && 15009 "Implicit cast type cannot be determined from overload"); 15010 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 15011 if (SubExpr == ICE->getSubExpr()) 15012 return ICE; 15013 15014 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), 15015 SubExpr, nullptr, ICE->getValueKind(), 15016 CurFPFeatureOverrides()); 15017 } 15018 15019 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 15020 if (!GSE->isResultDependent()) { 15021 Expr *SubExpr = 15022 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); 15023 if (SubExpr == GSE->getResultExpr()) 15024 return GSE; 15025 15026 // Replace the resulting type information before rebuilding the generic 15027 // selection expression. 15028 ArrayRef<Expr *> A = GSE->getAssocExprs(); 15029 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); 15030 unsigned ResultIdx = GSE->getResultIndex(); 15031 AssocExprs[ResultIdx] = SubExpr; 15032 15033 return GenericSelectionExpr::Create( 15034 Context, GSE->getGenericLoc(), GSE->getControllingExpr(), 15035 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), 15036 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), 15037 ResultIdx); 15038 } 15039 // Rather than fall through to the unreachable, return the original generic 15040 // selection expression. 15041 return GSE; 15042 } 15043 15044 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 15045 assert(UnOp->getOpcode() == UO_AddrOf && 15046 "Can only take the address of an overloaded function"); 15047 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 15048 if (Method->isStatic()) { 15049 // Do nothing: static member functions aren't any different 15050 // from non-member functions. 15051 } else { 15052 // Fix the subexpression, which really has to be an 15053 // UnresolvedLookupExpr holding an overloaded member function 15054 // or template. 15055 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15056 Found, Fn); 15057 if (SubExpr == UnOp->getSubExpr()) 15058 return UnOp; 15059 15060 assert(isa<DeclRefExpr>(SubExpr) 15061 && "fixed to something other than a decl ref"); 15062 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 15063 && "fixed to a member ref with no nested name qualifier"); 15064 15065 // We have taken the address of a pointer to member 15066 // function. Perform the computation here so that we get the 15067 // appropriate pointer to member type. 15068 QualType ClassType 15069 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 15070 QualType MemPtrType 15071 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 15072 // Under the MS ABI, lock down the inheritance model now. 15073 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) 15074 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); 15075 15076 return UnaryOperator::Create( 15077 Context, SubExpr, UO_AddrOf, MemPtrType, VK_RValue, OK_Ordinary, 15078 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides()); 15079 } 15080 } 15081 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15082 Found, Fn); 15083 if (SubExpr == UnOp->getSubExpr()) 15084 return UnOp; 15085 15086 return UnaryOperator::Create(Context, SubExpr, UO_AddrOf, 15087 Context.getPointerType(SubExpr->getType()), 15088 VK_RValue, OK_Ordinary, UnOp->getOperatorLoc(), 15089 false, CurFPFeatureOverrides()); 15090 } 15091 15092 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 15093 // FIXME: avoid copy. 15094 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15095 if (ULE->hasExplicitTemplateArgs()) { 15096 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 15097 TemplateArgs = &TemplateArgsBuffer; 15098 } 15099 15100 DeclRefExpr *DRE = 15101 BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(), 15102 ULE->getQualifierLoc(), Found.getDecl(), 15103 ULE->getTemplateKeywordLoc(), TemplateArgs); 15104 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 15105 return DRE; 15106 } 15107 15108 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 15109 // FIXME: avoid copy. 15110 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15111 if (MemExpr->hasExplicitTemplateArgs()) { 15112 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 15113 TemplateArgs = &TemplateArgsBuffer; 15114 } 15115 15116 Expr *Base; 15117 15118 // If we're filling in a static method where we used to have an 15119 // implicit member access, rewrite to a simple decl ref. 15120 if (MemExpr->isImplicitAccess()) { 15121 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15122 DeclRefExpr *DRE = BuildDeclRefExpr( 15123 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), 15124 MemExpr->getQualifierLoc(), Found.getDecl(), 15125 MemExpr->getTemplateKeywordLoc(), TemplateArgs); 15126 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 15127 return DRE; 15128 } else { 15129 SourceLocation Loc = MemExpr->getMemberLoc(); 15130 if (MemExpr->getQualifier()) 15131 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 15132 Base = 15133 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); 15134 } 15135 } else 15136 Base = MemExpr->getBase(); 15137 15138 ExprValueKind valueKind; 15139 QualType type; 15140 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15141 valueKind = VK_LValue; 15142 type = Fn->getType(); 15143 } else { 15144 valueKind = VK_RValue; 15145 type = Context.BoundMemberTy; 15146 } 15147 15148 return BuildMemberExpr( 15149 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), 15150 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, 15151 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), 15152 type, valueKind, OK_Ordinary, TemplateArgs); 15153 } 15154 15155 llvm_unreachable("Invalid reference to overloaded function"); 15156 } 15157 15158 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 15159 DeclAccessPair Found, 15160 FunctionDecl *Fn) { 15161 return FixOverloadedFunctionReference(E.get(), Found, Fn); 15162 } 15163