xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp (revision 29fc4075e69fd27de0cded313ac6000165d99f8b)
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   // Ignore all inner captured regions.
70   unsigned CurScopeIndex = FunctionScopes.size() - 1;
71   while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72                                   FunctionScopes[CurScopeIndex]))
73     --CurScopeIndex;
74   assert(
75       isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76       "The function on the top of sema's function-info stack must be a lambda");
77 
78   // If VarToCapture is null, we are attempting to capture 'this'.
79   const bool IsCapturingThis = !VarToCapture;
80   const bool IsCapturingVariable = !IsCapturingThis;
81 
82   // Start with the current lambda at the top of the stack (highest index).
83   DeclContext *EnclosingDC =
84       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86   do {
87     const clang::sema::LambdaScopeInfo *LSI =
88         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89     // IF we have climbed down to an intervening enclosing lambda that contains
90     // the variable declaration - it obviously can/must not capture the
91     // variable.
92     // Since its enclosing DC is dependent, all the lambdas between it and the
93     // innermost nested lambda are dependent (otherwise we wouldn't have
94     // arrived here) - so we don't yet have a lambda that can capture the
95     // variable.
96     if (IsCapturingVariable &&
97         VarToCapture->getDeclContext()->Equals(EnclosingDC))
98       return NoLambdaIsCaptureReady;
99 
100     // For an enclosing lambda to be capture ready for an entity, all
101     // intervening lambda's have to be able to capture that entity. If even
102     // one of the intervening lambda's is not capable of capturing the entity
103     // then no enclosing lambda can ever capture that entity.
104     // For e.g.
105     // const int x = 10;
106     // [=](auto a) {    #1
107     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
108     //    [=](auto c) { #3
109     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
110     //    }; }; };
111     // If they do not have a default implicit capture, check to see
112     // if the entity has already been explicitly captured.
113     // If even a single dependent enclosing lambda lacks the capability
114     // to ever capture this variable, there is no further enclosing
115     // non-dependent lambda that can capture this variable.
116     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118         return NoLambdaIsCaptureReady;
119       if (IsCapturingThis && !LSI->isCXXThisCaptured())
120         return NoLambdaIsCaptureReady;
121     }
122     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124     assert(CurScopeIndex);
125     --CurScopeIndex;
126   } while (!EnclosingDC->isTranslationUnit() &&
127            EnclosingDC->isDependentContext() &&
128            isLambdaCallOperator(EnclosingDC));
129 
130   assert(CurScopeIndex < (FunctionScopes.size() - 1));
131   // If the enclosingDC is not dependent, then the immediately nested lambda
132   // (one index above) is capture-ready.
133   if (!EnclosingDC->isDependentContext())
134     return CurScopeIndex + 1;
135   return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 ///     - climb down the stack (i.e. starting from the innermost and examining
150 ///       each outer lambda step by step) checking if each enclosing
151 ///       lambda can either implicitly or explicitly capture the variable.
152 ///       Record the first such lambda that is enclosed in a non-dependent
153 ///       context. If no such lambda currently exists return failure.
154 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 ///  capture the variable by checking all its enclosing lambdas:
156 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
157 ///       identified above in 'a' can also capture the variable (this is done
158 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
159 ///       'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable.  If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175     VarDecl *VarToCapture, Sema &S) {
176 
177   const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179   const Optional<unsigned> OptionalStackIndex =
180       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181                                                         VarToCapture);
182   if (!OptionalStackIndex)
183     return NoLambdaIsCaptureCapable;
184 
185   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187           S.getCurGenericLambda()) &&
188          "The capture ready lambda for a potential capture can only be the "
189          "current lambda if it is a generic lambda");
190 
191   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194   // If VarToCapture is null, we are attempting to capture 'this'
195   const bool IsCapturingThis = !VarToCapture;
196   const bool IsCapturingVariable = !IsCapturingThis;
197 
198   if (IsCapturingVariable) {
199     // Check if the capture-ready lambda can truly capture the variable, by
200     // checking whether all enclosing lambdas of the capture-ready lambda allow
201     // the capture - i.e. make sure it is capture-capable.
202     QualType CaptureType, DeclRefType;
203     const bool CanCaptureVariable =
204         !S.tryCaptureVariable(VarToCapture,
205                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
206                               clang::Sema::TryCapture_Implicit,
207                               /*EllipsisLoc*/ SourceLocation(),
208                               /*BuildAndDiagnose*/ false, CaptureType,
209                               DeclRefType, &IndexOfCaptureReadyLambda);
210     if (!CanCaptureVariable)
211       return NoLambdaIsCaptureCapable;
212   } else {
213     // Check if the capture-ready lambda can truly capture 'this' by checking
214     // whether all enclosing lambdas of the capture-ready lambda can capture
215     // 'this'.
216     const bool CanCaptureThis =
217         !S.CheckCXXThisCapture(
218              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220              &IndexOfCaptureReadyLambda);
221     if (!CanCaptureThis)
222       return NoLambdaIsCaptureCapable;
223   }
224   return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229   if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230     LSI->GLTemplateParameterList = TemplateParameterList::Create(
231         SemaRef.Context,
232         /*Template kw loc*/ SourceLocation(),
233         /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234         LSI->TemplateParams,
235         /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236         LSI->RequiresClause.get());
237   }
238   return LSI->GLTemplateParameterList;
239 }
240 
241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
242                                              TypeSourceInfo *Info,
243                                              bool KnownDependent,
244                                              LambdaCaptureDefault CaptureDefault) {
245   DeclContext *DC = CurContext;
246   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247     DC = DC->getParent();
248   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249                                                                *this);
250   // Start constructing the lambda class.
251   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252                                                      IntroducerRange.getBegin(),
253                                                      KnownDependent,
254                                                      IsGenericLambda,
255                                                      CaptureDefault);
256   DC->addDecl(Class);
257 
258   return Class;
259 }
260 
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
263 static bool isInInlineFunction(const DeclContext *DC) {
264   while (!DC->isFileContext()) {
265     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266       if (FD->isInlined())
267         return true;
268 
269     DC = DC->getLexicalParent();
270   }
271 
272   return false;
273 }
274 
275 std::tuple<MangleNumberingContext *, Decl *>
276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277   // Compute the context for allocating mangling numbers in the current
278   // expression, if the ABI requires them.
279   Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280 
281   enum ContextKind {
282     Normal,
283     DefaultArgument,
284     DataMember,
285     StaticDataMember,
286     InlineVariable,
287     VariableTemplate
288   } Kind = Normal;
289 
290   // Default arguments of member function parameters that appear in a class
291   // definition, as well as the initializers of data members, receive special
292   // treatment. Identify them.
293   if (ManglingContextDecl) {
294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295       if (const DeclContext *LexicalDC
296           = Param->getDeclContext()->getLexicalParent())
297         if (LexicalDC->isRecord())
298           Kind = DefaultArgument;
299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300       if (Var->getDeclContext()->isRecord())
301         Kind = StaticDataMember;
302       else if (Var->getMostRecentDecl()->isInline())
303         Kind = InlineVariable;
304       else if (Var->getDescribedVarTemplate())
305         Kind = VariableTemplate;
306       else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307         if (!VTS->isExplicitSpecialization())
308           Kind = VariableTemplate;
309       }
310     } else if (isa<FieldDecl>(ManglingContextDecl)) {
311       Kind = DataMember;
312     }
313   }
314 
315   // Itanium ABI [5.1.7]:
316   //   In the following contexts [...] the one-definition rule requires closure
317   //   types in different translation units to "correspond":
318   bool IsInNonspecializedTemplate =
319       inTemplateInstantiation() || CurContext->isDependentContext();
320   switch (Kind) {
321   case Normal: {
322     //  -- the bodies of non-exported nonspecialized template functions
323     //  -- the bodies of inline functions
324     if ((IsInNonspecializedTemplate &&
325          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326         isInInlineFunction(CurContext)) {
327       while (auto *CD = dyn_cast<CapturedDecl>(DC))
328         DC = CD->getParent();
329       return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330     }
331 
332     return std::make_tuple(nullptr, nullptr);
333   }
334 
335   case StaticDataMember:
336     //  -- the initializers of nonspecialized static members of template classes
337     if (!IsInNonspecializedTemplate)
338       return std::make_tuple(nullptr, ManglingContextDecl);
339     // Fall through to get the current context.
340     LLVM_FALLTHROUGH;
341 
342   case DataMember:
343     //  -- the in-class initializers of class members
344   case DefaultArgument:
345     //  -- default arguments appearing in class definitions
346   case InlineVariable:
347     //  -- the initializers of inline variables
348   case VariableTemplate:
349     //  -- the initializers of templated variables
350     return std::make_tuple(
351         &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352                                           ManglingContextDecl),
353         ManglingContextDecl);
354   }
355 
356   llvm_unreachable("unexpected context");
357 }
358 
359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
360                                            SourceRange IntroducerRange,
361                                            TypeSourceInfo *MethodTypeInfo,
362                                            SourceLocation EndLoc,
363                                            ArrayRef<ParmVarDecl *> Params,
364                                            ConstexprSpecKind ConstexprKind,
365                                            Expr *TrailingRequiresClause) {
366   QualType MethodType = MethodTypeInfo->getType();
367   TemplateParameterList *TemplateParams =
368       getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369   // If a lambda appears in a dependent context or is a generic lambda (has
370   // template parameters) and has an 'auto' return type, deduce it to a
371   // dependent type.
372   if (Class->isDependentContext() || TemplateParams) {
373     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374     QualType Result = FPT->getReturnType();
375     if (Result->isUndeducedType()) {
376       Result = SubstAutoTypeDependent(Result);
377       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378                                            FPT->getExtProtoInfo());
379     }
380   }
381 
382   // C++11 [expr.prim.lambda]p5:
383   //   The closure type for a lambda-expression has a public inline function
384   //   call operator (13.5.4) whose parameters and return type are described by
385   //   the lambda-expression's parameter-declaration-clause and
386   //   trailing-return-type respectively.
387   DeclarationName MethodName
388     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389   DeclarationNameLoc MethodNameLoc =
390       DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange);
391   CXXMethodDecl *Method = CXXMethodDecl::Create(
392       Context, Class, EndLoc,
393       DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
394                           MethodNameLoc),
395       MethodType, MethodTypeInfo, SC_None, getCurFPFeatures().isFPConstrained(),
396       /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
397   Method->setAccess(AS_public);
398   if (!TemplateParams)
399     Class->addDecl(Method);
400 
401   // Temporarily set the lexical declaration context to the current
402   // context, so that the Scope stack matches the lexical nesting.
403   Method->setLexicalDeclContext(CurContext);
404   // Create a function template if we have a template parameter list
405   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
406             FunctionTemplateDecl::Create(Context, Class,
407                                          Method->getLocation(), MethodName,
408                                          TemplateParams,
409                                          Method) : nullptr;
410   if (TemplateMethod) {
411     TemplateMethod->setAccess(AS_public);
412     Method->setDescribedFunctionTemplate(TemplateMethod);
413     Class->addDecl(TemplateMethod);
414     TemplateMethod->setLexicalDeclContext(CurContext);
415   }
416 
417   // Add parameters.
418   if (!Params.empty()) {
419     Method->setParams(Params);
420     CheckParmsForFunctionDef(Params,
421                              /*CheckParameterNames=*/false);
422 
423     for (auto P : Method->parameters())
424       P->setOwningFunction(Method);
425   }
426 
427   return Method;
428 }
429 
430 void Sema::handleLambdaNumbering(
431     CXXRecordDecl *Class, CXXMethodDecl *Method,
432     Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) {
433   if (Mangling) {
434     bool HasKnownInternalLinkage;
435     unsigned ManglingNumber, DeviceManglingNumber;
436     Decl *ManglingContextDecl;
437     std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber,
438              ManglingContextDecl) = Mangling.getValue();
439     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
440                              HasKnownInternalLinkage);
441     Class->setDeviceLambdaManglingNumber(DeviceManglingNumber);
442     return;
443   }
444 
445   auto getMangleNumberingContext =
446       [this](CXXRecordDecl *Class,
447              Decl *ManglingContextDecl) -> MangleNumberingContext * {
448     // Get mangle numbering context if there's any extra decl context.
449     if (ManglingContextDecl)
450       return &Context.getManglingNumberContext(
451           ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
452     // Otherwise, from that lambda's decl context.
453     auto DC = Class->getDeclContext();
454     while (auto *CD = dyn_cast<CapturedDecl>(DC))
455       DC = CD->getParent();
456     return &Context.getManglingNumberContext(DC);
457   };
458 
459   MangleNumberingContext *MCtx;
460   Decl *ManglingContextDecl;
461   std::tie(MCtx, ManglingContextDecl) =
462       getCurrentMangleNumberContext(Class->getDeclContext());
463   bool HasKnownInternalLinkage = false;
464   if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice ||
465                 getLangOpts().SYCLIsHost)) {
466     // Force lambda numbering in CUDA/HIP as we need to name lambdas following
467     // ODR. Both device- and host-compilation need to have a consistent naming
468     // on kernel functions. As lambdas are potential part of these `__global__`
469     // function names, they needs numbering following ODR.
470     // Also force for SYCL, since we need this for the
471     // __builtin_sycl_unique_stable_name implementation, which depends on lambda
472     // mangling.
473     MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
474     assert(MCtx && "Retrieving mangle numbering context failed!");
475     HasKnownInternalLinkage = true;
476   }
477   if (MCtx) {
478     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
479     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
480                              HasKnownInternalLinkage);
481     Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method));
482   }
483 }
484 
485 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
486                                         CXXMethodDecl *CallOperator,
487                                         SourceRange IntroducerRange,
488                                         LambdaCaptureDefault CaptureDefault,
489                                         SourceLocation CaptureDefaultLoc,
490                                         bool ExplicitParams,
491                                         bool ExplicitResultType,
492                                         bool Mutable) {
493   LSI->CallOperator = CallOperator;
494   CXXRecordDecl *LambdaClass = CallOperator->getParent();
495   LSI->Lambda = LambdaClass;
496   if (CaptureDefault == LCD_ByCopy)
497     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
498   else if (CaptureDefault == LCD_ByRef)
499     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
500   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
501   LSI->IntroducerRange = IntroducerRange;
502   LSI->ExplicitParams = ExplicitParams;
503   LSI->Mutable = Mutable;
504 
505   if (ExplicitResultType) {
506     LSI->ReturnType = CallOperator->getReturnType();
507 
508     if (!LSI->ReturnType->isDependentType() &&
509         !LSI->ReturnType->isVoidType()) {
510       if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
511                               diag::err_lambda_incomplete_result)) {
512         // Do nothing.
513       }
514     }
515   } else {
516     LSI->HasImplicitReturnType = true;
517   }
518 }
519 
520 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
521   LSI->finishedExplicitCaptures();
522 }
523 
524 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
525                                                     ArrayRef<NamedDecl *> TParams,
526                                                     SourceLocation RAngleLoc,
527                                                     ExprResult RequiresClause) {
528   LambdaScopeInfo *LSI = getCurLambda();
529   assert(LSI && "Expected a lambda scope");
530   assert(LSI->NumExplicitTemplateParams == 0 &&
531          "Already acted on explicit template parameters");
532   assert(LSI->TemplateParams.empty() &&
533          "Explicit template parameters should come "
534          "before invented (auto) ones");
535   assert(!TParams.empty() &&
536          "No template parameters to act on");
537   LSI->TemplateParams.append(TParams.begin(), TParams.end());
538   LSI->NumExplicitTemplateParams = TParams.size();
539   LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
540   LSI->RequiresClause = RequiresClause;
541 }
542 
543 void Sema::addLambdaParameters(
544     ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
545     CXXMethodDecl *CallOperator, Scope *CurScope) {
546   // Introduce our parameters into the function scope
547   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
548        p < NumParams; ++p) {
549     ParmVarDecl *Param = CallOperator->getParamDecl(p);
550 
551     // If this has an identifier, add it to the scope stack.
552     if (CurScope && Param->getIdentifier()) {
553       bool Error = false;
554       // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
555       // retroactively apply it.
556       for (const auto &Capture : Captures) {
557         if (Capture.Id == Param->getIdentifier()) {
558           Error = true;
559           Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
560           Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
561               << Capture.Id << true;
562         }
563       }
564       if (!Error)
565         CheckShadow(CurScope, Param);
566 
567       PushOnScopeChains(Param, CurScope);
568     }
569   }
570 }
571 
572 /// If this expression is an enumerator-like expression of some type
573 /// T, return the type T; otherwise, return null.
574 ///
575 /// Pointer comparisons on the result here should always work because
576 /// it's derived from either the parent of an EnumConstantDecl
577 /// (i.e. the definition) or the declaration returned by
578 /// EnumType::getDecl() (i.e. the definition).
579 static EnumDecl *findEnumForBlockReturn(Expr *E) {
580   // An expression is an enumerator-like expression of type T if,
581   // ignoring parens and parens-like expressions:
582   E = E->IgnoreParens();
583 
584   //  - it is an enumerator whose enum type is T or
585   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
586     if (EnumConstantDecl *D
587           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
588       return cast<EnumDecl>(D->getDeclContext());
589     }
590     return nullptr;
591   }
592 
593   //  - it is a comma expression whose RHS is an enumerator-like
594   //    expression of type T or
595   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
596     if (BO->getOpcode() == BO_Comma)
597       return findEnumForBlockReturn(BO->getRHS());
598     return nullptr;
599   }
600 
601   //  - it is a statement-expression whose value expression is an
602   //    enumerator-like expression of type T or
603   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
604     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
605       return findEnumForBlockReturn(last);
606     return nullptr;
607   }
608 
609   //   - it is a ternary conditional operator (not the GNU ?:
610   //     extension) whose second and third operands are
611   //     enumerator-like expressions of type T or
612   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
613     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
614       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
615         return ED;
616     return nullptr;
617   }
618 
619   // (implicitly:)
620   //   - it is an implicit integral conversion applied to an
621   //     enumerator-like expression of type T or
622   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
623     // We can sometimes see integral conversions in valid
624     // enumerator-like expressions.
625     if (ICE->getCastKind() == CK_IntegralCast)
626       return findEnumForBlockReturn(ICE->getSubExpr());
627 
628     // Otherwise, just rely on the type.
629   }
630 
631   //   - it is an expression of that formal enum type.
632   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
633     return ET->getDecl();
634   }
635 
636   // Otherwise, nope.
637   return nullptr;
638 }
639 
640 /// Attempt to find a type T for which the returned expression of the
641 /// given statement is an enumerator-like expression of that type.
642 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
643   if (Expr *retValue = ret->getRetValue())
644     return findEnumForBlockReturn(retValue);
645   return nullptr;
646 }
647 
648 /// Attempt to find a common type T for which all of the returned
649 /// expressions in a block are enumerator-like expressions of that
650 /// type.
651 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
652   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
653 
654   // Try to find one for the first return.
655   EnumDecl *ED = findEnumForBlockReturn(*i);
656   if (!ED) return nullptr;
657 
658   // Check that the rest of the returns have the same enum.
659   for (++i; i != e; ++i) {
660     if (findEnumForBlockReturn(*i) != ED)
661       return nullptr;
662   }
663 
664   // Never infer an anonymous enum type.
665   if (!ED->hasNameForLinkage()) return nullptr;
666 
667   return ED;
668 }
669 
670 /// Adjust the given return statements so that they formally return
671 /// the given type.  It should require, at most, an IntegralCast.
672 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
673                                      QualType returnType) {
674   for (ArrayRef<ReturnStmt*>::iterator
675          i = returns.begin(), e = returns.end(); i != e; ++i) {
676     ReturnStmt *ret = *i;
677     Expr *retValue = ret->getRetValue();
678     if (S.Context.hasSameType(retValue->getType(), returnType))
679       continue;
680 
681     // Right now we only support integral fixup casts.
682     assert(returnType->isIntegralOrUnscopedEnumerationType());
683     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
684 
685     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
686 
687     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
688     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
689                                  /*base path*/ nullptr, VK_PRValue,
690                                  FPOptionsOverride());
691     if (cleanups) {
692       cleanups->setSubExpr(E);
693     } else {
694       ret->setRetValue(E);
695     }
696   }
697 }
698 
699 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
700   assert(CSI.HasImplicitReturnType);
701   // If it was ever a placeholder, it had to been deduced to DependentTy.
702   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
703   assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
704          "lambda expressions use auto deduction in C++14 onwards");
705 
706   // C++ core issue 975:
707   //   If a lambda-expression does not include a trailing-return-type,
708   //   it is as if the trailing-return-type denotes the following type:
709   //     - if there are no return statements in the compound-statement,
710   //       or all return statements return either an expression of type
711   //       void or no expression or braced-init-list, the type void;
712   //     - otherwise, if all return statements return an expression
713   //       and the types of the returned expressions after
714   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
715   //       array-to-pointer conversion (4.2 [conv.array]), and
716   //       function-to-pointer conversion (4.3 [conv.func]) are the
717   //       same, that common type;
718   //     - otherwise, the program is ill-formed.
719   //
720   // C++ core issue 1048 additionally removes top-level cv-qualifiers
721   // from the types of returned expressions to match the C++14 auto
722   // deduction rules.
723   //
724   // In addition, in blocks in non-C++ modes, if all of the return
725   // statements are enumerator-like expressions of some type T, where
726   // T has a name for linkage, then we infer the return type of the
727   // block to be that type.
728 
729   // First case: no return statements, implicit void return type.
730   ASTContext &Ctx = getASTContext();
731   if (CSI.Returns.empty()) {
732     // It's possible there were simply no /valid/ return statements.
733     // In this case, the first one we found may have at least given us a type.
734     if (CSI.ReturnType.isNull())
735       CSI.ReturnType = Ctx.VoidTy;
736     return;
737   }
738 
739   // Second case: at least one return statement has dependent type.
740   // Delay type checking until instantiation.
741   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
742   if (CSI.ReturnType->isDependentType())
743     return;
744 
745   // Try to apply the enum-fuzz rule.
746   if (!getLangOpts().CPlusPlus) {
747     assert(isa<BlockScopeInfo>(CSI));
748     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
749     if (ED) {
750       CSI.ReturnType = Context.getTypeDeclType(ED);
751       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
752       return;
753     }
754   }
755 
756   // Third case: only one return statement. Don't bother doing extra work!
757   if (CSI.Returns.size() == 1)
758     return;
759 
760   // General case: many return statements.
761   // Check that they all have compatible return types.
762 
763   // We require the return types to strictly match here.
764   // Note that we've already done the required promotions as part of
765   // processing the return statement.
766   for (const ReturnStmt *RS : CSI.Returns) {
767     const Expr *RetE = RS->getRetValue();
768 
769     QualType ReturnType =
770         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
771     if (Context.getCanonicalFunctionResultType(ReturnType) ==
772           Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
773       // Use the return type with the strictest possible nullability annotation.
774       auto RetTyNullability = ReturnType->getNullability(Ctx);
775       auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
776       if (BlockNullability &&
777           (!RetTyNullability ||
778            hasWeakerNullability(*RetTyNullability, *BlockNullability)))
779         CSI.ReturnType = ReturnType;
780       continue;
781     }
782 
783     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
784     // TODO: It's possible that the *first* return is the divergent one.
785     Diag(RS->getBeginLoc(),
786          diag::err_typecheck_missing_return_type_incompatible)
787         << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
788     // Continue iterating so that we keep emitting diagnostics.
789   }
790 }
791 
792 QualType Sema::buildLambdaInitCaptureInitialization(
793     SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
794     Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
795     Expr *&Init) {
796   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
797   // deduce against.
798   QualType DeductType = Context.getAutoDeductType();
799   TypeLocBuilder TLB;
800   AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
801   TL.setNameLoc(Loc);
802   if (ByRef) {
803     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
804     assert(!DeductType.isNull() && "can't build reference to auto");
805     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
806   }
807   if (EllipsisLoc.isValid()) {
808     if (Init->containsUnexpandedParameterPack()) {
809       Diag(EllipsisLoc, getLangOpts().CPlusPlus20
810                             ? diag::warn_cxx17_compat_init_capture_pack
811                             : diag::ext_init_capture_pack);
812       DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
813                                                 /*ExpectPackInType=*/false);
814       TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
815     } else {
816       // Just ignore the ellipsis for now and form a non-pack variable. We'll
817       // diagnose this later when we try to capture it.
818     }
819   }
820   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
821 
822   // Deduce the type of the init capture.
823   QualType DeducedType = deduceVarTypeFromInitializer(
824       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
825       SourceRange(Loc, Loc), IsDirectInit, Init);
826   if (DeducedType.isNull())
827     return QualType();
828 
829   // Are we a non-list direct initialization?
830   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
831 
832   // Perform initialization analysis and ensure any implicit conversions
833   // (such as lvalue-to-rvalue) are enforced.
834   InitializedEntity Entity =
835       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
836   InitializationKind Kind =
837       IsDirectInit
838           ? (CXXDirectInit ? InitializationKind::CreateDirect(
839                                  Loc, Init->getBeginLoc(), Init->getEndLoc())
840                            : InitializationKind::CreateDirectList(Loc))
841           : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
842 
843   MultiExprArg Args = Init;
844   if (CXXDirectInit)
845     Args =
846         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
847   QualType DclT;
848   InitializationSequence InitSeq(*this, Entity, Kind, Args);
849   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
850 
851   if (Result.isInvalid())
852     return QualType();
853 
854   Init = Result.getAs<Expr>();
855   return DeducedType;
856 }
857 
858 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
859                                               QualType InitCaptureType,
860                                               SourceLocation EllipsisLoc,
861                                               IdentifierInfo *Id,
862                                               unsigned InitStyle, Expr *Init) {
863   // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
864   // rather than reconstructing it here.
865   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
866   if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
867     PETL.setEllipsisLoc(EllipsisLoc);
868 
869   // Create a dummy variable representing the init-capture. This is not actually
870   // used as a variable, and only exists as a way to name and refer to the
871   // init-capture.
872   // FIXME: Pass in separate source locations for '&' and identifier.
873   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
874                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
875   NewVD->setInitCapture(true);
876   NewVD->setReferenced(true);
877   // FIXME: Pass in a VarDecl::InitializationStyle.
878   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
879   NewVD->markUsed(Context);
880   NewVD->setInit(Init);
881   if (NewVD->isParameterPack())
882     getCurLambda()->LocalPacks.push_back(NewVD);
883   return NewVD;
884 }
885 
886 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
887   assert(Var->isInitCapture() && "init capture flag should be set");
888   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
889                   /*isNested*/false, Var->getLocation(), SourceLocation(),
890                   Var->getType(), /*Invalid*/false);
891 }
892 
893 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
894                                         Declarator &ParamInfo,
895                                         Scope *CurScope) {
896   LambdaScopeInfo *const LSI = getCurLambda();
897   assert(LSI && "LambdaScopeInfo should be on stack!");
898 
899   // Determine if we're within a context where we know that the lambda will
900   // be dependent, because there are template parameters in scope.
901   bool KnownDependent;
902   if (LSI->NumExplicitTemplateParams > 0) {
903     auto *TemplateParamScope = CurScope->getTemplateParamParent();
904     assert(TemplateParamScope &&
905            "Lambda with explicit template param list should establish a "
906            "template param scope");
907     assert(TemplateParamScope->getParent());
908     KnownDependent = TemplateParamScope->getParent()
909                                        ->getTemplateParamParent() != nullptr;
910   } else {
911     KnownDependent = CurScope->getTemplateParamParent() != nullptr;
912   }
913 
914   // Determine the signature of the call operator.
915   TypeSourceInfo *MethodTyInfo;
916   bool ExplicitParams = true;
917   bool ExplicitResultType = true;
918   bool ContainsUnexpandedParameterPack = false;
919   SourceLocation EndLoc;
920   SmallVector<ParmVarDecl *, 8> Params;
921   if (ParamInfo.getNumTypeObjects() == 0) {
922     // C++11 [expr.prim.lambda]p4:
923     //   If a lambda-expression does not include a lambda-declarator, it is as
924     //   if the lambda-declarator were ().
925     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
926         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
927     EPI.HasTrailingReturn = true;
928     EPI.TypeQuals.addConst();
929     LangAS AS = getDefaultCXXMethodAddrSpace();
930     if (AS != LangAS::Default)
931       EPI.TypeQuals.addAddressSpace(AS);
932 
933     // C++1y [expr.prim.lambda]:
934     //   The lambda return type is 'auto', which is replaced by the
935     //   trailing-return type if provided and/or deduced from 'return'
936     //   statements
937     // We don't do this before C++1y, because we don't support deduced return
938     // types there.
939     QualType DefaultTypeForNoTrailingReturn =
940         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
941                                   : Context.DependentTy;
942     QualType MethodTy =
943         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
944     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
945     ExplicitParams = false;
946     ExplicitResultType = false;
947     EndLoc = Intro.Range.getEnd();
948   } else {
949     assert(ParamInfo.isFunctionDeclarator() &&
950            "lambda-declarator is a function");
951     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
952 
953     // C++11 [expr.prim.lambda]p5:
954     //   This function call operator is declared const (9.3.1) if and only if
955     //   the lambda-expression's parameter-declaration-clause is not followed
956     //   by mutable. It is neither virtual nor declared volatile. [...]
957     if (!FTI.hasMutableQualifier()) {
958       FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
959                                                     SourceLocation());
960     }
961 
962     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
963     assert(MethodTyInfo && "no type from lambda-declarator");
964     EndLoc = ParamInfo.getSourceRange().getEnd();
965 
966     ExplicitResultType = FTI.hasTrailingReturnType();
967 
968     if (FTIHasNonVoidParameters(FTI)) {
969       Params.reserve(FTI.NumParams);
970       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
971         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
972     }
973 
974     // Check for unexpanded parameter packs in the method type.
975     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
976       DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
977                                       UPPC_DeclarationType);
978   }
979 
980   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
981                                                  KnownDependent, Intro.Default);
982   CXXMethodDecl *Method =
983       startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
984                             ParamInfo.getDeclSpec().getConstexprSpecifier(),
985                             ParamInfo.getTrailingRequiresClause());
986   if (ExplicitParams)
987     CheckCXXDefaultArguments(Method);
988 
989   // This represents the function body for the lambda function, check if we
990   // have to apply optnone due to a pragma.
991   AddRangeBasedOptnone(Method);
992 
993   // code_seg attribute on lambda apply to the method.
994   if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
995     Method->addAttr(A);
996 
997   // Attributes on the lambda apply to the method.
998   ProcessDeclAttributes(CurScope, Method, ParamInfo);
999 
1000   // CUDA lambdas get implicit host and device attributes.
1001   if (getLangOpts().CUDA)
1002     CUDASetLambdaAttrs(Method);
1003 
1004   // OpenMP lambdas might get assumumption attributes.
1005   if (LangOpts.OpenMP)
1006     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1007 
1008   // Number the lambda for linkage purposes if necessary.
1009   handleLambdaNumbering(Class, Method);
1010 
1011   // Introduce the function call operator as the current declaration context.
1012   PushDeclContext(CurScope, Method);
1013 
1014   // Build the lambda scope.
1015   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1016                    ExplicitParams, ExplicitResultType, !Method->isConst());
1017 
1018   // C++11 [expr.prim.lambda]p9:
1019   //   A lambda-expression whose smallest enclosing scope is a block scope is a
1020   //   local lambda expression; any other lambda expression shall not have a
1021   //   capture-default or simple-capture in its lambda-introducer.
1022   //
1023   // For simple-captures, this is covered by the check below that any named
1024   // entity is a variable that can be captured.
1025   //
1026   // For DR1632, we also allow a capture-default in any context where we can
1027   // odr-use 'this' (in particular, in a default initializer for a non-static
1028   // data member).
1029   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1030       (getCurrentThisType().isNull() ||
1031        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1032                            /*BuildAndDiagnose*/false)))
1033     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1034 
1035   // Distinct capture names, for diagnostics.
1036   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1037 
1038   // Handle explicit captures.
1039   SourceLocation PrevCaptureLoc
1040     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1041   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1042        PrevCaptureLoc = C->Loc, ++C) {
1043     if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1044       if (C->Kind == LCK_StarThis)
1045         Diag(C->Loc, !getLangOpts().CPlusPlus17
1046                              ? diag::ext_star_this_lambda_capture_cxx17
1047                              : diag::warn_cxx14_compat_star_this_lambda_capture);
1048 
1049       // C++11 [expr.prim.lambda]p8:
1050       //   An identifier or this shall not appear more than once in a
1051       //   lambda-capture.
1052       if (LSI->isCXXThisCaptured()) {
1053         Diag(C->Loc, diag::err_capture_more_than_once)
1054             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1055             << FixItHint::CreateRemoval(
1056                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1057         continue;
1058       }
1059 
1060       // C++2a [expr.prim.lambda]p8:
1061       //  If a lambda-capture includes a capture-default that is =,
1062       //  each simple-capture of that lambda-capture shall be of the form
1063       //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
1064       //  redundant but accepted for compatibility with ISO C++14. --end note ]
1065       if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1066         Diag(C->Loc, !getLangOpts().CPlusPlus20
1067                          ? diag::ext_equals_this_lambda_capture_cxx20
1068                          : diag::warn_cxx17_compat_equals_this_lambda_capture);
1069 
1070       // C++11 [expr.prim.lambda]p12:
1071       //   If this is captured by a local lambda expression, its nearest
1072       //   enclosing function shall be a non-static member function.
1073       QualType ThisCaptureType = getCurrentThisType();
1074       if (ThisCaptureType.isNull()) {
1075         Diag(C->Loc, diag::err_this_capture) << true;
1076         continue;
1077       }
1078 
1079       CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1080                           /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1081                           C->Kind == LCK_StarThis);
1082       if (!LSI->Captures.empty())
1083         LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1084       continue;
1085     }
1086 
1087     assert(C->Id && "missing identifier for capture");
1088 
1089     if (C->Init.isInvalid())
1090       continue;
1091 
1092     VarDecl *Var = nullptr;
1093     if (C->Init.isUsable()) {
1094       Diag(C->Loc, getLangOpts().CPlusPlus14
1095                        ? diag::warn_cxx11_compat_init_capture
1096                        : diag::ext_init_capture);
1097 
1098       // If the initializer expression is usable, but the InitCaptureType
1099       // is not, then an error has occurred - so ignore the capture for now.
1100       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1101       // FIXME: we should create the init capture variable and mark it invalid
1102       // in this case.
1103       if (C->InitCaptureType.get().isNull())
1104         continue;
1105 
1106       if (C->Init.get()->containsUnexpandedParameterPack() &&
1107           !C->InitCaptureType.get()->getAs<PackExpansionType>())
1108         DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1109 
1110       unsigned InitStyle;
1111       switch (C->InitKind) {
1112       case LambdaCaptureInitKind::NoInit:
1113         llvm_unreachable("not an init-capture?");
1114       case LambdaCaptureInitKind::CopyInit:
1115         InitStyle = VarDecl::CInit;
1116         break;
1117       case LambdaCaptureInitKind::DirectInit:
1118         InitStyle = VarDecl::CallInit;
1119         break;
1120       case LambdaCaptureInitKind::ListInit:
1121         InitStyle = VarDecl::ListInit;
1122         break;
1123       }
1124       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1125                                            C->EllipsisLoc, C->Id, InitStyle,
1126                                            C->Init.get());
1127       // C++1y [expr.prim.lambda]p11:
1128       //   An init-capture behaves as if it declares and explicitly
1129       //   captures a variable [...] whose declarative region is the
1130       //   lambda-expression's compound-statement
1131       if (Var)
1132         PushOnScopeChains(Var, CurScope, false);
1133     } else {
1134       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1135              "init capture has valid but null init?");
1136 
1137       // C++11 [expr.prim.lambda]p8:
1138       //   If a lambda-capture includes a capture-default that is &, the
1139       //   identifiers in the lambda-capture shall not be preceded by &.
1140       //   If a lambda-capture includes a capture-default that is =, [...]
1141       //   each identifier it contains shall be preceded by &.
1142       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1143         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1144             << FixItHint::CreateRemoval(
1145                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1146         continue;
1147       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1148         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1149             << FixItHint::CreateRemoval(
1150                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1151         continue;
1152       }
1153 
1154       // C++11 [expr.prim.lambda]p10:
1155       //   The identifiers in a capture-list are looked up using the usual
1156       //   rules for unqualified name lookup (3.4.1)
1157       DeclarationNameInfo Name(C->Id, C->Loc);
1158       LookupResult R(*this, Name, LookupOrdinaryName);
1159       LookupName(R, CurScope);
1160       if (R.isAmbiguous())
1161         continue;
1162       if (R.empty()) {
1163         // FIXME: Disable corrections that would add qualification?
1164         CXXScopeSpec ScopeSpec;
1165         DeclFilterCCC<VarDecl> Validator{};
1166         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1167           continue;
1168       }
1169 
1170       Var = R.getAsSingle<VarDecl>();
1171       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1172         continue;
1173     }
1174 
1175     // C++11 [expr.prim.lambda]p8:
1176     //   An identifier or this shall not appear more than once in a
1177     //   lambda-capture.
1178     if (!CaptureNames.insert(C->Id).second) {
1179       if (Var && LSI->isCaptured(Var)) {
1180         Diag(C->Loc, diag::err_capture_more_than_once)
1181             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1182             << FixItHint::CreateRemoval(
1183                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1184       } else
1185         // Previous capture captured something different (one or both was
1186         // an init-cpature): no fixit.
1187         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1188       continue;
1189     }
1190 
1191     // C++11 [expr.prim.lambda]p10:
1192     //   [...] each such lookup shall find a variable with automatic storage
1193     //   duration declared in the reaching scope of the local lambda expression.
1194     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1195     if (!Var) {
1196       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1197       continue;
1198     }
1199 
1200     // Ignore invalid decls; they'll just confuse the code later.
1201     if (Var->isInvalidDecl())
1202       continue;
1203 
1204     if (!Var->hasLocalStorage()) {
1205       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1206       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1207       continue;
1208     }
1209 
1210     // C++11 [expr.prim.lambda]p23:
1211     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1212     SourceLocation EllipsisLoc;
1213     if (C->EllipsisLoc.isValid()) {
1214       if (Var->isParameterPack()) {
1215         EllipsisLoc = C->EllipsisLoc;
1216       } else {
1217         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1218             << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1219                                    : SourceRange(C->Loc));
1220 
1221         // Just ignore the ellipsis.
1222       }
1223     } else if (Var->isParameterPack()) {
1224       ContainsUnexpandedParameterPack = true;
1225     }
1226 
1227     if (C->Init.isUsable()) {
1228       addInitCapture(LSI, Var);
1229     } else {
1230       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1231                                                    TryCapture_ExplicitByVal;
1232       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1233     }
1234     if (!LSI->Captures.empty())
1235       LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1236   }
1237   finishLambdaExplicitCaptures(LSI);
1238 
1239   LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1240 
1241   // Add lambda parameters into scope.
1242   addLambdaParameters(Intro.Captures, Method, CurScope);
1243 
1244   // Enter a new evaluation context to insulate the lambda from any
1245   // cleanups from the enclosing full-expression.
1246   PushExpressionEvaluationContext(
1247       LSI->CallOperator->isConsteval()
1248           ? ExpressionEvaluationContext::ImmediateFunctionContext
1249           : ExpressionEvaluationContext::PotentiallyEvaluated);
1250 }
1251 
1252 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1253                             bool IsInstantiation) {
1254   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1255 
1256   // Leave the expression-evaluation context.
1257   DiscardCleanupsInEvaluationContext();
1258   PopExpressionEvaluationContext();
1259 
1260   // Leave the context of the lambda.
1261   if (!IsInstantiation)
1262     PopDeclContext();
1263 
1264   // Finalize the lambda.
1265   CXXRecordDecl *Class = LSI->Lambda;
1266   Class->setInvalidDecl();
1267   SmallVector<Decl*, 4> Fields(Class->fields());
1268   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1269               SourceLocation(), ParsedAttributesView());
1270   CheckCompletedCXXClass(nullptr, Class);
1271 
1272   PopFunctionScopeInfo();
1273 }
1274 
1275 template <typename Func>
1276 static void repeatForLambdaConversionFunctionCallingConvs(
1277     Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1278   CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1279       CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1280   CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1281       CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1282   CallingConv CallOpCC = CallOpProto.getCallConv();
1283 
1284   /// Implement emitting a version of the operator for many of the calling
1285   /// conventions for MSVC, as described here:
1286   /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1287   /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1288   /// vectorcall are generated by MSVC when it is supported by the target.
1289   /// Additionally, we are ensuring that the default-free/default-member and
1290   /// call-operator calling convention are generated as well.
1291   /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1292   /// 'member default', despite MSVC not doing so. We do this in order to ensure
1293   /// that someone who intentionally places 'thiscall' on the lambda call
1294   /// operator will still get that overload, since we don't have the a way of
1295   /// detecting the attribute by the time we get here.
1296   if (S.getLangOpts().MSVCCompat) {
1297     CallingConv Convs[] = {
1298         CC_C,        CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1299         DefaultFree, DefaultMember, CallOpCC};
1300     llvm::sort(Convs);
1301     llvm::iterator_range<CallingConv *> Range(
1302         std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1303     const TargetInfo &TI = S.getASTContext().getTargetInfo();
1304 
1305     for (CallingConv C : Range) {
1306       if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1307         F(C);
1308     }
1309     return;
1310   }
1311 
1312   if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1313     F(DefaultFree);
1314     F(DefaultMember);
1315   } else {
1316     F(CallOpCC);
1317   }
1318 }
1319 
1320 // Returns the 'standard' calling convention to be used for the lambda
1321 // conversion function, that is, the 'free' function calling convention unless
1322 // it is overridden by a non-default calling convention attribute.
1323 static CallingConv
1324 getLambdaConversionFunctionCallConv(Sema &S,
1325                                     const FunctionProtoType *CallOpProto) {
1326   CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1327       CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1328   CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1329       CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1330   CallingConv CallOpCC = CallOpProto->getCallConv();
1331 
1332   // If the call-operator hasn't been changed, return both the 'free' and
1333   // 'member' function calling convention.
1334   if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1335     return DefaultFree;
1336   return CallOpCC;
1337 }
1338 
1339 QualType Sema::getLambdaConversionFunctionResultType(
1340     const FunctionProtoType *CallOpProto, CallingConv CC) {
1341   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1342       CallOpProto->getExtProtoInfo();
1343   FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1344   InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1345   InvokerExtInfo.TypeQuals = Qualifiers();
1346   assert(InvokerExtInfo.RefQualifier == RQ_None &&
1347          "Lambda's call operator should not have a reference qualifier");
1348   return Context.getFunctionType(CallOpProto->getReturnType(),
1349                                  CallOpProto->getParamTypes(), InvokerExtInfo);
1350 }
1351 
1352 /// Add a lambda's conversion to function pointer, as described in
1353 /// C++11 [expr.prim.lambda]p6.
1354 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1355                                          CXXRecordDecl *Class,
1356                                          CXXMethodDecl *CallOperator,
1357                                          QualType InvokerFunctionTy) {
1358   // This conversion is explicitly disabled if the lambda's function has
1359   // pass_object_size attributes on any of its parameters.
1360   auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1361     return P->hasAttr<PassObjectSizeAttr>();
1362   };
1363   if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1364     return;
1365 
1366   // Add the conversion to function pointer.
1367   QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1368 
1369   // Create the type of the conversion function.
1370   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1371       S.Context.getDefaultCallingConvention(
1372       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1373   // The conversion function is always const and noexcept.
1374   ConvExtInfo.TypeQuals = Qualifiers();
1375   ConvExtInfo.TypeQuals.addConst();
1376   ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1377   QualType ConvTy =
1378       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1379 
1380   SourceLocation Loc = IntroducerRange.getBegin();
1381   DeclarationName ConversionName
1382     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1383         S.Context.getCanonicalType(PtrToFunctionTy));
1384   // Construct a TypeSourceInfo for the conversion function, and wire
1385   // all the parameters appropriately for the FunctionProtoTypeLoc
1386   // so that everything works during transformation/instantiation of
1387   // generic lambdas.
1388   // The main reason for wiring up the parameters of the conversion
1389   // function with that of the call operator is so that constructs
1390   // like the following work:
1391   // auto L = [](auto b) {                <-- 1
1392   //   return [](auto a) -> decltype(a) { <-- 2
1393   //      return a;
1394   //   };
1395   // };
1396   // int (*fp)(int) = L(5);
1397   // Because the trailing return type can contain DeclRefExprs that refer
1398   // to the original call operator's variables, we hijack the call
1399   // operators ParmVarDecls below.
1400   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1401       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1402   DeclarationNameLoc ConvNameLoc =
1403       DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI);
1404 
1405   // The conversion function is a conversion to a pointer-to-function.
1406   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1407   FunctionProtoTypeLoc ConvTL =
1408       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1409   // Get the result of the conversion function which is a pointer-to-function.
1410   PointerTypeLoc PtrToFunctionTL =
1411       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1412   // Do the same for the TypeSourceInfo that is used to name the conversion
1413   // operator.
1414   PointerTypeLoc ConvNamePtrToFunctionTL =
1415       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1416 
1417   // Get the underlying function types that the conversion function will
1418   // be converting to (should match the type of the call operator).
1419   FunctionProtoTypeLoc CallOpConvTL =
1420       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1421   FunctionProtoTypeLoc CallOpConvNameTL =
1422     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1423 
1424   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1425   // These parameter's are essentially used to transform the name and
1426   // the type of the conversion operator.  By using the same parameters
1427   // as the call operator's we don't have to fix any back references that
1428   // the trailing return type of the call operator's uses (such as
1429   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1430   // - we can simply use the return type of the call operator, and
1431   // everything should work.
1432   SmallVector<ParmVarDecl *, 4> InvokerParams;
1433   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1434     ParmVarDecl *From = CallOperator->getParamDecl(I);
1435 
1436     InvokerParams.push_back(ParmVarDecl::Create(
1437         S.Context,
1438         // Temporarily add to the TU. This is set to the invoker below.
1439         S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1440         From->getLocation(), From->getIdentifier(), From->getType(),
1441         From->getTypeSourceInfo(), From->getStorageClass(),
1442         /*DefArg=*/nullptr));
1443     CallOpConvTL.setParam(I, From);
1444     CallOpConvNameTL.setParam(I, From);
1445   }
1446 
1447   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1448       S.Context, Class, Loc,
1449       DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1450       S.getCurFPFeatures().isFPConstrained(),
1451       /*isInline=*/true, ExplicitSpecifier(),
1452       S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1453                                   : ConstexprSpecKind::Unspecified,
1454       CallOperator->getBody()->getEndLoc());
1455   Conversion->setAccess(AS_public);
1456   Conversion->setImplicit(true);
1457 
1458   if (Class->isGenericLambda()) {
1459     // Create a template version of the conversion operator, using the template
1460     // parameter list of the function call operator.
1461     FunctionTemplateDecl *TemplateCallOperator =
1462             CallOperator->getDescribedFunctionTemplate();
1463     FunctionTemplateDecl *ConversionTemplate =
1464                   FunctionTemplateDecl::Create(S.Context, Class,
1465                                       Loc, ConversionName,
1466                                       TemplateCallOperator->getTemplateParameters(),
1467                                       Conversion);
1468     ConversionTemplate->setAccess(AS_public);
1469     ConversionTemplate->setImplicit(true);
1470     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1471     Class->addDecl(ConversionTemplate);
1472   } else
1473     Class->addDecl(Conversion);
1474   // Add a non-static member function that will be the result of
1475   // the conversion with a certain unique ID.
1476   DeclarationName InvokerName = &S.Context.Idents.get(
1477                                                  getLambdaStaticInvokerName());
1478   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1479   // we should get a prebuilt TrivialTypeSourceInfo from Context
1480   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1481   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1482   // loop below and then use its Params to set Invoke->setParams(...) below.
1483   // This would avoid the 'const' qualifier of the calloperator from
1484   // contaminating the type of the invoker, which is currently adjusted
1485   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1486   // trailing return type of the invoker would require a visitor to rebuild
1487   // the trailing return type and adjusting all back DeclRefExpr's to refer
1488   // to the new static invoker parameters - not the call operator's.
1489   CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1490       S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1491       InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1492       S.getCurFPFeatures().isFPConstrained(),
1493       /*isInline=*/true, ConstexprSpecKind::Unspecified,
1494       CallOperator->getBody()->getEndLoc());
1495   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1496     InvokerParams[I]->setOwningFunction(Invoke);
1497   Invoke->setParams(InvokerParams);
1498   Invoke->setAccess(AS_private);
1499   Invoke->setImplicit(true);
1500   if (Class->isGenericLambda()) {
1501     FunctionTemplateDecl *TemplateCallOperator =
1502             CallOperator->getDescribedFunctionTemplate();
1503     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1504                           S.Context, Class, Loc, InvokerName,
1505                           TemplateCallOperator->getTemplateParameters(),
1506                           Invoke);
1507     StaticInvokerTemplate->setAccess(AS_private);
1508     StaticInvokerTemplate->setImplicit(true);
1509     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1510     Class->addDecl(StaticInvokerTemplate);
1511   } else
1512     Class->addDecl(Invoke);
1513 }
1514 
1515 /// Add a lambda's conversion to function pointers, as described in
1516 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1517 /// single pointer conversion. In the event that the default calling convention
1518 /// for free and member functions is different, it will emit both conventions.
1519 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1520                                           CXXRecordDecl *Class,
1521                                           CXXMethodDecl *CallOperator) {
1522   const FunctionProtoType *CallOpProto =
1523       CallOperator->getType()->castAs<FunctionProtoType>();
1524 
1525   repeatForLambdaConversionFunctionCallingConvs(
1526       S, *CallOpProto, [&](CallingConv CC) {
1527         QualType InvokerFunctionTy =
1528             S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1529         addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1530                                      InvokerFunctionTy);
1531       });
1532 }
1533 
1534 /// Add a lambda's conversion to block pointer.
1535 static void addBlockPointerConversion(Sema &S,
1536                                       SourceRange IntroducerRange,
1537                                       CXXRecordDecl *Class,
1538                                       CXXMethodDecl *CallOperator) {
1539   const FunctionProtoType *CallOpProto =
1540       CallOperator->getType()->castAs<FunctionProtoType>();
1541   QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1542       CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1543   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1544 
1545   FunctionProtoType::ExtProtoInfo ConversionEPI(
1546       S.Context.getDefaultCallingConvention(
1547           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1548   ConversionEPI.TypeQuals = Qualifiers();
1549   ConversionEPI.TypeQuals.addConst();
1550   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1551 
1552   SourceLocation Loc = IntroducerRange.getBegin();
1553   DeclarationName Name
1554     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1555         S.Context.getCanonicalType(BlockPtrTy));
1556   DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc(
1557       S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc));
1558   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1559       S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1560       S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1561       S.getCurFPFeatures().isFPConstrained(),
1562       /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1563       CallOperator->getBody()->getEndLoc());
1564   Conversion->setAccess(AS_public);
1565   Conversion->setImplicit(true);
1566   Class->addDecl(Conversion);
1567 }
1568 
1569 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1570                                   SourceLocation ImplicitCaptureLoc,
1571                                   bool IsOpenMPMapping) {
1572   // VLA captures don't have a stored initialization expression.
1573   if (Cap.isVLATypeCapture())
1574     return ExprResult();
1575 
1576   // An init-capture is initialized directly from its stored initializer.
1577   if (Cap.isInitCapture())
1578     return Cap.getVariable()->getInit();
1579 
1580   // For anything else, build an initialization expression. For an implicit
1581   // capture, the capture notionally happens at the capture-default, so use
1582   // that location here.
1583   SourceLocation Loc =
1584       ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1585 
1586   // C++11 [expr.prim.lambda]p21:
1587   //   When the lambda-expression is evaluated, the entities that
1588   //   are captured by copy are used to direct-initialize each
1589   //   corresponding non-static data member of the resulting closure
1590   //   object. (For array members, the array elements are
1591   //   direct-initialized in increasing subscript order.) These
1592   //   initializations are performed in the (unspecified) order in
1593   //   which the non-static data members are declared.
1594 
1595   // C++ [expr.prim.lambda]p12:
1596   //   An entity captured by a lambda-expression is odr-used (3.2) in
1597   //   the scope containing the lambda-expression.
1598   ExprResult Init;
1599   IdentifierInfo *Name = nullptr;
1600   if (Cap.isThisCapture()) {
1601     QualType ThisTy = getCurrentThisType();
1602     Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1603     if (Cap.isCopyCapture())
1604       Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1605     else
1606       Init = This;
1607   } else {
1608     assert(Cap.isVariableCapture() && "unknown kind of capture");
1609     VarDecl *Var = Cap.getVariable();
1610     Name = Var->getIdentifier();
1611     Init = BuildDeclarationNameExpr(
1612       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1613   }
1614 
1615   // In OpenMP, the capture kind doesn't actually describe how to capture:
1616   // variables are "mapped" onto the device in a process that does not formally
1617   // make a copy, even for a "copy capture".
1618   if (IsOpenMPMapping)
1619     return Init;
1620 
1621   if (Init.isInvalid())
1622     return ExprError();
1623 
1624   Expr *InitExpr = Init.get();
1625   InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1626       Name, Cap.getCaptureType(), Loc);
1627   InitializationKind InitKind =
1628       InitializationKind::CreateDirect(Loc, Loc, Loc);
1629   InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1630   return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1631 }
1632 
1633 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1634                                  Scope *CurScope) {
1635   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1636   ActOnFinishFunctionBody(LSI.CallOperator, Body);
1637   return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1638 }
1639 
1640 static LambdaCaptureDefault
1641 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1642   switch (ICS) {
1643   case CapturingScopeInfo::ImpCap_None:
1644     return LCD_None;
1645   case CapturingScopeInfo::ImpCap_LambdaByval:
1646     return LCD_ByCopy;
1647   case CapturingScopeInfo::ImpCap_CapturedRegion:
1648   case CapturingScopeInfo::ImpCap_LambdaByref:
1649     return LCD_ByRef;
1650   case CapturingScopeInfo::ImpCap_Block:
1651     llvm_unreachable("block capture in lambda");
1652   }
1653   llvm_unreachable("Unknown implicit capture style");
1654 }
1655 
1656 bool Sema::CaptureHasSideEffects(const Capture &From) {
1657   if (From.isInitCapture()) {
1658     Expr *Init = From.getVariable()->getInit();
1659     if (Init && Init->HasSideEffects(Context))
1660       return true;
1661   }
1662 
1663   if (!From.isCopyCapture())
1664     return false;
1665 
1666   const QualType T = From.isThisCapture()
1667                          ? getCurrentThisType()->getPointeeType()
1668                          : From.getCaptureType();
1669 
1670   if (T.isVolatileQualified())
1671     return true;
1672 
1673   const Type *BaseT = T->getBaseElementTypeUnsafe();
1674   if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1675     return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1676            !RD->hasTrivialDestructor();
1677 
1678   return false;
1679 }
1680 
1681 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1682                                        const Capture &From) {
1683   if (CaptureHasSideEffects(From))
1684     return false;
1685 
1686   if (From.isVLATypeCapture())
1687     return false;
1688 
1689   auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1690   if (From.isThisCapture())
1691     diag << "'this'";
1692   else
1693     diag << From.getVariable();
1694   diag << From.isNonODRUsed();
1695   diag << FixItHint::CreateRemoval(CaptureRange);
1696   return true;
1697 }
1698 
1699 /// Create a field within the lambda class or captured statement record for the
1700 /// given capture.
1701 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1702                                    const sema::Capture &Capture) {
1703   SourceLocation Loc = Capture.getLocation();
1704   QualType FieldType = Capture.getCaptureType();
1705 
1706   TypeSourceInfo *TSI = nullptr;
1707   if (Capture.isVariableCapture()) {
1708     auto *Var = Capture.getVariable();
1709     if (Var->isInitCapture())
1710       TSI = Capture.getVariable()->getTypeSourceInfo();
1711   }
1712 
1713   // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1714   // appropriate, at least for an implicit capture.
1715   if (!TSI)
1716     TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1717 
1718   // Build the non-static data member.
1719   FieldDecl *Field =
1720       FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1721                         /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1722                         /*Mutable=*/false, ICIS_NoInit);
1723   // If the variable being captured has an invalid type, mark the class as
1724   // invalid as well.
1725   if (!FieldType->isDependentType()) {
1726     if (RequireCompleteSizedType(Loc, FieldType,
1727                                  diag::err_field_incomplete_or_sizeless)) {
1728       RD->setInvalidDecl();
1729       Field->setInvalidDecl();
1730     } else {
1731       NamedDecl *Def;
1732       FieldType->isIncompleteType(&Def);
1733       if (Def && Def->isInvalidDecl()) {
1734         RD->setInvalidDecl();
1735         Field->setInvalidDecl();
1736       }
1737     }
1738   }
1739   Field->setImplicit(true);
1740   Field->setAccess(AS_private);
1741   RD->addDecl(Field);
1742 
1743   if (Capture.isVLATypeCapture())
1744     Field->setCapturedVLAType(Capture.getCapturedVLAType());
1745 
1746   return Field;
1747 }
1748 
1749 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1750                                  LambdaScopeInfo *LSI) {
1751   // Collect information from the lambda scope.
1752   SmallVector<LambdaCapture, 4> Captures;
1753   SmallVector<Expr *, 4> CaptureInits;
1754   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1755   LambdaCaptureDefault CaptureDefault =
1756       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1757   CXXRecordDecl *Class;
1758   CXXMethodDecl *CallOperator;
1759   SourceRange IntroducerRange;
1760   bool ExplicitParams;
1761   bool ExplicitResultType;
1762   CleanupInfo LambdaCleanup;
1763   bool ContainsUnexpandedParameterPack;
1764   bool IsGenericLambda;
1765   {
1766     CallOperator = LSI->CallOperator;
1767     Class = LSI->Lambda;
1768     IntroducerRange = LSI->IntroducerRange;
1769     ExplicitParams = LSI->ExplicitParams;
1770     ExplicitResultType = !LSI->HasImplicitReturnType;
1771     LambdaCleanup = LSI->Cleanup;
1772     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1773     IsGenericLambda = Class->isGenericLambda();
1774 
1775     CallOperator->setLexicalDeclContext(Class);
1776     Decl *TemplateOrNonTemplateCallOperatorDecl =
1777         CallOperator->getDescribedFunctionTemplate()
1778         ? CallOperator->getDescribedFunctionTemplate()
1779         : cast<Decl>(CallOperator);
1780 
1781     // FIXME: Is this really the best choice? Keeping the lexical decl context
1782     // set as CurContext seems more faithful to the source.
1783     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1784 
1785     PopExpressionEvaluationContext();
1786 
1787     // True if the current capture has a used capture or default before it.
1788     bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1789     SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1790         CaptureDefaultLoc : IntroducerRange.getBegin();
1791 
1792     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1793       const Capture &From = LSI->Captures[I];
1794 
1795       if (From.isInvalid())
1796         return ExprError();
1797 
1798       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1799       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1800       SourceLocation ImplicitCaptureLoc =
1801           IsImplicit ? CaptureDefaultLoc : SourceLocation();
1802 
1803       // Use source ranges of explicit captures for fixits where available.
1804       SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1805 
1806       // Warn about unused explicit captures.
1807       bool IsCaptureUsed = true;
1808       if (!CurContext->isDependentContext() && !IsImplicit &&
1809           !From.isODRUsed()) {
1810         // Initialized captures that are non-ODR used may not be eliminated.
1811         // FIXME: Where did the IsGenericLambda here come from?
1812         bool NonODRUsedInitCapture =
1813             IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1814         if (!NonODRUsedInitCapture) {
1815           bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1816           SourceRange FixItRange;
1817           if (CaptureRange.isValid()) {
1818             if (!CurHasPreviousCapture && !IsLast) {
1819               // If there are no captures preceding this capture, remove the
1820               // following comma.
1821               FixItRange = SourceRange(CaptureRange.getBegin(),
1822                                        getLocForEndOfToken(CaptureRange.getEnd()));
1823             } else {
1824               // Otherwise, remove the comma since the last used capture.
1825               FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1826                                        CaptureRange.getEnd());
1827             }
1828           }
1829 
1830           IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1831         }
1832       }
1833 
1834       if (CaptureRange.isValid()) {
1835         CurHasPreviousCapture |= IsCaptureUsed;
1836         PrevCaptureLoc = CaptureRange.getEnd();
1837       }
1838 
1839       // Map the capture to our AST representation.
1840       LambdaCapture Capture = [&] {
1841         if (From.isThisCapture()) {
1842           // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1843           // because it results in a reference capture. Don't warn prior to
1844           // C++2a; there's nothing that can be done about it before then.
1845           if (getLangOpts().CPlusPlus20 && IsImplicit &&
1846               CaptureDefault == LCD_ByCopy) {
1847             Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1848             Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1849                 << FixItHint::CreateInsertion(
1850                        getLocForEndOfToken(CaptureDefaultLoc), ", this");
1851           }
1852           return LambdaCapture(From.getLocation(), IsImplicit,
1853                                From.isCopyCapture() ? LCK_StarThis : LCK_This);
1854         } else if (From.isVLATypeCapture()) {
1855           return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1856         } else {
1857           assert(From.isVariableCapture() && "unknown kind of capture");
1858           VarDecl *Var = From.getVariable();
1859           LambdaCaptureKind Kind =
1860               From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1861           return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1862                                From.getEllipsisLoc());
1863         }
1864       }();
1865 
1866       // Form the initializer for the capture field.
1867       ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1868 
1869       // FIXME: Skip this capture if the capture is not used, the initializer
1870       // has no side-effects, the type of the capture is trivial, and the
1871       // lambda is not externally visible.
1872 
1873       // Add a FieldDecl for the capture and form its initializer.
1874       BuildCaptureField(Class, From);
1875       Captures.push_back(Capture);
1876       CaptureInits.push_back(Init.get());
1877 
1878       if (LangOpts.CUDA)
1879         CUDACheckLambdaCapture(CallOperator, From);
1880     }
1881 
1882     Class->setCaptures(Context, Captures);
1883 
1884     // C++11 [expr.prim.lambda]p6:
1885     //   The closure type for a lambda-expression with no lambda-capture
1886     //   has a public non-virtual non-explicit const conversion function
1887     //   to pointer to function having the same parameter and return
1888     //   types as the closure type's function call operator.
1889     if (Captures.empty() && CaptureDefault == LCD_None)
1890       addFunctionPointerConversions(*this, IntroducerRange, Class,
1891                                     CallOperator);
1892 
1893     // Objective-C++:
1894     //   The closure type for a lambda-expression has a public non-virtual
1895     //   non-explicit const conversion function to a block pointer having the
1896     //   same parameter and return types as the closure type's function call
1897     //   operator.
1898     // FIXME: Fix generic lambda to block conversions.
1899     if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1900       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1901 
1902     // Finalize the lambda class.
1903     SmallVector<Decl*, 4> Fields(Class->fields());
1904     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1905                 SourceLocation(), ParsedAttributesView());
1906     CheckCompletedCXXClass(nullptr, Class);
1907   }
1908 
1909   Cleanup.mergeFrom(LambdaCleanup);
1910 
1911   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1912                                           CaptureDefault, CaptureDefaultLoc,
1913                                           ExplicitParams, ExplicitResultType,
1914                                           CaptureInits, EndLoc,
1915                                           ContainsUnexpandedParameterPack);
1916   // If the lambda expression's call operator is not explicitly marked constexpr
1917   // and we are not in a dependent context, analyze the call operator to infer
1918   // its constexpr-ness, suppressing diagnostics while doing so.
1919   if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1920       !CallOperator->isConstexpr() &&
1921       !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1922       !Class->getDeclContext()->isDependentContext()) {
1923     CallOperator->setConstexprKind(
1924         CheckConstexprFunctionDefinition(CallOperator,
1925                                          CheckConstexprKind::CheckValid)
1926             ? ConstexprSpecKind::Constexpr
1927             : ConstexprSpecKind::Unspecified);
1928   }
1929 
1930   // Emit delayed shadowing warnings now that the full capture list is known.
1931   DiagnoseShadowingLambdaDecls(LSI);
1932 
1933   if (!CurContext->isDependentContext()) {
1934     switch (ExprEvalContexts.back().Context) {
1935     // C++11 [expr.prim.lambda]p2:
1936     //   A lambda-expression shall not appear in an unevaluated operand
1937     //   (Clause 5).
1938     case ExpressionEvaluationContext::Unevaluated:
1939     case ExpressionEvaluationContext::UnevaluatedList:
1940     case ExpressionEvaluationContext::UnevaluatedAbstract:
1941     // C++1y [expr.const]p2:
1942     //   A conditional-expression e is a core constant expression unless the
1943     //   evaluation of e, following the rules of the abstract machine, would
1944     //   evaluate [...] a lambda-expression.
1945     //
1946     // This is technically incorrect, there are some constant evaluated contexts
1947     // where this should be allowed.  We should probably fix this when DR1607 is
1948     // ratified, it lays out the exact set of conditions where we shouldn't
1949     // allow a lambda-expression.
1950     case ExpressionEvaluationContext::ConstantEvaluated:
1951     case ExpressionEvaluationContext::ImmediateFunctionContext:
1952       // We don't actually diagnose this case immediately, because we
1953       // could be within a context where we might find out later that
1954       // the expression is potentially evaluated (e.g., for typeid).
1955       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1956       break;
1957 
1958     case ExpressionEvaluationContext::DiscardedStatement:
1959     case ExpressionEvaluationContext::PotentiallyEvaluated:
1960     case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1961       break;
1962     }
1963   }
1964 
1965   return MaybeBindToTemporary(Lambda);
1966 }
1967 
1968 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1969                                                SourceLocation ConvLocation,
1970                                                CXXConversionDecl *Conv,
1971                                                Expr *Src) {
1972   // Make sure that the lambda call operator is marked used.
1973   CXXRecordDecl *Lambda = Conv->getParent();
1974   CXXMethodDecl *CallOperator
1975     = cast<CXXMethodDecl>(
1976         Lambda->lookup(
1977           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1978   CallOperator->setReferenced();
1979   CallOperator->markUsed(Context);
1980 
1981   ExprResult Init = PerformCopyInitialization(
1982       InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()),
1983       CurrentLocation, Src);
1984   if (!Init.isInvalid())
1985     Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1986 
1987   if (Init.isInvalid())
1988     return ExprError();
1989 
1990   // Create the new block to be returned.
1991   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1992 
1993   // Set the type information.
1994   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1995   Block->setIsVariadic(CallOperator->isVariadic());
1996   Block->setBlockMissingReturnType(false);
1997 
1998   // Add parameters.
1999   SmallVector<ParmVarDecl *, 4> BlockParams;
2000   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
2001     ParmVarDecl *From = CallOperator->getParamDecl(I);
2002     BlockParams.push_back(ParmVarDecl::Create(
2003         Context, Block, From->getBeginLoc(), From->getLocation(),
2004         From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
2005         From->getStorageClass(),
2006         /*DefArg=*/nullptr));
2007   }
2008   Block->setParams(BlockParams);
2009 
2010   Block->setIsConversionFromLambda(true);
2011 
2012   // Add capture. The capture uses a fake variable, which doesn't correspond
2013   // to any actual memory location. However, the initializer copy-initializes
2014   // the lambda object.
2015   TypeSourceInfo *CapVarTSI =
2016       Context.getTrivialTypeSourceInfo(Src->getType());
2017   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2018                                     ConvLocation, nullptr,
2019                                     Src->getType(), CapVarTSI,
2020                                     SC_None);
2021   BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2022                              /*nested=*/false, /*copy=*/Init.get());
2023   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2024 
2025   // Add a fake function body to the block. IR generation is responsible
2026   // for filling in the actual body, which cannot be expressed as an AST.
2027   Block->setBody(new (Context) CompoundStmt(ConvLocation));
2028 
2029   // Create the block literal expression.
2030   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2031   ExprCleanupObjects.push_back(Block);
2032   Cleanup.setExprNeedsCleanups(true);
2033 
2034   return BuildBlock;
2035 }
2036