1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for Objective C declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/RecursiveASTVisitor.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Sema/DeclSpec.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/Scope.h" 26 #include "clang/Sema/ScopeInfo.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 31 using namespace clang; 32 33 /// Check whether the given method, which must be in the 'init' 34 /// family, is a valid member of that family. 35 /// 36 /// \param receiverTypeIfCall - if null, check this as if declaring it; 37 /// if non-null, check this as if making a call to it with the given 38 /// receiver type 39 /// 40 /// \return true to indicate that there was an error and appropriate 41 /// actions were taken 42 bool Sema::checkInitMethod(ObjCMethodDecl *method, 43 QualType receiverTypeIfCall) { 44 if (method->isInvalidDecl()) return true; 45 46 // This castAs is safe: methods that don't return an object 47 // pointer won't be inferred as inits and will reject an explicit 48 // objc_method_family(init). 49 50 // We ignore protocols here. Should we? What about Class? 51 52 const ObjCObjectType *result = 53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); 54 55 if (result->isObjCId()) { 56 return false; 57 } else if (result->isObjCClass()) { 58 // fall through: always an error 59 } else { 60 ObjCInterfaceDecl *resultClass = result->getInterface(); 61 assert(resultClass && "unexpected object type!"); 62 63 // It's okay for the result type to still be a forward declaration 64 // if we're checking an interface declaration. 65 if (!resultClass->hasDefinition()) { 66 if (receiverTypeIfCall.isNull() && 67 !isa<ObjCImplementationDecl>(method->getDeclContext())) 68 return false; 69 70 // Otherwise, we try to compare class types. 71 } else { 72 // If this method was declared in a protocol, we can't check 73 // anything unless we have a receiver type that's an interface. 74 const ObjCInterfaceDecl *receiverClass = nullptr; 75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 76 if (receiverTypeIfCall.isNull()) 77 return false; 78 79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 80 ->getInterfaceDecl(); 81 82 // This can be null for calls to e.g. id<Foo>. 83 if (!receiverClass) return false; 84 } else { 85 receiverClass = method->getClassInterface(); 86 assert(receiverClass && "method not associated with a class!"); 87 } 88 89 // If either class is a subclass of the other, it's fine. 90 if (receiverClass->isSuperClassOf(resultClass) || 91 resultClass->isSuperClassOf(receiverClass)) 92 return false; 93 } 94 } 95 96 SourceLocation loc = method->getLocation(); 97 98 // If we're in a system header, and this is not a call, just make 99 // the method unusable. 100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "", 102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc)); 103 return true; 104 } 105 106 // Otherwise, it's an error. 107 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 108 method->setInvalidDecl(); 109 return true; 110 } 111 112 /// Issue a warning if the parameter of the overridden method is non-escaping 113 /// but the parameter of the overriding method is not. 114 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, 115 Sema &S) { 116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { 117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape); 118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape); 119 return false; 120 } 121 122 return true; 123 } 124 125 /// Produce additional diagnostics if a category conforms to a protocol that 126 /// defines a method taking a non-escaping parameter. 127 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, 128 const ObjCCategoryDecl *CD, 129 const ObjCProtocolDecl *PD, Sema &S) { 130 if (!diagnoseNoescape(NewD, OldD, S)) 131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot) 132 << CD->IsClassExtension() << PD 133 << cast<ObjCMethodDecl>(NewD->getDeclContext()); 134 } 135 136 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 137 const ObjCMethodDecl *Overridden) { 138 if (Overridden->hasRelatedResultType() && 139 !NewMethod->hasRelatedResultType()) { 140 // This can only happen when the method follows a naming convention that 141 // implies a related result type, and the original (overridden) method has 142 // a suitable return type, but the new (overriding) method does not have 143 // a suitable return type. 144 QualType ResultType = NewMethod->getReturnType(); 145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); 146 147 // Figure out which class this method is part of, if any. 148 ObjCInterfaceDecl *CurrentClass 149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 150 if (!CurrentClass) { 151 DeclContext *DC = NewMethod->getDeclContext(); 152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 153 CurrentClass = Cat->getClassInterface(); 154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 155 CurrentClass = Impl->getClassInterface(); 156 else if (ObjCCategoryImplDecl *CatImpl 157 = dyn_cast<ObjCCategoryImplDecl>(DC)) 158 CurrentClass = CatImpl->getClassInterface(); 159 } 160 161 if (CurrentClass) { 162 Diag(NewMethod->getLocation(), 163 diag::warn_related_result_type_compatibility_class) 164 << Context.getObjCInterfaceType(CurrentClass) 165 << ResultType 166 << ResultTypeRange; 167 } else { 168 Diag(NewMethod->getLocation(), 169 diag::warn_related_result_type_compatibility_protocol) 170 << ResultType 171 << ResultTypeRange; 172 } 173 174 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 175 Diag(Overridden->getLocation(), 176 diag::note_related_result_type_family) 177 << /*overridden method*/ 0 178 << Family; 179 else 180 Diag(Overridden->getLocation(), 181 diag::note_related_result_type_overridden); 182 } 183 184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 185 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 186 Diag(NewMethod->getLocation(), 187 getLangOpts().ObjCAutoRefCount 188 ? diag::err_nsreturns_retained_attribute_mismatch 189 : diag::warn_nsreturns_retained_attribute_mismatch) 190 << 1; 191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; 192 } 193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 195 Diag(NewMethod->getLocation(), 196 getLangOpts().ObjCAutoRefCount 197 ? diag::err_nsreturns_retained_attribute_mismatch 198 : diag::warn_nsreturns_retained_attribute_mismatch) 199 << 0; 200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; 201 } 202 203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 204 oe = Overridden->param_end(); 205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), 206 ne = NewMethod->param_end(); 207 ni != ne && oi != oe; ++ni, ++oi) { 208 const ParmVarDecl *oldDecl = (*oi); 209 ParmVarDecl *newDecl = (*ni); 210 if (newDecl->hasAttr<NSConsumedAttr>() != 211 oldDecl->hasAttr<NSConsumedAttr>()) { 212 Diag(newDecl->getLocation(), 213 getLangOpts().ObjCAutoRefCount 214 ? diag::err_nsconsumed_attribute_mismatch 215 : diag::warn_nsconsumed_attribute_mismatch); 216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter"; 217 } 218 219 diagnoseNoescape(newDecl, oldDecl, *this); 220 } 221 } 222 223 /// Check a method declaration for compatibility with the Objective-C 224 /// ARC conventions. 225 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { 226 ObjCMethodFamily family = method->getMethodFamily(); 227 switch (family) { 228 case OMF_None: 229 case OMF_finalize: 230 case OMF_retain: 231 case OMF_release: 232 case OMF_autorelease: 233 case OMF_retainCount: 234 case OMF_self: 235 case OMF_initialize: 236 case OMF_performSelector: 237 return false; 238 239 case OMF_dealloc: 240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { 241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); 242 if (ResultTypeRange.isInvalid()) 243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type) 244 << method->getReturnType() 245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 246 else 247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type) 248 << method->getReturnType() 249 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 250 return true; 251 } 252 return false; 253 254 case OMF_init: 255 // If the method doesn't obey the init rules, don't bother annotating it. 256 if (checkInitMethod(method, QualType())) 257 return true; 258 259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); 260 261 // Don't add a second copy of this attribute, but otherwise don't 262 // let it be suppressed. 263 if (method->hasAttr<NSReturnsRetainedAttr>()) 264 return false; 265 break; 266 267 case OMF_alloc: 268 case OMF_copy: 269 case OMF_mutableCopy: 270 case OMF_new: 271 if (method->hasAttr<NSReturnsRetainedAttr>() || 272 method->hasAttr<NSReturnsNotRetainedAttr>() || 273 method->hasAttr<NSReturnsAutoreleasedAttr>()) 274 return false; 275 break; 276 } 277 278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); 279 return false; 280 } 281 282 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, 283 SourceLocation ImplLoc) { 284 if (!ND) 285 return; 286 bool IsCategory = false; 287 StringRef RealizedPlatform; 288 AvailabilityResult Availability = ND->getAvailability( 289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), 290 &RealizedPlatform); 291 if (Availability != AR_Deprecated) { 292 if (isa<ObjCMethodDecl>(ND)) { 293 if (Availability != AR_Unavailable) 294 return; 295 if (RealizedPlatform.empty()) 296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); 297 // Warn about implementing unavailable methods, unless the unavailable 298 // is for an app extension. 299 if (RealizedPlatform.endswith("_app_extension")) 300 return; 301 S.Diag(ImplLoc, diag::warn_unavailable_def); 302 S.Diag(ND->getLocation(), diag::note_method_declared_at) 303 << ND->getDeclName(); 304 return; 305 } 306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) { 307 if (!CD->getClassInterface()->isDeprecated()) 308 return; 309 ND = CD->getClassInterface(); 310 IsCategory = true; 311 } else 312 return; 313 } 314 S.Diag(ImplLoc, diag::warn_deprecated_def) 315 << (isa<ObjCMethodDecl>(ND) 316 ? /*Method*/ 0 317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2 318 : /*Class*/ 1); 319 if (isa<ObjCMethodDecl>(ND)) 320 S.Diag(ND->getLocation(), diag::note_method_declared_at) 321 << ND->getDeclName(); 322 else 323 S.Diag(ND->getLocation(), diag::note_previous_decl) 324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class"); 325 } 326 327 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 328 /// pool. 329 void Sema::AddAnyMethodToGlobalPool(Decl *D) { 330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 331 332 // If we don't have a valid method decl, simply return. 333 if (!MDecl) 334 return; 335 if (MDecl->isInstanceMethod()) 336 AddInstanceMethodToGlobalPool(MDecl, true); 337 else 338 AddFactoryMethodToGlobalPool(MDecl, true); 339 } 340 341 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer 342 /// has explicit ownership attribute; false otherwise. 343 static bool 344 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { 345 QualType T = Param->getType(); 346 347 if (const PointerType *PT = T->getAs<PointerType>()) { 348 T = PT->getPointeeType(); 349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 350 T = RT->getPointeeType(); 351 } else { 352 return true; 353 } 354 355 // If we have a lifetime qualifier, but it's local, we must have 356 // inferred it. So, it is implicit. 357 return !T.getLocalQualifiers().hasObjCLifetime(); 358 } 359 360 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 361 /// and user declared, in the method definition's AST. 362 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 363 ImplicitlyRetainedSelfLocs.clear(); 364 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused"); 365 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 366 367 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 368 369 // If we don't have a valid method decl, simply return. 370 if (!MDecl) 371 return; 372 373 QualType ResultType = MDecl->getReturnType(); 374 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 375 !MDecl->isInvalidDecl() && 376 RequireCompleteType(MDecl->getLocation(), ResultType, 377 diag::err_func_def_incomplete_result)) 378 MDecl->setInvalidDecl(); 379 380 // Allow all of Sema to see that we are entering a method definition. 381 PushDeclContext(FnBodyScope, MDecl); 382 PushFunctionScope(); 383 384 // Create Decl objects for each parameter, entrring them in the scope for 385 // binding to their use. 386 387 // Insert the invisible arguments, self and _cmd! 388 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 389 390 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 391 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 392 393 // The ObjC parser requires parameter names so there's no need to check. 394 CheckParmsForFunctionDef(MDecl->parameters(), 395 /*CheckParameterNames=*/false); 396 397 // Introduce all of the other parameters into this scope. 398 for (auto *Param : MDecl->parameters()) { 399 if (!Param->isInvalidDecl() && 400 getLangOpts().ObjCAutoRefCount && 401 !HasExplicitOwnershipAttr(*this, Param)) 402 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << 403 Param->getType(); 404 405 if (Param->getIdentifier()) 406 PushOnScopeChains(Param, FnBodyScope); 407 } 408 409 // In ARC, disallow definition of retain/release/autorelease/retainCount 410 if (getLangOpts().ObjCAutoRefCount) { 411 switch (MDecl->getMethodFamily()) { 412 case OMF_retain: 413 case OMF_retainCount: 414 case OMF_release: 415 case OMF_autorelease: 416 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 417 << 0 << MDecl->getSelector(); 418 break; 419 420 case OMF_None: 421 case OMF_dealloc: 422 case OMF_finalize: 423 case OMF_alloc: 424 case OMF_init: 425 case OMF_mutableCopy: 426 case OMF_copy: 427 case OMF_new: 428 case OMF_self: 429 case OMF_initialize: 430 case OMF_performSelector: 431 break; 432 } 433 } 434 435 // Warn on deprecated methods under -Wdeprecated-implementations, 436 // and prepare for warning on missing super calls. 437 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 438 ObjCMethodDecl *IMD = 439 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); 440 441 if (IMD) { 442 ObjCImplDecl *ImplDeclOfMethodDef = 443 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); 444 ObjCContainerDecl *ContDeclOfMethodDecl = 445 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); 446 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; 447 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) 448 ImplDeclOfMethodDecl = OID->getImplementation(); 449 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) { 450 if (CD->IsClassExtension()) { 451 if (ObjCInterfaceDecl *OID = CD->getClassInterface()) 452 ImplDeclOfMethodDecl = OID->getImplementation(); 453 } else 454 ImplDeclOfMethodDecl = CD->getImplementation(); 455 } 456 // No need to issue deprecated warning if deprecated mehod in class/category 457 // is being implemented in its own implementation (no overriding is involved). 458 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) 459 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation()); 460 } 461 462 if (MDecl->getMethodFamily() == OMF_init) { 463 if (MDecl->isDesignatedInitializerForTheInterface()) { 464 getCurFunction()->ObjCIsDesignatedInit = true; 465 getCurFunction()->ObjCWarnForNoDesignatedInitChain = 466 IC->getSuperClass() != nullptr; 467 } else if (IC->hasDesignatedInitializers()) { 468 getCurFunction()->ObjCIsSecondaryInit = true; 469 getCurFunction()->ObjCWarnForNoInitDelegation = true; 470 } 471 } 472 473 // If this is "dealloc" or "finalize", set some bit here. 474 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 475 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 476 // Only do this if the current class actually has a superclass. 477 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { 478 ObjCMethodFamily Family = MDecl->getMethodFamily(); 479 if (Family == OMF_dealloc) { 480 if (!(getLangOpts().ObjCAutoRefCount || 481 getLangOpts().getGC() == LangOptions::GCOnly)) 482 getCurFunction()->ObjCShouldCallSuper = true; 483 484 } else if (Family == OMF_finalize) { 485 if (Context.getLangOpts().getGC() != LangOptions::NonGC) 486 getCurFunction()->ObjCShouldCallSuper = true; 487 488 } else { 489 const ObjCMethodDecl *SuperMethod = 490 SuperClass->lookupMethod(MDecl->getSelector(), 491 MDecl->isInstanceMethod()); 492 getCurFunction()->ObjCShouldCallSuper = 493 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); 494 } 495 } 496 } 497 } 498 499 namespace { 500 501 // Callback to only accept typo corrections that are Objective-C classes. 502 // If an ObjCInterfaceDecl* is given to the constructor, then the validation 503 // function will reject corrections to that class. 504 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { 505 public: 506 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} 507 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 508 : CurrentIDecl(IDecl) {} 509 510 bool ValidateCandidate(const TypoCorrection &candidate) override { 511 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 512 return ID && !declaresSameEntity(ID, CurrentIDecl); 513 } 514 515 std::unique_ptr<CorrectionCandidateCallback> clone() override { 516 return std::make_unique<ObjCInterfaceValidatorCCC>(*this); 517 } 518 519 private: 520 ObjCInterfaceDecl *CurrentIDecl; 521 }; 522 523 } // end anonymous namespace 524 525 static void diagnoseUseOfProtocols(Sema &TheSema, 526 ObjCContainerDecl *CD, 527 ObjCProtocolDecl *const *ProtoRefs, 528 unsigned NumProtoRefs, 529 const SourceLocation *ProtoLocs) { 530 assert(ProtoRefs); 531 // Diagnose availability in the context of the ObjC container. 532 Sema::ContextRAII SavedContext(TheSema, CD); 533 for (unsigned i = 0; i < NumProtoRefs; ++i) { 534 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i], 535 /*UnknownObjCClass=*/nullptr, 536 /*ObjCPropertyAccess=*/false, 537 /*AvoidPartialAvailabilityChecks=*/true); 538 } 539 } 540 541 void Sema:: 542 ActOnSuperClassOfClassInterface(Scope *S, 543 SourceLocation AtInterfaceLoc, 544 ObjCInterfaceDecl *IDecl, 545 IdentifierInfo *ClassName, 546 SourceLocation ClassLoc, 547 IdentifierInfo *SuperName, 548 SourceLocation SuperLoc, 549 ArrayRef<ParsedType> SuperTypeArgs, 550 SourceRange SuperTypeArgsRange) { 551 // Check if a different kind of symbol declared in this scope. 552 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 553 LookupOrdinaryName); 554 555 if (!PrevDecl) { 556 // Try to correct for a typo in the superclass name without correcting 557 // to the class we're defining. 558 ObjCInterfaceValidatorCCC CCC(IDecl); 559 if (TypoCorrection Corrected = CorrectTypo( 560 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, 561 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 562 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) 563 << SuperName << ClassName); 564 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 565 } 566 } 567 568 if (declaresSameEntity(PrevDecl, IDecl)) { 569 Diag(SuperLoc, diag::err_recursive_superclass) 570 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 571 IDecl->setEndOfDefinitionLoc(ClassLoc); 572 } else { 573 ObjCInterfaceDecl *SuperClassDecl = 574 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 575 QualType SuperClassType; 576 577 // Diagnose classes that inherit from deprecated classes. 578 if (SuperClassDecl) { 579 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 580 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl); 581 } 582 583 if (PrevDecl && !SuperClassDecl) { 584 // The previous declaration was not a class decl. Check if we have a 585 // typedef. If we do, get the underlying class type. 586 if (const TypedefNameDecl *TDecl = 587 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 588 QualType T = TDecl->getUnderlyingType(); 589 if (T->isObjCObjectType()) { 590 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { 591 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 592 SuperClassType = Context.getTypeDeclType(TDecl); 593 594 // This handles the following case: 595 // @interface NewI @end 596 // typedef NewI DeprI __attribute__((deprecated("blah"))) 597 // @interface SI : DeprI /* warn here */ @end 598 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); 599 } 600 } 601 } 602 603 // This handles the following case: 604 // 605 // typedef int SuperClass; 606 // @interface MyClass : SuperClass {} @end 607 // 608 if (!SuperClassDecl) { 609 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 610 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 611 } 612 } 613 614 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 615 if (!SuperClassDecl) 616 Diag(SuperLoc, diag::err_undef_superclass) 617 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 618 else if (RequireCompleteType(SuperLoc, 619 SuperClassType, 620 diag::err_forward_superclass, 621 SuperClassDecl->getDeclName(), 622 ClassName, 623 SourceRange(AtInterfaceLoc, ClassLoc))) { 624 SuperClassDecl = nullptr; 625 SuperClassType = QualType(); 626 } 627 } 628 629 if (SuperClassType.isNull()) { 630 assert(!SuperClassDecl && "Failed to set SuperClassType?"); 631 return; 632 } 633 634 // Handle type arguments on the superclass. 635 TypeSourceInfo *SuperClassTInfo = nullptr; 636 if (!SuperTypeArgs.empty()) { 637 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( 638 S, 639 SuperLoc, 640 CreateParsedType(SuperClassType, 641 nullptr), 642 SuperTypeArgsRange.getBegin(), 643 SuperTypeArgs, 644 SuperTypeArgsRange.getEnd(), 645 SourceLocation(), 646 { }, 647 { }, 648 SourceLocation()); 649 if (!fullSuperClassType.isUsable()) 650 return; 651 652 SuperClassType = GetTypeFromParser(fullSuperClassType.get(), 653 &SuperClassTInfo); 654 } 655 656 if (!SuperClassTInfo) { 657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType, 658 SuperLoc); 659 } 660 661 IDecl->setSuperClass(SuperClassTInfo); 662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); 663 } 664 } 665 666 DeclResult Sema::actOnObjCTypeParam(Scope *S, 667 ObjCTypeParamVariance variance, 668 SourceLocation varianceLoc, 669 unsigned index, 670 IdentifierInfo *paramName, 671 SourceLocation paramLoc, 672 SourceLocation colonLoc, 673 ParsedType parsedTypeBound) { 674 // If there was an explicitly-provided type bound, check it. 675 TypeSourceInfo *typeBoundInfo = nullptr; 676 if (parsedTypeBound) { 677 // The type bound can be any Objective-C pointer type. 678 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo); 679 if (typeBound->isObjCObjectPointerType()) { 680 // okay 681 } else if (typeBound->isObjCObjectType()) { 682 // The user forgot the * on an Objective-C pointer type, e.g., 683 // "T : NSView". 684 SourceLocation starLoc = getLocForEndOfToken( 685 typeBoundInfo->getTypeLoc().getEndLoc()); 686 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), 687 diag::err_objc_type_param_bound_missing_pointer) 688 << typeBound << paramName 689 << FixItHint::CreateInsertion(starLoc, " *"); 690 691 // Create a new type location builder so we can update the type 692 // location information we have. 693 TypeLocBuilder builder; 694 builder.pushFullCopy(typeBoundInfo->getTypeLoc()); 695 696 // Create the Objective-C pointer type. 697 typeBound = Context.getObjCObjectPointerType(typeBound); 698 ObjCObjectPointerTypeLoc newT 699 = builder.push<ObjCObjectPointerTypeLoc>(typeBound); 700 newT.setStarLoc(starLoc); 701 702 // Form the new type source information. 703 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound); 704 } else { 705 // Not a valid type bound. 706 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), 707 diag::err_objc_type_param_bound_nonobject) 708 << typeBound << paramName; 709 710 // Forget the bound; we'll default to id later. 711 typeBoundInfo = nullptr; 712 } 713 714 // Type bounds cannot have qualifiers (even indirectly) or explicit 715 // nullability. 716 if (typeBoundInfo) { 717 QualType typeBound = typeBoundInfo->getType(); 718 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); 719 if (qual || typeBound.hasQualifiers()) { 720 bool diagnosed = false; 721 SourceRange rangeToRemove; 722 if (qual) { 723 if (auto attr = qual.getAs<AttributedTypeLoc>()) { 724 rangeToRemove = attr.getLocalSourceRange(); 725 if (attr.getTypePtr()->getImmediateNullability()) { 726 Diag(attr.getBeginLoc(), 727 diag::err_objc_type_param_bound_explicit_nullability) 728 << paramName << typeBound 729 << FixItHint::CreateRemoval(rangeToRemove); 730 diagnosed = true; 731 } 732 } 733 } 734 735 if (!diagnosed) { 736 Diag(qual ? qual.getBeginLoc() 737 : typeBoundInfo->getTypeLoc().getBeginLoc(), 738 diag::err_objc_type_param_bound_qualified) 739 << paramName << typeBound 740 << typeBound.getQualifiers().getAsString() 741 << FixItHint::CreateRemoval(rangeToRemove); 742 } 743 744 // If the type bound has qualifiers other than CVR, we need to strip 745 // them or we'll probably assert later when trying to apply new 746 // qualifiers. 747 Qualifiers quals = typeBound.getQualifiers(); 748 quals.removeCVRQualifiers(); 749 if (!quals.empty()) { 750 typeBoundInfo = 751 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType()); 752 } 753 } 754 } 755 } 756 757 // If there was no explicit type bound (or we removed it due to an error), 758 // use 'id' instead. 759 if (!typeBoundInfo) { 760 colonLoc = SourceLocation(); 761 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType()); 762 } 763 764 // Create the type parameter. 765 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc, 766 index, paramLoc, paramName, colonLoc, 767 typeBoundInfo); 768 } 769 770 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S, 771 SourceLocation lAngleLoc, 772 ArrayRef<Decl *> typeParamsIn, 773 SourceLocation rAngleLoc) { 774 // We know that the array only contains Objective-C type parameters. 775 ArrayRef<ObjCTypeParamDecl *> 776 typeParams( 777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), 778 typeParamsIn.size()); 779 780 // Diagnose redeclarations of type parameters. 781 // We do this now because Objective-C type parameters aren't pushed into 782 // scope until later (after the instance variable block), but we want the 783 // diagnostics to occur right after we parse the type parameter list. 784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; 785 for (auto typeParam : typeParams) { 786 auto known = knownParams.find(typeParam->getIdentifier()); 787 if (known != knownParams.end()) { 788 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl) 789 << typeParam->getIdentifier() 790 << SourceRange(known->second->getLocation()); 791 792 typeParam->setInvalidDecl(); 793 } else { 794 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam)); 795 796 // Push the type parameter into scope. 797 PushOnScopeChains(typeParam, S, /*AddToContext=*/false); 798 } 799 } 800 801 // Create the parameter list. 802 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc); 803 } 804 805 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) { 806 for (auto typeParam : *typeParamList) { 807 if (!typeParam->isInvalidDecl()) { 808 S->RemoveDecl(typeParam); 809 IdResolver.RemoveDecl(typeParam); 810 } 811 } 812 } 813 814 namespace { 815 /// The context in which an Objective-C type parameter list occurs, for use 816 /// in diagnostics. 817 enum class TypeParamListContext { 818 ForwardDeclaration, 819 Definition, 820 Category, 821 Extension 822 }; 823 } // end anonymous namespace 824 825 /// Check consistency between two Objective-C type parameter lists, e.g., 826 /// between a category/extension and an \@interface or between an \@class and an 827 /// \@interface. 828 static bool checkTypeParamListConsistency(Sema &S, 829 ObjCTypeParamList *prevTypeParams, 830 ObjCTypeParamList *newTypeParams, 831 TypeParamListContext newContext) { 832 // If the sizes don't match, complain about that. 833 if (prevTypeParams->size() != newTypeParams->size()) { 834 SourceLocation diagLoc; 835 if (newTypeParams->size() > prevTypeParams->size()) { 836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); 837 } else { 838 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc()); 839 } 840 841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch) 842 << static_cast<unsigned>(newContext) 843 << (newTypeParams->size() > prevTypeParams->size()) 844 << prevTypeParams->size() 845 << newTypeParams->size(); 846 847 return true; 848 } 849 850 // Match up the type parameters. 851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { 852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; 853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; 854 855 // Check for consistency of the variance. 856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { 857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && 858 newContext != TypeParamListContext::Definition) { 859 // When the new type parameter is invariant and is not part 860 // of the definition, just propagate the variance. 861 newTypeParam->setVariance(prevTypeParam->getVariance()); 862 } else if (prevTypeParam->getVariance() 863 == ObjCTypeParamVariance::Invariant && 864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) && 865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) 866 ->getDefinition() == prevTypeParam->getDeclContext())) { 867 // When the old parameter is invariant and was not part of the 868 // definition, just ignore the difference because it doesn't 869 // matter. 870 } else { 871 { 872 // Diagnose the conflict and update the second declaration. 873 SourceLocation diagLoc = newTypeParam->getVarianceLoc(); 874 if (diagLoc.isInvalid()) 875 diagLoc = newTypeParam->getBeginLoc(); 876 877 auto diag = S.Diag(diagLoc, 878 diag::err_objc_type_param_variance_conflict) 879 << static_cast<unsigned>(newTypeParam->getVariance()) 880 << newTypeParam->getDeclName() 881 << static_cast<unsigned>(prevTypeParam->getVariance()) 882 << prevTypeParam->getDeclName(); 883 switch (prevTypeParam->getVariance()) { 884 case ObjCTypeParamVariance::Invariant: 885 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc()); 886 break; 887 888 case ObjCTypeParamVariance::Covariant: 889 case ObjCTypeParamVariance::Contravariant: { 890 StringRef newVarianceStr 891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant 892 ? "__covariant" 893 : "__contravariant"; 894 if (newTypeParam->getVariance() 895 == ObjCTypeParamVariance::Invariant) { 896 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(), 897 (newVarianceStr + " ").str()); 898 } else { 899 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(), 900 newVarianceStr); 901 } 902 } 903 } 904 } 905 906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 907 << prevTypeParam->getDeclName(); 908 909 // Override the variance. 910 newTypeParam->setVariance(prevTypeParam->getVariance()); 911 } 912 } 913 914 // If the bound types match, there's nothing to do. 915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(), 916 newTypeParam->getUnderlyingType())) 917 continue; 918 919 // If the new type parameter's bound was explicit, complain about it being 920 // different from the original. 921 if (newTypeParam->hasExplicitBound()) { 922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() 923 ->getTypeLoc().getSourceRange(); 924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict) 925 << newTypeParam->getUnderlyingType() 926 << newTypeParam->getDeclName() 927 << prevTypeParam->hasExplicitBound() 928 << prevTypeParam->getUnderlyingType() 929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) 930 << prevTypeParam->getDeclName() 931 << FixItHint::CreateReplacement( 932 newBoundRange, 933 prevTypeParam->getUnderlyingType().getAsString( 934 S.Context.getPrintingPolicy())); 935 936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 937 << prevTypeParam->getDeclName(); 938 939 // Override the new type parameter's bound type with the previous type, 940 // so that it's consistent. 941 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam); 942 continue; 943 } 944 945 // The new type parameter got the implicit bound of 'id'. That's okay for 946 // categories and extensions (overwrite it later), but not for forward 947 // declarations and @interfaces, because those must be standalone. 948 if (newContext == TypeParamListContext::ForwardDeclaration || 949 newContext == TypeParamListContext::Definition) { 950 // Diagnose this problem for forward declarations and definitions. 951 SourceLocation insertionLoc 952 = S.getLocForEndOfToken(newTypeParam->getLocation()); 953 std::string newCode 954 = " : " + prevTypeParam->getUnderlyingType().getAsString( 955 S.Context.getPrintingPolicy()); 956 S.Diag(newTypeParam->getLocation(), 957 diag::err_objc_type_param_bound_missing) 958 << prevTypeParam->getUnderlyingType() 959 << newTypeParam->getDeclName() 960 << (newContext == TypeParamListContext::ForwardDeclaration) 961 << FixItHint::CreateInsertion(insertionLoc, newCode); 962 963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 964 << prevTypeParam->getDeclName(); 965 } 966 967 // Update the new type parameter's bound to match the previous one. 968 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam); 969 } 970 971 return false; 972 } 973 974 Decl *Sema::ActOnStartClassInterface( 975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, 976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, 977 IdentifierInfo *SuperName, SourceLocation SuperLoc, 978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, 979 Decl *const *ProtoRefs, unsigned NumProtoRefs, 980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 981 const ParsedAttributesView &AttrList) { 982 assert(ClassName && "Missing class identifier"); 983 984 // Check for another declaration kind with the same name. 985 NamedDecl *PrevDecl = 986 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 987 forRedeclarationInCurContext()); 988 989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 991 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 992 } 993 994 // Create a declaration to describe this @interface. 995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 996 997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 998 // A previous decl with a different name is because of 999 // @compatibility_alias, for example: 1000 // \code 1001 // @class NewImage; 1002 // @compatibility_alias OldImage NewImage; 1003 // \endcode 1004 // A lookup for 'OldImage' will return the 'NewImage' decl. 1005 // 1006 // In such a case use the real declaration name, instead of the alias one, 1007 // otherwise we will break IdentifierResolver and redecls-chain invariants. 1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 1009 // has been aliased. 1010 ClassName = PrevIDecl->getIdentifier(); 1011 } 1012 1013 // If there was a forward declaration with type parameters, check 1014 // for consistency. 1015 if (PrevIDecl) { 1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { 1017 if (typeParamList) { 1018 // Both have type parameter lists; check for consistency. 1019 if (checkTypeParamListConsistency(*this, prevTypeParamList, 1020 typeParamList, 1021 TypeParamListContext::Definition)) { 1022 typeParamList = nullptr; 1023 } 1024 } else { 1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first) 1026 << ClassName; 1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl) 1028 << ClassName; 1029 1030 // Clone the type parameter list. 1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; 1032 for (auto typeParam : *prevTypeParamList) { 1033 clonedTypeParams.push_back( 1034 ObjCTypeParamDecl::Create( 1035 Context, 1036 CurContext, 1037 typeParam->getVariance(), 1038 SourceLocation(), 1039 typeParam->getIndex(), 1040 SourceLocation(), 1041 typeParam->getIdentifier(), 1042 SourceLocation(), 1043 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType()))); 1044 } 1045 1046 typeParamList = ObjCTypeParamList::create(Context, 1047 SourceLocation(), 1048 clonedTypeParams, 1049 SourceLocation()); 1050 } 1051 } 1052 } 1053 1054 ObjCInterfaceDecl *IDecl 1055 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 1056 typeParamList, PrevIDecl, ClassLoc); 1057 if (PrevIDecl) { 1058 // Class already seen. Was it a definition? 1059 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 1060 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 1061 << PrevIDecl->getDeclName(); 1062 Diag(Def->getLocation(), diag::note_previous_definition); 1063 IDecl->setInvalidDecl(); 1064 } 1065 } 1066 1067 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 1068 AddPragmaAttributes(TUScope, IDecl); 1069 1070 // Merge attributes from previous declarations. 1071 if (PrevIDecl) 1072 mergeDeclAttributes(IDecl, PrevIDecl); 1073 1074 PushOnScopeChains(IDecl, TUScope); 1075 1076 // Start the definition of this class. If we're in a redefinition case, there 1077 // may already be a definition, so we'll end up adding to it. 1078 if (!IDecl->hasDefinition()) 1079 IDecl->startDefinition(); 1080 1081 if (SuperName) { 1082 // Diagnose availability in the context of the @interface. 1083 ContextRAII SavedContext(*this, IDecl); 1084 1085 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, 1086 ClassName, ClassLoc, 1087 SuperName, SuperLoc, SuperTypeArgs, 1088 SuperTypeArgsRange); 1089 } else { // we have a root class. 1090 IDecl->setEndOfDefinitionLoc(ClassLoc); 1091 } 1092 1093 // Check then save referenced protocols. 1094 if (NumProtoRefs) { 1095 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1096 NumProtoRefs, ProtoLocs); 1097 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1098 ProtoLocs, Context); 1099 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 1100 } 1101 1102 CheckObjCDeclScope(IDecl); 1103 return ActOnObjCContainerStartDefinition(IDecl); 1104 } 1105 1106 /// ActOnTypedefedProtocols - this action finds protocol list as part of the 1107 /// typedef'ed use for a qualified super class and adds them to the list 1108 /// of the protocols. 1109 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, 1110 SmallVectorImpl<SourceLocation> &ProtocolLocs, 1111 IdentifierInfo *SuperName, 1112 SourceLocation SuperLoc) { 1113 if (!SuperName) 1114 return; 1115 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 1116 LookupOrdinaryName); 1117 if (!IDecl) 1118 return; 1119 1120 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) { 1121 QualType T = TDecl->getUnderlyingType(); 1122 if (T->isObjCObjectType()) 1123 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { 1124 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end()); 1125 // FIXME: Consider whether this should be an invalid loc since the loc 1126 // is not actually pointing to a protocol name reference but to the 1127 // typedef reference. Note that the base class name loc is also pointing 1128 // at the typedef. 1129 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc); 1130 } 1131 } 1132 } 1133 1134 /// ActOnCompatibilityAlias - this action is called after complete parsing of 1135 /// a \@compatibility_alias declaration. It sets up the alias relationships. 1136 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, 1137 IdentifierInfo *AliasName, 1138 SourceLocation AliasLocation, 1139 IdentifierInfo *ClassName, 1140 SourceLocation ClassLocation) { 1141 // Look for previous declaration of alias name 1142 NamedDecl *ADecl = 1143 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName, 1144 forRedeclarationInCurContext()); 1145 if (ADecl) { 1146 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 1147 Diag(ADecl->getLocation(), diag::note_previous_declaration); 1148 return nullptr; 1149 } 1150 // Check for class declaration 1151 NamedDecl *CDeclU = 1152 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName, 1153 forRedeclarationInCurContext()); 1154 if (const TypedefNameDecl *TDecl = 1155 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 1156 QualType T = TDecl->getUnderlyingType(); 1157 if (T->isObjCObjectType()) { 1158 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { 1159 ClassName = IDecl->getIdentifier(); 1160 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 1161 LookupOrdinaryName, 1162 forRedeclarationInCurContext()); 1163 } 1164 } 1165 } 1166 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 1167 if (!CDecl) { 1168 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 1169 if (CDeclU) 1170 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 1171 return nullptr; 1172 } 1173 1174 // Everything checked out, instantiate a new alias declaration AST. 1175 ObjCCompatibleAliasDecl *AliasDecl = 1176 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 1177 1178 if (!CheckObjCDeclScope(AliasDecl)) 1179 PushOnScopeChains(AliasDecl, TUScope); 1180 1181 return AliasDecl; 1182 } 1183 1184 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 1185 IdentifierInfo *PName, 1186 SourceLocation &Ploc, SourceLocation PrevLoc, 1187 const ObjCList<ObjCProtocolDecl> &PList) { 1188 1189 bool res = false; 1190 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 1191 E = PList.end(); I != E; ++I) { 1192 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 1193 Ploc)) { 1194 if (PDecl->getIdentifier() == PName) { 1195 Diag(Ploc, diag::err_protocol_has_circular_dependency); 1196 Diag(PrevLoc, diag::note_previous_definition); 1197 res = true; 1198 } 1199 1200 if (!PDecl->hasDefinition()) 1201 continue; 1202 1203 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 1204 PDecl->getLocation(), PDecl->getReferencedProtocols())) 1205 res = true; 1206 } 1207 } 1208 return res; 1209 } 1210 1211 Decl *Sema::ActOnStartProtocolInterface( 1212 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, 1213 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, 1214 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 1215 const ParsedAttributesView &AttrList) { 1216 bool err = false; 1217 // FIXME: Deal with AttrList. 1218 assert(ProtocolName && "Missing protocol identifier"); 1219 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 1220 forRedeclarationInCurContext()); 1221 ObjCProtocolDecl *PDecl = nullptr; 1222 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { 1223 // If we already have a definition, complain. 1224 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 1225 Diag(Def->getLocation(), diag::note_previous_definition); 1226 1227 // Create a new protocol that is completely distinct from previous 1228 // declarations, and do not make this protocol available for name lookup. 1229 // That way, we'll end up completely ignoring the duplicate. 1230 // FIXME: Can we turn this into an error? 1231 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 1232 ProtocolLoc, AtProtoInterfaceLoc, 1233 /*PrevDecl=*/nullptr); 1234 1235 // If we are using modules, add the decl to the context in order to 1236 // serialize something meaningful. 1237 if (getLangOpts().Modules) 1238 PushOnScopeChains(PDecl, TUScope); 1239 PDecl->startDefinition(); 1240 } else { 1241 if (PrevDecl) { 1242 // Check for circular dependencies among protocol declarations. This can 1243 // only happen if this protocol was forward-declared. 1244 ObjCList<ObjCProtocolDecl> PList; 1245 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 1246 err = CheckForwardProtocolDeclarationForCircularDependency( 1247 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 1248 } 1249 1250 // Create the new declaration. 1251 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 1252 ProtocolLoc, AtProtoInterfaceLoc, 1253 /*PrevDecl=*/PrevDecl); 1254 1255 PushOnScopeChains(PDecl, TUScope); 1256 PDecl->startDefinition(); 1257 } 1258 1259 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 1260 AddPragmaAttributes(TUScope, PDecl); 1261 1262 // Merge attributes from previous declarations. 1263 if (PrevDecl) 1264 mergeDeclAttributes(PDecl, PrevDecl); 1265 1266 if (!err && NumProtoRefs ) { 1267 /// Check then save referenced protocols. 1268 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1269 NumProtoRefs, ProtoLocs); 1270 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1271 ProtoLocs, Context); 1272 } 1273 1274 CheckObjCDeclScope(PDecl); 1275 return ActOnObjCContainerStartDefinition(PDecl); 1276 } 1277 1278 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, 1279 ObjCProtocolDecl *&UndefinedProtocol) { 1280 if (!PDecl->hasDefinition() || 1281 !PDecl->getDefinition()->isUnconditionallyVisible()) { 1282 UndefinedProtocol = PDecl; 1283 return true; 1284 } 1285 1286 for (auto *PI : PDecl->protocols()) 1287 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) { 1288 UndefinedProtocol = PI; 1289 return true; 1290 } 1291 return false; 1292 } 1293 1294 /// FindProtocolDeclaration - This routine looks up protocols and 1295 /// issues an error if they are not declared. It returns list of 1296 /// protocol declarations in its 'Protocols' argument. 1297 void 1298 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, 1299 ArrayRef<IdentifierLocPair> ProtocolId, 1300 SmallVectorImpl<Decl *> &Protocols) { 1301 for (const IdentifierLocPair &Pair : ProtocolId) { 1302 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second); 1303 if (!PDecl) { 1304 DeclFilterCCC<ObjCProtocolDecl> CCC{}; 1305 TypoCorrection Corrected = CorrectTypo( 1306 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName, 1307 TUScope, nullptr, CCC, CTK_ErrorRecovery); 1308 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) 1309 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) 1310 << Pair.first); 1311 } 1312 1313 if (!PDecl) { 1314 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first; 1315 continue; 1316 } 1317 // If this is a forward protocol declaration, get its definition. 1318 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 1319 PDecl = PDecl->getDefinition(); 1320 1321 // For an objc container, delay protocol reference checking until after we 1322 // can set the objc decl as the availability context, otherwise check now. 1323 if (!ForObjCContainer) { 1324 (void)DiagnoseUseOfDecl(PDecl, Pair.second); 1325 } 1326 1327 // If this is a forward declaration and we are supposed to warn in this 1328 // case, do it. 1329 // FIXME: Recover nicely in the hidden case. 1330 ObjCProtocolDecl *UndefinedProtocol; 1331 1332 if (WarnOnDeclarations && 1333 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { 1334 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first; 1335 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) 1336 << UndefinedProtocol; 1337 } 1338 Protocols.push_back(PDecl); 1339 } 1340 } 1341 1342 namespace { 1343 // Callback to only accept typo corrections that are either 1344 // Objective-C protocols or valid Objective-C type arguments. 1345 class ObjCTypeArgOrProtocolValidatorCCC final 1346 : public CorrectionCandidateCallback { 1347 ASTContext &Context; 1348 Sema::LookupNameKind LookupKind; 1349 public: 1350 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, 1351 Sema::LookupNameKind lookupKind) 1352 : Context(context), LookupKind(lookupKind) { } 1353 1354 bool ValidateCandidate(const TypoCorrection &candidate) override { 1355 // If we're allowed to find protocols and we have a protocol, accept it. 1356 if (LookupKind != Sema::LookupOrdinaryName) { 1357 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) 1358 return true; 1359 } 1360 1361 // If we're allowed to find type names and we have one, accept it. 1362 if (LookupKind != Sema::LookupObjCProtocolName) { 1363 // If we have a type declaration, we might accept this result. 1364 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { 1365 // If we found a tag declaration outside of C++, skip it. This 1366 // can happy because we look for any name when there is no 1367 // bias to protocol or type names. 1368 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus) 1369 return false; 1370 1371 // Make sure the type is something we would accept as a type 1372 // argument. 1373 auto type = Context.getTypeDeclType(typeDecl); 1374 if (type->isObjCObjectPointerType() || 1375 type->isBlockPointerType() || 1376 type->isDependentType() || 1377 type->isObjCObjectType()) 1378 return true; 1379 1380 return false; 1381 } 1382 1383 // If we have an Objective-C class type, accept it; there will 1384 // be another fix to add the '*'. 1385 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) 1386 return true; 1387 1388 return false; 1389 } 1390 1391 return false; 1392 } 1393 1394 std::unique_ptr<CorrectionCandidateCallback> clone() override { 1395 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this); 1396 } 1397 }; 1398 } // end anonymous namespace 1399 1400 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, 1401 SourceLocation ProtocolLoc, 1402 IdentifierInfo *TypeArgId, 1403 SourceLocation TypeArgLoc, 1404 bool SelectProtocolFirst) { 1405 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols) 1406 << SelectProtocolFirst << TypeArgId << ProtocolId 1407 << SourceRange(ProtocolLoc); 1408 } 1409 1410 void Sema::actOnObjCTypeArgsOrProtocolQualifiers( 1411 Scope *S, 1412 ParsedType baseType, 1413 SourceLocation lAngleLoc, 1414 ArrayRef<IdentifierInfo *> identifiers, 1415 ArrayRef<SourceLocation> identifierLocs, 1416 SourceLocation rAngleLoc, 1417 SourceLocation &typeArgsLAngleLoc, 1418 SmallVectorImpl<ParsedType> &typeArgs, 1419 SourceLocation &typeArgsRAngleLoc, 1420 SourceLocation &protocolLAngleLoc, 1421 SmallVectorImpl<Decl *> &protocols, 1422 SourceLocation &protocolRAngleLoc, 1423 bool warnOnIncompleteProtocols) { 1424 // Local function that updates the declaration specifiers with 1425 // protocol information. 1426 unsigned numProtocolsResolved = 0; 1427 auto resolvedAsProtocols = [&] { 1428 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols"); 1429 1430 // Determine whether the base type is a parameterized class, in 1431 // which case we want to warn about typos such as 1432 // "NSArray<NSObject>" (that should be NSArray<NSObject *>). 1433 ObjCInterfaceDecl *baseClass = nullptr; 1434 QualType base = GetTypeFromParser(baseType, nullptr); 1435 bool allAreTypeNames = false; 1436 SourceLocation firstClassNameLoc; 1437 if (!base.isNull()) { 1438 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { 1439 baseClass = objcObjectType->getInterface(); 1440 if (baseClass) { 1441 if (auto typeParams = baseClass->getTypeParamList()) { 1442 if (typeParams->size() == numProtocolsResolved) { 1443 // Note that we should be looking for type names, too. 1444 allAreTypeNames = true; 1445 } 1446 } 1447 } 1448 } 1449 } 1450 1451 for (unsigned i = 0, n = protocols.size(); i != n; ++i) { 1452 ObjCProtocolDecl *&proto 1453 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); 1454 // For an objc container, delay protocol reference checking until after we 1455 // can set the objc decl as the availability context, otherwise check now. 1456 if (!warnOnIncompleteProtocols) { 1457 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]); 1458 } 1459 1460 // If this is a forward protocol declaration, get its definition. 1461 if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) 1462 proto = proto->getDefinition(); 1463 1464 // If this is a forward declaration and we are supposed to warn in this 1465 // case, do it. 1466 // FIXME: Recover nicely in the hidden case. 1467 ObjCProtocolDecl *forwardDecl = nullptr; 1468 if (warnOnIncompleteProtocols && 1469 NestedProtocolHasNoDefinition(proto, forwardDecl)) { 1470 Diag(identifierLocs[i], diag::warn_undef_protocolref) 1471 << proto->getDeclName(); 1472 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined) 1473 << forwardDecl; 1474 } 1475 1476 // If everything this far has been a type name (and we care 1477 // about such things), check whether this name refers to a type 1478 // as well. 1479 if (allAreTypeNames) { 1480 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], 1481 LookupOrdinaryName)) { 1482 if (isa<ObjCInterfaceDecl>(decl)) { 1483 if (firstClassNameLoc.isInvalid()) 1484 firstClassNameLoc = identifierLocs[i]; 1485 } else if (!isa<TypeDecl>(decl)) { 1486 // Not a type. 1487 allAreTypeNames = false; 1488 } 1489 } else { 1490 allAreTypeNames = false; 1491 } 1492 } 1493 } 1494 1495 // All of the protocols listed also have type names, and at least 1496 // one is an Objective-C class name. Check whether all of the 1497 // protocol conformances are declared by the base class itself, in 1498 // which case we warn. 1499 if (allAreTypeNames && firstClassNameLoc.isValid()) { 1500 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; 1501 Context.CollectInheritedProtocols(baseClass, knownProtocols); 1502 bool allProtocolsDeclared = true; 1503 for (auto proto : protocols) { 1504 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) { 1505 allProtocolsDeclared = false; 1506 break; 1507 } 1508 } 1509 1510 if (allProtocolsDeclared) { 1511 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type) 1512 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) 1513 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc), 1514 " *"); 1515 } 1516 } 1517 1518 protocolLAngleLoc = lAngleLoc; 1519 protocolRAngleLoc = rAngleLoc; 1520 assert(protocols.size() == identifierLocs.size()); 1521 }; 1522 1523 // Attempt to resolve all of the identifiers as protocols. 1524 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1525 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]); 1526 protocols.push_back(proto); 1527 if (proto) 1528 ++numProtocolsResolved; 1529 } 1530 1531 // If all of the names were protocols, these were protocol qualifiers. 1532 if (numProtocolsResolved == identifiers.size()) 1533 return resolvedAsProtocols(); 1534 1535 // Attempt to resolve all of the identifiers as type names or 1536 // Objective-C class names. The latter is technically ill-formed, 1537 // but is probably something like \c NSArray<NSView *> missing the 1538 // \c*. 1539 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; 1540 SmallVector<TypeOrClassDecl, 4> typeDecls; 1541 unsigned numTypeDeclsResolved = 0; 1542 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1543 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], 1544 LookupOrdinaryName); 1545 if (!decl) { 1546 typeDecls.push_back(TypeOrClassDecl()); 1547 continue; 1548 } 1549 1550 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) { 1551 typeDecls.push_back(typeDecl); 1552 ++numTypeDeclsResolved; 1553 continue; 1554 } 1555 1556 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) { 1557 typeDecls.push_back(objcClass); 1558 ++numTypeDeclsResolved; 1559 continue; 1560 } 1561 1562 typeDecls.push_back(TypeOrClassDecl()); 1563 } 1564 1565 AttributeFactory attrFactory; 1566 1567 // Local function that forms a reference to the given type or 1568 // Objective-C class declaration. 1569 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) 1570 -> TypeResult { 1571 // Form declaration specifiers. They simply refer to the type. 1572 DeclSpec DS(attrFactory); 1573 const char* prevSpec; // unused 1574 unsigned diagID; // unused 1575 QualType type; 1576 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>()) 1577 type = Context.getTypeDeclType(actualTypeDecl); 1578 else 1579 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>()); 1580 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc); 1581 ParsedType parsedType = CreateParsedType(type, parsedTSInfo); 1582 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID, 1583 parsedType, Context.getPrintingPolicy()); 1584 // Use the identifier location for the type source range. 1585 DS.SetRangeStart(loc); 1586 DS.SetRangeEnd(loc); 1587 1588 // Form the declarator. 1589 Declarator D(DS, DeclaratorContext::TypeName); 1590 1591 // If we have a typedef of an Objective-C class type that is missing a '*', 1592 // add the '*'. 1593 if (type->getAs<ObjCInterfaceType>()) { 1594 SourceLocation starLoc = getLocForEndOfToken(loc); 1595 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc, 1596 SourceLocation(), 1597 SourceLocation(), 1598 SourceLocation(), 1599 SourceLocation(), 1600 SourceLocation()), 1601 starLoc); 1602 1603 // Diagnose the missing '*'. 1604 Diag(loc, diag::err_objc_type_arg_missing_star) 1605 << type 1606 << FixItHint::CreateInsertion(starLoc, " *"); 1607 } 1608 1609 // Convert this to a type. 1610 return ActOnTypeName(S, D); 1611 }; 1612 1613 // Local function that updates the declaration specifiers with 1614 // type argument information. 1615 auto resolvedAsTypeDecls = [&] { 1616 // We did not resolve these as protocols. 1617 protocols.clear(); 1618 1619 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"); 1620 // Map type declarations to type arguments. 1621 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1622 // Map type reference to a type. 1623 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); 1624 if (!type.isUsable()) { 1625 typeArgs.clear(); 1626 return; 1627 } 1628 1629 typeArgs.push_back(type.get()); 1630 } 1631 1632 typeArgsLAngleLoc = lAngleLoc; 1633 typeArgsRAngleLoc = rAngleLoc; 1634 }; 1635 1636 // If all of the identifiers can be resolved as type names or 1637 // Objective-C class names, we have type arguments. 1638 if (numTypeDeclsResolved == identifiers.size()) 1639 return resolvedAsTypeDecls(); 1640 1641 // Error recovery: some names weren't found, or we have a mix of 1642 // type and protocol names. Go resolve all of the unresolved names 1643 // and complain if we can't find a consistent answer. 1644 LookupNameKind lookupKind = LookupAnyName; 1645 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1646 // If we already have a protocol or type. Check whether it is the 1647 // right thing. 1648 if (protocols[i] || typeDecls[i]) { 1649 // If we haven't figured out whether we want types or protocols 1650 // yet, try to figure it out from this name. 1651 if (lookupKind == LookupAnyName) { 1652 // If this name refers to both a protocol and a type (e.g., \c 1653 // NSObject), don't conclude anything yet. 1654 if (protocols[i] && typeDecls[i]) 1655 continue; 1656 1657 // Otherwise, let this name decide whether we'll be correcting 1658 // toward types or protocols. 1659 lookupKind = protocols[i] ? LookupObjCProtocolName 1660 : LookupOrdinaryName; 1661 continue; 1662 } 1663 1664 // If we want protocols and we have a protocol, there's nothing 1665 // more to do. 1666 if (lookupKind == LookupObjCProtocolName && protocols[i]) 1667 continue; 1668 1669 // If we want types and we have a type declaration, there's 1670 // nothing more to do. 1671 if (lookupKind == LookupOrdinaryName && typeDecls[i]) 1672 continue; 1673 1674 // We have a conflict: some names refer to protocols and others 1675 // refer to types. 1676 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0], 1677 identifiers[i], identifierLocs[i], 1678 protocols[i] != nullptr); 1679 1680 protocols.clear(); 1681 typeArgs.clear(); 1682 return; 1683 } 1684 1685 // Perform typo correction on the name. 1686 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); 1687 TypoCorrection corrected = 1688 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]), 1689 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery); 1690 if (corrected) { 1691 // Did we find a protocol? 1692 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { 1693 diagnoseTypo(corrected, 1694 PDiag(diag::err_undeclared_protocol_suggest) 1695 << identifiers[i]); 1696 lookupKind = LookupObjCProtocolName; 1697 protocols[i] = proto; 1698 ++numProtocolsResolved; 1699 continue; 1700 } 1701 1702 // Did we find a type? 1703 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { 1704 diagnoseTypo(corrected, 1705 PDiag(diag::err_unknown_typename_suggest) 1706 << identifiers[i]); 1707 lookupKind = LookupOrdinaryName; 1708 typeDecls[i] = typeDecl; 1709 ++numTypeDeclsResolved; 1710 continue; 1711 } 1712 1713 // Did we find an Objective-C class? 1714 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1715 diagnoseTypo(corrected, 1716 PDiag(diag::err_unknown_type_or_class_name_suggest) 1717 << identifiers[i] << true); 1718 lookupKind = LookupOrdinaryName; 1719 typeDecls[i] = objcClass; 1720 ++numTypeDeclsResolved; 1721 continue; 1722 } 1723 } 1724 1725 // We couldn't find anything. 1726 Diag(identifierLocs[i], 1727 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing 1728 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol 1729 : diag::err_unknown_typename)) 1730 << identifiers[i]; 1731 protocols.clear(); 1732 typeArgs.clear(); 1733 return; 1734 } 1735 1736 // If all of the names were (corrected to) protocols, these were 1737 // protocol qualifiers. 1738 if (numProtocolsResolved == identifiers.size()) 1739 return resolvedAsProtocols(); 1740 1741 // Otherwise, all of the names were (corrected to) types. 1742 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?"); 1743 return resolvedAsTypeDecls(); 1744 } 1745 1746 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 1747 /// a class method in its extension. 1748 /// 1749 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 1750 ObjCInterfaceDecl *ID) { 1751 if (!ID) 1752 return; // Possibly due to previous error 1753 1754 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 1755 for (auto *MD : ID->methods()) 1756 MethodMap[MD->getSelector()] = MD; 1757 1758 if (MethodMap.empty()) 1759 return; 1760 for (const auto *Method : CAT->methods()) { 1761 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 1762 if (PrevMethod && 1763 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && 1764 !MatchTwoMethodDeclarations(Method, PrevMethod)) { 1765 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 1766 << Method->getDeclName(); 1767 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1768 } 1769 } 1770 } 1771 1772 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 1773 Sema::DeclGroupPtrTy 1774 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 1775 ArrayRef<IdentifierLocPair> IdentList, 1776 const ParsedAttributesView &attrList) { 1777 SmallVector<Decl *, 8> DeclsInGroup; 1778 for (const IdentifierLocPair &IdentPair : IdentList) { 1779 IdentifierInfo *Ident = IdentPair.first; 1780 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second, 1781 forRedeclarationInCurContext()); 1782 ObjCProtocolDecl *PDecl 1783 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 1784 IdentPair.second, AtProtocolLoc, 1785 PrevDecl); 1786 1787 PushOnScopeChains(PDecl, TUScope); 1788 CheckObjCDeclScope(PDecl); 1789 1790 ProcessDeclAttributeList(TUScope, PDecl, attrList); 1791 AddPragmaAttributes(TUScope, PDecl); 1792 1793 if (PrevDecl) 1794 mergeDeclAttributes(PDecl, PrevDecl); 1795 1796 DeclsInGroup.push_back(PDecl); 1797 } 1798 1799 return BuildDeclaratorGroup(DeclsInGroup); 1800 } 1801 1802 Decl *Sema::ActOnStartCategoryInterface( 1803 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, 1804 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, 1805 IdentifierInfo *CategoryName, SourceLocation CategoryLoc, 1806 Decl *const *ProtoRefs, unsigned NumProtoRefs, 1807 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 1808 const ParsedAttributesView &AttrList) { 1809 ObjCCategoryDecl *CDecl; 1810 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 1811 1812 /// Check that class of this category is already completely declared. 1813 1814 if (!IDecl 1815 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1816 diag::err_category_forward_interface, 1817 CategoryName == nullptr)) { 1818 // Create an invalid ObjCCategoryDecl to serve as context for 1819 // the enclosing method declarations. We mark the decl invalid 1820 // to make it clear that this isn't a valid AST. 1821 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 1822 ClassLoc, CategoryLoc, CategoryName, 1823 IDecl, typeParamList); 1824 CDecl->setInvalidDecl(); 1825 CurContext->addDecl(CDecl); 1826 1827 if (!IDecl) 1828 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 1829 return ActOnObjCContainerStartDefinition(CDecl); 1830 } 1831 1832 if (!CategoryName && IDecl->getImplementation()) { 1833 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 1834 Diag(IDecl->getImplementation()->getLocation(), 1835 diag::note_implementation_declared); 1836 } 1837 1838 if (CategoryName) { 1839 /// Check for duplicate interface declaration for this category 1840 if (ObjCCategoryDecl *Previous 1841 = IDecl->FindCategoryDeclaration(CategoryName)) { 1842 // Class extensions can be declared multiple times, categories cannot. 1843 Diag(CategoryLoc, diag::warn_dup_category_def) 1844 << ClassName << CategoryName; 1845 Diag(Previous->getLocation(), diag::note_previous_definition); 1846 } 1847 } 1848 1849 // If we have a type parameter list, check it. 1850 if (typeParamList) { 1851 if (auto prevTypeParamList = IDecl->getTypeParamList()) { 1852 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList, 1853 CategoryName 1854 ? TypeParamListContext::Category 1855 : TypeParamListContext::Extension)) 1856 typeParamList = nullptr; 1857 } else { 1858 Diag(typeParamList->getLAngleLoc(), 1859 diag::err_objc_parameterized_category_nonclass) 1860 << (CategoryName != nullptr) 1861 << ClassName 1862 << typeParamList->getSourceRange(); 1863 1864 typeParamList = nullptr; 1865 } 1866 } 1867 1868 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 1869 ClassLoc, CategoryLoc, CategoryName, IDecl, 1870 typeParamList); 1871 // FIXME: PushOnScopeChains? 1872 CurContext->addDecl(CDecl); 1873 1874 // Process the attributes before looking at protocols to ensure that the 1875 // availability attribute is attached to the category to provide availability 1876 // checking for protocol uses. 1877 ProcessDeclAttributeList(TUScope, CDecl, AttrList); 1878 AddPragmaAttributes(TUScope, CDecl); 1879 1880 if (NumProtoRefs) { 1881 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1882 NumProtoRefs, ProtoLocs); 1883 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1884 ProtoLocs, Context); 1885 // Protocols in the class extension belong to the class. 1886 if (CDecl->IsClassExtension()) 1887 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 1888 NumProtoRefs, Context); 1889 } 1890 1891 CheckObjCDeclScope(CDecl); 1892 return ActOnObjCContainerStartDefinition(CDecl); 1893 } 1894 1895 /// ActOnStartCategoryImplementation - Perform semantic checks on the 1896 /// category implementation declaration and build an ObjCCategoryImplDecl 1897 /// object. 1898 Decl *Sema::ActOnStartCategoryImplementation( 1899 SourceLocation AtCatImplLoc, 1900 IdentifierInfo *ClassName, SourceLocation ClassLoc, 1901 IdentifierInfo *CatName, SourceLocation CatLoc, 1902 const ParsedAttributesView &Attrs) { 1903 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 1904 ObjCCategoryDecl *CatIDecl = nullptr; 1905 if (IDecl && IDecl->hasDefinition()) { 1906 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 1907 if (!CatIDecl) { 1908 // Category @implementation with no corresponding @interface. 1909 // Create and install one. 1910 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 1911 ClassLoc, CatLoc, 1912 CatName, IDecl, 1913 /*typeParamList=*/nullptr); 1914 CatIDecl->setImplicit(); 1915 } 1916 } 1917 1918 ObjCCategoryImplDecl *CDecl = 1919 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 1920 ClassLoc, AtCatImplLoc, CatLoc); 1921 /// Check that class of this category is already completely declared. 1922 if (!IDecl) { 1923 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 1924 CDecl->setInvalidDecl(); 1925 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1926 diag::err_undef_interface)) { 1927 CDecl->setInvalidDecl(); 1928 } 1929 1930 ProcessDeclAttributeList(TUScope, CDecl, Attrs); 1931 AddPragmaAttributes(TUScope, CDecl); 1932 1933 // FIXME: PushOnScopeChains? 1934 CurContext->addDecl(CDecl); 1935 1936 // If the interface has the objc_runtime_visible attribute, we 1937 // cannot implement a category for it. 1938 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { 1939 Diag(ClassLoc, diag::err_objc_runtime_visible_category) 1940 << IDecl->getDeclName(); 1941 } 1942 1943 /// Check that CatName, category name, is not used in another implementation. 1944 if (CatIDecl) { 1945 if (CatIDecl->getImplementation()) { 1946 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 1947 << CatName; 1948 Diag(CatIDecl->getImplementation()->getLocation(), 1949 diag::note_previous_definition); 1950 CDecl->setInvalidDecl(); 1951 } else { 1952 CatIDecl->setImplementation(CDecl); 1953 // Warn on implementating category of deprecated class under 1954 // -Wdeprecated-implementations flag. 1955 DiagnoseObjCImplementedDeprecations(*this, CatIDecl, 1956 CDecl->getLocation()); 1957 } 1958 } 1959 1960 CheckObjCDeclScope(CDecl); 1961 return ActOnObjCContainerStartDefinition(CDecl); 1962 } 1963 1964 Decl *Sema::ActOnStartClassImplementation( 1965 SourceLocation AtClassImplLoc, 1966 IdentifierInfo *ClassName, SourceLocation ClassLoc, 1967 IdentifierInfo *SuperClassname, 1968 SourceLocation SuperClassLoc, 1969 const ParsedAttributesView &Attrs) { 1970 ObjCInterfaceDecl *IDecl = nullptr; 1971 // Check for another declaration kind with the same name. 1972 NamedDecl *PrevDecl 1973 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 1974 forRedeclarationInCurContext()); 1975 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1976 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 1977 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1978 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 1979 // FIXME: This will produce an error if the definition of the interface has 1980 // been imported from a module but is not visible. 1981 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1982 diag::warn_undef_interface); 1983 } else { 1984 // We did not find anything with the name ClassName; try to correct for 1985 // typos in the class name. 1986 ObjCInterfaceValidatorCCC CCC{}; 1987 TypoCorrection Corrected = 1988 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc), 1989 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError); 1990 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1991 // Suggest the (potentially) correct interface name. Don't provide a 1992 // code-modification hint or use the typo name for recovery, because 1993 // this is just a warning. The program may actually be correct. 1994 diagnoseTypo(Corrected, 1995 PDiag(diag::warn_undef_interface_suggest) << ClassName, 1996 /*ErrorRecovery*/false); 1997 } else { 1998 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 1999 } 2000 } 2001 2002 // Check that super class name is valid class name 2003 ObjCInterfaceDecl *SDecl = nullptr; 2004 if (SuperClassname) { 2005 // Check if a different kind of symbol declared in this scope. 2006 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 2007 LookupOrdinaryName); 2008 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 2009 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 2010 << SuperClassname; 2011 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2012 } else { 2013 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 2014 if (SDecl && !SDecl->hasDefinition()) 2015 SDecl = nullptr; 2016 if (!SDecl) 2017 Diag(SuperClassLoc, diag::err_undef_superclass) 2018 << SuperClassname << ClassName; 2019 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 2020 // This implementation and its interface do not have the same 2021 // super class. 2022 Diag(SuperClassLoc, diag::err_conflicting_super_class) 2023 << SDecl->getDeclName(); 2024 Diag(SDecl->getLocation(), diag::note_previous_definition); 2025 } 2026 } 2027 } 2028 2029 if (!IDecl) { 2030 // Legacy case of @implementation with no corresponding @interface. 2031 // Build, chain & install the interface decl into the identifier. 2032 2033 // FIXME: Do we support attributes on the @implementation? If so we should 2034 // copy them over. 2035 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 2036 ClassName, /*typeParamList=*/nullptr, 2037 /*PrevDecl=*/nullptr, ClassLoc, 2038 true); 2039 AddPragmaAttributes(TUScope, IDecl); 2040 IDecl->startDefinition(); 2041 if (SDecl) { 2042 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( 2043 Context.getObjCInterfaceType(SDecl), 2044 SuperClassLoc)); 2045 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 2046 } else { 2047 IDecl->setEndOfDefinitionLoc(ClassLoc); 2048 } 2049 2050 PushOnScopeChains(IDecl, TUScope); 2051 } else { 2052 // Mark the interface as being completed, even if it was just as 2053 // @class ....; 2054 // declaration; the user cannot reopen it. 2055 if (!IDecl->hasDefinition()) 2056 IDecl->startDefinition(); 2057 } 2058 2059 ObjCImplementationDecl* IMPDecl = 2060 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 2061 ClassLoc, AtClassImplLoc, SuperClassLoc); 2062 2063 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs); 2064 AddPragmaAttributes(TUScope, IMPDecl); 2065 2066 if (CheckObjCDeclScope(IMPDecl)) 2067 return ActOnObjCContainerStartDefinition(IMPDecl); 2068 2069 // Check that there is no duplicate implementation of this class. 2070 if (IDecl->getImplementation()) { 2071 // FIXME: Don't leak everything! 2072 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 2073 Diag(IDecl->getImplementation()->getLocation(), 2074 diag::note_previous_definition); 2075 IMPDecl->setInvalidDecl(); 2076 } else { // add it to the list. 2077 IDecl->setImplementation(IMPDecl); 2078 PushOnScopeChains(IMPDecl, TUScope); 2079 // Warn on implementating deprecated class under 2080 // -Wdeprecated-implementations flag. 2081 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation()); 2082 } 2083 2084 // If the superclass has the objc_runtime_visible attribute, we 2085 // cannot implement a subclass of it. 2086 if (IDecl->getSuperClass() && 2087 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { 2088 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass) 2089 << IDecl->getDeclName() 2090 << IDecl->getSuperClass()->getDeclName(); 2091 } 2092 2093 return ActOnObjCContainerStartDefinition(IMPDecl); 2094 } 2095 2096 Sema::DeclGroupPtrTy 2097 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 2098 SmallVector<Decl *, 64> DeclsInGroup; 2099 DeclsInGroup.reserve(Decls.size() + 1); 2100 2101 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 2102 Decl *Dcl = Decls[i]; 2103 if (!Dcl) 2104 continue; 2105 if (Dcl->getDeclContext()->isFileContext()) 2106 Dcl->setTopLevelDeclInObjCContainer(); 2107 DeclsInGroup.push_back(Dcl); 2108 } 2109 2110 DeclsInGroup.push_back(ObjCImpDecl); 2111 2112 return BuildDeclaratorGroup(DeclsInGroup); 2113 } 2114 2115 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 2116 ObjCIvarDecl **ivars, unsigned numIvars, 2117 SourceLocation RBrace) { 2118 assert(ImpDecl && "missing implementation decl"); 2119 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 2120 if (!IDecl) 2121 return; 2122 /// Check case of non-existing \@interface decl. 2123 /// (legacy objective-c \@implementation decl without an \@interface decl). 2124 /// Add implementations's ivar to the synthesize class's ivar list. 2125 if (IDecl->isImplicitInterfaceDecl()) { 2126 IDecl->setEndOfDefinitionLoc(RBrace); 2127 // Add ivar's to class's DeclContext. 2128 for (unsigned i = 0, e = numIvars; i != e; ++i) { 2129 ivars[i]->setLexicalDeclContext(ImpDecl); 2130 // In a 'fragile' runtime the ivar was added to the implicit 2131 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is 2132 // only in the ObjCImplementationDecl. In the non-fragile case the ivar 2133 // therefore also needs to be propagated to the ObjCInterfaceDecl. 2134 if (!LangOpts.ObjCRuntime.isFragile()) 2135 IDecl->makeDeclVisibleInContext(ivars[i]); 2136 ImpDecl->addDecl(ivars[i]); 2137 } 2138 2139 return; 2140 } 2141 // If implementation has empty ivar list, just return. 2142 if (numIvars == 0) 2143 return; 2144 2145 assert(ivars && "missing @implementation ivars"); 2146 if (LangOpts.ObjCRuntime.isNonFragile()) { 2147 if (ImpDecl->getSuperClass()) 2148 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 2149 for (unsigned i = 0; i < numIvars; i++) { 2150 ObjCIvarDecl* ImplIvar = ivars[i]; 2151 if (const ObjCIvarDecl *ClsIvar = 2152 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 2153 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 2154 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2155 continue; 2156 } 2157 // Check class extensions (unnamed categories) for duplicate ivars. 2158 for (const auto *CDecl : IDecl->visible_extensions()) { 2159 if (const ObjCIvarDecl *ClsExtIvar = 2160 CDecl->getIvarDecl(ImplIvar->getIdentifier())) { 2161 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 2162 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 2163 continue; 2164 } 2165 } 2166 // Instance ivar to Implementation's DeclContext. 2167 ImplIvar->setLexicalDeclContext(ImpDecl); 2168 IDecl->makeDeclVisibleInContext(ImplIvar); 2169 ImpDecl->addDecl(ImplIvar); 2170 } 2171 return; 2172 } 2173 // Check interface's Ivar list against those in the implementation. 2174 // names and types must match. 2175 // 2176 unsigned j = 0; 2177 ObjCInterfaceDecl::ivar_iterator 2178 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 2179 for (; numIvars > 0 && IVI != IVE; ++IVI) { 2180 ObjCIvarDecl* ImplIvar = ivars[j++]; 2181 ObjCIvarDecl* ClsIvar = *IVI; 2182 assert (ImplIvar && "missing implementation ivar"); 2183 assert (ClsIvar && "missing class ivar"); 2184 2185 // First, make sure the types match. 2186 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 2187 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 2188 << ImplIvar->getIdentifier() 2189 << ImplIvar->getType() << ClsIvar->getType(); 2190 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2191 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 2192 ImplIvar->getBitWidthValue(Context) != 2193 ClsIvar->getBitWidthValue(Context)) { 2194 Diag(ImplIvar->getBitWidth()->getBeginLoc(), 2195 diag::err_conflicting_ivar_bitwidth) 2196 << ImplIvar->getIdentifier(); 2197 Diag(ClsIvar->getBitWidth()->getBeginLoc(), 2198 diag::note_previous_definition); 2199 } 2200 // Make sure the names are identical. 2201 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 2202 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 2203 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 2204 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2205 } 2206 --numIvars; 2207 } 2208 2209 if (numIvars > 0) 2210 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); 2211 else if (IVI != IVE) 2212 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); 2213 } 2214 2215 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, 2216 ObjCMethodDecl *method, 2217 bool &IncompleteImpl, 2218 unsigned DiagID, 2219 NamedDecl *NeededFor = nullptr) { 2220 // No point warning no definition of method which is 'unavailable'. 2221 if (method->getAvailability() == AR_Unavailable) 2222 return; 2223 2224 // FIXME: For now ignore 'IncompleteImpl'. 2225 // Previously we grouped all unimplemented methods under a single 2226 // warning, but some users strongly voiced that they would prefer 2227 // separate warnings. We will give that approach a try, as that 2228 // matches what we do with protocols. 2229 { 2230 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID); 2231 B << method; 2232 if (NeededFor) 2233 B << NeededFor; 2234 } 2235 2236 // Issue a note to the original declaration. 2237 SourceLocation MethodLoc = method->getBeginLoc(); 2238 if (MethodLoc.isValid()) 2239 S.Diag(MethodLoc, diag::note_method_declared_at) << method; 2240 } 2241 2242 /// Determines if type B can be substituted for type A. Returns true if we can 2243 /// guarantee that anything that the user will do to an object of type A can 2244 /// also be done to an object of type B. This is trivially true if the two 2245 /// types are the same, or if B is a subclass of A. It becomes more complex 2246 /// in cases where protocols are involved. 2247 /// 2248 /// Object types in Objective-C describe the minimum requirements for an 2249 /// object, rather than providing a complete description of a type. For 2250 /// example, if A is a subclass of B, then B* may refer to an instance of A. 2251 /// The principle of substitutability means that we may use an instance of A 2252 /// anywhere that we may use an instance of B - it will implement all of the 2253 /// ivars of B and all of the methods of B. 2254 /// 2255 /// This substitutability is important when type checking methods, because 2256 /// the implementation may have stricter type definitions than the interface. 2257 /// The interface specifies minimum requirements, but the implementation may 2258 /// have more accurate ones. For example, a method may privately accept 2259 /// instances of B, but only publish that it accepts instances of A. Any 2260 /// object passed to it will be type checked against B, and so will implicitly 2261 /// by a valid A*. Similarly, a method may return a subclass of the class that 2262 /// it is declared as returning. 2263 /// 2264 /// This is most important when considering subclassing. A method in a 2265 /// subclass must accept any object as an argument that its superclass's 2266 /// implementation accepts. It may, however, accept a more general type 2267 /// without breaking substitutability (i.e. you can still use the subclass 2268 /// anywhere that you can use the superclass, but not vice versa). The 2269 /// converse requirement applies to return types: the return type for a 2270 /// subclass method must be a valid object of the kind that the superclass 2271 /// advertises, but it may be specified more accurately. This avoids the need 2272 /// for explicit down-casting by callers. 2273 /// 2274 /// Note: This is a stricter requirement than for assignment. 2275 static bool isObjCTypeSubstitutable(ASTContext &Context, 2276 const ObjCObjectPointerType *A, 2277 const ObjCObjectPointerType *B, 2278 bool rejectId) { 2279 // Reject a protocol-unqualified id. 2280 if (rejectId && B->isObjCIdType()) return false; 2281 2282 // If B is a qualified id, then A must also be a qualified id and it must 2283 // implement all of the protocols in B. It may not be a qualified class. 2284 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 2285 // stricter definition so it is not substitutable for id<A>. 2286 if (B->isObjCQualifiedIdType()) { 2287 return A->isObjCQualifiedIdType() && 2288 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false); 2289 } 2290 2291 /* 2292 // id is a special type that bypasses type checking completely. We want a 2293 // warning when it is used in one place but not another. 2294 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 2295 2296 2297 // If B is a qualified id, then A must also be a qualified id (which it isn't 2298 // if we've got this far) 2299 if (B->isObjCQualifiedIdType()) return false; 2300 */ 2301 2302 // Now we know that A and B are (potentially-qualified) class types. The 2303 // normal rules for assignment apply. 2304 return Context.canAssignObjCInterfaces(A, B); 2305 } 2306 2307 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 2308 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 2309 } 2310 2311 /// Determine whether two set of Objective-C declaration qualifiers conflict. 2312 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, 2313 Decl::ObjCDeclQualifier y) { 2314 return (x & ~Decl::OBJC_TQ_CSNullability) != 2315 (y & ~Decl::OBJC_TQ_CSNullability); 2316 } 2317 2318 static bool CheckMethodOverrideReturn(Sema &S, 2319 ObjCMethodDecl *MethodImpl, 2320 ObjCMethodDecl *MethodDecl, 2321 bool IsProtocolMethodDecl, 2322 bool IsOverridingMode, 2323 bool Warn) { 2324 if (IsProtocolMethodDecl && 2325 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(), 2326 MethodImpl->getObjCDeclQualifier())) { 2327 if (Warn) { 2328 S.Diag(MethodImpl->getLocation(), 2329 (IsOverridingMode 2330 ? diag::warn_conflicting_overriding_ret_type_modifiers 2331 : diag::warn_conflicting_ret_type_modifiers)) 2332 << MethodImpl->getDeclName() 2333 << MethodImpl->getReturnTypeSourceRange(); 2334 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 2335 << MethodDecl->getReturnTypeSourceRange(); 2336 } 2337 else 2338 return false; 2339 } 2340 if (Warn && IsOverridingMode && 2341 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && 2342 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(), 2343 MethodDecl->getReturnType(), 2344 false)) { 2345 auto nullabilityMethodImpl = 2346 *MethodImpl->getReturnType()->getNullability(S.Context); 2347 auto nullabilityMethodDecl = 2348 *MethodDecl->getReturnType()->getNullability(S.Context); 2349 S.Diag(MethodImpl->getLocation(), 2350 diag::warn_conflicting_nullability_attr_overriding_ret_types) 2351 << DiagNullabilityKind( 2352 nullabilityMethodImpl, 2353 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2354 != 0)) 2355 << DiagNullabilityKind( 2356 nullabilityMethodDecl, 2357 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2358 != 0)); 2359 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 2360 } 2361 2362 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(), 2363 MethodDecl->getReturnType())) 2364 return true; 2365 if (!Warn) 2366 return false; 2367 2368 unsigned DiagID = 2369 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 2370 : diag::warn_conflicting_ret_types; 2371 2372 // Mismatches between ObjC pointers go into a different warning 2373 // category, and sometimes they're even completely explicitly allowed. 2374 if (const ObjCObjectPointerType *ImplPtrTy = 2375 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { 2376 if (const ObjCObjectPointerType *IfacePtrTy = 2377 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { 2378 // Allow non-matching return types as long as they don't violate 2379 // the principle of substitutability. Specifically, we permit 2380 // return types that are subclasses of the declared return type, 2381 // or that are more-qualified versions of the declared type. 2382 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 2383 return false; 2384 2385 DiagID = 2386 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 2387 : diag::warn_non_covariant_ret_types; 2388 } 2389 } 2390 2391 S.Diag(MethodImpl->getLocation(), DiagID) 2392 << MethodImpl->getDeclName() << MethodDecl->getReturnType() 2393 << MethodImpl->getReturnType() 2394 << MethodImpl->getReturnTypeSourceRange(); 2395 S.Diag(MethodDecl->getLocation(), IsOverridingMode 2396 ? diag::note_previous_declaration 2397 : diag::note_previous_definition) 2398 << MethodDecl->getReturnTypeSourceRange(); 2399 return false; 2400 } 2401 2402 static bool CheckMethodOverrideParam(Sema &S, 2403 ObjCMethodDecl *MethodImpl, 2404 ObjCMethodDecl *MethodDecl, 2405 ParmVarDecl *ImplVar, 2406 ParmVarDecl *IfaceVar, 2407 bool IsProtocolMethodDecl, 2408 bool IsOverridingMode, 2409 bool Warn) { 2410 if (IsProtocolMethodDecl && 2411 objcModifiersConflict(ImplVar->getObjCDeclQualifier(), 2412 IfaceVar->getObjCDeclQualifier())) { 2413 if (Warn) { 2414 if (IsOverridingMode) 2415 S.Diag(ImplVar->getLocation(), 2416 diag::warn_conflicting_overriding_param_modifiers) 2417 << getTypeRange(ImplVar->getTypeSourceInfo()) 2418 << MethodImpl->getDeclName(); 2419 else S.Diag(ImplVar->getLocation(), 2420 diag::warn_conflicting_param_modifiers) 2421 << getTypeRange(ImplVar->getTypeSourceInfo()) 2422 << MethodImpl->getDeclName(); 2423 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 2424 << getTypeRange(IfaceVar->getTypeSourceInfo()); 2425 } 2426 else 2427 return false; 2428 } 2429 2430 QualType ImplTy = ImplVar->getType(); 2431 QualType IfaceTy = IfaceVar->getType(); 2432 if (Warn && IsOverridingMode && 2433 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && 2434 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) { 2435 S.Diag(ImplVar->getLocation(), 2436 diag::warn_conflicting_nullability_attr_overriding_param_types) 2437 << DiagNullabilityKind( 2438 *ImplTy->getNullability(S.Context), 2439 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2440 != 0)) 2441 << DiagNullabilityKind( 2442 *IfaceTy->getNullability(S.Context), 2443 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2444 != 0)); 2445 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration); 2446 } 2447 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 2448 return true; 2449 2450 if (!Warn) 2451 return false; 2452 unsigned DiagID = 2453 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 2454 : diag::warn_conflicting_param_types; 2455 2456 // Mismatches between ObjC pointers go into a different warning 2457 // category, and sometimes they're even completely explicitly allowed.. 2458 if (const ObjCObjectPointerType *ImplPtrTy = 2459 ImplTy->getAs<ObjCObjectPointerType>()) { 2460 if (const ObjCObjectPointerType *IfacePtrTy = 2461 IfaceTy->getAs<ObjCObjectPointerType>()) { 2462 // Allow non-matching argument types as long as they don't 2463 // violate the principle of substitutability. Specifically, the 2464 // implementation must accept any objects that the superclass 2465 // accepts, however it may also accept others. 2466 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 2467 return false; 2468 2469 DiagID = 2470 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 2471 : diag::warn_non_contravariant_param_types; 2472 } 2473 } 2474 2475 S.Diag(ImplVar->getLocation(), DiagID) 2476 << getTypeRange(ImplVar->getTypeSourceInfo()) 2477 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 2478 S.Diag(IfaceVar->getLocation(), 2479 (IsOverridingMode ? diag::note_previous_declaration 2480 : diag::note_previous_definition)) 2481 << getTypeRange(IfaceVar->getTypeSourceInfo()); 2482 return false; 2483 } 2484 2485 /// In ARC, check whether the conventional meanings of the two methods 2486 /// match. If they don't, it's a hard error. 2487 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 2488 ObjCMethodDecl *decl) { 2489 ObjCMethodFamily implFamily = impl->getMethodFamily(); 2490 ObjCMethodFamily declFamily = decl->getMethodFamily(); 2491 if (implFamily == declFamily) return false; 2492 2493 // Since conventions are sorted by selector, the only possibility is 2494 // that the types differ enough to cause one selector or the other 2495 // to fall out of the family. 2496 assert(implFamily == OMF_None || declFamily == OMF_None); 2497 2498 // No further diagnostics required on invalid declarations. 2499 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 2500 2501 const ObjCMethodDecl *unmatched = impl; 2502 ObjCMethodFamily family = declFamily; 2503 unsigned errorID = diag::err_arc_lost_method_convention; 2504 unsigned noteID = diag::note_arc_lost_method_convention; 2505 if (declFamily == OMF_None) { 2506 unmatched = decl; 2507 family = implFamily; 2508 errorID = diag::err_arc_gained_method_convention; 2509 noteID = diag::note_arc_gained_method_convention; 2510 } 2511 2512 // Indexes into a %select clause in the diagnostic. 2513 enum FamilySelector { 2514 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 2515 }; 2516 FamilySelector familySelector = FamilySelector(); 2517 2518 switch (family) { 2519 case OMF_None: llvm_unreachable("logic error, no method convention"); 2520 case OMF_retain: 2521 case OMF_release: 2522 case OMF_autorelease: 2523 case OMF_dealloc: 2524 case OMF_finalize: 2525 case OMF_retainCount: 2526 case OMF_self: 2527 case OMF_initialize: 2528 case OMF_performSelector: 2529 // Mismatches for these methods don't change ownership 2530 // conventions, so we don't care. 2531 return false; 2532 2533 case OMF_init: familySelector = F_init; break; 2534 case OMF_alloc: familySelector = F_alloc; break; 2535 case OMF_copy: familySelector = F_copy; break; 2536 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 2537 case OMF_new: familySelector = F_new; break; 2538 } 2539 2540 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 2541 ReasonSelector reasonSelector; 2542 2543 // The only reason these methods don't fall within their families is 2544 // due to unusual result types. 2545 if (unmatched->getReturnType()->isObjCObjectPointerType()) { 2546 reasonSelector = R_UnrelatedReturn; 2547 } else { 2548 reasonSelector = R_NonObjectReturn; 2549 } 2550 2551 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); 2552 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); 2553 2554 return true; 2555 } 2556 2557 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 2558 ObjCMethodDecl *MethodDecl, 2559 bool IsProtocolMethodDecl) { 2560 if (getLangOpts().ObjCAutoRefCount && 2561 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 2562 return; 2563 2564 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 2565 IsProtocolMethodDecl, false, 2566 true); 2567 2568 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 2569 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 2570 EF = MethodDecl->param_end(); 2571 IM != EM && IF != EF; ++IM, ++IF) { 2572 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 2573 IsProtocolMethodDecl, false, true); 2574 } 2575 2576 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 2577 Diag(ImpMethodDecl->getLocation(), 2578 diag::warn_conflicting_variadic); 2579 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 2580 } 2581 } 2582 2583 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 2584 ObjCMethodDecl *Overridden, 2585 bool IsProtocolMethodDecl) { 2586 2587 CheckMethodOverrideReturn(*this, Method, Overridden, 2588 IsProtocolMethodDecl, true, 2589 true); 2590 2591 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 2592 IF = Overridden->param_begin(), EM = Method->param_end(), 2593 EF = Overridden->param_end(); 2594 IM != EM && IF != EF; ++IM, ++IF) { 2595 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 2596 IsProtocolMethodDecl, true, true); 2597 } 2598 2599 if (Method->isVariadic() != Overridden->isVariadic()) { 2600 Diag(Method->getLocation(), 2601 diag::warn_conflicting_overriding_variadic); 2602 Diag(Overridden->getLocation(), diag::note_previous_declaration); 2603 } 2604 } 2605 2606 /// WarnExactTypedMethods - This routine issues a warning if method 2607 /// implementation declaration matches exactly that of its declaration. 2608 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 2609 ObjCMethodDecl *MethodDecl, 2610 bool IsProtocolMethodDecl) { 2611 // don't issue warning when protocol method is optional because primary 2612 // class is not required to implement it and it is safe for protocol 2613 // to implement it. 2614 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 2615 return; 2616 // don't issue warning when primary class's method is 2617 // depecated/unavailable. 2618 if (MethodDecl->hasAttr<UnavailableAttr>() || 2619 MethodDecl->hasAttr<DeprecatedAttr>()) 2620 return; 2621 2622 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 2623 IsProtocolMethodDecl, false, false); 2624 if (match) 2625 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 2626 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 2627 EF = MethodDecl->param_end(); 2628 IM != EM && IF != EF; ++IM, ++IF) { 2629 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 2630 *IM, *IF, 2631 IsProtocolMethodDecl, false, false); 2632 if (!match) 2633 break; 2634 } 2635 if (match) 2636 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 2637 if (match) 2638 match = !(MethodDecl->isClassMethod() && 2639 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 2640 2641 if (match) { 2642 Diag(ImpMethodDecl->getLocation(), 2643 diag::warn_category_method_impl_match); 2644 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 2645 << MethodDecl->getDeclName(); 2646 } 2647 } 2648 2649 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 2650 /// improve the efficiency of selector lookups and type checking by associating 2651 /// with each protocol / interface / category the flattened instance tables. If 2652 /// we used an immutable set to keep the table then it wouldn't add significant 2653 /// memory cost and it would be handy for lookups. 2654 2655 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; 2656 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; 2657 2658 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, 2659 ProtocolNameSet &PNS) { 2660 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) 2661 PNS.insert(PDecl->getIdentifier()); 2662 for (const auto *PI : PDecl->protocols()) 2663 findProtocolsWithExplicitImpls(PI, PNS); 2664 } 2665 2666 /// Recursively populates a set with all conformed protocols in a class 2667 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' 2668 /// attribute. 2669 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, 2670 ProtocolNameSet &PNS) { 2671 if (!Super) 2672 return; 2673 2674 for (const auto *I : Super->all_referenced_protocols()) 2675 findProtocolsWithExplicitImpls(I, PNS); 2676 2677 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS); 2678 } 2679 2680 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 2681 /// Declared in protocol, and those referenced by it. 2682 static void CheckProtocolMethodDefs(Sema &S, 2683 SourceLocation ImpLoc, 2684 ObjCProtocolDecl *PDecl, 2685 bool& IncompleteImpl, 2686 const Sema::SelectorSet &InsMap, 2687 const Sema::SelectorSet &ClsMap, 2688 ObjCContainerDecl *CDecl, 2689 LazyProtocolNameSet &ProtocolsExplictImpl) { 2690 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 2691 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 2692 : dyn_cast<ObjCInterfaceDecl>(CDecl); 2693 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 2694 2695 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 2696 ObjCInterfaceDecl *NSIDecl = nullptr; 2697 2698 // If this protocol is marked 'objc_protocol_requires_explicit_implementation' 2699 // then we should check if any class in the super class hierarchy also 2700 // conforms to this protocol, either directly or via protocol inheritance. 2701 // If so, we can skip checking this protocol completely because we 2702 // know that a parent class already satisfies this protocol. 2703 // 2704 // Note: we could generalize this logic for all protocols, and merely 2705 // add the limit on looking at the super class chain for just 2706 // specially marked protocols. This may be a good optimization. This 2707 // change is restricted to 'objc_protocol_requires_explicit_implementation' 2708 // protocols for now for controlled evaluation. 2709 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { 2710 if (!ProtocolsExplictImpl) { 2711 ProtocolsExplictImpl.reset(new ProtocolNameSet); 2712 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl); 2713 } 2714 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) != 2715 ProtocolsExplictImpl->end()) 2716 return; 2717 2718 // If no super class conforms to the protocol, we should not search 2719 // for methods in the super class to implicitly satisfy the protocol. 2720 Super = nullptr; 2721 } 2722 2723 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { 2724 // check to see if class implements forwardInvocation method and objects 2725 // of this class are derived from 'NSProxy' so that to forward requests 2726 // from one object to another. 2727 // Under such conditions, which means that every method possible is 2728 // implemented in the class, we should not issue "Method definition not 2729 // found" warnings. 2730 // FIXME: Use a general GetUnarySelector method for this. 2731 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation"); 2732 Selector fISelector = S.Context.Selectors.getSelector(1, &II); 2733 if (InsMap.count(fISelector)) 2734 // Is IDecl derived from 'NSProxy'? If so, no instance methods 2735 // need be implemented in the implementation. 2736 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy")); 2737 } 2738 2739 // If this is a forward protocol declaration, get its definition. 2740 if (!PDecl->isThisDeclarationADefinition() && 2741 PDecl->getDefinition()) 2742 PDecl = PDecl->getDefinition(); 2743 2744 // If a method lookup fails locally we still need to look and see if 2745 // the method was implemented by a base class or an inherited 2746 // protocol. This lookup is slow, but occurs rarely in correct code 2747 // and otherwise would terminate in a warning. 2748 2749 // check unimplemented instance methods. 2750 if (!NSIDecl) 2751 for (auto *method : PDecl->instance_methods()) { 2752 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 2753 !method->isPropertyAccessor() && 2754 !InsMap.count(method->getSelector()) && 2755 (!Super || !Super->lookupMethod(method->getSelector(), 2756 true /* instance */, 2757 false /* shallowCategory */, 2758 true /* followsSuper */, 2759 nullptr /* category */))) { 2760 // If a method is not implemented in the category implementation but 2761 // has been declared in its primary class, superclass, 2762 // or in one of their protocols, no need to issue the warning. 2763 // This is because method will be implemented in the primary class 2764 // or one of its super class implementation. 2765 2766 // Ugly, but necessary. Method declared in protocol might have 2767 // have been synthesized due to a property declared in the class which 2768 // uses the protocol. 2769 if (ObjCMethodDecl *MethodInClass = 2770 IDecl->lookupMethod(method->getSelector(), 2771 true /* instance */, 2772 true /* shallowCategoryLookup */, 2773 false /* followSuper */)) 2774 if (C || MethodInClass->isPropertyAccessor()) 2775 continue; 2776 unsigned DIAG = diag::warn_unimplemented_protocol_method; 2777 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 2778 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, 2779 PDecl); 2780 } 2781 } 2782 } 2783 // check unimplemented class methods 2784 for (auto *method : PDecl->class_methods()) { 2785 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 2786 !ClsMap.count(method->getSelector()) && 2787 (!Super || !Super->lookupMethod(method->getSelector(), 2788 false /* class method */, 2789 false /* shallowCategoryLookup */, 2790 true /* followSuper */, 2791 nullptr /* category */))) { 2792 // See above comment for instance method lookups. 2793 if (C && IDecl->lookupMethod(method->getSelector(), 2794 false /* class */, 2795 true /* shallowCategoryLookup */, 2796 false /* followSuper */)) 2797 continue; 2798 2799 unsigned DIAG = diag::warn_unimplemented_protocol_method; 2800 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 2801 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl); 2802 } 2803 } 2804 } 2805 // Check on this protocols's referenced protocols, recursively. 2806 for (auto *PI : PDecl->protocols()) 2807 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap, 2808 CDecl, ProtocolsExplictImpl); 2809 } 2810 2811 /// MatchAllMethodDeclarations - Check methods declared in interface 2812 /// or protocol against those declared in their implementations. 2813 /// 2814 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 2815 const SelectorSet &ClsMap, 2816 SelectorSet &InsMapSeen, 2817 SelectorSet &ClsMapSeen, 2818 ObjCImplDecl* IMPDecl, 2819 ObjCContainerDecl* CDecl, 2820 bool &IncompleteImpl, 2821 bool ImmediateClass, 2822 bool WarnCategoryMethodImpl) { 2823 // Check and see if instance methods in class interface have been 2824 // implemented in the implementation class. If so, their types match. 2825 for (auto *I : CDecl->instance_methods()) { 2826 if (!InsMapSeen.insert(I->getSelector()).second) 2827 continue; 2828 if (!I->isPropertyAccessor() && 2829 !InsMap.count(I->getSelector())) { 2830 if (ImmediateClass) 2831 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 2832 diag::warn_undef_method_impl); 2833 continue; 2834 } else { 2835 ObjCMethodDecl *ImpMethodDecl = 2836 IMPDecl->getInstanceMethod(I->getSelector()); 2837 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && 2838 "Expected to find the method through lookup as well"); 2839 // ImpMethodDecl may be null as in a @dynamic property. 2840 if (ImpMethodDecl) { 2841 // Skip property accessor function stubs. 2842 if (ImpMethodDecl->isSynthesizedAccessorStub()) 2843 continue; 2844 if (!WarnCategoryMethodImpl) 2845 WarnConflictingTypedMethods(ImpMethodDecl, I, 2846 isa<ObjCProtocolDecl>(CDecl)); 2847 else if (!I->isPropertyAccessor()) 2848 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 2849 } 2850 } 2851 } 2852 2853 // Check and see if class methods in class interface have been 2854 // implemented in the implementation class. If so, their types match. 2855 for (auto *I : CDecl->class_methods()) { 2856 if (!ClsMapSeen.insert(I->getSelector()).second) 2857 continue; 2858 if (!I->isPropertyAccessor() && 2859 !ClsMap.count(I->getSelector())) { 2860 if (ImmediateClass) 2861 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 2862 diag::warn_undef_method_impl); 2863 } else { 2864 ObjCMethodDecl *ImpMethodDecl = 2865 IMPDecl->getClassMethod(I->getSelector()); 2866 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && 2867 "Expected to find the method through lookup as well"); 2868 // ImpMethodDecl may be null as in a @dynamic property. 2869 if (ImpMethodDecl) { 2870 // Skip property accessor function stubs. 2871 if (ImpMethodDecl->isSynthesizedAccessorStub()) 2872 continue; 2873 if (!WarnCategoryMethodImpl) 2874 WarnConflictingTypedMethods(ImpMethodDecl, I, 2875 isa<ObjCProtocolDecl>(CDecl)); 2876 else if (!I->isPropertyAccessor()) 2877 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 2878 } 2879 } 2880 } 2881 2882 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) { 2883 // Also, check for methods declared in protocols inherited by 2884 // this protocol. 2885 for (auto *PI : PD->protocols()) 2886 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2887 IMPDecl, PI, IncompleteImpl, false, 2888 WarnCategoryMethodImpl); 2889 } 2890 2891 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 2892 // when checking that methods in implementation match their declaration, 2893 // i.e. when WarnCategoryMethodImpl is false, check declarations in class 2894 // extension; as well as those in categories. 2895 if (!WarnCategoryMethodImpl) { 2896 for (auto *Cat : I->visible_categories()) 2897 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2898 IMPDecl, Cat, IncompleteImpl, 2899 ImmediateClass && Cat->IsClassExtension(), 2900 WarnCategoryMethodImpl); 2901 } else { 2902 // Also methods in class extensions need be looked at next. 2903 for (auto *Ext : I->visible_extensions()) 2904 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2905 IMPDecl, Ext, IncompleteImpl, false, 2906 WarnCategoryMethodImpl); 2907 } 2908 2909 // Check for any implementation of a methods declared in protocol. 2910 for (auto *PI : I->all_referenced_protocols()) 2911 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2912 IMPDecl, PI, IncompleteImpl, false, 2913 WarnCategoryMethodImpl); 2914 2915 // FIXME. For now, we are not checking for exact match of methods 2916 // in category implementation and its primary class's super class. 2917 if (!WarnCategoryMethodImpl && I->getSuperClass()) 2918 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2919 IMPDecl, 2920 I->getSuperClass(), IncompleteImpl, false); 2921 } 2922 } 2923 2924 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 2925 /// category matches with those implemented in its primary class and 2926 /// warns each time an exact match is found. 2927 void Sema::CheckCategoryVsClassMethodMatches( 2928 ObjCCategoryImplDecl *CatIMPDecl) { 2929 // Get category's primary class. 2930 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 2931 if (!CatDecl) 2932 return; 2933 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 2934 if (!IDecl) 2935 return; 2936 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); 2937 SelectorSet InsMap, ClsMap; 2938 2939 for (const auto *I : CatIMPDecl->instance_methods()) { 2940 Selector Sel = I->getSelector(); 2941 // When checking for methods implemented in the category, skip over 2942 // those declared in category class's super class. This is because 2943 // the super class must implement the method. 2944 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) 2945 continue; 2946 InsMap.insert(Sel); 2947 } 2948 2949 for (const auto *I : CatIMPDecl->class_methods()) { 2950 Selector Sel = I->getSelector(); 2951 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) 2952 continue; 2953 ClsMap.insert(Sel); 2954 } 2955 if (InsMap.empty() && ClsMap.empty()) 2956 return; 2957 2958 SelectorSet InsMapSeen, ClsMapSeen; 2959 bool IncompleteImpl = false; 2960 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2961 CatIMPDecl, IDecl, 2962 IncompleteImpl, false, 2963 true /*WarnCategoryMethodImpl*/); 2964 } 2965 2966 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 2967 ObjCContainerDecl* CDecl, 2968 bool IncompleteImpl) { 2969 SelectorSet InsMap; 2970 // Check and see if instance methods in class interface have been 2971 // implemented in the implementation class. 2972 for (const auto *I : IMPDecl->instance_methods()) 2973 InsMap.insert(I->getSelector()); 2974 2975 // Add the selectors for getters/setters of @dynamic properties. 2976 for (const auto *PImpl : IMPDecl->property_impls()) { 2977 // We only care about @dynamic implementations. 2978 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) 2979 continue; 2980 2981 const auto *P = PImpl->getPropertyDecl(); 2982 if (!P) continue; 2983 2984 InsMap.insert(P->getGetterName()); 2985 if (!P->getSetterName().isNull()) 2986 InsMap.insert(P->getSetterName()); 2987 } 2988 2989 // Check and see if properties declared in the interface have either 1) 2990 // an implementation or 2) there is a @synthesize/@dynamic implementation 2991 // of the property in the @implementation. 2992 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 2993 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && 2994 LangOpts.ObjCRuntime.isNonFragile() && 2995 !IDecl->isObjCRequiresPropertyDefs(); 2996 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); 2997 } 2998 2999 // Diagnose null-resettable synthesized setters. 3000 diagnoseNullResettableSynthesizedSetters(IMPDecl); 3001 3002 SelectorSet ClsMap; 3003 for (const auto *I : IMPDecl->class_methods()) 3004 ClsMap.insert(I->getSelector()); 3005 3006 // Check for type conflict of methods declared in a class/protocol and 3007 // its implementation; if any. 3008 SelectorSet InsMapSeen, ClsMapSeen; 3009 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 3010 IMPDecl, CDecl, 3011 IncompleteImpl, true); 3012 3013 // check all methods implemented in category against those declared 3014 // in its primary class. 3015 if (ObjCCategoryImplDecl *CatDecl = 3016 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 3017 CheckCategoryVsClassMethodMatches(CatDecl); 3018 3019 // Check the protocol list for unimplemented methods in the @implementation 3020 // class. 3021 // Check and see if class methods in class interface have been 3022 // implemented in the implementation class. 3023 3024 LazyProtocolNameSet ExplicitImplProtocols; 3025 3026 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 3027 for (auto *PI : I->all_referenced_protocols()) 3028 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl, 3029 InsMap, ClsMap, I, ExplicitImplProtocols); 3030 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 3031 // For extended class, unimplemented methods in its protocols will 3032 // be reported in the primary class. 3033 if (!C->IsClassExtension()) { 3034 for (auto *P : C->protocols()) 3035 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P, 3036 IncompleteImpl, InsMap, ClsMap, CDecl, 3037 ExplicitImplProtocols); 3038 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, 3039 /*SynthesizeProperties=*/false); 3040 } 3041 } else 3042 llvm_unreachable("invalid ObjCContainerDecl type."); 3043 } 3044 3045 Sema::DeclGroupPtrTy 3046 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 3047 IdentifierInfo **IdentList, 3048 SourceLocation *IdentLocs, 3049 ArrayRef<ObjCTypeParamList *> TypeParamLists, 3050 unsigned NumElts) { 3051 SmallVector<Decl *, 8> DeclsInGroup; 3052 for (unsigned i = 0; i != NumElts; ++i) { 3053 // Check for another declaration kind with the same name. 3054 NamedDecl *PrevDecl 3055 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 3056 LookupOrdinaryName, forRedeclarationInCurContext()); 3057 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 3058 // GCC apparently allows the following idiom: 3059 // 3060 // typedef NSObject < XCElementTogglerP > XCElementToggler; 3061 // @class XCElementToggler; 3062 // 3063 // Here we have chosen to ignore the forward class declaration 3064 // with a warning. Since this is the implied behavior. 3065 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 3066 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 3067 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 3068 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 3069 } else { 3070 // a forward class declaration matching a typedef name of a class refers 3071 // to the underlying class. Just ignore the forward class with a warning 3072 // as this will force the intended behavior which is to lookup the 3073 // typedef name. 3074 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 3075 Diag(AtClassLoc, diag::warn_forward_class_redefinition) 3076 << IdentList[i]; 3077 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 3078 continue; 3079 } 3080 } 3081 } 3082 3083 // Create a declaration to describe this forward declaration. 3084 ObjCInterfaceDecl *PrevIDecl 3085 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 3086 3087 IdentifierInfo *ClassName = IdentList[i]; 3088 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 3089 // A previous decl with a different name is because of 3090 // @compatibility_alias, for example: 3091 // \code 3092 // @class NewImage; 3093 // @compatibility_alias OldImage NewImage; 3094 // \endcode 3095 // A lookup for 'OldImage' will return the 'NewImage' decl. 3096 // 3097 // In such a case use the real declaration name, instead of the alias one, 3098 // otherwise we will break IdentifierResolver and redecls-chain invariants. 3099 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 3100 // has been aliased. 3101 ClassName = PrevIDecl->getIdentifier(); 3102 } 3103 3104 // If this forward declaration has type parameters, compare them with the 3105 // type parameters of the previous declaration. 3106 ObjCTypeParamList *TypeParams = TypeParamLists[i]; 3107 if (PrevIDecl && TypeParams) { 3108 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { 3109 // Check for consistency with the previous declaration. 3110 if (checkTypeParamListConsistency( 3111 *this, PrevTypeParams, TypeParams, 3112 TypeParamListContext::ForwardDeclaration)) { 3113 TypeParams = nullptr; 3114 } 3115 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 3116 // The @interface does not have type parameters. Complain. 3117 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class) 3118 << ClassName 3119 << TypeParams->getSourceRange(); 3120 Diag(Def->getLocation(), diag::note_defined_here) 3121 << ClassName; 3122 3123 TypeParams = nullptr; 3124 } 3125 } 3126 3127 ObjCInterfaceDecl *IDecl 3128 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 3129 ClassName, TypeParams, PrevIDecl, 3130 IdentLocs[i]); 3131 IDecl->setAtEndRange(IdentLocs[i]); 3132 3133 if (PrevIDecl) 3134 mergeDeclAttributes(IDecl, PrevIDecl); 3135 3136 PushOnScopeChains(IDecl, TUScope); 3137 CheckObjCDeclScope(IDecl); 3138 DeclsInGroup.push_back(IDecl); 3139 } 3140 3141 return BuildDeclaratorGroup(DeclsInGroup); 3142 } 3143 3144 static bool tryMatchRecordTypes(ASTContext &Context, 3145 Sema::MethodMatchStrategy strategy, 3146 const Type *left, const Type *right); 3147 3148 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 3149 QualType leftQT, QualType rightQT) { 3150 const Type *left = 3151 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 3152 const Type *right = 3153 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 3154 3155 if (left == right) return true; 3156 3157 // If we're doing a strict match, the types have to match exactly. 3158 if (strategy == Sema::MMS_strict) return false; 3159 3160 if (left->isIncompleteType() || right->isIncompleteType()) return false; 3161 3162 // Otherwise, use this absurdly complicated algorithm to try to 3163 // validate the basic, low-level compatibility of the two types. 3164 3165 // As a minimum, require the sizes and alignments to match. 3166 TypeInfo LeftTI = Context.getTypeInfo(left); 3167 TypeInfo RightTI = Context.getTypeInfo(right); 3168 if (LeftTI.Width != RightTI.Width) 3169 return false; 3170 3171 if (LeftTI.Align != RightTI.Align) 3172 return false; 3173 3174 // Consider all the kinds of non-dependent canonical types: 3175 // - functions and arrays aren't possible as return and parameter types 3176 3177 // - vector types of equal size can be arbitrarily mixed 3178 if (isa<VectorType>(left)) return isa<VectorType>(right); 3179 if (isa<VectorType>(right)) return false; 3180 3181 // - references should only match references of identical type 3182 // - structs, unions, and Objective-C objects must match more-or-less 3183 // exactly 3184 // - everything else should be a scalar 3185 if (!left->isScalarType() || !right->isScalarType()) 3186 return tryMatchRecordTypes(Context, strategy, left, right); 3187 3188 // Make scalars agree in kind, except count bools as chars, and group 3189 // all non-member pointers together. 3190 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 3191 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 3192 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 3193 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 3194 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 3195 leftSK = Type::STK_ObjCObjectPointer; 3196 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 3197 rightSK = Type::STK_ObjCObjectPointer; 3198 3199 // Note that data member pointers and function member pointers don't 3200 // intermix because of the size differences. 3201 3202 return (leftSK == rightSK); 3203 } 3204 3205 static bool tryMatchRecordTypes(ASTContext &Context, 3206 Sema::MethodMatchStrategy strategy, 3207 const Type *lt, const Type *rt) { 3208 assert(lt && rt && lt != rt); 3209 3210 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 3211 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 3212 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 3213 3214 // Require union-hood to match. 3215 if (left->isUnion() != right->isUnion()) return false; 3216 3217 // Require an exact match if either is non-POD. 3218 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 3219 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 3220 return false; 3221 3222 // Require size and alignment to match. 3223 TypeInfo LeftTI = Context.getTypeInfo(lt); 3224 TypeInfo RightTI = Context.getTypeInfo(rt); 3225 if (LeftTI.Width != RightTI.Width) 3226 return false; 3227 3228 if (LeftTI.Align != RightTI.Align) 3229 return false; 3230 3231 // Require fields to match. 3232 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 3233 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 3234 for (; li != le && ri != re; ++li, ++ri) { 3235 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 3236 return false; 3237 } 3238 return (li == le && ri == re); 3239 } 3240 3241 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 3242 /// returns true, or false, accordingly. 3243 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 3244 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 3245 const ObjCMethodDecl *right, 3246 MethodMatchStrategy strategy) { 3247 if (!matchTypes(Context, strategy, left->getReturnType(), 3248 right->getReturnType())) 3249 return false; 3250 3251 // If either is hidden, it is not considered to match. 3252 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible()) 3253 return false; 3254 3255 if (left->isDirectMethod() != right->isDirectMethod()) 3256 return false; 3257 3258 if (getLangOpts().ObjCAutoRefCount && 3259 (left->hasAttr<NSReturnsRetainedAttr>() 3260 != right->hasAttr<NSReturnsRetainedAttr>() || 3261 left->hasAttr<NSConsumesSelfAttr>() 3262 != right->hasAttr<NSConsumesSelfAttr>())) 3263 return false; 3264 3265 ObjCMethodDecl::param_const_iterator 3266 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 3267 re = right->param_end(); 3268 3269 for (; li != le && ri != re; ++li, ++ri) { 3270 assert(ri != right->param_end() && "Param mismatch"); 3271 const ParmVarDecl *lparm = *li, *rparm = *ri; 3272 3273 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 3274 return false; 3275 3276 if (getLangOpts().ObjCAutoRefCount && 3277 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 3278 return false; 3279 } 3280 return true; 3281 } 3282 3283 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, 3284 ObjCMethodDecl *MethodInList) { 3285 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); 3286 auto *MethodInListProtocol = 3287 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext()); 3288 // If this method belongs to a protocol but the method in list does not, or 3289 // vice versa, we say the context is not the same. 3290 if ((MethodProtocol && !MethodInListProtocol) || 3291 (!MethodProtocol && MethodInListProtocol)) 3292 return false; 3293 3294 if (MethodProtocol && MethodInListProtocol) 3295 return true; 3296 3297 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); 3298 ObjCInterfaceDecl *MethodInListInterface = 3299 MethodInList->getClassInterface(); 3300 return MethodInterface == MethodInListInterface; 3301 } 3302 3303 void Sema::addMethodToGlobalList(ObjCMethodList *List, 3304 ObjCMethodDecl *Method) { 3305 // Record at the head of the list whether there were 0, 1, or >= 2 methods 3306 // inside categories. 3307 if (ObjCCategoryDecl *CD = 3308 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) 3309 if (!CD->IsClassExtension() && List->getBits() < 2) 3310 List->setBits(List->getBits() + 1); 3311 3312 // If the list is empty, make it a singleton list. 3313 if (List->getMethod() == nullptr) { 3314 List->setMethod(Method); 3315 List->setNext(nullptr); 3316 return; 3317 } 3318 3319 // We've seen a method with this name, see if we have already seen this type 3320 // signature. 3321 ObjCMethodList *Previous = List; 3322 ObjCMethodList *ListWithSameDeclaration = nullptr; 3323 for (; List; Previous = List, List = List->getNext()) { 3324 // If we are building a module, keep all of the methods. 3325 if (getLangOpts().isCompilingModule()) 3326 continue; 3327 3328 bool SameDeclaration = MatchTwoMethodDeclarations(Method, 3329 List->getMethod()); 3330 // Looking for method with a type bound requires the correct context exists. 3331 // We need to insert a method into the list if the context is different. 3332 // If the method's declaration matches the list 3333 // a> the method belongs to a different context: we need to insert it, in 3334 // order to emit the availability message, we need to prioritize over 3335 // availability among the methods with the same declaration. 3336 // b> the method belongs to the same context: there is no need to insert a 3337 // new entry. 3338 // If the method's declaration does not match the list, we insert it to the 3339 // end. 3340 if (!SameDeclaration || 3341 !isMethodContextSameForKindofLookup(Method, List->getMethod())) { 3342 // Even if two method types do not match, we would like to say 3343 // there is more than one declaration so unavailability/deprecated 3344 // warning is not too noisy. 3345 if (!Method->isDefined()) 3346 List->setHasMoreThanOneDecl(true); 3347 3348 // For methods with the same declaration, the one that is deprecated 3349 // should be put in the front for better diagnostics. 3350 if (Method->isDeprecated() && SameDeclaration && 3351 !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) 3352 ListWithSameDeclaration = List; 3353 3354 if (Method->isUnavailable() && SameDeclaration && 3355 !ListWithSameDeclaration && 3356 List->getMethod()->getAvailability() < AR_Deprecated) 3357 ListWithSameDeclaration = List; 3358 continue; 3359 } 3360 3361 ObjCMethodDecl *PrevObjCMethod = List->getMethod(); 3362 3363 // Propagate the 'defined' bit. 3364 if (Method->isDefined()) 3365 PrevObjCMethod->setDefined(true); 3366 else { 3367 // Objective-C doesn't allow an @interface for a class after its 3368 // @implementation. So if Method is not defined and there already is 3369 // an entry for this type signature, Method has to be for a different 3370 // class than PrevObjCMethod. 3371 List->setHasMoreThanOneDecl(true); 3372 } 3373 3374 // If a method is deprecated, push it in the global pool. 3375 // This is used for better diagnostics. 3376 if (Method->isDeprecated()) { 3377 if (!PrevObjCMethod->isDeprecated()) 3378 List->setMethod(Method); 3379 } 3380 // If the new method is unavailable, push it into global pool 3381 // unless previous one is deprecated. 3382 if (Method->isUnavailable()) { 3383 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 3384 List->setMethod(Method); 3385 } 3386 3387 return; 3388 } 3389 3390 // We have a new signature for an existing method - add it. 3391 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 3392 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 3393 3394 // We insert it right before ListWithSameDeclaration. 3395 if (ListWithSameDeclaration) { 3396 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); 3397 // FIXME: should we clear the other bits in ListWithSameDeclaration? 3398 ListWithSameDeclaration->setMethod(Method); 3399 ListWithSameDeclaration->setNext(List); 3400 return; 3401 } 3402 3403 Previous->setNext(new (Mem) ObjCMethodList(Method)); 3404 } 3405 3406 /// Read the contents of the method pool for a given selector from 3407 /// external storage. 3408 void Sema::ReadMethodPool(Selector Sel) { 3409 assert(ExternalSource && "We need an external AST source"); 3410 ExternalSource->ReadMethodPool(Sel); 3411 } 3412 3413 void Sema::updateOutOfDateSelector(Selector Sel) { 3414 if (!ExternalSource) 3415 return; 3416 ExternalSource->updateOutOfDateSelector(Sel); 3417 } 3418 3419 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 3420 bool instance) { 3421 // Ignore methods of invalid containers. 3422 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 3423 return; 3424 3425 if (ExternalSource) 3426 ReadMethodPool(Method->getSelector()); 3427 3428 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 3429 if (Pos == MethodPool.end()) 3430 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 3431 GlobalMethods())).first; 3432 3433 Method->setDefined(impl); 3434 3435 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 3436 addMethodToGlobalList(&Entry, Method); 3437 } 3438 3439 /// Determines if this is an "acceptable" loose mismatch in the global 3440 /// method pool. This exists mostly as a hack to get around certain 3441 /// global mismatches which we can't afford to make warnings / errors. 3442 /// Really, what we want is a way to take a method out of the global 3443 /// method pool. 3444 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 3445 ObjCMethodDecl *other) { 3446 if (!chosen->isInstanceMethod()) 3447 return false; 3448 3449 if (chosen->isDirectMethod() != other->isDirectMethod()) 3450 return false; 3451 3452 Selector sel = chosen->getSelector(); 3453 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 3454 return false; 3455 3456 // Don't complain about mismatches for -length if the method we 3457 // chose has an integral result type. 3458 return (chosen->getReturnType()->isIntegerType()); 3459 } 3460 3461 /// Return true if the given method is wthin the type bound. 3462 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, 3463 const ObjCObjectType *TypeBound) { 3464 if (!TypeBound) 3465 return true; 3466 3467 if (TypeBound->isObjCId()) 3468 // FIXME: should we handle the case of bounding to id<A, B> differently? 3469 return true; 3470 3471 auto *BoundInterface = TypeBound->getInterface(); 3472 assert(BoundInterface && "unexpected object type!"); 3473 3474 // Check if the Method belongs to a protocol. We should allow any method 3475 // defined in any protocol, because any subclass could adopt the protocol. 3476 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); 3477 if (MethodProtocol) { 3478 return true; 3479 } 3480 3481 // If the Method belongs to a class, check if it belongs to the class 3482 // hierarchy of the class bound. 3483 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { 3484 // We allow methods declared within classes that are part of the hierarchy 3485 // of the class bound (superclass of, subclass of, or the same as the class 3486 // bound). 3487 return MethodInterface == BoundInterface || 3488 MethodInterface->isSuperClassOf(BoundInterface) || 3489 BoundInterface->isSuperClassOf(MethodInterface); 3490 } 3491 llvm_unreachable("unknown method context"); 3492 } 3493 3494 /// We first select the type of the method: Instance or Factory, then collect 3495 /// all methods with that type. 3496 bool Sema::CollectMultipleMethodsInGlobalPool( 3497 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, 3498 bool InstanceFirst, bool CheckTheOther, 3499 const ObjCObjectType *TypeBound) { 3500 if (ExternalSource) 3501 ReadMethodPool(Sel); 3502 3503 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3504 if (Pos == MethodPool.end()) 3505 return false; 3506 3507 // Gather the non-hidden methods. 3508 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : 3509 Pos->second.second; 3510 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) 3511 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { 3512 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) 3513 Methods.push_back(M->getMethod()); 3514 } 3515 3516 // Return if we find any method with the desired kind. 3517 if (!Methods.empty()) 3518 return Methods.size() > 1; 3519 3520 if (!CheckTheOther) 3521 return false; 3522 3523 // Gather the other kind. 3524 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : 3525 Pos->second.first; 3526 for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) 3527 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { 3528 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) 3529 Methods.push_back(M->getMethod()); 3530 } 3531 3532 return Methods.size() > 1; 3533 } 3534 3535 bool Sema::AreMultipleMethodsInGlobalPool( 3536 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, 3537 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { 3538 // Diagnose finding more than one method in global pool. 3539 SmallVector<ObjCMethodDecl *, 4> FilteredMethods; 3540 FilteredMethods.push_back(BestMethod); 3541 3542 for (auto *M : Methods) 3543 if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) 3544 FilteredMethods.push_back(M); 3545 3546 if (FilteredMethods.size() > 1) 3547 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R, 3548 receiverIdOrClass); 3549 3550 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3551 // Test for no method in the pool which should not trigger any warning by 3552 // caller. 3553 if (Pos == MethodPool.end()) 3554 return true; 3555 ObjCMethodList &MethList = 3556 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; 3557 return MethList.hasMoreThanOneDecl(); 3558 } 3559 3560 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 3561 bool receiverIdOrClass, 3562 bool instance) { 3563 if (ExternalSource) 3564 ReadMethodPool(Sel); 3565 3566 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3567 if (Pos == MethodPool.end()) 3568 return nullptr; 3569 3570 // Gather the non-hidden methods. 3571 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 3572 SmallVector<ObjCMethodDecl *, 4> Methods; 3573 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { 3574 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) 3575 return M->getMethod(); 3576 } 3577 return nullptr; 3578 } 3579 3580 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods, 3581 Selector Sel, SourceRange R, 3582 bool receiverIdOrClass) { 3583 // We found multiple methods, so we may have to complain. 3584 bool issueDiagnostic = false, issueError = false; 3585 3586 // We support a warning which complains about *any* difference in 3587 // method signature. 3588 bool strictSelectorMatch = 3589 receiverIdOrClass && 3590 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); 3591 if (strictSelectorMatch) { 3592 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3593 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { 3594 issueDiagnostic = true; 3595 break; 3596 } 3597 } 3598 } 3599 3600 // If we didn't see any strict differences, we won't see any loose 3601 // differences. In ARC, however, we also need to check for loose 3602 // mismatches, because most of them are errors. 3603 if (!strictSelectorMatch || 3604 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 3605 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3606 // This checks if the methods differ in type mismatch. 3607 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && 3608 !isAcceptableMethodMismatch(Methods[0], Methods[I])) { 3609 issueDiagnostic = true; 3610 if (getLangOpts().ObjCAutoRefCount) 3611 issueError = true; 3612 break; 3613 } 3614 } 3615 3616 if (issueDiagnostic) { 3617 if (issueError) 3618 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 3619 else if (strictSelectorMatch) 3620 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 3621 else 3622 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 3623 3624 Diag(Methods[0]->getBeginLoc(), 3625 issueError ? diag::note_possibility : diag::note_using) 3626 << Methods[0]->getSourceRange(); 3627 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3628 Diag(Methods[I]->getBeginLoc(), diag::note_also_found) 3629 << Methods[I]->getSourceRange(); 3630 } 3631 } 3632 } 3633 3634 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 3635 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3636 if (Pos == MethodPool.end()) 3637 return nullptr; 3638 3639 GlobalMethods &Methods = Pos->second; 3640 for (const ObjCMethodList *Method = &Methods.first; Method; 3641 Method = Method->getNext()) 3642 if (Method->getMethod() && 3643 (Method->getMethod()->isDefined() || 3644 Method->getMethod()->isPropertyAccessor())) 3645 return Method->getMethod(); 3646 3647 for (const ObjCMethodList *Method = &Methods.second; Method; 3648 Method = Method->getNext()) 3649 if (Method->getMethod() && 3650 (Method->getMethod()->isDefined() || 3651 Method->getMethod()->isPropertyAccessor())) 3652 return Method->getMethod(); 3653 return nullptr; 3654 } 3655 3656 static void 3657 HelperSelectorsForTypoCorrection( 3658 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, 3659 StringRef Typo, const ObjCMethodDecl * Method) { 3660 const unsigned MaxEditDistance = 1; 3661 unsigned BestEditDistance = MaxEditDistance + 1; 3662 std::string MethodName = Method->getSelector().getAsString(); 3663 3664 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size()); 3665 if (MinPossibleEditDistance > 0 && 3666 Typo.size() / MinPossibleEditDistance < 1) 3667 return; 3668 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance); 3669 if (EditDistance > MaxEditDistance) 3670 return; 3671 if (EditDistance == BestEditDistance) 3672 BestMethod.push_back(Method); 3673 else if (EditDistance < BestEditDistance) { 3674 BestMethod.clear(); 3675 BestMethod.push_back(Method); 3676 } 3677 } 3678 3679 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, 3680 QualType ObjectType) { 3681 if (ObjectType.isNull()) 3682 return true; 3683 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/)) 3684 return true; 3685 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 3686 nullptr; 3687 } 3688 3689 const ObjCMethodDecl * 3690 Sema::SelectorsForTypoCorrection(Selector Sel, 3691 QualType ObjectType) { 3692 unsigned NumArgs = Sel.getNumArgs(); 3693 SmallVector<const ObjCMethodDecl *, 8> Methods; 3694 bool ObjectIsId = true, ObjectIsClass = true; 3695 if (ObjectType.isNull()) 3696 ObjectIsId = ObjectIsClass = false; 3697 else if (!ObjectType->isObjCObjectPointerType()) 3698 return nullptr; 3699 else if (const ObjCObjectPointerType *ObjCPtr = 3700 ObjectType->getAsObjCInterfacePointerType()) { 3701 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); 3702 ObjectIsId = ObjectIsClass = false; 3703 } 3704 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) 3705 ObjectIsClass = false; 3706 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) 3707 ObjectIsId = false; 3708 else 3709 return nullptr; 3710 3711 for (GlobalMethodPool::iterator b = MethodPool.begin(), 3712 e = MethodPool.end(); b != e; b++) { 3713 // instance methods 3714 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) 3715 if (M->getMethod() && 3716 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 3717 (M->getMethod()->getSelector() != Sel)) { 3718 if (ObjectIsId) 3719 Methods.push_back(M->getMethod()); 3720 else if (!ObjectIsClass && 3721 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 3722 ObjectType)) 3723 Methods.push_back(M->getMethod()); 3724 } 3725 // class methods 3726 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) 3727 if (M->getMethod() && 3728 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 3729 (M->getMethod()->getSelector() != Sel)) { 3730 if (ObjectIsClass) 3731 Methods.push_back(M->getMethod()); 3732 else if (!ObjectIsId && 3733 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 3734 ObjectType)) 3735 Methods.push_back(M->getMethod()); 3736 } 3737 } 3738 3739 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; 3740 for (unsigned i = 0, e = Methods.size(); i < e; i++) { 3741 HelperSelectorsForTypoCorrection(SelectedMethods, 3742 Sel.getAsString(), Methods[i]); 3743 } 3744 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; 3745 } 3746 3747 /// DiagnoseDuplicateIvars - 3748 /// Check for duplicate ivars in the entire class at the start of 3749 /// \@implementation. This becomes necesssary because class extension can 3750 /// add ivars to a class in random order which will not be known until 3751 /// class's \@implementation is seen. 3752 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 3753 ObjCInterfaceDecl *SID) { 3754 for (auto *Ivar : ID->ivars()) { 3755 if (Ivar->isInvalidDecl()) 3756 continue; 3757 if (IdentifierInfo *II = Ivar->getIdentifier()) { 3758 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 3759 if (prevIvar) { 3760 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 3761 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 3762 Ivar->setInvalidDecl(); 3763 } 3764 } 3765 } 3766 } 3767 3768 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. 3769 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { 3770 if (S.getLangOpts().ObjCWeak) return; 3771 3772 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); 3773 ivar; ivar = ivar->getNextIvar()) { 3774 if (ivar->isInvalidDecl()) continue; 3775 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 3776 if (S.getLangOpts().ObjCWeakRuntime) { 3777 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled); 3778 } else { 3779 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime); 3780 } 3781 } 3782 } 3783 } 3784 3785 /// Diagnose attempts to use flexible array member with retainable object type. 3786 static void DiagnoseRetainableFlexibleArrayMember(Sema &S, 3787 ObjCInterfaceDecl *ID) { 3788 if (!S.getLangOpts().ObjCAutoRefCount) 3789 return; 3790 3791 for (auto ivar = ID->all_declared_ivar_begin(); ivar; 3792 ivar = ivar->getNextIvar()) { 3793 if (ivar->isInvalidDecl()) 3794 continue; 3795 QualType IvarTy = ivar->getType(); 3796 if (IvarTy->isIncompleteArrayType() && 3797 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && 3798 IvarTy->isObjCLifetimeType()) { 3799 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable); 3800 ivar->setInvalidDecl(); 3801 } 3802 } 3803 } 3804 3805 Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 3806 switch (CurContext->getDeclKind()) { 3807 case Decl::ObjCInterface: 3808 return Sema::OCK_Interface; 3809 case Decl::ObjCProtocol: 3810 return Sema::OCK_Protocol; 3811 case Decl::ObjCCategory: 3812 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 3813 return Sema::OCK_ClassExtension; 3814 return Sema::OCK_Category; 3815 case Decl::ObjCImplementation: 3816 return Sema::OCK_Implementation; 3817 case Decl::ObjCCategoryImpl: 3818 return Sema::OCK_CategoryImplementation; 3819 3820 default: 3821 return Sema::OCK_None; 3822 } 3823 } 3824 3825 static bool IsVariableSizedType(QualType T) { 3826 if (T->isIncompleteArrayType()) 3827 return true; 3828 const auto *RecordTy = T->getAs<RecordType>(); 3829 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); 3830 } 3831 3832 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { 3833 ObjCInterfaceDecl *IntfDecl = nullptr; 3834 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( 3835 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator()); 3836 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) { 3837 Ivars = IntfDecl->ivars(); 3838 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) { 3839 IntfDecl = ImplDecl->getClassInterface(); 3840 Ivars = ImplDecl->ivars(); 3841 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) { 3842 if (CategoryDecl->IsClassExtension()) { 3843 IntfDecl = CategoryDecl->getClassInterface(); 3844 Ivars = CategoryDecl->ivars(); 3845 } 3846 } 3847 3848 // Check if variable sized ivar is in interface and visible to subclasses. 3849 if (!isa<ObjCInterfaceDecl>(OCD)) { 3850 for (auto ivar : Ivars) { 3851 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) { 3852 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility) 3853 << ivar->getDeclName() << ivar->getType(); 3854 } 3855 } 3856 } 3857 3858 // Subsequent checks require interface decl. 3859 if (!IntfDecl) 3860 return; 3861 3862 // Check if variable sized ivar is followed by another ivar. 3863 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; 3864 ivar = ivar->getNextIvar()) { 3865 if (ivar->isInvalidDecl() || !ivar->getNextIvar()) 3866 continue; 3867 QualType IvarTy = ivar->getType(); 3868 bool IsInvalidIvar = false; 3869 if (IvarTy->isIncompleteArrayType()) { 3870 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end) 3871 << ivar->getDeclName() << IvarTy 3872 << TTK_Class; // Use "class" for Obj-C. 3873 IsInvalidIvar = true; 3874 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { 3875 if (RecordTy->getDecl()->hasFlexibleArrayMember()) { 3876 S.Diag(ivar->getLocation(), 3877 diag::err_objc_variable_sized_type_not_at_end) 3878 << ivar->getDeclName() << IvarTy; 3879 IsInvalidIvar = true; 3880 } 3881 } 3882 if (IsInvalidIvar) { 3883 S.Diag(ivar->getNextIvar()->getLocation(), 3884 diag::note_next_ivar_declaration) 3885 << ivar->getNextIvar()->getSynthesize(); 3886 ivar->setInvalidDecl(); 3887 } 3888 } 3889 3890 // Check if ObjC container adds ivars after variable sized ivar in superclass. 3891 // Perform the check only if OCD is the first container to declare ivars to 3892 // avoid multiple warnings for the same ivar. 3893 ObjCIvarDecl *FirstIvar = 3894 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); 3895 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { 3896 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); 3897 while (SuperClass && SuperClass->ivar_empty()) 3898 SuperClass = SuperClass->getSuperClass(); 3899 if (SuperClass) { 3900 auto IvarIter = SuperClass->ivar_begin(); 3901 std::advance(IvarIter, SuperClass->ivar_size() - 1); 3902 const ObjCIvarDecl *LastIvar = *IvarIter; 3903 if (IsVariableSizedType(LastIvar->getType())) { 3904 S.Diag(FirstIvar->getLocation(), 3905 diag::warn_superclass_variable_sized_type_not_at_end) 3906 << FirstIvar->getDeclName() << LastIvar->getDeclName() 3907 << LastIvar->getType() << SuperClass->getDeclName(); 3908 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at) 3909 << LastIvar->getDeclName(); 3910 } 3911 } 3912 } 3913 } 3914 3915 static void DiagnoseCategoryDirectMembersProtocolConformance( 3916 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl); 3917 3918 static void DiagnoseCategoryDirectMembersProtocolConformance( 3919 Sema &S, ObjCCategoryDecl *CDecl, 3920 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) { 3921 for (auto *PI : Protocols) 3922 DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl); 3923 } 3924 3925 static void DiagnoseCategoryDirectMembersProtocolConformance( 3926 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) { 3927 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 3928 PDecl = PDecl->getDefinition(); 3929 3930 llvm::SmallVector<const Decl *, 4> DirectMembers; 3931 const auto *IDecl = CDecl->getClassInterface(); 3932 for (auto *MD : PDecl->methods()) { 3933 if (!MD->isPropertyAccessor()) { 3934 if (const auto *CMD = 3935 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) { 3936 if (CMD->isDirectMethod()) 3937 DirectMembers.push_back(CMD); 3938 } 3939 } 3940 } 3941 for (auto *PD : PDecl->properties()) { 3942 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass( 3943 PD->getIdentifier(), 3944 PD->isClassProperty() 3945 ? ObjCPropertyQueryKind::OBJC_PR_query_class 3946 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 3947 if (CPD->isDirectProperty()) 3948 DirectMembers.push_back(CPD); 3949 } 3950 } 3951 if (!DirectMembers.empty()) { 3952 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance) 3953 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl; 3954 for (const auto *MD : DirectMembers) 3955 S.Diag(MD->getLocation(), diag::note_direct_member_here); 3956 return; 3957 } 3958 3959 // Check on this protocols's referenced protocols, recursively. 3960 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl, 3961 PDecl->protocols()); 3962 } 3963 3964 // Note: For class/category implementations, allMethods is always null. 3965 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, 3966 ArrayRef<DeclGroupPtrTy> allTUVars) { 3967 if (getObjCContainerKind() == Sema::OCK_None) 3968 return nullptr; 3969 3970 assert(AtEnd.isValid() && "Invalid location for '@end'"); 3971 3972 auto *OCD = cast<ObjCContainerDecl>(CurContext); 3973 Decl *ClassDecl = OCD; 3974 3975 bool isInterfaceDeclKind = 3976 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 3977 || isa<ObjCProtocolDecl>(ClassDecl); 3978 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 3979 3980 // Make synthesized accessor stub functions visible. 3981 // ActOnPropertyImplDecl() creates them as not visible in case 3982 // they are overridden by an explicit method that is encountered 3983 // later. 3984 if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) { 3985 for (auto PropImpl : OID->property_impls()) { 3986 if (auto *Getter = PropImpl->getGetterMethodDecl()) 3987 if (Getter->isSynthesizedAccessorStub()) 3988 OID->addDecl(Getter); 3989 if (auto *Setter = PropImpl->getSetterMethodDecl()) 3990 if (Setter->isSynthesizedAccessorStub()) 3991 OID->addDecl(Setter); 3992 } 3993 } 3994 3995 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 3996 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 3997 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 3998 3999 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { 4000 ObjCMethodDecl *Method = 4001 cast_or_null<ObjCMethodDecl>(allMethods[i]); 4002 4003 if (!Method) continue; // Already issued a diagnostic. 4004 if (Method->isInstanceMethod()) { 4005 /// Check for instance method of the same name with incompatible types 4006 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 4007 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 4008 : false; 4009 if ((isInterfaceDeclKind && PrevMethod && !match) 4010 || (checkIdenticalMethods && match)) { 4011 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 4012 << Method->getDeclName(); 4013 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4014 Method->setInvalidDecl(); 4015 } else { 4016 if (PrevMethod) { 4017 Method->setAsRedeclaration(PrevMethod); 4018 if (!Context.getSourceManager().isInSystemHeader( 4019 Method->getLocation())) 4020 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 4021 << Method->getDeclName(); 4022 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4023 } 4024 InsMap[Method->getSelector()] = Method; 4025 /// The following allows us to typecheck messages to "id". 4026 AddInstanceMethodToGlobalPool(Method); 4027 } 4028 } else { 4029 /// Check for class method of the same name with incompatible types 4030 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 4031 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 4032 : false; 4033 if ((isInterfaceDeclKind && PrevMethod && !match) 4034 || (checkIdenticalMethods && match)) { 4035 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 4036 << Method->getDeclName(); 4037 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4038 Method->setInvalidDecl(); 4039 } else { 4040 if (PrevMethod) { 4041 Method->setAsRedeclaration(PrevMethod); 4042 if (!Context.getSourceManager().isInSystemHeader( 4043 Method->getLocation())) 4044 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 4045 << Method->getDeclName(); 4046 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4047 } 4048 ClsMap[Method->getSelector()] = Method; 4049 AddFactoryMethodToGlobalPool(Method); 4050 } 4051 } 4052 } 4053 if (isa<ObjCInterfaceDecl>(ClassDecl)) { 4054 // Nothing to do here. 4055 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 4056 // Categories are used to extend the class by declaring new methods. 4057 // By the same token, they are also used to add new properties. No 4058 // need to compare the added property to those in the class. 4059 4060 if (C->IsClassExtension()) { 4061 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 4062 DiagnoseClassExtensionDupMethods(C, CCPrimary); 4063 } 4064 4065 DiagnoseCategoryDirectMembersProtocolConformance(*this, C, C->protocols()); 4066 } 4067 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 4068 if (CDecl->getIdentifier()) 4069 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 4070 // user-defined setter/getter. It also synthesizes setter/getter methods 4071 // and adds them to the DeclContext and global method pools. 4072 for (auto *I : CDecl->properties()) 4073 ProcessPropertyDecl(I); 4074 CDecl->setAtEndRange(AtEnd); 4075 } 4076 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 4077 IC->setAtEndRange(AtEnd); 4078 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 4079 // Any property declared in a class extension might have user 4080 // declared setter or getter in current class extension or one 4081 // of the other class extensions. Mark them as synthesized as 4082 // property will be synthesized when property with same name is 4083 // seen in the @implementation. 4084 for (const auto *Ext : IDecl->visible_extensions()) { 4085 for (const auto *Property : Ext->instance_properties()) { 4086 // Skip over properties declared @dynamic 4087 if (const ObjCPropertyImplDecl *PIDecl 4088 = IC->FindPropertyImplDecl(Property->getIdentifier(), 4089 Property->getQueryKind())) 4090 if (PIDecl->getPropertyImplementation() 4091 == ObjCPropertyImplDecl::Dynamic) 4092 continue; 4093 4094 for (const auto *Ext : IDecl->visible_extensions()) { 4095 if (ObjCMethodDecl *GetterMethod = 4096 Ext->getInstanceMethod(Property->getGetterName())) 4097 GetterMethod->setPropertyAccessor(true); 4098 if (!Property->isReadOnly()) 4099 if (ObjCMethodDecl *SetterMethod 4100 = Ext->getInstanceMethod(Property->getSetterName())) 4101 SetterMethod->setPropertyAccessor(true); 4102 } 4103 } 4104 } 4105 ImplMethodsVsClassMethods(S, IC, IDecl); 4106 AtomicPropertySetterGetterRules(IC, IDecl); 4107 DiagnoseOwningPropertyGetterSynthesis(IC); 4108 DiagnoseUnusedBackingIvarInAccessor(S, IC); 4109 if (IDecl->hasDesignatedInitializers()) 4110 DiagnoseMissingDesignatedInitOverrides(IC, IDecl); 4111 DiagnoseWeakIvars(*this, IC); 4112 DiagnoseRetainableFlexibleArrayMember(*this, IDecl); 4113 4114 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 4115 if (IDecl->getSuperClass() == nullptr) { 4116 // This class has no superclass, so check that it has been marked with 4117 // __attribute((objc_root_class)). 4118 if (!HasRootClassAttr) { 4119 SourceLocation DeclLoc(IDecl->getLocation()); 4120 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc)); 4121 Diag(DeclLoc, diag::warn_objc_root_class_missing) 4122 << IDecl->getIdentifier(); 4123 // See if NSObject is in the current scope, and if it is, suggest 4124 // adding " : NSObject " to the class declaration. 4125 NamedDecl *IF = LookupSingleName(TUScope, 4126 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 4127 DeclLoc, LookupOrdinaryName); 4128 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 4129 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 4130 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 4131 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 4132 } else { 4133 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 4134 } 4135 } 4136 } else if (HasRootClassAttr) { 4137 // Complain that only root classes may have this attribute. 4138 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 4139 } 4140 4141 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { 4142 // An interface can subclass another interface with a 4143 // objc_subclassing_restricted attribute when it has that attribute as 4144 // well (because of interfaces imported from Swift). Therefore we have 4145 // to check if we can subclass in the implementation as well. 4146 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && 4147 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { 4148 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch); 4149 Diag(Super->getLocation(), diag::note_class_declared); 4150 } 4151 } 4152 4153 if (IDecl->hasAttr<ObjCClassStubAttr>()) 4154 Diag(IC->getLocation(), diag::err_implementation_of_class_stub); 4155 4156 if (LangOpts.ObjCRuntime.isNonFragile()) { 4157 while (IDecl->getSuperClass()) { 4158 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 4159 IDecl = IDecl->getSuperClass(); 4160 } 4161 } 4162 } 4163 SetIvarInitializers(IC); 4164 } else if (ObjCCategoryImplDecl* CatImplClass = 4165 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 4166 CatImplClass->setAtEndRange(AtEnd); 4167 4168 // Find category interface decl and then check that all methods declared 4169 // in this interface are implemented in the category @implementation. 4170 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 4171 if (ObjCCategoryDecl *Cat 4172 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) { 4173 ImplMethodsVsClassMethods(S, CatImplClass, Cat); 4174 } 4175 } 4176 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 4177 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { 4178 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && 4179 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { 4180 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch); 4181 Diag(Super->getLocation(), diag::note_class_declared); 4182 } 4183 } 4184 4185 if (IntfDecl->hasAttr<ObjCClassStubAttr>() && 4186 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) 4187 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch); 4188 } 4189 DiagnoseVariableSizedIvars(*this, OCD); 4190 if (isInterfaceDeclKind) { 4191 // Reject invalid vardecls. 4192 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 4193 DeclGroupRef DG = allTUVars[i].get(); 4194 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 4195 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 4196 if (!VDecl->hasExternalStorage()) 4197 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 4198 } 4199 } 4200 } 4201 ActOnObjCContainerFinishDefinition(); 4202 4203 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 4204 DeclGroupRef DG = allTUVars[i].get(); 4205 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 4206 (*I)->setTopLevelDeclInObjCContainer(); 4207 Consumer.HandleTopLevelDeclInObjCContainer(DG); 4208 } 4209 4210 ActOnDocumentableDecl(ClassDecl); 4211 return ClassDecl; 4212 } 4213 4214 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 4215 /// objective-c's type qualifier from the parser version of the same info. 4216 static Decl::ObjCDeclQualifier 4217 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 4218 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 4219 } 4220 4221 /// Check whether the declared result type of the given Objective-C 4222 /// method declaration is compatible with the method's class. 4223 /// 4224 static Sema::ResultTypeCompatibilityKind 4225 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 4226 ObjCInterfaceDecl *CurrentClass) { 4227 QualType ResultType = Method->getReturnType(); 4228 4229 // If an Objective-C method inherits its related result type, then its 4230 // declared result type must be compatible with its own class type. The 4231 // declared result type is compatible if: 4232 if (const ObjCObjectPointerType *ResultObjectType 4233 = ResultType->getAs<ObjCObjectPointerType>()) { 4234 // - it is id or qualified id, or 4235 if (ResultObjectType->isObjCIdType() || 4236 ResultObjectType->isObjCQualifiedIdType()) 4237 return Sema::RTC_Compatible; 4238 4239 if (CurrentClass) { 4240 if (ObjCInterfaceDecl *ResultClass 4241 = ResultObjectType->getInterfaceDecl()) { 4242 // - it is the same as the method's class type, or 4243 if (declaresSameEntity(CurrentClass, ResultClass)) 4244 return Sema::RTC_Compatible; 4245 4246 // - it is a superclass of the method's class type 4247 if (ResultClass->isSuperClassOf(CurrentClass)) 4248 return Sema::RTC_Compatible; 4249 } 4250 } else { 4251 // Any Objective-C pointer type might be acceptable for a protocol 4252 // method; we just don't know. 4253 return Sema::RTC_Unknown; 4254 } 4255 } 4256 4257 return Sema::RTC_Incompatible; 4258 } 4259 4260 namespace { 4261 /// A helper class for searching for methods which a particular method 4262 /// overrides. 4263 class OverrideSearch { 4264 public: 4265 const ObjCMethodDecl *Method; 4266 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; 4267 bool Recursive; 4268 4269 public: 4270 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { 4271 Selector selector = method->getSelector(); 4272 4273 // Bypass this search if we've never seen an instance/class method 4274 // with this selector before. 4275 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 4276 if (it == S.MethodPool.end()) { 4277 if (!S.getExternalSource()) return; 4278 S.ReadMethodPool(selector); 4279 4280 it = S.MethodPool.find(selector); 4281 if (it == S.MethodPool.end()) 4282 return; 4283 } 4284 const ObjCMethodList &list = 4285 method->isInstanceMethod() ? it->second.first : it->second.second; 4286 if (!list.getMethod()) return; 4287 4288 const ObjCContainerDecl *container 4289 = cast<ObjCContainerDecl>(method->getDeclContext()); 4290 4291 // Prevent the search from reaching this container again. This is 4292 // important with categories, which override methods from the 4293 // interface and each other. 4294 if (const ObjCCategoryDecl *Category = 4295 dyn_cast<ObjCCategoryDecl>(container)) { 4296 searchFromContainer(container); 4297 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) 4298 searchFromContainer(Interface); 4299 } else { 4300 searchFromContainer(container); 4301 } 4302 } 4303 4304 typedef decltype(Overridden)::iterator iterator; 4305 iterator begin() const { return Overridden.begin(); } 4306 iterator end() const { return Overridden.end(); } 4307 4308 private: 4309 void searchFromContainer(const ObjCContainerDecl *container) { 4310 if (container->isInvalidDecl()) return; 4311 4312 switch (container->getDeclKind()) { 4313 #define OBJCCONTAINER(type, base) \ 4314 case Decl::type: \ 4315 searchFrom(cast<type##Decl>(container)); \ 4316 break; 4317 #define ABSTRACT_DECL(expansion) 4318 #define DECL(type, base) \ 4319 case Decl::type: 4320 #include "clang/AST/DeclNodes.inc" 4321 llvm_unreachable("not an ObjC container!"); 4322 } 4323 } 4324 4325 void searchFrom(const ObjCProtocolDecl *protocol) { 4326 if (!protocol->hasDefinition()) 4327 return; 4328 4329 // A method in a protocol declaration overrides declarations from 4330 // referenced ("parent") protocols. 4331 search(protocol->getReferencedProtocols()); 4332 } 4333 4334 void searchFrom(const ObjCCategoryDecl *category) { 4335 // A method in a category declaration overrides declarations from 4336 // the main class and from protocols the category references. 4337 // The main class is handled in the constructor. 4338 search(category->getReferencedProtocols()); 4339 } 4340 4341 void searchFrom(const ObjCCategoryImplDecl *impl) { 4342 // A method in a category definition that has a category 4343 // declaration overrides declarations from the category 4344 // declaration. 4345 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 4346 search(category); 4347 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 4348 search(Interface); 4349 4350 // Otherwise it overrides declarations from the class. 4351 } else if (const auto *Interface = impl->getClassInterface()) { 4352 search(Interface); 4353 } 4354 } 4355 4356 void searchFrom(const ObjCInterfaceDecl *iface) { 4357 // A method in a class declaration overrides declarations from 4358 if (!iface->hasDefinition()) 4359 return; 4360 4361 // - categories, 4362 for (auto *Cat : iface->known_categories()) 4363 search(Cat); 4364 4365 // - the super class, and 4366 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 4367 search(super); 4368 4369 // - any referenced protocols. 4370 search(iface->getReferencedProtocols()); 4371 } 4372 4373 void searchFrom(const ObjCImplementationDecl *impl) { 4374 // A method in a class implementation overrides declarations from 4375 // the class interface. 4376 if (const auto *Interface = impl->getClassInterface()) 4377 search(Interface); 4378 } 4379 4380 void search(const ObjCProtocolList &protocols) { 4381 for (const auto *Proto : protocols) 4382 search(Proto); 4383 } 4384 4385 void search(const ObjCContainerDecl *container) { 4386 // Check for a method in this container which matches this selector. 4387 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 4388 Method->isInstanceMethod(), 4389 /*AllowHidden=*/true); 4390 4391 // If we find one, record it and bail out. 4392 if (meth) { 4393 Overridden.insert(meth); 4394 return; 4395 } 4396 4397 // Otherwise, search for methods that a hypothetical method here 4398 // would have overridden. 4399 4400 // Note that we're now in a recursive case. 4401 Recursive = true; 4402 4403 searchFromContainer(container); 4404 } 4405 }; 4406 } // end anonymous namespace 4407 4408 void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, 4409 ObjCMethodDecl *overridden) { 4410 if (const auto *attr = overridden->getAttr<ObjCDirectAttr>()) { 4411 Diag(method->getLocation(), diag::err_objc_override_direct_method); 4412 Diag(attr->getLocation(), diag::note_previous_declaration); 4413 } else if (const auto *attr = method->getAttr<ObjCDirectAttr>()) { 4414 Diag(attr->getLocation(), diag::err_objc_direct_on_override) 4415 << isa<ObjCProtocolDecl>(overridden->getDeclContext()); 4416 Diag(overridden->getLocation(), diag::note_previous_declaration); 4417 } 4418 } 4419 4420 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 4421 ObjCInterfaceDecl *CurrentClass, 4422 ResultTypeCompatibilityKind RTC) { 4423 if (!ObjCMethod) 4424 return; 4425 // Search for overridden methods and merge information down from them. 4426 OverrideSearch overrides(*this, ObjCMethod); 4427 // Keep track if the method overrides any method in the class's base classes, 4428 // its protocols, or its categories' protocols; we will keep that info 4429 // in the ObjCMethodDecl. 4430 // For this info, a method in an implementation is not considered as 4431 // overriding the same method in the interface or its categories. 4432 bool hasOverriddenMethodsInBaseOrProtocol = false; 4433 for (ObjCMethodDecl *overridden : overrides) { 4434 if (!hasOverriddenMethodsInBaseOrProtocol) { 4435 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 4436 CurrentClass != overridden->getClassInterface() || 4437 overridden->isOverriding()) { 4438 CheckObjCMethodDirectOverrides(ObjCMethod, overridden); 4439 hasOverriddenMethodsInBaseOrProtocol = true; 4440 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { 4441 // OverrideSearch will return as "overridden" the same method in the 4442 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to 4443 // check whether a category of a base class introduced a method with the 4444 // same selector, after the interface method declaration. 4445 // To avoid unnecessary lookups in the majority of cases, we use the 4446 // extra info bits in GlobalMethodPool to check whether there were any 4447 // category methods with this selector. 4448 GlobalMethodPool::iterator It = 4449 MethodPool.find(ObjCMethod->getSelector()); 4450 if (It != MethodPool.end()) { 4451 ObjCMethodList &List = 4452 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; 4453 unsigned CategCount = List.getBits(); 4454 if (CategCount > 0) { 4455 // If the method is in a category we'll do lookup if there were at 4456 // least 2 category methods recorded, otherwise only one will do. 4457 if (CategCount > 1 || 4458 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { 4459 OverrideSearch overrides(*this, overridden); 4460 for (ObjCMethodDecl *SuperOverridden : overrides) { 4461 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || 4462 CurrentClass != SuperOverridden->getClassInterface()) { 4463 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden); 4464 hasOverriddenMethodsInBaseOrProtocol = true; 4465 overridden->setOverriding(true); 4466 break; 4467 } 4468 } 4469 } 4470 } 4471 } 4472 } 4473 } 4474 4475 // Propagate down the 'related result type' bit from overridden methods. 4476 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 4477 ObjCMethod->setRelatedResultType(); 4478 4479 // Then merge the declarations. 4480 mergeObjCMethodDecls(ObjCMethod, overridden); 4481 4482 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 4483 continue; // Conflicting properties are detected elsewhere. 4484 4485 // Check for overriding methods 4486 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 4487 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 4488 CheckConflictingOverridingMethod(ObjCMethod, overridden, 4489 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 4490 4491 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 4492 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 4493 !overridden->isImplicit() /* not meant for properties */) { 4494 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 4495 E = ObjCMethod->param_end(); 4496 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 4497 PrevE = overridden->param_end(); 4498 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 4499 assert(PrevI != overridden->param_end() && "Param mismatch"); 4500 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 4501 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 4502 // If type of argument of method in this class does not match its 4503 // respective argument type in the super class method, issue warning; 4504 if (!Context.typesAreCompatible(T1, T2)) { 4505 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 4506 << T1 << T2; 4507 Diag(overridden->getLocation(), diag::note_previous_declaration); 4508 break; 4509 } 4510 } 4511 } 4512 } 4513 4514 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 4515 } 4516 4517 /// Merge type nullability from for a redeclaration of the same entity, 4518 /// producing the updated type of the redeclared entity. 4519 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, 4520 QualType type, 4521 bool usesCSKeyword, 4522 SourceLocation prevLoc, 4523 QualType prevType, 4524 bool prevUsesCSKeyword) { 4525 // Determine the nullability of both types. 4526 auto nullability = type->getNullability(S.Context); 4527 auto prevNullability = prevType->getNullability(S.Context); 4528 4529 // Easy case: both have nullability. 4530 if (nullability.hasValue() == prevNullability.hasValue()) { 4531 // Neither has nullability; continue. 4532 if (!nullability) 4533 return type; 4534 4535 // The nullabilities are equivalent; do nothing. 4536 if (*nullability == *prevNullability) 4537 return type; 4538 4539 // Complain about mismatched nullability. 4540 S.Diag(loc, diag::err_nullability_conflicting) 4541 << DiagNullabilityKind(*nullability, usesCSKeyword) 4542 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); 4543 return type; 4544 } 4545 4546 // If it's the redeclaration that has nullability, don't change anything. 4547 if (nullability) 4548 return type; 4549 4550 // Otherwise, provide the result with the same nullability. 4551 return S.Context.getAttributedType( 4552 AttributedType::getNullabilityAttrKind(*prevNullability), 4553 type, type); 4554 } 4555 4556 /// Merge information from the declaration of a method in the \@interface 4557 /// (or a category/extension) into the corresponding method in the 4558 /// @implementation (for a class or category). 4559 static void mergeInterfaceMethodToImpl(Sema &S, 4560 ObjCMethodDecl *method, 4561 ObjCMethodDecl *prevMethod) { 4562 // Merge the objc_requires_super attribute. 4563 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && 4564 !method->hasAttr<ObjCRequiresSuperAttr>()) { 4565 // merge the attribute into implementation. 4566 method->addAttr( 4567 ObjCRequiresSuperAttr::CreateImplicit(S.Context, 4568 method->getLocation())); 4569 } 4570 4571 // Merge nullability of the result type. 4572 QualType newReturnType 4573 = mergeTypeNullabilityForRedecl( 4574 S, method->getReturnTypeSourceRange().getBegin(), 4575 method->getReturnType(), 4576 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, 4577 prevMethod->getReturnTypeSourceRange().getBegin(), 4578 prevMethod->getReturnType(), 4579 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); 4580 method->setReturnType(newReturnType); 4581 4582 // Handle each of the parameters. 4583 unsigned numParams = method->param_size(); 4584 unsigned numPrevParams = prevMethod->param_size(); 4585 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) { 4586 ParmVarDecl *param = method->param_begin()[i]; 4587 ParmVarDecl *prevParam = prevMethod->param_begin()[i]; 4588 4589 // Merge nullability. 4590 QualType newParamType 4591 = mergeTypeNullabilityForRedecl( 4592 S, param->getLocation(), param->getType(), 4593 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, 4594 prevParam->getLocation(), prevParam->getType(), 4595 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); 4596 param->setType(newParamType); 4597 } 4598 } 4599 4600 /// Verify that the method parameters/return value have types that are supported 4601 /// by the x86 target. 4602 static void checkObjCMethodX86VectorTypes(Sema &SemaRef, 4603 const ObjCMethodDecl *Method) { 4604 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == 4605 llvm::Triple::x86 && 4606 "x86-specific check invoked for a different target"); 4607 SourceLocation Loc; 4608 QualType T; 4609 for (const ParmVarDecl *P : Method->parameters()) { 4610 if (P->getType()->isVectorType()) { 4611 Loc = P->getBeginLoc(); 4612 T = P->getType(); 4613 break; 4614 } 4615 } 4616 if (Loc.isInvalid()) { 4617 if (Method->getReturnType()->isVectorType()) { 4618 Loc = Method->getReturnTypeSourceRange().getBegin(); 4619 T = Method->getReturnType(); 4620 } else 4621 return; 4622 } 4623 4624 // Vector parameters/return values are not supported by objc_msgSend on x86 in 4625 // iOS < 9 and macOS < 10.11. 4626 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); 4627 VersionTuple AcceptedInVersion; 4628 if (Triple.getOS() == llvm::Triple::IOS) 4629 AcceptedInVersion = VersionTuple(/*Major=*/9); 4630 else if (Triple.isMacOSX()) 4631 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); 4632 else 4633 return; 4634 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= 4635 AcceptedInVersion) 4636 return; 4637 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type) 4638 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 4639 : /*parameter*/ 0) 4640 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9"); 4641 } 4642 4643 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) { 4644 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() && 4645 CD->hasAttr<ObjCDirectMembersAttr>()) { 4646 Method->addAttr( 4647 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation())); 4648 } 4649 } 4650 4651 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, 4652 ObjCMethodDecl *Method, 4653 ObjCImplDecl *ImpDecl = nullptr) { 4654 auto Sel = Method->getSelector(); 4655 bool isInstance = Method->isInstanceMethod(); 4656 bool diagnosed = false; 4657 4658 auto diagClash = [&](const ObjCMethodDecl *IMD) { 4659 if (diagnosed || IMD->isImplicit()) 4660 return; 4661 if (Method->isDirectMethod() || IMD->isDirectMethod()) { 4662 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl) 4663 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod() 4664 << Method->getDeclName(); 4665 S.Diag(IMD->getLocation(), diag::note_previous_declaration); 4666 diagnosed = true; 4667 } 4668 }; 4669 4670 // Look for any other declaration of this method anywhere we can see in this 4671 // compilation unit. 4672 // 4673 // We do not use IDecl->lookupMethod() because we have specific needs: 4674 // 4675 // - we absolutely do not need to walk protocols, because 4676 // diag::err_objc_direct_on_protocol has already been emitted 4677 // during parsing if there's a conflict, 4678 // 4679 // - when we do not find a match in a given @interface container, 4680 // we need to attempt looking it up in the @implementation block if the 4681 // translation unit sees it to find more clashes. 4682 4683 if (auto *IMD = IDecl->getMethod(Sel, isInstance)) 4684 diagClash(IMD); 4685 else if (auto *Impl = IDecl->getImplementation()) 4686 if (Impl != ImpDecl) 4687 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance)) 4688 diagClash(IMD); 4689 4690 for (const auto *Cat : IDecl->visible_categories()) 4691 if (auto *IMD = Cat->getMethod(Sel, isInstance)) 4692 diagClash(IMD); 4693 else if (auto CatImpl = Cat->getImplementation()) 4694 if (CatImpl != ImpDecl) 4695 if (auto *IMD = Cat->getMethod(Sel, isInstance)) 4696 diagClash(IMD); 4697 } 4698 4699 Decl *Sema::ActOnMethodDeclaration( 4700 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, 4701 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 4702 ArrayRef<SourceLocation> SelectorLocs, Selector Sel, 4703 // optional arguments. The number of types/arguments is obtained 4704 // from the Sel.getNumArgs(). 4705 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, 4706 unsigned CNumArgs, // c-style args 4707 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, 4708 bool isVariadic, bool MethodDefinition) { 4709 // Make sure we can establish a context for the method. 4710 if (!CurContext->isObjCContainer()) { 4711 Diag(MethodLoc, diag::err_missing_method_context); 4712 return nullptr; 4713 } 4714 4715 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext); 4716 QualType resultDeclType; 4717 4718 bool HasRelatedResultType = false; 4719 TypeSourceInfo *ReturnTInfo = nullptr; 4720 if (ReturnType) { 4721 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo); 4722 4723 if (CheckFunctionReturnType(resultDeclType, MethodLoc)) 4724 return nullptr; 4725 4726 QualType bareResultType = resultDeclType; 4727 (void)AttributedType::stripOuterNullability(bareResultType); 4728 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); 4729 } else { // get the type for "id". 4730 resultDeclType = Context.getObjCIdType(); 4731 Diag(MethodLoc, diag::warn_missing_method_return_type) 4732 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 4733 } 4734 4735 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( 4736 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext, 4737 MethodType == tok::minus, isVariadic, 4738 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, 4739 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 4740 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional 4741 : ObjCMethodDecl::Required, 4742 HasRelatedResultType); 4743 4744 SmallVector<ParmVarDecl*, 16> Params; 4745 4746 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 4747 QualType ArgType; 4748 TypeSourceInfo *DI; 4749 4750 if (!ArgInfo[i].Type) { 4751 ArgType = Context.getObjCIdType(); 4752 DI = nullptr; 4753 } else { 4754 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 4755 } 4756 4757 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 4758 LookupOrdinaryName, forRedeclarationInCurContext()); 4759 LookupName(R, S); 4760 if (R.isSingleResult()) { 4761 NamedDecl *PrevDecl = R.getFoundDecl(); 4762 if (S->isDeclScope(PrevDecl)) { 4763 Diag(ArgInfo[i].NameLoc, 4764 (MethodDefinition ? diag::warn_method_param_redefinition 4765 : diag::warn_method_param_declaration)) 4766 << ArgInfo[i].Name; 4767 Diag(PrevDecl->getLocation(), 4768 diag::note_previous_declaration); 4769 } 4770 } 4771 4772 SourceLocation StartLoc = DI 4773 ? DI->getTypeLoc().getBeginLoc() 4774 : ArgInfo[i].NameLoc; 4775 4776 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 4777 ArgInfo[i].NameLoc, ArgInfo[i].Name, 4778 ArgType, DI, SC_None); 4779 4780 Param->setObjCMethodScopeInfo(i); 4781 4782 Param->setObjCDeclQualifier( 4783 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 4784 4785 // Apply the attributes to the parameter. 4786 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 4787 AddPragmaAttributes(TUScope, Param); 4788 4789 if (Param->hasAttr<BlocksAttr>()) { 4790 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 4791 Param->setInvalidDecl(); 4792 } 4793 S->AddDecl(Param); 4794 IdResolver.AddDecl(Param); 4795 4796 Params.push_back(Param); 4797 } 4798 4799 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 4800 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 4801 QualType ArgType = Param->getType(); 4802 if (ArgType.isNull()) 4803 ArgType = Context.getObjCIdType(); 4804 else 4805 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 4806 ArgType = Context.getAdjustedParameterType(ArgType); 4807 4808 Param->setDeclContext(ObjCMethod); 4809 Params.push_back(Param); 4810 } 4811 4812 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 4813 ObjCMethod->setObjCDeclQualifier( 4814 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 4815 4816 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 4817 AddPragmaAttributes(TUScope, ObjCMethod); 4818 4819 // Add the method now. 4820 const ObjCMethodDecl *PrevMethod = nullptr; 4821 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 4822 if (MethodType == tok::minus) { 4823 PrevMethod = ImpDecl->getInstanceMethod(Sel); 4824 ImpDecl->addInstanceMethod(ObjCMethod); 4825 } else { 4826 PrevMethod = ImpDecl->getClassMethod(Sel); 4827 ImpDecl->addClassMethod(ObjCMethod); 4828 } 4829 4830 // If this method overrides a previous @synthesize declaration, 4831 // register it with the property. Linear search through all 4832 // properties here, because the autosynthesized stub hasn't been 4833 // made visible yet, so it can be overriden by a later 4834 // user-specified implementation. 4835 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) { 4836 if (auto *Setter = PropertyImpl->getSetterMethodDecl()) 4837 if (Setter->getSelector() == Sel && 4838 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { 4839 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected"); 4840 PropertyImpl->setSetterMethodDecl(ObjCMethod); 4841 } 4842 if (auto *Getter = PropertyImpl->getGetterMethodDecl()) 4843 if (Getter->getSelector() == Sel && 4844 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { 4845 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected"); 4846 PropertyImpl->setGetterMethodDecl(ObjCMethod); 4847 break; 4848 } 4849 } 4850 4851 // A method is either tagged direct explicitly, or inherits it from its 4852 // canonical declaration. 4853 // 4854 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl() 4855 // because IDecl->lookupMethod() returns more possible matches than just 4856 // the canonical declaration. 4857 if (!ObjCMethod->isDirectMethod()) { 4858 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl(); 4859 if (const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>()) { 4860 ObjCMethod->addAttr( 4861 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); 4862 } 4863 } 4864 4865 // Merge information from the @interface declaration into the 4866 // @implementation. 4867 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { 4868 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 4869 ObjCMethod->isInstanceMethod())) { 4870 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD); 4871 4872 // The Idecl->lookupMethod() above will find declarations for ObjCMethod 4873 // in one of these places: 4874 // 4875 // (1) the canonical declaration in an @interface container paired 4876 // with the ImplDecl, 4877 // (2) non canonical declarations in @interface not paired with the 4878 // ImplDecl for the same Class, 4879 // (3) any superclass container. 4880 // 4881 // Direct methods only allow for canonical declarations in the matching 4882 // container (case 1). 4883 // 4884 // Direct methods overriding a superclass declaration (case 3) is 4885 // handled during overrides checks in CheckObjCMethodOverrides(). 4886 // 4887 // We deal with same-class container mismatches (Case 2) here. 4888 if (IDecl == IMD->getClassInterface()) { 4889 auto diagContainerMismatch = [&] { 4890 int decl = 0, impl = 0; 4891 4892 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext())) 4893 decl = Cat->IsClassExtension() ? 1 : 2; 4894 4895 if (isa<ObjCCategoryImplDecl>(ImpDecl)) 4896 impl = 1 + (decl != 0); 4897 4898 Diag(ObjCMethod->getLocation(), 4899 diag::err_objc_direct_impl_decl_mismatch) 4900 << decl << impl; 4901 Diag(IMD->getLocation(), diag::note_previous_declaration); 4902 }; 4903 4904 if (const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>()) { 4905 if (ObjCMethod->getCanonicalDecl() != IMD) { 4906 diagContainerMismatch(); 4907 } else if (!IMD->isDirectMethod()) { 4908 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl); 4909 Diag(IMD->getLocation(), diag::note_previous_declaration); 4910 } 4911 } else if (const auto *attr = IMD->getAttr<ObjCDirectAttr>()) { 4912 if (ObjCMethod->getCanonicalDecl() != IMD) { 4913 diagContainerMismatch(); 4914 } else { 4915 ObjCMethod->addAttr( 4916 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); 4917 } 4918 } 4919 } 4920 4921 // Warn about defining -dealloc in a category. 4922 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() && 4923 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { 4924 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) 4925 << ObjCMethod->getDeclName(); 4926 } 4927 } else { 4928 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod); 4929 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl); 4930 } 4931 4932 // Warn if a method declared in a protocol to which a category or 4933 // extension conforms is non-escaping and the implementation's method is 4934 // escaping. 4935 for (auto *C : IDecl->visible_categories()) 4936 for (auto &P : C->protocols()) 4937 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(), 4938 ObjCMethod->isInstanceMethod())) { 4939 assert(ObjCMethod->parameters().size() == 4940 IMD->parameters().size() && 4941 "Methods have different number of parameters"); 4942 auto OI = IMD->param_begin(), OE = IMD->param_end(); 4943 auto NI = ObjCMethod->param_begin(); 4944 for (; OI != OE; ++OI, ++NI) 4945 diagnoseNoescape(*NI, *OI, C, P, *this); 4946 } 4947 } 4948 } else { 4949 if (!isa<ObjCProtocolDecl>(ClassDecl)) { 4950 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod); 4951 4952 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 4953 if (!IDecl) 4954 IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface(); 4955 // For valid code, we should always know the primary interface 4956 // declaration by now, however for invalid code we'll keep parsing 4957 // but we won't find the primary interface and IDecl will be nil. 4958 if (IDecl) 4959 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod); 4960 } 4961 4962 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 4963 } 4964 4965 if (PrevMethod) { 4966 // You can never have two method definitions with the same name. 4967 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 4968 << ObjCMethod->getDeclName(); 4969 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4970 ObjCMethod->setInvalidDecl(); 4971 return ObjCMethod; 4972 } 4973 4974 // If this Objective-C method does not have a related result type, but we 4975 // are allowed to infer related result types, try to do so based on the 4976 // method family. 4977 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 4978 if (!CurrentClass) { 4979 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 4980 CurrentClass = Cat->getClassInterface(); 4981 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 4982 CurrentClass = Impl->getClassInterface(); 4983 else if (ObjCCategoryImplDecl *CatImpl 4984 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 4985 CurrentClass = CatImpl->getClassInterface(); 4986 } 4987 4988 ResultTypeCompatibilityKind RTC 4989 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 4990 4991 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 4992 4993 bool ARCError = false; 4994 if (getLangOpts().ObjCAutoRefCount) 4995 ARCError = CheckARCMethodDecl(ObjCMethod); 4996 4997 // Infer the related result type when possible. 4998 if (!ARCError && RTC == Sema::RTC_Compatible && 4999 !ObjCMethod->hasRelatedResultType() && 5000 LangOpts.ObjCInferRelatedResultType) { 5001 bool InferRelatedResultType = false; 5002 switch (ObjCMethod->getMethodFamily()) { 5003 case OMF_None: 5004 case OMF_copy: 5005 case OMF_dealloc: 5006 case OMF_finalize: 5007 case OMF_mutableCopy: 5008 case OMF_release: 5009 case OMF_retainCount: 5010 case OMF_initialize: 5011 case OMF_performSelector: 5012 break; 5013 5014 case OMF_alloc: 5015 case OMF_new: 5016 InferRelatedResultType = ObjCMethod->isClassMethod(); 5017 break; 5018 5019 case OMF_init: 5020 case OMF_autorelease: 5021 case OMF_retain: 5022 case OMF_self: 5023 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 5024 break; 5025 } 5026 5027 if (InferRelatedResultType && 5028 !ObjCMethod->getReturnType()->isObjCIndependentClassType()) 5029 ObjCMethod->setRelatedResultType(); 5030 } 5031 5032 if (MethodDefinition && 5033 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 5034 checkObjCMethodX86VectorTypes(*this, ObjCMethod); 5035 5036 // + load method cannot have availability attributes. It get called on 5037 // startup, so it has to have the availability of the deployment target. 5038 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { 5039 if (ObjCMethod->isClassMethod() && 5040 ObjCMethod->getSelector().getAsString() == "load") { 5041 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 5042 << 0; 5043 ObjCMethod->dropAttr<AvailabilityAttr>(); 5044 } 5045 } 5046 5047 // Insert the invisible arguments, self and _cmd! 5048 ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface()); 5049 5050 ActOnDocumentableDecl(ObjCMethod); 5051 5052 return ObjCMethod; 5053 } 5054 5055 bool Sema::CheckObjCDeclScope(Decl *D) { 5056 // Following is also an error. But it is caused by a missing @end 5057 // and diagnostic is issued elsewhere. 5058 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 5059 return false; 5060 5061 // If we switched context to translation unit while we are still lexically in 5062 // an objc container, it means the parser missed emitting an error. 5063 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 5064 return false; 5065 5066 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 5067 D->setInvalidDecl(); 5068 5069 return true; 5070 } 5071 5072 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 5073 /// instance variables of ClassName into Decls. 5074 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 5075 IdentifierInfo *ClassName, 5076 SmallVectorImpl<Decl*> &Decls) { 5077 // Check that ClassName is a valid class 5078 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 5079 if (!Class) { 5080 Diag(DeclStart, diag::err_undef_interface) << ClassName; 5081 return; 5082 } 5083 if (LangOpts.ObjCRuntime.isNonFragile()) { 5084 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 5085 return; 5086 } 5087 5088 // Collect the instance variables 5089 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5090 Context.DeepCollectObjCIvars(Class, true, Ivars); 5091 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 5092 for (unsigned i = 0; i < Ivars.size(); i++) { 5093 const FieldDecl* ID = Ivars[i]; 5094 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 5095 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 5096 /*FIXME: StartL=*/ID->getLocation(), 5097 ID->getLocation(), 5098 ID->getIdentifier(), ID->getType(), 5099 ID->getBitWidth()); 5100 Decls.push_back(FD); 5101 } 5102 5103 // Introduce all of these fields into the appropriate scope. 5104 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 5105 D != Decls.end(); ++D) { 5106 FieldDecl *FD = cast<FieldDecl>(*D); 5107 if (getLangOpts().CPlusPlus) 5108 PushOnScopeChains(FD, S); 5109 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 5110 Record->addDecl(FD); 5111 } 5112 } 5113 5114 /// Build a type-check a new Objective-C exception variable declaration. 5115 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 5116 SourceLocation StartLoc, 5117 SourceLocation IdLoc, 5118 IdentifierInfo *Id, 5119 bool Invalid) { 5120 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 5121 // duration shall not be qualified by an address-space qualifier." 5122 // Since all parameters have automatic store duration, they can not have 5123 // an address space. 5124 if (T.getAddressSpace() != LangAS::Default) { 5125 Diag(IdLoc, diag::err_arg_with_address_space); 5126 Invalid = true; 5127 } 5128 5129 // An @catch parameter must be an unqualified object pointer type; 5130 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 5131 if (Invalid) { 5132 // Don't do any further checking. 5133 } else if (T->isDependentType()) { 5134 // Okay: we don't know what this type will instantiate to. 5135 } else if (T->isObjCQualifiedIdType()) { 5136 Invalid = true; 5137 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 5138 } else if (T->isObjCIdType()) { 5139 // Okay: we don't know what this type will instantiate to. 5140 } else if (!T->isObjCObjectPointerType()) { 5141 Invalid = true; 5142 Diag(IdLoc, diag::err_catch_param_not_objc_type); 5143 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { 5144 Invalid = true; 5145 Diag(IdLoc, diag::err_catch_param_not_objc_type); 5146 } 5147 5148 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 5149 T, TInfo, SC_None); 5150 New->setExceptionVariable(true); 5151 5152 // In ARC, infer 'retaining' for variables of retainable type. 5153 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 5154 Invalid = true; 5155 5156 if (Invalid) 5157 New->setInvalidDecl(); 5158 return New; 5159 } 5160 5161 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 5162 const DeclSpec &DS = D.getDeclSpec(); 5163 5164 // We allow the "register" storage class on exception variables because 5165 // GCC did, but we drop it completely. Any other storage class is an error. 5166 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 5167 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 5168 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 5169 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 5170 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 5171 << DeclSpec::getSpecifierName(SCS); 5172 } 5173 if (DS.isInlineSpecified()) 5174 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 5175 << getLangOpts().CPlusPlus17; 5176 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 5177 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 5178 diag::err_invalid_thread) 5179 << DeclSpec::getSpecifierName(TSCS); 5180 D.getMutableDeclSpec().ClearStorageClassSpecs(); 5181 5182 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 5183 5184 // Check that there are no default arguments inside the type of this 5185 // exception object (C++ only). 5186 if (getLangOpts().CPlusPlus) 5187 CheckExtraCXXDefaultArguments(D); 5188 5189 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5190 QualType ExceptionType = TInfo->getType(); 5191 5192 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 5193 D.getSourceRange().getBegin(), 5194 D.getIdentifierLoc(), 5195 D.getIdentifier(), 5196 D.isInvalidType()); 5197 5198 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 5199 if (D.getCXXScopeSpec().isSet()) { 5200 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 5201 << D.getCXXScopeSpec().getRange(); 5202 New->setInvalidDecl(); 5203 } 5204 5205 // Add the parameter declaration into this scope. 5206 S->AddDecl(New); 5207 if (D.getIdentifier()) 5208 IdResolver.AddDecl(New); 5209 5210 ProcessDeclAttributes(S, New, D); 5211 5212 if (New->hasAttr<BlocksAttr>()) 5213 Diag(New->getLocation(), diag::err_block_on_nonlocal); 5214 return New; 5215 } 5216 5217 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 5218 /// initialization. 5219 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 5220 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 5221 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 5222 Iv= Iv->getNextIvar()) { 5223 QualType QT = Context.getBaseElementType(Iv->getType()); 5224 if (QT->isRecordType()) 5225 Ivars.push_back(Iv); 5226 } 5227 } 5228 5229 void Sema::DiagnoseUseOfUnimplementedSelectors() { 5230 // Load referenced selectors from the external source. 5231 if (ExternalSource) { 5232 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 5233 ExternalSource->ReadReferencedSelectors(Sels); 5234 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 5235 ReferencedSelectors[Sels[I].first] = Sels[I].second; 5236 } 5237 5238 // Warning will be issued only when selector table is 5239 // generated (which means there is at lease one implementation 5240 // in the TU). This is to match gcc's behavior. 5241 if (ReferencedSelectors.empty() || 5242 !Context.AnyObjCImplementation()) 5243 return; 5244 for (auto &SelectorAndLocation : ReferencedSelectors) { 5245 Selector Sel = SelectorAndLocation.first; 5246 SourceLocation Loc = SelectorAndLocation.second; 5247 if (!LookupImplementedMethodInGlobalPool(Sel)) 5248 Diag(Loc, diag::warn_unimplemented_selector) << Sel; 5249 } 5250 } 5251 5252 ObjCIvarDecl * 5253 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, 5254 const ObjCPropertyDecl *&PDecl) const { 5255 if (Method->isClassMethod()) 5256 return nullptr; 5257 const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); 5258 if (!IDecl) 5259 return nullptr; 5260 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true, 5261 /*shallowCategoryLookup=*/false, 5262 /*followSuper=*/false); 5263 if (!Method || !Method->isPropertyAccessor()) 5264 return nullptr; 5265 if ((PDecl = Method->findPropertyDecl())) 5266 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { 5267 // property backing ivar must belong to property's class 5268 // or be a private ivar in class's implementation. 5269 // FIXME. fix the const-ness issue. 5270 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( 5271 IV->getIdentifier()); 5272 return IV; 5273 } 5274 return nullptr; 5275 } 5276 5277 namespace { 5278 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property 5279 /// accessor references the backing ivar. 5280 class UnusedBackingIvarChecker : 5281 public RecursiveASTVisitor<UnusedBackingIvarChecker> { 5282 public: 5283 Sema &S; 5284 const ObjCMethodDecl *Method; 5285 const ObjCIvarDecl *IvarD; 5286 bool AccessedIvar; 5287 bool InvokedSelfMethod; 5288 5289 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, 5290 const ObjCIvarDecl *IvarD) 5291 : S(S), Method(Method), IvarD(IvarD), 5292 AccessedIvar(false), InvokedSelfMethod(false) { 5293 assert(IvarD); 5294 } 5295 5296 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 5297 if (E->getDecl() == IvarD) { 5298 AccessedIvar = true; 5299 return false; 5300 } 5301 return true; 5302 } 5303 5304 bool VisitObjCMessageExpr(ObjCMessageExpr *E) { 5305 if (E->getReceiverKind() == ObjCMessageExpr::Instance && 5306 S.isSelfExpr(E->getInstanceReceiver(), Method)) { 5307 InvokedSelfMethod = true; 5308 } 5309 return true; 5310 } 5311 }; 5312 } // end anonymous namespace 5313 5314 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, 5315 const ObjCImplementationDecl *ImplD) { 5316 if (S->hasUnrecoverableErrorOccurred()) 5317 return; 5318 5319 for (const auto *CurMethod : ImplD->instance_methods()) { 5320 unsigned DIAG = diag::warn_unused_property_backing_ivar; 5321 SourceLocation Loc = CurMethod->getLocation(); 5322 if (Diags.isIgnored(DIAG, Loc)) 5323 continue; 5324 5325 const ObjCPropertyDecl *PDecl; 5326 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); 5327 if (!IV) 5328 continue; 5329 5330 if (CurMethod->isSynthesizedAccessorStub()) 5331 continue; 5332 5333 UnusedBackingIvarChecker Checker(*this, CurMethod, IV); 5334 Checker.TraverseStmt(CurMethod->getBody()); 5335 if (Checker.AccessedIvar) 5336 continue; 5337 5338 // Do not issue this warning if backing ivar is used somewhere and accessor 5339 // implementation makes a self call. This is to prevent false positive in 5340 // cases where the ivar is accessed by another method that the accessor 5341 // delegates to. 5342 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { 5343 Diag(Loc, DIAG) << IV; 5344 Diag(PDecl->getLocation(), diag::note_property_declare); 5345 } 5346 } 5347 } 5348