1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis member access expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/Overload.h" 13 #include "clang/AST/ASTLambda.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/Lex/Preprocessor.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 25 using namespace clang; 26 using namespace sema; 27 28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet; 29 30 /// Determines if the given class is provably not derived from all of 31 /// the prospective base classes. 32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, 33 const BaseSet &Bases) { 34 auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) { 35 return !Bases.count(Base->getCanonicalDecl()); 36 }; 37 return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet); 38 } 39 40 enum IMAKind { 41 /// The reference is definitely not an instance member access. 42 IMA_Static, 43 44 /// The reference may be an implicit instance member access. 45 IMA_Mixed, 46 47 /// The reference may be to an instance member, but it might be invalid if 48 /// so, because the context is not an instance method. 49 IMA_Mixed_StaticOrExplicitContext, 50 51 /// The reference may be to an instance member, but it is invalid if 52 /// so, because the context is from an unrelated class. 53 IMA_Mixed_Unrelated, 54 55 /// The reference is definitely an implicit instance member access. 56 IMA_Instance, 57 58 /// The reference may be to an unresolved using declaration. 59 IMA_Unresolved, 60 61 /// The reference is a contextually-permitted abstract member reference. 62 IMA_Abstract, 63 64 /// The reference may be to an unresolved using declaration and the 65 /// context is not an instance method. 66 IMA_Unresolved_StaticOrExplicitContext, 67 68 // The reference refers to a field which is not a member of the containing 69 // class, which is allowed because we're in C++11 mode and the context is 70 // unevaluated. 71 IMA_Field_Uneval_Context, 72 73 /// All possible referrents are instance members and the current 74 /// context is not an instance method. 75 IMA_Error_StaticOrExplicitContext, 76 77 /// All possible referrents are instance members of an unrelated 78 /// class. 79 IMA_Error_Unrelated 80 }; 81 82 /// The given lookup names class member(s) and is not being used for 83 /// an address-of-member expression. Classify the type of access 84 /// according to whether it's possible that this reference names an 85 /// instance member. This is best-effort in dependent contexts; it is okay to 86 /// conservatively answer "yes", in which case some errors will simply 87 /// not be caught until template-instantiation. 88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, 89 const LookupResult &R) { 90 assert(!R.empty() && (*R.begin())->isCXXClassMember()); 91 92 DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); 93 94 bool isStaticOrExplicitContext = 95 SemaRef.CXXThisTypeOverride.isNull() && 96 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic() || 97 cast<CXXMethodDecl>(DC)->isExplicitObjectMemberFunction()); 98 99 if (R.isUnresolvableResult()) 100 return isStaticOrExplicitContext ? IMA_Unresolved_StaticOrExplicitContext 101 : IMA_Unresolved; 102 103 // Collect all the declaring classes of instance members we find. 104 bool hasNonInstance = false; 105 bool isField = false; 106 BaseSet Classes; 107 for (NamedDecl *D : R) { 108 // Look through any using decls. 109 D = D->getUnderlyingDecl(); 110 111 if (D->isCXXInstanceMember()) { 112 isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) || 113 isa<IndirectFieldDecl>(D); 114 115 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); 116 Classes.insert(R->getCanonicalDecl()); 117 } else 118 hasNonInstance = true; 119 } 120 121 // If we didn't find any instance members, it can't be an implicit 122 // member reference. 123 if (Classes.empty()) 124 return IMA_Static; 125 126 // C++11 [expr.prim.general]p12: 127 // An id-expression that denotes a non-static data member or non-static 128 // member function of a class can only be used: 129 // (...) 130 // - if that id-expression denotes a non-static data member and it 131 // appears in an unevaluated operand. 132 // 133 // This rule is specific to C++11. However, we also permit this form 134 // in unevaluated inline assembly operands, like the operand to a SIZE. 135 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false' 136 assert(!AbstractInstanceResult); 137 switch (SemaRef.ExprEvalContexts.back().Context) { 138 case Sema::ExpressionEvaluationContext::Unevaluated: 139 case Sema::ExpressionEvaluationContext::UnevaluatedList: 140 if (isField && SemaRef.getLangOpts().CPlusPlus11) 141 AbstractInstanceResult = IMA_Field_Uneval_Context; 142 break; 143 144 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: 145 AbstractInstanceResult = IMA_Abstract; 146 break; 147 148 case Sema::ExpressionEvaluationContext::DiscardedStatement: 149 case Sema::ExpressionEvaluationContext::ConstantEvaluated: 150 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: 151 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: 152 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 153 break; 154 } 155 156 // If the current context is not an instance method, it can't be 157 // an implicit member reference. 158 if (isStaticOrExplicitContext) { 159 if (hasNonInstance) 160 return IMA_Mixed_StaticOrExplicitContext; 161 162 return AbstractInstanceResult ? AbstractInstanceResult 163 : IMA_Error_StaticOrExplicitContext; 164 } 165 166 CXXRecordDecl *contextClass; 167 if (auto *MD = dyn_cast<CXXMethodDecl>(DC)) 168 contextClass = MD->getParent()->getCanonicalDecl(); 169 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 170 contextClass = RD; 171 else 172 return AbstractInstanceResult ? AbstractInstanceResult 173 : IMA_Error_StaticOrExplicitContext; 174 175 // [class.mfct.non-static]p3: 176 // ...is used in the body of a non-static member function of class X, 177 // if name lookup (3.4.1) resolves the name in the id-expression to a 178 // non-static non-type member of some class C [...] 179 // ...if C is not X or a base class of X, the class member access expression 180 // is ill-formed. 181 if (R.getNamingClass() && 182 contextClass->getCanonicalDecl() != 183 R.getNamingClass()->getCanonicalDecl()) { 184 // If the naming class is not the current context, this was a qualified 185 // member name lookup, and it's sufficient to check that we have the naming 186 // class as a base class. 187 Classes.clear(); 188 Classes.insert(R.getNamingClass()->getCanonicalDecl()); 189 } 190 191 // If we can prove that the current context is unrelated to all the 192 // declaring classes, it can't be an implicit member reference (in 193 // which case it's an error if any of those members are selected). 194 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes)) 195 return hasNonInstance ? IMA_Mixed_Unrelated : 196 AbstractInstanceResult ? AbstractInstanceResult : 197 IMA_Error_Unrelated; 198 199 return (hasNonInstance ? IMA_Mixed : IMA_Instance); 200 } 201 202 /// Diagnose a reference to a field with no object available. 203 static void diagnoseInstanceReference(Sema &SemaRef, 204 const CXXScopeSpec &SS, 205 NamedDecl *Rep, 206 const DeclarationNameInfo &nameInfo) { 207 SourceLocation Loc = nameInfo.getLoc(); 208 SourceRange Range(Loc); 209 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); 210 211 // Look through using shadow decls and aliases. 212 Rep = Rep->getUnderlyingDecl(); 213 214 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext(); 215 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC); 216 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr; 217 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext()); 218 219 bool InStaticMethod = Method && Method->isStatic(); 220 bool InExplicitObjectMethod = 221 Method && Method->isExplicitObjectMemberFunction(); 222 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep); 223 224 std::string Replacement; 225 if (InExplicitObjectMethod) { 226 DeclarationName N = Method->getParamDecl(0)->getDeclName(); 227 if (!N.isEmpty()) { 228 Replacement.append(N.getAsString()); 229 Replacement.append("."); 230 } 231 } 232 if (IsField && InStaticMethod) 233 // "invalid use of member 'x' in static member function" 234 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method) 235 << Range << nameInfo.getName() << /*static*/ 0; 236 else if (IsField && InExplicitObjectMethod) { 237 auto Diag = SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method) 238 << Range << nameInfo.getName() << /*explicit*/ 1; 239 if (!Replacement.empty()) 240 Diag << FixItHint::CreateInsertion(Loc, Replacement); 241 } else if (ContextClass && RepClass && SS.isEmpty() && 242 !InExplicitObjectMethod && !InStaticMethod && 243 !RepClass->Equals(ContextClass) && 244 RepClass->Encloses(ContextClass)) 245 // Unqualified lookup in a non-static member function found a member of an 246 // enclosing class. 247 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use) 248 << IsField << RepClass << nameInfo.getName() << ContextClass << Range; 249 else if (IsField) 250 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) 251 << nameInfo.getName() << Range; 252 else if (!InExplicitObjectMethod) 253 SemaRef.Diag(Loc, diag::err_member_call_without_object) 254 << Range << /*static*/ 0; 255 else { 256 if (const auto *Tpl = dyn_cast<FunctionTemplateDecl>(Rep)) 257 Rep = Tpl->getTemplatedDecl(); 258 const auto *Callee = cast<CXXMethodDecl>(Rep); 259 auto Diag = SemaRef.Diag(Loc, diag::err_member_call_without_object) 260 << Range << Callee->isExplicitObjectMemberFunction(); 261 if (!Replacement.empty()) 262 Diag << FixItHint::CreateInsertion(Loc, Replacement); 263 } 264 } 265 266 /// Builds an expression which might be an implicit member expression. 267 ExprResult Sema::BuildPossibleImplicitMemberExpr( 268 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, 269 const TemplateArgumentListInfo *TemplateArgs, const Scope *S, 270 UnresolvedLookupExpr *AsULE) { 271 switch (ClassifyImplicitMemberAccess(*this, R)) { 272 case IMA_Instance: 273 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S); 274 275 case IMA_Mixed: 276 case IMA_Mixed_Unrelated: 277 case IMA_Unresolved: 278 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false, 279 S); 280 281 case IMA_Field_Uneval_Context: 282 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use) 283 << R.getLookupNameInfo().getName(); 284 [[fallthrough]]; 285 case IMA_Static: 286 case IMA_Abstract: 287 case IMA_Mixed_StaticOrExplicitContext: 288 case IMA_Unresolved_StaticOrExplicitContext: 289 if (TemplateArgs || TemplateKWLoc.isValid()) 290 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs); 291 return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false); 292 293 case IMA_Error_StaticOrExplicitContext: 294 case IMA_Error_Unrelated: 295 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), 296 R.getLookupNameInfo()); 297 return ExprError(); 298 } 299 300 llvm_unreachable("unexpected instance member access kind"); 301 } 302 303 /// Determine whether input char is from rgba component set. 304 static bool 305 IsRGBA(char c) { 306 switch (c) { 307 case 'r': 308 case 'g': 309 case 'b': 310 case 'a': 311 return true; 312 default: 313 return false; 314 } 315 } 316 317 // OpenCL v1.1, s6.1.7 318 // The component swizzle length must be in accordance with the acceptable 319 // vector sizes. 320 static bool IsValidOpenCLComponentSwizzleLength(unsigned len) 321 { 322 return (len >= 1 && len <= 4) || len == 8 || len == 16; 323 } 324 325 /// Check an ext-vector component access expression. 326 /// 327 /// VK should be set in advance to the value kind of the base 328 /// expression. 329 static QualType 330 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, 331 SourceLocation OpLoc, const IdentifierInfo *CompName, 332 SourceLocation CompLoc) { 333 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, 334 // see FIXME there. 335 // 336 // FIXME: This logic can be greatly simplified by splitting it along 337 // halving/not halving and reworking the component checking. 338 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); 339 340 // The vector accessor can't exceed the number of elements. 341 const char *compStr = CompName->getNameStart(); 342 343 // This flag determines whether or not the component is one of the four 344 // special names that indicate a subset of exactly half the elements are 345 // to be selected. 346 bool HalvingSwizzle = false; 347 348 // This flag determines whether or not CompName has an 's' char prefix, 349 // indicating that it is a string of hex values to be used as vector indices. 350 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1]; 351 352 bool HasRepeated = false; 353 bool HasIndex[16] = {}; 354 355 int Idx; 356 357 // Check that we've found one of the special components, or that the component 358 // names must come from the same set. 359 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || 360 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { 361 HalvingSwizzle = true; 362 } else if (!HexSwizzle && 363 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { 364 bool HasRGBA = IsRGBA(*compStr); 365 do { 366 // Ensure that xyzw and rgba components don't intermingle. 367 if (HasRGBA != IsRGBA(*compStr)) 368 break; 369 if (HasIndex[Idx]) HasRepeated = true; 370 HasIndex[Idx] = true; 371 compStr++; 372 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); 373 374 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0. 375 if (HasRGBA || (*compStr && IsRGBA(*compStr))) { 376 if (S.getLangOpts().OpenCL && 377 S.getLangOpts().getOpenCLCompatibleVersion() < 300) { 378 const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr; 379 S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector) 380 << StringRef(DiagBegin, 1) << SourceRange(CompLoc); 381 } 382 } 383 } else { 384 if (HexSwizzle) compStr++; 385 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { 386 if (HasIndex[Idx]) HasRepeated = true; 387 HasIndex[Idx] = true; 388 compStr++; 389 } 390 } 391 392 if (!HalvingSwizzle && *compStr) { 393 // We didn't get to the end of the string. This means the component names 394 // didn't come from the same set *or* we encountered an illegal name. 395 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) 396 << StringRef(compStr, 1) << SourceRange(CompLoc); 397 return QualType(); 398 } 399 400 // Ensure no component accessor exceeds the width of the vector type it 401 // operates on. 402 if (!HalvingSwizzle) { 403 compStr = CompName->getNameStart(); 404 405 if (HexSwizzle) 406 compStr++; 407 408 while (*compStr) { 409 if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) { 410 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) 411 << baseType << SourceRange(CompLoc); 412 return QualType(); 413 } 414 } 415 } 416 417 // OpenCL mode requires swizzle length to be in accordance with accepted 418 // sizes. Clang however supports arbitrary lengths for other languages. 419 if (S.getLangOpts().OpenCL && !HalvingSwizzle) { 420 unsigned SwizzleLength = CompName->getLength(); 421 422 if (HexSwizzle) 423 SwizzleLength--; 424 425 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) { 426 S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length) 427 << SwizzleLength << SourceRange(CompLoc); 428 return QualType(); 429 } 430 } 431 432 // The component accessor looks fine - now we need to compute the actual type. 433 // The vector type is implied by the component accessor. For example, 434 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. 435 // vec4.s0 is a float, vec4.s23 is a vec3, etc. 436 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. 437 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 438 : CompName->getLength(); 439 if (HexSwizzle) 440 CompSize--; 441 442 if (CompSize == 1) 443 return vecType->getElementType(); 444 445 if (HasRepeated) 446 VK = VK_PRValue; 447 448 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); 449 // Now look up the TypeDefDecl from the vector type. Without this, 450 // diagostics look bad. We want extended vector types to appear built-in. 451 for (Sema::ExtVectorDeclsType::iterator 452 I = S.ExtVectorDecls.begin(S.getExternalSource()), 453 E = S.ExtVectorDecls.end(); 454 I != E; ++I) { 455 if ((*I)->getUnderlyingType() == VT) 456 return S.Context.getTypedefType(*I); 457 } 458 459 return VT; // should never get here (a typedef type should always be found). 460 } 461 462 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, 463 IdentifierInfo *Member, 464 const Selector &Sel, 465 ASTContext &Context) { 466 if (Member) 467 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration( 468 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) 469 return PD; 470 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) 471 return OMD; 472 473 for (const auto *I : PDecl->protocols()) { 474 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, 475 Context)) 476 return D; 477 } 478 return nullptr; 479 } 480 481 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, 482 IdentifierInfo *Member, 483 const Selector &Sel, 484 ASTContext &Context) { 485 // Check protocols on qualified interfaces. 486 Decl *GDecl = nullptr; 487 for (const auto *I : QIdTy->quals()) { 488 if (Member) 489 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 490 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 491 GDecl = PD; 492 break; 493 } 494 // Also must look for a getter or setter name which uses property syntax. 495 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) { 496 GDecl = OMD; 497 break; 498 } 499 } 500 if (!GDecl) { 501 for (const auto *I : QIdTy->quals()) { 502 // Search in the protocol-qualifier list of current protocol. 503 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context); 504 if (GDecl) 505 return GDecl; 506 } 507 } 508 return GDecl; 509 } 510 511 ExprResult 512 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, 513 bool IsArrow, SourceLocation OpLoc, 514 const CXXScopeSpec &SS, 515 SourceLocation TemplateKWLoc, 516 NamedDecl *FirstQualifierInScope, 517 const DeclarationNameInfo &NameInfo, 518 const TemplateArgumentListInfo *TemplateArgs) { 519 // Even in dependent contexts, try to diagnose base expressions with 520 // obviously wrong types, e.g.: 521 // 522 // T* t; 523 // t.f; 524 // 525 // In Obj-C++, however, the above expression is valid, since it could be 526 // accessing the 'f' property if T is an Obj-C interface. The extra check 527 // allows this, while still reporting an error if T is a struct pointer. 528 if (!IsArrow) { 529 const PointerType *PT = BaseType->getAs<PointerType>(); 530 if (PT && (!getLangOpts().ObjC || 531 PT->getPointeeType()->isRecordType())) { 532 assert(BaseExpr && "cannot happen with implicit member accesses"); 533 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) 534 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange(); 535 return ExprError(); 536 } 537 } 538 539 assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() || 540 isDependentScopeSpecifier(SS) || 541 (TemplateArgs && llvm::any_of(TemplateArgs->arguments(), 542 [](const TemplateArgumentLoc &Arg) { 543 return Arg.getArgument().isDependent(); 544 }))); 545 546 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr 547 // must have pointer type, and the accessed type is the pointee. 548 return CXXDependentScopeMemberExpr::Create( 549 Context, BaseExpr, BaseType, IsArrow, OpLoc, 550 SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope, 551 NameInfo, TemplateArgs); 552 } 553 554 /// We know that the given qualified member reference points only to 555 /// declarations which do not belong to the static type of the base 556 /// expression. Diagnose the problem. 557 static void DiagnoseQualifiedMemberReference(Sema &SemaRef, 558 Expr *BaseExpr, 559 QualType BaseType, 560 const CXXScopeSpec &SS, 561 NamedDecl *rep, 562 const DeclarationNameInfo &nameInfo) { 563 // If this is an implicit member access, use a different set of 564 // diagnostics. 565 if (!BaseExpr) 566 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo); 567 568 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) 569 << SS.getRange() << rep << BaseType; 570 } 571 572 // Check whether the declarations we found through a nested-name 573 // specifier in a member expression are actually members of the base 574 // type. The restriction here is: 575 // 576 // C++ [expr.ref]p2: 577 // ... In these cases, the id-expression shall name a 578 // member of the class or of one of its base classes. 579 // 580 // So it's perfectly legitimate for the nested-name specifier to name 581 // an unrelated class, and for us to find an overload set including 582 // decls from classes which are not superclasses, as long as the decl 583 // we actually pick through overload resolution is from a superclass. 584 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, 585 QualType BaseType, 586 const CXXScopeSpec &SS, 587 const LookupResult &R) { 588 CXXRecordDecl *BaseRecord = 589 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType)); 590 if (!BaseRecord) { 591 // We can't check this yet because the base type is still 592 // dependent. 593 assert(BaseType->isDependentType()); 594 return false; 595 } 596 597 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 598 // If this is an implicit member reference and we find a 599 // non-instance member, it's not an error. 600 if (!BaseExpr && !(*I)->isCXXInstanceMember()) 601 return false; 602 603 // Note that we use the DC of the decl, not the underlying decl. 604 DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext(); 605 if (!DC->isRecord()) 606 continue; 607 608 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl(); 609 if (BaseRecord->getCanonicalDecl() == MemberRecord || 610 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord)) 611 return false; 612 } 613 614 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, 615 R.getRepresentativeDecl(), 616 R.getLookupNameInfo()); 617 return true; 618 } 619 620 namespace { 621 622 // Callback to only accept typo corrections that are either a ValueDecl or a 623 // FunctionTemplateDecl and are declared in the current record or, for a C++ 624 // classes, one of its base classes. 625 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback { 626 public: 627 explicit RecordMemberExprValidatorCCC(const RecordType *RTy) 628 : Record(RTy->getDecl()) { 629 // Don't add bare keywords to the consumer since they will always fail 630 // validation by virtue of not being associated with any decls. 631 WantTypeSpecifiers = false; 632 WantExpressionKeywords = false; 633 WantCXXNamedCasts = false; 634 WantFunctionLikeCasts = false; 635 WantRemainingKeywords = false; 636 } 637 638 bool ValidateCandidate(const TypoCorrection &candidate) override { 639 NamedDecl *ND = candidate.getCorrectionDecl(); 640 // Don't accept candidates that cannot be member functions, constants, 641 // variables, or templates. 642 if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) 643 return false; 644 645 // Accept candidates that occur in the current record. 646 if (Record->containsDecl(ND)) 647 return true; 648 649 if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) { 650 // Accept candidates that occur in any of the current class' base classes. 651 for (const auto &BS : RD->bases()) { 652 if (const auto *BSTy = BS.getType()->getAs<RecordType>()) { 653 if (BSTy->getDecl()->containsDecl(ND)) 654 return true; 655 } 656 } 657 } 658 659 return false; 660 } 661 662 std::unique_ptr<CorrectionCandidateCallback> clone() override { 663 return std::make_unique<RecordMemberExprValidatorCCC>(*this); 664 } 665 666 private: 667 const RecordDecl *const Record; 668 }; 669 670 } 671 672 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, 673 Expr *BaseExpr, 674 const RecordType *RTy, 675 SourceLocation OpLoc, bool IsArrow, 676 CXXScopeSpec &SS, bool HasTemplateArgs, 677 SourceLocation TemplateKWLoc, 678 TypoExpr *&TE) { 679 SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange(); 680 RecordDecl *RDecl = RTy->getDecl(); 681 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) && 682 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), 683 diag::err_typecheck_incomplete_tag, 684 BaseRange)) 685 return true; 686 687 if (HasTemplateArgs || TemplateKWLoc.isValid()) { 688 // LookupTemplateName doesn't expect these both to exist simultaneously. 689 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); 690 691 bool MOUS; 692 return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS, 693 TemplateKWLoc); 694 } 695 696 DeclContext *DC = RDecl; 697 if (SS.isSet()) { 698 // If the member name was a qualified-id, look into the 699 // nested-name-specifier. 700 DC = SemaRef.computeDeclContext(SS, false); 701 702 if (SemaRef.RequireCompleteDeclContext(SS, DC)) { 703 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) 704 << SS.getRange() << DC; 705 return true; 706 } 707 708 assert(DC && "Cannot handle non-computable dependent contexts in lookup"); 709 710 if (!isa<TypeDecl>(DC)) { 711 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) 712 << DC << SS.getRange(); 713 return true; 714 } 715 } 716 717 // The record definition is complete, now look up the member. 718 SemaRef.LookupQualifiedName(R, DC, SS); 719 720 if (!R.empty()) 721 return false; 722 723 DeclarationName Typo = R.getLookupName(); 724 SourceLocation TypoLoc = R.getNameLoc(); 725 726 struct QueryState { 727 Sema &SemaRef; 728 DeclarationNameInfo NameInfo; 729 Sema::LookupNameKind LookupKind; 730 Sema::RedeclarationKind Redecl; 731 }; 732 QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(), 733 R.redeclarationKind()}; 734 RecordMemberExprValidatorCCC CCC(RTy); 735 TE = SemaRef.CorrectTypoDelayed( 736 R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC, 737 [=, &SemaRef](const TypoCorrection &TC) { 738 if (TC) { 739 assert(!TC.isKeyword() && 740 "Got a keyword as a correction for a member!"); 741 bool DroppedSpecifier = 742 TC.WillReplaceSpecifier() && 743 Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts()); 744 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) 745 << Typo << DC << DroppedSpecifier 746 << SS.getRange()); 747 } else { 748 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange; 749 } 750 }, 751 [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable { 752 LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl); 753 R.clear(); // Ensure there's no decls lingering in the shared state. 754 R.suppressDiagnostics(); 755 R.setLookupName(TC.getCorrection()); 756 for (NamedDecl *ND : TC) 757 R.addDecl(ND); 758 R.resolveKind(); 759 return SemaRef.BuildMemberReferenceExpr( 760 BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(), 761 nullptr, R, nullptr, nullptr); 762 }, 763 Sema::CTK_ErrorRecovery, DC); 764 765 return false; 766 } 767 768 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, 769 ExprResult &BaseExpr, bool &IsArrow, 770 SourceLocation OpLoc, CXXScopeSpec &SS, 771 Decl *ObjCImpDecl, bool HasTemplateArgs, 772 SourceLocation TemplateKWLoc); 773 774 ExprResult 775 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, 776 SourceLocation OpLoc, bool IsArrow, 777 CXXScopeSpec &SS, 778 SourceLocation TemplateKWLoc, 779 NamedDecl *FirstQualifierInScope, 780 const DeclarationNameInfo &NameInfo, 781 const TemplateArgumentListInfo *TemplateArgs, 782 const Scope *S, 783 ActOnMemberAccessExtraArgs *ExtraArgs) { 784 if (BaseType->isDependentType() || 785 (SS.isSet() && isDependentScopeSpecifier(SS))) 786 return ActOnDependentMemberExpr(Base, BaseType, 787 IsArrow, OpLoc, 788 SS, TemplateKWLoc, FirstQualifierInScope, 789 NameInfo, TemplateArgs); 790 791 LookupResult R(*this, NameInfo, LookupMemberName); 792 793 // Implicit member accesses. 794 if (!Base) { 795 TypoExpr *TE = nullptr; 796 QualType RecordTy = BaseType; 797 if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType(); 798 if (LookupMemberExprInRecord( 799 *this, R, nullptr, RecordTy->castAs<RecordType>(), OpLoc, IsArrow, 800 SS, TemplateArgs != nullptr, TemplateKWLoc, TE)) 801 return ExprError(); 802 if (TE) 803 return TE; 804 805 // Explicit member accesses. 806 } else { 807 ExprResult BaseResult = Base; 808 ExprResult Result = 809 LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS, 810 ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr, 811 TemplateArgs != nullptr, TemplateKWLoc); 812 813 if (BaseResult.isInvalid()) 814 return ExprError(); 815 Base = BaseResult.get(); 816 817 if (Result.isInvalid()) 818 return ExprError(); 819 820 if (Result.get()) 821 return Result; 822 823 // LookupMemberExpr can modify Base, and thus change BaseType 824 BaseType = Base->getType(); 825 } 826 827 return BuildMemberReferenceExpr(Base, BaseType, 828 OpLoc, IsArrow, SS, TemplateKWLoc, 829 FirstQualifierInScope, R, TemplateArgs, S, 830 false, ExtraArgs); 831 } 832 833 ExprResult 834 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, 835 SourceLocation loc, 836 IndirectFieldDecl *indirectField, 837 DeclAccessPair foundDecl, 838 Expr *baseObjectExpr, 839 SourceLocation opLoc) { 840 // First, build the expression that refers to the base object. 841 842 // Case 1: the base of the indirect field is not a field. 843 VarDecl *baseVariable = indirectField->getVarDecl(); 844 CXXScopeSpec EmptySS; 845 if (baseVariable) { 846 assert(baseVariable->getType()->isRecordType()); 847 848 // In principle we could have a member access expression that 849 // accesses an anonymous struct/union that's a static member of 850 // the base object's class. However, under the current standard, 851 // static data members cannot be anonymous structs or unions. 852 // Supporting this is as easy as building a MemberExpr here. 853 assert(!baseObjectExpr && "anonymous struct/union is static data member?"); 854 855 DeclarationNameInfo baseNameInfo(DeclarationName(), loc); 856 857 ExprResult result 858 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); 859 if (result.isInvalid()) return ExprError(); 860 861 baseObjectExpr = result.get(); 862 } 863 864 assert((baseVariable || baseObjectExpr) && 865 "referencing anonymous struct/union without a base variable or " 866 "expression"); 867 868 // Build the implicit member references to the field of the 869 // anonymous struct/union. 870 Expr *result = baseObjectExpr; 871 IndirectFieldDecl::chain_iterator 872 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); 873 874 // Case 2: the base of the indirect field is a field and the user 875 // wrote a member expression. 876 if (!baseVariable) { 877 FieldDecl *field = cast<FieldDecl>(*FI); 878 879 bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType(); 880 881 // Make a nameInfo that properly uses the anonymous name. 882 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); 883 884 // Build the first member access in the chain with full information. 885 result = 886 BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(), 887 SS, field, foundDecl, memberNameInfo) 888 .get(); 889 if (!result) 890 return ExprError(); 891 } 892 893 // In all cases, we should now skip the first declaration in the chain. 894 ++FI; 895 896 while (FI != FEnd) { 897 FieldDecl *field = cast<FieldDecl>(*FI++); 898 899 // FIXME: these are somewhat meaningless 900 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); 901 DeclAccessPair fakeFoundDecl = 902 DeclAccessPair::make(field, field->getAccess()); 903 904 result = 905 BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(), 906 (FI == FEnd ? SS : EmptySS), field, 907 fakeFoundDecl, memberNameInfo) 908 .get(); 909 } 910 911 return result; 912 } 913 914 static ExprResult 915 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow, 916 const CXXScopeSpec &SS, 917 MSPropertyDecl *PD, 918 const DeclarationNameInfo &NameInfo) { 919 // Property names are always simple identifiers and therefore never 920 // require any interesting additional storage. 921 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow, 922 S.Context.PseudoObjectTy, VK_LValue, 923 SS.getWithLocInContext(S.Context), 924 NameInfo.getLoc()); 925 } 926 927 MemberExpr *Sema::BuildMemberExpr( 928 Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS, 929 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, 930 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, 931 QualType Ty, ExprValueKind VK, ExprObjectKind OK, 932 const TemplateArgumentListInfo *TemplateArgs) { 933 NestedNameSpecifierLoc NNS = 934 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); 935 return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member, 936 FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty, 937 VK, OK, TemplateArgs); 938 } 939 940 MemberExpr *Sema::BuildMemberExpr( 941 Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, 942 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, 943 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, 944 QualType Ty, ExprValueKind VK, ExprObjectKind OK, 945 const TemplateArgumentListInfo *TemplateArgs) { 946 assert((!IsArrow || Base->isPRValue()) && 947 "-> base must be a pointer prvalue"); 948 MemberExpr *E = 949 MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc, 950 Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty, 951 VK, OK, getNonOdrUseReasonInCurrentContext(Member)); 952 E->setHadMultipleCandidates(HadMultipleCandidates); 953 MarkMemberReferenced(E); 954 955 // C++ [except.spec]p17: 956 // An exception-specification is considered to be needed when: 957 // - in an expression the function is the unique lookup result or the 958 // selected member of a set of overloaded functions 959 if (auto *FPT = Ty->getAs<FunctionProtoType>()) { 960 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 961 if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT)) 962 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); 963 } 964 } 965 966 return E; 967 } 968 969 /// Determine if the given scope is within a function-try-block handler. 970 static bool IsInFnTryBlockHandler(const Scope *S) { 971 // Walk the scope stack until finding a FnTryCatchScope, or leave the 972 // function scope. If a FnTryCatchScope is found, check whether the TryScope 973 // flag is set. If it is not, it's a function-try-block handler. 974 for (; S != S->getFnParent(); S = S->getParent()) { 975 if (S->isFnTryCatchScope()) 976 return (S->getFlags() & Scope::TryScope) != Scope::TryScope; 977 } 978 return false; 979 } 980 981 ExprResult 982 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, 983 SourceLocation OpLoc, bool IsArrow, 984 const CXXScopeSpec &SS, 985 SourceLocation TemplateKWLoc, 986 NamedDecl *FirstQualifierInScope, 987 LookupResult &R, 988 const TemplateArgumentListInfo *TemplateArgs, 989 const Scope *S, 990 bool SuppressQualifierCheck, 991 ActOnMemberAccessExtraArgs *ExtraArgs) { 992 QualType BaseType = BaseExprType; 993 if (IsArrow) { 994 assert(BaseType->isPointerType()); 995 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 996 } 997 R.setBaseObjectType(BaseType); 998 999 // C++1z [expr.ref]p2: 1000 // For the first option (dot) the first expression shall be a glvalue [...] 1001 if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) { 1002 ExprResult Converted = TemporaryMaterializationConversion(BaseExpr); 1003 if (Converted.isInvalid()) 1004 return ExprError(); 1005 BaseExpr = Converted.get(); 1006 } 1007 1008 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); 1009 DeclarationName MemberName = MemberNameInfo.getName(); 1010 SourceLocation MemberLoc = MemberNameInfo.getLoc(); 1011 1012 if (R.isAmbiguous()) 1013 return ExprError(); 1014 1015 // [except.handle]p10: Referring to any non-static member or base class of an 1016 // object in the handler for a function-try-block of a constructor or 1017 // destructor for that object results in undefined behavior. 1018 const auto *FD = getCurFunctionDecl(); 1019 if (S && BaseExpr && FD && 1020 (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) && 1021 isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) && 1022 IsInFnTryBlockHandler(S)) 1023 Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr) 1024 << isa<CXXDestructorDecl>(FD); 1025 1026 if (R.empty()) { 1027 // Rederive where we looked up. 1028 DeclContext *DC = (SS.isSet() 1029 ? computeDeclContext(SS, false) 1030 : BaseType->castAs<RecordType>()->getDecl()); 1031 1032 if (ExtraArgs) { 1033 ExprResult RetryExpr; 1034 if (!IsArrow && BaseExpr) { 1035 SFINAETrap Trap(*this, true); 1036 ParsedType ObjectType; 1037 bool MayBePseudoDestructor = false; 1038 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr, 1039 OpLoc, tok::arrow, ObjectType, 1040 MayBePseudoDestructor); 1041 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) { 1042 CXXScopeSpec TempSS(SS); 1043 RetryExpr = ActOnMemberAccessExpr( 1044 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS, 1045 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl); 1046 } 1047 if (Trap.hasErrorOccurred()) 1048 RetryExpr = ExprError(); 1049 } 1050 if (RetryExpr.isUsable()) { 1051 Diag(OpLoc, diag::err_no_member_overloaded_arrow) 1052 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->"); 1053 return RetryExpr; 1054 } 1055 } 1056 1057 Diag(R.getNameLoc(), diag::err_no_member) 1058 << MemberName << DC 1059 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); 1060 return ExprError(); 1061 } 1062 1063 // Diagnose lookups that find only declarations from a non-base 1064 // type. This is possible for either qualified lookups (which may 1065 // have been qualified with an unrelated type) or implicit member 1066 // expressions (which were found with unqualified lookup and thus 1067 // may have come from an enclosing scope). Note that it's okay for 1068 // lookup to find declarations from a non-base type as long as those 1069 // aren't the ones picked by overload resolution. 1070 if ((SS.isSet() || !BaseExpr || 1071 (isa<CXXThisExpr>(BaseExpr) && 1072 cast<CXXThisExpr>(BaseExpr)->isImplicit())) && 1073 !SuppressQualifierCheck && 1074 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) 1075 return ExprError(); 1076 1077 // Construct an unresolved result if we in fact got an unresolved 1078 // result. 1079 if (R.isOverloadedResult() || R.isUnresolvableResult()) { 1080 // Suppress any lookup-related diagnostics; we'll do these when we 1081 // pick a member. 1082 R.suppressDiagnostics(); 1083 1084 UnresolvedMemberExpr *MemExpr 1085 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), 1086 BaseExpr, BaseExprType, 1087 IsArrow, OpLoc, 1088 SS.getWithLocInContext(Context), 1089 TemplateKWLoc, MemberNameInfo, 1090 TemplateArgs, R.begin(), R.end()); 1091 1092 return MemExpr; 1093 } 1094 1095 assert(R.isSingleResult()); 1096 DeclAccessPair FoundDecl = R.begin().getPair(); 1097 NamedDecl *MemberDecl = R.getFoundDecl(); 1098 1099 // FIXME: diagnose the presence of template arguments now. 1100 1101 // If the decl being referenced had an error, return an error for this 1102 // sub-expr without emitting another error, in order to avoid cascading 1103 // error cases. 1104 if (MemberDecl->isInvalidDecl()) 1105 return ExprError(); 1106 1107 // Handle the implicit-member-access case. 1108 if (!BaseExpr) { 1109 // If this is not an instance member, convert to a non-member access. 1110 if (!MemberDecl->isCXXInstanceMember()) { 1111 // We might have a variable template specialization (or maybe one day a 1112 // member concept-id). 1113 if (TemplateArgs || TemplateKWLoc.isValid()) 1114 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs); 1115 1116 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl, 1117 FoundDecl, TemplateArgs); 1118 } 1119 SourceLocation Loc = R.getNameLoc(); 1120 if (SS.getRange().isValid()) 1121 Loc = SS.getRange().getBegin(); 1122 BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true); 1123 } 1124 1125 // Check the use of this member. 1126 if (DiagnoseUseOfDecl(MemberDecl, MemberLoc)) 1127 return ExprError(); 1128 1129 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) 1130 return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl, 1131 MemberNameInfo); 1132 1133 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl)) 1134 return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD, 1135 MemberNameInfo); 1136 1137 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) 1138 // We may have found a field within an anonymous union or struct 1139 // (C++ [class.union]). 1140 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, 1141 FoundDecl, BaseExpr, 1142 OpLoc); 1143 1144 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { 1145 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, 1146 FoundDecl, /*HadMultipleCandidates=*/false, 1147 MemberNameInfo, Var->getType().getNonReferenceType(), 1148 VK_LValue, OK_Ordinary); 1149 } 1150 1151 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) { 1152 ExprValueKind valueKind; 1153 QualType type; 1154 if (MemberFn->isInstance()) { 1155 valueKind = VK_PRValue; 1156 type = Context.BoundMemberTy; 1157 } else { 1158 valueKind = VK_LValue; 1159 type = MemberFn->getType(); 1160 } 1161 1162 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, 1163 MemberFn, FoundDecl, /*HadMultipleCandidates=*/false, 1164 MemberNameInfo, type, valueKind, OK_Ordinary); 1165 } 1166 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?"); 1167 1168 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { 1169 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum, 1170 FoundDecl, /*HadMultipleCandidates=*/false, 1171 MemberNameInfo, Enum->getType(), VK_PRValue, 1172 OK_Ordinary); 1173 } 1174 1175 if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) { 1176 if (!TemplateArgs) { 1177 diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc); 1178 return ExprError(); 1179 } 1180 1181 DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc, 1182 MemberNameInfo.getLoc(), *TemplateArgs); 1183 if (VDecl.isInvalid()) 1184 return ExprError(); 1185 1186 // Non-dependent member, but dependent template arguments. 1187 if (!VDecl.get()) 1188 return ActOnDependentMemberExpr( 1189 BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc, 1190 FirstQualifierInScope, MemberNameInfo, TemplateArgs); 1191 1192 VarDecl *Var = cast<VarDecl>(VDecl.get()); 1193 if (!Var->getTemplateSpecializationKind()) 1194 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc); 1195 1196 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, 1197 FoundDecl, /*HadMultipleCandidates=*/false, 1198 MemberNameInfo, Var->getType().getNonReferenceType(), 1199 VK_LValue, OK_Ordinary, TemplateArgs); 1200 } 1201 1202 // We found something that we didn't expect. Complain. 1203 if (isa<TypeDecl>(MemberDecl)) 1204 Diag(MemberLoc, diag::err_typecheck_member_reference_type) 1205 << MemberName << BaseType << int(IsArrow); 1206 else 1207 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) 1208 << MemberName << BaseType << int(IsArrow); 1209 1210 Diag(MemberDecl->getLocation(), diag::note_member_declared_here) 1211 << MemberName; 1212 R.suppressDiagnostics(); 1213 return ExprError(); 1214 } 1215 1216 /// Given that normal member access failed on the given expression, 1217 /// and given that the expression's type involves builtin-id or 1218 /// builtin-Class, decide whether substituting in the redefinition 1219 /// types would be profitable. The redefinition type is whatever 1220 /// this translation unit tried to typedef to id/Class; we store 1221 /// it to the side and then re-use it in places like this. 1222 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { 1223 const ObjCObjectPointerType *opty 1224 = base.get()->getType()->getAs<ObjCObjectPointerType>(); 1225 if (!opty) return false; 1226 1227 const ObjCObjectType *ty = opty->getObjectType(); 1228 1229 QualType redef; 1230 if (ty->isObjCId()) { 1231 redef = S.Context.getObjCIdRedefinitionType(); 1232 } else if (ty->isObjCClass()) { 1233 redef = S.Context.getObjCClassRedefinitionType(); 1234 } else { 1235 return false; 1236 } 1237 1238 // Do the substitution as long as the redefinition type isn't just a 1239 // possibly-qualified pointer to builtin-id or builtin-Class again. 1240 opty = redef->getAs<ObjCObjectPointerType>(); 1241 if (opty && !opty->getObjectType()->getInterface()) 1242 return false; 1243 1244 base = S.ImpCastExprToType(base.get(), redef, CK_BitCast); 1245 return true; 1246 } 1247 1248 static bool isRecordType(QualType T) { 1249 return T->isRecordType(); 1250 } 1251 static bool isPointerToRecordType(QualType T) { 1252 if (const PointerType *PT = T->getAs<PointerType>()) 1253 return PT->getPointeeType()->isRecordType(); 1254 return false; 1255 } 1256 1257 /// Perform conversions on the LHS of a member access expression. 1258 ExprResult 1259 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) { 1260 if (IsArrow && !Base->getType()->isFunctionType()) 1261 return DefaultFunctionArrayLvalueConversion(Base); 1262 1263 return CheckPlaceholderExpr(Base); 1264 } 1265 1266 /// Look up the given member of the given non-type-dependent 1267 /// expression. This can return in one of two ways: 1268 /// * If it returns a sentinel null-but-valid result, the caller will 1269 /// assume that lookup was performed and the results written into 1270 /// the provided structure. It will take over from there. 1271 /// * Otherwise, the returned expression will be produced in place of 1272 /// an ordinary member expression. 1273 /// 1274 /// The ObjCImpDecl bit is a gross hack that will need to be properly 1275 /// fixed for ObjC++. 1276 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, 1277 ExprResult &BaseExpr, bool &IsArrow, 1278 SourceLocation OpLoc, CXXScopeSpec &SS, 1279 Decl *ObjCImpDecl, bool HasTemplateArgs, 1280 SourceLocation TemplateKWLoc) { 1281 assert(BaseExpr.get() && "no base expression"); 1282 1283 // Perform default conversions. 1284 BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow); 1285 if (BaseExpr.isInvalid()) 1286 return ExprError(); 1287 1288 QualType BaseType = BaseExpr.get()->getType(); 1289 assert(!BaseType->isDependentType()); 1290 1291 DeclarationName MemberName = R.getLookupName(); 1292 SourceLocation MemberLoc = R.getNameLoc(); 1293 1294 // For later type-checking purposes, turn arrow accesses into dot 1295 // accesses. The only access type we support that doesn't follow 1296 // the C equivalence "a->b === (*a).b" is ObjC property accesses, 1297 // and those never use arrows, so this is unaffected. 1298 if (IsArrow) { 1299 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 1300 BaseType = Ptr->getPointeeType(); 1301 else if (const ObjCObjectPointerType *Ptr 1302 = BaseType->getAs<ObjCObjectPointerType>()) 1303 BaseType = Ptr->getPointeeType(); 1304 else if (BaseType->isRecordType()) { 1305 // Recover from arrow accesses to records, e.g.: 1306 // struct MyRecord foo; 1307 // foo->bar 1308 // This is actually well-formed in C++ if MyRecord has an 1309 // overloaded operator->, but that should have been dealt with 1310 // by now--or a diagnostic message already issued if a problem 1311 // was encountered while looking for the overloaded operator->. 1312 if (!S.getLangOpts().CPlusPlus) { 1313 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 1314 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() 1315 << FixItHint::CreateReplacement(OpLoc, "."); 1316 } 1317 IsArrow = false; 1318 } else if (BaseType->isFunctionType()) { 1319 goto fail; 1320 } else { 1321 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) 1322 << BaseType << BaseExpr.get()->getSourceRange(); 1323 return ExprError(); 1324 } 1325 } 1326 1327 // If the base type is an atomic type, this access is undefined behavior per 1328 // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user 1329 // about the UB and recover by converting the atomic lvalue into a non-atomic 1330 // lvalue. Because this is inherently unsafe as an atomic operation, the 1331 // warning defaults to an error. 1332 if (const auto *ATy = BaseType->getAs<AtomicType>()) { 1333 S.DiagRuntimeBehavior(OpLoc, nullptr, 1334 S.PDiag(diag::warn_atomic_member_access)); 1335 BaseType = ATy->getValueType().getUnqualifiedType(); 1336 BaseExpr = ImplicitCastExpr::Create( 1337 S.Context, IsArrow ? S.Context.getPointerType(BaseType) : BaseType, 1338 CK_AtomicToNonAtomic, BaseExpr.get(), nullptr, 1339 BaseExpr.get()->getValueKind(), FPOptionsOverride()); 1340 } 1341 1342 // Handle field access to simple records. 1343 if (const RecordType *RTy = BaseType->getAs<RecordType>()) { 1344 TypoExpr *TE = nullptr; 1345 if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS, 1346 HasTemplateArgs, TemplateKWLoc, TE)) 1347 return ExprError(); 1348 1349 // Returning valid-but-null is how we indicate to the caller that 1350 // the lookup result was filled in. If typo correction was attempted and 1351 // failed, the lookup result will have been cleared--that combined with the 1352 // valid-but-null ExprResult will trigger the appropriate diagnostics. 1353 return ExprResult(TE); 1354 } 1355 1356 // Handle ivar access to Objective-C objects. 1357 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) { 1358 if (!SS.isEmpty() && !SS.isInvalid()) { 1359 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) 1360 << 1 << SS.getScopeRep() 1361 << FixItHint::CreateRemoval(SS.getRange()); 1362 SS.clear(); 1363 } 1364 1365 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1366 1367 // There are three cases for the base type: 1368 // - builtin id (qualified or unqualified) 1369 // - builtin Class (qualified or unqualified) 1370 // - an interface 1371 ObjCInterfaceDecl *IDecl = OTy->getInterface(); 1372 if (!IDecl) { 1373 if (S.getLangOpts().ObjCAutoRefCount && 1374 (OTy->isObjCId() || OTy->isObjCClass())) 1375 goto fail; 1376 // There's an implicit 'isa' ivar on all objects. 1377 // But we only actually find it this way on objects of type 'id', 1378 // apparently. 1379 if (OTy->isObjCId() && Member->isStr("isa")) 1380 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc, 1381 OpLoc, S.Context.getObjCClassType()); 1382 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1383 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1384 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1385 goto fail; 1386 } 1387 1388 if (S.RequireCompleteType(OpLoc, BaseType, 1389 diag::err_typecheck_incomplete_tag, 1390 BaseExpr.get())) 1391 return ExprError(); 1392 1393 ObjCInterfaceDecl *ClassDeclared = nullptr; 1394 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); 1395 1396 if (!IV) { 1397 // Attempt to correct for typos in ivar names. 1398 DeclFilterCCC<ObjCIvarDecl> Validator{}; 1399 Validator.IsObjCIvarLookup = IsArrow; 1400 if (TypoCorrection Corrected = S.CorrectTypo( 1401 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr, 1402 Validator, Sema::CTK_ErrorRecovery, IDecl)) { 1403 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>(); 1404 S.diagnoseTypo( 1405 Corrected, 1406 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest) 1407 << IDecl->getDeclName() << MemberName); 1408 1409 // Figure out the class that declares the ivar. 1410 assert(!ClassDeclared); 1411 1412 Decl *D = cast<Decl>(IV->getDeclContext()); 1413 if (auto *Category = dyn_cast<ObjCCategoryDecl>(D)) 1414 D = Category->getClassInterface(); 1415 1416 if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D)) 1417 ClassDeclared = Implementation->getClassInterface(); 1418 else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D)) 1419 ClassDeclared = Interface; 1420 1421 assert(ClassDeclared && "cannot query interface"); 1422 } else { 1423 if (IsArrow && 1424 IDecl->FindPropertyDeclaration( 1425 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1426 S.Diag(MemberLoc, diag::err_property_found_suggest) 1427 << Member << BaseExpr.get()->getType() 1428 << FixItHint::CreateReplacement(OpLoc, "."); 1429 return ExprError(); 1430 } 1431 1432 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) 1433 << IDecl->getDeclName() << MemberName 1434 << BaseExpr.get()->getSourceRange(); 1435 return ExprError(); 1436 } 1437 } 1438 1439 assert(ClassDeclared); 1440 1441 // If the decl being referenced had an error, return an error for this 1442 // sub-expr without emitting another error, in order to avoid cascading 1443 // error cases. 1444 if (IV->isInvalidDecl()) 1445 return ExprError(); 1446 1447 // Check whether we can reference this field. 1448 if (S.DiagnoseUseOfDecl(IV, MemberLoc)) 1449 return ExprError(); 1450 if (IV->getAccessControl() != ObjCIvarDecl::Public && 1451 IV->getAccessControl() != ObjCIvarDecl::Package) { 1452 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; 1453 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) 1454 ClassOfMethodDecl = MD->getClassInterface(); 1455 else if (ObjCImpDecl && S.getCurFunctionDecl()) { 1456 // Case of a c-function declared inside an objc implementation. 1457 // FIXME: For a c-style function nested inside an objc implementation 1458 // class, there is no implementation context available, so we pass 1459 // down the context as argument to this routine. Ideally, this context 1460 // need be passed down in the AST node and somehow calculated from the 1461 // AST for a function decl. 1462 if (ObjCImplementationDecl *IMPD = 1463 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl)) 1464 ClassOfMethodDecl = IMPD->getClassInterface(); 1465 else if (ObjCCategoryImplDecl* CatImplClass = 1466 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl)) 1467 ClassOfMethodDecl = CatImplClass->getClassInterface(); 1468 } 1469 if (!S.getLangOpts().DebuggerSupport) { 1470 if (IV->getAccessControl() == ObjCIvarDecl::Private) { 1471 if (!declaresSameEntity(ClassDeclared, IDecl) || 1472 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared)) 1473 S.Diag(MemberLoc, diag::err_private_ivar_access) 1474 << IV->getDeclName(); 1475 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) 1476 // @protected 1477 S.Diag(MemberLoc, diag::err_protected_ivar_access) 1478 << IV->getDeclName(); 1479 } 1480 } 1481 bool warn = true; 1482 if (S.getLangOpts().ObjCWeak) { 1483 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts(); 1484 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp)) 1485 if (UO->getOpcode() == UO_Deref) 1486 BaseExp = UO->getSubExpr()->IgnoreParenCasts(); 1487 1488 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp)) 1489 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 1490 S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access); 1491 warn = false; 1492 } 1493 } 1494 if (warn) { 1495 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) { 1496 ObjCMethodFamily MF = MD->getMethodFamily(); 1497 warn = (MF != OMF_init && MF != OMF_dealloc && 1498 MF != OMF_finalize && 1499 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV)); 1500 } 1501 if (warn) 1502 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName(); 1503 } 1504 1505 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr( 1506 IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(), 1507 IsArrow); 1508 1509 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 1510 if (!S.isUnevaluatedContext() && 1511 !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc)) 1512 S.getCurFunction()->recordUseOfWeak(Result); 1513 } 1514 1515 return Result; 1516 } 1517 1518 // Objective-C property access. 1519 const ObjCObjectPointerType *OPT; 1520 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) { 1521 if (!SS.isEmpty() && !SS.isInvalid()) { 1522 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) 1523 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange()); 1524 SS.clear(); 1525 } 1526 1527 // This actually uses the base as an r-value. 1528 BaseExpr = S.DefaultLvalueConversion(BaseExpr.get()); 1529 if (BaseExpr.isInvalid()) 1530 return ExprError(); 1531 1532 assert(S.Context.hasSameUnqualifiedType(BaseType, 1533 BaseExpr.get()->getType())); 1534 1535 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1536 1537 const ObjCObjectType *OT = OPT->getObjectType(); 1538 1539 // id, with and without qualifiers. 1540 if (OT->isObjCId()) { 1541 // Check protocols on qualified interfaces. 1542 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); 1543 if (Decl *PMDecl = 1544 FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) { 1545 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { 1546 // Check the use of this declaration 1547 if (S.DiagnoseUseOfDecl(PD, MemberLoc)) 1548 return ExprError(); 1549 1550 return new (S.Context) 1551 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue, 1552 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1553 } 1554 1555 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { 1556 Selector SetterSel = 1557 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), 1558 S.PP.getSelectorTable(), 1559 Member); 1560 ObjCMethodDecl *SMD = nullptr; 1561 if (Decl *SDecl = FindGetterSetterNameDecl(OPT, 1562 /*Property id*/ nullptr, 1563 SetterSel, S.Context)) 1564 SMD = dyn_cast<ObjCMethodDecl>(SDecl); 1565 1566 return new (S.Context) 1567 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue, 1568 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1569 } 1570 } 1571 // Use of id.member can only be for a property reference. Do not 1572 // use the 'id' redefinition in this case. 1573 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1574 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1575 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1576 1577 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) 1578 << MemberName << BaseType); 1579 } 1580 1581 // 'Class', unqualified only. 1582 if (OT->isObjCClass()) { 1583 // Only works in a method declaration (??!). 1584 ObjCMethodDecl *MD = S.getCurMethodDecl(); 1585 if (!MD) { 1586 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1587 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1588 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1589 1590 goto fail; 1591 } 1592 1593 // Also must look for a getter name which uses property syntax. 1594 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); 1595 ObjCInterfaceDecl *IFace = MD->getClassInterface(); 1596 if (!IFace) 1597 goto fail; 1598 1599 ObjCMethodDecl *Getter; 1600 if ((Getter = IFace->lookupClassMethod(Sel))) { 1601 // Check the use of this method. 1602 if (S.DiagnoseUseOfDecl(Getter, MemberLoc)) 1603 return ExprError(); 1604 } else 1605 Getter = IFace->lookupPrivateMethod(Sel, false); 1606 // If we found a getter then this may be a valid dot-reference, we 1607 // will look for the matching setter, in case it is needed. 1608 Selector SetterSel = 1609 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), 1610 S.PP.getSelectorTable(), 1611 Member); 1612 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 1613 if (!Setter) { 1614 // If this reference is in an @implementation, also check for 'private' 1615 // methods. 1616 Setter = IFace->lookupPrivateMethod(SetterSel, false); 1617 } 1618 1619 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc)) 1620 return ExprError(); 1621 1622 if (Getter || Setter) { 1623 return new (S.Context) ObjCPropertyRefExpr( 1624 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue, 1625 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1626 } 1627 1628 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1629 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1630 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1631 1632 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) 1633 << MemberName << BaseType); 1634 } 1635 1636 // Normal property access. 1637 return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName, 1638 MemberLoc, SourceLocation(), QualType(), 1639 false); 1640 } 1641 1642 if (BaseType->isExtVectorBoolType()) { 1643 // We disallow element access for ext_vector_type bool. There is no way to 1644 // materialize a reference to a vector element as a pointer (each element is 1645 // one bit in the vector). 1646 S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal) 1647 << MemberName 1648 << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange()); 1649 return ExprError(); 1650 } 1651 1652 // Handle 'field access' to vectors, such as 'V.xx'. 1653 if (BaseType->isExtVectorType()) { 1654 // FIXME: this expr should store IsArrow. 1655 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1656 ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind()); 1657 QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc, 1658 Member, MemberLoc); 1659 if (ret.isNull()) 1660 return ExprError(); 1661 Qualifiers BaseQ = 1662 S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers(); 1663 ret = S.Context.getQualifiedType(ret, BaseQ); 1664 1665 return new (S.Context) 1666 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc); 1667 } 1668 1669 // Adjust builtin-sel to the appropriate redefinition type if that's 1670 // not just a pointer to builtin-sel again. 1671 if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && 1672 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) { 1673 BaseExpr = S.ImpCastExprToType( 1674 BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast); 1675 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1676 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1677 } 1678 1679 // Failure cases. 1680 fail: 1681 1682 // Recover from dot accesses to pointers, e.g.: 1683 // type *foo; 1684 // foo.bar 1685 // This is actually well-formed in two cases: 1686 // - 'type' is an Objective C type 1687 // - 'bar' is a pseudo-destructor name which happens to refer to 1688 // the appropriate pointer type 1689 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 1690 if (!IsArrow && Ptr->getPointeeType()->isRecordType() && 1691 MemberName.getNameKind() != DeclarationName::CXXDestructorName) { 1692 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 1693 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() 1694 << FixItHint::CreateReplacement(OpLoc, "->"); 1695 1696 if (S.isSFINAEContext()) 1697 return ExprError(); 1698 1699 // Recurse as an -> access. 1700 IsArrow = true; 1701 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1702 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1703 } 1704 } 1705 1706 // If the user is trying to apply -> or . to a function name, it's probably 1707 // because they forgot parentheses to call that function. 1708 if (S.tryToRecoverWithCall( 1709 BaseExpr, S.PDiag(diag::err_member_reference_needs_call), 1710 /*complain*/ false, 1711 IsArrow ? &isPointerToRecordType : &isRecordType)) { 1712 if (BaseExpr.isInvalid()) 1713 return ExprError(); 1714 BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get()); 1715 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1716 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1717 } 1718 1719 // HLSL supports implicit conversion of scalar types to single element vector 1720 // rvalues in member expressions. 1721 if (S.getLangOpts().HLSL && BaseType->isScalarType()) { 1722 QualType VectorTy = S.Context.getExtVectorType(BaseType, 1); 1723 BaseExpr = S.ImpCastExprToType(BaseExpr.get(), VectorTy, CK_VectorSplat, 1724 BaseExpr.get()->getValueKind()); 1725 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, 1726 HasTemplateArgs, TemplateKWLoc); 1727 } 1728 1729 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) 1730 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc; 1731 1732 return ExprError(); 1733 } 1734 1735 /// The main callback when the parser finds something like 1736 /// expression . [nested-name-specifier] identifier 1737 /// expression -> [nested-name-specifier] identifier 1738 /// where 'identifier' encompasses a fairly broad spectrum of 1739 /// possibilities, including destructor and operator references. 1740 /// 1741 /// \param OpKind either tok::arrow or tok::period 1742 /// \param ObjCImpDecl the current Objective-C \@implementation 1743 /// decl; this is an ugly hack around the fact that Objective-C 1744 /// \@implementations aren't properly put in the context chain 1745 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, 1746 SourceLocation OpLoc, 1747 tok::TokenKind OpKind, 1748 CXXScopeSpec &SS, 1749 SourceLocation TemplateKWLoc, 1750 UnqualifiedId &Id, 1751 Decl *ObjCImpDecl) { 1752 if (SS.isSet() && SS.isInvalid()) 1753 return ExprError(); 1754 1755 // Warn about the explicit constructor calls Microsoft extension. 1756 if (getLangOpts().MicrosoftExt && 1757 Id.getKind() == UnqualifiedIdKind::IK_ConstructorName) 1758 Diag(Id.getSourceRange().getBegin(), 1759 diag::ext_ms_explicit_constructor_call); 1760 1761 TemplateArgumentListInfo TemplateArgsBuffer; 1762 1763 // Decompose the name into its component parts. 1764 DeclarationNameInfo NameInfo; 1765 const TemplateArgumentListInfo *TemplateArgs; 1766 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, 1767 NameInfo, TemplateArgs); 1768 1769 DeclarationName Name = NameInfo.getName(); 1770 bool IsArrow = (OpKind == tok::arrow); 1771 1772 if (getLangOpts().HLSL && IsArrow) 1773 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2); 1774 1775 NamedDecl *FirstQualifierInScope 1776 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep())); 1777 1778 // This is a postfix expression, so get rid of ParenListExprs. 1779 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 1780 if (Result.isInvalid()) return ExprError(); 1781 Base = Result.get(); 1782 1783 if (Base->getType()->isDependentType() || Name.isDependentName() || 1784 isDependentScopeSpecifier(SS)) { 1785 return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS, 1786 TemplateKWLoc, FirstQualifierInScope, 1787 NameInfo, TemplateArgs); 1788 } 1789 1790 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl}; 1791 ExprResult Res = BuildMemberReferenceExpr( 1792 Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc, 1793 FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs); 1794 1795 if (!Res.isInvalid() && isa<MemberExpr>(Res.get())) 1796 CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get())); 1797 1798 return Res; 1799 } 1800 1801 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) { 1802 if (isUnevaluatedContext()) 1803 return; 1804 1805 QualType ResultTy = E->getType(); 1806 1807 // Member accesses have four cases: 1808 // 1: non-array member via "->": dereferences 1809 // 2: non-array member via ".": nothing interesting happens 1810 // 3: array member access via "->": nothing interesting happens 1811 // (this returns an array lvalue and does not actually dereference memory) 1812 // 4: array member access via ".": *adds* a layer of indirection 1813 if (ResultTy->isArrayType()) { 1814 if (!E->isArrow()) { 1815 // This might be something like: 1816 // (*structPtr).arrayMember 1817 // which behaves roughly like: 1818 // &(*structPtr).pointerMember 1819 // in that the apparent dereference in the base expression does not 1820 // actually happen. 1821 CheckAddressOfNoDeref(E->getBase()); 1822 } 1823 } else if (E->isArrow()) { 1824 if (const auto *Ptr = dyn_cast<PointerType>( 1825 E->getBase()->getType().getDesugaredType(Context))) { 1826 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) 1827 ExprEvalContexts.back().PossibleDerefs.insert(E); 1828 } 1829 } 1830 } 1831 1832 ExprResult 1833 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, 1834 SourceLocation OpLoc, const CXXScopeSpec &SS, 1835 FieldDecl *Field, DeclAccessPair FoundDecl, 1836 const DeclarationNameInfo &MemberNameInfo) { 1837 // x.a is an l-value if 'a' has a reference type. Otherwise: 1838 // x.a is an l-value/x-value/pr-value if the base is (and note 1839 // that *x is always an l-value), except that if the base isn't 1840 // an ordinary object then we must have an rvalue. 1841 ExprValueKind VK = VK_LValue; 1842 ExprObjectKind OK = OK_Ordinary; 1843 if (!IsArrow) { 1844 if (BaseExpr->getObjectKind() == OK_Ordinary) 1845 VK = BaseExpr->getValueKind(); 1846 else 1847 VK = VK_PRValue; 1848 } 1849 if (VK != VK_PRValue && Field->isBitField()) 1850 OK = OK_BitField; 1851 1852 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] 1853 QualType MemberType = Field->getType(); 1854 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) { 1855 MemberType = Ref->getPointeeType(); 1856 VK = VK_LValue; 1857 } else { 1858 QualType BaseType = BaseExpr->getType(); 1859 if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 1860 1861 Qualifiers BaseQuals = BaseType.getQualifiers(); 1862 1863 // GC attributes are never picked up by members. 1864 BaseQuals.removeObjCGCAttr(); 1865 1866 // CVR attributes from the base are picked up by members, 1867 // except that 'mutable' members don't pick up 'const'. 1868 if (Field->isMutable()) BaseQuals.removeConst(); 1869 1870 Qualifiers MemberQuals = 1871 Context.getCanonicalType(MemberType).getQualifiers(); 1872 1873 assert(!MemberQuals.hasAddressSpace()); 1874 1875 Qualifiers Combined = BaseQuals + MemberQuals; 1876 if (Combined != MemberQuals) 1877 MemberType = Context.getQualifiedType(MemberType, Combined); 1878 1879 // Pick up NoDeref from the base in case we end up using AddrOf on the 1880 // result. E.g. the expression 1881 // &someNoDerefPtr->pointerMember 1882 // should be a noderef pointer again. 1883 if (BaseType->hasAttr(attr::NoDeref)) 1884 MemberType = 1885 Context.getAttributedType(attr::NoDeref, MemberType, MemberType); 1886 } 1887 1888 auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); 1889 if (!(CurMethod && CurMethod->isDefaulted())) 1890 UnusedPrivateFields.remove(Field); 1891 1892 ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), 1893 FoundDecl, Field); 1894 if (Base.isInvalid()) 1895 return ExprError(); 1896 1897 // Build a reference to a private copy for non-static data members in 1898 // non-static member functions, privatized by OpenMP constructs. 1899 if (getLangOpts().OpenMP && IsArrow && 1900 !CurContext->isDependentContext() && 1901 isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) { 1902 if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) { 1903 return getOpenMPCapturedExpr(PrivateCopy, VK, OK, 1904 MemberNameInfo.getLoc()); 1905 } 1906 } 1907 1908 return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS, 1909 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl, 1910 /*HadMultipleCandidates=*/false, MemberNameInfo, 1911 MemberType, VK, OK); 1912 } 1913 1914 /// Builds an implicit member access expression. The current context 1915 /// is known to be an instance method, and the given unqualified lookup 1916 /// set is known to contain only instance members, at least one of which 1917 /// is from an appropriate type. 1918 ExprResult 1919 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, 1920 SourceLocation TemplateKWLoc, 1921 LookupResult &R, 1922 const TemplateArgumentListInfo *TemplateArgs, 1923 bool IsKnownInstance, const Scope *S) { 1924 assert(!R.empty() && !R.isAmbiguous()); 1925 1926 SourceLocation loc = R.getNameLoc(); 1927 1928 // If this is known to be an instance access, go ahead and build an 1929 // implicit 'this' expression now. 1930 QualType ThisTy = getCurrentThisType(); 1931 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'"); 1932 1933 Expr *baseExpr = nullptr; // null signifies implicit access 1934 if (IsKnownInstance) { 1935 SourceLocation Loc = R.getNameLoc(); 1936 if (SS.getRange().isValid()) 1937 Loc = SS.getRange().getBegin(); 1938 baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true); 1939 } 1940 1941 return BuildMemberReferenceExpr( 1942 baseExpr, ThisTy, 1943 /*OpLoc=*/SourceLocation(), 1944 /*IsArrow=*/!getLangOpts().HLSL, SS, TemplateKWLoc, 1945 /*FirstQualifierInScope=*/nullptr, R, TemplateArgs, S); 1946 } 1947