1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ exception specification testing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/SemaInternal.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include <optional> 25 26 namespace clang { 27 28 static const FunctionProtoType *GetUnderlyingFunction(QualType T) 29 { 30 if (const PointerType *PtrTy = T->getAs<PointerType>()) 31 T = PtrTy->getPointeeType(); 32 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) 33 T = RefTy->getPointeeType(); 34 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) 35 T = MPTy->getPointeeType(); 36 return T->getAs<FunctionProtoType>(); 37 } 38 39 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a 40 /// member swap function then tries to call std::swap unqualified from the 41 /// exception specification of that function. This function detects whether 42 /// we're in such a case and turns off delay-parsing of exception 43 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have 44 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05). 45 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { 46 auto *RD = dyn_cast<CXXRecordDecl>(CurContext); 47 48 // All the problem cases are member functions named "swap" within class 49 // templates declared directly within namespace std or std::__debug or 50 // std::__profile. 51 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || 52 !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) 53 return false; 54 55 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); 56 if (!ND) 57 return false; 58 59 bool IsInStd = ND->isStdNamespace(); 60 if (!IsInStd) { 61 // This isn't a direct member of namespace std, but it might still be 62 // libstdc++'s std::__debug::array or std::__profile::array. 63 IdentifierInfo *II = ND->getIdentifier(); 64 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) || 65 !ND->isInStdNamespace()) 66 return false; 67 } 68 69 // Only apply this hack within a system header. 70 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc())) 71 return false; 72 73 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) 74 .Case("array", true) 75 .Case("pair", IsInStd) 76 .Case("priority_queue", IsInStd) 77 .Case("stack", IsInStd) 78 .Case("queue", IsInStd) 79 .Default(false); 80 } 81 82 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr, 83 ExceptionSpecificationType &EST) { 84 85 if (NoexceptExpr->isTypeDependent() || 86 NoexceptExpr->containsUnexpandedParameterPack()) { 87 EST = EST_DependentNoexcept; 88 return NoexceptExpr; 89 } 90 91 llvm::APSInt Result; 92 ExprResult Converted = CheckConvertedConstantExpression( 93 NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept); 94 95 if (Converted.isInvalid()) { 96 EST = EST_NoexceptFalse; 97 // Fill in an expression of 'false' as a fixup. 98 auto *BoolExpr = new (Context) 99 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc()); 100 llvm::APSInt Value{1}; 101 Value = 0; 102 return ConstantExpr::Create(Context, BoolExpr, APValue{Value}); 103 } 104 105 if (Converted.get()->isValueDependent()) { 106 EST = EST_DependentNoexcept; 107 return Converted; 108 } 109 110 if (!Converted.isInvalid()) 111 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue; 112 return Converted; 113 } 114 115 /// CheckSpecifiedExceptionType - Check if the given type is valid in an 116 /// exception specification. Incomplete types, or pointers to incomplete types 117 /// other than void are not allowed. 118 /// 119 /// \param[in,out] T The exception type. This will be decayed to a pointer type 120 /// when the input is an array or a function type. 121 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { 122 // C++11 [except.spec]p2: 123 // A type cv T, "array of T", or "function returning T" denoted 124 // in an exception-specification is adjusted to type T, "pointer to T", or 125 // "pointer to function returning T", respectively. 126 // 127 // We also apply this rule in C++98. 128 if (T->isArrayType()) 129 T = Context.getArrayDecayedType(T); 130 else if (T->isFunctionType()) 131 T = Context.getPointerType(T); 132 133 int Kind = 0; 134 QualType PointeeT = T; 135 if (const PointerType *PT = T->getAs<PointerType>()) { 136 PointeeT = PT->getPointeeType(); 137 Kind = 1; 138 139 // cv void* is explicitly permitted, despite being a pointer to an 140 // incomplete type. 141 if (PointeeT->isVoidType()) 142 return false; 143 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 144 PointeeT = RT->getPointeeType(); 145 Kind = 2; 146 147 if (RT->isRValueReferenceType()) { 148 // C++11 [except.spec]p2: 149 // A type denoted in an exception-specification shall not denote [...] 150 // an rvalue reference type. 151 Diag(Range.getBegin(), diag::err_rref_in_exception_spec) 152 << T << Range; 153 return true; 154 } 155 } 156 157 // C++11 [except.spec]p2: 158 // A type denoted in an exception-specification shall not denote an 159 // incomplete type other than a class currently being defined [...]. 160 // A type denoted in an exception-specification shall not denote a 161 // pointer or reference to an incomplete type, other than (cv) void* or a 162 // pointer or reference to a class currently being defined. 163 // In Microsoft mode, downgrade this to a warning. 164 unsigned DiagID = diag::err_incomplete_in_exception_spec; 165 bool ReturnValueOnError = true; 166 if (getLangOpts().MSVCCompat) { 167 DiagID = diag::ext_incomplete_in_exception_spec; 168 ReturnValueOnError = false; 169 } 170 if (!(PointeeT->isRecordType() && 171 PointeeT->castAs<RecordType>()->isBeingDefined()) && 172 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) 173 return ReturnValueOnError; 174 175 // WebAssembly reference types can't be used in exception specifications. 176 if (PointeeT.isWebAssemblyReferenceType()) { 177 Diag(Range.getBegin(), diag::err_wasm_reftype_exception_spec); 178 return true; 179 } 180 181 // The MSVC compatibility mode doesn't extend to sizeless types, 182 // so diagnose them separately. 183 if (PointeeT->isSizelessType() && Kind != 1) { 184 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec) 185 << (Kind == 2 ? 1 : 0) << PointeeT << Range; 186 return true; 187 } 188 189 return false; 190 } 191 192 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer 193 /// to member to a function with an exception specification. This means that 194 /// it is invalid to add another level of indirection. 195 bool Sema::CheckDistantExceptionSpec(QualType T) { 196 // C++17 removes this rule in favor of putting exception specifications into 197 // the type system. 198 if (getLangOpts().CPlusPlus17) 199 return false; 200 201 if (const PointerType *PT = T->getAs<PointerType>()) 202 T = PT->getPointeeType(); 203 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) 204 T = PT->getPointeeType(); 205 else 206 return false; 207 208 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); 209 if (!FnT) 210 return false; 211 212 return FnT->hasExceptionSpec(); 213 } 214 215 const FunctionProtoType * 216 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { 217 if (FPT->getExceptionSpecType() == EST_Unparsed) { 218 Diag(Loc, diag::err_exception_spec_not_parsed); 219 return nullptr; 220 } 221 222 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) 223 return FPT; 224 225 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); 226 const FunctionProtoType *SourceFPT = 227 SourceDecl->getType()->castAs<FunctionProtoType>(); 228 229 // If the exception specification has already been resolved, just return it. 230 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) 231 return SourceFPT; 232 233 // Compute or instantiate the exception specification now. 234 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) 235 EvaluateImplicitExceptionSpec(Loc, SourceDecl); 236 else 237 InstantiateExceptionSpec(Loc, SourceDecl); 238 239 const FunctionProtoType *Proto = 240 SourceDecl->getType()->castAs<FunctionProtoType>(); 241 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { 242 Diag(Loc, diag::err_exception_spec_not_parsed); 243 Proto = nullptr; 244 } 245 return Proto; 246 } 247 248 void 249 Sema::UpdateExceptionSpec(FunctionDecl *FD, 250 const FunctionProtoType::ExceptionSpecInfo &ESI) { 251 // If we've fully resolved the exception specification, notify listeners. 252 if (!isUnresolvedExceptionSpec(ESI.Type)) 253 if (auto *Listener = getASTMutationListener()) 254 Listener->ResolvedExceptionSpec(FD); 255 256 for (FunctionDecl *Redecl : FD->redecls()) 257 Context.adjustExceptionSpec(Redecl, ESI); 258 } 259 260 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) { 261 auto *MD = dyn_cast<CXXMethodDecl>(FD); 262 if (!MD) 263 return false; 264 265 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType(); 266 return EST == EST_Unparsed || 267 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined()); 268 } 269 270 static bool CheckEquivalentExceptionSpecImpl( 271 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 272 const FunctionProtoType *Old, SourceLocation OldLoc, 273 const FunctionProtoType *New, SourceLocation NewLoc, 274 bool *MissingExceptionSpecification = nullptr, 275 bool *MissingEmptyExceptionSpecification = nullptr, 276 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); 277 278 /// Determine whether a function has an implicitly-generated exception 279 /// specification. 280 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { 281 if (!isa<CXXDestructorDecl>(Decl) && 282 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && 283 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 284 return false; 285 286 // For a function that the user didn't declare: 287 // - if this is a destructor, its exception specification is implicit. 288 // - if this is 'operator delete' or 'operator delete[]', the exception 289 // specification is as-if an explicit exception specification was given 290 // (per [basic.stc.dynamic]p2). 291 if (!Decl->getTypeSourceInfo()) 292 return isa<CXXDestructorDecl>(Decl); 293 294 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 295 return !Ty->hasExceptionSpec(); 296 } 297 298 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { 299 // Just completely ignore this under -fno-exceptions prior to C++17. 300 // In C++17 onwards, the exception specification is part of the type and 301 // we will diagnose mismatches anyway, so it's better to check for them here. 302 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17) 303 return false; 304 305 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); 306 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; 307 bool MissingExceptionSpecification = false; 308 bool MissingEmptyExceptionSpecification = false; 309 310 unsigned DiagID = diag::err_mismatched_exception_spec; 311 bool ReturnValueOnError = true; 312 if (getLangOpts().MSVCCompat) { 313 DiagID = diag::ext_mismatched_exception_spec; 314 ReturnValueOnError = false; 315 } 316 317 // If we're befriending a member function of a class that's currently being 318 // defined, we might not be able to work out its exception specification yet. 319 // If not, defer the check until later. 320 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 321 DelayedEquivalentExceptionSpecChecks.push_back({New, Old}); 322 return false; 323 } 324 325 // Check the types as written: they must match before any exception 326 // specification adjustment is applied. 327 if (!CheckEquivalentExceptionSpecImpl( 328 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 329 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), 330 New->getType()->getAs<FunctionProtoType>(), New->getLocation(), 331 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, 332 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { 333 // C++11 [except.spec]p4 [DR1492]: 334 // If a declaration of a function has an implicit 335 // exception-specification, other declarations of the function shall 336 // not specify an exception-specification. 337 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && 338 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { 339 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) 340 << hasImplicitExceptionSpec(Old); 341 if (Old->getLocation().isValid()) 342 Diag(Old->getLocation(), diag::note_previous_declaration); 343 } 344 return false; 345 } 346 347 // The failure was something other than an missing exception 348 // specification; return an error, except in MS mode where this is a warning. 349 if (!MissingExceptionSpecification) 350 return ReturnValueOnError; 351 352 const auto *NewProto = New->getType()->castAs<FunctionProtoType>(); 353 354 // The new function declaration is only missing an empty exception 355 // specification "throw()". If the throw() specification came from a 356 // function in a system header that has C linkage, just add an empty 357 // exception specification to the "new" declaration. Note that C library 358 // implementations are permitted to add these nothrow exception 359 // specifications. 360 // 361 // Likewise if the old function is a builtin. 362 if (MissingEmptyExceptionSpecification && 363 (Old->getLocation().isInvalid() || 364 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 365 Old->getBuiltinID()) && 366 Old->isExternC()) { 367 New->setType(Context.getFunctionType( 368 NewProto->getReturnType(), NewProto->getParamTypes(), 369 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); 370 return false; 371 } 372 373 const auto *OldProto = Old->getType()->castAs<FunctionProtoType>(); 374 375 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); 376 if (ESI.Type == EST_Dynamic) { 377 // FIXME: What if the exceptions are described in terms of the old 378 // prototype's parameters? 379 ESI.Exceptions = OldProto->exceptions(); 380 } 381 382 if (ESI.Type == EST_NoexceptFalse) 383 ESI.Type = EST_None; 384 if (ESI.Type == EST_NoexceptTrue) 385 ESI.Type = EST_BasicNoexcept; 386 387 // For dependent noexcept, we can't just take the expression from the old 388 // prototype. It likely contains references to the old prototype's parameters. 389 if (ESI.Type == EST_DependentNoexcept) { 390 New->setInvalidDecl(); 391 } else { 392 // Update the type of the function with the appropriate exception 393 // specification. 394 New->setType(Context.getFunctionType( 395 NewProto->getReturnType(), NewProto->getParamTypes(), 396 NewProto->getExtProtoInfo().withExceptionSpec(ESI))); 397 } 398 399 if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) { 400 DiagID = diag::ext_missing_exception_specification; 401 ReturnValueOnError = false; 402 } else if (New->isReplaceableGlobalAllocationFunction() && 403 ESI.Type != EST_DependentNoexcept) { 404 // Allow missing exception specifications in redeclarations as an extension, 405 // when declaring a replaceable global allocation function. 406 DiagID = diag::ext_missing_exception_specification; 407 ReturnValueOnError = false; 408 } else if (ESI.Type == EST_NoThrow) { 409 // Don't emit any warning for missing 'nothrow' in MSVC. 410 if (getLangOpts().MSVCCompat) { 411 return false; 412 } 413 // Allow missing attribute 'nothrow' in redeclarations, since this is a very 414 // common omission. 415 DiagID = diag::ext_missing_exception_specification; 416 ReturnValueOnError = false; 417 } else { 418 DiagID = diag::err_missing_exception_specification; 419 ReturnValueOnError = true; 420 } 421 422 // Warn about the lack of exception specification. 423 SmallString<128> ExceptionSpecString; 424 llvm::raw_svector_ostream OS(ExceptionSpecString); 425 switch (OldProto->getExceptionSpecType()) { 426 case EST_DynamicNone: 427 OS << "throw()"; 428 break; 429 430 case EST_Dynamic: { 431 OS << "throw("; 432 bool OnFirstException = true; 433 for (const auto &E : OldProto->exceptions()) { 434 if (OnFirstException) 435 OnFirstException = false; 436 else 437 OS << ", "; 438 439 OS << E.getAsString(getPrintingPolicy()); 440 } 441 OS << ")"; 442 break; 443 } 444 445 case EST_BasicNoexcept: 446 OS << "noexcept"; 447 break; 448 449 case EST_DependentNoexcept: 450 case EST_NoexceptFalse: 451 case EST_NoexceptTrue: 452 OS << "noexcept("; 453 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); 454 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); 455 OS << ")"; 456 break; 457 case EST_NoThrow: 458 OS <<"__attribute__((nothrow))"; 459 break; 460 case EST_None: 461 case EST_MSAny: 462 case EST_Unevaluated: 463 case EST_Uninstantiated: 464 case EST_Unparsed: 465 llvm_unreachable("This spec type is compatible with none."); 466 } 467 468 SourceLocation FixItLoc; 469 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { 470 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); 471 // FIXME: Preserve enough information so that we can produce a correct fixit 472 // location when there is a trailing return type. 473 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) 474 if (!FTLoc.getTypePtr()->hasTrailingReturn()) 475 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); 476 } 477 478 if (FixItLoc.isInvalid()) 479 Diag(New->getLocation(), DiagID) 480 << New << OS.str(); 481 else { 482 Diag(New->getLocation(), DiagID) 483 << New << OS.str() 484 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); 485 } 486 487 if (Old->getLocation().isValid()) 488 Diag(Old->getLocation(), diag::note_previous_declaration); 489 490 return ReturnValueOnError; 491 } 492 493 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent 494 /// exception specifications. Exception specifications are equivalent if 495 /// they allow exactly the same set of exception types. It does not matter how 496 /// that is achieved. See C++ [except.spec]p2. 497 bool Sema::CheckEquivalentExceptionSpec( 498 const FunctionProtoType *Old, SourceLocation OldLoc, 499 const FunctionProtoType *New, SourceLocation NewLoc) { 500 if (!getLangOpts().CXXExceptions) 501 return false; 502 503 unsigned DiagID = diag::err_mismatched_exception_spec; 504 if (getLangOpts().MSVCCompat) 505 DiagID = diag::ext_mismatched_exception_spec; 506 bool Result = CheckEquivalentExceptionSpecImpl( 507 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 508 Old, OldLoc, New, NewLoc); 509 510 // In Microsoft mode, mismatching exception specifications just cause a warning. 511 if (getLangOpts().MSVCCompat) 512 return false; 513 return Result; 514 } 515 516 /// CheckEquivalentExceptionSpec - Check if the two types have compatible 517 /// exception specifications. See C++ [except.spec]p3. 518 /// 519 /// \return \c false if the exception specifications match, \c true if there is 520 /// a problem. If \c true is returned, either a diagnostic has already been 521 /// produced or \c *MissingExceptionSpecification is set to \c true. 522 static bool CheckEquivalentExceptionSpecImpl( 523 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 524 const FunctionProtoType *Old, SourceLocation OldLoc, 525 const FunctionProtoType *New, SourceLocation NewLoc, 526 bool *MissingExceptionSpecification, 527 bool *MissingEmptyExceptionSpecification, 528 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { 529 if (MissingExceptionSpecification) 530 *MissingExceptionSpecification = false; 531 532 if (MissingEmptyExceptionSpecification) 533 *MissingEmptyExceptionSpecification = false; 534 535 Old = S.ResolveExceptionSpec(NewLoc, Old); 536 if (!Old) 537 return false; 538 New = S.ResolveExceptionSpec(NewLoc, New); 539 if (!New) 540 return false; 541 542 // C++0x [except.spec]p3: Two exception-specifications are compatible if: 543 // - both are non-throwing, regardless of their form, 544 // - both have the form noexcept(constant-expression) and the constant- 545 // expressions are equivalent, 546 // - both are dynamic-exception-specifications that have the same set of 547 // adjusted types. 548 // 549 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is 550 // of the form throw(), noexcept, or noexcept(constant-expression) where the 551 // constant-expression yields true. 552 // 553 // C++0x [except.spec]p4: If any declaration of a function has an exception- 554 // specifier that is not a noexcept-specification allowing all exceptions, 555 // all declarations [...] of that function shall have a compatible 556 // exception-specification. 557 // 558 // That last point basically means that noexcept(false) matches no spec. 559 // It's considered when AllowNoexceptAllMatchWithNoSpec is true. 560 561 ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); 562 ExceptionSpecificationType NewEST = New->getExceptionSpecType(); 563 564 assert(!isUnresolvedExceptionSpec(OldEST) && 565 !isUnresolvedExceptionSpec(NewEST) && 566 "Shouldn't see unknown exception specifications here"); 567 568 CanThrowResult OldCanThrow = Old->canThrow(); 569 CanThrowResult NewCanThrow = New->canThrow(); 570 571 // Any non-throwing specifications are compatible. 572 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot) 573 return false; 574 575 // Any throws-anything specifications are usually compatible. 576 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic && 577 NewCanThrow == CT_Can && NewEST != EST_Dynamic) { 578 // The exception is that the absence of an exception specification only 579 // matches noexcept(false) for functions, as described above. 580 if (!AllowNoexceptAllMatchWithNoSpec && 581 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) || 582 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) { 583 // This is the disallowed case. 584 } else { 585 return false; 586 } 587 } 588 589 // C++14 [except.spec]p3: 590 // Two exception-specifications are compatible if [...] both have the form 591 // noexcept(constant-expression) and the constant-expressions are equivalent 592 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) { 593 llvm::FoldingSetNodeID OldFSN, NewFSN; 594 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true); 595 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true); 596 if (OldFSN == NewFSN) 597 return false; 598 } 599 600 // Dynamic exception specifications with the same set of adjusted types 601 // are compatible. 602 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) { 603 bool Success = true; 604 // Both have a dynamic exception spec. Collect the first set, then compare 605 // to the second. 606 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; 607 for (const auto &I : Old->exceptions()) 608 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType()); 609 610 for (const auto &I : New->exceptions()) { 611 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType(); 612 if (OldTypes.count(TypePtr)) 613 NewTypes.insert(TypePtr); 614 else { 615 Success = false; 616 break; 617 } 618 } 619 620 if (Success && OldTypes.size() == NewTypes.size()) 621 return false; 622 } 623 624 // As a special compatibility feature, under C++0x we accept no spec and 625 // throw(std::bad_alloc) as equivalent for operator new and operator new[]. 626 // This is because the implicit declaration changed, but old code would break. 627 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { 628 const FunctionProtoType *WithExceptions = nullptr; 629 if (OldEST == EST_None && NewEST == EST_Dynamic) 630 WithExceptions = New; 631 else if (OldEST == EST_Dynamic && NewEST == EST_None) 632 WithExceptions = Old; 633 if (WithExceptions && WithExceptions->getNumExceptions() == 1) { 634 // One has no spec, the other throw(something). If that something is 635 // std::bad_alloc, all conditions are met. 636 QualType Exception = *WithExceptions->exception_begin(); 637 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { 638 IdentifierInfo* Name = ExRecord->getIdentifier(); 639 if (Name && Name->getName() == "bad_alloc") { 640 // It's called bad_alloc, but is it in std? 641 if (ExRecord->isInStdNamespace()) { 642 return false; 643 } 644 } 645 } 646 } 647 } 648 649 // If the caller wants to handle the case that the new function is 650 // incompatible due to a missing exception specification, let it. 651 if (MissingExceptionSpecification && OldEST != EST_None && 652 NewEST == EST_None) { 653 // The old type has an exception specification of some sort, but 654 // the new type does not. 655 *MissingExceptionSpecification = true; 656 657 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) { 658 // The old type has a throw() or noexcept(true) exception specification 659 // and the new type has no exception specification, and the caller asked 660 // to handle this itself. 661 *MissingEmptyExceptionSpecification = true; 662 } 663 664 return true; 665 } 666 667 S.Diag(NewLoc, DiagID); 668 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 669 S.Diag(OldLoc, NoteID); 670 return true; 671 } 672 673 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, 674 const PartialDiagnostic &NoteID, 675 const FunctionProtoType *Old, 676 SourceLocation OldLoc, 677 const FunctionProtoType *New, 678 SourceLocation NewLoc) { 679 if (!getLangOpts().CXXExceptions) 680 return false; 681 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc, 682 New, NewLoc); 683 } 684 685 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) { 686 // [except.handle]p3: 687 // A handler is a match for an exception object of type E if: 688 689 // HandlerType must be ExceptionType or derived from it, or pointer or 690 // reference to such types. 691 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>(); 692 if (RefTy) 693 HandlerType = RefTy->getPointeeType(); 694 695 // -- the handler is of type cv T or cv T& and E and T are the same type 696 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType)) 697 return true; 698 699 // FIXME: ObjC pointer types? 700 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) { 701 if (RefTy && (!HandlerType.isConstQualified() || 702 HandlerType.isVolatileQualified())) 703 return false; 704 705 // -- the handler is of type cv T or const T& where T is a pointer or 706 // pointer to member type and E is std::nullptr_t 707 if (ExceptionType->isNullPtrType()) 708 return true; 709 710 // -- the handler is of type cv T or const T& where T is a pointer or 711 // pointer to member type and E is a pointer or pointer to member type 712 // that can be converted to T by one or more of 713 // -- a qualification conversion 714 // -- a function pointer conversion 715 bool LifetimeConv; 716 QualType Result; 717 // FIXME: Should we treat the exception as catchable if a lifetime 718 // conversion is required? 719 if (IsQualificationConversion(ExceptionType, HandlerType, false, 720 LifetimeConv) || 721 IsFunctionConversion(ExceptionType, HandlerType, Result)) 722 return true; 723 724 // -- a standard pointer conversion [...] 725 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType()) 726 return false; 727 728 // Handle the "qualification conversion" portion. 729 Qualifiers EQuals, HQuals; 730 ExceptionType = Context.getUnqualifiedArrayType( 731 ExceptionType->getPointeeType(), EQuals); 732 HandlerType = Context.getUnqualifiedArrayType( 733 HandlerType->getPointeeType(), HQuals); 734 if (!HQuals.compatiblyIncludes(EQuals)) 735 return false; 736 737 if (HandlerType->isVoidType() && ExceptionType->isObjectType()) 738 return true; 739 740 // The only remaining case is a derived-to-base conversion. 741 } 742 743 // -- the handler is of type cg T or cv T& and T is an unambiguous public 744 // base class of E 745 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType()) 746 return false; 747 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 748 /*DetectVirtual=*/false); 749 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) || 750 Paths.isAmbiguous(Context.getCanonicalType(HandlerType))) 751 return false; 752 753 // Do this check from a context without privileges. 754 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType, 755 Paths.front(), 756 /*Diagnostic*/ 0, 757 /*ForceCheck*/ true, 758 /*ForceUnprivileged*/ true)) { 759 case AR_accessible: return true; 760 case AR_inaccessible: return false; 761 case AR_dependent: 762 llvm_unreachable("access check dependent for unprivileged context"); 763 case AR_delayed: 764 llvm_unreachable("access check delayed in non-declaration"); 765 } 766 llvm_unreachable("unexpected access check result"); 767 } 768 769 /// CheckExceptionSpecSubset - Check whether the second function type's 770 /// exception specification is a subset (or equivalent) of the first function 771 /// type. This is used by override and pointer assignment checks. 772 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, 773 const PartialDiagnostic &NestedDiagID, 774 const PartialDiagnostic &NoteID, 775 const PartialDiagnostic &NoThrowDiagID, 776 const FunctionProtoType *Superset, 777 SourceLocation SuperLoc, 778 const FunctionProtoType *Subset, 779 SourceLocation SubLoc) { 780 781 // Just auto-succeed under -fno-exceptions. 782 if (!getLangOpts().CXXExceptions) 783 return false; 784 785 // FIXME: As usual, we could be more specific in our error messages, but 786 // that better waits until we've got types with source locations. 787 788 if (!SubLoc.isValid()) 789 SubLoc = SuperLoc; 790 791 // Resolve the exception specifications, if needed. 792 Superset = ResolveExceptionSpec(SuperLoc, Superset); 793 if (!Superset) 794 return false; 795 Subset = ResolveExceptionSpec(SubLoc, Subset); 796 if (!Subset) 797 return false; 798 799 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); 800 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); 801 assert(!isUnresolvedExceptionSpec(SuperEST) && 802 !isUnresolvedExceptionSpec(SubEST) && 803 "Shouldn't see unknown exception specifications here"); 804 805 // If there are dependent noexcept specs, assume everything is fine. Unlike 806 // with the equivalency check, this is safe in this case, because we don't 807 // want to merge declarations. Checks after instantiation will catch any 808 // omissions we make here. 809 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept) 810 return false; 811 812 CanThrowResult SuperCanThrow = Superset->canThrow(); 813 CanThrowResult SubCanThrow = Subset->canThrow(); 814 815 // If the superset contains everything or the subset contains nothing, we're 816 // done. 817 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) || 818 SubCanThrow == CT_Cannot) 819 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 820 Subset, SubLoc); 821 822 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in 823 // some cases. 824 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can && 825 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) { 826 Diag(SubLoc, NoThrowDiagID); 827 if (NoteID.getDiagID() != 0) 828 Diag(SuperLoc, NoteID); 829 return true; 830 } 831 832 // If the subset contains everything or the superset contains nothing, we've 833 // failed. 834 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) || 835 SuperCanThrow == CT_Cannot) { 836 Diag(SubLoc, DiagID); 837 if (NoteID.getDiagID() != 0) 838 Diag(SuperLoc, NoteID); 839 return true; 840 } 841 842 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && 843 "Exception spec subset: non-dynamic case slipped through."); 844 845 // Neither contains everything or nothing. Do a proper comparison. 846 for (QualType SubI : Subset->exceptions()) { 847 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>()) 848 SubI = RefTy->getPointeeType(); 849 850 // Make sure it's in the superset. 851 bool Contained = false; 852 for (QualType SuperI : Superset->exceptions()) { 853 // [except.spec]p5: 854 // the target entity shall allow at least the exceptions allowed by the 855 // source 856 // 857 // We interpret this as meaning that a handler for some target type would 858 // catch an exception of each source type. 859 if (handlerCanCatch(SuperI, SubI)) { 860 Contained = true; 861 break; 862 } 863 } 864 if (!Contained) { 865 Diag(SubLoc, DiagID); 866 if (NoteID.getDiagID() != 0) 867 Diag(SuperLoc, NoteID); 868 return true; 869 } 870 } 871 // We've run half the gauntlet. 872 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 873 Subset, SubLoc); 874 } 875 876 static bool 877 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, 878 const PartialDiagnostic &NoteID, QualType Target, 879 SourceLocation TargetLoc, QualType Source, 880 SourceLocation SourceLoc) { 881 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); 882 if (!TFunc) 883 return false; 884 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); 885 if (!SFunc) 886 return false; 887 888 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, 889 SFunc, SourceLoc); 890 } 891 892 /// CheckParamExceptionSpec - Check if the parameter and return types of the 893 /// two functions have equivalent exception specs. This is part of the 894 /// assignment and override compatibility check. We do not check the parameters 895 /// of parameter function pointers recursively, as no sane programmer would 896 /// even be able to write such a function type. 897 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID, 898 const PartialDiagnostic &NoteID, 899 const FunctionProtoType *Target, 900 SourceLocation TargetLoc, 901 const FunctionProtoType *Source, 902 SourceLocation SourceLoc) { 903 auto RetDiag = DiagID; 904 RetDiag << 0; 905 if (CheckSpecForTypesEquivalent( 906 *this, RetDiag, PDiag(), 907 Target->getReturnType(), TargetLoc, Source->getReturnType(), 908 SourceLoc)) 909 return true; 910 911 // We shouldn't even be testing this unless the arguments are otherwise 912 // compatible. 913 assert(Target->getNumParams() == Source->getNumParams() && 914 "Functions have different argument counts."); 915 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { 916 auto ParamDiag = DiagID; 917 ParamDiag << 1; 918 if (CheckSpecForTypesEquivalent( 919 *this, ParamDiag, PDiag(), 920 Target->getParamType(i), TargetLoc, Source->getParamType(i), 921 SourceLoc)) 922 return true; 923 } 924 return false; 925 } 926 927 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { 928 // First we check for applicability. 929 // Target type must be a function, function pointer or function reference. 930 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); 931 if (!ToFunc || ToFunc->hasDependentExceptionSpec()) 932 return false; 933 934 // SourceType must be a function or function pointer. 935 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); 936 if (!FromFunc || FromFunc->hasDependentExceptionSpec()) 937 return false; 938 939 unsigned DiagID = diag::err_incompatible_exception_specs; 940 unsigned NestedDiagID = diag::err_deep_exception_specs_differ; 941 // This is not an error in C++17 onwards, unless the noexceptness doesn't 942 // match, but in that case we have a full-on type mismatch, not just a 943 // type sugar mismatch. 944 if (getLangOpts().CPlusPlus17) { 945 DiagID = diag::warn_incompatible_exception_specs; 946 NestedDiagID = diag::warn_deep_exception_specs_differ; 947 } 948 949 // Now we've got the correct types on both sides, check their compatibility. 950 // This means that the source of the conversion can only throw a subset of 951 // the exceptions of the target, and any exception specs on arguments or 952 // return types must be equivalent. 953 // 954 // FIXME: If there is a nested dependent exception specification, we should 955 // not be checking it here. This is fine: 956 // template<typename T> void f() { 957 // void (*p)(void (*) throw(T)); 958 // void (*q)(void (*) throw(int)) = p; 959 // } 960 // ... because it might be instantiated with T=int. 961 return CheckExceptionSpecSubset( 962 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc, 963 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) && 964 !getLangOpts().CPlusPlus17; 965 } 966 967 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, 968 const CXXMethodDecl *Old) { 969 // If the new exception specification hasn't been parsed yet, skip the check. 970 // We'll get called again once it's been parsed. 971 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 972 EST_Unparsed) 973 return false; 974 975 // Don't check uninstantiated template destructors at all. We can only 976 // synthesize correct specs after the template is instantiated. 977 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType()) 978 return false; 979 980 // If the old exception specification hasn't been parsed yet, or the new 981 // exception specification can't be computed yet, remember that we need to 982 // perform this check when we get to the end of the outermost 983 // lexically-surrounding class. 984 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 985 DelayedOverridingExceptionSpecChecks.push_back({New, Old}); 986 return false; 987 } 988 989 unsigned DiagID = diag::err_override_exception_spec; 990 if (getLangOpts().MSVCCompat) 991 DiagID = diag::ext_override_exception_spec; 992 return CheckExceptionSpecSubset(PDiag(DiagID), 993 PDiag(diag::err_deep_exception_specs_differ), 994 PDiag(diag::note_overridden_virtual_function), 995 PDiag(diag::ext_override_exception_spec), 996 Old->getType()->castAs<FunctionProtoType>(), 997 Old->getLocation(), 998 New->getType()->castAs<FunctionProtoType>(), 999 New->getLocation()); 1000 } 1001 1002 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) { 1003 CanThrowResult R = CT_Cannot; 1004 for (const Stmt *SubStmt : S->children()) { 1005 if (!SubStmt) 1006 continue; 1007 R = mergeCanThrow(R, Self.canThrow(SubStmt)); 1008 if (R == CT_Can) 1009 break; 1010 } 1011 return R; 1012 } 1013 1014 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D, 1015 SourceLocation Loc) { 1016 // As an extension, we assume that __attribute__((nothrow)) functions don't 1017 // throw. 1018 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1019 return CT_Cannot; 1020 1021 QualType T; 1022 1023 // In C++1z, just look at the function type of the callee. 1024 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) { 1025 E = cast<CallExpr>(E)->getCallee(); 1026 T = E->getType(); 1027 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1028 // Sadly we don't preserve the actual type as part of the "bound member" 1029 // placeholder, so we need to reconstruct it. 1030 E = E->IgnoreParenImpCasts(); 1031 1032 // Could be a call to a pointer-to-member or a plain member access. 1033 if (auto *Op = dyn_cast<BinaryOperator>(E)) { 1034 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); 1035 T = Op->getRHS()->getType() 1036 ->castAs<MemberPointerType>()->getPointeeType(); 1037 } else { 1038 T = cast<MemberExpr>(E)->getMemberDecl()->getType(); 1039 } 1040 } 1041 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D)) 1042 T = VD->getType(); 1043 else 1044 // If we have no clue what we're calling, assume the worst. 1045 return CT_Can; 1046 1047 const FunctionProtoType *FT; 1048 if ((FT = T->getAs<FunctionProtoType>())) { 1049 } else if (const PointerType *PT = T->getAs<PointerType>()) 1050 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1051 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1052 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1053 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1054 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1055 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1056 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1057 1058 if (!FT) 1059 return CT_Can; 1060 1061 if (Loc.isValid() || (Loc.isInvalid() && E)) 1062 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT); 1063 if (!FT) 1064 return CT_Can; 1065 1066 return FT->canThrow(); 1067 } 1068 1069 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) { 1070 CanThrowResult CT = CT_Cannot; 1071 1072 // Initialization might throw. 1073 if (!VD->isUsableInConstantExpressions(Self.Context)) 1074 if (const Expr *Init = VD->getInit()) 1075 CT = mergeCanThrow(CT, Self.canThrow(Init)); 1076 1077 // Destructor might throw. 1078 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) { 1079 if (auto *RD = 1080 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { 1081 if (auto *Dtor = RD->getDestructor()) { 1082 CT = mergeCanThrow( 1083 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation())); 1084 } 1085 } 1086 } 1087 1088 // If this is a decomposition declaration, bindings might throw. 1089 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 1090 for (auto *B : DD->bindings()) 1091 if (auto *HD = B->getHoldingVar()) 1092 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD)); 1093 1094 return CT; 1095 } 1096 1097 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1098 if (DC->isTypeDependent()) 1099 return CT_Dependent; 1100 1101 if (!DC->getTypeAsWritten()->isReferenceType()) 1102 return CT_Cannot; 1103 1104 if (DC->getSubExpr()->isTypeDependent()) 1105 return CT_Dependent; 1106 1107 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; 1108 } 1109 1110 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { 1111 if (DC->isTypeOperand()) 1112 return CT_Cannot; 1113 1114 Expr *Op = DC->getExprOperand(); 1115 if (Op->isTypeDependent()) 1116 return CT_Dependent; 1117 1118 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1119 if (!RT) 1120 return CT_Cannot; 1121 1122 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1123 return CT_Cannot; 1124 1125 if (Op->Classify(S.Context).isPRValue()) 1126 return CT_Cannot; 1127 1128 return CT_Can; 1129 } 1130 1131 CanThrowResult Sema::canThrow(const Stmt *S) { 1132 // C++ [expr.unary.noexcept]p3: 1133 // [Can throw] if in a potentially-evaluated context the expression would 1134 // contain: 1135 switch (S->getStmtClass()) { 1136 case Expr::ConstantExprClass: 1137 return canThrow(cast<ConstantExpr>(S)->getSubExpr()); 1138 1139 case Expr::CXXThrowExprClass: 1140 // - a potentially evaluated throw-expression 1141 return CT_Can; 1142 1143 case Expr::CXXDynamicCastExprClass: { 1144 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1145 // where T is a reference type, that requires a run-time check 1146 auto *CE = cast<CXXDynamicCastExpr>(S); 1147 // FIXME: Properly determine whether a variably-modified type can throw. 1148 if (CE->getType()->isVariablyModifiedType()) 1149 return CT_Can; 1150 CanThrowResult CT = canDynamicCastThrow(CE); 1151 if (CT == CT_Can) 1152 return CT; 1153 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1154 } 1155 1156 case Expr::CXXTypeidExprClass: 1157 // - a potentially evaluated typeid expression applied to a glvalue 1158 // expression whose type is a polymorphic class type 1159 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S)); 1160 1161 // - a potentially evaluated call to a function, member function, function 1162 // pointer, or member function pointer that does not have a non-throwing 1163 // exception-specification 1164 case Expr::CallExprClass: 1165 case Expr::CXXMemberCallExprClass: 1166 case Expr::CXXOperatorCallExprClass: 1167 case Expr::UserDefinedLiteralClass: { 1168 const CallExpr *CE = cast<CallExpr>(S); 1169 CanThrowResult CT; 1170 if (CE->isTypeDependent()) 1171 CT = CT_Dependent; 1172 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1173 CT = CT_Cannot; 1174 else 1175 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl()); 1176 if (CT == CT_Can) 1177 return CT; 1178 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1179 } 1180 1181 case Expr::CXXConstructExprClass: 1182 case Expr::CXXTemporaryObjectExprClass: { 1183 auto *CE = cast<CXXConstructExpr>(S); 1184 // FIXME: Properly determine whether a variably-modified type can throw. 1185 if (CE->getType()->isVariablyModifiedType()) 1186 return CT_Can; 1187 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor()); 1188 if (CT == CT_Can) 1189 return CT; 1190 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1191 } 1192 1193 case Expr::CXXInheritedCtorInitExprClass: { 1194 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S); 1195 return canCalleeThrow(*this, ICIE, ICIE->getConstructor()); 1196 } 1197 1198 case Expr::LambdaExprClass: { 1199 const LambdaExpr *Lambda = cast<LambdaExpr>(S); 1200 CanThrowResult CT = CT_Cannot; 1201 for (LambdaExpr::const_capture_init_iterator 1202 Cap = Lambda->capture_init_begin(), 1203 CapEnd = Lambda->capture_init_end(); 1204 Cap != CapEnd; ++Cap) 1205 CT = mergeCanThrow(CT, canThrow(*Cap)); 1206 return CT; 1207 } 1208 1209 case Expr::CXXNewExprClass: { 1210 auto *NE = cast<CXXNewExpr>(S); 1211 CanThrowResult CT; 1212 if (NE->isTypeDependent()) 1213 CT = CT_Dependent; 1214 else 1215 CT = canCalleeThrow(*this, NE, NE->getOperatorNew()); 1216 if (CT == CT_Can) 1217 return CT; 1218 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE)); 1219 } 1220 1221 case Expr::CXXDeleteExprClass: { 1222 auto *DE = cast<CXXDeleteExpr>(S); 1223 CanThrowResult CT; 1224 QualType DTy = DE->getDestroyedType(); 1225 if (DTy.isNull() || DTy->isDependentType()) { 1226 CT = CT_Dependent; 1227 } else { 1228 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete()); 1229 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1230 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1231 const CXXDestructorDecl *DD = RD->getDestructor(); 1232 if (DD) 1233 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD)); 1234 } 1235 if (CT == CT_Can) 1236 return CT; 1237 } 1238 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE)); 1239 } 1240 1241 case Expr::CXXBindTemporaryExprClass: { 1242 auto *BTE = cast<CXXBindTemporaryExpr>(S); 1243 // The bound temporary has to be destroyed again, which might throw. 1244 CanThrowResult CT = 1245 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor()); 1246 if (CT == CT_Can) 1247 return CT; 1248 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE)); 1249 } 1250 1251 case Expr::PseudoObjectExprClass: { 1252 auto *POE = cast<PseudoObjectExpr>(S); 1253 CanThrowResult CT = CT_Cannot; 1254 for (const Expr *E : POE->semantics()) { 1255 CT = mergeCanThrow(CT, canThrow(E)); 1256 if (CT == CT_Can) 1257 break; 1258 } 1259 return CT; 1260 } 1261 1262 // ObjC message sends are like function calls, but never have exception 1263 // specs. 1264 case Expr::ObjCMessageExprClass: 1265 case Expr::ObjCPropertyRefExprClass: 1266 case Expr::ObjCSubscriptRefExprClass: 1267 return CT_Can; 1268 1269 // All the ObjC literals that are implemented as calls are 1270 // potentially throwing unless we decide to close off that 1271 // possibility. 1272 case Expr::ObjCArrayLiteralClass: 1273 case Expr::ObjCDictionaryLiteralClass: 1274 case Expr::ObjCBoxedExprClass: 1275 return CT_Can; 1276 1277 // Many other things have subexpressions, so we have to test those. 1278 // Some are simple: 1279 case Expr::CoawaitExprClass: 1280 case Expr::ConditionalOperatorClass: 1281 case Expr::CoyieldExprClass: 1282 case Expr::CXXRewrittenBinaryOperatorClass: 1283 case Expr::CXXStdInitializerListExprClass: 1284 case Expr::DesignatedInitExprClass: 1285 case Expr::DesignatedInitUpdateExprClass: 1286 case Expr::ExprWithCleanupsClass: 1287 case Expr::ExtVectorElementExprClass: 1288 case Expr::InitListExprClass: 1289 case Expr::ArrayInitLoopExprClass: 1290 case Expr::MemberExprClass: 1291 case Expr::ObjCIsaExprClass: 1292 case Expr::ObjCIvarRefExprClass: 1293 case Expr::ParenExprClass: 1294 case Expr::ParenListExprClass: 1295 case Expr::ShuffleVectorExprClass: 1296 case Expr::StmtExprClass: 1297 case Expr::ConvertVectorExprClass: 1298 case Expr::VAArgExprClass: 1299 case Expr::CXXParenListInitExprClass: 1300 return canSubStmtsThrow(*this, S); 1301 1302 case Expr::CompoundLiteralExprClass: 1303 case Expr::CXXConstCastExprClass: 1304 case Expr::CXXAddrspaceCastExprClass: 1305 case Expr::CXXReinterpretCastExprClass: 1306 case Expr::BuiltinBitCastExprClass: 1307 // FIXME: Properly determine whether a variably-modified type can throw. 1308 if (cast<Expr>(S)->getType()->isVariablyModifiedType()) 1309 return CT_Can; 1310 return canSubStmtsThrow(*this, S); 1311 1312 // Some might be dependent for other reasons. 1313 case Expr::ArraySubscriptExprClass: 1314 case Expr::MatrixSubscriptExprClass: 1315 case Expr::OMPArraySectionExprClass: 1316 case Expr::OMPArrayShapingExprClass: 1317 case Expr::OMPIteratorExprClass: 1318 case Expr::BinaryOperatorClass: 1319 case Expr::DependentCoawaitExprClass: 1320 case Expr::CompoundAssignOperatorClass: 1321 case Expr::CStyleCastExprClass: 1322 case Expr::CXXStaticCastExprClass: 1323 case Expr::CXXFunctionalCastExprClass: 1324 case Expr::ImplicitCastExprClass: 1325 case Expr::MaterializeTemporaryExprClass: 1326 case Expr::UnaryOperatorClass: { 1327 // FIXME: Properly determine whether a variably-modified type can throw. 1328 if (auto *CE = dyn_cast<CastExpr>(S)) 1329 if (CE->getType()->isVariablyModifiedType()) 1330 return CT_Can; 1331 CanThrowResult CT = 1332 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot; 1333 return mergeCanThrow(CT, canSubStmtsThrow(*this, S)); 1334 } 1335 1336 case Expr::CXXDefaultArgExprClass: 1337 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr()); 1338 1339 case Expr::CXXDefaultInitExprClass: 1340 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr()); 1341 1342 case Expr::ChooseExprClass: { 1343 auto *CE = cast<ChooseExpr>(S); 1344 if (CE->isTypeDependent() || CE->isValueDependent()) 1345 return CT_Dependent; 1346 return canThrow(CE->getChosenSubExpr()); 1347 } 1348 1349 case Expr::GenericSelectionExprClass: 1350 if (cast<GenericSelectionExpr>(S)->isResultDependent()) 1351 return CT_Dependent; 1352 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr()); 1353 1354 // Some expressions are always dependent. 1355 case Expr::CXXDependentScopeMemberExprClass: 1356 case Expr::CXXUnresolvedConstructExprClass: 1357 case Expr::DependentScopeDeclRefExprClass: 1358 case Expr::CXXFoldExprClass: 1359 case Expr::RecoveryExprClass: 1360 return CT_Dependent; 1361 1362 case Expr::AsTypeExprClass: 1363 case Expr::BinaryConditionalOperatorClass: 1364 case Expr::BlockExprClass: 1365 case Expr::CUDAKernelCallExprClass: 1366 case Expr::DeclRefExprClass: 1367 case Expr::ObjCBridgedCastExprClass: 1368 case Expr::ObjCIndirectCopyRestoreExprClass: 1369 case Expr::ObjCProtocolExprClass: 1370 case Expr::ObjCSelectorExprClass: 1371 case Expr::ObjCAvailabilityCheckExprClass: 1372 case Expr::OffsetOfExprClass: 1373 case Expr::PackExpansionExprClass: 1374 case Expr::SubstNonTypeTemplateParmExprClass: 1375 case Expr::SubstNonTypeTemplateParmPackExprClass: 1376 case Expr::FunctionParmPackExprClass: 1377 case Expr::UnaryExprOrTypeTraitExprClass: 1378 case Expr::UnresolvedLookupExprClass: 1379 case Expr::UnresolvedMemberExprClass: 1380 case Expr::TypoExprClass: 1381 // FIXME: Many of the above can throw. 1382 return CT_Cannot; 1383 1384 case Expr::AddrLabelExprClass: 1385 case Expr::ArrayTypeTraitExprClass: 1386 case Expr::AtomicExprClass: 1387 case Expr::TypeTraitExprClass: 1388 case Expr::CXXBoolLiteralExprClass: 1389 case Expr::CXXNoexceptExprClass: 1390 case Expr::CXXNullPtrLiteralExprClass: 1391 case Expr::CXXPseudoDestructorExprClass: 1392 case Expr::CXXScalarValueInitExprClass: 1393 case Expr::CXXThisExprClass: 1394 case Expr::CXXUuidofExprClass: 1395 case Expr::CharacterLiteralClass: 1396 case Expr::ExpressionTraitExprClass: 1397 case Expr::FloatingLiteralClass: 1398 case Expr::GNUNullExprClass: 1399 case Expr::ImaginaryLiteralClass: 1400 case Expr::ImplicitValueInitExprClass: 1401 case Expr::IntegerLiteralClass: 1402 case Expr::FixedPointLiteralClass: 1403 case Expr::ArrayInitIndexExprClass: 1404 case Expr::NoInitExprClass: 1405 case Expr::ObjCEncodeExprClass: 1406 case Expr::ObjCStringLiteralClass: 1407 case Expr::ObjCBoolLiteralExprClass: 1408 case Expr::OpaqueValueExprClass: 1409 case Expr::PredefinedExprClass: 1410 case Expr::SizeOfPackExprClass: 1411 case Expr::StringLiteralClass: 1412 case Expr::SourceLocExprClass: 1413 case Expr::ConceptSpecializationExprClass: 1414 case Expr::RequiresExprClass: 1415 // These expressions can never throw. 1416 return CT_Cannot; 1417 1418 case Expr::MSPropertyRefExprClass: 1419 case Expr::MSPropertySubscriptExprClass: 1420 llvm_unreachable("Invalid class for expression"); 1421 1422 // Most statements can throw if any substatement can throw. 1423 case Stmt::AttributedStmtClass: 1424 case Stmt::BreakStmtClass: 1425 case Stmt::CapturedStmtClass: 1426 case Stmt::CaseStmtClass: 1427 case Stmt::CompoundStmtClass: 1428 case Stmt::ContinueStmtClass: 1429 case Stmt::CoreturnStmtClass: 1430 case Stmt::CoroutineBodyStmtClass: 1431 case Stmt::CXXCatchStmtClass: 1432 case Stmt::CXXForRangeStmtClass: 1433 case Stmt::DefaultStmtClass: 1434 case Stmt::DoStmtClass: 1435 case Stmt::ForStmtClass: 1436 case Stmt::GCCAsmStmtClass: 1437 case Stmt::GotoStmtClass: 1438 case Stmt::IndirectGotoStmtClass: 1439 case Stmt::LabelStmtClass: 1440 case Stmt::MSAsmStmtClass: 1441 case Stmt::MSDependentExistsStmtClass: 1442 case Stmt::NullStmtClass: 1443 case Stmt::ObjCAtCatchStmtClass: 1444 case Stmt::ObjCAtFinallyStmtClass: 1445 case Stmt::ObjCAtSynchronizedStmtClass: 1446 case Stmt::ObjCAutoreleasePoolStmtClass: 1447 case Stmt::ObjCForCollectionStmtClass: 1448 case Stmt::OMPAtomicDirectiveClass: 1449 case Stmt::OMPBarrierDirectiveClass: 1450 case Stmt::OMPCancelDirectiveClass: 1451 case Stmt::OMPCancellationPointDirectiveClass: 1452 case Stmt::OMPCriticalDirectiveClass: 1453 case Stmt::OMPDistributeDirectiveClass: 1454 case Stmt::OMPDistributeParallelForDirectiveClass: 1455 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 1456 case Stmt::OMPDistributeSimdDirectiveClass: 1457 case Stmt::OMPFlushDirectiveClass: 1458 case Stmt::OMPDepobjDirectiveClass: 1459 case Stmt::OMPScanDirectiveClass: 1460 case Stmt::OMPForDirectiveClass: 1461 case Stmt::OMPForSimdDirectiveClass: 1462 case Stmt::OMPMasterDirectiveClass: 1463 case Stmt::OMPMasterTaskLoopDirectiveClass: 1464 case Stmt::OMPMaskedTaskLoopDirectiveClass: 1465 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 1466 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass: 1467 case Stmt::OMPOrderedDirectiveClass: 1468 case Stmt::OMPCanonicalLoopClass: 1469 case Stmt::OMPParallelDirectiveClass: 1470 case Stmt::OMPParallelForDirectiveClass: 1471 case Stmt::OMPParallelForSimdDirectiveClass: 1472 case Stmt::OMPParallelMasterDirectiveClass: 1473 case Stmt::OMPParallelMaskedDirectiveClass: 1474 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 1475 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass: 1476 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 1477 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass: 1478 case Stmt::OMPParallelSectionsDirectiveClass: 1479 case Stmt::OMPSectionDirectiveClass: 1480 case Stmt::OMPSectionsDirectiveClass: 1481 case Stmt::OMPSimdDirectiveClass: 1482 case Stmt::OMPTileDirectiveClass: 1483 case Stmt::OMPUnrollDirectiveClass: 1484 case Stmt::OMPSingleDirectiveClass: 1485 case Stmt::OMPTargetDataDirectiveClass: 1486 case Stmt::OMPTargetDirectiveClass: 1487 case Stmt::OMPTargetEnterDataDirectiveClass: 1488 case Stmt::OMPTargetExitDataDirectiveClass: 1489 case Stmt::OMPTargetParallelDirectiveClass: 1490 case Stmt::OMPTargetParallelForDirectiveClass: 1491 case Stmt::OMPTargetParallelForSimdDirectiveClass: 1492 case Stmt::OMPTargetSimdDirectiveClass: 1493 case Stmt::OMPTargetTeamsDirectiveClass: 1494 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 1495 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 1496 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 1497 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 1498 case Stmt::OMPTargetUpdateDirectiveClass: 1499 case Stmt::OMPTaskDirectiveClass: 1500 case Stmt::OMPTaskgroupDirectiveClass: 1501 case Stmt::OMPTaskLoopDirectiveClass: 1502 case Stmt::OMPTaskLoopSimdDirectiveClass: 1503 case Stmt::OMPTaskwaitDirectiveClass: 1504 case Stmt::OMPTaskyieldDirectiveClass: 1505 case Stmt::OMPErrorDirectiveClass: 1506 case Stmt::OMPTeamsDirectiveClass: 1507 case Stmt::OMPTeamsDistributeDirectiveClass: 1508 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 1509 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 1510 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 1511 case Stmt::OMPInteropDirectiveClass: 1512 case Stmt::OMPDispatchDirectiveClass: 1513 case Stmt::OMPMaskedDirectiveClass: 1514 case Stmt::OMPMetaDirectiveClass: 1515 case Stmt::OMPGenericLoopDirectiveClass: 1516 case Stmt::OMPTeamsGenericLoopDirectiveClass: 1517 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: 1518 case Stmt::OMPParallelGenericLoopDirectiveClass: 1519 case Stmt::OMPTargetParallelGenericLoopDirectiveClass: 1520 case Stmt::ReturnStmtClass: 1521 case Stmt::SEHExceptStmtClass: 1522 case Stmt::SEHFinallyStmtClass: 1523 case Stmt::SEHLeaveStmtClass: 1524 case Stmt::SEHTryStmtClass: 1525 case Stmt::SwitchStmtClass: 1526 case Stmt::WhileStmtClass: 1527 return canSubStmtsThrow(*this, S); 1528 1529 case Stmt::DeclStmtClass: { 1530 CanThrowResult CT = CT_Cannot; 1531 for (const Decl *D : cast<DeclStmt>(S)->decls()) { 1532 if (auto *VD = dyn_cast<VarDecl>(D)) 1533 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD)); 1534 1535 // FIXME: Properly determine whether a variably-modified type can throw. 1536 if (auto *TND = dyn_cast<TypedefNameDecl>(D)) 1537 if (TND->getUnderlyingType()->isVariablyModifiedType()) 1538 return CT_Can; 1539 if (auto *VD = dyn_cast<ValueDecl>(D)) 1540 if (VD->getType()->isVariablyModifiedType()) 1541 return CT_Can; 1542 } 1543 return CT; 1544 } 1545 1546 case Stmt::IfStmtClass: { 1547 auto *IS = cast<IfStmt>(S); 1548 CanThrowResult CT = CT_Cannot; 1549 if (const Stmt *Init = IS->getInit()) 1550 CT = mergeCanThrow(CT, canThrow(Init)); 1551 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt()) 1552 CT = mergeCanThrow(CT, canThrow(CondDS)); 1553 CT = mergeCanThrow(CT, canThrow(IS->getCond())); 1554 1555 // For 'if constexpr', consider only the non-discarded case. 1556 // FIXME: We should add a DiscardedStmt marker to the AST. 1557 if (std::optional<const Stmt *> Case = IS->getNondiscardedCase(Context)) 1558 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT; 1559 1560 CanThrowResult Then = canThrow(IS->getThen()); 1561 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot; 1562 if (Then == Else) 1563 return mergeCanThrow(CT, Then); 1564 1565 // For a dependent 'if constexpr', the result is dependent if it depends on 1566 // the value of the condition. 1567 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent 1568 : mergeCanThrow(Then, Else)); 1569 } 1570 1571 case Stmt::CXXTryStmtClass: { 1572 auto *TS = cast<CXXTryStmt>(S); 1573 // try /*...*/ catch (...) { H } can throw only if H can throw. 1574 // Any other try-catch can throw if any substatement can throw. 1575 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1); 1576 if (!FinalHandler->getExceptionDecl()) 1577 return canThrow(FinalHandler->getHandlerBlock()); 1578 return canSubStmtsThrow(*this, S); 1579 } 1580 1581 case Stmt::ObjCAtThrowStmtClass: 1582 return CT_Can; 1583 1584 case Stmt::ObjCAtTryStmtClass: { 1585 auto *TS = cast<ObjCAtTryStmt>(S); 1586 1587 // @catch(...) need not be last in Objective-C. Walk backwards until we 1588 // see one or hit the @try. 1589 CanThrowResult CT = CT_Cannot; 1590 if (const Stmt *Finally = TS->getFinallyStmt()) 1591 CT = mergeCanThrow(CT, canThrow(Finally)); 1592 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) { 1593 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1); 1594 CT = mergeCanThrow(CT, canThrow(Catch)); 1595 // If we reach a @catch(...), no earlier exceptions can escape. 1596 if (Catch->hasEllipsis()) 1597 return CT; 1598 } 1599 1600 // Didn't find an @catch(...). Exceptions from the @try body can escape. 1601 return mergeCanThrow(CT, canThrow(TS->getTryBody())); 1602 } 1603 1604 case Stmt::SYCLUniqueStableNameExprClass: 1605 return CT_Cannot; 1606 case Stmt::NoStmtClass: 1607 llvm_unreachable("Invalid class for statement"); 1608 } 1609 llvm_unreachable("Bogus StmtClass"); 1610 } 1611 1612 } // end namespace clang 1613