1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/ComparisonCategories.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/RecursiveASTVisitor.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/AST/TypeLoc.h" 29 #include "clang/AST/TypeOrdering.h" 30 #include "clang/Basic/AttributeCommonInfo.h" 31 #include "clang/Basic/PartialDiagnostic.h" 32 #include "clang/Basic/Specifiers.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Lex/LiteralSupport.h" 35 #include "clang/Lex/Preprocessor.h" 36 #include "clang/Sema/CXXFieldCollector.h" 37 #include "clang/Sema/DeclSpec.h" 38 #include "clang/Sema/EnterExpressionEvaluationContext.h" 39 #include "clang/Sema/Initialization.h" 40 #include "clang/Sema/Lookup.h" 41 #include "clang/Sema/Ownership.h" 42 #include "clang/Sema/ParsedTemplate.h" 43 #include "clang/Sema/Scope.h" 44 #include "clang/Sema/ScopeInfo.h" 45 #include "clang/Sema/SemaCUDA.h" 46 #include "clang/Sema/SemaInternal.h" 47 #include "clang/Sema/SemaObjC.h" 48 #include "clang/Sema/SemaOpenMP.h" 49 #include "clang/Sema/Template.h" 50 #include "llvm/ADT/ArrayRef.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/STLForwardCompat.h" 53 #include "llvm/ADT/ScopeExit.h" 54 #include "llvm/ADT/SmallString.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/SaveAndRestore.h" 58 #include <map> 59 #include <optional> 60 #include <set> 61 62 using namespace clang; 63 64 //===----------------------------------------------------------------------===// 65 // CheckDefaultArgumentVisitor 66 //===----------------------------------------------------------------------===// 67 68 namespace { 69 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 70 /// the default argument of a parameter to determine whether it 71 /// contains any ill-formed subexpressions. For example, this will 72 /// diagnose the use of local variables or parameters within the 73 /// default argument expression. 74 class CheckDefaultArgumentVisitor 75 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { 76 Sema &S; 77 const Expr *DefaultArg; 78 79 public: 80 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) 81 : S(S), DefaultArg(DefaultArg) {} 82 83 bool VisitExpr(const Expr *Node); 84 bool VisitDeclRefExpr(const DeclRefExpr *DRE); 85 bool VisitCXXThisExpr(const CXXThisExpr *ThisE); 86 bool VisitLambdaExpr(const LambdaExpr *Lambda); 87 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); 88 }; 89 90 /// VisitExpr - Visit all of the children of this expression. 91 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { 92 bool IsInvalid = false; 93 for (const Stmt *SubStmt : Node->children()) 94 if (SubStmt) 95 IsInvalid |= Visit(SubStmt); 96 return IsInvalid; 97 } 98 99 /// VisitDeclRefExpr - Visit a reference to a declaration, to 100 /// determine whether this declaration can be used in the default 101 /// argument expression. 102 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { 103 const ValueDecl *Decl = dyn_cast<ValueDecl>(DRE->getDecl()); 104 105 if (!isa<VarDecl, BindingDecl>(Decl)) 106 return false; 107 108 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { 109 // C++ [dcl.fct.default]p9: 110 // [...] parameters of a function shall not be used in default 111 // argument expressions, even if they are not evaluated. [...] 112 // 113 // C++17 [dcl.fct.default]p9 (by CWG 2082): 114 // [...] A parameter shall not appear as a potentially-evaluated 115 // expression in a default argument. [...] 116 // 117 if (DRE->isNonOdrUse() != NOUR_Unevaluated) 118 return S.Diag(DRE->getBeginLoc(), 119 diag::err_param_default_argument_references_param) 120 << Param->getDeclName() << DefaultArg->getSourceRange(); 121 } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) { 122 // C++ [dcl.fct.default]p7: 123 // Local variables shall not be used in default argument 124 // expressions. 125 // 126 // C++17 [dcl.fct.default]p7 (by CWG 2082): 127 // A local variable shall not appear as a potentially-evaluated 128 // expression in a default argument. 129 // 130 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): 131 // Note: A local variable cannot be odr-used (6.3) in a default 132 // argument. 133 // 134 if (VD->isLocalVarDecl() && !DRE->isNonOdrUse()) 135 return S.Diag(DRE->getBeginLoc(), 136 diag::err_param_default_argument_references_local) 137 << Decl << DefaultArg->getSourceRange(); 138 } 139 return false; 140 } 141 142 /// VisitCXXThisExpr - Visit a C++ "this" expression. 143 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { 144 // C++ [dcl.fct.default]p8: 145 // The keyword this shall not be used in a default argument of a 146 // member function. 147 return S.Diag(ThisE->getBeginLoc(), 148 diag::err_param_default_argument_references_this) 149 << ThisE->getSourceRange(); 150 } 151 152 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( 153 const PseudoObjectExpr *POE) { 154 bool Invalid = false; 155 for (const Expr *E : POE->semantics()) { 156 // Look through bindings. 157 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 158 E = OVE->getSourceExpr(); 159 assert(E && "pseudo-object binding without source expression?"); 160 } 161 162 Invalid |= Visit(E); 163 } 164 return Invalid; 165 } 166 167 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { 168 // [expr.prim.lambda.capture]p9 169 // a lambda-expression appearing in a default argument cannot implicitly or 170 // explicitly capture any local entity. Such a lambda-expression can still 171 // have an init-capture if any full-expression in its initializer satisfies 172 // the constraints of an expression appearing in a default argument. 173 bool Invalid = false; 174 for (const LambdaCapture &LC : Lambda->captures()) { 175 if (!Lambda->isInitCapture(&LC)) 176 return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg); 177 // Init captures are always VarDecl. 178 auto *D = cast<VarDecl>(LC.getCapturedVar()); 179 Invalid |= Visit(D->getInit()); 180 } 181 return Invalid; 182 } 183 } // namespace 184 185 void 186 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 187 const CXXMethodDecl *Method) { 188 // If we have an MSAny spec already, don't bother. 189 if (!Method || ComputedEST == EST_MSAny) 190 return; 191 192 const FunctionProtoType *Proto 193 = Method->getType()->getAs<FunctionProtoType>(); 194 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 195 if (!Proto) 196 return; 197 198 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 199 200 // If we have a throw-all spec at this point, ignore the function. 201 if (ComputedEST == EST_None) 202 return; 203 204 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 205 EST = EST_BasicNoexcept; 206 207 switch (EST) { 208 case EST_Unparsed: 209 case EST_Uninstantiated: 210 case EST_Unevaluated: 211 llvm_unreachable("should not see unresolved exception specs here"); 212 213 // If this function can throw any exceptions, make a note of that. 214 case EST_MSAny: 215 case EST_None: 216 // FIXME: Whichever we see last of MSAny and None determines our result. 217 // We should make a consistent, order-independent choice here. 218 ClearExceptions(); 219 ComputedEST = EST; 220 return; 221 case EST_NoexceptFalse: 222 ClearExceptions(); 223 ComputedEST = EST_None; 224 return; 225 // FIXME: If the call to this decl is using any of its default arguments, we 226 // need to search them for potentially-throwing calls. 227 // If this function has a basic noexcept, it doesn't affect the outcome. 228 case EST_BasicNoexcept: 229 case EST_NoexceptTrue: 230 case EST_NoThrow: 231 return; 232 // If we're still at noexcept(true) and there's a throw() callee, 233 // change to that specification. 234 case EST_DynamicNone: 235 if (ComputedEST == EST_BasicNoexcept) 236 ComputedEST = EST_DynamicNone; 237 return; 238 case EST_DependentNoexcept: 239 llvm_unreachable( 240 "should not generate implicit declarations for dependent cases"); 241 case EST_Dynamic: 242 break; 243 } 244 assert(EST == EST_Dynamic && "EST case not considered earlier."); 245 assert(ComputedEST != EST_None && 246 "Shouldn't collect exceptions when throw-all is guaranteed."); 247 ComputedEST = EST_Dynamic; 248 // Record the exceptions in this function's exception specification. 249 for (const auto &E : Proto->exceptions()) 250 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 251 Exceptions.push_back(E); 252 } 253 254 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { 255 if (!S || ComputedEST == EST_MSAny) 256 return; 257 258 // FIXME: 259 // 260 // C++0x [except.spec]p14: 261 // [An] implicit exception-specification specifies the type-id T if and 262 // only if T is allowed by the exception-specification of a function directly 263 // invoked by f's implicit definition; f shall allow all exceptions if any 264 // function it directly invokes allows all exceptions, and f shall allow no 265 // exceptions if every function it directly invokes allows no exceptions. 266 // 267 // Note in particular that if an implicit exception-specification is generated 268 // for a function containing a throw-expression, that specification can still 269 // be noexcept(true). 270 // 271 // Note also that 'directly invoked' is not defined in the standard, and there 272 // is no indication that we should only consider potentially-evaluated calls. 273 // 274 // Ultimately we should implement the intent of the standard: the exception 275 // specification should be the set of exceptions which can be thrown by the 276 // implicit definition. For now, we assume that any non-nothrow expression can 277 // throw any exception. 278 279 if (Self->canThrow(S)) 280 ComputedEST = EST_None; 281 } 282 283 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 284 SourceLocation EqualLoc) { 285 if (RequireCompleteType(Param->getLocation(), Param->getType(), 286 diag::err_typecheck_decl_incomplete_type)) 287 return true; 288 289 // C++ [dcl.fct.default]p5 290 // A default argument expression is implicitly converted (clause 291 // 4) to the parameter type. The default argument expression has 292 // the same semantic constraints as the initializer expression in 293 // a declaration of a variable of the parameter type, using the 294 // copy-initialization semantics (8.5). 295 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 296 Param); 297 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 298 EqualLoc); 299 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 300 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 301 if (Result.isInvalid()) 302 return true; 303 Arg = Result.getAs<Expr>(); 304 305 CheckCompletedExpr(Arg, EqualLoc); 306 Arg = MaybeCreateExprWithCleanups(Arg); 307 308 return Arg; 309 } 310 311 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 312 SourceLocation EqualLoc) { 313 // Add the default argument to the parameter 314 Param->setDefaultArg(Arg); 315 316 // We have already instantiated this parameter; provide each of the 317 // instantiations with the uninstantiated default argument. 318 UnparsedDefaultArgInstantiationsMap::iterator InstPos 319 = UnparsedDefaultArgInstantiations.find(Param); 320 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 321 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 322 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 323 324 // We're done tracking this parameter's instantiations. 325 UnparsedDefaultArgInstantiations.erase(InstPos); 326 } 327 } 328 329 void 330 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 331 Expr *DefaultArg) { 332 if (!param || !DefaultArg) 333 return; 334 335 ParmVarDecl *Param = cast<ParmVarDecl>(param); 336 UnparsedDefaultArgLocs.erase(Param); 337 338 // Default arguments are only permitted in C++ 339 if (!getLangOpts().CPlusPlus) { 340 Diag(EqualLoc, diag::err_param_default_argument) 341 << DefaultArg->getSourceRange(); 342 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); 343 } 344 345 // Check for unexpanded parameter packs. 346 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) 347 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); 348 349 // C++11 [dcl.fct.default]p3 350 // A default argument expression [...] shall not be specified for a 351 // parameter pack. 352 if (Param->isParameterPack()) { 353 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 354 << DefaultArg->getSourceRange(); 355 // Recover by discarding the default argument. 356 Param->setDefaultArg(nullptr); 357 return; 358 } 359 360 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); 361 if (Result.isInvalid()) 362 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); 363 364 DefaultArg = Result.getAs<Expr>(); 365 366 // Check that the default argument is well-formed 367 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); 368 if (DefaultArgChecker.Visit(DefaultArg)) 369 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); 370 371 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 372 } 373 374 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 375 SourceLocation EqualLoc, 376 SourceLocation ArgLoc) { 377 if (!param) 378 return; 379 380 ParmVarDecl *Param = cast<ParmVarDecl>(param); 381 Param->setUnparsedDefaultArg(); 382 UnparsedDefaultArgLocs[Param] = ArgLoc; 383 } 384 385 void Sema::ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc, 386 Expr *DefaultArg) { 387 if (!param) 388 return; 389 390 ParmVarDecl *Param = cast<ParmVarDecl>(param); 391 Param->setInvalidDecl(); 392 UnparsedDefaultArgLocs.erase(Param); 393 ExprResult RE; 394 if (DefaultArg) { 395 RE = CreateRecoveryExpr(EqualLoc, DefaultArg->getEndLoc(), {DefaultArg}, 396 Param->getType().getNonReferenceType()); 397 } else { 398 RE = CreateRecoveryExpr(EqualLoc, EqualLoc, {}, 399 Param->getType().getNonReferenceType()); 400 } 401 Param->setDefaultArg(RE.get()); 402 } 403 404 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 405 // C++ [dcl.fct.default]p3 406 // A default argument expression shall be specified only in the 407 // parameter-declaration-clause of a function declaration or in a 408 // template-parameter (14.1). It shall not be specified for a 409 // parameter pack. If it is specified in a 410 // parameter-declaration-clause, it shall not occur within a 411 // declarator or abstract-declarator of a parameter-declaration. 412 bool MightBeFunction = D.isFunctionDeclarationContext(); 413 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 414 DeclaratorChunk &chunk = D.getTypeObject(i); 415 if (chunk.Kind == DeclaratorChunk::Function) { 416 if (MightBeFunction) { 417 // This is a function declaration. It can have default arguments, but 418 // keep looking in case its return type is a function type with default 419 // arguments. 420 MightBeFunction = false; 421 continue; 422 } 423 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 424 ++argIdx) { 425 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 426 if (Param->hasUnparsedDefaultArg()) { 427 std::unique_ptr<CachedTokens> Toks = 428 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 429 SourceRange SR; 430 if (Toks->size() > 1) 431 SR = SourceRange((*Toks)[1].getLocation(), 432 Toks->back().getLocation()); 433 else 434 SR = UnparsedDefaultArgLocs[Param]; 435 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 436 << SR; 437 } else if (Param->getDefaultArg()) { 438 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 439 << Param->getDefaultArg()->getSourceRange(); 440 Param->setDefaultArg(nullptr); 441 } 442 } 443 } else if (chunk.Kind != DeclaratorChunk::Paren) { 444 MightBeFunction = false; 445 } 446 } 447 } 448 449 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 450 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) { 451 return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); 452 }); 453 } 454 455 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 456 Scope *S) { 457 bool Invalid = false; 458 459 // The declaration context corresponding to the scope is the semantic 460 // parent, unless this is a local function declaration, in which case 461 // it is that surrounding function. 462 DeclContext *ScopeDC = New->isLocalExternDecl() 463 ? New->getLexicalDeclContext() 464 : New->getDeclContext(); 465 466 // Find the previous declaration for the purpose of default arguments. 467 FunctionDecl *PrevForDefaultArgs = Old; 468 for (/**/; PrevForDefaultArgs; 469 // Don't bother looking back past the latest decl if this is a local 470 // extern declaration; nothing else could work. 471 PrevForDefaultArgs = New->isLocalExternDecl() 472 ? nullptr 473 : PrevForDefaultArgs->getPreviousDecl()) { 474 // Ignore hidden declarations. 475 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 476 continue; 477 478 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 479 !New->isCXXClassMember()) { 480 // Ignore default arguments of old decl if they are not in 481 // the same scope and this is not an out-of-line definition of 482 // a member function. 483 continue; 484 } 485 486 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 487 // If only one of these is a local function declaration, then they are 488 // declared in different scopes, even though isDeclInScope may think 489 // they're in the same scope. (If both are local, the scope check is 490 // sufficient, and if neither is local, then they are in the same scope.) 491 continue; 492 } 493 494 // We found the right previous declaration. 495 break; 496 } 497 498 // C++ [dcl.fct.default]p4: 499 // For non-template functions, default arguments can be added in 500 // later declarations of a function in the same 501 // scope. Declarations in different scopes have completely 502 // distinct sets of default arguments. That is, declarations in 503 // inner scopes do not acquire default arguments from 504 // declarations in outer scopes, and vice versa. In a given 505 // function declaration, all parameters subsequent to a 506 // parameter with a default argument shall have default 507 // arguments supplied in this or previous declarations. A 508 // default argument shall not be redefined by a later 509 // declaration (not even to the same value). 510 // 511 // C++ [dcl.fct.default]p6: 512 // Except for member functions of class templates, the default arguments 513 // in a member function definition that appears outside of the class 514 // definition are added to the set of default arguments provided by the 515 // member function declaration in the class definition. 516 for (unsigned p = 0, NumParams = PrevForDefaultArgs 517 ? PrevForDefaultArgs->getNumParams() 518 : 0; 519 p < NumParams; ++p) { 520 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 521 ParmVarDecl *NewParam = New->getParamDecl(p); 522 523 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 524 bool NewParamHasDfl = NewParam->hasDefaultArg(); 525 526 if (OldParamHasDfl && NewParamHasDfl) { 527 unsigned DiagDefaultParamID = 528 diag::err_param_default_argument_redefinition; 529 530 // MSVC accepts that default parameters be redefined for member functions 531 // of template class. The new default parameter's value is ignored. 532 Invalid = true; 533 if (getLangOpts().MicrosoftExt) { 534 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 535 if (MD && MD->getParent()->getDescribedClassTemplate()) { 536 // Merge the old default argument into the new parameter. 537 NewParam->setHasInheritedDefaultArg(); 538 if (OldParam->hasUninstantiatedDefaultArg()) 539 NewParam->setUninstantiatedDefaultArg( 540 OldParam->getUninstantiatedDefaultArg()); 541 else 542 NewParam->setDefaultArg(OldParam->getInit()); 543 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 544 Invalid = false; 545 } 546 } 547 548 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 549 // hint here. Alternatively, we could walk the type-source information 550 // for NewParam to find the last source location in the type... but it 551 // isn't worth the effort right now. This is the kind of test case that 552 // is hard to get right: 553 // int f(int); 554 // void g(int (*fp)(int) = f); 555 // void g(int (*fp)(int) = &f); 556 Diag(NewParam->getLocation(), DiagDefaultParamID) 557 << NewParam->getDefaultArgRange(); 558 559 // Look for the function declaration where the default argument was 560 // actually written, which may be a declaration prior to Old. 561 for (auto Older = PrevForDefaultArgs; 562 OldParam->hasInheritedDefaultArg(); /**/) { 563 Older = Older->getPreviousDecl(); 564 OldParam = Older->getParamDecl(p); 565 } 566 567 Diag(OldParam->getLocation(), diag::note_previous_definition) 568 << OldParam->getDefaultArgRange(); 569 } else if (OldParamHasDfl) { 570 // Merge the old default argument into the new parameter unless the new 571 // function is a friend declaration in a template class. In the latter 572 // case the default arguments will be inherited when the friend 573 // declaration will be instantiated. 574 if (New->getFriendObjectKind() == Decl::FOK_None || 575 !New->getLexicalDeclContext()->isDependentContext()) { 576 // It's important to use getInit() here; getDefaultArg() 577 // strips off any top-level ExprWithCleanups. 578 NewParam->setHasInheritedDefaultArg(); 579 if (OldParam->hasUnparsedDefaultArg()) 580 NewParam->setUnparsedDefaultArg(); 581 else if (OldParam->hasUninstantiatedDefaultArg()) 582 NewParam->setUninstantiatedDefaultArg( 583 OldParam->getUninstantiatedDefaultArg()); 584 else 585 NewParam->setDefaultArg(OldParam->getInit()); 586 } 587 } else if (NewParamHasDfl) { 588 if (New->getDescribedFunctionTemplate()) { 589 // Paragraph 4, quoted above, only applies to non-template functions. 590 Diag(NewParam->getLocation(), 591 diag::err_param_default_argument_template_redecl) 592 << NewParam->getDefaultArgRange(); 593 Diag(PrevForDefaultArgs->getLocation(), 594 diag::note_template_prev_declaration) 595 << false; 596 } else if (New->getTemplateSpecializationKind() 597 != TSK_ImplicitInstantiation && 598 New->getTemplateSpecializationKind() != TSK_Undeclared) { 599 // C++ [temp.expr.spec]p21: 600 // Default function arguments shall not be specified in a declaration 601 // or a definition for one of the following explicit specializations: 602 // - the explicit specialization of a function template; 603 // - the explicit specialization of a member function template; 604 // - the explicit specialization of a member function of a class 605 // template where the class template specialization to which the 606 // member function specialization belongs is implicitly 607 // instantiated. 608 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 609 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 610 << New->getDeclName() 611 << NewParam->getDefaultArgRange(); 612 } else if (New->getDeclContext()->isDependentContext()) { 613 // C++ [dcl.fct.default]p6 (DR217): 614 // Default arguments for a member function of a class template shall 615 // be specified on the initial declaration of the member function 616 // within the class template. 617 // 618 // Reading the tea leaves a bit in DR217 and its reference to DR205 619 // leads me to the conclusion that one cannot add default function 620 // arguments for an out-of-line definition of a member function of a 621 // dependent type. 622 int WhichKind = 2; 623 if (CXXRecordDecl *Record 624 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 625 if (Record->getDescribedClassTemplate()) 626 WhichKind = 0; 627 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 628 WhichKind = 1; 629 else 630 WhichKind = 2; 631 } 632 633 Diag(NewParam->getLocation(), 634 diag::err_param_default_argument_member_template_redecl) 635 << WhichKind 636 << NewParam->getDefaultArgRange(); 637 } 638 } 639 } 640 641 // DR1344: If a default argument is added outside a class definition and that 642 // default argument makes the function a special member function, the program 643 // is ill-formed. This can only happen for constructors. 644 if (isa<CXXConstructorDecl>(New) && 645 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 646 CXXSpecialMemberKind NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 647 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 648 if (NewSM != OldSM) { 649 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 650 assert(NewParam->hasDefaultArg()); 651 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 652 << NewParam->getDefaultArgRange() << llvm::to_underlying(NewSM); 653 Diag(Old->getLocation(), diag::note_previous_declaration); 654 } 655 } 656 657 const FunctionDecl *Def; 658 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 659 // template has a constexpr specifier then all its declarations shall 660 // contain the constexpr specifier. 661 if (New->getConstexprKind() != Old->getConstexprKind()) { 662 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 663 << New << static_cast<int>(New->getConstexprKind()) 664 << static_cast<int>(Old->getConstexprKind()); 665 Diag(Old->getLocation(), diag::note_previous_declaration); 666 Invalid = true; 667 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 668 Old->isDefined(Def) && 669 // If a friend function is inlined but does not have 'inline' 670 // specifier, it is a definition. Do not report attribute conflict 671 // in this case, redefinition will be diagnosed later. 672 (New->isInlineSpecified() || 673 New->getFriendObjectKind() == Decl::FOK_None)) { 674 // C++11 [dcl.fcn.spec]p4: 675 // If the definition of a function appears in a translation unit before its 676 // first declaration as inline, the program is ill-formed. 677 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 678 Diag(Def->getLocation(), diag::note_previous_definition); 679 Invalid = true; 680 } 681 682 // C++17 [temp.deduct.guide]p3: 683 // Two deduction guide declarations in the same translation unit 684 // for the same class template shall not have equivalent 685 // parameter-declaration-clauses. 686 if (isa<CXXDeductionGuideDecl>(New) && 687 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 688 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 689 Diag(Old->getLocation(), diag::note_previous_declaration); 690 } 691 692 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 693 // argument expression, that declaration shall be a definition and shall be 694 // the only declaration of the function or function template in the 695 // translation unit. 696 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 697 functionDeclHasDefaultArgument(Old)) { 698 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 699 Diag(Old->getLocation(), diag::note_previous_declaration); 700 Invalid = true; 701 } 702 703 // C++11 [temp.friend]p4 (DR329): 704 // When a function is defined in a friend function declaration in a class 705 // template, the function is instantiated when the function is odr-used. 706 // The same restrictions on multiple declarations and definitions that 707 // apply to non-template function declarations and definitions also apply 708 // to these implicit definitions. 709 const FunctionDecl *OldDefinition = nullptr; 710 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && 711 Old->isDefined(OldDefinition, true)) 712 CheckForFunctionRedefinition(New, OldDefinition); 713 714 return Invalid; 715 } 716 717 void Sema::DiagPlaceholderVariableDefinition(SourceLocation Loc) { 718 Diag(Loc, getLangOpts().CPlusPlus26 719 ? diag::warn_cxx23_placeholder_var_definition 720 : diag::ext_placeholder_var_definition); 721 } 722 723 NamedDecl * 724 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 725 MultiTemplateParamsArg TemplateParamLists) { 726 assert(D.isDecompositionDeclarator()); 727 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 728 729 // The syntax only allows a decomposition declarator as a simple-declaration, 730 // a for-range-declaration, or a condition in Clang, but we parse it in more 731 // cases than that. 732 if (!D.mayHaveDecompositionDeclarator()) { 733 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 734 << Decomp.getSourceRange(); 735 return nullptr; 736 } 737 738 if (!TemplateParamLists.empty()) { 739 // FIXME: There's no rule against this, but there are also no rules that 740 // would actually make it usable, so we reject it for now. 741 Diag(TemplateParamLists.front()->getTemplateLoc(), 742 diag::err_decomp_decl_template); 743 return nullptr; 744 } 745 746 Diag(Decomp.getLSquareLoc(), 747 !getLangOpts().CPlusPlus17 748 ? diag::ext_decomp_decl 749 : D.getContext() == DeclaratorContext::Condition 750 ? diag::ext_decomp_decl_cond 751 : diag::warn_cxx14_compat_decomp_decl) 752 << Decomp.getSourceRange(); 753 754 // The semantic context is always just the current context. 755 DeclContext *const DC = CurContext; 756 757 // C++17 [dcl.dcl]/8: 758 // The decl-specifier-seq shall contain only the type-specifier auto 759 // and cv-qualifiers. 760 // C++20 [dcl.dcl]/8: 761 // If decl-specifier-seq contains any decl-specifier other than static, 762 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 763 // C++23 [dcl.pre]/6: 764 // Each decl-specifier in the decl-specifier-seq shall be static, 765 // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier. 766 auto &DS = D.getDeclSpec(); 767 { 768 // Note: While constrained-auto needs to be checked, we do so separately so 769 // we can emit a better diagnostic. 770 SmallVector<StringRef, 8> BadSpecifiers; 771 SmallVector<SourceLocation, 8> BadSpecifierLocs; 772 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 773 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 774 if (auto SCS = DS.getStorageClassSpec()) { 775 if (SCS == DeclSpec::SCS_static) { 776 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 777 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 778 } else { 779 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 780 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 781 } 782 } 783 if (auto TSCS = DS.getThreadStorageClassSpec()) { 784 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 785 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 786 } 787 if (DS.hasConstexprSpecifier()) { 788 BadSpecifiers.push_back( 789 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 790 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 791 } 792 if (DS.isInlineSpecified()) { 793 BadSpecifiers.push_back("inline"); 794 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 795 } 796 797 if (!BadSpecifiers.empty()) { 798 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 799 Err << (int)BadSpecifiers.size() 800 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 801 // Don't add FixItHints to remove the specifiers; we do still respect 802 // them when building the underlying variable. 803 for (auto Loc : BadSpecifierLocs) 804 Err << SourceRange(Loc, Loc); 805 } else if (!CPlusPlus20Specifiers.empty()) { 806 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 807 getLangOpts().CPlusPlus20 808 ? diag::warn_cxx17_compat_decomp_decl_spec 809 : diag::ext_decomp_decl_spec); 810 Warn << (int)CPlusPlus20Specifiers.size() 811 << llvm::join(CPlusPlus20Specifiers.begin(), 812 CPlusPlus20Specifiers.end(), " "); 813 for (auto Loc : CPlusPlus20SpecifierLocs) 814 Warn << SourceRange(Loc, Loc); 815 } 816 // We can't recover from it being declared as a typedef. 817 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 818 return nullptr; 819 } 820 821 // C++2a [dcl.struct.bind]p1: 822 // A cv that includes volatile is deprecated 823 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 824 getLangOpts().CPlusPlus20) 825 Diag(DS.getVolatileSpecLoc(), 826 diag::warn_deprecated_volatile_structured_binding); 827 828 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 829 QualType R = TInfo->getType(); 830 831 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 832 UPPC_DeclarationType)) 833 D.setInvalidType(); 834 835 // The syntax only allows a single ref-qualifier prior to the decomposition 836 // declarator. No other declarator chunks are permitted. Also check the type 837 // specifier here. 838 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 839 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 840 (D.getNumTypeObjects() == 1 && 841 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 842 Diag(Decomp.getLSquareLoc(), 843 (D.hasGroupingParens() || 844 (D.getNumTypeObjects() && 845 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 846 ? diag::err_decomp_decl_parens 847 : diag::err_decomp_decl_type) 848 << R; 849 850 // In most cases, there's no actual problem with an explicitly-specified 851 // type, but a function type won't work here, and ActOnVariableDeclarator 852 // shouldn't be called for such a type. 853 if (R->isFunctionType()) 854 D.setInvalidType(); 855 } 856 857 // Constrained auto is prohibited by [decl.pre]p6, so check that here. 858 if (DS.isConstrainedAuto()) { 859 TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId(); 860 assert(TemplRep->Kind == TNK_Concept_template && 861 "No other template kind should be possible for a constrained auto"); 862 863 SourceRange TemplRange{TemplRep->TemplateNameLoc, 864 TemplRep->RAngleLoc.isValid() 865 ? TemplRep->RAngleLoc 866 : TemplRep->TemplateNameLoc}; 867 Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint) 868 << TemplRange << FixItHint::CreateRemoval(TemplRange); 869 } 870 871 // Build the BindingDecls. 872 SmallVector<BindingDecl*, 8> Bindings; 873 874 // Build the BindingDecls. 875 for (auto &B : D.getDecompositionDeclarator().bindings()) { 876 // Check for name conflicts. 877 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 878 IdentifierInfo *VarName = B.Name; 879 assert(VarName && "Cannot have an unnamed binding declaration"); 880 881 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 882 RedeclarationKind::ForVisibleRedeclaration); 883 LookupName(Previous, S, 884 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 885 886 // It's not permitted to shadow a template parameter name. 887 if (Previous.isSingleResult() && 888 Previous.getFoundDecl()->isTemplateParameter()) { 889 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 890 Previous.getFoundDecl()); 891 Previous.clear(); 892 } 893 894 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, VarName); 895 896 ProcessDeclAttributeList(S, BD, *B.Attrs); 897 898 // Find the shadowed declaration before filtering for scope. 899 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 900 ? getShadowedDeclaration(BD, Previous) 901 : nullptr; 902 903 bool ConsiderLinkage = DC->isFunctionOrMethod() && 904 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 905 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 906 /*AllowInlineNamespace*/false); 907 908 bool IsPlaceholder = DS.getStorageClassSpec() != DeclSpec::SCS_static && 909 DC->isFunctionOrMethod() && VarName->isPlaceholder(); 910 if (!Previous.empty()) { 911 if (IsPlaceholder) { 912 bool sameDC = (Previous.end() - 1) 913 ->getDeclContext() 914 ->getRedeclContext() 915 ->Equals(DC->getRedeclContext()); 916 if (sameDC && 917 isDeclInScope(*(Previous.end() - 1), CurContext, S, false)) { 918 Previous.clear(); 919 DiagPlaceholderVariableDefinition(B.NameLoc); 920 } 921 } else { 922 auto *Old = Previous.getRepresentativeDecl(); 923 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 924 Diag(Old->getLocation(), diag::note_previous_definition); 925 } 926 } else if (ShadowedDecl && !D.isRedeclaration()) { 927 CheckShadow(BD, ShadowedDecl, Previous); 928 } 929 PushOnScopeChains(BD, S, true); 930 Bindings.push_back(BD); 931 ParsingInitForAutoVars.insert(BD); 932 } 933 934 // There are no prior lookup results for the variable itself, because it 935 // is unnamed. 936 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 937 Decomp.getLSquareLoc()); 938 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 939 RedeclarationKind::ForVisibleRedeclaration); 940 941 // Build the variable that holds the non-decomposed object. 942 bool AddToScope = true; 943 NamedDecl *New = 944 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 945 MultiTemplateParamsArg(), AddToScope, Bindings); 946 if (AddToScope) { 947 S->AddDecl(New); 948 CurContext->addHiddenDecl(New); 949 } 950 951 if (OpenMP().isInOpenMPDeclareTargetContext()) 952 OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New); 953 954 return New; 955 } 956 957 static bool checkSimpleDecomposition( 958 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 959 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 960 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 961 if ((int64_t)Bindings.size() != NumElems) { 962 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 963 << DecompType << (unsigned)Bindings.size() 964 << (unsigned)NumElems.getLimitedValue(UINT_MAX) 965 << toString(NumElems, 10) << (NumElems < Bindings.size()); 966 return true; 967 } 968 969 unsigned I = 0; 970 for (auto *B : Bindings) { 971 SourceLocation Loc = B->getLocation(); 972 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 973 if (E.isInvalid()) 974 return true; 975 E = GetInit(Loc, E.get(), I++); 976 if (E.isInvalid()) 977 return true; 978 B->setBinding(ElemType, E.get()); 979 } 980 981 return false; 982 } 983 984 static bool checkArrayLikeDecomposition(Sema &S, 985 ArrayRef<BindingDecl *> Bindings, 986 ValueDecl *Src, QualType DecompType, 987 const llvm::APSInt &NumElems, 988 QualType ElemType) { 989 return checkSimpleDecomposition( 990 S, Bindings, Src, DecompType, NumElems, ElemType, 991 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 992 ExprResult E = S.ActOnIntegerConstant(Loc, I); 993 if (E.isInvalid()) 994 return ExprError(); 995 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 996 }); 997 } 998 999 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1000 ValueDecl *Src, QualType DecompType, 1001 const ConstantArrayType *CAT) { 1002 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 1003 llvm::APSInt(CAT->getSize()), 1004 CAT->getElementType()); 1005 } 1006 1007 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1008 ValueDecl *Src, QualType DecompType, 1009 const VectorType *VT) { 1010 return checkArrayLikeDecomposition( 1011 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 1012 S.Context.getQualifiedType(VT->getElementType(), 1013 DecompType.getQualifiers())); 1014 } 1015 1016 static bool checkComplexDecomposition(Sema &S, 1017 ArrayRef<BindingDecl *> Bindings, 1018 ValueDecl *Src, QualType DecompType, 1019 const ComplexType *CT) { 1020 return checkSimpleDecomposition( 1021 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 1022 S.Context.getQualifiedType(CT->getElementType(), 1023 DecompType.getQualifiers()), 1024 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 1025 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 1026 }); 1027 } 1028 1029 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 1030 TemplateArgumentListInfo &Args, 1031 const TemplateParameterList *Params) { 1032 SmallString<128> SS; 1033 llvm::raw_svector_ostream OS(SS); 1034 bool First = true; 1035 unsigned I = 0; 1036 for (auto &Arg : Args.arguments()) { 1037 if (!First) 1038 OS << ", "; 1039 Arg.getArgument().print(PrintingPolicy, OS, 1040 TemplateParameterList::shouldIncludeTypeForArgument( 1041 PrintingPolicy, Params, I)); 1042 First = false; 1043 I++; 1044 } 1045 return std::string(OS.str()); 1046 } 1047 1048 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 1049 SourceLocation Loc, StringRef Trait, 1050 TemplateArgumentListInfo &Args, 1051 unsigned DiagID) { 1052 auto DiagnoseMissing = [&] { 1053 if (DiagID) 1054 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 1055 Args, /*Params*/ nullptr); 1056 return true; 1057 }; 1058 1059 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 1060 NamespaceDecl *Std = S.getStdNamespace(); 1061 if (!Std) 1062 return DiagnoseMissing(); 1063 1064 // Look up the trait itself, within namespace std. We can diagnose various 1065 // problems with this lookup even if we've been asked to not diagnose a 1066 // missing specialization, because this can only fail if the user has been 1067 // declaring their own names in namespace std or we don't support the 1068 // standard library implementation in use. 1069 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 1070 Loc, Sema::LookupOrdinaryName); 1071 if (!S.LookupQualifiedName(Result, Std)) 1072 return DiagnoseMissing(); 1073 if (Result.isAmbiguous()) 1074 return true; 1075 1076 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1077 if (!TraitTD) { 1078 Result.suppressDiagnostics(); 1079 NamedDecl *Found = *Result.begin(); 1080 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1081 S.Diag(Found->getLocation(), diag::note_declared_at); 1082 return true; 1083 } 1084 1085 // Build the template-id. 1086 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1087 if (TraitTy.isNull()) 1088 return true; 1089 if (!S.isCompleteType(Loc, TraitTy)) { 1090 if (DiagID) 1091 S.RequireCompleteType( 1092 Loc, TraitTy, DiagID, 1093 printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1094 TraitTD->getTemplateParameters())); 1095 return true; 1096 } 1097 1098 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1099 assert(RD && "specialization of class template is not a class?"); 1100 1101 // Look up the member of the trait type. 1102 S.LookupQualifiedName(TraitMemberLookup, RD); 1103 return TraitMemberLookup.isAmbiguous(); 1104 } 1105 1106 static TemplateArgumentLoc 1107 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1108 uint64_t I) { 1109 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1110 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1111 } 1112 1113 static TemplateArgumentLoc 1114 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1115 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1116 } 1117 1118 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1119 1120 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1121 llvm::APSInt &Size) { 1122 EnterExpressionEvaluationContext ContextRAII( 1123 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1124 1125 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1126 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1127 1128 // Form template argument list for tuple_size<T>. 1129 TemplateArgumentListInfo Args(Loc, Loc); 1130 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1131 1132 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1133 // it's not tuple-like. 1134 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1135 R.empty()) 1136 return IsTupleLike::NotTupleLike; 1137 1138 // If we get this far, we've committed to the tuple interpretation, but 1139 // we can still fail if there actually isn't a usable ::value. 1140 1141 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1142 LookupResult &R; 1143 TemplateArgumentListInfo &Args; 1144 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1145 : R(R), Args(Args) {} 1146 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 1147 SourceLocation Loc) override { 1148 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1149 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1150 /*Params*/ nullptr); 1151 } 1152 } Diagnoser(R, Args); 1153 1154 ExprResult E = 1155 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1156 if (E.isInvalid()) 1157 return IsTupleLike::Error; 1158 1159 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); 1160 if (E.isInvalid()) 1161 return IsTupleLike::Error; 1162 1163 return IsTupleLike::TupleLike; 1164 } 1165 1166 /// \return std::tuple_element<I, T>::type. 1167 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1168 unsigned I, QualType T) { 1169 // Form template argument list for tuple_element<I, T>. 1170 TemplateArgumentListInfo Args(Loc, Loc); 1171 Args.addArgument( 1172 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1173 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1174 1175 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1176 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1177 if (lookupStdTypeTraitMember( 1178 S, R, Loc, "tuple_element", Args, 1179 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1180 return QualType(); 1181 1182 auto *TD = R.getAsSingle<TypeDecl>(); 1183 if (!TD) { 1184 R.suppressDiagnostics(); 1185 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1186 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1187 /*Params*/ nullptr); 1188 if (!R.empty()) 1189 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1190 return QualType(); 1191 } 1192 1193 return S.Context.getTypeDeclType(TD); 1194 } 1195 1196 namespace { 1197 struct InitializingBinding { 1198 Sema &S; 1199 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1200 Sema::CodeSynthesisContext Ctx; 1201 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1202 Ctx.PointOfInstantiation = BD->getLocation(); 1203 Ctx.Entity = BD; 1204 S.pushCodeSynthesisContext(Ctx); 1205 } 1206 ~InitializingBinding() { 1207 S.popCodeSynthesisContext(); 1208 } 1209 }; 1210 } 1211 1212 static bool checkTupleLikeDecomposition(Sema &S, 1213 ArrayRef<BindingDecl *> Bindings, 1214 VarDecl *Src, QualType DecompType, 1215 const llvm::APSInt &TupleSize) { 1216 if ((int64_t)Bindings.size() != TupleSize) { 1217 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1218 << DecompType << (unsigned)Bindings.size() 1219 << (unsigned)TupleSize.getLimitedValue(UINT_MAX) 1220 << toString(TupleSize, 10) << (TupleSize < Bindings.size()); 1221 return true; 1222 } 1223 1224 if (Bindings.empty()) 1225 return false; 1226 1227 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1228 1229 // [dcl.decomp]p3: 1230 // The unqualified-id get is looked up in the scope of E by class member 1231 // access lookup ... 1232 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1233 bool UseMemberGet = false; 1234 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1235 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1236 S.LookupQualifiedName(MemberGet, RD); 1237 if (MemberGet.isAmbiguous()) 1238 return true; 1239 // ... and if that finds at least one declaration that is a function 1240 // template whose first template parameter is a non-type parameter ... 1241 for (NamedDecl *D : MemberGet) { 1242 if (FunctionTemplateDecl *FTD = 1243 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1244 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1245 if (TPL->size() != 0 && 1246 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1247 // ... the initializer is e.get<i>(). 1248 UseMemberGet = true; 1249 break; 1250 } 1251 } 1252 } 1253 } 1254 1255 unsigned I = 0; 1256 for (auto *B : Bindings) { 1257 InitializingBinding InitContext(S, B); 1258 SourceLocation Loc = B->getLocation(); 1259 1260 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1261 if (E.isInvalid()) 1262 return true; 1263 1264 // e is an lvalue if the type of the entity is an lvalue reference and 1265 // an xvalue otherwise 1266 if (!Src->getType()->isLValueReferenceType()) 1267 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1268 E.get(), nullptr, VK_XValue, 1269 FPOptionsOverride()); 1270 1271 TemplateArgumentListInfo Args(Loc, Loc); 1272 Args.addArgument( 1273 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1274 1275 if (UseMemberGet) { 1276 // if [lookup of member get] finds at least one declaration, the 1277 // initializer is e.get<i-1>(). 1278 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1279 CXXScopeSpec(), SourceLocation(), nullptr, 1280 MemberGet, &Args, nullptr); 1281 if (E.isInvalid()) 1282 return true; 1283 1284 E = S.BuildCallExpr(nullptr, E.get(), Loc, std::nullopt, Loc); 1285 } else { 1286 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1287 // in the associated namespaces. 1288 Expr *Get = UnresolvedLookupExpr::Create( 1289 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1290 DeclarationNameInfo(GetDN, Loc), /*RequiresADL=*/true, &Args, 1291 UnresolvedSetIterator(), UnresolvedSetIterator(), 1292 /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false); 1293 1294 Expr *Arg = E.get(); 1295 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1296 } 1297 if (E.isInvalid()) 1298 return true; 1299 Expr *Init = E.get(); 1300 1301 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1302 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1303 if (T.isNull()) 1304 return true; 1305 1306 // each vi is a variable of type "reference to T" initialized with the 1307 // initializer, where the reference is an lvalue reference if the 1308 // initializer is an lvalue and an rvalue reference otherwise 1309 QualType RefType = 1310 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1311 if (RefType.isNull()) 1312 return true; 1313 auto *RefVD = VarDecl::Create( 1314 S.Context, Src->getDeclContext(), Loc, Loc, 1315 B->getDeclName().getAsIdentifierInfo(), RefType, 1316 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1317 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1318 RefVD->setTSCSpec(Src->getTSCSpec()); 1319 RefVD->setImplicit(); 1320 if (Src->isInlineSpecified()) 1321 RefVD->setInlineSpecified(); 1322 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1323 1324 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1325 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1326 InitializationSequence Seq(S, Entity, Kind, Init); 1327 E = Seq.Perform(S, Entity, Kind, Init); 1328 if (E.isInvalid()) 1329 return true; 1330 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1331 if (E.isInvalid()) 1332 return true; 1333 RefVD->setInit(E.get()); 1334 S.CheckCompleteVariableDeclaration(RefVD); 1335 1336 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1337 DeclarationNameInfo(B->getDeclName(), Loc), 1338 RefVD); 1339 if (E.isInvalid()) 1340 return true; 1341 1342 B->setBinding(T, E.get()); 1343 I++; 1344 } 1345 1346 return false; 1347 } 1348 1349 /// Find the base class to decompose in a built-in decomposition of a class type. 1350 /// This base class search is, unfortunately, not quite like any other that we 1351 /// perform anywhere else in C++. 1352 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1353 const CXXRecordDecl *RD, 1354 CXXCastPath &BasePath) { 1355 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1356 CXXBasePath &Path) { 1357 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1358 }; 1359 1360 const CXXRecordDecl *ClassWithFields = nullptr; 1361 AccessSpecifier AS = AS_public; 1362 if (RD->hasDirectFields()) 1363 // [dcl.decomp]p4: 1364 // Otherwise, all of E's non-static data members shall be public direct 1365 // members of E ... 1366 ClassWithFields = RD; 1367 else { 1368 // ... or of ... 1369 CXXBasePaths Paths; 1370 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1371 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1372 // If no classes have fields, just decompose RD itself. (This will work 1373 // if and only if zero bindings were provided.) 1374 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1375 } 1376 1377 CXXBasePath *BestPath = nullptr; 1378 for (auto &P : Paths) { 1379 if (!BestPath) 1380 BestPath = &P; 1381 else if (!S.Context.hasSameType(P.back().Base->getType(), 1382 BestPath->back().Base->getType())) { 1383 // ... the same ... 1384 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1385 << false << RD << BestPath->back().Base->getType() 1386 << P.back().Base->getType(); 1387 return DeclAccessPair(); 1388 } else if (P.Access < BestPath->Access) { 1389 BestPath = &P; 1390 } 1391 } 1392 1393 // ... unambiguous ... 1394 QualType BaseType = BestPath->back().Base->getType(); 1395 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1396 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1397 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1398 return DeclAccessPair(); 1399 } 1400 1401 // ... [accessible, implied by other rules] base class of E. 1402 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1403 *BestPath, diag::err_decomp_decl_inaccessible_base); 1404 AS = BestPath->Access; 1405 1406 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1407 S.BuildBasePathArray(Paths, BasePath); 1408 } 1409 1410 // The above search did not check whether the selected class itself has base 1411 // classes with fields, so check that now. 1412 CXXBasePaths Paths; 1413 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1414 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1415 << (ClassWithFields == RD) << RD << ClassWithFields 1416 << Paths.front().back().Base->getType(); 1417 return DeclAccessPair(); 1418 } 1419 1420 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1421 } 1422 1423 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1424 ValueDecl *Src, QualType DecompType, 1425 const CXXRecordDecl *OrigRD) { 1426 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1427 diag::err_incomplete_type)) 1428 return true; 1429 1430 CXXCastPath BasePath; 1431 DeclAccessPair BasePair = 1432 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1433 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1434 if (!RD) 1435 return true; 1436 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1437 DecompType.getQualifiers()); 1438 1439 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1440 unsigned NumFields = llvm::count_if( 1441 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitField(); }); 1442 assert(Bindings.size() != NumFields); 1443 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1444 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields 1445 << (NumFields < Bindings.size()); 1446 return true; 1447 }; 1448 1449 // all of E's non-static data members shall be [...] well-formed 1450 // when named as e.name in the context of the structured binding, 1451 // E shall not have an anonymous union member, ... 1452 unsigned I = 0; 1453 for (auto *FD : RD->fields()) { 1454 if (FD->isUnnamedBitField()) 1455 continue; 1456 1457 // All the non-static data members are required to be nameable, so they 1458 // must all have names. 1459 if (!FD->getDeclName()) { 1460 if (RD->isLambda()) { 1461 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); 1462 S.Diag(RD->getLocation(), diag::note_lambda_decl); 1463 return true; 1464 } 1465 1466 if (FD->isAnonymousStructOrUnion()) { 1467 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1468 << DecompType << FD->getType()->isUnionType(); 1469 S.Diag(FD->getLocation(), diag::note_declared_at); 1470 return true; 1471 } 1472 1473 // FIXME: Are there any other ways we could have an anonymous member? 1474 } 1475 1476 // We have a real field to bind. 1477 if (I >= Bindings.size()) 1478 return DiagnoseBadNumberOfBindings(); 1479 auto *B = Bindings[I++]; 1480 SourceLocation Loc = B->getLocation(); 1481 1482 // The field must be accessible in the context of the structured binding. 1483 // We already checked that the base class is accessible. 1484 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1485 // const_cast here. 1486 S.CheckStructuredBindingMemberAccess( 1487 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1488 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1489 BasePair.getAccess(), FD->getAccess()))); 1490 1491 // Initialize the binding to Src.FD. 1492 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1493 if (E.isInvalid()) 1494 return true; 1495 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1496 VK_LValue, &BasePath); 1497 if (E.isInvalid()) 1498 return true; 1499 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1500 CXXScopeSpec(), FD, 1501 DeclAccessPair::make(FD, FD->getAccess()), 1502 DeclarationNameInfo(FD->getDeclName(), Loc)); 1503 if (E.isInvalid()) 1504 return true; 1505 1506 // If the type of the member is T, the referenced type is cv T, where cv is 1507 // the cv-qualification of the decomposition expression. 1508 // 1509 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1510 // 'const' to the type of the field. 1511 Qualifiers Q = DecompType.getQualifiers(); 1512 if (FD->isMutable()) 1513 Q.removeConst(); 1514 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1515 } 1516 1517 if (I != Bindings.size()) 1518 return DiagnoseBadNumberOfBindings(); 1519 1520 return false; 1521 } 1522 1523 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1524 QualType DecompType = DD->getType(); 1525 1526 // If the type of the decomposition is dependent, then so is the type of 1527 // each binding. 1528 if (DecompType->isDependentType()) { 1529 for (auto *B : DD->bindings()) 1530 B->setType(Context.DependentTy); 1531 return; 1532 } 1533 1534 DecompType = DecompType.getNonReferenceType(); 1535 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1536 1537 // C++1z [dcl.decomp]/2: 1538 // If E is an array type [...] 1539 // As an extension, we also support decomposition of built-in complex and 1540 // vector types. 1541 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1542 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1543 DD->setInvalidDecl(); 1544 return; 1545 } 1546 if (auto *VT = DecompType->getAs<VectorType>()) { 1547 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1548 DD->setInvalidDecl(); 1549 return; 1550 } 1551 if (auto *CT = DecompType->getAs<ComplexType>()) { 1552 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1553 DD->setInvalidDecl(); 1554 return; 1555 } 1556 1557 // C++1z [dcl.decomp]/3: 1558 // if the expression std::tuple_size<E>::value is a well-formed integral 1559 // constant expression, [...] 1560 llvm::APSInt TupleSize(32); 1561 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1562 case IsTupleLike::Error: 1563 DD->setInvalidDecl(); 1564 return; 1565 1566 case IsTupleLike::TupleLike: 1567 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1568 DD->setInvalidDecl(); 1569 return; 1570 1571 case IsTupleLike::NotTupleLike: 1572 break; 1573 } 1574 1575 // C++1z [dcl.dcl]/8: 1576 // [E shall be of array or non-union class type] 1577 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1578 if (!RD || RD->isUnion()) { 1579 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1580 << DD << !RD << DecompType; 1581 DD->setInvalidDecl(); 1582 return; 1583 } 1584 1585 // C++1z [dcl.decomp]/4: 1586 // all of E's non-static data members shall be [...] direct members of 1587 // E or of the same unambiguous public base class of E, ... 1588 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1589 DD->setInvalidDecl(); 1590 } 1591 1592 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1593 // Shortcut if exceptions are disabled. 1594 if (!getLangOpts().CXXExceptions) 1595 return; 1596 1597 assert(Context.hasSameType(New->getType(), Old->getType()) && 1598 "Should only be called if types are otherwise the same."); 1599 1600 QualType NewType = New->getType(); 1601 QualType OldType = Old->getType(); 1602 1603 // We're only interested in pointers and references to functions, as well 1604 // as pointers to member functions. 1605 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1606 NewType = R->getPointeeType(); 1607 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1608 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1609 NewType = P->getPointeeType(); 1610 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1611 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1612 NewType = M->getPointeeType(); 1613 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1614 } 1615 1616 if (!NewType->isFunctionProtoType()) 1617 return; 1618 1619 // There's lots of special cases for functions. For function pointers, system 1620 // libraries are hopefully not as broken so that we don't need these 1621 // workarounds. 1622 if (CheckEquivalentExceptionSpec( 1623 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1624 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1625 New->setInvalidDecl(); 1626 } 1627 } 1628 1629 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1630 /// function declaration are well-formed according to C++ 1631 /// [dcl.fct.default]. 1632 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1633 // This checking doesn't make sense for explicit specializations; their 1634 // default arguments are determined by the declaration we're specializing, 1635 // not by FD. 1636 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1637 return; 1638 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1639 if (FTD->isMemberSpecialization()) 1640 return; 1641 1642 unsigned NumParams = FD->getNumParams(); 1643 unsigned ParamIdx = 0; 1644 1645 // Find first parameter with a default argument 1646 for (; ParamIdx < NumParams; ++ParamIdx) { 1647 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1648 if (Param->hasDefaultArg()) 1649 break; 1650 } 1651 1652 // C++20 [dcl.fct.default]p4: 1653 // In a given function declaration, each parameter subsequent to a parameter 1654 // with a default argument shall have a default argument supplied in this or 1655 // a previous declaration, unless the parameter was expanded from a 1656 // parameter pack, or shall be a function parameter pack. 1657 for (++ParamIdx; ParamIdx < NumParams; ++ParamIdx) { 1658 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1659 if (Param->hasDefaultArg() || Param->isParameterPack() || 1660 (CurrentInstantiationScope && 1661 CurrentInstantiationScope->isLocalPackExpansion(Param))) 1662 continue; 1663 if (Param->isInvalidDecl()) 1664 /* We already complained about this parameter. */; 1665 else if (Param->getIdentifier()) 1666 Diag(Param->getLocation(), diag::err_param_default_argument_missing_name) 1667 << Param->getIdentifier(); 1668 else 1669 Diag(Param->getLocation(), diag::err_param_default_argument_missing); 1670 } 1671 } 1672 1673 /// Check that the given type is a literal type. Issue a diagnostic if not, 1674 /// if Kind is Diagnose. 1675 /// \return \c true if a problem has been found (and optionally diagnosed). 1676 template <typename... Ts> 1677 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1678 SourceLocation Loc, QualType T, unsigned DiagID, 1679 Ts &&...DiagArgs) { 1680 if (T->isDependentType()) 1681 return false; 1682 1683 switch (Kind) { 1684 case Sema::CheckConstexprKind::Diagnose: 1685 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1686 std::forward<Ts>(DiagArgs)...); 1687 1688 case Sema::CheckConstexprKind::CheckValid: 1689 return !T->isLiteralType(SemaRef.Context); 1690 } 1691 1692 llvm_unreachable("unknown CheckConstexprKind"); 1693 } 1694 1695 /// Determine whether a destructor cannot be constexpr due to 1696 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1697 const CXXDestructorDecl *DD, 1698 Sema::CheckConstexprKind Kind) { 1699 assert(!SemaRef.getLangOpts().CPlusPlus23 && 1700 "this check is obsolete for C++23"); 1701 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1702 const CXXRecordDecl *RD = 1703 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1704 if (!RD || RD->hasConstexprDestructor()) 1705 return true; 1706 1707 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1708 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1709 << static_cast<int>(DD->getConstexprKind()) << !FD 1710 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1711 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1712 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1713 } 1714 return false; 1715 }; 1716 1717 const CXXRecordDecl *RD = DD->getParent(); 1718 for (const CXXBaseSpecifier &B : RD->bases()) 1719 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1720 return false; 1721 for (const FieldDecl *FD : RD->fields()) 1722 if (!Check(FD->getLocation(), FD->getType(), FD)) 1723 return false; 1724 return true; 1725 } 1726 1727 /// Check whether a function's parameter types are all literal types. If so, 1728 /// return true. If not, produce a suitable diagnostic and return false. 1729 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1730 const FunctionDecl *FD, 1731 Sema::CheckConstexprKind Kind) { 1732 assert(!SemaRef.getLangOpts().CPlusPlus23 && 1733 "this check is obsolete for C++23"); 1734 unsigned ArgIndex = 0; 1735 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1736 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1737 e = FT->param_type_end(); 1738 i != e; ++i, ++ArgIndex) { 1739 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1740 assert(PD && "null in a parameter list"); 1741 SourceLocation ParamLoc = PD->getLocation(); 1742 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1743 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1744 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1745 FD->isConsteval())) 1746 return false; 1747 } 1748 return true; 1749 } 1750 1751 /// Check whether a function's return type is a literal type. If so, return 1752 /// true. If not, produce a suitable diagnostic and return false. 1753 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1754 Sema::CheckConstexprKind Kind) { 1755 assert(!SemaRef.getLangOpts().CPlusPlus23 && 1756 "this check is obsolete for C++23"); 1757 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1758 diag::err_constexpr_non_literal_return, 1759 FD->isConsteval())) 1760 return false; 1761 return true; 1762 } 1763 1764 /// Get diagnostic %select index for tag kind for 1765 /// record diagnostic message. 1766 /// WARNING: Indexes apply to particular diagnostics only! 1767 /// 1768 /// \returns diagnostic %select index. 1769 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1770 switch (Tag) { 1771 case TagTypeKind::Struct: 1772 return 0; 1773 case TagTypeKind::Interface: 1774 return 1; 1775 case TagTypeKind::Class: 1776 return 2; 1777 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1778 } 1779 } 1780 1781 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1782 Stmt *Body, 1783 Sema::CheckConstexprKind Kind); 1784 static bool CheckConstexprMissingReturn(Sema &SemaRef, const FunctionDecl *Dcl); 1785 1786 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1787 CheckConstexprKind Kind) { 1788 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1789 if (MD && MD->isInstance()) { 1790 // C++11 [dcl.constexpr]p4: 1791 // The definition of a constexpr constructor shall satisfy the following 1792 // constraints: 1793 // - the class shall not have any virtual base classes; 1794 // 1795 // FIXME: This only applies to constructors and destructors, not arbitrary 1796 // member functions. 1797 const CXXRecordDecl *RD = MD->getParent(); 1798 if (RD->getNumVBases()) { 1799 if (Kind == CheckConstexprKind::CheckValid) 1800 return false; 1801 1802 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1803 << isa<CXXConstructorDecl>(NewFD) 1804 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1805 for (const auto &I : RD->vbases()) 1806 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1807 << I.getSourceRange(); 1808 return false; 1809 } 1810 } 1811 1812 if (!isa<CXXConstructorDecl>(NewFD)) { 1813 // C++11 [dcl.constexpr]p3: 1814 // The definition of a constexpr function shall satisfy the following 1815 // constraints: 1816 // - it shall not be virtual; (removed in C++20) 1817 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1818 if (Method && Method->isVirtual()) { 1819 if (getLangOpts().CPlusPlus20) { 1820 if (Kind == CheckConstexprKind::Diagnose) 1821 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1822 } else { 1823 if (Kind == CheckConstexprKind::CheckValid) 1824 return false; 1825 1826 Method = Method->getCanonicalDecl(); 1827 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1828 1829 // If it's not obvious why this function is virtual, find an overridden 1830 // function which uses the 'virtual' keyword. 1831 const CXXMethodDecl *WrittenVirtual = Method; 1832 while (!WrittenVirtual->isVirtualAsWritten()) 1833 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1834 if (WrittenVirtual != Method) 1835 Diag(WrittenVirtual->getLocation(), 1836 diag::note_overridden_virtual_function); 1837 return false; 1838 } 1839 } 1840 1841 // - its return type shall be a literal type; (removed in C++23) 1842 if (!getLangOpts().CPlusPlus23 && 1843 !CheckConstexprReturnType(*this, NewFD, Kind)) 1844 return false; 1845 } 1846 1847 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1848 // A destructor can be constexpr only if the defaulted destructor could be; 1849 // we don't need to check the members and bases if we already know they all 1850 // have constexpr destructors. (removed in C++23) 1851 if (!getLangOpts().CPlusPlus23 && 1852 !Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1853 if (Kind == CheckConstexprKind::CheckValid) 1854 return false; 1855 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1856 return false; 1857 } 1858 } 1859 1860 // - each of its parameter types shall be a literal type; (removed in C++23) 1861 if (!getLangOpts().CPlusPlus23 && 1862 !CheckConstexprParameterTypes(*this, NewFD, Kind)) 1863 return false; 1864 1865 Stmt *Body = NewFD->getBody(); 1866 assert(Body && 1867 "CheckConstexprFunctionDefinition called on function with no body"); 1868 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1869 } 1870 1871 /// Check the given declaration statement is legal within a constexpr function 1872 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1873 /// 1874 /// \return true if the body is OK (maybe only as an extension), false if we 1875 /// have diagnosed a problem. 1876 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1877 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1878 Sema::CheckConstexprKind Kind) { 1879 // C++11 [dcl.constexpr]p3 and p4: 1880 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1881 // contain only 1882 for (const auto *DclIt : DS->decls()) { 1883 switch (DclIt->getKind()) { 1884 case Decl::StaticAssert: 1885 case Decl::Using: 1886 case Decl::UsingShadow: 1887 case Decl::UsingDirective: 1888 case Decl::UnresolvedUsingTypename: 1889 case Decl::UnresolvedUsingValue: 1890 case Decl::UsingEnum: 1891 // - static_assert-declarations 1892 // - using-declarations, 1893 // - using-directives, 1894 // - using-enum-declaration 1895 continue; 1896 1897 case Decl::Typedef: 1898 case Decl::TypeAlias: { 1899 // - typedef declarations and alias-declarations that do not define 1900 // classes or enumerations, 1901 const auto *TN = cast<TypedefNameDecl>(DclIt); 1902 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1903 // Don't allow variably-modified types in constexpr functions. 1904 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1905 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1906 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1907 << TL.getSourceRange() << TL.getType() 1908 << isa<CXXConstructorDecl>(Dcl); 1909 } 1910 return false; 1911 } 1912 continue; 1913 } 1914 1915 case Decl::Enum: 1916 case Decl::CXXRecord: 1917 // C++1y allows types to be defined, not just declared. 1918 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1919 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1920 SemaRef.Diag(DS->getBeginLoc(), 1921 SemaRef.getLangOpts().CPlusPlus14 1922 ? diag::warn_cxx11_compat_constexpr_type_definition 1923 : diag::ext_constexpr_type_definition) 1924 << isa<CXXConstructorDecl>(Dcl); 1925 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1926 return false; 1927 } 1928 } 1929 continue; 1930 1931 case Decl::EnumConstant: 1932 case Decl::IndirectField: 1933 case Decl::ParmVar: 1934 // These can only appear with other declarations which are banned in 1935 // C++11 and permitted in C++1y, so ignore them. 1936 continue; 1937 1938 case Decl::Var: 1939 case Decl::Decomposition: { 1940 // C++1y [dcl.constexpr]p3 allows anything except: 1941 // a definition of a variable of non-literal type or of static or 1942 // thread storage duration or [before C++2a] for which no 1943 // initialization is performed. 1944 const auto *VD = cast<VarDecl>(DclIt); 1945 if (VD->isThisDeclarationADefinition()) { 1946 if (VD->isStaticLocal()) { 1947 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1948 SemaRef.Diag(VD->getLocation(), 1949 SemaRef.getLangOpts().CPlusPlus23 1950 ? diag::warn_cxx20_compat_constexpr_var 1951 : diag::ext_constexpr_static_var) 1952 << isa<CXXConstructorDecl>(Dcl) 1953 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1954 } else if (!SemaRef.getLangOpts().CPlusPlus23) { 1955 return false; 1956 } 1957 } 1958 if (SemaRef.LangOpts.CPlusPlus23) { 1959 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1960 diag::warn_cxx20_compat_constexpr_var, 1961 isa<CXXConstructorDecl>(Dcl), 1962 /*variable of non-literal type*/ 2); 1963 } else if (CheckLiteralType( 1964 SemaRef, Kind, VD->getLocation(), VD->getType(), 1965 diag::err_constexpr_local_var_non_literal_type, 1966 isa<CXXConstructorDecl>(Dcl))) { 1967 return false; 1968 } 1969 if (!VD->getType()->isDependentType() && 1970 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1971 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1972 SemaRef.Diag( 1973 VD->getLocation(), 1974 SemaRef.getLangOpts().CPlusPlus20 1975 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1976 : diag::ext_constexpr_local_var_no_init) 1977 << isa<CXXConstructorDecl>(Dcl); 1978 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1979 return false; 1980 } 1981 continue; 1982 } 1983 } 1984 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1985 SemaRef.Diag(VD->getLocation(), 1986 SemaRef.getLangOpts().CPlusPlus14 1987 ? diag::warn_cxx11_compat_constexpr_local_var 1988 : diag::ext_constexpr_local_var) 1989 << isa<CXXConstructorDecl>(Dcl); 1990 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1991 return false; 1992 } 1993 continue; 1994 } 1995 1996 case Decl::NamespaceAlias: 1997 case Decl::Function: 1998 // These are disallowed in C++11 and permitted in C++1y. Allow them 1999 // everywhere as an extension. 2000 if (!Cxx1yLoc.isValid()) 2001 Cxx1yLoc = DS->getBeginLoc(); 2002 continue; 2003 2004 default: 2005 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2006 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2007 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2008 } 2009 return false; 2010 } 2011 } 2012 2013 return true; 2014 } 2015 2016 /// Check that the given field is initialized within a constexpr constructor. 2017 /// 2018 /// \param Dcl The constexpr constructor being checked. 2019 /// \param Field The field being checked. This may be a member of an anonymous 2020 /// struct or union nested within the class being checked. 2021 /// \param Inits All declarations, including anonymous struct/union members and 2022 /// indirect members, for which any initialization was provided. 2023 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 2024 /// multiple notes for different members to the same error. 2025 /// \param Kind Whether we're diagnosing a constructor as written or determining 2026 /// whether the formal requirements are satisfied. 2027 /// \return \c false if we're checking for validity and the constructor does 2028 /// not satisfy the requirements on a constexpr constructor. 2029 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 2030 const FunctionDecl *Dcl, 2031 FieldDecl *Field, 2032 llvm::SmallSet<Decl*, 16> &Inits, 2033 bool &Diagnosed, 2034 Sema::CheckConstexprKind Kind) { 2035 // In C++20 onwards, there's nothing to check for validity. 2036 if (Kind == Sema::CheckConstexprKind::CheckValid && 2037 SemaRef.getLangOpts().CPlusPlus20) 2038 return true; 2039 2040 if (Field->isInvalidDecl()) 2041 return true; 2042 2043 if (Field->isUnnamedBitField()) 2044 return true; 2045 2046 // Anonymous unions with no variant members and empty anonymous structs do not 2047 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 2048 // indirect fields don't need initializing. 2049 if (Field->isAnonymousStructOrUnion() && 2050 (Field->getType()->isUnionType() 2051 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 2052 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 2053 return true; 2054 2055 if (!Inits.count(Field)) { 2056 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2057 if (!Diagnosed) { 2058 SemaRef.Diag(Dcl->getLocation(), 2059 SemaRef.getLangOpts().CPlusPlus20 2060 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 2061 : diag::ext_constexpr_ctor_missing_init); 2062 Diagnosed = true; 2063 } 2064 SemaRef.Diag(Field->getLocation(), 2065 diag::note_constexpr_ctor_missing_init); 2066 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2067 return false; 2068 } 2069 } else if (Field->isAnonymousStructOrUnion()) { 2070 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 2071 for (auto *I : RD->fields()) 2072 // If an anonymous union contains an anonymous struct of which any member 2073 // is initialized, all members must be initialized. 2074 if (!RD->isUnion() || Inits.count(I)) 2075 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2076 Kind)) 2077 return false; 2078 } 2079 return true; 2080 } 2081 2082 /// Check the provided statement is allowed in a constexpr function 2083 /// definition. 2084 static bool 2085 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 2086 SmallVectorImpl<SourceLocation> &ReturnStmts, 2087 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 2088 SourceLocation &Cxx2bLoc, 2089 Sema::CheckConstexprKind Kind) { 2090 // - its function-body shall be [...] a compound-statement that contains only 2091 switch (S->getStmtClass()) { 2092 case Stmt::NullStmtClass: 2093 // - null statements, 2094 return true; 2095 2096 case Stmt::DeclStmtClass: 2097 // - static_assert-declarations 2098 // - using-declarations, 2099 // - using-directives, 2100 // - typedef declarations and alias-declarations that do not define 2101 // classes or enumerations, 2102 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 2103 return false; 2104 return true; 2105 2106 case Stmt::ReturnStmtClass: 2107 // - and exactly one return statement; 2108 if (isa<CXXConstructorDecl>(Dcl)) { 2109 // C++1y allows return statements in constexpr constructors. 2110 if (!Cxx1yLoc.isValid()) 2111 Cxx1yLoc = S->getBeginLoc(); 2112 return true; 2113 } 2114 2115 ReturnStmts.push_back(S->getBeginLoc()); 2116 return true; 2117 2118 case Stmt::AttributedStmtClass: 2119 // Attributes on a statement don't affect its formal kind and hence don't 2120 // affect its validity in a constexpr function. 2121 return CheckConstexprFunctionStmt( 2122 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts, 2123 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind); 2124 2125 case Stmt::CompoundStmtClass: { 2126 // C++1y allows compound-statements. 2127 if (!Cxx1yLoc.isValid()) 2128 Cxx1yLoc = S->getBeginLoc(); 2129 2130 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2131 for (auto *BodyIt : CompStmt->body()) { 2132 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2133 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2134 return false; 2135 } 2136 return true; 2137 } 2138 2139 case Stmt::IfStmtClass: { 2140 // C++1y allows if-statements. 2141 if (!Cxx1yLoc.isValid()) 2142 Cxx1yLoc = S->getBeginLoc(); 2143 2144 IfStmt *If = cast<IfStmt>(S); 2145 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2146 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2147 return false; 2148 if (If->getElse() && 2149 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2150 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2151 return false; 2152 return true; 2153 } 2154 2155 case Stmt::WhileStmtClass: 2156 case Stmt::DoStmtClass: 2157 case Stmt::ForStmtClass: 2158 case Stmt::CXXForRangeStmtClass: 2159 case Stmt::ContinueStmtClass: 2160 // C++1y allows all of these. We don't allow them as extensions in C++11, 2161 // because they don't make sense without variable mutation. 2162 if (!SemaRef.getLangOpts().CPlusPlus14) 2163 break; 2164 if (!Cxx1yLoc.isValid()) 2165 Cxx1yLoc = S->getBeginLoc(); 2166 for (Stmt *SubStmt : S->children()) { 2167 if (SubStmt && 2168 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2169 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2170 return false; 2171 } 2172 return true; 2173 2174 case Stmt::SwitchStmtClass: 2175 case Stmt::CaseStmtClass: 2176 case Stmt::DefaultStmtClass: 2177 case Stmt::BreakStmtClass: 2178 // C++1y allows switch-statements, and since they don't need variable 2179 // mutation, we can reasonably allow them in C++11 as an extension. 2180 if (!Cxx1yLoc.isValid()) 2181 Cxx1yLoc = S->getBeginLoc(); 2182 for (Stmt *SubStmt : S->children()) { 2183 if (SubStmt && 2184 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2185 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2186 return false; 2187 } 2188 return true; 2189 2190 case Stmt::LabelStmtClass: 2191 case Stmt::GotoStmtClass: 2192 if (Cxx2bLoc.isInvalid()) 2193 Cxx2bLoc = S->getBeginLoc(); 2194 for (Stmt *SubStmt : S->children()) { 2195 if (SubStmt && 2196 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2197 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2198 return false; 2199 } 2200 return true; 2201 2202 case Stmt::GCCAsmStmtClass: 2203 case Stmt::MSAsmStmtClass: 2204 // C++2a allows inline assembly statements. 2205 case Stmt::CXXTryStmtClass: 2206 if (Cxx2aLoc.isInvalid()) 2207 Cxx2aLoc = S->getBeginLoc(); 2208 for (Stmt *SubStmt : S->children()) { 2209 if (SubStmt && 2210 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2211 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2212 return false; 2213 } 2214 return true; 2215 2216 case Stmt::CXXCatchStmtClass: 2217 // Do not bother checking the language mode (already covered by the 2218 // try block check). 2219 if (!CheckConstexprFunctionStmt( 2220 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts, 2221 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2222 return false; 2223 return true; 2224 2225 default: 2226 if (!isa<Expr>(S)) 2227 break; 2228 2229 // C++1y allows expression-statements. 2230 if (!Cxx1yLoc.isValid()) 2231 Cxx1yLoc = S->getBeginLoc(); 2232 return true; 2233 } 2234 2235 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2236 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2237 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2238 } 2239 return false; 2240 } 2241 2242 /// Check the body for the given constexpr function declaration only contains 2243 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2244 /// 2245 /// \return true if the body is OK, false if we have found or diagnosed a 2246 /// problem. 2247 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2248 Stmt *Body, 2249 Sema::CheckConstexprKind Kind) { 2250 SmallVector<SourceLocation, 4> ReturnStmts; 2251 2252 if (isa<CXXTryStmt>(Body)) { 2253 // C++11 [dcl.constexpr]p3: 2254 // The definition of a constexpr function shall satisfy the following 2255 // constraints: [...] 2256 // - its function-body shall be = delete, = default, or a 2257 // compound-statement 2258 // 2259 // C++11 [dcl.constexpr]p4: 2260 // In the definition of a constexpr constructor, [...] 2261 // - its function-body shall not be a function-try-block; 2262 // 2263 // This restriction is lifted in C++2a, as long as inner statements also 2264 // apply the general constexpr rules. 2265 switch (Kind) { 2266 case Sema::CheckConstexprKind::CheckValid: 2267 if (!SemaRef.getLangOpts().CPlusPlus20) 2268 return false; 2269 break; 2270 2271 case Sema::CheckConstexprKind::Diagnose: 2272 SemaRef.Diag(Body->getBeginLoc(), 2273 !SemaRef.getLangOpts().CPlusPlus20 2274 ? diag::ext_constexpr_function_try_block_cxx20 2275 : diag::warn_cxx17_compat_constexpr_function_try_block) 2276 << isa<CXXConstructorDecl>(Dcl); 2277 break; 2278 } 2279 } 2280 2281 // - its function-body shall be [...] a compound-statement that contains only 2282 // [... list of cases ...] 2283 // 2284 // Note that walking the children here is enough to properly check for 2285 // CompoundStmt and CXXTryStmt body. 2286 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc; 2287 for (Stmt *SubStmt : Body->children()) { 2288 if (SubStmt && 2289 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2290 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2291 return false; 2292 } 2293 2294 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2295 // If this is only valid as an extension, report that we don't satisfy the 2296 // constraints of the current language. 2297 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) || 2298 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2299 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2300 return false; 2301 } else if (Cxx2bLoc.isValid()) { 2302 SemaRef.Diag(Cxx2bLoc, 2303 SemaRef.getLangOpts().CPlusPlus23 2304 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt 2305 : diag::ext_constexpr_body_invalid_stmt_cxx23) 2306 << isa<CXXConstructorDecl>(Dcl); 2307 } else if (Cxx2aLoc.isValid()) { 2308 SemaRef.Diag(Cxx2aLoc, 2309 SemaRef.getLangOpts().CPlusPlus20 2310 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2311 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2312 << isa<CXXConstructorDecl>(Dcl); 2313 } else if (Cxx1yLoc.isValid()) { 2314 SemaRef.Diag(Cxx1yLoc, 2315 SemaRef.getLangOpts().CPlusPlus14 2316 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2317 : diag::ext_constexpr_body_invalid_stmt) 2318 << isa<CXXConstructorDecl>(Dcl); 2319 } 2320 2321 if (const CXXConstructorDecl *Constructor 2322 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2323 const CXXRecordDecl *RD = Constructor->getParent(); 2324 // DR1359: 2325 // - every non-variant non-static data member and base class sub-object 2326 // shall be initialized; 2327 // DR1460: 2328 // - if the class is a union having variant members, exactly one of them 2329 // shall be initialized; 2330 if (RD->isUnion()) { 2331 if (Constructor->getNumCtorInitializers() == 0 && 2332 RD->hasVariantMembers()) { 2333 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2334 SemaRef.Diag( 2335 Dcl->getLocation(), 2336 SemaRef.getLangOpts().CPlusPlus20 2337 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2338 : diag::ext_constexpr_union_ctor_no_init); 2339 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2340 return false; 2341 } 2342 } 2343 } else if (!Constructor->isDependentContext() && 2344 !Constructor->isDelegatingConstructor()) { 2345 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2346 2347 // Skip detailed checking if we have enough initializers, and we would 2348 // allow at most one initializer per member. 2349 bool AnyAnonStructUnionMembers = false; 2350 unsigned Fields = 0; 2351 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2352 E = RD->field_end(); I != E; ++I, ++Fields) { 2353 if (I->isAnonymousStructOrUnion()) { 2354 AnyAnonStructUnionMembers = true; 2355 break; 2356 } 2357 } 2358 // DR1460: 2359 // - if the class is a union-like class, but is not a union, for each of 2360 // its anonymous union members having variant members, exactly one of 2361 // them shall be initialized; 2362 if (AnyAnonStructUnionMembers || 2363 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2364 // Check initialization of non-static data members. Base classes are 2365 // always initialized so do not need to be checked. Dependent bases 2366 // might not have initializers in the member initializer list. 2367 llvm::SmallSet<Decl*, 16> Inits; 2368 for (const auto *I: Constructor->inits()) { 2369 if (FieldDecl *FD = I->getMember()) 2370 Inits.insert(FD); 2371 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2372 Inits.insert(ID->chain_begin(), ID->chain_end()); 2373 } 2374 2375 bool Diagnosed = false; 2376 for (auto *I : RD->fields()) 2377 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2378 Kind)) 2379 return false; 2380 } 2381 } 2382 } else { 2383 if (ReturnStmts.empty()) { 2384 switch (Kind) { 2385 case Sema::CheckConstexprKind::Diagnose: 2386 if (!CheckConstexprMissingReturn(SemaRef, Dcl)) 2387 return false; 2388 break; 2389 2390 case Sema::CheckConstexprKind::CheckValid: 2391 // The formal requirements don't include this rule in C++14, even 2392 // though the "must be able to produce a constant expression" rules 2393 // still imply it in some cases. 2394 if (!SemaRef.getLangOpts().CPlusPlus14) 2395 return false; 2396 break; 2397 } 2398 } else if (ReturnStmts.size() > 1) { 2399 switch (Kind) { 2400 case Sema::CheckConstexprKind::Diagnose: 2401 SemaRef.Diag( 2402 ReturnStmts.back(), 2403 SemaRef.getLangOpts().CPlusPlus14 2404 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2405 : diag::ext_constexpr_body_multiple_return); 2406 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2407 SemaRef.Diag(ReturnStmts[I], 2408 diag::note_constexpr_body_previous_return); 2409 break; 2410 2411 case Sema::CheckConstexprKind::CheckValid: 2412 if (!SemaRef.getLangOpts().CPlusPlus14) 2413 return false; 2414 break; 2415 } 2416 } 2417 } 2418 2419 // C++11 [dcl.constexpr]p5: 2420 // if no function argument values exist such that the function invocation 2421 // substitution would produce a constant expression, the program is 2422 // ill-formed; no diagnostic required. 2423 // C++11 [dcl.constexpr]p3: 2424 // - every constructor call and implicit conversion used in initializing the 2425 // return value shall be one of those allowed in a constant expression. 2426 // C++11 [dcl.constexpr]p4: 2427 // - every constructor involved in initializing non-static data members and 2428 // base class sub-objects shall be a constexpr constructor. 2429 // 2430 // Note that this rule is distinct from the "requirements for a constexpr 2431 // function", so is not checked in CheckValid mode. Because the check for 2432 // constexpr potential is expensive, skip the check if the diagnostic is 2433 // disabled, the function is declared in a system header, or we're in C++23 2434 // or later mode (see https://wg21.link/P2448). 2435 bool SkipCheck = 2436 !SemaRef.getLangOpts().CheckConstexprFunctionBodies || 2437 SemaRef.getSourceManager().isInSystemHeader(Dcl->getLocation()) || 2438 SemaRef.getDiagnostics().isIgnored( 2439 diag::ext_constexpr_function_never_constant_expr, Dcl->getLocation()); 2440 SmallVector<PartialDiagnosticAt, 8> Diags; 2441 if (Kind == Sema::CheckConstexprKind::Diagnose && !SkipCheck && 2442 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2443 SemaRef.Diag(Dcl->getLocation(), 2444 diag::ext_constexpr_function_never_constant_expr) 2445 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval() 2446 << Dcl->getNameInfo().getSourceRange(); 2447 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2448 SemaRef.Diag(Diags[I].first, Diags[I].second); 2449 // Don't return false here: we allow this for compatibility in 2450 // system headers. 2451 } 2452 2453 return true; 2454 } 2455 2456 static bool CheckConstexprMissingReturn(Sema &SemaRef, 2457 const FunctionDecl *Dcl) { 2458 bool IsVoidOrDependentType = Dcl->getReturnType()->isVoidType() || 2459 Dcl->getReturnType()->isDependentType(); 2460 // Skip emitting a missing return error diagnostic for non-void functions 2461 // since C++23 no longer mandates constexpr functions to yield constant 2462 // expressions. 2463 if (SemaRef.getLangOpts().CPlusPlus23 && !IsVoidOrDependentType) 2464 return true; 2465 2466 // C++14 doesn't require constexpr functions to contain a 'return' 2467 // statement. We still do, unless the return type might be void, because 2468 // otherwise if there's no return statement, the function cannot 2469 // be used in a core constant expression. 2470 bool OK = SemaRef.getLangOpts().CPlusPlus14 && IsVoidOrDependentType; 2471 SemaRef.Diag(Dcl->getLocation(), 2472 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2473 : diag::err_constexpr_body_no_return) 2474 << Dcl->isConsteval(); 2475 return OK; 2476 } 2477 2478 bool Sema::CheckImmediateEscalatingFunctionDefinition( 2479 FunctionDecl *FD, const sema::FunctionScopeInfo *FSI) { 2480 if (!getLangOpts().CPlusPlus20 || !FD->isImmediateEscalating()) 2481 return true; 2482 FD->setBodyContainsImmediateEscalatingExpressions( 2483 FSI->FoundImmediateEscalatingExpression); 2484 if (FSI->FoundImmediateEscalatingExpression) { 2485 auto it = UndefinedButUsed.find(FD->getCanonicalDecl()); 2486 if (it != UndefinedButUsed.end()) { 2487 Diag(it->second, diag::err_immediate_function_used_before_definition) 2488 << it->first; 2489 Diag(FD->getLocation(), diag::note_defined_here) << FD; 2490 if (FD->isImmediateFunction() && !FD->isConsteval()) 2491 DiagnoseImmediateEscalatingReason(FD); 2492 return false; 2493 } 2494 } 2495 return true; 2496 } 2497 2498 void Sema::DiagnoseImmediateEscalatingReason(FunctionDecl *FD) { 2499 assert(FD->isImmediateEscalating() && !FD->isConsteval() && 2500 "expected an immediate function"); 2501 assert(FD->hasBody() && "expected the function to have a body"); 2502 struct ImmediateEscalatingExpressionsVisitor 2503 : public RecursiveASTVisitor<ImmediateEscalatingExpressionsVisitor> { 2504 2505 using Base = RecursiveASTVisitor<ImmediateEscalatingExpressionsVisitor>; 2506 Sema &SemaRef; 2507 2508 const FunctionDecl *ImmediateFn; 2509 bool ImmediateFnIsConstructor; 2510 CXXConstructorDecl *CurrentConstructor = nullptr; 2511 CXXCtorInitializer *CurrentInit = nullptr; 2512 2513 ImmediateEscalatingExpressionsVisitor(Sema &SemaRef, FunctionDecl *FD) 2514 : SemaRef(SemaRef), ImmediateFn(FD), 2515 ImmediateFnIsConstructor(isa<CXXConstructorDecl>(FD)) {} 2516 2517 bool shouldVisitImplicitCode() const { return true; } 2518 bool shouldVisitLambdaBody() const { return false; } 2519 2520 void Diag(const Expr *E, const FunctionDecl *Fn, bool IsCall) { 2521 SourceLocation Loc = E->getBeginLoc(); 2522 SourceRange Range = E->getSourceRange(); 2523 if (CurrentConstructor && CurrentInit) { 2524 Loc = CurrentConstructor->getLocation(); 2525 Range = CurrentInit->isWritten() ? CurrentInit->getSourceRange() 2526 : SourceRange(); 2527 } 2528 2529 FieldDecl* InitializedField = CurrentInit ? CurrentInit->getAnyMember() : nullptr; 2530 2531 SemaRef.Diag(Loc, diag::note_immediate_function_reason) 2532 << ImmediateFn << Fn << Fn->isConsteval() << IsCall 2533 << isa<CXXConstructorDecl>(Fn) << ImmediateFnIsConstructor 2534 << (InitializedField != nullptr) 2535 << (CurrentInit && !CurrentInit->isWritten()) 2536 << InitializedField << Range; 2537 } 2538 bool TraverseCallExpr(CallExpr *E) { 2539 if (const auto *DR = 2540 dyn_cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()); 2541 DR && DR->isImmediateEscalating()) { 2542 Diag(E, E->getDirectCallee(), /*IsCall=*/true); 2543 return false; 2544 } 2545 2546 for (Expr *A : E->arguments()) 2547 if (!getDerived().TraverseStmt(A)) 2548 return false; 2549 2550 return true; 2551 } 2552 2553 bool VisitDeclRefExpr(DeclRefExpr *E) { 2554 if (const auto *ReferencedFn = dyn_cast<FunctionDecl>(E->getDecl()); 2555 ReferencedFn && E->isImmediateEscalating()) { 2556 Diag(E, ReferencedFn, /*IsCall=*/false); 2557 return false; 2558 } 2559 2560 return true; 2561 } 2562 2563 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2564 CXXConstructorDecl *D = E->getConstructor(); 2565 if (E->isImmediateEscalating()) { 2566 Diag(E, D, /*IsCall=*/true); 2567 return false; 2568 } 2569 return true; 2570 } 2571 2572 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { 2573 llvm::SaveAndRestore RAII(CurrentInit, Init); 2574 return Base::TraverseConstructorInitializer(Init); 2575 } 2576 2577 bool TraverseCXXConstructorDecl(CXXConstructorDecl *Ctr) { 2578 llvm::SaveAndRestore RAII(CurrentConstructor, Ctr); 2579 return Base::TraverseCXXConstructorDecl(Ctr); 2580 } 2581 2582 bool TraverseType(QualType T) { return true; } 2583 bool VisitBlockExpr(BlockExpr *T) { return true; } 2584 2585 } Visitor(*this, FD); 2586 Visitor.TraverseDecl(FD); 2587 } 2588 2589 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2590 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2591 2592 if (SS && SS->isInvalid()) 2593 return nullptr; 2594 2595 if (SS && SS->isNotEmpty()) { 2596 DeclContext *DC = computeDeclContext(*SS, true); 2597 return dyn_cast_or_null<CXXRecordDecl>(DC); 2598 } 2599 2600 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2601 } 2602 2603 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2604 const CXXScopeSpec *SS) { 2605 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2606 return CurDecl && &II == CurDecl->getIdentifier(); 2607 } 2608 2609 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2610 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2611 2612 if (!getLangOpts().SpellChecking) 2613 return false; 2614 2615 CXXRecordDecl *CurDecl; 2616 if (SS && SS->isSet() && !SS->isInvalid()) { 2617 DeclContext *DC = computeDeclContext(*SS, true); 2618 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2619 } else 2620 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2621 2622 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2623 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2624 < II->getLength()) { 2625 II = CurDecl->getIdentifier(); 2626 return true; 2627 } 2628 2629 return false; 2630 } 2631 2632 CXXBaseSpecifier *Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2633 SourceRange SpecifierRange, 2634 bool Virtual, AccessSpecifier Access, 2635 TypeSourceInfo *TInfo, 2636 SourceLocation EllipsisLoc) { 2637 QualType BaseType = TInfo->getType(); 2638 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2639 if (BaseType->containsErrors()) { 2640 // Already emitted a diagnostic when parsing the error type. 2641 return nullptr; 2642 } 2643 2644 if (EllipsisLoc.isValid() && !BaseType->containsUnexpandedParameterPack()) { 2645 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2646 << TInfo->getTypeLoc().getSourceRange(); 2647 EllipsisLoc = SourceLocation(); 2648 } 2649 2650 auto *BaseDecl = 2651 dyn_cast_if_present<CXXRecordDecl>(computeDeclContext(BaseType)); 2652 // C++ [class.derived.general]p2: 2653 // A class-or-decltype shall denote a (possibly cv-qualified) class type 2654 // that is not an incompletely defined class; any cv-qualifiers are 2655 // ignored. 2656 if (BaseDecl) { 2657 // C++ [class.union.general]p4: 2658 // [...] A union shall not be used as a base class. 2659 if (BaseDecl->isUnion()) { 2660 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2661 return nullptr; 2662 } 2663 2664 // For the MS ABI, propagate DLL attributes to base class templates. 2665 if (Context.getTargetInfo().getCXXABI().isMicrosoft() || 2666 Context.getTargetInfo().getTriple().isPS()) { 2667 if (Attr *ClassAttr = getDLLAttr(Class)) { 2668 if (auto *BaseSpec = 2669 dyn_cast<ClassTemplateSpecializationDecl>(BaseDecl)) { 2670 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseSpec, 2671 BaseLoc); 2672 } 2673 } 2674 } 2675 2676 if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class, 2677 SpecifierRange)) { 2678 Class->setInvalidDecl(); 2679 return nullptr; 2680 } 2681 2682 BaseDecl = BaseDecl->getDefinition(); 2683 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2684 2685 // Microsoft docs say: 2686 // "If a base-class has a code_seg attribute, derived classes must have the 2687 // same attribute." 2688 const auto *BaseCSA = BaseDecl->getAttr<CodeSegAttr>(); 2689 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2690 if ((DerivedCSA || BaseCSA) && 2691 (!BaseCSA || !DerivedCSA || 2692 BaseCSA->getName() != DerivedCSA->getName())) { 2693 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2694 Diag(BaseDecl->getLocation(), diag::note_base_class_specified_here) 2695 << BaseDecl; 2696 return nullptr; 2697 } 2698 2699 // A class which contains a flexible array member is not suitable for use as 2700 // a base class: 2701 // - If the layout determines that a base comes before another base, 2702 // the flexible array member would index into the subsequent base. 2703 // - If the layout determines that base comes before the derived class, 2704 // the flexible array member would index into the derived class. 2705 if (BaseDecl->hasFlexibleArrayMember()) { 2706 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2707 << BaseDecl->getDeclName(); 2708 return nullptr; 2709 } 2710 2711 // C++ [class]p3: 2712 // If a class is marked final and it appears as a base-type-specifier in 2713 // base-clause, the program is ill-formed. 2714 if (FinalAttr *FA = BaseDecl->getAttr<FinalAttr>()) { 2715 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2716 << BaseDecl->getDeclName() << FA->isSpelledAsSealed(); 2717 Diag(BaseDecl->getLocation(), diag::note_entity_declared_at) 2718 << BaseDecl->getDeclName() << FA->getRange(); 2719 return nullptr; 2720 } 2721 2722 // If the base class is invalid the derived class is as well. 2723 if (BaseDecl->isInvalidDecl()) 2724 Class->setInvalidDecl(); 2725 } else if (BaseType->isDependentType()) { 2726 // Make sure that we don't make an ill-formed AST where the type of the 2727 // Class is non-dependent and its attached base class specifier is an 2728 // dependent type, which violates invariants in many clang code paths (e.g. 2729 // constexpr evaluator). If this case happens (in errory-recovery mode), we 2730 // explicitly mark the Class decl invalid. The diagnostic was already 2731 // emitted. 2732 if (!Class->isDependentContext()) 2733 Class->setInvalidDecl(); 2734 } else { 2735 // The base class is some non-dependent non-class type. 2736 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2737 return nullptr; 2738 } 2739 2740 // In HLSL, unspecified class access is public rather than private. 2741 if (getLangOpts().HLSL && Class->getTagKind() == TagTypeKind::Class && 2742 Access == AS_none) 2743 Access = AS_public; 2744 2745 // Create the base specifier. 2746 return new (Context) CXXBaseSpecifier( 2747 SpecifierRange, Virtual, Class->getTagKind() == TagTypeKind::Class, 2748 Access, TInfo, EllipsisLoc); 2749 } 2750 2751 BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2752 const ParsedAttributesView &Attributes, 2753 bool Virtual, AccessSpecifier Access, 2754 ParsedType basetype, SourceLocation BaseLoc, 2755 SourceLocation EllipsisLoc) { 2756 if (!classdecl) 2757 return true; 2758 2759 AdjustDeclIfTemplate(classdecl); 2760 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2761 if (!Class) 2762 return true; 2763 2764 // We haven't yet attached the base specifiers. 2765 Class->setIsParsingBaseSpecifiers(); 2766 2767 // We do not support any C++11 attributes on base-specifiers yet. 2768 // Diagnose any attributes we see. 2769 for (const ParsedAttr &AL : Attributes) { 2770 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2771 continue; 2772 if (AL.getKind() == ParsedAttr::UnknownAttribute) 2773 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) 2774 << AL << AL.getRange(); 2775 else 2776 Diag(AL.getLoc(), diag::err_base_specifier_attribute) 2777 << AL << AL.isRegularKeywordAttribute() << AL.getRange(); 2778 } 2779 2780 TypeSourceInfo *TInfo = nullptr; 2781 GetTypeFromParser(basetype, &TInfo); 2782 2783 if (EllipsisLoc.isInvalid() && 2784 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2785 UPPC_BaseType)) 2786 return true; 2787 2788 // C++ [class.union.general]p4: 2789 // [...] A union shall not have base classes. 2790 if (Class->isUnion()) { 2791 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2792 << SpecifierRange; 2793 return true; 2794 } 2795 2796 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2797 Virtual, Access, TInfo, 2798 EllipsisLoc)) 2799 return BaseSpec; 2800 2801 Class->setInvalidDecl(); 2802 return true; 2803 } 2804 2805 /// Use small set to collect indirect bases. As this is only used 2806 /// locally, there's no need to abstract the small size parameter. 2807 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2808 2809 /// Recursively add the bases of Type. Don't add Type itself. 2810 static void 2811 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2812 const QualType &Type) 2813 { 2814 // Even though the incoming type is a base, it might not be 2815 // a class -- it could be a template parm, for instance. 2816 if (auto Rec = Type->getAs<RecordType>()) { 2817 auto Decl = Rec->getAsCXXRecordDecl(); 2818 2819 // Iterate over its bases. 2820 for (const auto &BaseSpec : Decl->bases()) { 2821 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2822 .getUnqualifiedType(); 2823 if (Set.insert(Base).second) 2824 // If we've not already seen it, recurse. 2825 NoteIndirectBases(Context, Set, Base); 2826 } 2827 } 2828 } 2829 2830 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2831 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2832 if (Bases.empty()) 2833 return false; 2834 2835 // Used to keep track of which base types we have already seen, so 2836 // that we can properly diagnose redundant direct base types. Note 2837 // that the key is always the unqualified canonical type of the base 2838 // class. 2839 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2840 2841 // Used to track indirect bases so we can see if a direct base is 2842 // ambiguous. 2843 IndirectBaseSet IndirectBaseTypes; 2844 2845 // Copy non-redundant base specifiers into permanent storage. 2846 unsigned NumGoodBases = 0; 2847 bool Invalid = false; 2848 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2849 QualType NewBaseType 2850 = Context.getCanonicalType(Bases[idx]->getType()); 2851 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2852 2853 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2854 if (KnownBase) { 2855 // C++ [class.mi]p3: 2856 // A class shall not be specified as a direct base class of a 2857 // derived class more than once. 2858 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2859 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2860 2861 // Delete the duplicate base class specifier; we're going to 2862 // overwrite its pointer later. 2863 Context.Deallocate(Bases[idx]); 2864 2865 Invalid = true; 2866 } else { 2867 // Okay, add this new base class. 2868 KnownBase = Bases[idx]; 2869 Bases[NumGoodBases++] = Bases[idx]; 2870 2871 if (NewBaseType->isDependentType()) 2872 continue; 2873 // Note this base's direct & indirect bases, if there could be ambiguity. 2874 if (Bases.size() > 1) 2875 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2876 2877 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2878 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2879 if (Class->isInterface() && 2880 (!RD->isInterfaceLike() || 2881 KnownBase->getAccessSpecifier() != AS_public)) { 2882 // The Microsoft extension __interface does not permit bases that 2883 // are not themselves public interfaces. 2884 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2885 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2886 << RD->getSourceRange(); 2887 Invalid = true; 2888 } 2889 if (RD->hasAttr<WeakAttr>()) 2890 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2891 } 2892 } 2893 } 2894 2895 // Attach the remaining base class specifiers to the derived class. 2896 Class->setBases(Bases.data(), NumGoodBases); 2897 2898 // Check that the only base classes that are duplicate are virtual. 2899 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2900 // Check whether this direct base is inaccessible due to ambiguity. 2901 QualType BaseType = Bases[idx]->getType(); 2902 2903 // Skip all dependent types in templates being used as base specifiers. 2904 // Checks below assume that the base specifier is a CXXRecord. 2905 if (BaseType->isDependentType()) 2906 continue; 2907 2908 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2909 .getUnqualifiedType(); 2910 2911 if (IndirectBaseTypes.count(CanonicalBase)) { 2912 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2913 /*DetectVirtual=*/true); 2914 bool found 2915 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2916 assert(found); 2917 (void)found; 2918 2919 if (Paths.isAmbiguous(CanonicalBase)) 2920 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2921 << BaseType << getAmbiguousPathsDisplayString(Paths) 2922 << Bases[idx]->getSourceRange(); 2923 else 2924 assert(Bases[idx]->isVirtual()); 2925 } 2926 2927 // Delete the base class specifier, since its data has been copied 2928 // into the CXXRecordDecl. 2929 Context.Deallocate(Bases[idx]); 2930 } 2931 2932 return Invalid; 2933 } 2934 2935 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2936 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2937 if (!ClassDecl || Bases.empty()) 2938 return; 2939 2940 AdjustDeclIfTemplate(ClassDecl); 2941 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2942 } 2943 2944 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2945 if (!getLangOpts().CPlusPlus) 2946 return false; 2947 2948 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2949 if (!DerivedRD) 2950 return false; 2951 2952 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2953 if (!BaseRD) 2954 return false; 2955 2956 // If either the base or the derived type is invalid, don't try to 2957 // check whether one is derived from the other. 2958 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2959 return false; 2960 2961 // FIXME: In a modules build, do we need the entire path to be visible for us 2962 // to be able to use the inheritance relationship? 2963 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2964 return false; 2965 2966 return DerivedRD->isDerivedFrom(BaseRD); 2967 } 2968 2969 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2970 CXXBasePaths &Paths) { 2971 if (!getLangOpts().CPlusPlus) 2972 return false; 2973 2974 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2975 if (!DerivedRD) 2976 return false; 2977 2978 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2979 if (!BaseRD) 2980 return false; 2981 2982 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2983 return false; 2984 2985 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2986 } 2987 2988 static void BuildBasePathArray(const CXXBasePath &Path, 2989 CXXCastPath &BasePathArray) { 2990 // We first go backward and check if we have a virtual base. 2991 // FIXME: It would be better if CXXBasePath had the base specifier for 2992 // the nearest virtual base. 2993 unsigned Start = 0; 2994 for (unsigned I = Path.size(); I != 0; --I) { 2995 if (Path[I - 1].Base->isVirtual()) { 2996 Start = I - 1; 2997 break; 2998 } 2999 } 3000 3001 // Now add all bases. 3002 for (unsigned I = Start, E = Path.size(); I != E; ++I) 3003 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 3004 } 3005 3006 3007 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 3008 CXXCastPath &BasePathArray) { 3009 assert(BasePathArray.empty() && "Base path array must be empty!"); 3010 assert(Paths.isRecordingPaths() && "Must record paths!"); 3011 return ::BuildBasePathArray(Paths.front(), BasePathArray); 3012 } 3013 3014 bool 3015 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 3016 unsigned InaccessibleBaseID, 3017 unsigned AmbiguousBaseConvID, 3018 SourceLocation Loc, SourceRange Range, 3019 DeclarationName Name, 3020 CXXCastPath *BasePath, 3021 bool IgnoreAccess) { 3022 // First, determine whether the path from Derived to Base is 3023 // ambiguous. This is slightly more expensive than checking whether 3024 // the Derived to Base conversion exists, because here we need to 3025 // explore multiple paths to determine if there is an ambiguity. 3026 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3027 /*DetectVirtual=*/false); 3028 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 3029 if (!DerivationOkay) 3030 return true; 3031 3032 const CXXBasePath *Path = nullptr; 3033 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 3034 Path = &Paths.front(); 3035 3036 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 3037 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 3038 // user to access such bases. 3039 if (!Path && getLangOpts().MSVCCompat) { 3040 for (const CXXBasePath &PossiblePath : Paths) { 3041 if (PossiblePath.size() == 1) { 3042 Path = &PossiblePath; 3043 if (AmbiguousBaseConvID) 3044 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 3045 << Base << Derived << Range; 3046 break; 3047 } 3048 } 3049 } 3050 3051 if (Path) { 3052 if (!IgnoreAccess) { 3053 // Check that the base class can be accessed. 3054 switch ( 3055 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 3056 case AR_inaccessible: 3057 return true; 3058 case AR_accessible: 3059 case AR_dependent: 3060 case AR_delayed: 3061 break; 3062 } 3063 } 3064 3065 // Build a base path if necessary. 3066 if (BasePath) 3067 ::BuildBasePathArray(*Path, *BasePath); 3068 return false; 3069 } 3070 3071 if (AmbiguousBaseConvID) { 3072 // We know that the derived-to-base conversion is ambiguous, and 3073 // we're going to produce a diagnostic. Perform the derived-to-base 3074 // search just one more time to compute all of the possible paths so 3075 // that we can print them out. This is more expensive than any of 3076 // the previous derived-to-base checks we've done, but at this point 3077 // performance isn't as much of an issue. 3078 Paths.clear(); 3079 Paths.setRecordingPaths(true); 3080 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 3081 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 3082 (void)StillOkay; 3083 3084 // Build up a textual representation of the ambiguous paths, e.g., 3085 // D -> B -> A, that will be used to illustrate the ambiguous 3086 // conversions in the diagnostic. We only print one of the paths 3087 // to each base class subobject. 3088 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3089 3090 Diag(Loc, AmbiguousBaseConvID) 3091 << Derived << Base << PathDisplayStr << Range << Name; 3092 } 3093 return true; 3094 } 3095 3096 bool 3097 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 3098 SourceLocation Loc, SourceRange Range, 3099 CXXCastPath *BasePath, 3100 bool IgnoreAccess) { 3101 return CheckDerivedToBaseConversion( 3102 Derived, Base, diag::err_upcast_to_inaccessible_base, 3103 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 3104 BasePath, IgnoreAccess); 3105 } 3106 3107 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 3108 std::string PathDisplayStr; 3109 std::set<unsigned> DisplayedPaths; 3110 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 3111 Path != Paths.end(); ++Path) { 3112 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 3113 // We haven't displayed a path to this particular base 3114 // class subobject yet. 3115 PathDisplayStr += "\n "; 3116 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 3117 for (CXXBasePath::const_iterator Element = Path->begin(); 3118 Element != Path->end(); ++Element) 3119 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 3120 } 3121 } 3122 3123 return PathDisplayStr; 3124 } 3125 3126 //===----------------------------------------------------------------------===// 3127 // C++ class member Handling 3128 //===----------------------------------------------------------------------===// 3129 3130 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 3131 SourceLocation ColonLoc, 3132 const ParsedAttributesView &Attrs) { 3133 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 3134 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 3135 ASLoc, ColonLoc); 3136 CurContext->addHiddenDecl(ASDecl); 3137 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 3138 } 3139 3140 void Sema::CheckOverrideControl(NamedDecl *D) { 3141 if (D->isInvalidDecl()) 3142 return; 3143 3144 // We only care about "override" and "final" declarations. 3145 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 3146 return; 3147 3148 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3149 3150 // We can't check dependent instance methods. 3151 if (MD && MD->isInstance() && 3152 (MD->getParent()->hasAnyDependentBases() || 3153 MD->getType()->isDependentType())) 3154 return; 3155 3156 if (MD && !MD->isVirtual()) { 3157 // If we have a non-virtual method, check if it hides a virtual method. 3158 // (In that case, it's most likely the method has the wrong type.) 3159 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3160 FindHiddenVirtualMethods(MD, OverloadedMethods); 3161 3162 if (!OverloadedMethods.empty()) { 3163 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3164 Diag(OA->getLocation(), 3165 diag::override_keyword_hides_virtual_member_function) 3166 << "override" << (OverloadedMethods.size() > 1); 3167 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3168 Diag(FA->getLocation(), 3169 diag::override_keyword_hides_virtual_member_function) 3170 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3171 << (OverloadedMethods.size() > 1); 3172 } 3173 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3174 MD->setInvalidDecl(); 3175 return; 3176 } 3177 // Fall through into the general case diagnostic. 3178 // FIXME: We might want to attempt typo correction here. 3179 } 3180 3181 if (!MD || !MD->isVirtual()) { 3182 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3183 Diag(OA->getLocation(), 3184 diag::override_keyword_only_allowed_on_virtual_member_functions) 3185 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3186 D->dropAttr<OverrideAttr>(); 3187 } 3188 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3189 Diag(FA->getLocation(), 3190 diag::override_keyword_only_allowed_on_virtual_member_functions) 3191 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3192 << FixItHint::CreateRemoval(FA->getLocation()); 3193 D->dropAttr<FinalAttr>(); 3194 } 3195 return; 3196 } 3197 3198 // C++11 [class.virtual]p5: 3199 // If a function is marked with the virt-specifier override and 3200 // does not override a member function of a base class, the program is 3201 // ill-formed. 3202 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3203 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3204 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3205 << MD->getDeclName(); 3206 } 3207 3208 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3209 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3210 return; 3211 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3212 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3213 return; 3214 3215 SourceLocation Loc = MD->getLocation(); 3216 SourceLocation SpellingLoc = Loc; 3217 if (getSourceManager().isMacroArgExpansion(Loc)) 3218 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3219 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3220 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3221 return; 3222 3223 if (MD->size_overridden_methods() > 0) { 3224 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3225 unsigned DiagID = 3226 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3227 ? DiagInconsistent 3228 : DiagSuggest; 3229 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3230 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3231 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3232 }; 3233 if (isa<CXXDestructorDecl>(MD)) 3234 EmitDiag( 3235 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3236 diag::warn_suggest_destructor_marked_not_override_overriding); 3237 else 3238 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3239 diag::warn_suggest_function_marked_not_override_overriding); 3240 } 3241 } 3242 3243 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3244 const CXXMethodDecl *Old) { 3245 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3246 if (!FA) 3247 return false; 3248 3249 Diag(New->getLocation(), diag::err_final_function_overridden) 3250 << New->getDeclName() 3251 << FA->isSpelledAsSealed(); 3252 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3253 return true; 3254 } 3255 3256 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3257 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3258 // FIXME: Destruction of ObjC lifetime types has side-effects. 3259 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3260 return !RD->isCompleteDefinition() || 3261 !RD->hasTrivialDefaultConstructor() || 3262 !RD->hasTrivialDestructor(); 3263 return false; 3264 } 3265 3266 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3267 DeclarationName FieldName, 3268 const CXXRecordDecl *RD, 3269 bool DeclIsField) { 3270 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3271 return; 3272 3273 // To record a shadowed field in a base 3274 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3275 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3276 CXXBasePath &Path) { 3277 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3278 // Record an ambiguous path directly 3279 if (Bases.find(Base) != Bases.end()) 3280 return true; 3281 for (const auto Field : Base->lookup(FieldName)) { 3282 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3283 Field->getAccess() != AS_private) { 3284 assert(Field->getAccess() != AS_none); 3285 assert(Bases.find(Base) == Bases.end()); 3286 Bases[Base] = Field; 3287 return true; 3288 } 3289 } 3290 return false; 3291 }; 3292 3293 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3294 /*DetectVirtual=*/true); 3295 if (!RD->lookupInBases(FieldShadowed, Paths)) 3296 return; 3297 3298 for (const auto &P : Paths) { 3299 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3300 auto It = Bases.find(Base); 3301 // Skip duplicated bases 3302 if (It == Bases.end()) 3303 continue; 3304 auto BaseField = It->second; 3305 assert(BaseField->getAccess() != AS_private); 3306 if (AS_none != 3307 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3308 Diag(Loc, diag::warn_shadow_field) 3309 << FieldName << RD << Base << DeclIsField; 3310 Diag(BaseField->getLocation(), diag::note_shadow_field); 3311 Bases.erase(It); 3312 } 3313 } 3314 } 3315 3316 NamedDecl * 3317 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3318 MultiTemplateParamsArg TemplateParameterLists, 3319 Expr *BW, const VirtSpecifiers &VS, 3320 InClassInitStyle InitStyle) { 3321 const DeclSpec &DS = D.getDeclSpec(); 3322 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3323 DeclarationName Name = NameInfo.getName(); 3324 SourceLocation Loc = NameInfo.getLoc(); 3325 3326 // For anonymous bitfields, the location should point to the type. 3327 if (Loc.isInvalid()) 3328 Loc = D.getBeginLoc(); 3329 3330 Expr *BitWidth = static_cast<Expr*>(BW); 3331 3332 assert(isa<CXXRecordDecl>(CurContext)); 3333 assert(!DS.isFriendSpecified()); 3334 3335 bool isFunc = D.isDeclarationOfFunction(); 3336 const ParsedAttr *MSPropertyAttr = 3337 D.getDeclSpec().getAttributes().getMSPropertyAttr(); 3338 3339 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3340 // The Microsoft extension __interface only permits public member functions 3341 // and prohibits constructors, destructors, operators, non-public member 3342 // functions, static methods and data members. 3343 unsigned InvalidDecl; 3344 bool ShowDeclName = true; 3345 if (!isFunc && 3346 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3347 InvalidDecl = 0; 3348 else if (!isFunc) 3349 InvalidDecl = 1; 3350 else if (AS != AS_public) 3351 InvalidDecl = 2; 3352 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3353 InvalidDecl = 3; 3354 else switch (Name.getNameKind()) { 3355 case DeclarationName::CXXConstructorName: 3356 InvalidDecl = 4; 3357 ShowDeclName = false; 3358 break; 3359 3360 case DeclarationName::CXXDestructorName: 3361 InvalidDecl = 5; 3362 ShowDeclName = false; 3363 break; 3364 3365 case DeclarationName::CXXOperatorName: 3366 case DeclarationName::CXXConversionFunctionName: 3367 InvalidDecl = 6; 3368 break; 3369 3370 default: 3371 InvalidDecl = 0; 3372 break; 3373 } 3374 3375 if (InvalidDecl) { 3376 if (ShowDeclName) 3377 Diag(Loc, diag::err_invalid_member_in_interface) 3378 << (InvalidDecl-1) << Name; 3379 else 3380 Diag(Loc, diag::err_invalid_member_in_interface) 3381 << (InvalidDecl-1) << ""; 3382 return nullptr; 3383 } 3384 } 3385 3386 // C++ 9.2p6: A member shall not be declared to have automatic storage 3387 // duration (auto, register) or with the extern storage-class-specifier. 3388 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3389 // data members and cannot be applied to names declared const or static, 3390 // and cannot be applied to reference members. 3391 switch (DS.getStorageClassSpec()) { 3392 case DeclSpec::SCS_unspecified: 3393 case DeclSpec::SCS_typedef: 3394 case DeclSpec::SCS_static: 3395 break; 3396 case DeclSpec::SCS_mutable: 3397 if (isFunc) { 3398 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3399 3400 // FIXME: It would be nicer if the keyword was ignored only for this 3401 // declarator. Otherwise we could get follow-up errors. 3402 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3403 } 3404 break; 3405 default: 3406 Diag(DS.getStorageClassSpecLoc(), 3407 diag::err_storageclass_invalid_for_member); 3408 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3409 break; 3410 } 3411 3412 bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3413 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3414 !isFunc && TemplateParameterLists.empty(); 3415 3416 if (DS.hasConstexprSpecifier() && isInstField) { 3417 SemaDiagnosticBuilder B = 3418 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3419 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3420 if (InitStyle == ICIS_NoInit) { 3421 B << 0 << 0; 3422 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3423 B << FixItHint::CreateRemoval(ConstexprLoc); 3424 else { 3425 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3426 D.getMutableDeclSpec().ClearConstexprSpec(); 3427 const char *PrevSpec; 3428 unsigned DiagID; 3429 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3430 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3431 (void)Failed; 3432 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3433 } 3434 } else { 3435 B << 1; 3436 const char *PrevSpec; 3437 unsigned DiagID; 3438 if (D.getMutableDeclSpec().SetStorageClassSpec( 3439 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3440 Context.getPrintingPolicy())) { 3441 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3442 "This is the only DeclSpec that should fail to be applied"); 3443 B << 1; 3444 } else { 3445 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3446 isInstField = false; 3447 } 3448 } 3449 } 3450 3451 NamedDecl *Member; 3452 if (isInstField) { 3453 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3454 3455 // Data members must have identifiers for names. 3456 if (!Name.isIdentifier()) { 3457 Diag(Loc, diag::err_bad_variable_name) 3458 << Name; 3459 return nullptr; 3460 } 3461 3462 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3463 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 3464 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments) 3465 << II 3466 << SourceRange(D.getName().TemplateId->LAngleLoc, 3467 D.getName().TemplateId->RAngleLoc) 3468 << D.getName().TemplateId->LAngleLoc; 3469 D.SetIdentifier(II, Loc); 3470 } 3471 3472 if (SS.isSet() && !SS.isInvalid()) { 3473 // The user provided a superfluous scope specifier inside a class 3474 // definition: 3475 // 3476 // class X { 3477 // int X::member; 3478 // }; 3479 if (DeclContext *DC = computeDeclContext(SS, false)) { 3480 TemplateIdAnnotation *TemplateId = 3481 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 3482 ? D.getName().TemplateId 3483 : nullptr; 3484 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3485 TemplateId, 3486 /*IsMemberSpecialization=*/false); 3487 } else { 3488 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3489 << Name << SS.getRange(); 3490 } 3491 SS.clear(); 3492 } 3493 3494 if (MSPropertyAttr) { 3495 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3496 BitWidth, InitStyle, AS, *MSPropertyAttr); 3497 if (!Member) 3498 return nullptr; 3499 isInstField = false; 3500 } else { 3501 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3502 BitWidth, InitStyle, AS); 3503 if (!Member) 3504 return nullptr; 3505 } 3506 3507 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3508 } else { 3509 Member = HandleDeclarator(S, D, TemplateParameterLists); 3510 if (!Member) 3511 return nullptr; 3512 3513 // Non-instance-fields can't have a bitfield. 3514 if (BitWidth) { 3515 if (Member->isInvalidDecl()) { 3516 // don't emit another diagnostic. 3517 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3518 // C++ 9.6p3: A bit-field shall not be a static member. 3519 // "static member 'A' cannot be a bit-field" 3520 Diag(Loc, diag::err_static_not_bitfield) 3521 << Name << BitWidth->getSourceRange(); 3522 } else if (isa<TypedefDecl>(Member)) { 3523 // "typedef member 'x' cannot be a bit-field" 3524 Diag(Loc, diag::err_typedef_not_bitfield) 3525 << Name << BitWidth->getSourceRange(); 3526 } else { 3527 // A function typedef ("typedef int f(); f a;"). 3528 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3529 Diag(Loc, diag::err_not_integral_type_bitfield) 3530 << Name << cast<ValueDecl>(Member)->getType() 3531 << BitWidth->getSourceRange(); 3532 } 3533 3534 BitWidth = nullptr; 3535 Member->setInvalidDecl(); 3536 } 3537 3538 NamedDecl *NonTemplateMember = Member; 3539 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3540 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3541 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3542 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3543 3544 Member->setAccess(AS); 3545 3546 // If we have declared a member function template or static data member 3547 // template, set the access of the templated declaration as well. 3548 if (NonTemplateMember != Member) 3549 NonTemplateMember->setAccess(AS); 3550 3551 // C++ [temp.deduct.guide]p3: 3552 // A deduction guide [...] for a member class template [shall be 3553 // declared] with the same access [as the template]. 3554 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3555 auto *TD = DG->getDeducedTemplate(); 3556 // Access specifiers are only meaningful if both the template and the 3557 // deduction guide are from the same scope. 3558 if (AS != TD->getAccess() && 3559 TD->getDeclContext()->getRedeclContext()->Equals( 3560 DG->getDeclContext()->getRedeclContext())) { 3561 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3562 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3563 << TD->getAccess(); 3564 const AccessSpecDecl *LastAccessSpec = nullptr; 3565 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3566 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3567 LastAccessSpec = AccessSpec; 3568 } 3569 assert(LastAccessSpec && "differing access with no access specifier"); 3570 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3571 << AS; 3572 } 3573 } 3574 } 3575 3576 if (VS.isOverrideSpecified()) 3577 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc())); 3578 if (VS.isFinalSpecified()) 3579 Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(), 3580 VS.isFinalSpelledSealed() 3581 ? FinalAttr::Keyword_sealed 3582 : FinalAttr::Keyword_final)); 3583 3584 if (VS.getLastLocation().isValid()) { 3585 // Update the end location of a method that has a virt-specifiers. 3586 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3587 MD->setRangeEnd(VS.getLastLocation()); 3588 } 3589 3590 CheckOverrideControl(Member); 3591 3592 assert((Name || isInstField) && "No identifier for non-field ?"); 3593 3594 if (isInstField) { 3595 FieldDecl *FD = cast<FieldDecl>(Member); 3596 FieldCollector->Add(FD); 3597 3598 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3599 // Remember all explicit private FieldDecls that have a name, no side 3600 // effects and are not part of a dependent type declaration. 3601 3602 auto DeclHasUnusedAttr = [](const QualType &T) { 3603 if (const TagDecl *TD = T->getAsTagDecl()) 3604 return TD->hasAttr<UnusedAttr>(); 3605 if (const TypedefType *TDT = T->getAs<TypedefType>()) 3606 return TDT->getDecl()->hasAttr<UnusedAttr>(); 3607 return false; 3608 }; 3609 3610 if (!FD->isImplicit() && FD->getDeclName() && 3611 FD->getAccess() == AS_private && 3612 !FD->hasAttr<UnusedAttr>() && 3613 !FD->getParent()->isDependentContext() && 3614 !DeclHasUnusedAttr(FD->getType()) && 3615 !InitializationHasSideEffects(*FD)) 3616 UnusedPrivateFields.insert(FD); 3617 } 3618 } 3619 3620 return Member; 3621 } 3622 3623 namespace { 3624 class UninitializedFieldVisitor 3625 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3626 Sema &S; 3627 // List of Decls to generate a warning on. Also remove Decls that become 3628 // initialized. 3629 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3630 // List of base classes of the record. Classes are removed after their 3631 // initializers. 3632 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3633 // Vector of decls to be removed from the Decl set prior to visiting the 3634 // nodes. These Decls may have been initialized in the prior initializer. 3635 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3636 // If non-null, add a note to the warning pointing back to the constructor. 3637 const CXXConstructorDecl *Constructor; 3638 // Variables to hold state when processing an initializer list. When 3639 // InitList is true, special case initialization of FieldDecls matching 3640 // InitListFieldDecl. 3641 bool InitList; 3642 FieldDecl *InitListFieldDecl; 3643 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3644 3645 public: 3646 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3647 UninitializedFieldVisitor(Sema &S, 3648 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3649 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3650 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3651 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3652 3653 // Returns true if the use of ME is not an uninitialized use. 3654 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3655 bool CheckReferenceOnly) { 3656 llvm::SmallVector<FieldDecl*, 4> Fields; 3657 bool ReferenceField = false; 3658 while (ME) { 3659 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3660 if (!FD) 3661 return false; 3662 Fields.push_back(FD); 3663 if (FD->getType()->isReferenceType()) 3664 ReferenceField = true; 3665 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3666 } 3667 3668 // Binding a reference to an uninitialized field is not an 3669 // uninitialized use. 3670 if (CheckReferenceOnly && !ReferenceField) 3671 return true; 3672 3673 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3674 // Discard the first field since it is the field decl that is being 3675 // initialized. 3676 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields))) 3677 UsedFieldIndex.push_back(FD->getFieldIndex()); 3678 3679 for (auto UsedIter = UsedFieldIndex.begin(), 3680 UsedEnd = UsedFieldIndex.end(), 3681 OrigIter = InitFieldIndex.begin(), 3682 OrigEnd = InitFieldIndex.end(); 3683 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3684 if (*UsedIter < *OrigIter) 3685 return true; 3686 if (*UsedIter > *OrigIter) 3687 break; 3688 } 3689 3690 return false; 3691 } 3692 3693 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3694 bool AddressOf) { 3695 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3696 return; 3697 3698 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3699 // or union. 3700 MemberExpr *FieldME = ME; 3701 3702 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3703 3704 Expr *Base = ME; 3705 while (MemberExpr *SubME = 3706 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3707 3708 if (isa<VarDecl>(SubME->getMemberDecl())) 3709 return; 3710 3711 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3712 if (!FD->isAnonymousStructOrUnion()) 3713 FieldME = SubME; 3714 3715 if (!FieldME->getType().isPODType(S.Context)) 3716 AllPODFields = false; 3717 3718 Base = SubME->getBase(); 3719 } 3720 3721 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { 3722 Visit(Base); 3723 return; 3724 } 3725 3726 if (AddressOf && AllPODFields) 3727 return; 3728 3729 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3730 3731 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3732 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3733 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3734 } 3735 3736 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3737 QualType T = BaseCast->getType(); 3738 if (T->isPointerType() && 3739 BaseClasses.count(T->getPointeeType())) { 3740 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3741 << T->getPointeeType() << FoundVD; 3742 } 3743 } 3744 } 3745 3746 if (!Decls.count(FoundVD)) 3747 return; 3748 3749 const bool IsReference = FoundVD->getType()->isReferenceType(); 3750 3751 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3752 // Special checking for initializer lists. 3753 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3754 return; 3755 } 3756 } else { 3757 // Prevent double warnings on use of unbounded references. 3758 if (CheckReferenceOnly && !IsReference) 3759 return; 3760 } 3761 3762 unsigned diag = IsReference 3763 ? diag::warn_reference_field_is_uninit 3764 : diag::warn_field_is_uninit; 3765 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3766 if (Constructor) 3767 S.Diag(Constructor->getLocation(), 3768 diag::note_uninit_in_this_constructor) 3769 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3770 3771 } 3772 3773 void HandleValue(Expr *E, bool AddressOf) { 3774 E = E->IgnoreParens(); 3775 3776 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3777 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3778 AddressOf /*AddressOf*/); 3779 return; 3780 } 3781 3782 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3783 Visit(CO->getCond()); 3784 HandleValue(CO->getTrueExpr(), AddressOf); 3785 HandleValue(CO->getFalseExpr(), AddressOf); 3786 return; 3787 } 3788 3789 if (BinaryConditionalOperator *BCO = 3790 dyn_cast<BinaryConditionalOperator>(E)) { 3791 Visit(BCO->getCond()); 3792 HandleValue(BCO->getFalseExpr(), AddressOf); 3793 return; 3794 } 3795 3796 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3797 HandleValue(OVE->getSourceExpr(), AddressOf); 3798 return; 3799 } 3800 3801 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3802 switch (BO->getOpcode()) { 3803 default: 3804 break; 3805 case(BO_PtrMemD): 3806 case(BO_PtrMemI): 3807 HandleValue(BO->getLHS(), AddressOf); 3808 Visit(BO->getRHS()); 3809 return; 3810 case(BO_Comma): 3811 Visit(BO->getLHS()); 3812 HandleValue(BO->getRHS(), AddressOf); 3813 return; 3814 } 3815 } 3816 3817 Visit(E); 3818 } 3819 3820 void CheckInitListExpr(InitListExpr *ILE) { 3821 InitFieldIndex.push_back(0); 3822 for (auto *Child : ILE->children()) { 3823 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3824 CheckInitListExpr(SubList); 3825 } else { 3826 Visit(Child); 3827 } 3828 ++InitFieldIndex.back(); 3829 } 3830 InitFieldIndex.pop_back(); 3831 } 3832 3833 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3834 FieldDecl *Field, const Type *BaseClass) { 3835 // Remove Decls that may have been initialized in the previous 3836 // initializer. 3837 for (ValueDecl* VD : DeclsToRemove) 3838 Decls.erase(VD); 3839 DeclsToRemove.clear(); 3840 3841 Constructor = FieldConstructor; 3842 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3843 3844 if (ILE && Field) { 3845 InitList = true; 3846 InitListFieldDecl = Field; 3847 InitFieldIndex.clear(); 3848 CheckInitListExpr(ILE); 3849 } else { 3850 InitList = false; 3851 Visit(E); 3852 } 3853 3854 if (Field) 3855 Decls.erase(Field); 3856 if (BaseClass) 3857 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3858 } 3859 3860 void VisitMemberExpr(MemberExpr *ME) { 3861 // All uses of unbounded reference fields will warn. 3862 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3863 } 3864 3865 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3866 if (E->getCastKind() == CK_LValueToRValue) { 3867 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3868 return; 3869 } 3870 3871 Inherited::VisitImplicitCastExpr(E); 3872 } 3873 3874 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3875 if (E->getConstructor()->isCopyConstructor()) { 3876 Expr *ArgExpr = E->getArg(0); 3877 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3878 if (ILE->getNumInits() == 1) 3879 ArgExpr = ILE->getInit(0); 3880 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3881 if (ICE->getCastKind() == CK_NoOp) 3882 ArgExpr = ICE->getSubExpr(); 3883 HandleValue(ArgExpr, false /*AddressOf*/); 3884 return; 3885 } 3886 Inherited::VisitCXXConstructExpr(E); 3887 } 3888 3889 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3890 Expr *Callee = E->getCallee(); 3891 if (isa<MemberExpr>(Callee)) { 3892 HandleValue(Callee, false /*AddressOf*/); 3893 for (auto *Arg : E->arguments()) 3894 Visit(Arg); 3895 return; 3896 } 3897 3898 Inherited::VisitCXXMemberCallExpr(E); 3899 } 3900 3901 void VisitCallExpr(CallExpr *E) { 3902 // Treat std::move as a use. 3903 if (E->isCallToStdMove()) { 3904 HandleValue(E->getArg(0), /*AddressOf=*/false); 3905 return; 3906 } 3907 3908 Inherited::VisitCallExpr(E); 3909 } 3910 3911 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3912 Expr *Callee = E->getCallee(); 3913 3914 if (isa<UnresolvedLookupExpr>(Callee)) 3915 return Inherited::VisitCXXOperatorCallExpr(E); 3916 3917 Visit(Callee); 3918 for (auto *Arg : E->arguments()) 3919 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3920 } 3921 3922 void VisitBinaryOperator(BinaryOperator *E) { 3923 // If a field assignment is detected, remove the field from the 3924 // uninitiailized field set. 3925 if (E->getOpcode() == BO_Assign) 3926 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3927 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3928 if (!FD->getType()->isReferenceType()) 3929 DeclsToRemove.push_back(FD); 3930 3931 if (E->isCompoundAssignmentOp()) { 3932 HandleValue(E->getLHS(), false /*AddressOf*/); 3933 Visit(E->getRHS()); 3934 return; 3935 } 3936 3937 Inherited::VisitBinaryOperator(E); 3938 } 3939 3940 void VisitUnaryOperator(UnaryOperator *E) { 3941 if (E->isIncrementDecrementOp()) { 3942 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3943 return; 3944 } 3945 if (E->getOpcode() == UO_AddrOf) { 3946 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3947 HandleValue(ME->getBase(), true /*AddressOf*/); 3948 return; 3949 } 3950 } 3951 3952 Inherited::VisitUnaryOperator(E); 3953 } 3954 }; 3955 3956 // Diagnose value-uses of fields to initialize themselves, e.g. 3957 // foo(foo) 3958 // where foo is not also a parameter to the constructor. 3959 // Also diagnose across field uninitialized use such as 3960 // x(y), y(x) 3961 // TODO: implement -Wuninitialized and fold this into that framework. 3962 static void DiagnoseUninitializedFields( 3963 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3964 3965 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3966 Constructor->getLocation())) { 3967 return; 3968 } 3969 3970 if (Constructor->isInvalidDecl()) 3971 return; 3972 3973 const CXXRecordDecl *RD = Constructor->getParent(); 3974 3975 if (RD->isDependentContext()) 3976 return; 3977 3978 // Holds fields that are uninitialized. 3979 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3980 3981 // At the beginning, all fields are uninitialized. 3982 for (auto *I : RD->decls()) { 3983 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3984 UninitializedFields.insert(FD); 3985 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3986 UninitializedFields.insert(IFD->getAnonField()); 3987 } 3988 } 3989 3990 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3991 for (const auto &I : RD->bases()) 3992 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3993 3994 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3995 return; 3996 3997 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3998 UninitializedFields, 3999 UninitializedBaseClasses); 4000 4001 for (const auto *FieldInit : Constructor->inits()) { 4002 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 4003 break; 4004 4005 Expr *InitExpr = FieldInit->getInit(); 4006 if (!InitExpr) 4007 continue; 4008 4009 if (CXXDefaultInitExpr *Default = 4010 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 4011 InitExpr = Default->getExpr(); 4012 if (!InitExpr) 4013 continue; 4014 // In class initializers will point to the constructor. 4015 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 4016 FieldInit->getAnyMember(), 4017 FieldInit->getBaseClass()); 4018 } else { 4019 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 4020 FieldInit->getAnyMember(), 4021 FieldInit->getBaseClass()); 4022 } 4023 } 4024 } 4025 } // namespace 4026 4027 void Sema::ActOnStartCXXInClassMemberInitializer() { 4028 // Create a synthetic function scope to represent the call to the constructor 4029 // that notionally surrounds a use of this initializer. 4030 PushFunctionScope(); 4031 } 4032 4033 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 4034 if (!D.isFunctionDeclarator()) 4035 return; 4036 auto &FTI = D.getFunctionTypeInfo(); 4037 if (!FTI.Params) 4038 return; 4039 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 4040 FTI.NumParams)) { 4041 auto *ParamDecl = cast<NamedDecl>(Param.Param); 4042 if (ParamDecl->getDeclName()) 4043 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 4044 } 4045 } 4046 4047 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 4048 return ActOnRequiresClause(ConstraintExpr); 4049 } 4050 4051 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { 4052 if (ConstraintExpr.isInvalid()) 4053 return ExprError(); 4054 4055 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); 4056 if (ConstraintExpr.isInvalid()) 4057 return ExprError(); 4058 4059 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), 4060 UPPC_RequiresClause)) 4061 return ExprError(); 4062 4063 return ConstraintExpr; 4064 } 4065 4066 ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD, 4067 Expr *InitExpr, 4068 SourceLocation InitLoc) { 4069 InitializedEntity Entity = 4070 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 4071 InitializationKind Kind = 4072 FD->getInClassInitStyle() == ICIS_ListInit 4073 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 4074 InitExpr->getBeginLoc(), 4075 InitExpr->getEndLoc()) 4076 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 4077 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 4078 return Seq.Perform(*this, Entity, Kind, InitExpr); 4079 } 4080 4081 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 4082 SourceLocation InitLoc, 4083 Expr *InitExpr) { 4084 // Pop the notional constructor scope we created earlier. 4085 PopFunctionScopeInfo(nullptr, D); 4086 4087 FieldDecl *FD = dyn_cast<FieldDecl>(D); 4088 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 4089 "must set init style when field is created"); 4090 4091 if (!InitExpr) { 4092 D->setInvalidDecl(); 4093 if (FD) 4094 FD->removeInClassInitializer(); 4095 return; 4096 } 4097 4098 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 4099 FD->setInvalidDecl(); 4100 FD->removeInClassInitializer(); 4101 return; 4102 } 4103 4104 ExprResult Init = CorrectDelayedTyposInExpr(InitExpr, /*InitDecl=*/nullptr, 4105 /*RecoverUncorrectedTypos=*/true); 4106 assert(Init.isUsable() && "Init should at least have a RecoveryExpr"); 4107 if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) { 4108 Init = ConvertMemberDefaultInitExpression(FD, Init.get(), InitLoc); 4109 // C++11 [class.base.init]p7: 4110 // The initialization of each base and member constitutes a 4111 // full-expression. 4112 if (!Init.isInvalid()) 4113 Init = ActOnFinishFullExpr(Init.get(), /*DiscarededValue=*/false); 4114 if (Init.isInvalid()) { 4115 FD->setInvalidDecl(); 4116 return; 4117 } 4118 } 4119 4120 FD->setInClassInitializer(Init.get()); 4121 } 4122 4123 /// Find the direct and/or virtual base specifiers that 4124 /// correspond to the given base type, for use in base initialization 4125 /// within a constructor. 4126 static bool FindBaseInitializer(Sema &SemaRef, 4127 CXXRecordDecl *ClassDecl, 4128 QualType BaseType, 4129 const CXXBaseSpecifier *&DirectBaseSpec, 4130 const CXXBaseSpecifier *&VirtualBaseSpec) { 4131 // First, check for a direct base class. 4132 DirectBaseSpec = nullptr; 4133 for (const auto &Base : ClassDecl->bases()) { 4134 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 4135 // We found a direct base of this type. That's what we're 4136 // initializing. 4137 DirectBaseSpec = &Base; 4138 break; 4139 } 4140 } 4141 4142 // Check for a virtual base class. 4143 // FIXME: We might be able to short-circuit this if we know in advance that 4144 // there are no virtual bases. 4145 VirtualBaseSpec = nullptr; 4146 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 4147 // We haven't found a base yet; search the class hierarchy for a 4148 // virtual base class. 4149 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 4150 /*DetectVirtual=*/false); 4151 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4152 SemaRef.Context.getTypeDeclType(ClassDecl), 4153 BaseType, Paths)) { 4154 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4155 Path != Paths.end(); ++Path) { 4156 if (Path->back().Base->isVirtual()) { 4157 VirtualBaseSpec = Path->back().Base; 4158 break; 4159 } 4160 } 4161 } 4162 } 4163 4164 return DirectBaseSpec || VirtualBaseSpec; 4165 } 4166 4167 MemInitResult 4168 Sema::ActOnMemInitializer(Decl *ConstructorD, 4169 Scope *S, 4170 CXXScopeSpec &SS, 4171 IdentifierInfo *MemberOrBase, 4172 ParsedType TemplateTypeTy, 4173 const DeclSpec &DS, 4174 SourceLocation IdLoc, 4175 Expr *InitList, 4176 SourceLocation EllipsisLoc) { 4177 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4178 DS, IdLoc, InitList, 4179 EllipsisLoc); 4180 } 4181 4182 MemInitResult 4183 Sema::ActOnMemInitializer(Decl *ConstructorD, 4184 Scope *S, 4185 CXXScopeSpec &SS, 4186 IdentifierInfo *MemberOrBase, 4187 ParsedType TemplateTypeTy, 4188 const DeclSpec &DS, 4189 SourceLocation IdLoc, 4190 SourceLocation LParenLoc, 4191 ArrayRef<Expr *> Args, 4192 SourceLocation RParenLoc, 4193 SourceLocation EllipsisLoc) { 4194 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4195 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4196 DS, IdLoc, List, EllipsisLoc); 4197 } 4198 4199 namespace { 4200 4201 // Callback to only accept typo corrections that can be a valid C++ member 4202 // initializer: either a non-static field member or a base class. 4203 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4204 public: 4205 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4206 : ClassDecl(ClassDecl) {} 4207 4208 bool ValidateCandidate(const TypoCorrection &candidate) override { 4209 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4210 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4211 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4212 return isa<TypeDecl>(ND); 4213 } 4214 return false; 4215 } 4216 4217 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4218 return std::make_unique<MemInitializerValidatorCCC>(*this); 4219 } 4220 4221 private: 4222 CXXRecordDecl *ClassDecl; 4223 }; 4224 4225 } 4226 4227 bool Sema::DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc, 4228 RecordDecl *ClassDecl, 4229 const IdentifierInfo *Name) { 4230 DeclContextLookupResult Result = ClassDecl->lookup(Name); 4231 DeclContextLookupResult::iterator Found = 4232 llvm::find_if(Result, [this](const NamedDecl *Elem) { 4233 return isa<FieldDecl, IndirectFieldDecl>(Elem) && 4234 Elem->isPlaceholderVar(getLangOpts()); 4235 }); 4236 // We did not find a placeholder variable 4237 if (Found == Result.end()) 4238 return false; 4239 Diag(Loc, diag::err_using_placeholder_variable) << Name; 4240 for (DeclContextLookupResult::iterator It = Found; It != Result.end(); It++) { 4241 const NamedDecl *ND = *It; 4242 if (ND->getDeclContext() != ND->getDeclContext()) 4243 break; 4244 if (isa<FieldDecl, IndirectFieldDecl>(ND) && 4245 ND->isPlaceholderVar(getLangOpts())) 4246 Diag(ND->getLocation(), diag::note_reference_placeholder) << ND; 4247 } 4248 return true; 4249 } 4250 4251 ValueDecl * 4252 Sema::tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl, 4253 const IdentifierInfo *MemberOrBase) { 4254 ValueDecl *ND = nullptr; 4255 for (auto *D : ClassDecl->lookup(MemberOrBase)) { 4256 if (isa<FieldDecl, IndirectFieldDecl>(D)) { 4257 bool IsPlaceholder = D->isPlaceholderVar(getLangOpts()); 4258 if (ND) { 4259 if (IsPlaceholder && D->getDeclContext() == ND->getDeclContext()) 4260 return nullptr; 4261 break; 4262 } 4263 if (!IsPlaceholder) 4264 return cast<ValueDecl>(D); 4265 ND = cast<ValueDecl>(D); 4266 } 4267 } 4268 return ND; 4269 } 4270 4271 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4272 CXXScopeSpec &SS, 4273 ParsedType TemplateTypeTy, 4274 IdentifierInfo *MemberOrBase) { 4275 if (SS.getScopeRep() || TemplateTypeTy) 4276 return nullptr; 4277 return tryLookupUnambiguousFieldDecl(ClassDecl, MemberOrBase); 4278 } 4279 4280 MemInitResult 4281 Sema::BuildMemInitializer(Decl *ConstructorD, 4282 Scope *S, 4283 CXXScopeSpec &SS, 4284 IdentifierInfo *MemberOrBase, 4285 ParsedType TemplateTypeTy, 4286 const DeclSpec &DS, 4287 SourceLocation IdLoc, 4288 Expr *Init, 4289 SourceLocation EllipsisLoc) { 4290 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr, 4291 /*RecoverUncorrectedTypos=*/true); 4292 if (!Res.isUsable()) 4293 return true; 4294 Init = Res.get(); 4295 4296 if (!ConstructorD) 4297 return true; 4298 4299 AdjustDeclIfTemplate(ConstructorD); 4300 4301 CXXConstructorDecl *Constructor 4302 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4303 if (!Constructor) { 4304 // The user wrote a constructor initializer on a function that is 4305 // not a C++ constructor. Ignore the error for now, because we may 4306 // have more member initializers coming; we'll diagnose it just 4307 // once in ActOnMemInitializers. 4308 return true; 4309 } 4310 4311 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4312 4313 // C++ [class.base.init]p2: 4314 // Names in a mem-initializer-id are looked up in the scope of the 4315 // constructor's class and, if not found in that scope, are looked 4316 // up in the scope containing the constructor's definition. 4317 // [Note: if the constructor's class contains a member with the 4318 // same name as a direct or virtual base class of the class, a 4319 // mem-initializer-id naming the member or base class and composed 4320 // of a single identifier refers to the class member. A 4321 // mem-initializer-id for the hidden base class may be specified 4322 // using a qualified name. ] 4323 4324 // Look for a member, first. 4325 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4326 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4327 if (EllipsisLoc.isValid()) 4328 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4329 << MemberOrBase 4330 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4331 4332 return BuildMemberInitializer(Member, Init, IdLoc); 4333 } 4334 // It didn't name a member, so see if it names a class. 4335 QualType BaseType; 4336 TypeSourceInfo *TInfo = nullptr; 4337 4338 if (TemplateTypeTy) { 4339 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4340 if (BaseType.isNull()) 4341 return true; 4342 } else if (DS.getTypeSpecType() == TST_decltype) { 4343 BaseType = BuildDecltypeType(DS.getRepAsExpr()); 4344 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4345 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4346 return true; 4347 } else if (DS.getTypeSpecType() == TST_typename_pack_indexing) { 4348 BaseType = 4349 BuildPackIndexingType(DS.getRepAsType().get(), DS.getPackIndexingExpr(), 4350 DS.getBeginLoc(), DS.getEllipsisLoc()); 4351 } else { 4352 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4353 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); 4354 4355 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4356 if (!TyD) { 4357 if (R.isAmbiguous()) return true; 4358 4359 // We don't want access-control diagnostics here. 4360 R.suppressDiagnostics(); 4361 4362 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4363 bool NotUnknownSpecialization = false; 4364 DeclContext *DC = computeDeclContext(SS, false); 4365 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4366 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4367 4368 if (!NotUnknownSpecialization) { 4369 // When the scope specifier can refer to a member of an unknown 4370 // specialization, we take it as a type name. 4371 BaseType = CheckTypenameType( 4372 ElaboratedTypeKeyword::None, SourceLocation(), 4373 SS.getWithLocInContext(Context), *MemberOrBase, IdLoc); 4374 if (BaseType.isNull()) 4375 return true; 4376 4377 TInfo = Context.CreateTypeSourceInfo(BaseType); 4378 DependentNameTypeLoc TL = 4379 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4380 if (!TL.isNull()) { 4381 TL.setNameLoc(IdLoc); 4382 TL.setElaboratedKeywordLoc(SourceLocation()); 4383 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4384 } 4385 4386 R.clear(); 4387 R.setLookupName(MemberOrBase); 4388 } 4389 } 4390 4391 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) { 4392 if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) { 4393 auto *TempSpec = cast<TemplateSpecializationType>( 4394 UnqualifiedBase->getInjectedClassNameSpecialization()); 4395 TemplateName TN = TempSpec->getTemplateName(); 4396 for (auto const &Base : ClassDecl->bases()) { 4397 auto BaseTemplate = 4398 Base.getType()->getAs<TemplateSpecializationType>(); 4399 if (BaseTemplate && Context.hasSameTemplateName( 4400 BaseTemplate->getTemplateName(), TN)) { 4401 Diag(IdLoc, diag::ext_unqualified_base_class) 4402 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4403 BaseType = Base.getType(); 4404 break; 4405 } 4406 } 4407 } 4408 } 4409 4410 // If no results were found, try to correct typos. 4411 TypoCorrection Corr; 4412 MemInitializerValidatorCCC CCC(ClassDecl); 4413 if (R.empty() && BaseType.isNull() && 4414 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4415 CCC, CTK_ErrorRecovery, ClassDecl))) { 4416 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4417 // We have found a non-static data member with a similar 4418 // name to what was typed; complain and initialize that 4419 // member. 4420 diagnoseTypo(Corr, 4421 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4422 << MemberOrBase << true); 4423 return BuildMemberInitializer(Member, Init, IdLoc); 4424 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4425 const CXXBaseSpecifier *DirectBaseSpec; 4426 const CXXBaseSpecifier *VirtualBaseSpec; 4427 if (FindBaseInitializer(*this, ClassDecl, 4428 Context.getTypeDeclType(Type), 4429 DirectBaseSpec, VirtualBaseSpec)) { 4430 // We have found a direct or virtual base class with a 4431 // similar name to what was typed; complain and initialize 4432 // that base class. 4433 diagnoseTypo(Corr, 4434 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4435 << MemberOrBase << false, 4436 PDiag() /*Suppress note, we provide our own.*/); 4437 4438 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4439 : VirtualBaseSpec; 4440 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4441 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4442 4443 TyD = Type; 4444 } 4445 } 4446 } 4447 4448 if (!TyD && BaseType.isNull()) { 4449 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4450 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4451 return true; 4452 } 4453 } 4454 4455 if (BaseType.isNull()) { 4456 BaseType = getElaboratedType(ElaboratedTypeKeyword::None, SS, 4457 Context.getTypeDeclType(TyD)); 4458 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4459 TInfo = Context.CreateTypeSourceInfo(BaseType); 4460 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4461 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4462 TL.setElaboratedKeywordLoc(SourceLocation()); 4463 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4464 } 4465 } 4466 4467 if (!TInfo) 4468 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4469 4470 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4471 } 4472 4473 MemInitResult 4474 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4475 SourceLocation IdLoc) { 4476 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4477 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4478 assert((DirectMember || IndirectMember) && 4479 "Member must be a FieldDecl or IndirectFieldDecl"); 4480 4481 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4482 return true; 4483 4484 if (Member->isInvalidDecl()) 4485 return true; 4486 4487 MultiExprArg Args; 4488 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4489 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4490 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4491 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4492 } else { 4493 // Template instantiation doesn't reconstruct ParenListExprs for us. 4494 Args = Init; 4495 } 4496 4497 SourceRange InitRange = Init->getSourceRange(); 4498 4499 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4500 // Can't check initialization for a member of dependent type or when 4501 // any of the arguments are type-dependent expressions. 4502 DiscardCleanupsInEvaluationContext(); 4503 } else { 4504 bool InitList = false; 4505 if (isa<InitListExpr>(Init)) { 4506 InitList = true; 4507 Args = Init; 4508 } 4509 4510 // Initialize the member. 4511 InitializedEntity MemberEntity = 4512 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4513 : InitializedEntity::InitializeMember(IndirectMember, 4514 nullptr); 4515 InitializationKind Kind = 4516 InitList ? InitializationKind::CreateDirectList( 4517 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4518 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4519 InitRange.getEnd()); 4520 4521 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4522 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4523 nullptr); 4524 if (!MemberInit.isInvalid()) { 4525 // C++11 [class.base.init]p7: 4526 // The initialization of each base and member constitutes a 4527 // full-expression. 4528 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4529 /*DiscardedValue*/ false); 4530 } 4531 4532 if (MemberInit.isInvalid()) { 4533 // Args were sensible expressions but we couldn't initialize the member 4534 // from them. Preserve them in a RecoveryExpr instead. 4535 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4536 Member->getType()) 4537 .get(); 4538 if (!Init) 4539 return true; 4540 } else { 4541 Init = MemberInit.get(); 4542 } 4543 } 4544 4545 if (DirectMember) { 4546 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4547 InitRange.getBegin(), Init, 4548 InitRange.getEnd()); 4549 } else { 4550 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4551 InitRange.getBegin(), Init, 4552 InitRange.getEnd()); 4553 } 4554 } 4555 4556 MemInitResult 4557 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4558 CXXRecordDecl *ClassDecl) { 4559 SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin(); 4560 if (!LangOpts.CPlusPlus11) 4561 return Diag(NameLoc, diag::err_delegating_ctor) 4562 << TInfo->getTypeLoc().getSourceRange(); 4563 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4564 4565 bool InitList = true; 4566 MultiExprArg Args = Init; 4567 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4568 InitList = false; 4569 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4570 } 4571 4572 SourceRange InitRange = Init->getSourceRange(); 4573 // Initialize the object. 4574 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4575 QualType(ClassDecl->getTypeForDecl(), 0)); 4576 InitializationKind Kind = 4577 InitList ? InitializationKind::CreateDirectList( 4578 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4579 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4580 InitRange.getEnd()); 4581 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4582 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4583 Args, nullptr); 4584 if (!DelegationInit.isInvalid()) { 4585 assert((DelegationInit.get()->containsErrors() || 4586 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && 4587 "Delegating constructor with no target?"); 4588 4589 // C++11 [class.base.init]p7: 4590 // The initialization of each base and member constitutes a 4591 // full-expression. 4592 DelegationInit = ActOnFinishFullExpr( 4593 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4594 } 4595 4596 if (DelegationInit.isInvalid()) { 4597 DelegationInit = 4598 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4599 QualType(ClassDecl->getTypeForDecl(), 0)); 4600 if (DelegationInit.isInvalid()) 4601 return true; 4602 } else { 4603 // If we are in a dependent context, template instantiation will 4604 // perform this type-checking again. Just save the arguments that we 4605 // received in a ParenListExpr. 4606 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4607 // of the information that we have about the base 4608 // initializer. However, deconstructing the ASTs is a dicey process, 4609 // and this approach is far more likely to get the corner cases right. 4610 if (CurContext->isDependentContext()) 4611 DelegationInit = Init; 4612 } 4613 4614 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4615 DelegationInit.getAs<Expr>(), 4616 InitRange.getEnd()); 4617 } 4618 4619 MemInitResult 4620 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4621 Expr *Init, CXXRecordDecl *ClassDecl, 4622 SourceLocation EllipsisLoc) { 4623 SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc(); 4624 4625 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4626 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4627 << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); 4628 4629 // C++ [class.base.init]p2: 4630 // [...] Unless the mem-initializer-id names a nonstatic data 4631 // member of the constructor's class or a direct or virtual base 4632 // of that class, the mem-initializer is ill-formed. A 4633 // mem-initializer-list can initialize a base class using any 4634 // name that denotes that base class type. 4635 4636 // We can store the initializers in "as-written" form and delay analysis until 4637 // instantiation if the constructor is dependent. But not for dependent 4638 // (broken) code in a non-template! SetCtorInitializers does not expect this. 4639 bool Dependent = CurContext->isDependentContext() && 4640 (BaseType->isDependentType() || Init->isTypeDependent()); 4641 4642 SourceRange InitRange = Init->getSourceRange(); 4643 if (EllipsisLoc.isValid()) { 4644 // This is a pack expansion. 4645 if (!BaseType->containsUnexpandedParameterPack()) { 4646 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4647 << SourceRange(BaseLoc, InitRange.getEnd()); 4648 4649 EllipsisLoc = SourceLocation(); 4650 } 4651 } else { 4652 // Check for any unexpanded parameter packs. 4653 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4654 return true; 4655 4656 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4657 return true; 4658 } 4659 4660 // Check for direct and virtual base classes. 4661 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4662 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4663 if (!Dependent) { 4664 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4665 BaseType)) 4666 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4667 4668 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4669 VirtualBaseSpec); 4670 4671 // C++ [base.class.init]p2: 4672 // Unless the mem-initializer-id names a nonstatic data member of the 4673 // constructor's class or a direct or virtual base of that class, the 4674 // mem-initializer is ill-formed. 4675 if (!DirectBaseSpec && !VirtualBaseSpec) { 4676 // If the class has any dependent bases, then it's possible that 4677 // one of those types will resolve to the same type as 4678 // BaseType. Therefore, just treat this as a dependent base 4679 // class initialization. FIXME: Should we try to check the 4680 // initialization anyway? It seems odd. 4681 if (ClassDecl->hasAnyDependentBases()) 4682 Dependent = true; 4683 else 4684 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4685 << BaseType << Context.getTypeDeclType(ClassDecl) 4686 << BaseTInfo->getTypeLoc().getSourceRange(); 4687 } 4688 } 4689 4690 if (Dependent) { 4691 DiscardCleanupsInEvaluationContext(); 4692 4693 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4694 /*IsVirtual=*/false, 4695 InitRange.getBegin(), Init, 4696 InitRange.getEnd(), EllipsisLoc); 4697 } 4698 4699 // C++ [base.class.init]p2: 4700 // If a mem-initializer-id is ambiguous because it designates both 4701 // a direct non-virtual base class and an inherited virtual base 4702 // class, the mem-initializer is ill-formed. 4703 if (DirectBaseSpec && VirtualBaseSpec) 4704 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4705 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4706 4707 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4708 if (!BaseSpec) 4709 BaseSpec = VirtualBaseSpec; 4710 4711 // Initialize the base. 4712 bool InitList = true; 4713 MultiExprArg Args = Init; 4714 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4715 InitList = false; 4716 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4717 } 4718 4719 InitializedEntity BaseEntity = 4720 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4721 InitializationKind Kind = 4722 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4723 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4724 InitRange.getEnd()); 4725 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4726 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4727 if (!BaseInit.isInvalid()) { 4728 // C++11 [class.base.init]p7: 4729 // The initialization of each base and member constitutes a 4730 // full-expression. 4731 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4732 /*DiscardedValue*/ false); 4733 } 4734 4735 if (BaseInit.isInvalid()) { 4736 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), 4737 Args, BaseType); 4738 if (BaseInit.isInvalid()) 4739 return true; 4740 } else { 4741 // If we are in a dependent context, template instantiation will 4742 // perform this type-checking again. Just save the arguments that we 4743 // received in a ParenListExpr. 4744 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4745 // of the information that we have about the base 4746 // initializer. However, deconstructing the ASTs is a dicey process, 4747 // and this approach is far more likely to get the corner cases right. 4748 if (CurContext->isDependentContext()) 4749 BaseInit = Init; 4750 } 4751 4752 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4753 BaseSpec->isVirtual(), 4754 InitRange.getBegin(), 4755 BaseInit.getAs<Expr>(), 4756 InitRange.getEnd(), EllipsisLoc); 4757 } 4758 4759 // Create a static_cast\<T&&>(expr). 4760 static Expr *CastForMoving(Sema &SemaRef, Expr *E) { 4761 QualType TargetType = 4762 SemaRef.BuildReferenceType(E->getType(), /*SpelledAsLValue*/ false, 4763 SourceLocation(), DeclarationName()); 4764 SourceLocation ExprLoc = E->getBeginLoc(); 4765 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4766 TargetType, ExprLoc); 4767 4768 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4769 SourceRange(ExprLoc, ExprLoc), 4770 E->getSourceRange()).get(); 4771 } 4772 4773 /// ImplicitInitializerKind - How an implicit base or member initializer should 4774 /// initialize its base or member. 4775 enum ImplicitInitializerKind { 4776 IIK_Default, 4777 IIK_Copy, 4778 IIK_Move, 4779 IIK_Inherit 4780 }; 4781 4782 static bool 4783 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4784 ImplicitInitializerKind ImplicitInitKind, 4785 CXXBaseSpecifier *BaseSpec, 4786 bool IsInheritedVirtualBase, 4787 CXXCtorInitializer *&CXXBaseInit) { 4788 InitializedEntity InitEntity 4789 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4790 IsInheritedVirtualBase); 4791 4792 ExprResult BaseInit; 4793 4794 switch (ImplicitInitKind) { 4795 case IIK_Inherit: 4796 case IIK_Default: { 4797 InitializationKind InitKind 4798 = InitializationKind::CreateDefault(Constructor->getLocation()); 4799 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt); 4800 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt); 4801 break; 4802 } 4803 4804 case IIK_Move: 4805 case IIK_Copy: { 4806 bool Moving = ImplicitInitKind == IIK_Move; 4807 ParmVarDecl *Param = Constructor->getParamDecl(0); 4808 QualType ParamType = Param->getType().getNonReferenceType(); 4809 4810 Expr *CopyCtorArg = 4811 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4812 SourceLocation(), Param, false, 4813 Constructor->getLocation(), ParamType, 4814 VK_LValue, nullptr); 4815 4816 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4817 4818 // Cast to the base class to avoid ambiguities. 4819 QualType ArgTy = 4820 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4821 ParamType.getQualifiers()); 4822 4823 if (Moving) { 4824 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4825 } 4826 4827 CXXCastPath BasePath; 4828 BasePath.push_back(BaseSpec); 4829 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4830 CK_UncheckedDerivedToBase, 4831 Moving ? VK_XValue : VK_LValue, 4832 &BasePath).get(); 4833 4834 InitializationKind InitKind 4835 = InitializationKind::CreateDirect(Constructor->getLocation(), 4836 SourceLocation(), SourceLocation()); 4837 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4838 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4839 break; 4840 } 4841 } 4842 4843 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4844 if (BaseInit.isInvalid()) 4845 return true; 4846 4847 CXXBaseInit = 4848 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4849 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4850 SourceLocation()), 4851 BaseSpec->isVirtual(), 4852 SourceLocation(), 4853 BaseInit.getAs<Expr>(), 4854 SourceLocation(), 4855 SourceLocation()); 4856 4857 return false; 4858 } 4859 4860 static bool RefersToRValueRef(Expr *MemRef) { 4861 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4862 return Referenced->getType()->isRValueReferenceType(); 4863 } 4864 4865 static bool 4866 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4867 ImplicitInitializerKind ImplicitInitKind, 4868 FieldDecl *Field, IndirectFieldDecl *Indirect, 4869 CXXCtorInitializer *&CXXMemberInit) { 4870 if (Field->isInvalidDecl()) 4871 return true; 4872 4873 SourceLocation Loc = Constructor->getLocation(); 4874 4875 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4876 bool Moving = ImplicitInitKind == IIK_Move; 4877 ParmVarDecl *Param = Constructor->getParamDecl(0); 4878 QualType ParamType = Param->getType().getNonReferenceType(); 4879 4880 // Suppress copying zero-width bitfields. 4881 if (Field->isZeroLengthBitField(SemaRef.Context)) 4882 return false; 4883 4884 Expr *MemberExprBase = 4885 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4886 SourceLocation(), Param, false, 4887 Loc, ParamType, VK_LValue, nullptr); 4888 4889 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4890 4891 if (Moving) { 4892 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4893 } 4894 4895 // Build a reference to this field within the parameter. 4896 CXXScopeSpec SS; 4897 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4898 Sema::LookupMemberName); 4899 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4900 : cast<ValueDecl>(Field), AS_public); 4901 MemberLookup.resolveKind(); 4902 ExprResult CtorArg 4903 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4904 ParamType, Loc, 4905 /*IsArrow=*/false, 4906 SS, 4907 /*TemplateKWLoc=*/SourceLocation(), 4908 /*FirstQualifierInScope=*/nullptr, 4909 MemberLookup, 4910 /*TemplateArgs=*/nullptr, 4911 /*S*/nullptr); 4912 if (CtorArg.isInvalid()) 4913 return true; 4914 4915 // C++11 [class.copy]p15: 4916 // - if a member m has rvalue reference type T&&, it is direct-initialized 4917 // with static_cast<T&&>(x.m); 4918 if (RefersToRValueRef(CtorArg.get())) { 4919 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4920 } 4921 4922 InitializedEntity Entity = 4923 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4924 /*Implicit*/ true) 4925 : InitializedEntity::InitializeMember(Field, nullptr, 4926 /*Implicit*/ true); 4927 4928 // Direct-initialize to use the copy constructor. 4929 InitializationKind InitKind = 4930 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4931 4932 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4933 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4934 ExprResult MemberInit = 4935 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4936 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4937 if (MemberInit.isInvalid()) 4938 return true; 4939 4940 if (Indirect) 4941 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4942 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4943 else 4944 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4945 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4946 return false; 4947 } 4948 4949 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 4950 "Unhandled implicit init kind!"); 4951 4952 QualType FieldBaseElementType = 4953 SemaRef.Context.getBaseElementType(Field->getType()); 4954 4955 if (FieldBaseElementType->isRecordType()) { 4956 InitializedEntity InitEntity = 4957 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4958 /*Implicit*/ true) 4959 : InitializedEntity::InitializeMember(Field, nullptr, 4960 /*Implicit*/ true); 4961 InitializationKind InitKind = 4962 InitializationKind::CreateDefault(Loc); 4963 4964 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt); 4965 ExprResult MemberInit = 4966 InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt); 4967 4968 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4969 if (MemberInit.isInvalid()) 4970 return true; 4971 4972 if (Indirect) 4973 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4974 Indirect, Loc, 4975 Loc, 4976 MemberInit.get(), 4977 Loc); 4978 else 4979 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4980 Field, Loc, Loc, 4981 MemberInit.get(), 4982 Loc); 4983 return false; 4984 } 4985 4986 if (!Field->getParent()->isUnion()) { 4987 if (FieldBaseElementType->isReferenceType()) { 4988 SemaRef.Diag(Constructor->getLocation(), 4989 diag::err_uninitialized_member_in_ctor) 4990 << (int)Constructor->isImplicit() 4991 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4992 << 0 << Field->getDeclName(); 4993 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4994 return true; 4995 } 4996 4997 if (FieldBaseElementType.isConstQualified()) { 4998 SemaRef.Diag(Constructor->getLocation(), 4999 diag::err_uninitialized_member_in_ctor) 5000 << (int)Constructor->isImplicit() 5001 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 5002 << 1 << Field->getDeclName(); 5003 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 5004 return true; 5005 } 5006 } 5007 5008 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 5009 // ARC and Weak: 5010 // Default-initialize Objective-C pointers to NULL. 5011 CXXMemberInit 5012 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 5013 Loc, Loc, 5014 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 5015 Loc); 5016 return false; 5017 } 5018 5019 // Nothing to initialize. 5020 CXXMemberInit = nullptr; 5021 return false; 5022 } 5023 5024 namespace { 5025 struct BaseAndFieldInfo { 5026 Sema &S; 5027 CXXConstructorDecl *Ctor; 5028 bool AnyErrorsInInits; 5029 ImplicitInitializerKind IIK; 5030 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 5031 SmallVector<CXXCtorInitializer*, 8> AllToInit; 5032 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 5033 5034 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 5035 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 5036 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 5037 if (Ctor->getInheritedConstructor()) 5038 IIK = IIK_Inherit; 5039 else if (Generated && Ctor->isCopyConstructor()) 5040 IIK = IIK_Copy; 5041 else if (Generated && Ctor->isMoveConstructor()) 5042 IIK = IIK_Move; 5043 else 5044 IIK = IIK_Default; 5045 } 5046 5047 bool isImplicitCopyOrMove() const { 5048 switch (IIK) { 5049 case IIK_Copy: 5050 case IIK_Move: 5051 return true; 5052 5053 case IIK_Default: 5054 case IIK_Inherit: 5055 return false; 5056 } 5057 5058 llvm_unreachable("Invalid ImplicitInitializerKind!"); 5059 } 5060 5061 bool addFieldInitializer(CXXCtorInitializer *Init) { 5062 AllToInit.push_back(Init); 5063 5064 // Check whether this initializer makes the field "used". 5065 if (Init->getInit()->HasSideEffects(S.Context)) 5066 S.UnusedPrivateFields.remove(Init->getAnyMember()); 5067 5068 return false; 5069 } 5070 5071 bool isInactiveUnionMember(FieldDecl *Field) { 5072 RecordDecl *Record = Field->getParent(); 5073 if (!Record->isUnion()) 5074 return false; 5075 5076 if (FieldDecl *Active = 5077 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 5078 return Active != Field->getCanonicalDecl(); 5079 5080 // In an implicit copy or move constructor, ignore any in-class initializer. 5081 if (isImplicitCopyOrMove()) 5082 return true; 5083 5084 // If there's no explicit initialization, the field is active only if it 5085 // has an in-class initializer... 5086 if (Field->hasInClassInitializer()) 5087 return false; 5088 // ... or it's an anonymous struct or union whose class has an in-class 5089 // initializer. 5090 if (!Field->isAnonymousStructOrUnion()) 5091 return true; 5092 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 5093 return !FieldRD->hasInClassInitializer(); 5094 } 5095 5096 /// Determine whether the given field is, or is within, a union member 5097 /// that is inactive (because there was an initializer given for a different 5098 /// member of the union, or because the union was not initialized at all). 5099 bool isWithinInactiveUnionMember(FieldDecl *Field, 5100 IndirectFieldDecl *Indirect) { 5101 if (!Indirect) 5102 return isInactiveUnionMember(Field); 5103 5104 for (auto *C : Indirect->chain()) { 5105 FieldDecl *Field = dyn_cast<FieldDecl>(C); 5106 if (Field && isInactiveUnionMember(Field)) 5107 return true; 5108 } 5109 return false; 5110 } 5111 }; 5112 } 5113 5114 /// Determine whether the given type is an incomplete or zero-lenfgth 5115 /// array type. 5116 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 5117 if (T->isIncompleteArrayType()) 5118 return true; 5119 5120 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 5121 if (ArrayT->isZeroSize()) 5122 return true; 5123 5124 T = ArrayT->getElementType(); 5125 } 5126 5127 return false; 5128 } 5129 5130 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 5131 FieldDecl *Field, 5132 IndirectFieldDecl *Indirect = nullptr) { 5133 if (Field->isInvalidDecl()) 5134 return false; 5135 5136 // Overwhelmingly common case: we have a direct initializer for this field. 5137 if (CXXCtorInitializer *Init = 5138 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 5139 return Info.addFieldInitializer(Init); 5140 5141 // C++11 [class.base.init]p8: 5142 // if the entity is a non-static data member that has a 5143 // brace-or-equal-initializer and either 5144 // -- the constructor's class is a union and no other variant member of that 5145 // union is designated by a mem-initializer-id or 5146 // -- the constructor's class is not a union, and, if the entity is a member 5147 // of an anonymous union, no other member of that union is designated by 5148 // a mem-initializer-id, 5149 // the entity is initialized as specified in [dcl.init]. 5150 // 5151 // We also apply the same rules to handle anonymous structs within anonymous 5152 // unions. 5153 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 5154 return false; 5155 5156 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 5157 ExprResult DIE = 5158 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 5159 if (DIE.isInvalid()) 5160 return true; 5161 5162 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 5163 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 5164 5165 CXXCtorInitializer *Init; 5166 if (Indirect) 5167 Init = new (SemaRef.Context) 5168 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 5169 SourceLocation(), DIE.get(), SourceLocation()); 5170 else 5171 Init = new (SemaRef.Context) 5172 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 5173 SourceLocation(), DIE.get(), SourceLocation()); 5174 return Info.addFieldInitializer(Init); 5175 } 5176 5177 // Don't initialize incomplete or zero-length arrays. 5178 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 5179 return false; 5180 5181 // Don't try to build an implicit initializer if there were semantic 5182 // errors in any of the initializers (and therefore we might be 5183 // missing some that the user actually wrote). 5184 if (Info.AnyErrorsInInits) 5185 return false; 5186 5187 CXXCtorInitializer *Init = nullptr; 5188 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 5189 Indirect, Init)) 5190 return true; 5191 5192 if (!Init) 5193 return false; 5194 5195 return Info.addFieldInitializer(Init); 5196 } 5197 5198 bool 5199 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 5200 CXXCtorInitializer *Initializer) { 5201 assert(Initializer->isDelegatingInitializer()); 5202 Constructor->setNumCtorInitializers(1); 5203 CXXCtorInitializer **initializer = 5204 new (Context) CXXCtorInitializer*[1]; 5205 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 5206 Constructor->setCtorInitializers(initializer); 5207 5208 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 5209 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 5210 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 5211 } 5212 5213 DelegatingCtorDecls.push_back(Constructor); 5214 5215 DiagnoseUninitializedFields(*this, Constructor); 5216 5217 return false; 5218 } 5219 5220 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 5221 ArrayRef<CXXCtorInitializer *> Initializers) { 5222 if (Constructor->isDependentContext()) { 5223 // Just store the initializers as written, they will be checked during 5224 // instantiation. 5225 if (!Initializers.empty()) { 5226 Constructor->setNumCtorInitializers(Initializers.size()); 5227 CXXCtorInitializer **baseOrMemberInitializers = 5228 new (Context) CXXCtorInitializer*[Initializers.size()]; 5229 memcpy(baseOrMemberInitializers, Initializers.data(), 5230 Initializers.size() * sizeof(CXXCtorInitializer*)); 5231 Constructor->setCtorInitializers(baseOrMemberInitializers); 5232 } 5233 5234 // Let template instantiation know whether we had errors. 5235 if (AnyErrors) 5236 Constructor->setInvalidDecl(); 5237 5238 return false; 5239 } 5240 5241 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5242 5243 // We need to build the initializer AST according to order of construction 5244 // and not what user specified in the Initializers list. 5245 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5246 if (!ClassDecl) 5247 return true; 5248 5249 bool HadError = false; 5250 5251 for (unsigned i = 0; i < Initializers.size(); i++) { 5252 CXXCtorInitializer *Member = Initializers[i]; 5253 5254 if (Member->isBaseInitializer()) 5255 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5256 else { 5257 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5258 5259 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5260 for (auto *C : F->chain()) { 5261 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5262 if (FD && FD->getParent()->isUnion()) 5263 Info.ActiveUnionMember.insert(std::make_pair( 5264 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5265 } 5266 } else if (FieldDecl *FD = Member->getMember()) { 5267 if (FD->getParent()->isUnion()) 5268 Info.ActiveUnionMember.insert(std::make_pair( 5269 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5270 } 5271 } 5272 } 5273 5274 // Keep track of the direct virtual bases. 5275 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5276 for (auto &I : ClassDecl->bases()) { 5277 if (I.isVirtual()) 5278 DirectVBases.insert(&I); 5279 } 5280 5281 // Push virtual bases before others. 5282 for (auto &VBase : ClassDecl->vbases()) { 5283 if (CXXCtorInitializer *Value 5284 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5285 // [class.base.init]p7, per DR257: 5286 // A mem-initializer where the mem-initializer-id names a virtual base 5287 // class is ignored during execution of a constructor of any class that 5288 // is not the most derived class. 5289 if (ClassDecl->isAbstract()) { 5290 // FIXME: Provide a fixit to remove the base specifier. This requires 5291 // tracking the location of the associated comma for a base specifier. 5292 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5293 << VBase.getType() << ClassDecl; 5294 DiagnoseAbstractType(ClassDecl); 5295 } 5296 5297 Info.AllToInit.push_back(Value); 5298 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5299 // [class.base.init]p8, per DR257: 5300 // If a given [...] base class is not named by a mem-initializer-id 5301 // [...] and the entity is not a virtual base class of an abstract 5302 // class, then [...] the entity is default-initialized. 5303 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5304 CXXCtorInitializer *CXXBaseInit; 5305 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5306 &VBase, IsInheritedVirtualBase, 5307 CXXBaseInit)) { 5308 HadError = true; 5309 continue; 5310 } 5311 5312 Info.AllToInit.push_back(CXXBaseInit); 5313 } 5314 } 5315 5316 // Non-virtual bases. 5317 for (auto &Base : ClassDecl->bases()) { 5318 // Virtuals are in the virtual base list and already constructed. 5319 if (Base.isVirtual()) 5320 continue; 5321 5322 if (CXXCtorInitializer *Value 5323 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5324 Info.AllToInit.push_back(Value); 5325 } else if (!AnyErrors) { 5326 CXXCtorInitializer *CXXBaseInit; 5327 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5328 &Base, /*IsInheritedVirtualBase=*/false, 5329 CXXBaseInit)) { 5330 HadError = true; 5331 continue; 5332 } 5333 5334 Info.AllToInit.push_back(CXXBaseInit); 5335 } 5336 } 5337 5338 // Fields. 5339 for (auto *Mem : ClassDecl->decls()) { 5340 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5341 // C++ [class.bit]p2: 5342 // A declaration for a bit-field that omits the identifier declares an 5343 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5344 // initialized. 5345 if (F->isUnnamedBitField()) 5346 continue; 5347 5348 // If we're not generating the implicit copy/move constructor, then we'll 5349 // handle anonymous struct/union fields based on their individual 5350 // indirect fields. 5351 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5352 continue; 5353 5354 if (CollectFieldInitializer(*this, Info, F)) 5355 HadError = true; 5356 continue; 5357 } 5358 5359 // Beyond this point, we only consider default initialization. 5360 if (Info.isImplicitCopyOrMove()) 5361 continue; 5362 5363 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5364 if (F->getType()->isIncompleteArrayType()) { 5365 assert(ClassDecl->hasFlexibleArrayMember() && 5366 "Incomplete array type is not valid"); 5367 continue; 5368 } 5369 5370 // Initialize each field of an anonymous struct individually. 5371 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5372 HadError = true; 5373 5374 continue; 5375 } 5376 } 5377 5378 unsigned NumInitializers = Info.AllToInit.size(); 5379 if (NumInitializers > 0) { 5380 Constructor->setNumCtorInitializers(NumInitializers); 5381 CXXCtorInitializer **baseOrMemberInitializers = 5382 new (Context) CXXCtorInitializer*[NumInitializers]; 5383 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5384 NumInitializers * sizeof(CXXCtorInitializer*)); 5385 Constructor->setCtorInitializers(baseOrMemberInitializers); 5386 5387 // Constructors implicitly reference the base and member 5388 // destructors. 5389 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5390 Constructor->getParent()); 5391 } 5392 5393 return HadError; 5394 } 5395 5396 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5397 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5398 const RecordDecl *RD = RT->getDecl(); 5399 if (RD->isAnonymousStructOrUnion()) { 5400 for (auto *Field : RD->fields()) 5401 PopulateKeysForFields(Field, IdealInits); 5402 return; 5403 } 5404 } 5405 IdealInits.push_back(Field->getCanonicalDecl()); 5406 } 5407 5408 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5409 return Context.getCanonicalType(BaseType).getTypePtr(); 5410 } 5411 5412 static const void *GetKeyForMember(ASTContext &Context, 5413 CXXCtorInitializer *Member) { 5414 if (!Member->isAnyMemberInitializer()) 5415 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5416 5417 return Member->getAnyMember()->getCanonicalDecl(); 5418 } 5419 5420 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, 5421 const CXXCtorInitializer *Previous, 5422 const CXXCtorInitializer *Current) { 5423 if (Previous->isAnyMemberInitializer()) 5424 Diag << 0 << Previous->getAnyMember(); 5425 else 5426 Diag << 1 << Previous->getTypeSourceInfo()->getType(); 5427 5428 if (Current->isAnyMemberInitializer()) 5429 Diag << 0 << Current->getAnyMember(); 5430 else 5431 Diag << 1 << Current->getTypeSourceInfo()->getType(); 5432 } 5433 5434 static void DiagnoseBaseOrMemInitializerOrder( 5435 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5436 ArrayRef<CXXCtorInitializer *> Inits) { 5437 if (Constructor->getDeclContext()->isDependentContext()) 5438 return; 5439 5440 // Don't check initializers order unless the warning is enabled at the 5441 // location of at least one initializer. 5442 bool ShouldCheckOrder = false; 5443 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5444 CXXCtorInitializer *Init = Inits[InitIndex]; 5445 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5446 Init->getSourceLocation())) { 5447 ShouldCheckOrder = true; 5448 break; 5449 } 5450 } 5451 if (!ShouldCheckOrder) 5452 return; 5453 5454 // Build the list of bases and members in the order that they'll 5455 // actually be initialized. The explicit initializers should be in 5456 // this same order but may be missing things. 5457 SmallVector<const void*, 32> IdealInitKeys; 5458 5459 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5460 5461 // 1. Virtual bases. 5462 for (const auto &VBase : ClassDecl->vbases()) 5463 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5464 5465 // 2. Non-virtual bases. 5466 for (const auto &Base : ClassDecl->bases()) { 5467 if (Base.isVirtual()) 5468 continue; 5469 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5470 } 5471 5472 // 3. Direct fields. 5473 for (auto *Field : ClassDecl->fields()) { 5474 if (Field->isUnnamedBitField()) 5475 continue; 5476 5477 PopulateKeysForFields(Field, IdealInitKeys); 5478 } 5479 5480 unsigned NumIdealInits = IdealInitKeys.size(); 5481 unsigned IdealIndex = 0; 5482 5483 // Track initializers that are in an incorrect order for either a warning or 5484 // note if multiple ones occur. 5485 SmallVector<unsigned> WarnIndexes; 5486 // Correlates the index of an initializer in the init-list to the index of 5487 // the field/base in the class. 5488 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; 5489 5490 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5491 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); 5492 5493 // Scan forward to try to find this initializer in the idealized 5494 // initializers list. 5495 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5496 if (InitKey == IdealInitKeys[IdealIndex]) 5497 break; 5498 5499 // If we didn't find this initializer, it must be because we 5500 // scanned past it on a previous iteration. That can only 5501 // happen if we're out of order; emit a warning. 5502 if (IdealIndex == NumIdealInits && InitIndex) { 5503 WarnIndexes.push_back(InitIndex); 5504 5505 // Move back to the initializer's location in the ideal list. 5506 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5507 if (InitKey == IdealInitKeys[IdealIndex]) 5508 break; 5509 5510 assert(IdealIndex < NumIdealInits && 5511 "initializer not found in initializer list"); 5512 } 5513 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); 5514 } 5515 5516 if (WarnIndexes.empty()) 5517 return; 5518 5519 // Sort based on the ideal order, first in the pair. 5520 llvm::sort(CorrelatedInitOrder, llvm::less_first()); 5521 5522 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to 5523 // emit the diagnostic before we can try adding notes. 5524 { 5525 Sema::SemaDiagnosticBuilder D = SemaRef.Diag( 5526 Inits[WarnIndexes.front() - 1]->getSourceLocation(), 5527 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order 5528 : diag::warn_some_initializers_out_of_order); 5529 5530 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { 5531 if (CorrelatedInitOrder[I].second == I) 5532 continue; 5533 // Ideally we would be using InsertFromRange here, but clang doesn't 5534 // appear to handle InsertFromRange correctly when the source range is 5535 // modified by another fix-it. 5536 D << FixItHint::CreateReplacement( 5537 Inits[I]->getSourceRange(), 5538 Lexer::getSourceText( 5539 CharSourceRange::getTokenRange( 5540 Inits[CorrelatedInitOrder[I].second]->getSourceRange()), 5541 SemaRef.getSourceManager(), SemaRef.getLangOpts())); 5542 } 5543 5544 // If there is only 1 item out of order, the warning expects the name and 5545 // type of each being added to it. 5546 if (WarnIndexes.size() == 1) { 5547 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], 5548 Inits[WarnIndexes.front()]); 5549 return; 5550 } 5551 } 5552 // More than 1 item to warn, create notes letting the user know which ones 5553 // are bad. 5554 for (unsigned WarnIndex : WarnIndexes) { 5555 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; 5556 auto D = SemaRef.Diag(PrevInit->getSourceLocation(), 5557 diag::note_initializer_out_of_order); 5558 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); 5559 D << PrevInit->getSourceRange(); 5560 } 5561 } 5562 5563 namespace { 5564 bool CheckRedundantInit(Sema &S, 5565 CXXCtorInitializer *Init, 5566 CXXCtorInitializer *&PrevInit) { 5567 if (!PrevInit) { 5568 PrevInit = Init; 5569 return false; 5570 } 5571 5572 if (FieldDecl *Field = Init->getAnyMember()) 5573 S.Diag(Init->getSourceLocation(), 5574 diag::err_multiple_mem_initialization) 5575 << Field->getDeclName() 5576 << Init->getSourceRange(); 5577 else { 5578 const Type *BaseClass = Init->getBaseClass(); 5579 assert(BaseClass && "neither field nor base"); 5580 S.Diag(Init->getSourceLocation(), 5581 diag::err_multiple_base_initialization) 5582 << QualType(BaseClass, 0) 5583 << Init->getSourceRange(); 5584 } 5585 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5586 << 0 << PrevInit->getSourceRange(); 5587 5588 return true; 5589 } 5590 5591 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5592 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5593 5594 bool CheckRedundantUnionInit(Sema &S, 5595 CXXCtorInitializer *Init, 5596 RedundantUnionMap &Unions) { 5597 FieldDecl *Field = Init->getAnyMember(); 5598 RecordDecl *Parent = Field->getParent(); 5599 NamedDecl *Child = Field; 5600 5601 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5602 if (Parent->isUnion()) { 5603 UnionEntry &En = Unions[Parent]; 5604 if (En.first && En.first != Child) { 5605 S.Diag(Init->getSourceLocation(), 5606 diag::err_multiple_mem_union_initialization) 5607 << Field->getDeclName() 5608 << Init->getSourceRange(); 5609 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5610 << 0 << En.second->getSourceRange(); 5611 return true; 5612 } 5613 if (!En.first) { 5614 En.first = Child; 5615 En.second = Init; 5616 } 5617 if (!Parent->isAnonymousStructOrUnion()) 5618 return false; 5619 } 5620 5621 Child = Parent; 5622 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5623 } 5624 5625 return false; 5626 } 5627 } // namespace 5628 5629 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5630 SourceLocation ColonLoc, 5631 ArrayRef<CXXCtorInitializer*> MemInits, 5632 bool AnyErrors) { 5633 if (!ConstructorDecl) 5634 return; 5635 5636 AdjustDeclIfTemplate(ConstructorDecl); 5637 5638 CXXConstructorDecl *Constructor 5639 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5640 5641 if (!Constructor) { 5642 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5643 return; 5644 } 5645 5646 // Mapping for the duplicate initializers check. 5647 // For member initializers, this is keyed with a FieldDecl*. 5648 // For base initializers, this is keyed with a Type*. 5649 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5650 5651 // Mapping for the inconsistent anonymous-union initializers check. 5652 RedundantUnionMap MemberUnions; 5653 5654 bool HadError = false; 5655 for (unsigned i = 0; i < MemInits.size(); i++) { 5656 CXXCtorInitializer *Init = MemInits[i]; 5657 5658 // Set the source order index. 5659 Init->setSourceOrder(i); 5660 5661 if (Init->isAnyMemberInitializer()) { 5662 const void *Key = GetKeyForMember(Context, Init); 5663 if (CheckRedundantInit(*this, Init, Members[Key]) || 5664 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5665 HadError = true; 5666 } else if (Init->isBaseInitializer()) { 5667 const void *Key = GetKeyForMember(Context, Init); 5668 if (CheckRedundantInit(*this, Init, Members[Key])) 5669 HadError = true; 5670 } else { 5671 assert(Init->isDelegatingInitializer()); 5672 // This must be the only initializer 5673 if (MemInits.size() != 1) { 5674 Diag(Init->getSourceLocation(), 5675 diag::err_delegating_initializer_alone) 5676 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5677 // We will treat this as being the only initializer. 5678 } 5679 SetDelegatingInitializer(Constructor, MemInits[i]); 5680 // Return immediately as the initializer is set. 5681 return; 5682 } 5683 } 5684 5685 if (HadError) 5686 return; 5687 5688 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5689 5690 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5691 5692 DiagnoseUninitializedFields(*this, Constructor); 5693 } 5694 5695 void 5696 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5697 CXXRecordDecl *ClassDecl) { 5698 // Ignore dependent contexts. Also ignore unions, since their members never 5699 // have destructors implicitly called. 5700 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5701 return; 5702 5703 // FIXME: all the access-control diagnostics are positioned on the 5704 // field/base declaration. That's probably good; that said, the 5705 // user might reasonably want to know why the destructor is being 5706 // emitted, and we currently don't say. 5707 5708 // Non-static data members. 5709 for (auto *Field : ClassDecl->fields()) { 5710 if (Field->isInvalidDecl()) 5711 continue; 5712 5713 // Don't destroy incomplete or zero-length arrays. 5714 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5715 continue; 5716 5717 QualType FieldType = Context.getBaseElementType(Field->getType()); 5718 5719 const RecordType* RT = FieldType->getAs<RecordType>(); 5720 if (!RT) 5721 continue; 5722 5723 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5724 if (FieldClassDecl->isInvalidDecl()) 5725 continue; 5726 if (FieldClassDecl->hasIrrelevantDestructor()) 5727 continue; 5728 // The destructor for an implicit anonymous union member is never invoked. 5729 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5730 continue; 5731 5732 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5733 // Dtor might still be missing, e.g because it's invalid. 5734 if (!Dtor) 5735 continue; 5736 CheckDestructorAccess(Field->getLocation(), Dtor, 5737 PDiag(diag::err_access_dtor_field) 5738 << Field->getDeclName() 5739 << FieldType); 5740 5741 MarkFunctionReferenced(Location, Dtor); 5742 DiagnoseUseOfDecl(Dtor, Location); 5743 } 5744 5745 // We only potentially invoke the destructors of potentially constructed 5746 // subobjects. 5747 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5748 5749 // If the destructor exists and has already been marked used in the MS ABI, 5750 // then virtual base destructors have already been checked and marked used. 5751 // Skip checking them again to avoid duplicate diagnostics. 5752 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5753 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5754 if (Dtor && Dtor->isUsed()) 5755 VisitVirtualBases = false; 5756 } 5757 5758 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5759 5760 // Bases. 5761 for (const auto &Base : ClassDecl->bases()) { 5762 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5763 if (!RT) 5764 continue; 5765 5766 // Remember direct virtual bases. 5767 if (Base.isVirtual()) { 5768 if (!VisitVirtualBases) 5769 continue; 5770 DirectVirtualBases.insert(RT); 5771 } 5772 5773 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5774 // If our base class is invalid, we probably can't get its dtor anyway. 5775 if (BaseClassDecl->isInvalidDecl()) 5776 continue; 5777 if (BaseClassDecl->hasIrrelevantDestructor()) 5778 continue; 5779 5780 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5781 // Dtor might still be missing, e.g because it's invalid. 5782 if (!Dtor) 5783 continue; 5784 5785 // FIXME: caret should be on the start of the class name 5786 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5787 PDiag(diag::err_access_dtor_base) 5788 << Base.getType() << Base.getSourceRange(), 5789 Context.getTypeDeclType(ClassDecl)); 5790 5791 MarkFunctionReferenced(Location, Dtor); 5792 DiagnoseUseOfDecl(Dtor, Location); 5793 } 5794 5795 if (VisitVirtualBases) 5796 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5797 &DirectVirtualBases); 5798 } 5799 5800 void Sema::MarkVirtualBaseDestructorsReferenced( 5801 SourceLocation Location, CXXRecordDecl *ClassDecl, 5802 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5803 // Virtual bases. 5804 for (const auto &VBase : ClassDecl->vbases()) { 5805 // Bases are always records in a well-formed non-dependent class. 5806 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5807 5808 // Ignore already visited direct virtual bases. 5809 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5810 continue; 5811 5812 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5813 // If our base class is invalid, we probably can't get its dtor anyway. 5814 if (BaseClassDecl->isInvalidDecl()) 5815 continue; 5816 if (BaseClassDecl->hasIrrelevantDestructor()) 5817 continue; 5818 5819 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5820 // Dtor might still be missing, e.g because it's invalid. 5821 if (!Dtor) 5822 continue; 5823 if (CheckDestructorAccess( 5824 ClassDecl->getLocation(), Dtor, 5825 PDiag(diag::err_access_dtor_vbase) 5826 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5827 Context.getTypeDeclType(ClassDecl)) == 5828 AR_accessible) { 5829 CheckDerivedToBaseConversion( 5830 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5831 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5832 SourceRange(), DeclarationName(), nullptr); 5833 } 5834 5835 MarkFunctionReferenced(Location, Dtor); 5836 DiagnoseUseOfDecl(Dtor, Location); 5837 } 5838 } 5839 5840 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5841 if (!CDtorDecl) 5842 return; 5843 5844 if (CXXConstructorDecl *Constructor 5845 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5846 if (CXXRecordDecl *ClassDecl = Constructor->getParent(); 5847 !ClassDecl || ClassDecl->isInvalidDecl()) { 5848 return; 5849 } 5850 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5851 DiagnoseUninitializedFields(*this, Constructor); 5852 } 5853 } 5854 5855 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5856 if (!getLangOpts().CPlusPlus) 5857 return false; 5858 5859 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5860 if (!RD) 5861 return false; 5862 5863 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5864 // class template specialization here, but doing so breaks a lot of code. 5865 5866 // We can't answer whether something is abstract until it has a 5867 // definition. If it's currently being defined, we'll walk back 5868 // over all the declarations when we have a full definition. 5869 const CXXRecordDecl *Def = RD->getDefinition(); 5870 if (!Def || Def->isBeingDefined()) 5871 return false; 5872 5873 return RD->isAbstract(); 5874 } 5875 5876 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5877 TypeDiagnoser &Diagnoser) { 5878 if (!isAbstractType(Loc, T)) 5879 return false; 5880 5881 T = Context.getBaseElementType(T); 5882 Diagnoser.diagnose(*this, Loc, T); 5883 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5884 return true; 5885 } 5886 5887 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5888 // Check if we've already emitted the list of pure virtual functions 5889 // for this class. 5890 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5891 return; 5892 5893 // If the diagnostic is suppressed, don't emit the notes. We're only 5894 // going to emit them once, so try to attach them to a diagnostic we're 5895 // actually going to show. 5896 if (Diags.isLastDiagnosticIgnored()) 5897 return; 5898 5899 CXXFinalOverriderMap FinalOverriders; 5900 RD->getFinalOverriders(FinalOverriders); 5901 5902 // Keep a set of seen pure methods so we won't diagnose the same method 5903 // more than once. 5904 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5905 5906 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5907 MEnd = FinalOverriders.end(); 5908 M != MEnd; 5909 ++M) { 5910 for (OverridingMethods::iterator SO = M->second.begin(), 5911 SOEnd = M->second.end(); 5912 SO != SOEnd; ++SO) { 5913 // C++ [class.abstract]p4: 5914 // A class is abstract if it contains or inherits at least one 5915 // pure virtual function for which the final overrider is pure 5916 // virtual. 5917 5918 // 5919 if (SO->second.size() != 1) 5920 continue; 5921 5922 if (!SO->second.front().Method->isPureVirtual()) 5923 continue; 5924 5925 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5926 continue; 5927 5928 Diag(SO->second.front().Method->getLocation(), 5929 diag::note_pure_virtual_function) 5930 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5931 } 5932 } 5933 5934 if (!PureVirtualClassDiagSet) 5935 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5936 PureVirtualClassDiagSet->insert(RD); 5937 } 5938 5939 namespace { 5940 struct AbstractUsageInfo { 5941 Sema &S; 5942 CXXRecordDecl *Record; 5943 CanQualType AbstractType; 5944 bool Invalid; 5945 5946 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5947 : S(S), Record(Record), 5948 AbstractType(S.Context.getCanonicalType( 5949 S.Context.getTypeDeclType(Record))), 5950 Invalid(false) {} 5951 5952 void DiagnoseAbstractType() { 5953 if (Invalid) return; 5954 S.DiagnoseAbstractType(Record); 5955 Invalid = true; 5956 } 5957 5958 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5959 }; 5960 5961 struct CheckAbstractUsage { 5962 AbstractUsageInfo &Info; 5963 const NamedDecl *Ctx; 5964 5965 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5966 : Info(Info), Ctx(Ctx) {} 5967 5968 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5969 switch (TL.getTypeLocClass()) { 5970 #define ABSTRACT_TYPELOC(CLASS, PARENT) 5971 #define TYPELOC(CLASS, PARENT) \ 5972 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5973 #include "clang/AST/TypeLocNodes.def" 5974 } 5975 } 5976 5977 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5978 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5979 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5980 if (!TL.getParam(I)) 5981 continue; 5982 5983 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5984 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5985 } 5986 } 5987 5988 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5989 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5990 } 5991 5992 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5993 // Visit the type parameters from a permissive context. 5994 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5995 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5996 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5997 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5998 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5999 // TODO: other template argument types? 6000 } 6001 } 6002 6003 // Visit pointee types from a permissive context. 6004 #define CheckPolymorphic(Type) \ 6005 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 6006 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 6007 } 6008 CheckPolymorphic(PointerTypeLoc) 6009 CheckPolymorphic(ReferenceTypeLoc) 6010 CheckPolymorphic(MemberPointerTypeLoc) 6011 CheckPolymorphic(BlockPointerTypeLoc) 6012 CheckPolymorphic(AtomicTypeLoc) 6013 6014 /// Handle all the types we haven't given a more specific 6015 /// implementation for above. 6016 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 6017 // Every other kind of type that we haven't called out already 6018 // that has an inner type is either (1) sugar or (2) contains that 6019 // inner type in some way as a subobject. 6020 if (TypeLoc Next = TL.getNextTypeLoc()) 6021 return Visit(Next, Sel); 6022 6023 // If there's no inner type and we're in a permissive context, 6024 // don't diagnose. 6025 if (Sel == Sema::AbstractNone) return; 6026 6027 // Check whether the type matches the abstract type. 6028 QualType T = TL.getType(); 6029 if (T->isArrayType()) { 6030 Sel = Sema::AbstractArrayType; 6031 T = Info.S.Context.getBaseElementType(T); 6032 } 6033 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 6034 if (CT != Info.AbstractType) return; 6035 6036 // It matched; do some magic. 6037 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. 6038 if (Sel == Sema::AbstractArrayType) { 6039 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 6040 << T << TL.getSourceRange(); 6041 } else { 6042 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 6043 << Sel << T << TL.getSourceRange(); 6044 } 6045 Info.DiagnoseAbstractType(); 6046 } 6047 }; 6048 6049 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 6050 Sema::AbstractDiagSelID Sel) { 6051 CheckAbstractUsage(*this, D).Visit(TL, Sel); 6052 } 6053 6054 } 6055 6056 /// Check for invalid uses of an abstract type in a function declaration. 6057 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6058 FunctionDecl *FD) { 6059 // Only definitions are required to refer to complete and 6060 // non-abstract types. 6061 if (!FD->doesThisDeclarationHaveABody()) 6062 return; 6063 6064 // For safety's sake, just ignore it if we don't have type source 6065 // information. This should never happen for non-implicit methods, 6066 // but... 6067 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6068 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); 6069 } 6070 6071 /// Check for invalid uses of an abstract type in a variable0 declaration. 6072 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6073 VarDecl *VD) { 6074 // No need to do the check on definitions, which require that 6075 // the type is complete. 6076 if (VD->isThisDeclarationADefinition()) 6077 return; 6078 6079 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(), 6080 Sema::AbstractVariableType); 6081 } 6082 6083 /// Check for invalid uses of an abstract type within a class definition. 6084 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6085 CXXRecordDecl *RD) { 6086 for (auto *D : RD->decls()) { 6087 if (D->isImplicit()) continue; 6088 6089 // Step through friends to the befriended declaration. 6090 if (auto *FD = dyn_cast<FriendDecl>(D)) { 6091 D = FD->getFriendDecl(); 6092 if (!D) continue; 6093 } 6094 6095 // Functions and function templates. 6096 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 6097 CheckAbstractClassUsage(Info, FD); 6098 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) { 6099 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); 6100 6101 // Fields and static variables. 6102 } else if (auto *FD = dyn_cast<FieldDecl>(D)) { 6103 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6104 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 6105 } else if (auto *VD = dyn_cast<VarDecl>(D)) { 6106 CheckAbstractClassUsage(Info, VD); 6107 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) { 6108 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); 6109 6110 // Nested classes and class templates. 6111 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 6112 CheckAbstractClassUsage(Info, RD); 6113 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) { 6114 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); 6115 } 6116 } 6117 } 6118 6119 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 6120 Attr *ClassAttr = getDLLAttr(Class); 6121 if (!ClassAttr) 6122 return; 6123 6124 assert(ClassAttr->getKind() == attr::DLLExport); 6125 6126 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6127 6128 if (TSK == TSK_ExplicitInstantiationDeclaration) 6129 // Don't go any further if this is just an explicit instantiation 6130 // declaration. 6131 return; 6132 6133 // Add a context note to explain how we got to any diagnostics produced below. 6134 struct MarkingClassDllexported { 6135 Sema &S; 6136 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 6137 SourceLocation AttrLoc) 6138 : S(S) { 6139 Sema::CodeSynthesisContext Ctx; 6140 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 6141 Ctx.PointOfInstantiation = AttrLoc; 6142 Ctx.Entity = Class; 6143 S.pushCodeSynthesisContext(Ctx); 6144 } 6145 ~MarkingClassDllexported() { 6146 S.popCodeSynthesisContext(); 6147 } 6148 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 6149 6150 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 6151 S.MarkVTableUsed(Class->getLocation(), Class, true); 6152 6153 for (Decl *Member : Class->decls()) { 6154 // Skip members that were not marked exported. 6155 if (!Member->hasAttr<DLLExportAttr>()) 6156 continue; 6157 6158 // Defined static variables that are members of an exported base 6159 // class must be marked export too. 6160 auto *VD = dyn_cast<VarDecl>(Member); 6161 if (VD && VD->getStorageClass() == SC_Static && 6162 TSK == TSK_ImplicitInstantiation) 6163 S.MarkVariableReferenced(VD->getLocation(), VD); 6164 6165 auto *MD = dyn_cast<CXXMethodDecl>(Member); 6166 if (!MD) 6167 continue; 6168 6169 if (MD->isUserProvided()) { 6170 // Instantiate non-default class member functions ... 6171 6172 // .. except for certain kinds of template specializations. 6173 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 6174 continue; 6175 6176 // If this is an MS ABI dllexport default constructor, instantiate any 6177 // default arguments. 6178 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6179 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6180 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { 6181 S.InstantiateDefaultCtorDefaultArgs(CD); 6182 } 6183 } 6184 6185 S.MarkFunctionReferenced(Class->getLocation(), MD); 6186 6187 // The function will be passed to the consumer when its definition is 6188 // encountered. 6189 } else if (MD->isExplicitlyDefaulted()) { 6190 // Synthesize and instantiate explicitly defaulted methods. 6191 S.MarkFunctionReferenced(Class->getLocation(), MD); 6192 6193 if (TSK != TSK_ExplicitInstantiationDefinition) { 6194 // Except for explicit instantiation defs, we will not see the 6195 // definition again later, so pass it to the consumer now. 6196 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6197 } 6198 } else if (!MD->isTrivial() || 6199 MD->isCopyAssignmentOperator() || 6200 MD->isMoveAssignmentOperator()) { 6201 // Synthesize and instantiate non-trivial implicit methods, and the copy 6202 // and move assignment operators. The latter are exported even if they 6203 // are trivial, because the address of an operator can be taken and 6204 // should compare equal across libraries. 6205 S.MarkFunctionReferenced(Class->getLocation(), MD); 6206 6207 // There is no later point when we will see the definition of this 6208 // function, so pass it to the consumer now. 6209 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6210 } 6211 } 6212 } 6213 6214 static void checkForMultipleExportedDefaultConstructors(Sema &S, 6215 CXXRecordDecl *Class) { 6216 // Only the MS ABI has default constructor closures, so we don't need to do 6217 // this semantic checking anywhere else. 6218 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6219 return; 6220 6221 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6222 for (Decl *Member : Class->decls()) { 6223 // Look for exported default constructors. 6224 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6225 if (!CD || !CD->isDefaultConstructor()) 6226 continue; 6227 auto *Attr = CD->getAttr<DLLExportAttr>(); 6228 if (!Attr) 6229 continue; 6230 6231 // If the class is non-dependent, mark the default arguments as ODR-used so 6232 // that we can properly codegen the constructor closure. 6233 if (!Class->isDependentContext()) { 6234 for (ParmVarDecl *PD : CD->parameters()) { 6235 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6236 S.DiscardCleanupsInEvaluationContext(); 6237 } 6238 } 6239 6240 if (LastExportedDefaultCtor) { 6241 S.Diag(LastExportedDefaultCtor->getLocation(), 6242 diag::err_attribute_dll_ambiguous_default_ctor) 6243 << Class; 6244 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6245 << CD->getDeclName(); 6246 return; 6247 } 6248 LastExportedDefaultCtor = CD; 6249 } 6250 } 6251 6252 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6253 CXXRecordDecl *Class) { 6254 bool ErrorReported = false; 6255 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6256 ClassTemplateDecl *TD) { 6257 if (ErrorReported) 6258 return; 6259 S.Diag(TD->getLocation(), 6260 diag::err_cuda_device_builtin_surftex_cls_template) 6261 << /*surface*/ 0 << TD; 6262 ErrorReported = true; 6263 }; 6264 6265 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6266 if (!TD) { 6267 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6268 if (!SD) { 6269 S.Diag(Class->getLocation(), 6270 diag::err_cuda_device_builtin_surftex_ref_decl) 6271 << /*surface*/ 0 << Class; 6272 S.Diag(Class->getLocation(), 6273 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6274 << Class; 6275 return; 6276 } 6277 TD = SD->getSpecializedTemplate(); 6278 } 6279 6280 TemplateParameterList *Params = TD->getTemplateParameters(); 6281 unsigned N = Params->size(); 6282 6283 if (N != 2) { 6284 reportIllegalClassTemplate(S, TD); 6285 S.Diag(TD->getLocation(), 6286 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6287 << TD << 2; 6288 } 6289 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6290 reportIllegalClassTemplate(S, TD); 6291 S.Diag(TD->getLocation(), 6292 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6293 << TD << /*1st*/ 0 << /*type*/ 0; 6294 } 6295 if (N > 1) { 6296 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6297 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6298 reportIllegalClassTemplate(S, TD); 6299 S.Diag(TD->getLocation(), 6300 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6301 << TD << /*2nd*/ 1 << /*integer*/ 1; 6302 } 6303 } 6304 } 6305 6306 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6307 CXXRecordDecl *Class) { 6308 bool ErrorReported = false; 6309 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6310 ClassTemplateDecl *TD) { 6311 if (ErrorReported) 6312 return; 6313 S.Diag(TD->getLocation(), 6314 diag::err_cuda_device_builtin_surftex_cls_template) 6315 << /*texture*/ 1 << TD; 6316 ErrorReported = true; 6317 }; 6318 6319 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6320 if (!TD) { 6321 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6322 if (!SD) { 6323 S.Diag(Class->getLocation(), 6324 diag::err_cuda_device_builtin_surftex_ref_decl) 6325 << /*texture*/ 1 << Class; 6326 S.Diag(Class->getLocation(), 6327 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6328 << Class; 6329 return; 6330 } 6331 TD = SD->getSpecializedTemplate(); 6332 } 6333 6334 TemplateParameterList *Params = TD->getTemplateParameters(); 6335 unsigned N = Params->size(); 6336 6337 if (N != 3) { 6338 reportIllegalClassTemplate(S, TD); 6339 S.Diag(TD->getLocation(), 6340 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6341 << TD << 3; 6342 } 6343 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6344 reportIllegalClassTemplate(S, TD); 6345 S.Diag(TD->getLocation(), 6346 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6347 << TD << /*1st*/ 0 << /*type*/ 0; 6348 } 6349 if (N > 1) { 6350 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6351 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6352 reportIllegalClassTemplate(S, TD); 6353 S.Diag(TD->getLocation(), 6354 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6355 << TD << /*2nd*/ 1 << /*integer*/ 1; 6356 } 6357 } 6358 if (N > 2) { 6359 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6360 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6361 reportIllegalClassTemplate(S, TD); 6362 S.Diag(TD->getLocation(), 6363 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6364 << TD << /*3rd*/ 2 << /*integer*/ 1; 6365 } 6366 } 6367 } 6368 6369 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6370 // Mark any compiler-generated routines with the implicit code_seg attribute. 6371 for (auto *Method : Class->methods()) { 6372 if (Method->isUserProvided()) 6373 continue; 6374 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6375 Method->addAttr(A); 6376 } 6377 } 6378 6379 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6380 Attr *ClassAttr = getDLLAttr(Class); 6381 6382 // MSVC inherits DLL attributes to partial class template specializations. 6383 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6384 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6385 if (Attr *TemplateAttr = 6386 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6387 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6388 A->setInherited(true); 6389 ClassAttr = A; 6390 } 6391 } 6392 } 6393 6394 if (!ClassAttr) 6395 return; 6396 6397 // MSVC allows imported or exported template classes that have UniqueExternal 6398 // linkage. This occurs when the template class has been instantiated with 6399 // a template parameter which itself has internal linkage. 6400 // We drop the attribute to avoid exporting or importing any members. 6401 if ((Context.getTargetInfo().getCXXABI().isMicrosoft() || 6402 Context.getTargetInfo().getTriple().isPS()) && 6403 (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) { 6404 Class->dropAttrs<DLLExportAttr, DLLImportAttr>(); 6405 return; 6406 } 6407 6408 if (!Class->isExternallyVisible()) { 6409 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6410 << Class << ClassAttr; 6411 return; 6412 } 6413 6414 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6415 !ClassAttr->isInherited()) { 6416 // Diagnose dll attributes on members of class with dll attribute. 6417 for (Decl *Member : Class->decls()) { 6418 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6419 continue; 6420 InheritableAttr *MemberAttr = getDLLAttr(Member); 6421 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6422 continue; 6423 6424 Diag(MemberAttr->getLocation(), 6425 diag::err_attribute_dll_member_of_dll_class) 6426 << MemberAttr << ClassAttr; 6427 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6428 Member->setInvalidDecl(); 6429 } 6430 } 6431 6432 if (Class->getDescribedClassTemplate()) 6433 // Don't inherit dll attribute until the template is instantiated. 6434 return; 6435 6436 // The class is either imported or exported. 6437 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6438 6439 // Check if this was a dllimport attribute propagated from a derived class to 6440 // a base class template specialization. We don't apply these attributes to 6441 // static data members. 6442 const bool PropagatedImport = 6443 !ClassExported && 6444 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6445 6446 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6447 6448 // Ignore explicit dllexport on explicit class template instantiation 6449 // declarations, except in MinGW mode. 6450 if (ClassExported && !ClassAttr->isInherited() && 6451 TSK == TSK_ExplicitInstantiationDeclaration && 6452 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6453 Class->dropAttr<DLLExportAttr>(); 6454 return; 6455 } 6456 6457 // Force declaration of implicit members so they can inherit the attribute. 6458 ForceDeclarationOfImplicitMembers(Class); 6459 6460 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6461 // seem to be true in practice? 6462 6463 for (Decl *Member : Class->decls()) { 6464 VarDecl *VD = dyn_cast<VarDecl>(Member); 6465 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6466 6467 // Only methods and static fields inherit the attributes. 6468 if (!VD && !MD) 6469 continue; 6470 6471 if (MD) { 6472 // Don't process deleted methods. 6473 if (MD->isDeleted()) 6474 continue; 6475 6476 if (MD->isInlined()) { 6477 // MinGW does not import or export inline methods. But do it for 6478 // template instantiations. 6479 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6480 TSK != TSK_ExplicitInstantiationDeclaration && 6481 TSK != TSK_ExplicitInstantiationDefinition) 6482 continue; 6483 6484 // MSVC versions before 2015 don't export the move assignment operators 6485 // and move constructor, so don't attempt to import/export them if 6486 // we have a definition. 6487 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6488 if ((MD->isMoveAssignmentOperator() || 6489 (Ctor && Ctor->isMoveConstructor())) && 6490 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6491 continue; 6492 6493 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6494 // operator is exported anyway. 6495 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6496 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6497 continue; 6498 } 6499 } 6500 6501 // Don't apply dllimport attributes to static data members of class template 6502 // instantiations when the attribute is propagated from a derived class. 6503 if (VD && PropagatedImport) 6504 continue; 6505 6506 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6507 continue; 6508 6509 if (!getDLLAttr(Member)) { 6510 InheritableAttr *NewAttr = nullptr; 6511 6512 // Do not export/import inline function when -fno-dllexport-inlines is 6513 // passed. But add attribute for later local static var check. 6514 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6515 TSK != TSK_ExplicitInstantiationDeclaration && 6516 TSK != TSK_ExplicitInstantiationDefinition) { 6517 if (ClassExported) { 6518 NewAttr = ::new (getASTContext()) 6519 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6520 } else { 6521 NewAttr = ::new (getASTContext()) 6522 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6523 } 6524 } else { 6525 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6526 } 6527 6528 NewAttr->setInherited(true); 6529 Member->addAttr(NewAttr); 6530 6531 if (MD) { 6532 // Propagate DLLAttr to friend re-declarations of MD that have already 6533 // been constructed. 6534 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6535 FD = FD->getPreviousDecl()) { 6536 if (FD->getFriendObjectKind() == Decl::FOK_None) 6537 continue; 6538 assert(!getDLLAttr(FD) && 6539 "friend re-decl should not already have a DLLAttr"); 6540 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6541 NewAttr->setInherited(true); 6542 FD->addAttr(NewAttr); 6543 } 6544 } 6545 } 6546 } 6547 6548 if (ClassExported) 6549 DelayedDllExportClasses.push_back(Class); 6550 } 6551 6552 void Sema::propagateDLLAttrToBaseClassTemplate( 6553 CXXRecordDecl *Class, Attr *ClassAttr, 6554 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6555 if (getDLLAttr( 6556 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6557 // If the base class template has a DLL attribute, don't try to change it. 6558 return; 6559 } 6560 6561 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6562 if (!getDLLAttr(BaseTemplateSpec) && 6563 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6564 TSK == TSK_ImplicitInstantiation)) { 6565 // The template hasn't been instantiated yet (or it has, but only as an 6566 // explicit instantiation declaration or implicit instantiation, which means 6567 // we haven't codegenned any members yet), so propagate the attribute. 6568 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6569 NewAttr->setInherited(true); 6570 BaseTemplateSpec->addAttr(NewAttr); 6571 6572 // If this was an import, mark that we propagated it from a derived class to 6573 // a base class template specialization. 6574 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6575 ImportAttr->setPropagatedToBaseTemplate(); 6576 6577 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6578 // needs to be run again to work see the new attribute. Otherwise this will 6579 // get run whenever the template is instantiated. 6580 if (TSK != TSK_Undeclared) 6581 checkClassLevelDLLAttribute(BaseTemplateSpec); 6582 6583 return; 6584 } 6585 6586 if (getDLLAttr(BaseTemplateSpec)) { 6587 // The template has already been specialized or instantiated with an 6588 // attribute, explicitly or through propagation. We should not try to change 6589 // it. 6590 return; 6591 } 6592 6593 // The template was previously instantiated or explicitly specialized without 6594 // a dll attribute, It's too late for us to add an attribute, so warn that 6595 // this is unsupported. 6596 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6597 << BaseTemplateSpec->isExplicitSpecialization(); 6598 Diag(ClassAttr->getLocation(), diag::note_attribute); 6599 if (BaseTemplateSpec->isExplicitSpecialization()) { 6600 Diag(BaseTemplateSpec->getLocation(), 6601 diag::note_template_class_explicit_specialization_was_here) 6602 << BaseTemplateSpec; 6603 } else { 6604 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6605 diag::note_template_class_instantiation_was_here) 6606 << BaseTemplateSpec; 6607 } 6608 } 6609 6610 Sema::DefaultedFunctionKind 6611 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6612 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6613 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6614 if (Ctor->isDefaultConstructor()) 6615 return CXXSpecialMemberKind::DefaultConstructor; 6616 6617 if (Ctor->isCopyConstructor()) 6618 return CXXSpecialMemberKind::CopyConstructor; 6619 6620 if (Ctor->isMoveConstructor()) 6621 return CXXSpecialMemberKind::MoveConstructor; 6622 } 6623 6624 if (MD->isCopyAssignmentOperator()) 6625 return CXXSpecialMemberKind::CopyAssignment; 6626 6627 if (MD->isMoveAssignmentOperator()) 6628 return CXXSpecialMemberKind::MoveAssignment; 6629 6630 if (isa<CXXDestructorDecl>(FD)) 6631 return CXXSpecialMemberKind::Destructor; 6632 } 6633 6634 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6635 case OO_EqualEqual: 6636 return DefaultedComparisonKind::Equal; 6637 6638 case OO_ExclaimEqual: 6639 return DefaultedComparisonKind::NotEqual; 6640 6641 case OO_Spaceship: 6642 // No point allowing this if <=> doesn't exist in the current language mode. 6643 if (!getLangOpts().CPlusPlus20) 6644 break; 6645 return DefaultedComparisonKind::ThreeWay; 6646 6647 case OO_Less: 6648 case OO_LessEqual: 6649 case OO_Greater: 6650 case OO_GreaterEqual: 6651 // No point allowing this if <=> doesn't exist in the current language mode. 6652 if (!getLangOpts().CPlusPlus20) 6653 break; 6654 return DefaultedComparisonKind::Relational; 6655 6656 default: 6657 break; 6658 } 6659 6660 // Not defaultable. 6661 return DefaultedFunctionKind(); 6662 } 6663 6664 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6665 SourceLocation DefaultLoc) { 6666 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6667 if (DFK.isComparison()) 6668 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6669 6670 switch (DFK.asSpecialMember()) { 6671 case CXXSpecialMemberKind::DefaultConstructor: 6672 S.DefineImplicitDefaultConstructor(DefaultLoc, 6673 cast<CXXConstructorDecl>(FD)); 6674 break; 6675 case CXXSpecialMemberKind::CopyConstructor: 6676 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6677 break; 6678 case CXXSpecialMemberKind::CopyAssignment: 6679 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6680 break; 6681 case CXXSpecialMemberKind::Destructor: 6682 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6683 break; 6684 case CXXSpecialMemberKind::MoveConstructor: 6685 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6686 break; 6687 case CXXSpecialMemberKind::MoveAssignment: 6688 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6689 break; 6690 case CXXSpecialMemberKind::Invalid: 6691 llvm_unreachable("Invalid special member."); 6692 } 6693 } 6694 6695 /// Determine whether a type is permitted to be passed or returned in 6696 /// registers, per C++ [class.temporary]p3. 6697 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6698 TargetInfo::CallingConvKind CCK) { 6699 if (D->isDependentType() || D->isInvalidDecl()) 6700 return false; 6701 6702 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6703 // The PS4 platform ABI follows the behavior of Clang 3.2. 6704 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6705 return !D->hasNonTrivialDestructorForCall() && 6706 !D->hasNonTrivialCopyConstructorForCall(); 6707 6708 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6709 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6710 bool DtorIsTrivialForCall = false; 6711 6712 // If a class has at least one eligible, trivial copy constructor, it 6713 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6714 // 6715 // Note: This permits classes with non-trivial copy or move ctors to be 6716 // passed in registers, so long as they *also* have a trivial copy ctor, 6717 // which is non-conforming. 6718 if (D->needsImplicitCopyConstructor()) { 6719 if (!D->defaultedCopyConstructorIsDeleted()) { 6720 if (D->hasTrivialCopyConstructor()) 6721 CopyCtorIsTrivial = true; 6722 if (D->hasTrivialCopyConstructorForCall()) 6723 CopyCtorIsTrivialForCall = true; 6724 } 6725 } else { 6726 for (const CXXConstructorDecl *CD : D->ctors()) { 6727 if (CD->isCopyConstructor() && !CD->isDeleted() && 6728 !CD->isIneligibleOrNotSelected()) { 6729 if (CD->isTrivial()) 6730 CopyCtorIsTrivial = true; 6731 if (CD->isTrivialForCall()) 6732 CopyCtorIsTrivialForCall = true; 6733 } 6734 } 6735 } 6736 6737 if (D->needsImplicitDestructor()) { 6738 if (!D->defaultedDestructorIsDeleted() && 6739 D->hasTrivialDestructorForCall()) 6740 DtorIsTrivialForCall = true; 6741 } else if (const auto *DD = D->getDestructor()) { 6742 if (!DD->isDeleted() && DD->isTrivialForCall()) 6743 DtorIsTrivialForCall = true; 6744 } 6745 6746 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6747 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6748 return true; 6749 6750 // If a class has a destructor, we'd really like to pass it indirectly 6751 // because it allows us to elide copies. Unfortunately, MSVC makes that 6752 // impossible for small types, which it will pass in a single register or 6753 // stack slot. Most objects with dtors are large-ish, so handle that early. 6754 // We can't call out all large objects as being indirect because there are 6755 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6756 // how we pass large POD types. 6757 6758 // Note: This permits small classes with nontrivial destructors to be 6759 // passed in registers, which is non-conforming. 6760 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6761 uint64_t TypeSize = isAArch64 ? 128 : 64; 6762 6763 if (CopyCtorIsTrivial && 6764 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6765 return true; 6766 return false; 6767 } 6768 6769 // Per C++ [class.temporary]p3, the relevant condition is: 6770 // each copy constructor, move constructor, and destructor of X is 6771 // either trivial or deleted, and X has at least one non-deleted copy 6772 // or move constructor 6773 bool HasNonDeletedCopyOrMove = false; 6774 6775 if (D->needsImplicitCopyConstructor() && 6776 !D->defaultedCopyConstructorIsDeleted()) { 6777 if (!D->hasTrivialCopyConstructorForCall()) 6778 return false; 6779 HasNonDeletedCopyOrMove = true; 6780 } 6781 6782 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6783 !D->defaultedMoveConstructorIsDeleted()) { 6784 if (!D->hasTrivialMoveConstructorForCall()) 6785 return false; 6786 HasNonDeletedCopyOrMove = true; 6787 } 6788 6789 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6790 !D->hasTrivialDestructorForCall()) 6791 return false; 6792 6793 for (const CXXMethodDecl *MD : D->methods()) { 6794 if (MD->isDeleted() || MD->isIneligibleOrNotSelected()) 6795 continue; 6796 6797 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6798 if (CD && CD->isCopyOrMoveConstructor()) 6799 HasNonDeletedCopyOrMove = true; 6800 else if (!isa<CXXDestructorDecl>(MD)) 6801 continue; 6802 6803 if (!MD->isTrivialForCall()) 6804 return false; 6805 } 6806 6807 return HasNonDeletedCopyOrMove; 6808 } 6809 6810 /// Report an error regarding overriding, along with any relevant 6811 /// overridden methods. 6812 /// 6813 /// \param DiagID the primary error to report. 6814 /// \param MD the overriding method. 6815 static bool 6816 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6817 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6818 bool IssuedDiagnostic = false; 6819 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6820 if (Report(O)) { 6821 if (!IssuedDiagnostic) { 6822 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6823 IssuedDiagnostic = true; 6824 } 6825 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6826 } 6827 } 6828 return IssuedDiagnostic; 6829 } 6830 6831 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6832 if (!Record) 6833 return; 6834 6835 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6836 AbstractUsageInfo Info(*this, Record); 6837 CheckAbstractClassUsage(Info, Record); 6838 } 6839 6840 // If this is not an aggregate type and has no user-declared constructor, 6841 // complain about any non-static data members of reference or const scalar 6842 // type, since they will never get initializers. 6843 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6844 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6845 !Record->isLambda()) { 6846 bool Complained = false; 6847 for (const auto *F : Record->fields()) { 6848 if (F->hasInClassInitializer() || F->isUnnamedBitField()) 6849 continue; 6850 6851 if (F->getType()->isReferenceType() || 6852 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6853 if (!Complained) { 6854 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6855 << llvm::to_underlying(Record->getTagKind()) << Record; 6856 Complained = true; 6857 } 6858 6859 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6860 << F->getType()->isReferenceType() 6861 << F->getDeclName(); 6862 } 6863 } 6864 } 6865 6866 if (Record->getIdentifier()) { 6867 // C++ [class.mem]p13: 6868 // If T is the name of a class, then each of the following shall have a 6869 // name different from T: 6870 // - every member of every anonymous union that is a member of class T. 6871 // 6872 // C++ [class.mem]p14: 6873 // In addition, if class T has a user-declared constructor (12.1), every 6874 // non-static data member of class T shall have a name different from T. 6875 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6876 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6877 ++I) { 6878 NamedDecl *D = (*I)->getUnderlyingDecl(); 6879 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6880 Record->hasUserDeclaredConstructor()) || 6881 isa<IndirectFieldDecl>(D)) { 6882 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6883 << D->getDeclName(); 6884 break; 6885 } 6886 } 6887 } 6888 6889 // Warn if the class has virtual methods but non-virtual public destructor. 6890 if (Record->isPolymorphic() && !Record->isDependentType()) { 6891 CXXDestructorDecl *dtor = Record->getDestructor(); 6892 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6893 !Record->hasAttr<FinalAttr>()) 6894 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6895 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6896 } 6897 6898 if (Record->isAbstract()) { 6899 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6900 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6901 << FA->isSpelledAsSealed(); 6902 DiagnoseAbstractType(Record); 6903 } 6904 } 6905 6906 // Warn if the class has a final destructor but is not itself marked final. 6907 if (!Record->hasAttr<FinalAttr>()) { 6908 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6909 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6910 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6911 << FA->isSpelledAsSealed() 6912 << FixItHint::CreateInsertion( 6913 getLocForEndOfToken(Record->getLocation()), 6914 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6915 Diag(Record->getLocation(), 6916 diag::note_final_dtor_non_final_class_silence) 6917 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6918 } 6919 } 6920 } 6921 6922 // See if trivial_abi has to be dropped. 6923 if (Record->hasAttr<TrivialABIAttr>()) 6924 checkIllFormedTrivialABIStruct(*Record); 6925 6926 // Set HasTrivialSpecialMemberForCall if the record has attribute 6927 // "trivial_abi". 6928 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6929 6930 if (HasTrivialABI) 6931 Record->setHasTrivialSpecialMemberForCall(); 6932 6933 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 6934 // We check these last because they can depend on the properties of the 6935 // primary comparison functions (==, <=>). 6936 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 6937 6938 // Perform checks that can't be done until we know all the properties of a 6939 // member function (whether it's defaulted, deleted, virtual, overriding, 6940 // ...). 6941 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 6942 // A static function cannot override anything. 6943 if (MD->getStorageClass() == SC_Static) { 6944 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 6945 [](const CXXMethodDecl *) { return true; })) 6946 return; 6947 } 6948 6949 // A deleted function cannot override a non-deleted function and vice 6950 // versa. 6951 if (ReportOverrides(*this, 6952 MD->isDeleted() ? diag::err_deleted_override 6953 : diag::err_non_deleted_override, 6954 MD, [&](const CXXMethodDecl *V) { 6955 return MD->isDeleted() != V->isDeleted(); 6956 })) { 6957 if (MD->isDefaulted() && MD->isDeleted()) 6958 // Explain why this defaulted function was deleted. 6959 DiagnoseDeletedDefaultedFunction(MD); 6960 return; 6961 } 6962 6963 // A consteval function cannot override a non-consteval function and vice 6964 // versa. 6965 if (ReportOverrides(*this, 6966 MD->isConsteval() ? diag::err_consteval_override 6967 : diag::err_non_consteval_override, 6968 MD, [&](const CXXMethodDecl *V) { 6969 return MD->isConsteval() != V->isConsteval(); 6970 })) { 6971 if (MD->isDefaulted() && MD->isDeleted()) 6972 // Explain why this defaulted function was deleted. 6973 DiagnoseDeletedDefaultedFunction(MD); 6974 return; 6975 } 6976 }; 6977 6978 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 6979 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 6980 return false; 6981 6982 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 6983 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 6984 DFK.asComparison() == DefaultedComparisonKind::Relational) { 6985 DefaultedSecondaryComparisons.push_back(FD); 6986 return true; 6987 } 6988 6989 CheckExplicitlyDefaultedFunction(S, FD); 6990 return false; 6991 }; 6992 6993 if (!Record->isInvalidDecl() && 6994 Record->hasAttr<VTablePointerAuthenticationAttr>()) 6995 checkIncorrectVTablePointerAuthenticationAttribute(*Record); 6996 6997 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6998 // Check whether the explicitly-defaulted members are valid. 6999 bool Incomplete = CheckForDefaultedFunction(M); 7000 7001 // Skip the rest of the checks for a member of a dependent class. 7002 if (Record->isDependentType()) 7003 return; 7004 7005 // For an explicitly defaulted or deleted special member, we defer 7006 // determining triviality until the class is complete. That time is now! 7007 CXXSpecialMemberKind CSM = getSpecialMember(M); 7008 if (!M->isImplicit() && !M->isUserProvided()) { 7009 if (CSM != CXXSpecialMemberKind::Invalid) { 7010 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 7011 // Inform the class that we've finished declaring this member. 7012 Record->finishedDefaultedOrDeletedMember(M); 7013 M->setTrivialForCall( 7014 HasTrivialABI || 7015 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 7016 Record->setTrivialForCallFlags(M); 7017 } 7018 } 7019 7020 // Set triviality for the purpose of calls if this is a user-provided 7021 // copy/move constructor or destructor. 7022 if ((CSM == CXXSpecialMemberKind::CopyConstructor || 7023 CSM == CXXSpecialMemberKind::MoveConstructor || 7024 CSM == CXXSpecialMemberKind::Destructor) && 7025 M->isUserProvided()) { 7026 M->setTrivialForCall(HasTrivialABI); 7027 Record->setTrivialForCallFlags(M); 7028 } 7029 7030 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 7031 M->hasAttr<DLLExportAttr>()) { 7032 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 7033 M->isTrivial() && 7034 (CSM == CXXSpecialMemberKind::DefaultConstructor || 7035 CSM == CXXSpecialMemberKind::CopyConstructor || 7036 CSM == CXXSpecialMemberKind::Destructor)) 7037 M->dropAttr<DLLExportAttr>(); 7038 7039 if (M->hasAttr<DLLExportAttr>()) { 7040 // Define after any fields with in-class initializers have been parsed. 7041 DelayedDllExportMemberFunctions.push_back(M); 7042 } 7043 } 7044 7045 bool EffectivelyConstexprDestructor = true; 7046 // Avoid triggering vtable instantiation due to a dtor that is not 7047 // "effectively constexpr" for better compatibility. 7048 // See https://github.com/llvm/llvm-project/issues/102293 for more info. 7049 if (isa<CXXDestructorDecl>(M)) { 7050 auto Check = [](QualType T, auto &&Check) -> bool { 7051 const CXXRecordDecl *RD = 7052 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7053 if (!RD || !RD->isCompleteDefinition()) 7054 return true; 7055 7056 if (!RD->hasConstexprDestructor()) 7057 return false; 7058 7059 QualType CanUnqualT = T.getCanonicalType().getUnqualifiedType(); 7060 for (const CXXBaseSpecifier &B : RD->bases()) 7061 if (B.getType().getCanonicalType().getUnqualifiedType() != 7062 CanUnqualT && 7063 !Check(B.getType(), Check)) 7064 return false; 7065 for (const FieldDecl *FD : RD->fields()) 7066 if (FD->getType().getCanonicalType().getUnqualifiedType() != 7067 CanUnqualT && 7068 !Check(FD->getType(), Check)) 7069 return false; 7070 return true; 7071 }; 7072 EffectivelyConstexprDestructor = 7073 Check(QualType(Record->getTypeForDecl(), 0), Check); 7074 } 7075 7076 // Define defaulted constexpr virtual functions that override a base class 7077 // function right away. 7078 // FIXME: We can defer doing this until the vtable is marked as used. 7079 if (CSM != CXXSpecialMemberKind::Invalid && !M->isDeleted() && 7080 M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods() && 7081 EffectivelyConstexprDestructor) 7082 DefineDefaultedFunction(*this, M, M->getLocation()); 7083 7084 if (!Incomplete) 7085 CheckCompletedMemberFunction(M); 7086 }; 7087 7088 // Check the destructor before any other member function. We need to 7089 // determine whether it's trivial in order to determine whether the claas 7090 // type is a literal type, which is a prerequisite for determining whether 7091 // other special member functions are valid and whether they're implicitly 7092 // 'constexpr'. 7093 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 7094 CompleteMemberFunction(Dtor); 7095 7096 bool HasMethodWithOverrideControl = false, 7097 HasOverridingMethodWithoutOverrideControl = false; 7098 for (auto *D : Record->decls()) { 7099 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 7100 // FIXME: We could do this check for dependent types with non-dependent 7101 // bases. 7102 if (!Record->isDependentType()) { 7103 // See if a method overloads virtual methods in a base 7104 // class without overriding any. 7105 if (!M->isStatic()) 7106 DiagnoseHiddenVirtualMethods(M); 7107 if (M->hasAttr<OverrideAttr>()) 7108 HasMethodWithOverrideControl = true; 7109 else if (M->size_overridden_methods() > 0) 7110 HasOverridingMethodWithoutOverrideControl = true; 7111 } 7112 7113 if (!isa<CXXDestructorDecl>(M)) 7114 CompleteMemberFunction(M); 7115 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 7116 CheckForDefaultedFunction( 7117 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 7118 } 7119 } 7120 7121 if (HasOverridingMethodWithoutOverrideControl) { 7122 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 7123 for (auto *M : Record->methods()) 7124 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 7125 } 7126 7127 // Check the defaulted secondary comparisons after any other member functions. 7128 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 7129 CheckExplicitlyDefaultedFunction(S, FD); 7130 7131 // If this is a member function, we deferred checking it until now. 7132 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 7133 CheckCompletedMemberFunction(MD); 7134 } 7135 7136 // ms_struct is a request to use the same ABI rules as MSVC. Check 7137 // whether this class uses any C++ features that are implemented 7138 // completely differently in MSVC, and if so, emit a diagnostic. 7139 // That diagnostic defaults to an error, but we allow projects to 7140 // map it down to a warning (or ignore it). It's a fairly common 7141 // practice among users of the ms_struct pragma to mass-annotate 7142 // headers, sweeping up a bunch of types that the project doesn't 7143 // really rely on MSVC-compatible layout for. We must therefore 7144 // support "ms_struct except for C++ stuff" as a secondary ABI. 7145 // Don't emit this diagnostic if the feature was enabled as a 7146 // language option (as opposed to via a pragma or attribute), as 7147 // the option -mms-bitfields otherwise essentially makes it impossible 7148 // to build C++ code, unless this diagnostic is turned off. 7149 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 7150 (Record->isPolymorphic() || Record->getNumBases())) { 7151 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 7152 } 7153 7154 checkClassLevelDLLAttribute(Record); 7155 checkClassLevelCodeSegAttribute(Record); 7156 7157 bool ClangABICompat4 = 7158 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 7159 TargetInfo::CallingConvKind CCK = 7160 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 7161 bool CanPass = canPassInRegisters(*this, Record, CCK); 7162 7163 // Do not change ArgPassingRestrictions if it has already been set to 7164 // RecordArgPassingKind::CanNeverPassInRegs. 7165 if (Record->getArgPassingRestrictions() != 7166 RecordArgPassingKind::CanNeverPassInRegs) 7167 Record->setArgPassingRestrictions( 7168 CanPass ? RecordArgPassingKind::CanPassInRegs 7169 : RecordArgPassingKind::CannotPassInRegs); 7170 7171 // If canPassInRegisters returns true despite the record having a non-trivial 7172 // destructor, the record is destructed in the callee. This happens only when 7173 // the record or one of its subobjects has a field annotated with trivial_abi 7174 // or a field qualified with ObjC __strong/__weak. 7175 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 7176 Record->setParamDestroyedInCallee(true); 7177 else if (Record->hasNonTrivialDestructor()) 7178 Record->setParamDestroyedInCallee(CanPass); 7179 7180 if (getLangOpts().ForceEmitVTables) { 7181 // If we want to emit all the vtables, we need to mark it as used. This 7182 // is especially required for cases like vtable assumption loads. 7183 MarkVTableUsed(Record->getInnerLocStart(), Record); 7184 } 7185 7186 if (getLangOpts().CUDA) { 7187 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 7188 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 7189 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 7190 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 7191 } 7192 } 7193 7194 /// Look up the special member function that would be called by a special 7195 /// member function for a subobject of class type. 7196 /// 7197 /// \param Class The class type of the subobject. 7198 /// \param CSM The kind of special member function. 7199 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 7200 /// \param ConstRHS True if this is a copy operation with a const object 7201 /// on its RHS, that is, if the argument to the outer special member 7202 /// function is 'const' and this is not a field marked 'mutable'. 7203 static Sema::SpecialMemberOverloadResult 7204 lookupCallFromSpecialMember(Sema &S, CXXRecordDecl *Class, 7205 CXXSpecialMemberKind CSM, unsigned FieldQuals, 7206 bool ConstRHS) { 7207 unsigned LHSQuals = 0; 7208 if (CSM == CXXSpecialMemberKind::CopyAssignment || 7209 CSM == CXXSpecialMemberKind::MoveAssignment) 7210 LHSQuals = FieldQuals; 7211 7212 unsigned RHSQuals = FieldQuals; 7213 if (CSM == CXXSpecialMemberKind::DefaultConstructor || 7214 CSM == CXXSpecialMemberKind::Destructor) 7215 RHSQuals = 0; 7216 else if (ConstRHS) 7217 RHSQuals |= Qualifiers::Const; 7218 7219 return S.LookupSpecialMember(Class, CSM, 7220 RHSQuals & Qualifiers::Const, 7221 RHSQuals & Qualifiers::Volatile, 7222 false, 7223 LHSQuals & Qualifiers::Const, 7224 LHSQuals & Qualifiers::Volatile); 7225 } 7226 7227 class Sema::InheritedConstructorInfo { 7228 Sema &S; 7229 SourceLocation UseLoc; 7230 7231 /// A mapping from the base classes through which the constructor was 7232 /// inherited to the using shadow declaration in that base class (or a null 7233 /// pointer if the constructor was declared in that base class). 7234 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 7235 InheritedFromBases; 7236 7237 public: 7238 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 7239 ConstructorUsingShadowDecl *Shadow) 7240 : S(S), UseLoc(UseLoc) { 7241 bool DiagnosedMultipleConstructedBases = false; 7242 CXXRecordDecl *ConstructedBase = nullptr; 7243 BaseUsingDecl *ConstructedBaseIntroducer = nullptr; 7244 7245 // Find the set of such base class subobjects and check that there's a 7246 // unique constructed subobject. 7247 for (auto *D : Shadow->redecls()) { 7248 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 7249 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 7250 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 7251 7252 InheritedFromBases.insert( 7253 std::make_pair(DNominatedBase->getCanonicalDecl(), 7254 DShadow->getNominatedBaseClassShadowDecl())); 7255 if (DShadow->constructsVirtualBase()) 7256 InheritedFromBases.insert( 7257 std::make_pair(DConstructedBase->getCanonicalDecl(), 7258 DShadow->getConstructedBaseClassShadowDecl())); 7259 else 7260 assert(DNominatedBase == DConstructedBase); 7261 7262 // [class.inhctor.init]p2: 7263 // If the constructor was inherited from multiple base class subobjects 7264 // of type B, the program is ill-formed. 7265 if (!ConstructedBase) { 7266 ConstructedBase = DConstructedBase; 7267 ConstructedBaseIntroducer = D->getIntroducer(); 7268 } else if (ConstructedBase != DConstructedBase && 7269 !Shadow->isInvalidDecl()) { 7270 if (!DiagnosedMultipleConstructedBases) { 7271 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 7272 << Shadow->getTargetDecl(); 7273 S.Diag(ConstructedBaseIntroducer->getLocation(), 7274 diag::note_ambiguous_inherited_constructor_using) 7275 << ConstructedBase; 7276 DiagnosedMultipleConstructedBases = true; 7277 } 7278 S.Diag(D->getIntroducer()->getLocation(), 7279 diag::note_ambiguous_inherited_constructor_using) 7280 << DConstructedBase; 7281 } 7282 } 7283 7284 if (DiagnosedMultipleConstructedBases) 7285 Shadow->setInvalidDecl(); 7286 } 7287 7288 /// Find the constructor to use for inherited construction of a base class, 7289 /// and whether that base class constructor inherits the constructor from a 7290 /// virtual base class (in which case it won't actually invoke it). 7291 std::pair<CXXConstructorDecl *, bool> 7292 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 7293 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 7294 if (It == InheritedFromBases.end()) 7295 return std::make_pair(nullptr, false); 7296 7297 // This is an intermediary class. 7298 if (It->second) 7299 return std::make_pair( 7300 S.findInheritingConstructor(UseLoc, Ctor, It->second), 7301 It->second->constructsVirtualBase()); 7302 7303 // This is the base class from which the constructor was inherited. 7304 return std::make_pair(Ctor, false); 7305 } 7306 }; 7307 7308 /// Is the special member function which would be selected to perform the 7309 /// specified operation on the specified class type a constexpr constructor? 7310 static bool specialMemberIsConstexpr( 7311 Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, unsigned Quals, 7312 bool ConstRHS, CXXConstructorDecl *InheritedCtor = nullptr, 7313 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7314 // Suppress duplicate constraint checking here, in case a constraint check 7315 // caused us to decide to do this. Any truely recursive checks will get 7316 // caught during these checks anyway. 7317 Sema::SatisfactionStackResetRAII SSRAII{S}; 7318 7319 // If we're inheriting a constructor, see if we need to call it for this base 7320 // class. 7321 if (InheritedCtor) { 7322 assert(CSM == CXXSpecialMemberKind::DefaultConstructor); 7323 auto BaseCtor = 7324 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 7325 if (BaseCtor) 7326 return BaseCtor->isConstexpr(); 7327 } 7328 7329 if (CSM == CXXSpecialMemberKind::DefaultConstructor) 7330 return ClassDecl->hasConstexprDefaultConstructor(); 7331 if (CSM == CXXSpecialMemberKind::Destructor) 7332 return ClassDecl->hasConstexprDestructor(); 7333 7334 Sema::SpecialMemberOverloadResult SMOR = 7335 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 7336 if (!SMOR.getMethod()) 7337 // A constructor we wouldn't select can't be "involved in initializing" 7338 // anything. 7339 return true; 7340 return SMOR.getMethod()->isConstexpr(); 7341 } 7342 7343 /// Determine whether the specified special member function would be constexpr 7344 /// if it were implicitly defined. 7345 static bool defaultedSpecialMemberIsConstexpr( 7346 Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, bool ConstArg, 7347 CXXConstructorDecl *InheritedCtor = nullptr, 7348 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7349 if (!S.getLangOpts().CPlusPlus11) 7350 return false; 7351 7352 // C++11 [dcl.constexpr]p4: 7353 // In the definition of a constexpr constructor [...] 7354 bool Ctor = true; 7355 switch (CSM) { 7356 case CXXSpecialMemberKind::DefaultConstructor: 7357 if (Inherited) 7358 break; 7359 // Since default constructor lookup is essentially trivial (and cannot 7360 // involve, for instance, template instantiation), we compute whether a 7361 // defaulted default constructor is constexpr directly within CXXRecordDecl. 7362 // 7363 // This is important for performance; we need to know whether the default 7364 // constructor is constexpr to determine whether the type is a literal type. 7365 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7366 7367 case CXXSpecialMemberKind::CopyConstructor: 7368 case CXXSpecialMemberKind::MoveConstructor: 7369 // For copy or move constructors, we need to perform overload resolution. 7370 break; 7371 7372 case CXXSpecialMemberKind::CopyAssignment: 7373 case CXXSpecialMemberKind::MoveAssignment: 7374 if (!S.getLangOpts().CPlusPlus14) 7375 return false; 7376 // In C++1y, we need to perform overload resolution. 7377 Ctor = false; 7378 break; 7379 7380 case CXXSpecialMemberKind::Destructor: 7381 return ClassDecl->defaultedDestructorIsConstexpr(); 7382 7383 case CXXSpecialMemberKind::Invalid: 7384 return false; 7385 } 7386 7387 // -- if the class is a non-empty union, or for each non-empty anonymous 7388 // union member of a non-union class, exactly one non-static data member 7389 // shall be initialized; [DR1359] 7390 // 7391 // If we squint, this is guaranteed, since exactly one non-static data member 7392 // will be initialized (if the constructor isn't deleted), we just don't know 7393 // which one. 7394 if (Ctor && ClassDecl->isUnion()) 7395 return CSM == CXXSpecialMemberKind::DefaultConstructor 7396 ? ClassDecl->hasInClassInitializer() || 7397 !ClassDecl->hasVariantMembers() 7398 : true; 7399 7400 // -- the class shall not have any virtual base classes; 7401 if (Ctor && ClassDecl->getNumVBases()) 7402 return false; 7403 7404 // C++1y [class.copy]p26: 7405 // -- [the class] is a literal type, and 7406 if (!Ctor && !ClassDecl->isLiteral() && !S.getLangOpts().CPlusPlus23) 7407 return false; 7408 7409 // -- every constructor involved in initializing [...] base class 7410 // sub-objects shall be a constexpr constructor; 7411 // -- the assignment operator selected to copy/move each direct base 7412 // class is a constexpr function, and 7413 if (!S.getLangOpts().CPlusPlus23) { 7414 for (const auto &B : ClassDecl->bases()) { 7415 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7416 if (!BaseType) 7417 continue; 7418 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7419 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7420 InheritedCtor, Inherited)) 7421 return false; 7422 } 7423 } 7424 7425 // -- every constructor involved in initializing non-static data members 7426 // [...] shall be a constexpr constructor; 7427 // -- every non-static data member and base class sub-object shall be 7428 // initialized 7429 // -- for each non-static data member of X that is of class type (or array 7430 // thereof), the assignment operator selected to copy/move that member is 7431 // a constexpr function 7432 if (!S.getLangOpts().CPlusPlus23) { 7433 for (const auto *F : ClassDecl->fields()) { 7434 if (F->isInvalidDecl()) 7435 continue; 7436 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 7437 F->hasInClassInitializer()) 7438 continue; 7439 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7440 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7441 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7442 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7443 BaseType.getCVRQualifiers(), 7444 ConstArg && !F->isMutable())) 7445 return false; 7446 } else if (CSM == CXXSpecialMemberKind::DefaultConstructor) { 7447 return false; 7448 } 7449 } 7450 } 7451 7452 // All OK, it's constexpr! 7453 return true; 7454 } 7455 7456 namespace { 7457 /// RAII object to register a defaulted function as having its exception 7458 /// specification computed. 7459 struct ComputingExceptionSpec { 7460 Sema &S; 7461 7462 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7463 : S(S) { 7464 Sema::CodeSynthesisContext Ctx; 7465 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7466 Ctx.PointOfInstantiation = Loc; 7467 Ctx.Entity = FD; 7468 S.pushCodeSynthesisContext(Ctx); 7469 } 7470 ~ComputingExceptionSpec() { 7471 S.popCodeSynthesisContext(); 7472 } 7473 }; 7474 } 7475 7476 static Sema::ImplicitExceptionSpecification 7477 ComputeDefaultedSpecialMemberExceptionSpec(Sema &S, SourceLocation Loc, 7478 CXXMethodDecl *MD, 7479 CXXSpecialMemberKind CSM, 7480 Sema::InheritedConstructorInfo *ICI); 7481 7482 static Sema::ImplicitExceptionSpecification 7483 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7484 FunctionDecl *FD, 7485 Sema::DefaultedComparisonKind DCK); 7486 7487 static Sema::ImplicitExceptionSpecification 7488 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7489 auto DFK = S.getDefaultedFunctionKind(FD); 7490 if (DFK.isSpecialMember()) 7491 return ComputeDefaultedSpecialMemberExceptionSpec( 7492 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7493 if (DFK.isComparison()) 7494 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7495 DFK.asComparison()); 7496 7497 auto *CD = cast<CXXConstructorDecl>(FD); 7498 assert(CD->getInheritedConstructor() && 7499 "only defaulted functions and inherited constructors have implicit " 7500 "exception specs"); 7501 Sema::InheritedConstructorInfo ICI( 7502 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7503 return ComputeDefaultedSpecialMemberExceptionSpec( 7504 S, Loc, CD, CXXSpecialMemberKind::DefaultConstructor, &ICI); 7505 } 7506 7507 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7508 CXXMethodDecl *MD) { 7509 FunctionProtoType::ExtProtoInfo EPI; 7510 7511 // Build an exception specification pointing back at this member. 7512 EPI.ExceptionSpec.Type = EST_Unevaluated; 7513 EPI.ExceptionSpec.SourceDecl = MD; 7514 7515 // Set the calling convention to the default for C++ instance methods. 7516 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7517 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7518 /*IsCXXMethod=*/true)); 7519 return EPI; 7520 } 7521 7522 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7523 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7524 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7525 return; 7526 7527 // Evaluate the exception specification. 7528 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7529 auto ESI = IES.getExceptionSpec(); 7530 7531 // Update the type of the special member to use it. 7532 UpdateExceptionSpec(FD, ESI); 7533 } 7534 7535 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7536 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); 7537 7538 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7539 if (!DefKind) { 7540 assert(FD->getDeclContext()->isDependentContext()); 7541 return; 7542 } 7543 7544 if (DefKind.isComparison()) 7545 UnusedPrivateFields.clear(); 7546 7547 if (DefKind.isSpecialMember() 7548 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7549 DefKind.asSpecialMember(), 7550 FD->getDefaultLoc()) 7551 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7552 FD->setInvalidDecl(); 7553 } 7554 7555 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7556 CXXSpecialMemberKind CSM, 7557 SourceLocation DefaultLoc) { 7558 CXXRecordDecl *RD = MD->getParent(); 7559 7560 assert(MD->isExplicitlyDefaulted() && CSM != CXXSpecialMemberKind::Invalid && 7561 "not an explicitly-defaulted special member"); 7562 7563 // Defer all checking for special members of a dependent type. 7564 if (RD->isDependentType()) 7565 return false; 7566 7567 // Whether this was the first-declared instance of the constructor. 7568 // This affects whether we implicitly add an exception spec and constexpr. 7569 bool First = MD == MD->getCanonicalDecl(); 7570 7571 bool HadError = false; 7572 7573 // C++11 [dcl.fct.def.default]p1: 7574 // A function that is explicitly defaulted shall 7575 // -- be a special member function [...] (checked elsewhere), 7576 // -- have the same type (except for ref-qualifiers, and except that a 7577 // copy operation can take a non-const reference) as an implicit 7578 // declaration, and 7579 // -- not have default arguments. 7580 // C++2a changes the second bullet to instead delete the function if it's 7581 // defaulted on its first declaration, unless it's "an assignment operator, 7582 // and its return type differs or its parameter type is not a reference". 7583 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7584 bool ShouldDeleteForTypeMismatch = false; 7585 unsigned ExpectedParams = 1; 7586 if (CSM == CXXSpecialMemberKind::DefaultConstructor || 7587 CSM == CXXSpecialMemberKind::Destructor) 7588 ExpectedParams = 0; 7589 if (MD->getNumExplicitParams() != ExpectedParams) { 7590 // This checks for default arguments: a copy or move constructor with a 7591 // default argument is classified as a default constructor, and assignment 7592 // operations and destructors can't have default arguments. 7593 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7594 << llvm::to_underlying(CSM) << MD->getSourceRange(); 7595 HadError = true; 7596 } else if (MD->isVariadic()) { 7597 if (DeleteOnTypeMismatch) 7598 ShouldDeleteForTypeMismatch = true; 7599 else { 7600 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7601 << llvm::to_underlying(CSM) << MD->getSourceRange(); 7602 HadError = true; 7603 } 7604 } 7605 7606 const FunctionProtoType *Type = MD->getType()->castAs<FunctionProtoType>(); 7607 7608 bool CanHaveConstParam = false; 7609 if (CSM == CXXSpecialMemberKind::CopyConstructor) 7610 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7611 else if (CSM == CXXSpecialMemberKind::CopyAssignment) 7612 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7613 7614 QualType ReturnType = Context.VoidTy; 7615 if (CSM == CXXSpecialMemberKind::CopyAssignment || 7616 CSM == CXXSpecialMemberKind::MoveAssignment) { 7617 // Check for return type matching. 7618 ReturnType = Type->getReturnType(); 7619 QualType ThisType = MD->getFunctionObjectParameterType(); 7620 7621 QualType DeclType = Context.getTypeDeclType(RD); 7622 DeclType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 7623 DeclType, nullptr); 7624 DeclType = Context.getAddrSpaceQualType( 7625 DeclType, ThisType.getQualifiers().getAddressSpace()); 7626 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7627 7628 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7629 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7630 << (CSM == CXXSpecialMemberKind::MoveAssignment) 7631 << ExpectedReturnType; 7632 HadError = true; 7633 } 7634 7635 // A defaulted special member cannot have cv-qualifiers. 7636 if (ThisType.isConstQualified() || ThisType.isVolatileQualified()) { 7637 if (DeleteOnTypeMismatch) 7638 ShouldDeleteForTypeMismatch = true; 7639 else { 7640 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7641 << (CSM == CXXSpecialMemberKind::MoveAssignment) 7642 << getLangOpts().CPlusPlus14; 7643 HadError = true; 7644 } 7645 } 7646 // [C++23][dcl.fct.def.default]/p2.2 7647 // if F2 has an implicit object parameter of type “reference to C”, 7648 // F1 may be an explicit object member function whose explicit object 7649 // parameter is of (possibly different) type “reference to C”, 7650 // in which case the type of F1 would differ from the type of F2 7651 // in that the type of F1 has an additional parameter; 7652 if (!Context.hasSameType( 7653 ThisType.getNonReferenceType().getUnqualifiedType(), 7654 Context.getRecordType(RD))) { 7655 if (DeleteOnTypeMismatch) 7656 ShouldDeleteForTypeMismatch = true; 7657 else { 7658 Diag(MD->getLocation(), 7659 diag::err_defaulted_special_member_explicit_object_mismatch) 7660 << (CSM == CXXSpecialMemberKind::MoveAssignment) << RD 7661 << MD->getSourceRange(); 7662 HadError = true; 7663 } 7664 } 7665 } 7666 7667 // Check for parameter type matching. 7668 QualType ArgType = 7669 ExpectedParams 7670 ? Type->getParamType(MD->isExplicitObjectMemberFunction() ? 1 : 0) 7671 : QualType(); 7672 bool HasConstParam = false; 7673 if (ExpectedParams && ArgType->isReferenceType()) { 7674 // Argument must be reference to possibly-const T. 7675 QualType ReferentType = ArgType->getPointeeType(); 7676 HasConstParam = ReferentType.isConstQualified(); 7677 7678 if (ReferentType.isVolatileQualified()) { 7679 if (DeleteOnTypeMismatch) 7680 ShouldDeleteForTypeMismatch = true; 7681 else { 7682 Diag(MD->getLocation(), 7683 diag::err_defaulted_special_member_volatile_param) 7684 << llvm::to_underlying(CSM); 7685 HadError = true; 7686 } 7687 } 7688 7689 if (HasConstParam && !CanHaveConstParam) { 7690 if (DeleteOnTypeMismatch) 7691 ShouldDeleteForTypeMismatch = true; 7692 else if (CSM == CXXSpecialMemberKind::CopyConstructor || 7693 CSM == CXXSpecialMemberKind::CopyAssignment) { 7694 Diag(MD->getLocation(), 7695 diag::err_defaulted_special_member_copy_const_param) 7696 << (CSM == CXXSpecialMemberKind::CopyAssignment); 7697 // FIXME: Explain why this special member can't be const. 7698 HadError = true; 7699 } else { 7700 Diag(MD->getLocation(), 7701 diag::err_defaulted_special_member_move_const_param) 7702 << (CSM == CXXSpecialMemberKind::MoveAssignment); 7703 HadError = true; 7704 } 7705 } 7706 } else if (ExpectedParams) { 7707 // A copy assignment operator can take its argument by value, but a 7708 // defaulted one cannot. 7709 assert(CSM == CXXSpecialMemberKind::CopyAssignment && 7710 "unexpected non-ref argument"); 7711 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7712 HadError = true; 7713 } 7714 7715 // C++11 [dcl.fct.def.default]p2: 7716 // An explicitly-defaulted function may be declared constexpr only if it 7717 // would have been implicitly declared as constexpr, 7718 // Do not apply this rule to members of class templates, since core issue 1358 7719 // makes such functions always instantiate to constexpr functions. For 7720 // functions which cannot be constexpr (for non-constructors in C++11 and for 7721 // destructors in C++14 and C++17), this is checked elsewhere. 7722 // 7723 // FIXME: This should not apply if the member is deleted. 7724 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7725 HasConstParam); 7726 7727 // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358): 7728 // If the instantiated template specialization of a constexpr function 7729 // template or member function of a class template would fail to satisfy 7730 // the requirements for a constexpr function or constexpr constructor, that 7731 // specialization is still a constexpr function or constexpr constructor, 7732 // even though a call to such a function cannot appear in a constant 7733 // expression. 7734 if (MD->isTemplateInstantiation() && MD->isConstexpr()) 7735 Constexpr = true; 7736 7737 if ((getLangOpts().CPlusPlus20 || 7738 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7739 : isa<CXXConstructorDecl>(MD))) && 7740 MD->isConstexpr() && !Constexpr && 7741 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7742 if (!MD->isConsteval() && RD->getNumVBases()) { 7743 Diag(MD->getBeginLoc(), 7744 diag::err_incorrect_defaulted_constexpr_with_vb) 7745 << llvm::to_underlying(CSM); 7746 for (const auto &I : RD->vbases()) 7747 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here); 7748 } else { 7749 Diag(MD->getBeginLoc(), diag::err_incorrect_defaulted_constexpr) 7750 << llvm::to_underlying(CSM) << MD->isConsteval(); 7751 } 7752 HadError = true; 7753 // FIXME: Explain why the special member can't be constexpr. 7754 } 7755 7756 if (First) { 7757 // C++2a [dcl.fct.def.default]p3: 7758 // If a function is explicitly defaulted on its first declaration, it is 7759 // implicitly considered to be constexpr if the implicit declaration 7760 // would be. 7761 MD->setConstexprKind(Constexpr ? (MD->isConsteval() 7762 ? ConstexprSpecKind::Consteval 7763 : ConstexprSpecKind::Constexpr) 7764 : ConstexprSpecKind::Unspecified); 7765 7766 if (!Type->hasExceptionSpec()) { 7767 // C++2a [except.spec]p3: 7768 // If a declaration of a function does not have a noexcept-specifier 7769 // [and] is defaulted on its first declaration, [...] the exception 7770 // specification is as specified below 7771 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7772 EPI.ExceptionSpec.Type = EST_Unevaluated; 7773 EPI.ExceptionSpec.SourceDecl = MD; 7774 MD->setType( 7775 Context.getFunctionType(ReturnType, Type->getParamTypes(), EPI)); 7776 } 7777 } 7778 7779 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7780 if (First) { 7781 SetDeclDeleted(MD, MD->getLocation()); 7782 if (!inTemplateInstantiation() && !HadError) { 7783 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) 7784 << llvm::to_underlying(CSM); 7785 if (ShouldDeleteForTypeMismatch) { 7786 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) 7787 << llvm::to_underlying(CSM); 7788 } else if (ShouldDeleteSpecialMember(MD, CSM, nullptr, 7789 /*Diagnose*/ true) && 7790 DefaultLoc.isValid()) { 7791 Diag(DefaultLoc, diag::note_replace_equals_default_to_delete) 7792 << FixItHint::CreateReplacement(DefaultLoc, "delete"); 7793 } 7794 } 7795 if (ShouldDeleteForTypeMismatch && !HadError) { 7796 Diag(MD->getLocation(), 7797 diag::warn_cxx17_compat_defaulted_method_type_mismatch) 7798 << llvm::to_underlying(CSM); 7799 } 7800 } else { 7801 // C++11 [dcl.fct.def.default]p4: 7802 // [For a] user-provided explicitly-defaulted function [...] if such a 7803 // function is implicitly defined as deleted, the program is ill-formed. 7804 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) 7805 << llvm::to_underlying(CSM); 7806 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 7807 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7808 HadError = true; 7809 } 7810 } 7811 7812 return HadError; 7813 } 7814 7815 namespace { 7816 /// Helper class for building and checking a defaulted comparison. 7817 /// 7818 /// Defaulted functions are built in two phases: 7819 /// 7820 /// * First, the set of operations that the function will perform are 7821 /// identified, and some of them are checked. If any of the checked 7822 /// operations is invalid in certain ways, the comparison function is 7823 /// defined as deleted and no body is built. 7824 /// * Then, if the function is not defined as deleted, the body is built. 7825 /// 7826 /// This is accomplished by performing two visitation steps over the eventual 7827 /// body of the function. 7828 template<typename Derived, typename ResultList, typename Result, 7829 typename Subobject> 7830 class DefaultedComparisonVisitor { 7831 public: 7832 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7833 7834 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7835 DefaultedComparisonKind DCK) 7836 : S(S), RD(RD), FD(FD), DCK(DCK) { 7837 if (auto *Info = FD->getDefalutedOrDeletedInfo()) { 7838 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7839 // UnresolvedSet to avoid this copy. 7840 Fns.assign(Info->getUnqualifiedLookups().begin(), 7841 Info->getUnqualifiedLookups().end()); 7842 } 7843 } 7844 7845 ResultList visit() { 7846 // The type of an lvalue naming a parameter of this function. 7847 QualType ParamLvalType = 7848 FD->getParamDecl(0)->getType().getNonReferenceType(); 7849 7850 ResultList Results; 7851 7852 switch (DCK) { 7853 case DefaultedComparisonKind::None: 7854 llvm_unreachable("not a defaulted comparison"); 7855 7856 case DefaultedComparisonKind::Equal: 7857 case DefaultedComparisonKind::ThreeWay: 7858 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7859 return Results; 7860 7861 case DefaultedComparisonKind::NotEqual: 7862 case DefaultedComparisonKind::Relational: 7863 Results.add(getDerived().visitExpandedSubobject( 7864 ParamLvalType, getDerived().getCompleteObject())); 7865 return Results; 7866 } 7867 llvm_unreachable(""); 7868 } 7869 7870 protected: 7871 Derived &getDerived() { return static_cast<Derived&>(*this); } 7872 7873 /// Visit the expanded list of subobjects of the given type, as specified in 7874 /// C++2a [class.compare.default]. 7875 /// 7876 /// \return \c true if the ResultList object said we're done, \c false if not. 7877 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7878 Qualifiers Quals) { 7879 // C++2a [class.compare.default]p4: 7880 // The direct base class subobjects of C 7881 for (CXXBaseSpecifier &Base : Record->bases()) 7882 if (Results.add(getDerived().visitSubobject( 7883 S.Context.getQualifiedType(Base.getType(), Quals), 7884 getDerived().getBase(&Base)))) 7885 return true; 7886 7887 // followed by the non-static data members of C 7888 for (FieldDecl *Field : Record->fields()) { 7889 // C++23 [class.bit]p2: 7890 // Unnamed bit-fields are not members ... 7891 if (Field->isUnnamedBitField()) 7892 continue; 7893 // Recursively expand anonymous structs. 7894 if (Field->isAnonymousStructOrUnion()) { 7895 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7896 Quals)) 7897 return true; 7898 continue; 7899 } 7900 7901 // Figure out the type of an lvalue denoting this field. 7902 Qualifiers FieldQuals = Quals; 7903 if (Field->isMutable()) 7904 FieldQuals.removeConst(); 7905 QualType FieldType = 7906 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7907 7908 if (Results.add(getDerived().visitSubobject( 7909 FieldType, getDerived().getField(Field)))) 7910 return true; 7911 } 7912 7913 // form a list of subobjects. 7914 return false; 7915 } 7916 7917 Result visitSubobject(QualType Type, Subobject Subobj) { 7918 // In that list, any subobject of array type is recursively expanded 7919 const ArrayType *AT = S.Context.getAsArrayType(Type); 7920 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7921 return getDerived().visitSubobjectArray(CAT->getElementType(), 7922 CAT->getSize(), Subobj); 7923 return getDerived().visitExpandedSubobject(Type, Subobj); 7924 } 7925 7926 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7927 Subobject Subobj) { 7928 return getDerived().visitSubobject(Type, Subobj); 7929 } 7930 7931 protected: 7932 Sema &S; 7933 CXXRecordDecl *RD; 7934 FunctionDecl *FD; 7935 DefaultedComparisonKind DCK; 7936 UnresolvedSet<16> Fns; 7937 }; 7938 7939 /// Information about a defaulted comparison, as determined by 7940 /// DefaultedComparisonAnalyzer. 7941 struct DefaultedComparisonInfo { 7942 bool Deleted = false; 7943 bool Constexpr = true; 7944 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7945 7946 static DefaultedComparisonInfo deleted() { 7947 DefaultedComparisonInfo Deleted; 7948 Deleted.Deleted = true; 7949 return Deleted; 7950 } 7951 7952 bool add(const DefaultedComparisonInfo &R) { 7953 Deleted |= R.Deleted; 7954 Constexpr &= R.Constexpr; 7955 Category = commonComparisonType(Category, R.Category); 7956 return Deleted; 7957 } 7958 }; 7959 7960 /// An element in the expanded list of subobjects of a defaulted comparison, as 7961 /// specified in C++2a [class.compare.default]p4. 7962 struct DefaultedComparisonSubobject { 7963 enum { CompleteObject, Member, Base } Kind; 7964 NamedDecl *Decl; 7965 SourceLocation Loc; 7966 }; 7967 7968 /// A visitor over the notional body of a defaulted comparison that determines 7969 /// whether that body would be deleted or constexpr. 7970 class DefaultedComparisonAnalyzer 7971 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7972 DefaultedComparisonInfo, 7973 DefaultedComparisonInfo, 7974 DefaultedComparisonSubobject> { 7975 public: 7976 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7977 7978 private: 7979 DiagnosticKind Diagnose; 7980 7981 public: 7982 using Base = DefaultedComparisonVisitor; 7983 using Result = DefaultedComparisonInfo; 7984 using Subobject = DefaultedComparisonSubobject; 7985 7986 friend Base; 7987 7988 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7989 DefaultedComparisonKind DCK, 7990 DiagnosticKind Diagnose = NoDiagnostics) 7991 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7992 7993 Result visit() { 7994 if ((DCK == DefaultedComparisonKind::Equal || 7995 DCK == DefaultedComparisonKind::ThreeWay) && 7996 RD->hasVariantMembers()) { 7997 // C++2a [class.compare.default]p2 [P2002R0]: 7998 // A defaulted comparison operator function for class C is defined as 7999 // deleted if [...] C has variant members. 8000 if (Diagnose == ExplainDeleted) { 8001 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 8002 << FD << RD->isUnion() << RD; 8003 } 8004 return Result::deleted(); 8005 } 8006 8007 return Base::visit(); 8008 } 8009 8010 private: 8011 Subobject getCompleteObject() { 8012 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; 8013 } 8014 8015 Subobject getBase(CXXBaseSpecifier *Base) { 8016 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 8017 Base->getBaseTypeLoc()}; 8018 } 8019 8020 Subobject getField(FieldDecl *Field) { 8021 return Subobject{Subobject::Member, Field, Field->getLocation()}; 8022 } 8023 8024 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 8025 // C++2a [class.compare.default]p2 [P2002R0]: 8026 // A defaulted <=> or == operator function for class C is defined as 8027 // deleted if any non-static data member of C is of reference type 8028 if (Type->isReferenceType()) { 8029 if (Diagnose == ExplainDeleted) { 8030 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 8031 << FD << RD; 8032 } 8033 return Result::deleted(); 8034 } 8035 8036 // [...] Let xi be an lvalue denoting the ith element [...] 8037 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 8038 Expr *Args[] = {&Xi, &Xi}; 8039 8040 // All operators start by trying to apply that same operator recursively. 8041 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8042 assert(OO != OO_None && "not an overloaded operator!"); 8043 return visitBinaryOperator(OO, Args, Subobj); 8044 } 8045 8046 Result 8047 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 8048 Subobject Subobj, 8049 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 8050 // Note that there is no need to consider rewritten candidates here if 8051 // we've already found there is no viable 'operator<=>' candidate (and are 8052 // considering synthesizing a '<=>' from '==' and '<'). 8053 OverloadCandidateSet CandidateSet( 8054 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 8055 OverloadCandidateSet::OperatorRewriteInfo( 8056 OO, FD->getLocation(), 8057 /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 8058 8059 /// C++2a [class.compare.default]p1 [P2002R0]: 8060 /// [...] the defaulted function itself is never a candidate for overload 8061 /// resolution [...] 8062 CandidateSet.exclude(FD); 8063 8064 if (Args[0]->getType()->isOverloadableType()) 8065 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 8066 else 8067 // FIXME: We determine whether this is a valid expression by checking to 8068 // see if there's a viable builtin operator candidate for it. That isn't 8069 // really what the rules ask us to do, but should give the right results. 8070 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 8071 8072 Result R; 8073 8074 OverloadCandidateSet::iterator Best; 8075 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 8076 case OR_Success: { 8077 // C++2a [class.compare.secondary]p2 [P2002R0]: 8078 // The operator function [...] is defined as deleted if [...] the 8079 // candidate selected by overload resolution is not a rewritten 8080 // candidate. 8081 if ((DCK == DefaultedComparisonKind::NotEqual || 8082 DCK == DefaultedComparisonKind::Relational) && 8083 !Best->RewriteKind) { 8084 if (Diagnose == ExplainDeleted) { 8085 if (Best->Function) { 8086 S.Diag(Best->Function->getLocation(), 8087 diag::note_defaulted_comparison_not_rewritten_callee) 8088 << FD; 8089 } else { 8090 assert(Best->Conversions.size() == 2 && 8091 Best->Conversions[0].isUserDefined() && 8092 "non-user-defined conversion from class to built-in " 8093 "comparison"); 8094 S.Diag(Best->Conversions[0] 8095 .UserDefined.FoundConversionFunction.getDecl() 8096 ->getLocation(), 8097 diag::note_defaulted_comparison_not_rewritten_conversion) 8098 << FD; 8099 } 8100 } 8101 return Result::deleted(); 8102 } 8103 8104 // Throughout C++2a [class.compare]: if overload resolution does not 8105 // result in a usable function, the candidate function is defined as 8106 // deleted. This requires that we selected an accessible function. 8107 // 8108 // Note that this only considers the access of the function when named 8109 // within the type of the subobject, and not the access path for any 8110 // derived-to-base conversion. 8111 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 8112 if (ArgClass && Best->FoundDecl.getDecl() && 8113 Best->FoundDecl.getDecl()->isCXXClassMember()) { 8114 QualType ObjectType = Subobj.Kind == Subobject::Member 8115 ? Args[0]->getType() 8116 : S.Context.getRecordType(RD); 8117 if (!S.isMemberAccessibleForDeletion( 8118 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 8119 Diagnose == ExplainDeleted 8120 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 8121 << FD << Subobj.Kind << Subobj.Decl 8122 : S.PDiag())) 8123 return Result::deleted(); 8124 } 8125 8126 bool NeedsDeducing = 8127 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); 8128 8129 if (FunctionDecl *BestFD = Best->Function) { 8130 // C++2a [class.compare.default]p3 [P2002R0]: 8131 // A defaulted comparison function is constexpr-compatible if 8132 // [...] no overlod resolution performed [...] results in a 8133 // non-constexpr function. 8134 assert(!BestFD->isDeleted() && "wrong overload resolution result"); 8135 // If it's not constexpr, explain why not. 8136 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 8137 if (Subobj.Kind != Subobject::CompleteObject) 8138 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 8139 << Subobj.Kind << Subobj.Decl; 8140 S.Diag(BestFD->getLocation(), 8141 diag::note_defaulted_comparison_not_constexpr_here); 8142 // Bail out after explaining; we don't want any more notes. 8143 return Result::deleted(); 8144 } 8145 R.Constexpr &= BestFD->isConstexpr(); 8146 8147 if (NeedsDeducing) { 8148 // If any callee has an undeduced return type, deduce it now. 8149 // FIXME: It's not clear how a failure here should be handled. For 8150 // now, we produce an eager diagnostic, because that is forward 8151 // compatible with most (all?) other reasonable options. 8152 if (BestFD->getReturnType()->isUndeducedType() && 8153 S.DeduceReturnType(BestFD, FD->getLocation(), 8154 /*Diagnose=*/false)) { 8155 // Don't produce a duplicate error when asked to explain why the 8156 // comparison is deleted: we diagnosed that when initially checking 8157 // the defaulted operator. 8158 if (Diagnose == NoDiagnostics) { 8159 S.Diag( 8160 FD->getLocation(), 8161 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 8162 << Subobj.Kind << Subobj.Decl; 8163 S.Diag( 8164 Subobj.Loc, 8165 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 8166 << Subobj.Kind << Subobj.Decl; 8167 S.Diag(BestFD->getLocation(), 8168 diag::note_defaulted_comparison_cannot_deduce_callee) 8169 << Subobj.Kind << Subobj.Decl; 8170 } 8171 return Result::deleted(); 8172 } 8173 auto *Info = S.Context.CompCategories.lookupInfoForType( 8174 BestFD->getCallResultType()); 8175 if (!Info) { 8176 if (Diagnose == ExplainDeleted) { 8177 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 8178 << Subobj.Kind << Subobj.Decl 8179 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 8180 S.Diag(BestFD->getLocation(), 8181 diag::note_defaulted_comparison_cannot_deduce_callee) 8182 << Subobj.Kind << Subobj.Decl; 8183 } 8184 return Result::deleted(); 8185 } 8186 R.Category = Info->Kind; 8187 } 8188 } else { 8189 QualType T = Best->BuiltinParamTypes[0]; 8190 assert(T == Best->BuiltinParamTypes[1] && 8191 "builtin comparison for different types?"); 8192 assert(Best->BuiltinParamTypes[2].isNull() && 8193 "invalid builtin comparison"); 8194 8195 if (NeedsDeducing) { 8196 std::optional<ComparisonCategoryType> Cat = 8197 getComparisonCategoryForBuiltinCmp(T); 8198 assert(Cat && "no category for builtin comparison?"); 8199 R.Category = *Cat; 8200 } 8201 } 8202 8203 // Note that we might be rewriting to a different operator. That call is 8204 // not considered until we come to actually build the comparison function. 8205 break; 8206 } 8207 8208 case OR_Ambiguous: 8209 if (Diagnose == ExplainDeleted) { 8210 unsigned Kind = 0; 8211 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 8212 Kind = OO == OO_EqualEqual ? 1 : 2; 8213 CandidateSet.NoteCandidates( 8214 PartialDiagnosticAt( 8215 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 8216 << FD << Kind << Subobj.Kind << Subobj.Decl), 8217 S, OCD_AmbiguousCandidates, Args); 8218 } 8219 R = Result::deleted(); 8220 break; 8221 8222 case OR_Deleted: 8223 if (Diagnose == ExplainDeleted) { 8224 if ((DCK == DefaultedComparisonKind::NotEqual || 8225 DCK == DefaultedComparisonKind::Relational) && 8226 !Best->RewriteKind) { 8227 S.Diag(Best->Function->getLocation(), 8228 diag::note_defaulted_comparison_not_rewritten_callee) 8229 << FD; 8230 } else { 8231 S.Diag(Subobj.Loc, 8232 diag::note_defaulted_comparison_calls_deleted) 8233 << FD << Subobj.Kind << Subobj.Decl; 8234 S.NoteDeletedFunction(Best->Function); 8235 } 8236 } 8237 R = Result::deleted(); 8238 break; 8239 8240 case OR_No_Viable_Function: 8241 // If there's no usable candidate, we're done unless we can rewrite a 8242 // '<=>' in terms of '==' and '<'. 8243 if (OO == OO_Spaceship && 8244 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 8245 // For any kind of comparison category return type, we need a usable 8246 // '==' and a usable '<'. 8247 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 8248 &CandidateSet))) 8249 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 8250 break; 8251 } 8252 8253 if (Diagnose == ExplainDeleted) { 8254 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 8255 << FD << (OO == OO_EqualEqual || OO == OO_ExclaimEqual) 8256 << Subobj.Kind << Subobj.Decl; 8257 8258 // For a three-way comparison, list both the candidates for the 8259 // original operator and the candidates for the synthesized operator. 8260 if (SpaceshipCandidates) { 8261 SpaceshipCandidates->NoteCandidates( 8262 S, Args, 8263 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 8264 Args, FD->getLocation())); 8265 S.Diag(Subobj.Loc, 8266 diag::note_defaulted_comparison_no_viable_function_synthesized) 8267 << (OO == OO_EqualEqual ? 0 : 1); 8268 } 8269 8270 CandidateSet.NoteCandidates( 8271 S, Args, 8272 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 8273 FD->getLocation())); 8274 } 8275 R = Result::deleted(); 8276 break; 8277 } 8278 8279 return R; 8280 } 8281 }; 8282 8283 /// A list of statements. 8284 struct StmtListResult { 8285 bool IsInvalid = false; 8286 llvm::SmallVector<Stmt*, 16> Stmts; 8287 8288 bool add(const StmtResult &S) { 8289 IsInvalid |= S.isInvalid(); 8290 if (IsInvalid) 8291 return true; 8292 Stmts.push_back(S.get()); 8293 return false; 8294 } 8295 }; 8296 8297 /// A visitor over the notional body of a defaulted comparison that synthesizes 8298 /// the actual body. 8299 class DefaultedComparisonSynthesizer 8300 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 8301 StmtListResult, StmtResult, 8302 std::pair<ExprResult, ExprResult>> { 8303 SourceLocation Loc; 8304 unsigned ArrayDepth = 0; 8305 8306 public: 8307 using Base = DefaultedComparisonVisitor; 8308 using ExprPair = std::pair<ExprResult, ExprResult>; 8309 8310 friend Base; 8311 8312 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 8313 DefaultedComparisonKind DCK, 8314 SourceLocation BodyLoc) 8315 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 8316 8317 /// Build a suitable function body for this defaulted comparison operator. 8318 StmtResult build() { 8319 Sema::CompoundScopeRAII CompoundScope(S); 8320 8321 StmtListResult Stmts = visit(); 8322 if (Stmts.IsInvalid) 8323 return StmtError(); 8324 8325 ExprResult RetVal; 8326 switch (DCK) { 8327 case DefaultedComparisonKind::None: 8328 llvm_unreachable("not a defaulted comparison"); 8329 8330 case DefaultedComparisonKind::Equal: { 8331 // C++2a [class.eq]p3: 8332 // [...] compar[e] the corresponding elements [...] until the first 8333 // index i where xi == yi yields [...] false. If no such index exists, 8334 // V is true. Otherwise, V is false. 8335 // 8336 // Join the comparisons with '&&'s and return the result. Use a right 8337 // fold (traversing the conditions right-to-left), because that 8338 // short-circuits more naturally. 8339 auto OldStmts = std::move(Stmts.Stmts); 8340 Stmts.Stmts.clear(); 8341 ExprResult CmpSoFar; 8342 // Finish a particular comparison chain. 8343 auto FinishCmp = [&] { 8344 if (Expr *Prior = CmpSoFar.get()) { 8345 // Convert the last expression to 'return ...;' 8346 if (RetVal.isUnset() && Stmts.Stmts.empty()) 8347 RetVal = CmpSoFar; 8348 // Convert any prior comparison to 'if (!(...)) return false;' 8349 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 8350 return true; 8351 CmpSoFar = ExprResult(); 8352 } 8353 return false; 8354 }; 8355 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 8356 Expr *E = dyn_cast<Expr>(EAsStmt); 8357 if (!E) { 8358 // Found an array comparison. 8359 if (FinishCmp() || Stmts.add(EAsStmt)) 8360 return StmtError(); 8361 continue; 8362 } 8363 8364 if (CmpSoFar.isUnset()) { 8365 CmpSoFar = E; 8366 continue; 8367 } 8368 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 8369 if (CmpSoFar.isInvalid()) 8370 return StmtError(); 8371 } 8372 if (FinishCmp()) 8373 return StmtError(); 8374 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 8375 // If no such index exists, V is true. 8376 if (RetVal.isUnset()) 8377 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 8378 break; 8379 } 8380 8381 case DefaultedComparisonKind::ThreeWay: { 8382 // Per C++2a [class.spaceship]p3, as a fallback add: 8383 // return static_cast<R>(std::strong_ordering::equal); 8384 QualType StrongOrdering = S.CheckComparisonCategoryType( 8385 ComparisonCategoryType::StrongOrdering, Loc, 8386 Sema::ComparisonCategoryUsage::DefaultedOperator); 8387 if (StrongOrdering.isNull()) 8388 return StmtError(); 8389 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 8390 .getValueInfo(ComparisonCategoryResult::Equal) 8391 ->VD; 8392 RetVal = getDecl(EqualVD); 8393 if (RetVal.isInvalid()) 8394 return StmtError(); 8395 RetVal = buildStaticCastToR(RetVal.get()); 8396 break; 8397 } 8398 8399 case DefaultedComparisonKind::NotEqual: 8400 case DefaultedComparisonKind::Relational: 8401 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 8402 break; 8403 } 8404 8405 // Build the final return statement. 8406 if (RetVal.isInvalid()) 8407 return StmtError(); 8408 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 8409 if (ReturnStmt.isInvalid()) 8410 return StmtError(); 8411 Stmts.Stmts.push_back(ReturnStmt.get()); 8412 8413 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 8414 } 8415 8416 private: 8417 ExprResult getDecl(ValueDecl *VD) { 8418 return S.BuildDeclarationNameExpr( 8419 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8420 } 8421 8422 ExprResult getParam(unsigned I) { 8423 ParmVarDecl *PD = FD->getParamDecl(I); 8424 return getDecl(PD); 8425 } 8426 8427 ExprPair getCompleteObject() { 8428 unsigned Param = 0; 8429 ExprResult LHS; 8430 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD); 8431 MD && MD->isImplicitObjectMemberFunction()) { 8432 // LHS is '*this'. 8433 LHS = S.ActOnCXXThis(Loc); 8434 if (!LHS.isInvalid()) 8435 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 8436 } else { 8437 LHS = getParam(Param++); 8438 } 8439 ExprResult RHS = getParam(Param++); 8440 assert(Param == FD->getNumParams()); 8441 return {LHS, RHS}; 8442 } 8443 8444 ExprPair getBase(CXXBaseSpecifier *Base) { 8445 ExprPair Obj = getCompleteObject(); 8446 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8447 return {ExprError(), ExprError()}; 8448 CXXCastPath Path = {Base}; 8449 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 8450 CK_DerivedToBase, VK_LValue, &Path), 8451 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 8452 CK_DerivedToBase, VK_LValue, &Path)}; 8453 } 8454 8455 ExprPair getField(FieldDecl *Field) { 8456 ExprPair Obj = getCompleteObject(); 8457 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8458 return {ExprError(), ExprError()}; 8459 8460 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8461 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8462 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8463 CXXScopeSpec(), Field, Found, NameInfo), 8464 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8465 CXXScopeSpec(), Field, Found, NameInfo)}; 8466 } 8467 8468 // FIXME: When expanding a subobject, register a note in the code synthesis 8469 // stack to say which subobject we're comparing. 8470 8471 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8472 if (Cond.isInvalid()) 8473 return StmtError(); 8474 8475 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8476 if (NotCond.isInvalid()) 8477 return StmtError(); 8478 8479 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8480 assert(!False.isInvalid() && "should never fail"); 8481 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8482 if (ReturnFalse.isInvalid()) 8483 return StmtError(); 8484 8485 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr, 8486 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8487 Sema::ConditionKind::Boolean), 8488 Loc, ReturnFalse.get(), SourceLocation(), nullptr); 8489 } 8490 8491 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8492 ExprPair Subobj) { 8493 QualType SizeType = S.Context.getSizeType(); 8494 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8495 8496 // Build 'size_t i$n = 0'. 8497 IdentifierInfo *IterationVarName = nullptr; 8498 { 8499 SmallString<8> Str; 8500 llvm::raw_svector_ostream OS(Str); 8501 OS << "i" << ArrayDepth; 8502 IterationVarName = &S.Context.Idents.get(OS.str()); 8503 } 8504 VarDecl *IterationVar = VarDecl::Create( 8505 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8506 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8507 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8508 IterationVar->setInit( 8509 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8510 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8511 8512 auto IterRef = [&] { 8513 ExprResult Ref = S.BuildDeclarationNameExpr( 8514 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8515 IterationVar); 8516 assert(!Ref.isInvalid() && "can't reference our own variable?"); 8517 return Ref.get(); 8518 }; 8519 8520 // Build 'i$n != Size'. 8521 ExprResult Cond = S.CreateBuiltinBinOp( 8522 Loc, BO_NE, IterRef(), 8523 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8524 assert(!Cond.isInvalid() && "should never fail"); 8525 8526 // Build '++i$n'. 8527 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8528 assert(!Inc.isInvalid() && "should never fail"); 8529 8530 // Build 'a[i$n]' and 'b[i$n]'. 8531 auto Index = [&](ExprResult E) { 8532 if (E.isInvalid()) 8533 return ExprError(); 8534 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8535 }; 8536 Subobj.first = Index(Subobj.first); 8537 Subobj.second = Index(Subobj.second); 8538 8539 // Compare the array elements. 8540 ++ArrayDepth; 8541 StmtResult Substmt = visitSubobject(Type, Subobj); 8542 --ArrayDepth; 8543 8544 if (Substmt.isInvalid()) 8545 return StmtError(); 8546 8547 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8548 // For outer levels or for an 'operator<=>' we already have a suitable 8549 // statement that returns as necessary. 8550 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8551 assert(DCK == DefaultedComparisonKind::Equal && 8552 "should have non-expression statement"); 8553 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8554 if (Substmt.isInvalid()) 8555 return StmtError(); 8556 } 8557 8558 // Build 'for (...) ...' 8559 return S.ActOnForStmt(Loc, Loc, Init, 8560 S.ActOnCondition(nullptr, Loc, Cond.get(), 8561 Sema::ConditionKind::Boolean), 8562 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8563 Substmt.get()); 8564 } 8565 8566 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8567 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8568 return StmtError(); 8569 8570 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8571 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8572 ExprResult Op; 8573 if (Type->isOverloadableType()) 8574 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8575 Obj.second.get(), /*PerformADL=*/true, 8576 /*AllowRewrittenCandidates=*/true, FD); 8577 else 8578 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8579 if (Op.isInvalid()) 8580 return StmtError(); 8581 8582 switch (DCK) { 8583 case DefaultedComparisonKind::None: 8584 llvm_unreachable("not a defaulted comparison"); 8585 8586 case DefaultedComparisonKind::Equal: 8587 // Per C++2a [class.eq]p2, each comparison is individually contextually 8588 // converted to bool. 8589 Op = S.PerformContextuallyConvertToBool(Op.get()); 8590 if (Op.isInvalid()) 8591 return StmtError(); 8592 return Op.get(); 8593 8594 case DefaultedComparisonKind::ThreeWay: { 8595 // Per C++2a [class.spaceship]p3, form: 8596 // if (R cmp = static_cast<R>(op); cmp != 0) 8597 // return cmp; 8598 QualType R = FD->getReturnType(); 8599 Op = buildStaticCastToR(Op.get()); 8600 if (Op.isInvalid()) 8601 return StmtError(); 8602 8603 // R cmp = ...; 8604 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8605 VarDecl *VD = 8606 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8607 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8608 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8609 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8610 8611 // cmp != 0 8612 ExprResult VDRef = getDecl(VD); 8613 if (VDRef.isInvalid()) 8614 return StmtError(); 8615 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8616 Expr *Zero = 8617 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8618 ExprResult Comp; 8619 if (VDRef.get()->getType()->isOverloadableType()) 8620 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8621 true, FD); 8622 else 8623 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8624 if (Comp.isInvalid()) 8625 return StmtError(); 8626 Sema::ConditionResult Cond = S.ActOnCondition( 8627 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8628 if (Cond.isInvalid()) 8629 return StmtError(); 8630 8631 // return cmp; 8632 VDRef = getDecl(VD); 8633 if (VDRef.isInvalid()) 8634 return StmtError(); 8635 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8636 if (ReturnStmt.isInvalid()) 8637 return StmtError(); 8638 8639 // if (...) 8640 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond, 8641 Loc, ReturnStmt.get(), 8642 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); 8643 } 8644 8645 case DefaultedComparisonKind::NotEqual: 8646 case DefaultedComparisonKind::Relational: 8647 // C++2a [class.compare.secondary]p2: 8648 // Otherwise, the operator function yields x @ y. 8649 return Op.get(); 8650 } 8651 llvm_unreachable(""); 8652 } 8653 8654 /// Build "static_cast<R>(E)". 8655 ExprResult buildStaticCastToR(Expr *E) { 8656 QualType R = FD->getReturnType(); 8657 assert(!R->isUndeducedType() && "type should have been deduced already"); 8658 8659 // Don't bother forming a no-op cast in the common case. 8660 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) 8661 return E; 8662 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8663 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8664 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8665 } 8666 }; 8667 } 8668 8669 /// Perform the unqualified lookups that might be needed to form a defaulted 8670 /// comparison function for the given operator. 8671 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8672 UnresolvedSetImpl &Operators, 8673 OverloadedOperatorKind Op) { 8674 auto Lookup = [&](OverloadedOperatorKind OO) { 8675 Self.LookupOverloadedOperatorName(OO, S, Operators); 8676 }; 8677 8678 // Every defaulted operator looks up itself. 8679 Lookup(Op); 8680 // ... and the rewritten form of itself, if any. 8681 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8682 Lookup(ExtraOp); 8683 8684 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8685 // synthesize a three-way comparison from '<' and '=='. In a dependent 8686 // context, we also need to look up '==' in case we implicitly declare a 8687 // defaulted 'operator=='. 8688 if (Op == OO_Spaceship) { 8689 Lookup(OO_ExclaimEqual); 8690 Lookup(OO_Less); 8691 Lookup(OO_EqualEqual); 8692 } 8693 } 8694 8695 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8696 DefaultedComparisonKind DCK) { 8697 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); 8698 8699 // Perform any unqualified lookups we're going to need to default this 8700 // function. 8701 if (S) { 8702 UnresolvedSet<32> Operators; 8703 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8704 FD->getOverloadedOperator()); 8705 FD->setDefaultedOrDeletedInfo( 8706 FunctionDecl::DefaultedOrDeletedFunctionInfo::Create( 8707 Context, Operators.pairs())); 8708 } 8709 8710 // C++2a [class.compare.default]p1: 8711 // A defaulted comparison operator function for some class C shall be a 8712 // non-template function declared in the member-specification of C that is 8713 // -- a non-static const non-volatile member of C having one parameter of 8714 // type const C& and either no ref-qualifier or the ref-qualifier &, or 8715 // -- a friend of C having two parameters of type const C& or two 8716 // parameters of type C. 8717 8718 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8719 bool IsMethod = isa<CXXMethodDecl>(FD); 8720 if (IsMethod) { 8721 auto *MD = cast<CXXMethodDecl>(FD); 8722 assert(!MD->isStatic() && "comparison function cannot be a static member"); 8723 8724 if (MD->getRefQualifier() == RQ_RValue) { 8725 Diag(MD->getLocation(), diag::err_ref_qualifier_comparison_operator); 8726 8727 // Remove the ref qualifier to recover. 8728 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8729 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8730 EPI.RefQualifier = RQ_None; 8731 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8732 FPT->getParamTypes(), EPI)); 8733 } 8734 8735 // If we're out-of-class, this is the class we're comparing. 8736 if (!RD) 8737 RD = MD->getParent(); 8738 QualType T = MD->getFunctionObjectParameterType(); 8739 if (!T.isConstQualified()) { 8740 SourceLocation Loc, InsertLoc; 8741 if (MD->isExplicitObjectMemberFunction()) { 8742 Loc = MD->getParamDecl(0)->getBeginLoc(); 8743 InsertLoc = getLocForEndOfToken( 8744 MD->getParamDecl(0)->getExplicitObjectParamThisLoc()); 8745 } else { 8746 Loc = MD->getLocation(); 8747 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8748 InsertLoc = Loc.getRParenLoc(); 8749 } 8750 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8751 // corresponding defaulted 'operator<=>' already. 8752 if (!MD->isImplicit()) { 8753 Diag(Loc, diag::err_defaulted_comparison_non_const) 8754 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8755 } 8756 8757 // Add the 'const' to the type to recover. 8758 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8759 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8760 EPI.TypeQuals.addConst(); 8761 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8762 FPT->getParamTypes(), EPI)); 8763 } 8764 8765 if (MD->isVolatile()) { 8766 Diag(MD->getLocation(), diag::err_volatile_comparison_operator); 8767 8768 // Remove the 'volatile' from the type to recover. 8769 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8770 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8771 EPI.TypeQuals.removeVolatile(); 8772 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8773 FPT->getParamTypes(), EPI)); 8774 } 8775 } 8776 8777 if ((FD->getNumParams() - 8778 (unsigned)FD->hasCXXExplicitFunctionObjectParameter()) != 8779 (IsMethod ? 1 : 2)) { 8780 // Let's not worry about using a variadic template pack here -- who would do 8781 // such a thing? 8782 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) 8783 << int(IsMethod) << int(DCK); 8784 return true; 8785 } 8786 8787 const ParmVarDecl *KnownParm = nullptr; 8788 for (const ParmVarDecl *Param : FD->parameters()) { 8789 if (Param->isExplicitObjectParameter()) 8790 continue; 8791 QualType ParmTy = Param->getType(); 8792 8793 if (!KnownParm) { 8794 auto CTy = ParmTy; 8795 // Is it `T const &`? 8796 bool Ok = !IsMethod; 8797 QualType ExpectedTy; 8798 if (RD) 8799 ExpectedTy = Context.getRecordType(RD); 8800 if (auto *Ref = CTy->getAs<ReferenceType>()) { 8801 CTy = Ref->getPointeeType(); 8802 if (RD) 8803 ExpectedTy.addConst(); 8804 Ok = true; 8805 } 8806 8807 // Is T a class? 8808 if (!Ok) { 8809 } else if (RD) { 8810 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy)) 8811 Ok = false; 8812 } else if (auto *CRD = CTy->getAsRecordDecl()) { 8813 RD = cast<CXXRecordDecl>(CRD); 8814 } else { 8815 Ok = false; 8816 } 8817 8818 if (Ok) { 8819 KnownParm = Param; 8820 } else { 8821 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8822 // corresponding defaulted 'operator<=>' already. 8823 if (!FD->isImplicit()) { 8824 if (RD) { 8825 QualType PlainTy = Context.getRecordType(RD); 8826 QualType RefTy = 8827 Context.getLValueReferenceType(PlainTy.withConst()); 8828 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8829 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy 8830 << Param->getSourceRange(); 8831 } else { 8832 assert(!IsMethod && "should know expected type for method"); 8833 Diag(FD->getLocation(), 8834 diag::err_defaulted_comparison_param_unknown) 8835 << int(DCK) << ParmTy << Param->getSourceRange(); 8836 } 8837 } 8838 return true; 8839 } 8840 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { 8841 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8842 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() 8843 << ParmTy << Param->getSourceRange(); 8844 return true; 8845 } 8846 } 8847 8848 assert(RD && "must have determined class"); 8849 if (IsMethod) { 8850 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8851 // In-class, must be a friend decl. 8852 assert(FD->getFriendObjectKind() && "expected a friend declaration"); 8853 } else { 8854 // Out of class, require the defaulted comparison to be a friend (of a 8855 // complete type). 8856 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), 8857 diag::err_defaulted_comparison_not_friend, int(DCK), 8858 int(1))) 8859 return true; 8860 8861 if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) { 8862 return FD->getCanonicalDecl() == 8863 F->getFriendDecl()->getCanonicalDecl(); 8864 })) { 8865 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) 8866 << int(DCK) << int(0) << RD; 8867 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); 8868 return true; 8869 } 8870 } 8871 8872 // C++2a [class.eq]p1, [class.rel]p1: 8873 // A [defaulted comparison other than <=>] shall have a declared return 8874 // type bool. 8875 if (DCK != DefaultedComparisonKind::ThreeWay && 8876 !FD->getDeclaredReturnType()->isDependentType() && 8877 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8878 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8879 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8880 << FD->getReturnTypeSourceRange(); 8881 return true; 8882 } 8883 // C++2a [class.spaceship]p2 [P2002R0]: 8884 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8885 // R shall not contain a placeholder type. 8886 if (QualType RT = FD->getDeclaredReturnType(); 8887 DCK == DefaultedComparisonKind::ThreeWay && 8888 RT->getContainedDeducedType() && 8889 (!Context.hasSameType(RT, Context.getAutoDeductType()) || 8890 RT->getContainedAutoType()->isConstrained())) { 8891 Diag(FD->getLocation(), 8892 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8893 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8894 << FD->getReturnTypeSourceRange(); 8895 return true; 8896 } 8897 8898 // For a defaulted function in a dependent class, defer all remaining checks 8899 // until instantiation. 8900 if (RD->isDependentType()) 8901 return false; 8902 8903 // Determine whether the function should be defined as deleted. 8904 DefaultedComparisonInfo Info = 8905 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8906 8907 bool First = FD == FD->getCanonicalDecl(); 8908 8909 if (!First) { 8910 if (Info.Deleted) { 8911 // C++11 [dcl.fct.def.default]p4: 8912 // [For a] user-provided explicitly-defaulted function [...] if such a 8913 // function is implicitly defined as deleted, the program is ill-formed. 8914 // 8915 // This is really just a consequence of the general rule that you can 8916 // only delete a function on its first declaration. 8917 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8918 << FD->isImplicit() << (int)DCK; 8919 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8920 DefaultedComparisonAnalyzer::ExplainDeleted) 8921 .visit(); 8922 return true; 8923 } 8924 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8925 // C++20 [class.compare.default]p1: 8926 // [...] A definition of a comparison operator as defaulted that appears 8927 // in a class shall be the first declaration of that function. 8928 Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class) 8929 << (int)DCK; 8930 Diag(FD->getCanonicalDecl()->getLocation(), 8931 diag::note_previous_declaration); 8932 return true; 8933 } 8934 } 8935 8936 // If we want to delete the function, then do so; there's nothing else to 8937 // check in that case. 8938 if (Info.Deleted) { 8939 SetDeclDeleted(FD, FD->getLocation()); 8940 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8941 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8942 << (int)DCK; 8943 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8944 DefaultedComparisonAnalyzer::ExplainDeleted) 8945 .visit(); 8946 if (FD->getDefaultLoc().isValid()) 8947 Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete) 8948 << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete"); 8949 } 8950 return false; 8951 } 8952 8953 // C++2a [class.spaceship]p2: 8954 // The return type is deduced as the common comparison type of R0, R1, ... 8955 if (DCK == DefaultedComparisonKind::ThreeWay && 8956 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8957 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8958 if (RetLoc.isInvalid()) 8959 RetLoc = FD->getBeginLoc(); 8960 // FIXME: Should we really care whether we have the complete type and the 8961 // 'enumerator' constants here? A forward declaration seems sufficient. 8962 QualType Cat = CheckComparisonCategoryType( 8963 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8964 if (Cat.isNull()) 8965 return true; 8966 Context.adjustDeducedFunctionResultType( 8967 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8968 } 8969 8970 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8971 // An explicitly-defaulted function that is not defined as deleted may be 8972 // declared constexpr or consteval only if it is constexpr-compatible. 8973 // C++2a [class.compare.default]p3 [P2002R0]: 8974 // A defaulted comparison function is constexpr-compatible if it satisfies 8975 // the requirements for a constexpr function [...] 8976 // The only relevant requirements are that the parameter and return types are 8977 // literal types. The remaining conditions are checked by the analyzer. 8978 // 8979 // We support P2448R2 in language modes earlier than C++23 as an extension. 8980 // The concept of constexpr-compatible was removed. 8981 // C++23 [dcl.fct.def.default]p3 [P2448R2] 8982 // A function explicitly defaulted on its first declaration is implicitly 8983 // inline, and is implicitly constexpr if it is constexpr-suitable. 8984 // C++23 [dcl.constexpr]p3 8985 // A function is constexpr-suitable if 8986 // - it is not a coroutine, and 8987 // - if the function is a constructor or destructor, its class does not 8988 // have any virtual base classes. 8989 if (FD->isConstexpr()) { 8990 if (!getLangOpts().CPlusPlus23 && 8991 CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8992 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8993 !Info.Constexpr) { 8994 Diag(FD->getBeginLoc(), diag::err_defaulted_comparison_constexpr_mismatch) 8995 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8996 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8997 DefaultedComparisonAnalyzer::ExplainConstexpr) 8998 .visit(); 8999 } 9000 } 9001 9002 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 9003 // If a constexpr-compatible function is explicitly defaulted on its first 9004 // declaration, it is implicitly considered to be constexpr. 9005 // FIXME: Only applying this to the first declaration seems problematic, as 9006 // simple reorderings can affect the meaning of the program. 9007 if (First && !FD->isConstexpr() && Info.Constexpr) 9008 FD->setConstexprKind(ConstexprSpecKind::Constexpr); 9009 9010 // C++2a [except.spec]p3: 9011 // If a declaration of a function does not have a noexcept-specifier 9012 // [and] is defaulted on its first declaration, [...] the exception 9013 // specification is as specified below 9014 if (FD->getExceptionSpecType() == EST_None) { 9015 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 9016 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9017 EPI.ExceptionSpec.Type = EST_Unevaluated; 9018 EPI.ExceptionSpec.SourceDecl = FD; 9019 FD->setType(Context.getFunctionType(FPT->getReturnType(), 9020 FPT->getParamTypes(), EPI)); 9021 } 9022 9023 return false; 9024 } 9025 9026 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 9027 FunctionDecl *Spaceship) { 9028 Sema::CodeSynthesisContext Ctx; 9029 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 9030 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 9031 Ctx.Entity = Spaceship; 9032 pushCodeSynthesisContext(Ctx); 9033 9034 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 9035 EqualEqual->setImplicit(); 9036 9037 popCodeSynthesisContext(); 9038 } 9039 9040 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 9041 DefaultedComparisonKind DCK) { 9042 assert(FD->isDefaulted() && !FD->isDeleted() && 9043 !FD->doesThisDeclarationHaveABody()); 9044 if (FD->willHaveBody() || FD->isInvalidDecl()) 9045 return; 9046 9047 SynthesizedFunctionScope Scope(*this, FD); 9048 9049 // Add a context note for diagnostics produced after this point. 9050 Scope.addContextNote(UseLoc); 9051 9052 { 9053 // Build and set up the function body. 9054 // The first parameter has type maybe-ref-to maybe-const T, use that to get 9055 // the type of the class being compared. 9056 auto PT = FD->getParamDecl(0)->getType(); 9057 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); 9058 SourceLocation BodyLoc = 9059 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 9060 StmtResult Body = 9061 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 9062 if (Body.isInvalid()) { 9063 FD->setInvalidDecl(); 9064 return; 9065 } 9066 FD->setBody(Body.get()); 9067 FD->markUsed(Context); 9068 } 9069 9070 // The exception specification is needed because we are defining the 9071 // function. Note that this will reuse the body we just built. 9072 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 9073 9074 if (ASTMutationListener *L = getASTMutationListener()) 9075 L->CompletedImplicitDefinition(FD); 9076 } 9077 9078 static Sema::ImplicitExceptionSpecification 9079 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 9080 FunctionDecl *FD, 9081 Sema::DefaultedComparisonKind DCK) { 9082 ComputingExceptionSpec CES(S, FD, Loc); 9083 Sema::ImplicitExceptionSpecification ExceptSpec(S); 9084 9085 if (FD->isInvalidDecl()) 9086 return ExceptSpec; 9087 9088 // The common case is that we just defined the comparison function. In that 9089 // case, just look at whether the body can throw. 9090 if (FD->hasBody()) { 9091 ExceptSpec.CalledStmt(FD->getBody()); 9092 } else { 9093 // Otherwise, build a body so we can check it. This should ideally only 9094 // happen when we're not actually marking the function referenced. (This is 9095 // only really important for efficiency: we don't want to build and throw 9096 // away bodies for comparison functions more than we strictly need to.) 9097 9098 // Pretend to synthesize the function body in an unevaluated context. 9099 // Note that we can't actually just go ahead and define the function here: 9100 // we are not permitted to mark its callees as referenced. 9101 Sema::SynthesizedFunctionScope Scope(S, FD); 9102 EnterExpressionEvaluationContext Context( 9103 S, Sema::ExpressionEvaluationContext::Unevaluated); 9104 9105 CXXRecordDecl *RD = 9106 cast<CXXRecordDecl>(FD->getFriendObjectKind() == Decl::FOK_None 9107 ? FD->getDeclContext() 9108 : FD->getLexicalDeclContext()); 9109 SourceLocation BodyLoc = 9110 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 9111 StmtResult Body = 9112 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 9113 if (!Body.isInvalid()) 9114 ExceptSpec.CalledStmt(Body.get()); 9115 9116 // FIXME: Can we hold onto this body and just transform it to potentially 9117 // evaluated when we're asked to define the function rather than rebuilding 9118 // it? Either that, or we should only build the bits of the body that we 9119 // need (the expressions, not the statements). 9120 } 9121 9122 return ExceptSpec; 9123 } 9124 9125 void Sema::CheckDelayedMemberExceptionSpecs() { 9126 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 9127 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 9128 9129 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 9130 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 9131 9132 // Perform any deferred checking of exception specifications for virtual 9133 // destructors. 9134 for (auto &Check : Overriding) 9135 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 9136 9137 // Perform any deferred checking of exception specifications for befriended 9138 // special members. 9139 for (auto &Check : Equivalent) 9140 CheckEquivalentExceptionSpec(Check.second, Check.first); 9141 } 9142 9143 namespace { 9144 /// CRTP base class for visiting operations performed by a special member 9145 /// function (or inherited constructor). 9146 template<typename Derived> 9147 struct SpecialMemberVisitor { 9148 Sema &S; 9149 CXXMethodDecl *MD; 9150 CXXSpecialMemberKind CSM; 9151 Sema::InheritedConstructorInfo *ICI; 9152 9153 // Properties of the special member, computed for convenience. 9154 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 9155 9156 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, 9157 Sema::InheritedConstructorInfo *ICI) 9158 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 9159 switch (CSM) { 9160 case CXXSpecialMemberKind::DefaultConstructor: 9161 case CXXSpecialMemberKind::CopyConstructor: 9162 case CXXSpecialMemberKind::MoveConstructor: 9163 IsConstructor = true; 9164 break; 9165 case CXXSpecialMemberKind::CopyAssignment: 9166 case CXXSpecialMemberKind::MoveAssignment: 9167 IsAssignment = true; 9168 break; 9169 case CXXSpecialMemberKind::Destructor: 9170 break; 9171 case CXXSpecialMemberKind::Invalid: 9172 llvm_unreachable("invalid special member kind"); 9173 } 9174 9175 if (MD->getNumExplicitParams()) { 9176 if (const ReferenceType *RT = 9177 MD->getNonObjectParameter(0)->getType()->getAs<ReferenceType>()) 9178 ConstArg = RT->getPointeeType().isConstQualified(); 9179 } 9180 } 9181 9182 Derived &getDerived() { return static_cast<Derived&>(*this); } 9183 9184 /// Is this a "move" special member? 9185 bool isMove() const { 9186 return CSM == CXXSpecialMemberKind::MoveConstructor || 9187 CSM == CXXSpecialMemberKind::MoveAssignment; 9188 } 9189 9190 /// Look up the corresponding special member in the given class. 9191 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 9192 unsigned Quals, bool IsMutable) { 9193 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 9194 ConstArg && !IsMutable); 9195 } 9196 9197 /// Look up the constructor for the specified base class to see if it's 9198 /// overridden due to this being an inherited constructor. 9199 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 9200 if (!ICI) 9201 return {}; 9202 assert(CSM == CXXSpecialMemberKind::DefaultConstructor); 9203 auto *BaseCtor = 9204 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 9205 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 9206 return MD; 9207 return {}; 9208 } 9209 9210 /// A base or member subobject. 9211 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 9212 9213 /// Get the location to use for a subobject in diagnostics. 9214 static SourceLocation getSubobjectLoc(Subobject Subobj) { 9215 // FIXME: For an indirect virtual base, the direct base leading to 9216 // the indirect virtual base would be a more useful choice. 9217 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 9218 return B->getBaseTypeLoc(); 9219 else 9220 return Subobj.get<FieldDecl*>()->getLocation(); 9221 } 9222 9223 enum BasesToVisit { 9224 /// Visit all non-virtual (direct) bases. 9225 VisitNonVirtualBases, 9226 /// Visit all direct bases, virtual or not. 9227 VisitDirectBases, 9228 /// Visit all non-virtual bases, and all virtual bases if the class 9229 /// is not abstract. 9230 VisitPotentiallyConstructedBases, 9231 /// Visit all direct or virtual bases. 9232 VisitAllBases 9233 }; 9234 9235 // Visit the bases and members of the class. 9236 bool visit(BasesToVisit Bases) { 9237 CXXRecordDecl *RD = MD->getParent(); 9238 9239 if (Bases == VisitPotentiallyConstructedBases) 9240 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 9241 9242 for (auto &B : RD->bases()) 9243 if ((Bases == VisitDirectBases || !B.isVirtual()) && 9244 getDerived().visitBase(&B)) 9245 return true; 9246 9247 if (Bases == VisitAllBases) 9248 for (auto &B : RD->vbases()) 9249 if (getDerived().visitBase(&B)) 9250 return true; 9251 9252 for (auto *F : RD->fields()) 9253 if (!F->isInvalidDecl() && !F->isUnnamedBitField() && 9254 getDerived().visitField(F)) 9255 return true; 9256 9257 return false; 9258 } 9259 }; 9260 } 9261 9262 namespace { 9263 struct SpecialMemberDeletionInfo 9264 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 9265 bool Diagnose; 9266 9267 SourceLocation Loc; 9268 9269 bool AllFieldsAreConst; 9270 9271 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 9272 CXXSpecialMemberKind CSM, 9273 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 9274 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 9275 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 9276 9277 bool inUnion() const { return MD->getParent()->isUnion(); } 9278 9279 CXXSpecialMemberKind getEffectiveCSM() { 9280 return ICI ? CXXSpecialMemberKind::Invalid : CSM; 9281 } 9282 9283 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 9284 9285 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 9286 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 9287 9288 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 9289 bool shouldDeleteForField(FieldDecl *FD); 9290 bool shouldDeleteForAllConstMembers(); 9291 9292 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 9293 unsigned Quals); 9294 bool shouldDeleteForSubobjectCall(Subobject Subobj, 9295 Sema::SpecialMemberOverloadResult SMOR, 9296 bool IsDtorCallInCtor); 9297 9298 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 9299 }; 9300 } 9301 9302 /// Is the given special member inaccessible when used on the given 9303 /// sub-object. 9304 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 9305 CXXMethodDecl *target) { 9306 /// If we're operating on a base class, the object type is the 9307 /// type of this special member. 9308 QualType objectTy; 9309 AccessSpecifier access = target->getAccess(); 9310 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 9311 objectTy = S.Context.getTypeDeclType(MD->getParent()); 9312 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 9313 9314 // If we're operating on a field, the object type is the type of the field. 9315 } else { 9316 objectTy = S.Context.getTypeDeclType(target->getParent()); 9317 } 9318 9319 return S.isMemberAccessibleForDeletion( 9320 target->getParent(), DeclAccessPair::make(target, access), objectTy); 9321 } 9322 9323 /// Check whether we should delete a special member due to the implicit 9324 /// definition containing a call to a special member of a subobject. 9325 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 9326 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 9327 bool IsDtorCallInCtor) { 9328 CXXMethodDecl *Decl = SMOR.getMethod(); 9329 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9330 9331 int DiagKind = -1; 9332 9333 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 9334 DiagKind = !Decl ? 0 : 1; 9335 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9336 DiagKind = 2; 9337 else if (!isAccessible(Subobj, Decl)) 9338 DiagKind = 3; 9339 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 9340 !Decl->isTrivial()) { 9341 // A member of a union must have a trivial corresponding special member. 9342 // As a weird special case, a destructor call from a union's constructor 9343 // must be accessible and non-deleted, but need not be trivial. Such a 9344 // destructor is never actually called, but is semantically checked as 9345 // if it were. 9346 if (CSM == CXXSpecialMemberKind::DefaultConstructor) { 9347 // [class.default.ctor]p2: 9348 // A defaulted default constructor for class X is defined as deleted if 9349 // - X is a union that has a variant member with a non-trivial default 9350 // constructor and no variant member of X has a default member 9351 // initializer 9352 const auto *RD = cast<CXXRecordDecl>(Field->getParent()); 9353 if (!RD->hasInClassInitializer()) 9354 DiagKind = 4; 9355 } else { 9356 DiagKind = 4; 9357 } 9358 } 9359 9360 if (DiagKind == -1) 9361 return false; 9362 9363 if (Diagnose) { 9364 if (Field) { 9365 S.Diag(Field->getLocation(), 9366 diag::note_deleted_special_member_class_subobject) 9367 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() 9368 << /*IsField*/ true << Field << DiagKind << IsDtorCallInCtor 9369 << /*IsObjCPtr*/ false; 9370 } else { 9371 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 9372 S.Diag(Base->getBeginLoc(), 9373 diag::note_deleted_special_member_class_subobject) 9374 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() 9375 << /*IsField*/ false << Base->getType() << DiagKind 9376 << IsDtorCallInCtor << /*IsObjCPtr*/ false; 9377 } 9378 9379 if (DiagKind == 1) 9380 S.NoteDeletedFunction(Decl); 9381 // FIXME: Explain inaccessibility if DiagKind == 3. 9382 } 9383 9384 return true; 9385 } 9386 9387 /// Check whether we should delete a special member function due to having a 9388 /// direct or virtual base class or non-static data member of class type M. 9389 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 9390 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 9391 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9392 bool IsMutable = Field && Field->isMutable(); 9393 9394 // C++11 [class.ctor]p5: 9395 // -- any direct or virtual base class, or non-static data member with no 9396 // brace-or-equal-initializer, has class type M (or array thereof) and 9397 // either M has no default constructor or overload resolution as applied 9398 // to M's default constructor results in an ambiguity or in a function 9399 // that is deleted or inaccessible 9400 // C++11 [class.copy]p11, C++11 [class.copy]p23: 9401 // -- a direct or virtual base class B that cannot be copied/moved because 9402 // overload resolution, as applied to B's corresponding special member, 9403 // results in an ambiguity or a function that is deleted or inaccessible 9404 // from the defaulted special member 9405 // C++11 [class.dtor]p5: 9406 // -- any direct or virtual base class [...] has a type with a destructor 9407 // that is deleted or inaccessible 9408 if (!(CSM == CXXSpecialMemberKind::DefaultConstructor && Field && 9409 Field->hasInClassInitializer()) && 9410 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 9411 false)) 9412 return true; 9413 9414 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 9415 // -- any direct or virtual base class or non-static data member has a 9416 // type with a destructor that is deleted or inaccessible 9417 if (IsConstructor) { 9418 Sema::SpecialMemberOverloadResult SMOR = 9419 S.LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, 9420 false, false, false, false); 9421 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 9422 return true; 9423 } 9424 9425 return false; 9426 } 9427 9428 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 9429 FieldDecl *FD, QualType FieldType) { 9430 // The defaulted special functions are defined as deleted if this is a variant 9431 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 9432 // type under ARC. 9433 if (!FieldType.hasNonTrivialObjCLifetime()) 9434 return false; 9435 9436 // Don't make the defaulted default constructor defined as deleted if the 9437 // member has an in-class initializer. 9438 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 9439 FD->hasInClassInitializer()) 9440 return false; 9441 9442 if (Diagnose) { 9443 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 9444 S.Diag(FD->getLocation(), diag::note_deleted_special_member_class_subobject) 9445 << llvm::to_underlying(getEffectiveCSM()) << ParentClass 9446 << /*IsField*/ true << FD << 4 << /*IsDtorCallInCtor*/ false 9447 << /*IsObjCPtr*/ true; 9448 } 9449 9450 return true; 9451 } 9452 9453 /// Check whether we should delete a special member function due to the class 9454 /// having a particular direct or virtual base class. 9455 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 9456 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 9457 // If program is correct, BaseClass cannot be null, but if it is, the error 9458 // must be reported elsewhere. 9459 if (!BaseClass) 9460 return false; 9461 // If we have an inheriting constructor, check whether we're calling an 9462 // inherited constructor instead of a default constructor. 9463 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 9464 if (auto *BaseCtor = SMOR.getMethod()) { 9465 // Note that we do not check access along this path; other than that, 9466 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 9467 // FIXME: Check that the base has a usable destructor! Sink this into 9468 // shouldDeleteForClassSubobject. 9469 if (BaseCtor->isDeleted() && Diagnose) { 9470 S.Diag(Base->getBeginLoc(), 9471 diag::note_deleted_special_member_class_subobject) 9472 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() 9473 << /*IsField*/ false << Base->getType() << /*Deleted*/ 1 9474 << /*IsDtorCallInCtor*/ false << /*IsObjCPtr*/ false; 9475 S.NoteDeletedFunction(BaseCtor); 9476 } 9477 return BaseCtor->isDeleted(); 9478 } 9479 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 9480 } 9481 9482 /// Check whether we should delete a special member function due to the class 9483 /// having a particular non-static data member. 9484 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 9485 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 9486 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 9487 9488 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 9489 return true; 9490 9491 if (CSM == CXXSpecialMemberKind::DefaultConstructor) { 9492 // For a default constructor, all references must be initialized in-class 9493 // and, if a union, it must have a non-const member. 9494 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 9495 if (Diagnose) 9496 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9497 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 9498 return true; 9499 } 9500 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static 9501 // data member of const-qualified type (or array thereof) with no 9502 // brace-or-equal-initializer is not const-default-constructible. 9503 if (!inUnion() && FieldType.isConstQualified() && 9504 !FD->hasInClassInitializer() && 9505 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) { 9506 if (Diagnose) 9507 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9508 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 9509 return true; 9510 } 9511 9512 if (inUnion() && !FieldType.isConstQualified()) 9513 AllFieldsAreConst = false; 9514 } else if (CSM == CXXSpecialMemberKind::CopyConstructor) { 9515 // For a copy constructor, data members must not be of rvalue reference 9516 // type. 9517 if (FieldType->isRValueReferenceType()) { 9518 if (Diagnose) 9519 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 9520 << MD->getParent() << FD << FieldType; 9521 return true; 9522 } 9523 } else if (IsAssignment) { 9524 // For an assignment operator, data members must not be of reference type. 9525 if (FieldType->isReferenceType()) { 9526 if (Diagnose) 9527 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9528 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 9529 return true; 9530 } 9531 if (!FieldRecord && FieldType.isConstQualified()) { 9532 // C++11 [class.copy]p23: 9533 // -- a non-static data member of const non-class type (or array thereof) 9534 if (Diagnose) 9535 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9536 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 9537 return true; 9538 } 9539 } 9540 9541 if (FieldRecord) { 9542 // Some additional restrictions exist on the variant members. 9543 if (!inUnion() && FieldRecord->isUnion() && 9544 FieldRecord->isAnonymousStructOrUnion()) { 9545 bool AllVariantFieldsAreConst = true; 9546 9547 // FIXME: Handle anonymous unions declared within anonymous unions. 9548 for (auto *UI : FieldRecord->fields()) { 9549 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 9550 9551 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 9552 return true; 9553 9554 if (!UnionFieldType.isConstQualified()) 9555 AllVariantFieldsAreConst = false; 9556 9557 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 9558 if (UnionFieldRecord && 9559 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 9560 UnionFieldType.getCVRQualifiers())) 9561 return true; 9562 } 9563 9564 // At least one member in each anonymous union must be non-const 9565 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 9566 AllVariantFieldsAreConst && !FieldRecord->field_empty()) { 9567 if (Diagnose) 9568 S.Diag(FieldRecord->getLocation(), 9569 diag::note_deleted_default_ctor_all_const) 9570 << !!ICI << MD->getParent() << /*anonymous union*/1; 9571 return true; 9572 } 9573 9574 // Don't check the implicit member of the anonymous union type. 9575 // This is technically non-conformant but supported, and we have a 9576 // diagnostic for this elsewhere. 9577 return false; 9578 } 9579 9580 if (shouldDeleteForClassSubobject(FieldRecord, FD, 9581 FieldType.getCVRQualifiers())) 9582 return true; 9583 } 9584 9585 return false; 9586 } 9587 9588 /// C++11 [class.ctor] p5: 9589 /// A defaulted default constructor for a class X is defined as deleted if 9590 /// X is a union and all of its variant members are of const-qualified type. 9591 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 9592 // This is a silly definition, because it gives an empty union a deleted 9593 // default constructor. Don't do that. 9594 if (CSM == CXXSpecialMemberKind::DefaultConstructor && inUnion() && 9595 AllFieldsAreConst) { 9596 bool AnyFields = false; 9597 for (auto *F : MD->getParent()->fields()) 9598 if ((AnyFields = !F->isUnnamedBitField())) 9599 break; 9600 if (!AnyFields) 9601 return false; 9602 if (Diagnose) 9603 S.Diag(MD->getParent()->getLocation(), 9604 diag::note_deleted_default_ctor_all_const) 9605 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9606 return true; 9607 } 9608 return false; 9609 } 9610 9611 /// Determine whether a defaulted special member function should be defined as 9612 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9613 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9614 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, 9615 CXXSpecialMemberKind CSM, 9616 InheritedConstructorInfo *ICI, 9617 bool Diagnose) { 9618 if (MD->isInvalidDecl()) 9619 return false; 9620 CXXRecordDecl *RD = MD->getParent(); 9621 assert(!RD->isDependentType() && "do deletion after instantiation"); 9622 if (!LangOpts.CPlusPlus || (!LangOpts.CPlusPlus11 && !RD->isLambda()) || 9623 RD->isInvalidDecl()) 9624 return false; 9625 9626 // C++11 [expr.lambda.prim]p19: 9627 // The closure type associated with a lambda-expression has a 9628 // deleted (8.4.3) default constructor and a deleted copy 9629 // assignment operator. 9630 // C++2a adds back these operators if the lambda has no lambda-capture. 9631 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9632 (CSM == CXXSpecialMemberKind::DefaultConstructor || 9633 CSM == CXXSpecialMemberKind::CopyAssignment)) { 9634 if (Diagnose) 9635 Diag(RD->getLocation(), diag::note_lambda_decl); 9636 return true; 9637 } 9638 9639 // For an anonymous struct or union, the copy and assignment special members 9640 // will never be used, so skip the check. For an anonymous union declared at 9641 // namespace scope, the constructor and destructor are used. 9642 if (CSM != CXXSpecialMemberKind::DefaultConstructor && 9643 CSM != CXXSpecialMemberKind::Destructor && RD->isAnonymousStructOrUnion()) 9644 return false; 9645 9646 // C++11 [class.copy]p7, p18: 9647 // If the class definition declares a move constructor or move assignment 9648 // operator, an implicitly declared copy constructor or copy assignment 9649 // operator is defined as deleted. 9650 if (MD->isImplicit() && (CSM == CXXSpecialMemberKind::CopyConstructor || 9651 CSM == CXXSpecialMemberKind::CopyAssignment)) { 9652 CXXMethodDecl *UserDeclaredMove = nullptr; 9653 9654 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9655 // deletion of the corresponding copy operation, not both copy operations. 9656 // MSVC 2015 has adopted the standards conforming behavior. 9657 bool DeletesOnlyMatchingCopy = 9658 getLangOpts().MSVCCompat && 9659 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9660 9661 if (RD->hasUserDeclaredMoveConstructor() && 9662 (!DeletesOnlyMatchingCopy || 9663 CSM == CXXSpecialMemberKind::CopyConstructor)) { 9664 if (!Diagnose) return true; 9665 9666 // Find any user-declared move constructor. 9667 for (auto *I : RD->ctors()) { 9668 if (I->isMoveConstructor()) { 9669 UserDeclaredMove = I; 9670 break; 9671 } 9672 } 9673 assert(UserDeclaredMove); 9674 } else if (RD->hasUserDeclaredMoveAssignment() && 9675 (!DeletesOnlyMatchingCopy || 9676 CSM == CXXSpecialMemberKind::CopyAssignment)) { 9677 if (!Diagnose) return true; 9678 9679 // Find any user-declared move assignment operator. 9680 for (auto *I : RD->methods()) { 9681 if (I->isMoveAssignmentOperator()) { 9682 UserDeclaredMove = I; 9683 break; 9684 } 9685 } 9686 assert(UserDeclaredMove); 9687 } 9688 9689 if (UserDeclaredMove) { 9690 Diag(UserDeclaredMove->getLocation(), 9691 diag::note_deleted_copy_user_declared_move) 9692 << (CSM == CXXSpecialMemberKind::CopyAssignment) << RD 9693 << UserDeclaredMove->isMoveAssignmentOperator(); 9694 return true; 9695 } 9696 } 9697 9698 // Do access control from the special member function 9699 ContextRAII MethodContext(*this, MD); 9700 9701 // C++11 [class.dtor]p5: 9702 // -- for a virtual destructor, lookup of the non-array deallocation function 9703 // results in an ambiguity or in a function that is deleted or inaccessible 9704 if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { 9705 FunctionDecl *OperatorDelete = nullptr; 9706 DeclarationName Name = 9707 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9708 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9709 OperatorDelete, /*Diagnose*/false)) { 9710 if (Diagnose) 9711 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9712 return true; 9713 } 9714 } 9715 9716 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9717 9718 // Per DR1611, do not consider virtual bases of constructors of abstract 9719 // classes, since we are not going to construct them. 9720 // Per DR1658, do not consider virtual bases of destructors of abstract 9721 // classes either. 9722 // Per DR2180, for assignment operators we only assign (and thus only 9723 // consider) direct bases. 9724 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9725 : SMI.VisitPotentiallyConstructedBases)) 9726 return true; 9727 9728 if (SMI.shouldDeleteForAllConstMembers()) 9729 return true; 9730 9731 if (getLangOpts().CUDA) { 9732 // We should delete the special member in CUDA mode if target inference 9733 // failed. 9734 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9735 // is treated as certain special member, which may not reflect what special 9736 // member MD really is. However inferTargetForImplicitSpecialMember 9737 // expects CSM to match MD, therefore recalculate CSM. 9738 assert(ICI || CSM == getSpecialMember(MD)); 9739 auto RealCSM = CSM; 9740 if (ICI) 9741 RealCSM = getSpecialMember(MD); 9742 9743 return CUDA().inferTargetForImplicitSpecialMember(RD, RealCSM, MD, 9744 SMI.ConstArg, Diagnose); 9745 } 9746 9747 return false; 9748 } 9749 9750 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9751 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9752 assert(DFK && "not a defaultable function"); 9753 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); 9754 9755 if (DFK.isSpecialMember()) { 9756 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9757 nullptr, /*Diagnose=*/true); 9758 } else { 9759 DefaultedComparisonAnalyzer( 9760 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9761 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9762 .visit(); 9763 } 9764 } 9765 9766 /// Perform lookup for a special member of the specified kind, and determine 9767 /// whether it is trivial. If the triviality can be determined without the 9768 /// lookup, skip it. This is intended for use when determining whether a 9769 /// special member of a containing object is trivial, and thus does not ever 9770 /// perform overload resolution for default constructors. 9771 /// 9772 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9773 /// member that was most likely to be intended to be trivial, if any. 9774 /// 9775 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9776 /// determine whether the special member is trivial. 9777 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9778 CXXSpecialMemberKind CSM, unsigned Quals, 9779 bool ConstRHS, 9780 Sema::TrivialABIHandling TAH, 9781 CXXMethodDecl **Selected) { 9782 if (Selected) 9783 *Selected = nullptr; 9784 9785 switch (CSM) { 9786 case CXXSpecialMemberKind::Invalid: 9787 llvm_unreachable("not a special member"); 9788 9789 case CXXSpecialMemberKind::DefaultConstructor: 9790 // C++11 [class.ctor]p5: 9791 // A default constructor is trivial if: 9792 // - all the [direct subobjects] have trivial default constructors 9793 // 9794 // Note, no overload resolution is performed in this case. 9795 if (RD->hasTrivialDefaultConstructor()) 9796 return true; 9797 9798 if (Selected) { 9799 // If there's a default constructor which could have been trivial, dig it 9800 // out. Otherwise, if there's any user-provided default constructor, point 9801 // to that as an example of why there's not a trivial one. 9802 CXXConstructorDecl *DefCtor = nullptr; 9803 if (RD->needsImplicitDefaultConstructor()) 9804 S.DeclareImplicitDefaultConstructor(RD); 9805 for (auto *CI : RD->ctors()) { 9806 if (!CI->isDefaultConstructor()) 9807 continue; 9808 DefCtor = CI; 9809 if (!DefCtor->isUserProvided()) 9810 break; 9811 } 9812 9813 *Selected = DefCtor; 9814 } 9815 9816 return false; 9817 9818 case CXXSpecialMemberKind::Destructor: 9819 // C++11 [class.dtor]p5: 9820 // A destructor is trivial if: 9821 // - all the direct [subobjects] have trivial destructors 9822 if (RD->hasTrivialDestructor() || 9823 (TAH == Sema::TAH_ConsiderTrivialABI && 9824 RD->hasTrivialDestructorForCall())) 9825 return true; 9826 9827 if (Selected) { 9828 if (RD->needsImplicitDestructor()) 9829 S.DeclareImplicitDestructor(RD); 9830 *Selected = RD->getDestructor(); 9831 } 9832 9833 return false; 9834 9835 case CXXSpecialMemberKind::CopyConstructor: 9836 // C++11 [class.copy]p12: 9837 // A copy constructor is trivial if: 9838 // - the constructor selected to copy each direct [subobject] is trivial 9839 if (RD->hasTrivialCopyConstructor() || 9840 (TAH == Sema::TAH_ConsiderTrivialABI && 9841 RD->hasTrivialCopyConstructorForCall())) { 9842 if (Quals == Qualifiers::Const) 9843 // We must either select the trivial copy constructor or reach an 9844 // ambiguity; no need to actually perform overload resolution. 9845 return true; 9846 } else if (!Selected) { 9847 return false; 9848 } 9849 // In C++98, we are not supposed to perform overload resolution here, but we 9850 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9851 // cases like B as having a non-trivial copy constructor: 9852 // struct A { template<typename T> A(T&); }; 9853 // struct B { mutable A a; }; 9854 goto NeedOverloadResolution; 9855 9856 case CXXSpecialMemberKind::CopyAssignment: 9857 // C++11 [class.copy]p25: 9858 // A copy assignment operator is trivial if: 9859 // - the assignment operator selected to copy each direct [subobject] is 9860 // trivial 9861 if (RD->hasTrivialCopyAssignment()) { 9862 if (Quals == Qualifiers::Const) 9863 return true; 9864 } else if (!Selected) { 9865 return false; 9866 } 9867 // In C++98, we are not supposed to perform overload resolution here, but we 9868 // treat that as a language defect. 9869 goto NeedOverloadResolution; 9870 9871 case CXXSpecialMemberKind::MoveConstructor: 9872 case CXXSpecialMemberKind::MoveAssignment: 9873 NeedOverloadResolution: 9874 Sema::SpecialMemberOverloadResult SMOR = 9875 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9876 9877 // The standard doesn't describe how to behave if the lookup is ambiguous. 9878 // We treat it as not making the member non-trivial, just like the standard 9879 // mandates for the default constructor. This should rarely matter, because 9880 // the member will also be deleted. 9881 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9882 return true; 9883 9884 if (!SMOR.getMethod()) { 9885 assert(SMOR.getKind() == 9886 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 9887 return false; 9888 } 9889 9890 // We deliberately don't check if we found a deleted special member. We're 9891 // not supposed to! 9892 if (Selected) 9893 *Selected = SMOR.getMethod(); 9894 9895 if (TAH == Sema::TAH_ConsiderTrivialABI && 9896 (CSM == CXXSpecialMemberKind::CopyConstructor || 9897 CSM == CXXSpecialMemberKind::MoveConstructor)) 9898 return SMOR.getMethod()->isTrivialForCall(); 9899 return SMOR.getMethod()->isTrivial(); 9900 } 9901 9902 llvm_unreachable("unknown special method kind"); 9903 } 9904 9905 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9906 for (auto *CI : RD->ctors()) 9907 if (!CI->isImplicit()) 9908 return CI; 9909 9910 // Look for constructor templates. 9911 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9912 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9913 if (CXXConstructorDecl *CD = 9914 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9915 return CD; 9916 } 9917 9918 return nullptr; 9919 } 9920 9921 /// The kind of subobject we are checking for triviality. The values of this 9922 /// enumeration are used in diagnostics. 9923 enum TrivialSubobjectKind { 9924 /// The subobject is a base class. 9925 TSK_BaseClass, 9926 /// The subobject is a non-static data member. 9927 TSK_Field, 9928 /// The object is actually the complete object. 9929 TSK_CompleteObject 9930 }; 9931 9932 /// Check whether the special member selected for a given type would be trivial. 9933 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9934 QualType SubType, bool ConstRHS, 9935 CXXSpecialMemberKind CSM, 9936 TrivialSubobjectKind Kind, 9937 Sema::TrivialABIHandling TAH, 9938 bool Diagnose) { 9939 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9940 if (!SubRD) 9941 return true; 9942 9943 CXXMethodDecl *Selected; 9944 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9945 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9946 return true; 9947 9948 if (Diagnose) { 9949 if (ConstRHS) 9950 SubType.addConst(); 9951 9952 if (!Selected && CSM == CXXSpecialMemberKind::DefaultConstructor) { 9953 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9954 << Kind << SubType.getUnqualifiedType(); 9955 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9956 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9957 } else if (!Selected) 9958 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9959 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM) 9960 << SubType; 9961 else if (Selected->isUserProvided()) { 9962 if (Kind == TSK_CompleteObject) 9963 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9964 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); 9965 else { 9966 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9967 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); 9968 S.Diag(Selected->getLocation(), diag::note_declared_at); 9969 } 9970 } else { 9971 if (Kind != TSK_CompleteObject) 9972 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9973 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); 9974 9975 // Explain why the defaulted or deleted special member isn't trivial. 9976 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9977 Diagnose); 9978 } 9979 } 9980 9981 return false; 9982 } 9983 9984 /// Check whether the members of a class type allow a special member to be 9985 /// trivial. 9986 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9987 CXXSpecialMemberKind CSM, bool ConstArg, 9988 Sema::TrivialABIHandling TAH, 9989 bool Diagnose) { 9990 for (const auto *FI : RD->fields()) { 9991 if (FI->isInvalidDecl() || FI->isUnnamedBitField()) 9992 continue; 9993 9994 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9995 9996 // Pretend anonymous struct or union members are members of this class. 9997 if (FI->isAnonymousStructOrUnion()) { 9998 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9999 CSM, ConstArg, TAH, Diagnose)) 10000 return false; 10001 continue; 10002 } 10003 10004 // C++11 [class.ctor]p5: 10005 // A default constructor is trivial if [...] 10006 // -- no non-static data member of its class has a 10007 // brace-or-equal-initializer 10008 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 10009 FI->hasInClassInitializer()) { 10010 if (Diagnose) 10011 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) 10012 << FI; 10013 return false; 10014 } 10015 10016 // Objective C ARC 4.3.5: 10017 // [...] nontrivally ownership-qualified types are [...] not trivially 10018 // default constructible, copy constructible, move constructible, copy 10019 // assignable, move assignable, or destructible [...] 10020 if (FieldType.hasNonTrivialObjCLifetime()) { 10021 if (Diagnose) 10022 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 10023 << RD << FieldType.getObjCLifetime(); 10024 return false; 10025 } 10026 10027 bool ConstRHS = ConstArg && !FI->isMutable(); 10028 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 10029 CSM, TSK_Field, TAH, Diagnose)) 10030 return false; 10031 } 10032 10033 return true; 10034 } 10035 10036 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, 10037 CXXSpecialMemberKind CSM) { 10038 QualType Ty = Context.getRecordType(RD); 10039 10040 bool ConstArg = (CSM == CXXSpecialMemberKind::CopyConstructor || 10041 CSM == CXXSpecialMemberKind::CopyAssignment); 10042 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 10043 TSK_CompleteObject, TAH_IgnoreTrivialABI, 10044 /*Diagnose*/true); 10045 } 10046 10047 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMemberKind CSM, 10048 TrivialABIHandling TAH, bool Diagnose) { 10049 assert(!MD->isUserProvided() && CSM != CXXSpecialMemberKind::Invalid && 10050 "not special enough"); 10051 10052 CXXRecordDecl *RD = MD->getParent(); 10053 10054 bool ConstArg = false; 10055 10056 // C++11 [class.copy]p12, p25: [DR1593] 10057 // A [special member] is trivial if [...] its parameter-type-list is 10058 // equivalent to the parameter-type-list of an implicit declaration [...] 10059 switch (CSM) { 10060 case CXXSpecialMemberKind::DefaultConstructor: 10061 case CXXSpecialMemberKind::Destructor: 10062 // Trivial default constructors and destructors cannot have parameters. 10063 break; 10064 10065 case CXXSpecialMemberKind::CopyConstructor: 10066 case CXXSpecialMemberKind::CopyAssignment: { 10067 const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); 10068 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 10069 10070 // When ClangABICompat14 is true, CXX copy constructors will only be trivial 10071 // if they are not user-provided and their parameter-type-list is equivalent 10072 // to the parameter-type-list of an implicit declaration. This maintains the 10073 // behavior before dr2171 was implemented. 10074 // 10075 // Otherwise, if ClangABICompat14 is false, All copy constructors can be 10076 // trivial, if they are not user-provided, regardless of the qualifiers on 10077 // the reference type. 10078 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <= 10079 LangOptions::ClangABI::Ver14; 10080 if (!RT || 10081 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) && 10082 ClangABICompat14)) { 10083 if (Diagnose) 10084 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 10085 << Param0->getSourceRange() << Param0->getType() 10086 << Context.getLValueReferenceType( 10087 Context.getRecordType(RD).withConst()); 10088 return false; 10089 } 10090 10091 ConstArg = RT->getPointeeType().isConstQualified(); 10092 break; 10093 } 10094 10095 case CXXSpecialMemberKind::MoveConstructor: 10096 case CXXSpecialMemberKind::MoveAssignment: { 10097 // Trivial move operations always have non-cv-qualified parameters. 10098 const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); 10099 const RValueReferenceType *RT = 10100 Param0->getType()->getAs<RValueReferenceType>(); 10101 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 10102 if (Diagnose) 10103 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 10104 << Param0->getSourceRange() << Param0->getType() 10105 << Context.getRValueReferenceType(Context.getRecordType(RD)); 10106 return false; 10107 } 10108 break; 10109 } 10110 10111 case CXXSpecialMemberKind::Invalid: 10112 llvm_unreachable("not a special member"); 10113 } 10114 10115 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 10116 if (Diagnose) 10117 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 10118 diag::note_nontrivial_default_arg) 10119 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 10120 return false; 10121 } 10122 if (MD->isVariadic()) { 10123 if (Diagnose) 10124 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 10125 return false; 10126 } 10127 10128 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 10129 // A copy/move [constructor or assignment operator] is trivial if 10130 // -- the [member] selected to copy/move each direct base class subobject 10131 // is trivial 10132 // 10133 // C++11 [class.copy]p12, C++11 [class.copy]p25: 10134 // A [default constructor or destructor] is trivial if 10135 // -- all the direct base classes have trivial [default constructors or 10136 // destructors] 10137 for (const auto &BI : RD->bases()) 10138 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 10139 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 10140 return false; 10141 10142 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 10143 // A copy/move [constructor or assignment operator] for a class X is 10144 // trivial if 10145 // -- for each non-static data member of X that is of class type (or array 10146 // thereof), the constructor selected to copy/move that member is 10147 // trivial 10148 // 10149 // C++11 [class.copy]p12, C++11 [class.copy]p25: 10150 // A [default constructor or destructor] is trivial if 10151 // -- for all of the non-static data members of its class that are of class 10152 // type (or array thereof), each such class has a trivial [default 10153 // constructor or destructor] 10154 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 10155 return false; 10156 10157 // C++11 [class.dtor]p5: 10158 // A destructor is trivial if [...] 10159 // -- the destructor is not virtual 10160 if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { 10161 if (Diagnose) 10162 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 10163 return false; 10164 } 10165 10166 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 10167 // A [special member] for class X is trivial if [...] 10168 // -- class X has no virtual functions and no virtual base classes 10169 if (CSM != CXXSpecialMemberKind::Destructor && 10170 MD->getParent()->isDynamicClass()) { 10171 if (!Diagnose) 10172 return false; 10173 10174 if (RD->getNumVBases()) { 10175 // Check for virtual bases. We already know that the corresponding 10176 // member in all bases is trivial, so vbases must all be direct. 10177 CXXBaseSpecifier &BS = *RD->vbases_begin(); 10178 assert(BS.isVirtual()); 10179 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 10180 return false; 10181 } 10182 10183 // Must have a virtual method. 10184 for (const auto *MI : RD->methods()) { 10185 if (MI->isVirtual()) { 10186 SourceLocation MLoc = MI->getBeginLoc(); 10187 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 10188 return false; 10189 } 10190 } 10191 10192 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 10193 } 10194 10195 // Looks like it's trivial! 10196 return true; 10197 } 10198 10199 namespace { 10200 struct FindHiddenVirtualMethod { 10201 Sema *S; 10202 CXXMethodDecl *Method; 10203 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 10204 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 10205 10206 private: 10207 /// Check whether any most overridden method from MD in Methods 10208 static bool CheckMostOverridenMethods( 10209 const CXXMethodDecl *MD, 10210 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 10211 if (MD->size_overridden_methods() == 0) 10212 return Methods.count(MD->getCanonicalDecl()); 10213 for (const CXXMethodDecl *O : MD->overridden_methods()) 10214 if (CheckMostOverridenMethods(O, Methods)) 10215 return true; 10216 return false; 10217 } 10218 10219 public: 10220 /// Member lookup function that determines whether a given C++ 10221 /// method overloads virtual methods in a base class without overriding any, 10222 /// to be used with CXXRecordDecl::lookupInBases(). 10223 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 10224 RecordDecl *BaseRecord = 10225 Specifier->getType()->castAs<RecordType>()->getDecl(); 10226 10227 DeclarationName Name = Method->getDeclName(); 10228 assert(Name.getNameKind() == DeclarationName::Identifier); 10229 10230 bool foundSameNameMethod = false; 10231 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 10232 for (Path.Decls = BaseRecord->lookup(Name).begin(); 10233 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { 10234 NamedDecl *D = *Path.Decls; 10235 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 10236 MD = MD->getCanonicalDecl(); 10237 foundSameNameMethod = true; 10238 // Interested only in hidden virtual methods. 10239 if (!MD->isVirtual()) 10240 continue; 10241 // If the method we are checking overrides a method from its base 10242 // don't warn about the other overloaded methods. Clang deviates from 10243 // GCC by only diagnosing overloads of inherited virtual functions that 10244 // do not override any other virtual functions in the base. GCC's 10245 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 10246 // function from a base class. These cases may be better served by a 10247 // warning (not specific to virtual functions) on call sites when the 10248 // call would select a different function from the base class, were it 10249 // visible. 10250 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 10251 if (!S->IsOverload(Method, MD, false)) 10252 return true; 10253 // Collect the overload only if its hidden. 10254 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 10255 overloadedMethods.push_back(MD); 10256 } 10257 } 10258 10259 if (foundSameNameMethod) 10260 OverloadedMethods.append(overloadedMethods.begin(), 10261 overloadedMethods.end()); 10262 return foundSameNameMethod; 10263 } 10264 }; 10265 } // end anonymous namespace 10266 10267 /// Add the most overridden methods from MD to Methods 10268 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 10269 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 10270 if (MD->size_overridden_methods() == 0) 10271 Methods.insert(MD->getCanonicalDecl()); 10272 else 10273 for (const CXXMethodDecl *O : MD->overridden_methods()) 10274 AddMostOverridenMethods(O, Methods); 10275 } 10276 10277 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 10278 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10279 if (!MD->getDeclName().isIdentifier()) 10280 return; 10281 10282 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 10283 /*bool RecordPaths=*/false, 10284 /*bool DetectVirtual=*/false); 10285 FindHiddenVirtualMethod FHVM; 10286 FHVM.Method = MD; 10287 FHVM.S = this; 10288 10289 // Keep the base methods that were overridden or introduced in the subclass 10290 // by 'using' in a set. A base method not in this set is hidden. 10291 CXXRecordDecl *DC = MD->getParent(); 10292 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 10293 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 10294 NamedDecl *ND = *I; 10295 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 10296 ND = shad->getTargetDecl(); 10297 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 10298 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 10299 } 10300 10301 if (DC->lookupInBases(FHVM, Paths)) 10302 OverloadedMethods = FHVM.OverloadedMethods; 10303 } 10304 10305 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 10306 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10307 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 10308 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 10309 PartialDiagnostic PD = PDiag( 10310 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 10311 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 10312 Diag(overloadedMD->getLocation(), PD); 10313 } 10314 } 10315 10316 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 10317 if (MD->isInvalidDecl()) 10318 return; 10319 10320 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 10321 return; 10322 10323 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 10324 FindHiddenVirtualMethods(MD, OverloadedMethods); 10325 if (!OverloadedMethods.empty()) { 10326 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 10327 << MD << (OverloadedMethods.size() > 1); 10328 10329 NoteHiddenVirtualMethods(MD, OverloadedMethods); 10330 } 10331 } 10332 10333 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 10334 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 10335 // No diagnostics if this is a template instantiation. 10336 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 10337 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10338 diag::ext_cannot_use_trivial_abi) << &RD; 10339 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10340 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 10341 } 10342 RD.dropAttr<TrivialABIAttr>(); 10343 }; 10344 10345 // Ill-formed if the copy and move constructors are deleted. 10346 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 10347 // If the type is dependent, then assume it might have 10348 // implicit copy or move ctor because we won't know yet at this point. 10349 if (RD.isDependentType()) 10350 return true; 10351 if (RD.needsImplicitCopyConstructor() && 10352 !RD.defaultedCopyConstructorIsDeleted()) 10353 return true; 10354 if (RD.needsImplicitMoveConstructor() && 10355 !RD.defaultedMoveConstructorIsDeleted()) 10356 return true; 10357 for (const CXXConstructorDecl *CD : RD.ctors()) 10358 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 10359 return true; 10360 return false; 10361 }; 10362 10363 if (!HasNonDeletedCopyOrMoveConstructor()) { 10364 PrintDiagAndRemoveAttr(0); 10365 return; 10366 } 10367 10368 // Ill-formed if the struct has virtual functions. 10369 if (RD.isPolymorphic()) { 10370 PrintDiagAndRemoveAttr(1); 10371 return; 10372 } 10373 10374 for (const auto &B : RD.bases()) { 10375 // Ill-formed if the base class is non-trivial for the purpose of calls or a 10376 // virtual base. 10377 if (!B.getType()->isDependentType() && 10378 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 10379 PrintDiagAndRemoveAttr(2); 10380 return; 10381 } 10382 10383 if (B.isVirtual()) { 10384 PrintDiagAndRemoveAttr(3); 10385 return; 10386 } 10387 } 10388 10389 for (const auto *FD : RD.fields()) { 10390 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 10391 // non-trivial for the purpose of calls. 10392 QualType FT = FD->getType(); 10393 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 10394 PrintDiagAndRemoveAttr(4); 10395 return; 10396 } 10397 10398 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 10399 if (!RT->isDependentType() && 10400 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 10401 PrintDiagAndRemoveAttr(5); 10402 return; 10403 } 10404 } 10405 } 10406 10407 void Sema::checkIncorrectVTablePointerAuthenticationAttribute( 10408 CXXRecordDecl &RD) { 10409 if (RequireCompleteType(RD.getLocation(), Context.getRecordType(&RD), 10410 diag::err_incomplete_type_vtable_pointer_auth)) 10411 return; 10412 10413 const CXXRecordDecl *PrimaryBase = &RD; 10414 if (PrimaryBase->hasAnyDependentBases()) 10415 return; 10416 10417 while (1) { 10418 assert(PrimaryBase); 10419 const CXXRecordDecl *Base = nullptr; 10420 for (auto BasePtr : PrimaryBase->bases()) { 10421 if (!BasePtr.getType()->getAsCXXRecordDecl()->isDynamicClass()) 10422 continue; 10423 Base = BasePtr.getType()->getAsCXXRecordDecl(); 10424 break; 10425 } 10426 if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) 10427 break; 10428 Diag(RD.getAttr<VTablePointerAuthenticationAttr>()->getLocation(), 10429 diag::err_non_top_level_vtable_pointer_auth) 10430 << &RD << Base; 10431 PrimaryBase = Base; 10432 } 10433 10434 if (!RD.isPolymorphic()) 10435 Diag(RD.getAttr<VTablePointerAuthenticationAttr>()->getLocation(), 10436 diag::err_non_polymorphic_vtable_pointer_auth) 10437 << &RD; 10438 } 10439 10440 void Sema::ActOnFinishCXXMemberSpecification( 10441 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 10442 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 10443 if (!TagDecl) 10444 return; 10445 10446 AdjustDeclIfTemplate(TagDecl); 10447 10448 for (const ParsedAttr &AL : AttrList) { 10449 if (AL.getKind() != ParsedAttr::AT_Visibility) 10450 continue; 10451 AL.setInvalid(); 10452 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 10453 } 10454 10455 ActOnFields(S, RLoc, TagDecl, 10456 llvm::ArrayRef( 10457 // strict aliasing violation! 10458 reinterpret_cast<Decl **>(FieldCollector->getCurFields()), 10459 FieldCollector->getCurNumFields()), 10460 LBrac, RBrac, AttrList); 10461 10462 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 10463 } 10464 10465 /// Find the equality comparison functions that should be implicitly declared 10466 /// in a given class definition, per C++2a [class.compare.default]p3. 10467 static void findImplicitlyDeclaredEqualityComparisons( 10468 ASTContext &Ctx, CXXRecordDecl *RD, 10469 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 10470 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 10471 if (!RD->lookup(EqEq).empty()) 10472 // Member operator== explicitly declared: no implicit operator==s. 10473 return; 10474 10475 // Traverse friends looking for an '==' or a '<=>'. 10476 for (FriendDecl *Friend : RD->friends()) { 10477 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 10478 if (!FD) continue; 10479 10480 if (FD->getOverloadedOperator() == OO_EqualEqual) { 10481 // Friend operator== explicitly declared: no implicit operator==s. 10482 Spaceships.clear(); 10483 return; 10484 } 10485 10486 if (FD->getOverloadedOperator() == OO_Spaceship && 10487 FD->isExplicitlyDefaulted()) 10488 Spaceships.push_back(FD); 10489 } 10490 10491 // Look for members named 'operator<=>'. 10492 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 10493 for (NamedDecl *ND : RD->lookup(Cmp)) { 10494 // Note that we could find a non-function here (either a function template 10495 // or a using-declaration). Neither case results in an implicit 10496 // 'operator=='. 10497 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10498 if (FD->isExplicitlyDefaulted()) 10499 Spaceships.push_back(FD); 10500 } 10501 } 10502 10503 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 10504 // Don't add implicit special members to templated classes. 10505 // FIXME: This means unqualified lookups for 'operator=' within a class 10506 // template don't work properly. 10507 if (!ClassDecl->isDependentType()) { 10508 if (ClassDecl->needsImplicitDefaultConstructor()) { 10509 ++getASTContext().NumImplicitDefaultConstructors; 10510 10511 if (ClassDecl->hasInheritedConstructor()) 10512 DeclareImplicitDefaultConstructor(ClassDecl); 10513 } 10514 10515 if (ClassDecl->needsImplicitCopyConstructor()) { 10516 ++getASTContext().NumImplicitCopyConstructors; 10517 10518 // If the properties or semantics of the copy constructor couldn't be 10519 // determined while the class was being declared, force a declaration 10520 // of it now. 10521 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 10522 ClassDecl->hasInheritedConstructor()) 10523 DeclareImplicitCopyConstructor(ClassDecl); 10524 // For the MS ABI we need to know whether the copy ctor is deleted. A 10525 // prerequisite for deleting the implicit copy ctor is that the class has 10526 // a move ctor or move assignment that is either user-declared or whose 10527 // semantics are inherited from a subobject. FIXME: We should provide a 10528 // more direct way for CodeGen to ask whether the constructor was deleted. 10529 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 10530 (ClassDecl->hasUserDeclaredMoveConstructor() || 10531 ClassDecl->needsOverloadResolutionForMoveConstructor() || 10532 ClassDecl->hasUserDeclaredMoveAssignment() || 10533 ClassDecl->needsOverloadResolutionForMoveAssignment())) 10534 DeclareImplicitCopyConstructor(ClassDecl); 10535 } 10536 10537 if (getLangOpts().CPlusPlus11 && 10538 ClassDecl->needsImplicitMoveConstructor()) { 10539 ++getASTContext().NumImplicitMoveConstructors; 10540 10541 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 10542 ClassDecl->hasInheritedConstructor()) 10543 DeclareImplicitMoveConstructor(ClassDecl); 10544 } 10545 10546 if (ClassDecl->needsImplicitCopyAssignment()) { 10547 ++getASTContext().NumImplicitCopyAssignmentOperators; 10548 10549 // If we have a dynamic class, then the copy assignment operator may be 10550 // virtual, so we have to declare it immediately. This ensures that, e.g., 10551 // it shows up in the right place in the vtable and that we diagnose 10552 // problems with the implicit exception specification. 10553 if (ClassDecl->isDynamicClass() || 10554 ClassDecl->needsOverloadResolutionForCopyAssignment() || 10555 ClassDecl->hasInheritedAssignment()) 10556 DeclareImplicitCopyAssignment(ClassDecl); 10557 } 10558 10559 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 10560 ++getASTContext().NumImplicitMoveAssignmentOperators; 10561 10562 // Likewise for the move assignment operator. 10563 if (ClassDecl->isDynamicClass() || 10564 ClassDecl->needsOverloadResolutionForMoveAssignment() || 10565 ClassDecl->hasInheritedAssignment()) 10566 DeclareImplicitMoveAssignment(ClassDecl); 10567 } 10568 10569 if (ClassDecl->needsImplicitDestructor()) { 10570 ++getASTContext().NumImplicitDestructors; 10571 10572 // If we have a dynamic class, then the destructor may be virtual, so we 10573 // have to declare the destructor immediately. This ensures that, e.g., it 10574 // shows up in the right place in the vtable and that we diagnose problems 10575 // with the implicit exception specification. 10576 if (ClassDecl->isDynamicClass() || 10577 ClassDecl->needsOverloadResolutionForDestructor()) 10578 DeclareImplicitDestructor(ClassDecl); 10579 } 10580 } 10581 10582 // C++2a [class.compare.default]p3: 10583 // If the member-specification does not explicitly declare any member or 10584 // friend named operator==, an == operator function is declared implicitly 10585 // for each defaulted three-way comparison operator function defined in 10586 // the member-specification 10587 // FIXME: Consider doing this lazily. 10588 // We do this during the initial parse for a class template, not during 10589 // instantiation, so that we can handle unqualified lookups for 'operator==' 10590 // when parsing the template. 10591 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 10592 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 10593 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 10594 DefaultedSpaceships); 10595 for (auto *FD : DefaultedSpaceships) 10596 DeclareImplicitEqualityComparison(ClassDecl, FD); 10597 } 10598 } 10599 10600 unsigned 10601 Sema::ActOnReenterTemplateScope(Decl *D, 10602 llvm::function_ref<Scope *()> EnterScope) { 10603 if (!D) 10604 return 0; 10605 AdjustDeclIfTemplate(D); 10606 10607 // In order to get name lookup right, reenter template scopes in order from 10608 // outermost to innermost. 10609 SmallVector<TemplateParameterList *, 4> ParameterLists; 10610 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 10611 10612 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 10613 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 10614 ParameterLists.push_back(DD->getTemplateParameterList(i)); 10615 10616 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10617 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 10618 ParameterLists.push_back(FTD->getTemplateParameters()); 10619 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 10620 LookupDC = VD->getDeclContext(); 10621 10622 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 10623 ParameterLists.push_back(VTD->getTemplateParameters()); 10624 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 10625 ParameterLists.push_back(PSD->getTemplateParameters()); 10626 } 10627 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 10628 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 10629 ParameterLists.push_back(TD->getTemplateParameterList(i)); 10630 10631 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 10632 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 10633 ParameterLists.push_back(CTD->getTemplateParameters()); 10634 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 10635 ParameterLists.push_back(PSD->getTemplateParameters()); 10636 } 10637 } 10638 // FIXME: Alias declarations and concepts. 10639 10640 unsigned Count = 0; 10641 Scope *InnermostTemplateScope = nullptr; 10642 for (TemplateParameterList *Params : ParameterLists) { 10643 // Ignore explicit specializations; they don't contribute to the template 10644 // depth. 10645 if (Params->size() == 0) 10646 continue; 10647 10648 InnermostTemplateScope = EnterScope(); 10649 for (NamedDecl *Param : *Params) { 10650 if (Param->getDeclName()) { 10651 InnermostTemplateScope->AddDecl(Param); 10652 IdResolver.AddDecl(Param); 10653 } 10654 } 10655 ++Count; 10656 } 10657 10658 // Associate the new template scopes with the corresponding entities. 10659 if (InnermostTemplateScope) { 10660 assert(LookupDC && "no enclosing DeclContext for template lookup"); 10661 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10662 } 10663 10664 return Count; 10665 } 10666 10667 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10668 if (!RecordD) return; 10669 AdjustDeclIfTemplate(RecordD); 10670 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10671 PushDeclContext(S, Record); 10672 } 10673 10674 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10675 if (!RecordD) return; 10676 PopDeclContext(); 10677 } 10678 10679 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10680 if (!Param) 10681 return; 10682 10683 S->AddDecl(Param); 10684 if (Param->getDeclName()) 10685 IdResolver.AddDecl(Param); 10686 } 10687 10688 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10689 } 10690 10691 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 10692 /// C++ method declaration. We're (re-)introducing the given 10693 /// function parameter into scope for use in parsing later parts of 10694 /// the method declaration. For example, we could see an 10695 /// ActOnParamDefaultArgument event for this parameter. 10696 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10697 if (!ParamD) 10698 return; 10699 10700 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10701 10702 S->AddDecl(Param); 10703 if (Param->getDeclName()) 10704 IdResolver.AddDecl(Param); 10705 } 10706 10707 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10708 if (!MethodD) 10709 return; 10710 10711 AdjustDeclIfTemplate(MethodD); 10712 10713 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10714 10715 // Now that we have our default arguments, check the constructor 10716 // again. It could produce additional diagnostics or affect whether 10717 // the class has implicitly-declared destructors, among other 10718 // things. 10719 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10720 CheckConstructor(Constructor); 10721 10722 // Check the default arguments, which we may have added. 10723 if (!Method->isInvalidDecl()) 10724 CheckCXXDefaultArguments(Method); 10725 } 10726 10727 // Emit the given diagnostic for each non-address-space qualifier. 10728 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10729 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10730 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10731 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10732 bool DiagOccured = false; 10733 FTI.MethodQualifiers->forEachQualifier( 10734 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10735 SourceLocation SL) { 10736 // This diagnostic should be emitted on any qualifier except an addr 10737 // space qualifier. However, forEachQualifier currently doesn't visit 10738 // addr space qualifiers, so there's no way to write this condition 10739 // right now; we just diagnose on everything. 10740 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10741 DiagOccured = true; 10742 }); 10743 if (DiagOccured) 10744 D.setInvalidType(); 10745 } 10746 } 10747 10748 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10749 StorageClass &SC) { 10750 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10751 10752 // C++ [class.ctor]p3: 10753 // A constructor shall not be virtual (10.3) or static (9.4). A 10754 // constructor can be invoked for a const, volatile or const 10755 // volatile object. A constructor shall not be declared const, 10756 // volatile, or const volatile (9.3.2). 10757 if (isVirtual) { 10758 if (!D.isInvalidType()) 10759 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10760 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10761 << SourceRange(D.getIdentifierLoc()); 10762 D.setInvalidType(); 10763 } 10764 if (SC == SC_Static) { 10765 if (!D.isInvalidType()) 10766 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10767 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10768 << SourceRange(D.getIdentifierLoc()); 10769 D.setInvalidType(); 10770 SC = SC_None; 10771 } 10772 10773 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10774 diagnoseIgnoredQualifiers( 10775 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10776 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10777 D.getDeclSpec().getRestrictSpecLoc(), 10778 D.getDeclSpec().getAtomicSpecLoc()); 10779 D.setInvalidType(); 10780 } 10781 10782 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10783 10784 // C++0x [class.ctor]p4: 10785 // A constructor shall not be declared with a ref-qualifier. 10786 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10787 if (FTI.hasRefQualifier()) { 10788 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10789 << FTI.RefQualifierIsLValueRef 10790 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10791 D.setInvalidType(); 10792 } 10793 10794 // Rebuild the function type "R" without any type qualifiers (in 10795 // case any of the errors above fired) and with "void" as the 10796 // return type, since constructors don't have return types. 10797 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10798 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10799 return R; 10800 10801 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10802 EPI.TypeQuals = Qualifiers(); 10803 EPI.RefQualifier = RQ_None; 10804 10805 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10806 } 10807 10808 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10809 CXXRecordDecl *ClassDecl 10810 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10811 if (!ClassDecl) 10812 return Constructor->setInvalidDecl(); 10813 10814 // C++ [class.copy]p3: 10815 // A declaration of a constructor for a class X is ill-formed if 10816 // its first parameter is of type (optionally cv-qualified) X and 10817 // either there are no other parameters or else all other 10818 // parameters have default arguments. 10819 if (!Constructor->isInvalidDecl() && 10820 Constructor->hasOneParamOrDefaultArgs() && 10821 Constructor->getTemplateSpecializationKind() != 10822 TSK_ImplicitInstantiation) { 10823 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10824 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10825 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10826 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10827 const char *ConstRef 10828 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10829 : " const &"; 10830 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10831 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10832 10833 // FIXME: Rather that making the constructor invalid, we should endeavor 10834 // to fix the type. 10835 Constructor->setInvalidDecl(); 10836 } 10837 } 10838 } 10839 10840 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10841 CXXRecordDecl *RD = Destructor->getParent(); 10842 10843 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10844 SourceLocation Loc; 10845 10846 if (!Destructor->isImplicit()) 10847 Loc = Destructor->getLocation(); 10848 else 10849 Loc = RD->getLocation(); 10850 10851 // If we have a virtual destructor, look up the deallocation function 10852 if (FunctionDecl *OperatorDelete = 10853 FindDeallocationFunctionForDestructor(Loc, RD)) { 10854 Expr *ThisArg = nullptr; 10855 10856 // If the notional 'delete this' expression requires a non-trivial 10857 // conversion from 'this' to the type of a destroying operator delete's 10858 // first parameter, perform that conversion now. 10859 if (OperatorDelete->isDestroyingOperatorDelete()) { 10860 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10861 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10862 // C++ [class.dtor]p13: 10863 // ... as if for the expression 'delete this' appearing in a 10864 // non-virtual destructor of the destructor's class. 10865 ContextRAII SwitchContext(*this, Destructor); 10866 ExprResult This = 10867 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10868 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 10869 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 10870 if (This.isInvalid()) { 10871 // FIXME: Register this as a context note so that it comes out 10872 // in the right order. 10873 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10874 return true; 10875 } 10876 ThisArg = This.get(); 10877 } 10878 } 10879 10880 DiagnoseUseOfDecl(OperatorDelete, Loc); 10881 MarkFunctionReferenced(Loc, OperatorDelete); 10882 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10883 } 10884 } 10885 10886 return false; 10887 } 10888 10889 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10890 StorageClass& SC) { 10891 // C++ [class.dtor]p1: 10892 // [...] A typedef-name that names a class is a class-name 10893 // (7.1.3); however, a typedef-name that names a class shall not 10894 // be used as the identifier in the declarator for a destructor 10895 // declaration. 10896 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10897 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10898 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10899 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10900 else if (const TemplateSpecializationType *TST = 10901 DeclaratorType->getAs<TemplateSpecializationType>()) 10902 if (TST->isTypeAlias()) 10903 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10904 << DeclaratorType << 1; 10905 10906 // C++ [class.dtor]p2: 10907 // A destructor is used to destroy objects of its class type. A 10908 // destructor takes no parameters, and no return type can be 10909 // specified for it (not even void). The address of a destructor 10910 // shall not be taken. A destructor shall not be static. A 10911 // destructor can be invoked for a const, volatile or const 10912 // volatile object. A destructor shall not be declared const, 10913 // volatile or const volatile (9.3.2). 10914 if (SC == SC_Static) { 10915 if (!D.isInvalidType()) 10916 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 10917 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10918 << SourceRange(D.getIdentifierLoc()) 10919 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10920 10921 SC = SC_None; 10922 } 10923 if (!D.isInvalidType()) { 10924 // Destructors don't have return types, but the parser will 10925 // happily parse something like: 10926 // 10927 // class X { 10928 // float ~X(); 10929 // }; 10930 // 10931 // The return type will be eliminated later. 10932 if (D.getDeclSpec().hasTypeSpecifier()) 10933 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 10934 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 10935 << SourceRange(D.getIdentifierLoc()); 10936 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10937 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 10938 SourceLocation(), 10939 D.getDeclSpec().getConstSpecLoc(), 10940 D.getDeclSpec().getVolatileSpecLoc(), 10941 D.getDeclSpec().getRestrictSpecLoc(), 10942 D.getDeclSpec().getAtomicSpecLoc()); 10943 D.setInvalidType(); 10944 } 10945 } 10946 10947 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 10948 10949 // C++0x [class.dtor]p2: 10950 // A destructor shall not be declared with a ref-qualifier. 10951 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10952 if (FTI.hasRefQualifier()) { 10953 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10954 << FTI.RefQualifierIsLValueRef 10955 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10956 D.setInvalidType(); 10957 } 10958 10959 // Make sure we don't have any parameters. 10960 if (FTIHasNonVoidParameters(FTI)) { 10961 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10962 10963 // Delete the parameters. 10964 FTI.freeParams(); 10965 D.setInvalidType(); 10966 } 10967 10968 // Make sure the destructor isn't variadic. 10969 if (FTI.isVariadic) { 10970 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10971 D.setInvalidType(); 10972 } 10973 10974 // Rebuild the function type "R" without any type qualifiers or 10975 // parameters (in case any of the errors above fired) and with 10976 // "void" as the return type, since destructors don't have return 10977 // types. 10978 if (!D.isInvalidType()) 10979 return R; 10980 10981 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10982 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10983 EPI.Variadic = false; 10984 EPI.TypeQuals = Qualifiers(); 10985 EPI.RefQualifier = RQ_None; 10986 return Context.getFunctionType(Context.VoidTy, std::nullopt, EPI); 10987 } 10988 10989 static void extendLeft(SourceRange &R, SourceRange Before) { 10990 if (Before.isInvalid()) 10991 return; 10992 R.setBegin(Before.getBegin()); 10993 if (R.getEnd().isInvalid()) 10994 R.setEnd(Before.getEnd()); 10995 } 10996 10997 static void extendRight(SourceRange &R, SourceRange After) { 10998 if (After.isInvalid()) 10999 return; 11000 if (R.getBegin().isInvalid()) 11001 R.setBegin(After.getBegin()); 11002 R.setEnd(After.getEnd()); 11003 } 11004 11005 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 11006 StorageClass& SC) { 11007 // C++ [class.conv.fct]p1: 11008 // Neither parameter types nor return type can be specified. The 11009 // type of a conversion function (8.3.5) is "function taking no 11010 // parameter returning conversion-type-id." 11011 if (SC == SC_Static) { 11012 if (!D.isInvalidType()) 11013 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 11014 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 11015 << D.getName().getSourceRange(); 11016 D.setInvalidType(); 11017 SC = SC_None; 11018 } 11019 11020 TypeSourceInfo *ConvTSI = nullptr; 11021 QualType ConvType = 11022 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 11023 11024 const DeclSpec &DS = D.getDeclSpec(); 11025 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 11026 // Conversion functions don't have return types, but the parser will 11027 // happily parse something like: 11028 // 11029 // class X { 11030 // float operator bool(); 11031 // }; 11032 // 11033 // The return type will be changed later anyway. 11034 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 11035 << SourceRange(DS.getTypeSpecTypeLoc()) 11036 << SourceRange(D.getIdentifierLoc()); 11037 D.setInvalidType(); 11038 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 11039 // It's also plausible that the user writes type qualifiers in the wrong 11040 // place, such as: 11041 // struct S { const operator int(); }; 11042 // FIXME: we could provide a fixit to move the qualifiers onto the 11043 // conversion type. 11044 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 11045 << SourceRange(D.getIdentifierLoc()) << 0; 11046 D.setInvalidType(); 11047 } 11048 const auto *Proto = R->castAs<FunctionProtoType>(); 11049 // Make sure we don't have any parameters. 11050 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 11051 unsigned NumParam = Proto->getNumParams(); 11052 11053 // [C++2b] 11054 // A conversion function shall have no non-object parameters. 11055 if (NumParam == 1) { 11056 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 11057 if (const auto *First = 11058 dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param); 11059 First && First->isExplicitObjectParameter()) 11060 NumParam--; 11061 } 11062 11063 if (NumParam != 0) { 11064 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 11065 // Delete the parameters. 11066 FTI.freeParams(); 11067 D.setInvalidType(); 11068 } else if (Proto->isVariadic()) { 11069 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 11070 D.setInvalidType(); 11071 } 11072 11073 // Diagnose "&operator bool()" and other such nonsense. This 11074 // is actually a gcc extension which we don't support. 11075 if (Proto->getReturnType() != ConvType) { 11076 bool NeedsTypedef = false; 11077 SourceRange Before, After; 11078 11079 // Walk the chunks and extract information on them for our diagnostic. 11080 bool PastFunctionChunk = false; 11081 for (auto &Chunk : D.type_objects()) { 11082 switch (Chunk.Kind) { 11083 case DeclaratorChunk::Function: 11084 if (!PastFunctionChunk) { 11085 if (Chunk.Fun.HasTrailingReturnType) { 11086 TypeSourceInfo *TRT = nullptr; 11087 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 11088 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 11089 } 11090 PastFunctionChunk = true; 11091 break; 11092 } 11093 [[fallthrough]]; 11094 case DeclaratorChunk::Array: 11095 NeedsTypedef = true; 11096 extendRight(After, Chunk.getSourceRange()); 11097 break; 11098 11099 case DeclaratorChunk::Pointer: 11100 case DeclaratorChunk::BlockPointer: 11101 case DeclaratorChunk::Reference: 11102 case DeclaratorChunk::MemberPointer: 11103 case DeclaratorChunk::Pipe: 11104 extendLeft(Before, Chunk.getSourceRange()); 11105 break; 11106 11107 case DeclaratorChunk::Paren: 11108 extendLeft(Before, Chunk.Loc); 11109 extendRight(After, Chunk.EndLoc); 11110 break; 11111 } 11112 } 11113 11114 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 11115 After.isValid() ? After.getBegin() : 11116 D.getIdentifierLoc(); 11117 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 11118 DB << Before << After; 11119 11120 if (!NeedsTypedef) { 11121 DB << /*don't need a typedef*/0; 11122 11123 // If we can provide a correct fix-it hint, do so. 11124 if (After.isInvalid() && ConvTSI) { 11125 SourceLocation InsertLoc = 11126 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 11127 DB << FixItHint::CreateInsertion(InsertLoc, " ") 11128 << FixItHint::CreateInsertionFromRange( 11129 InsertLoc, CharSourceRange::getTokenRange(Before)) 11130 << FixItHint::CreateRemoval(Before); 11131 } 11132 } else if (!Proto->getReturnType()->isDependentType()) { 11133 DB << /*typedef*/1 << Proto->getReturnType(); 11134 } else if (getLangOpts().CPlusPlus11) { 11135 DB << /*alias template*/2 << Proto->getReturnType(); 11136 } else { 11137 DB << /*might not be fixable*/3; 11138 } 11139 11140 // Recover by incorporating the other type chunks into the result type. 11141 // Note, this does *not* change the name of the function. This is compatible 11142 // with the GCC extension: 11143 // struct S { &operator int(); } s; 11144 // int &r = s.operator int(); // ok in GCC 11145 // S::operator int&() {} // error in GCC, function name is 'operator int'. 11146 ConvType = Proto->getReturnType(); 11147 } 11148 11149 // C++ [class.conv.fct]p4: 11150 // The conversion-type-id shall not represent a function type nor 11151 // an array type. 11152 if (ConvType->isArrayType()) { 11153 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 11154 ConvType = Context.getPointerType(ConvType); 11155 D.setInvalidType(); 11156 } else if (ConvType->isFunctionType()) { 11157 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 11158 ConvType = Context.getPointerType(ConvType); 11159 D.setInvalidType(); 11160 } 11161 11162 // Rebuild the function type "R" without any parameters (in case any 11163 // of the errors above fired) and with the conversion type as the 11164 // return type. 11165 if (D.isInvalidType()) 11166 R = Context.getFunctionType(ConvType, std::nullopt, 11167 Proto->getExtProtoInfo()); 11168 11169 // C++0x explicit conversion operators. 11170 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 11171 Diag(DS.getExplicitSpecLoc(), 11172 getLangOpts().CPlusPlus11 11173 ? diag::warn_cxx98_compat_explicit_conversion_functions 11174 : diag::ext_explicit_conversion_functions) 11175 << SourceRange(DS.getExplicitSpecRange()); 11176 } 11177 11178 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 11179 assert(Conversion && "Expected to receive a conversion function declaration"); 11180 11181 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 11182 11183 // Make sure we aren't redeclaring the conversion function. 11184 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 11185 // C++ [class.conv.fct]p1: 11186 // [...] A conversion function is never used to convert a 11187 // (possibly cv-qualified) object to the (possibly cv-qualified) 11188 // same object type (or a reference to it), to a (possibly 11189 // cv-qualified) base class of that type (or a reference to it), 11190 // or to (possibly cv-qualified) void. 11191 QualType ClassType 11192 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 11193 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 11194 ConvType = ConvTypeRef->getPointeeType(); 11195 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 11196 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 11197 /* Suppress diagnostics for instantiations. */; 11198 else if (Conversion->size_overridden_methods() != 0) 11199 /* Suppress diagnostics for overriding virtual function in a base class. */; 11200 else if (ConvType->isRecordType()) { 11201 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 11202 if (ConvType == ClassType) 11203 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 11204 << ClassType; 11205 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 11206 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 11207 << ClassType << ConvType; 11208 } else if (ConvType->isVoidType()) { 11209 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 11210 << ClassType << ConvType; 11211 } 11212 11213 if (FunctionTemplateDecl *ConversionTemplate = 11214 Conversion->getDescribedFunctionTemplate()) { 11215 if (const auto *ConvTypePtr = ConvType->getAs<PointerType>()) { 11216 ConvType = ConvTypePtr->getPointeeType(); 11217 } 11218 if (ConvType->isUndeducedAutoType()) { 11219 Diag(Conversion->getTypeSpecStartLoc(), diag::err_auto_not_allowed) 11220 << getReturnTypeLoc(Conversion).getSourceRange() 11221 << llvm::to_underlying(ConvType->castAs<AutoType>()->getKeyword()) 11222 << /* in declaration of conversion function template= */ 24; 11223 } 11224 11225 return ConversionTemplate; 11226 } 11227 11228 return Conversion; 11229 } 11230 11231 void Sema::CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D, 11232 DeclarationName Name, QualType R) { 11233 CheckExplicitObjectMemberFunction(D, Name, R, false, DC); 11234 } 11235 11236 void Sema::CheckExplicitObjectLambda(Declarator &D) { 11237 CheckExplicitObjectMemberFunction(D, {}, {}, true); 11238 } 11239 11240 void Sema::CheckExplicitObjectMemberFunction(Declarator &D, 11241 DeclarationName Name, QualType R, 11242 bool IsLambda, DeclContext *DC) { 11243 if (!D.isFunctionDeclarator()) 11244 return; 11245 11246 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 11247 if (FTI.NumParams == 0) 11248 return; 11249 ParmVarDecl *ExplicitObjectParam = nullptr; 11250 for (unsigned Idx = 0; Idx < FTI.NumParams; Idx++) { 11251 const auto &ParamInfo = FTI.Params[Idx]; 11252 if (!ParamInfo.Param) 11253 continue; 11254 ParmVarDecl *Param = cast<ParmVarDecl>(ParamInfo.Param); 11255 if (!Param->isExplicitObjectParameter()) 11256 continue; 11257 if (Idx == 0) { 11258 ExplicitObjectParam = Param; 11259 continue; 11260 } else { 11261 Diag(Param->getLocation(), 11262 diag::err_explicit_object_parameter_must_be_first) 11263 << IsLambda << Param->getSourceRange(); 11264 } 11265 } 11266 if (!ExplicitObjectParam) 11267 return; 11268 11269 if (ExplicitObjectParam->hasDefaultArg()) { 11270 Diag(ExplicitObjectParam->getLocation(), 11271 diag::err_explicit_object_default_arg) 11272 << ExplicitObjectParam->getSourceRange(); 11273 } 11274 11275 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || 11276 (D.getContext() == clang::DeclaratorContext::Member && 11277 D.isStaticMember())) { 11278 Diag(ExplicitObjectParam->getBeginLoc(), 11279 diag::err_explicit_object_parameter_nonmember) 11280 << D.getSourceRange() << /*static=*/0 << IsLambda; 11281 D.setInvalidType(); 11282 } 11283 11284 if (D.getDeclSpec().isVirtualSpecified()) { 11285 Diag(ExplicitObjectParam->getBeginLoc(), 11286 diag::err_explicit_object_parameter_nonmember) 11287 << D.getSourceRange() << /*virtual=*/1 << IsLambda; 11288 D.setInvalidType(); 11289 } 11290 11291 // Friend declarations require some care. Consider: 11292 // 11293 // namespace N { 11294 // struct A{}; 11295 // int f(A); 11296 // } 11297 // 11298 // struct S { 11299 // struct T { 11300 // int f(this T); 11301 // }; 11302 // 11303 // friend int T::f(this T); // Allow this. 11304 // friend int f(this S); // But disallow this. 11305 // friend int N::f(this A); // And disallow this. 11306 // }; 11307 // 11308 // Here, it seems to suffice to check whether the scope 11309 // specifier designates a class type. 11310 if (D.getDeclSpec().isFriendSpecified() && 11311 !isa_and_present<CXXRecordDecl>( 11312 computeDeclContext(D.getCXXScopeSpec()))) { 11313 Diag(ExplicitObjectParam->getBeginLoc(), 11314 diag::err_explicit_object_parameter_nonmember) 11315 << D.getSourceRange() << /*non-member=*/2 << IsLambda; 11316 D.setInvalidType(); 11317 } 11318 11319 if (IsLambda && FTI.hasMutableQualifier()) { 11320 Diag(ExplicitObjectParam->getBeginLoc(), 11321 diag::err_explicit_object_parameter_mutable) 11322 << D.getSourceRange(); 11323 } 11324 11325 if (IsLambda) 11326 return; 11327 11328 if (!DC || !DC->isRecord()) { 11329 assert(D.isInvalidType() && "Explicit object parameter in non-member " 11330 "should have been diagnosed already"); 11331 return; 11332 } 11333 11334 // CWG2674: constructors and destructors cannot have explicit parameters. 11335 if (Name.getNameKind() == DeclarationName::CXXConstructorName || 11336 Name.getNameKind() == DeclarationName::CXXDestructorName) { 11337 Diag(ExplicitObjectParam->getBeginLoc(), 11338 diag::err_explicit_object_parameter_constructor) 11339 << (Name.getNameKind() == DeclarationName::CXXDestructorName) 11340 << D.getSourceRange(); 11341 D.setInvalidType(); 11342 } 11343 } 11344 11345 namespace { 11346 /// Utility class to accumulate and print a diagnostic listing the invalid 11347 /// specifier(s) on a declaration. 11348 struct BadSpecifierDiagnoser { 11349 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 11350 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 11351 ~BadSpecifierDiagnoser() { 11352 Diagnostic << Specifiers; 11353 } 11354 11355 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 11356 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 11357 } 11358 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 11359 return check(SpecLoc, 11360 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 11361 } 11362 void check(SourceLocation SpecLoc, const char *Spec) { 11363 if (SpecLoc.isInvalid()) return; 11364 Diagnostic << SourceRange(SpecLoc, SpecLoc); 11365 if (!Specifiers.empty()) Specifiers += " "; 11366 Specifiers += Spec; 11367 } 11368 11369 Sema &S; 11370 Sema::SemaDiagnosticBuilder Diagnostic; 11371 std::string Specifiers; 11372 }; 11373 } 11374 11375 bool Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 11376 StorageClass &SC) { 11377 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 11378 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 11379 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 11380 11381 // C++ [temp.deduct.guide]p3: 11382 // A deduction-gide shall be declared in the same scope as the 11383 // corresponding class template. 11384 if (!CurContext->getRedeclContext()->Equals( 11385 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 11386 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 11387 << GuidedTemplateDecl; 11388 NoteTemplateLocation(*GuidedTemplateDecl); 11389 } 11390 11391 auto &DS = D.getMutableDeclSpec(); 11392 // We leave 'friend' and 'virtual' to be rejected in the normal way. 11393 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 11394 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 11395 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 11396 BadSpecifierDiagnoser Diagnoser( 11397 *this, D.getIdentifierLoc(), 11398 diag::err_deduction_guide_invalid_specifier); 11399 11400 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 11401 DS.ClearStorageClassSpecs(); 11402 SC = SC_None; 11403 11404 // 'explicit' is permitted. 11405 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 11406 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 11407 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 11408 DS.ClearConstexprSpec(); 11409 11410 Diagnoser.check(DS.getConstSpecLoc(), "const"); 11411 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 11412 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 11413 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 11414 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 11415 DS.ClearTypeQualifiers(); 11416 11417 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 11418 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 11419 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 11420 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 11421 DS.ClearTypeSpecType(); 11422 } 11423 11424 if (D.isInvalidType()) 11425 return true; 11426 11427 // Check the declarator is simple enough. 11428 bool FoundFunction = false; 11429 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 11430 if (Chunk.Kind == DeclaratorChunk::Paren) 11431 continue; 11432 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 11433 Diag(D.getDeclSpec().getBeginLoc(), 11434 diag::err_deduction_guide_with_complex_decl) 11435 << D.getSourceRange(); 11436 break; 11437 } 11438 if (!Chunk.Fun.hasTrailingReturnType()) 11439 return Diag(D.getName().getBeginLoc(), 11440 diag::err_deduction_guide_no_trailing_return_type); 11441 11442 // Check that the return type is written as a specialization of 11443 // the template specified as the deduction-guide's name. 11444 // The template name may not be qualified. [temp.deduct.guide] 11445 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 11446 TypeSourceInfo *TSI = nullptr; 11447 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 11448 assert(TSI && "deduction guide has valid type but invalid return type?"); 11449 bool AcceptableReturnType = false; 11450 bool MightInstantiateToSpecialization = false; 11451 if (auto RetTST = 11452 TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) { 11453 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 11454 bool TemplateMatches = 11455 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 11456 11457 const QualifiedTemplateName *Qualifiers = 11458 SpecifiedName.getAsQualifiedTemplateName(); 11459 assert(Qualifiers && "expected QualifiedTemplate"); 11460 bool SimplyWritten = !Qualifiers->hasTemplateKeyword() && 11461 Qualifiers->getQualifier() == nullptr; 11462 if (SimplyWritten && TemplateMatches) 11463 AcceptableReturnType = true; 11464 else { 11465 // This could still instantiate to the right type, unless we know it 11466 // names the wrong class template. 11467 auto *TD = SpecifiedName.getAsTemplateDecl(); 11468 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 11469 !TemplateMatches); 11470 } 11471 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 11472 MightInstantiateToSpecialization = true; 11473 } 11474 11475 if (!AcceptableReturnType) 11476 return Diag(TSI->getTypeLoc().getBeginLoc(), 11477 diag::err_deduction_guide_bad_trailing_return_type) 11478 << GuidedTemplate << TSI->getType() 11479 << MightInstantiateToSpecialization 11480 << TSI->getTypeLoc().getSourceRange(); 11481 11482 // Keep going to check that we don't have any inner declarator pieces (we 11483 // could still have a function returning a pointer to a function). 11484 FoundFunction = true; 11485 } 11486 11487 if (D.isFunctionDefinition()) 11488 // we can still create a valid deduction guide here. 11489 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 11490 return false; 11491 } 11492 11493 //===----------------------------------------------------------------------===// 11494 // Namespace Handling 11495 //===----------------------------------------------------------------------===// 11496 11497 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 11498 /// reopened. 11499 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 11500 SourceLocation Loc, 11501 IdentifierInfo *II, bool *IsInline, 11502 NamespaceDecl *PrevNS) { 11503 assert(*IsInline != PrevNS->isInline()); 11504 11505 // 'inline' must appear on the original definition, but not necessarily 11506 // on all extension definitions, so the note should point to the first 11507 // definition to avoid confusion. 11508 PrevNS = PrevNS->getFirstDecl(); 11509 11510 if (PrevNS->isInline()) 11511 // The user probably just forgot the 'inline', so suggest that it 11512 // be added back. 11513 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 11514 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 11515 else 11516 S.Diag(Loc, diag::err_inline_namespace_mismatch); 11517 11518 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 11519 *IsInline = PrevNS->isInline(); 11520 } 11521 11522 /// ActOnStartNamespaceDef - This is called at the start of a namespace 11523 /// definition. 11524 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, 11525 SourceLocation InlineLoc, 11526 SourceLocation NamespaceLoc, 11527 SourceLocation IdentLoc, IdentifierInfo *II, 11528 SourceLocation LBrace, 11529 const ParsedAttributesView &AttrList, 11530 UsingDirectiveDecl *&UD, bool IsNested) { 11531 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 11532 // For anonymous namespace, take the location of the left brace. 11533 SourceLocation Loc = II ? IdentLoc : LBrace; 11534 bool IsInline = InlineLoc.isValid(); 11535 bool IsInvalid = false; 11536 bool IsStd = false; 11537 bool AddToKnown = false; 11538 Scope *DeclRegionScope = NamespcScope->getParent(); 11539 11540 NamespaceDecl *PrevNS = nullptr; 11541 if (II) { 11542 // C++ [namespace.std]p7: 11543 // A translation unit shall not declare namespace std to be an inline 11544 // namespace (9.8.2). 11545 // 11546 // Precondition: the std namespace is in the file scope and is declared to 11547 // be inline 11548 auto DiagnoseInlineStdNS = [&]() { 11549 assert(IsInline && II->isStr("std") && 11550 CurContext->getRedeclContext()->isTranslationUnit() && 11551 "Precondition of DiagnoseInlineStdNS not met"); 11552 Diag(InlineLoc, diag::err_inline_namespace_std) 11553 << SourceRange(InlineLoc, InlineLoc.getLocWithOffset(6)); 11554 IsInline = false; 11555 }; 11556 // C++ [namespace.def]p2: 11557 // The identifier in an original-namespace-definition shall not 11558 // have been previously defined in the declarative region in 11559 // which the original-namespace-definition appears. The 11560 // identifier in an original-namespace-definition is the name of 11561 // the namespace. Subsequently in that declarative region, it is 11562 // treated as an original-namespace-name. 11563 // 11564 // Since namespace names are unique in their scope, and we don't 11565 // look through using directives, just look for any ordinary names 11566 // as if by qualified name lookup. 11567 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 11568 RedeclarationKind::ForExternalRedeclaration); 11569 LookupQualifiedName(R, CurContext->getRedeclContext()); 11570 NamedDecl *PrevDecl = 11571 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 11572 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 11573 11574 if (PrevNS) { 11575 // This is an extended namespace definition. 11576 if (IsInline && II->isStr("std") && 11577 CurContext->getRedeclContext()->isTranslationUnit()) 11578 DiagnoseInlineStdNS(); 11579 else if (IsInline != PrevNS->isInline()) 11580 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 11581 &IsInline, PrevNS); 11582 } else if (PrevDecl) { 11583 // This is an invalid name redefinition. 11584 Diag(Loc, diag::err_redefinition_different_kind) 11585 << II; 11586 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11587 IsInvalid = true; 11588 // Continue on to push Namespc as current DeclContext and return it. 11589 } else if (II->isStr("std") && 11590 CurContext->getRedeclContext()->isTranslationUnit()) { 11591 if (IsInline) 11592 DiagnoseInlineStdNS(); 11593 // This is the first "real" definition of the namespace "std", so update 11594 // our cache of the "std" namespace to point at this definition. 11595 PrevNS = getStdNamespace(); 11596 IsStd = true; 11597 AddToKnown = !IsInline; 11598 } else { 11599 // We've seen this namespace for the first time. 11600 AddToKnown = !IsInline; 11601 } 11602 } else { 11603 // Anonymous namespaces. 11604 11605 // Determine whether the parent already has an anonymous namespace. 11606 DeclContext *Parent = CurContext->getRedeclContext(); 11607 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11608 PrevNS = TU->getAnonymousNamespace(); 11609 } else { 11610 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 11611 PrevNS = ND->getAnonymousNamespace(); 11612 } 11613 11614 if (PrevNS && IsInline != PrevNS->isInline()) 11615 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 11616 &IsInline, PrevNS); 11617 } 11618 11619 NamespaceDecl *Namespc = NamespaceDecl::Create( 11620 Context, CurContext, IsInline, StartLoc, Loc, II, PrevNS, IsNested); 11621 if (IsInvalid) 11622 Namespc->setInvalidDecl(); 11623 11624 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 11625 AddPragmaAttributes(DeclRegionScope, Namespc); 11626 ProcessAPINotes(Namespc); 11627 11628 // FIXME: Should we be merging attributes? 11629 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 11630 PushNamespaceVisibilityAttr(Attr, Loc); 11631 11632 if (IsStd) 11633 StdNamespace = Namespc; 11634 if (AddToKnown) 11635 KnownNamespaces[Namespc] = false; 11636 11637 if (II) { 11638 PushOnScopeChains(Namespc, DeclRegionScope); 11639 } else { 11640 // Link the anonymous namespace into its parent. 11641 DeclContext *Parent = CurContext->getRedeclContext(); 11642 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11643 TU->setAnonymousNamespace(Namespc); 11644 } else { 11645 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 11646 } 11647 11648 CurContext->addDecl(Namespc); 11649 11650 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 11651 // behaves as if it were replaced by 11652 // namespace unique { /* empty body */ } 11653 // using namespace unique; 11654 // namespace unique { namespace-body } 11655 // where all occurrences of 'unique' in a translation unit are 11656 // replaced by the same identifier and this identifier differs 11657 // from all other identifiers in the entire program. 11658 11659 // We just create the namespace with an empty name and then add an 11660 // implicit using declaration, just like the standard suggests. 11661 // 11662 // CodeGen enforces the "universally unique" aspect by giving all 11663 // declarations semantically contained within an anonymous 11664 // namespace internal linkage. 11665 11666 if (!PrevNS) { 11667 UD = UsingDirectiveDecl::Create(Context, Parent, 11668 /* 'using' */ LBrace, 11669 /* 'namespace' */ SourceLocation(), 11670 /* qualifier */ NestedNameSpecifierLoc(), 11671 /* identifier */ SourceLocation(), 11672 Namespc, 11673 /* Ancestor */ Parent); 11674 UD->setImplicit(); 11675 Parent->addDecl(UD); 11676 } 11677 } 11678 11679 ActOnDocumentableDecl(Namespc); 11680 11681 // Although we could have an invalid decl (i.e. the namespace name is a 11682 // redefinition), push it as current DeclContext and try to continue parsing. 11683 // FIXME: We should be able to push Namespc here, so that the each DeclContext 11684 // for the namespace has the declarations that showed up in that particular 11685 // namespace definition. 11686 PushDeclContext(NamespcScope, Namespc); 11687 return Namespc; 11688 } 11689 11690 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 11691 /// is a namespace alias, returns the namespace it points to. 11692 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 11693 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 11694 return AD->getNamespace(); 11695 return dyn_cast_or_null<NamespaceDecl>(D); 11696 } 11697 11698 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 11699 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 11700 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 11701 Namespc->setRBraceLoc(RBrace); 11702 PopDeclContext(); 11703 if (Namespc->hasAttr<VisibilityAttr>()) 11704 PopPragmaVisibility(true, RBrace); 11705 // If this namespace contains an export-declaration, export it now. 11706 if (DeferredExportedNamespaces.erase(Namespc)) 11707 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 11708 } 11709 11710 CXXRecordDecl *Sema::getStdBadAlloc() const { 11711 return cast_or_null<CXXRecordDecl>( 11712 StdBadAlloc.get(Context.getExternalSource())); 11713 } 11714 11715 EnumDecl *Sema::getStdAlignValT() const { 11716 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 11717 } 11718 11719 NamespaceDecl *Sema::getStdNamespace() const { 11720 return cast_or_null<NamespaceDecl>( 11721 StdNamespace.get(Context.getExternalSource())); 11722 } 11723 namespace { 11724 11725 enum UnsupportedSTLSelect { 11726 USS_InvalidMember, 11727 USS_MissingMember, 11728 USS_NonTrivial, 11729 USS_Other 11730 }; 11731 11732 struct InvalidSTLDiagnoser { 11733 Sema &S; 11734 SourceLocation Loc; 11735 QualType TyForDiags; 11736 11737 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11738 const VarDecl *VD = nullptr) { 11739 { 11740 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11741 << TyForDiags << ((int)Sel); 11742 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11743 assert(!Name.empty()); 11744 D << Name; 11745 } 11746 } 11747 if (Sel == USS_InvalidMember) { 11748 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11749 << VD << VD->getSourceRange(); 11750 } 11751 return QualType(); 11752 } 11753 }; 11754 } // namespace 11755 11756 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11757 SourceLocation Loc, 11758 ComparisonCategoryUsage Usage) { 11759 assert(getLangOpts().CPlusPlus && 11760 "Looking for comparison category type outside of C++."); 11761 11762 // Use an elaborated type for diagnostics which has a name containing the 11763 // prepended 'std' namespace but not any inline namespace names. 11764 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11765 auto *NNS = 11766 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11767 return Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS, 11768 Info->getType()); 11769 }; 11770 11771 // Check if we've already successfully checked the comparison category type 11772 // before. If so, skip checking it again. 11773 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11774 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11775 // The only thing we need to check is that the type has a reachable 11776 // definition in the current context. 11777 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11778 return QualType(); 11779 11780 return Info->getType(); 11781 } 11782 11783 // If lookup failed 11784 if (!Info) { 11785 std::string NameForDiags = "std::"; 11786 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11787 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11788 << NameForDiags << (int)Usage; 11789 return QualType(); 11790 } 11791 11792 assert(Info->Kind == Kind); 11793 assert(Info->Record); 11794 11795 // Update the Record decl in case we encountered a forward declaration on our 11796 // first pass. FIXME: This is a bit of a hack. 11797 if (Info->Record->hasDefinition()) 11798 Info->Record = Info->Record->getDefinition(); 11799 11800 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11801 return QualType(); 11802 11803 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11804 11805 if (!Info->Record->isTriviallyCopyable()) 11806 return UnsupportedSTLError(USS_NonTrivial); 11807 11808 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11809 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11810 // Tolerate empty base classes. 11811 if (Base->isEmpty()) 11812 continue; 11813 // Reject STL implementations which have at least one non-empty base. 11814 return UnsupportedSTLError(); 11815 } 11816 11817 // Check that the STL has implemented the types using a single integer field. 11818 // This expectation allows better codegen for builtin operators. We require: 11819 // (1) The class has exactly one field. 11820 // (2) The field is an integral or enumeration type. 11821 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11822 if (std::distance(FIt, FEnd) != 1 || 11823 !FIt->getType()->isIntegralOrEnumerationType()) { 11824 return UnsupportedSTLError(); 11825 } 11826 11827 // Build each of the require values and store them in Info. 11828 for (ComparisonCategoryResult CCR : 11829 ComparisonCategories::getPossibleResultsForType(Kind)) { 11830 StringRef MemName = ComparisonCategories::getResultString(CCR); 11831 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11832 11833 if (!ValInfo) 11834 return UnsupportedSTLError(USS_MissingMember, MemName); 11835 11836 VarDecl *VD = ValInfo->VD; 11837 assert(VD && "should not be null!"); 11838 11839 // Attempt to diagnose reasons why the STL definition of this type 11840 // might be foobar, including it failing to be a constant expression. 11841 // TODO Handle more ways the lookup or result can be invalid. 11842 if (!VD->isStaticDataMember() || 11843 !VD->isUsableInConstantExpressions(Context)) 11844 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11845 11846 // Attempt to evaluate the var decl as a constant expression and extract 11847 // the value of its first field as a ICE. If this fails, the STL 11848 // implementation is not supported. 11849 if (!ValInfo->hasValidIntValue()) 11850 return UnsupportedSTLError(); 11851 11852 MarkVariableReferenced(Loc, VD); 11853 } 11854 11855 // We've successfully built the required types and expressions. Update 11856 // the cache and return the newly cached value. 11857 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11858 return Info->getType(); 11859 } 11860 11861 NamespaceDecl *Sema::getOrCreateStdNamespace() { 11862 if (!StdNamespace) { 11863 // The "std" namespace has not yet been defined, so build one implicitly. 11864 StdNamespace = NamespaceDecl::Create( 11865 Context, Context.getTranslationUnitDecl(), 11866 /*Inline=*/false, SourceLocation(), SourceLocation(), 11867 &PP.getIdentifierTable().get("std"), 11868 /*PrevDecl=*/nullptr, /*Nested=*/false); 11869 getStdNamespace()->setImplicit(true); 11870 // We want the created NamespaceDecl to be available for redeclaration 11871 // lookups, but not for regular name lookups. 11872 Context.getTranslationUnitDecl()->addDecl(getStdNamespace()); 11873 getStdNamespace()->clearIdentifierNamespace(); 11874 } 11875 11876 return getStdNamespace(); 11877 } 11878 11879 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11880 assert(getLangOpts().CPlusPlus && 11881 "Looking for std::initializer_list outside of C++."); 11882 11883 // We're looking for implicit instantiations of 11884 // template <typename E> class std::initializer_list. 11885 11886 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11887 return false; 11888 11889 ClassTemplateDecl *Template = nullptr; 11890 const TemplateArgument *Arguments = nullptr; 11891 11892 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11893 11894 ClassTemplateSpecializationDecl *Specialization = 11895 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11896 if (!Specialization) 11897 return false; 11898 11899 Template = Specialization->getSpecializedTemplate(); 11900 Arguments = Specialization->getTemplateArgs().data(); 11901 } else { 11902 const TemplateSpecializationType *TST = nullptr; 11903 if (auto *ICN = Ty->getAs<InjectedClassNameType>()) 11904 TST = ICN->getInjectedTST(); 11905 else 11906 TST = Ty->getAs<TemplateSpecializationType>(); 11907 if (TST) { 11908 Template = dyn_cast_or_null<ClassTemplateDecl>( 11909 TST->getTemplateName().getAsTemplateDecl()); 11910 Arguments = TST->template_arguments().begin(); 11911 } 11912 } 11913 if (!Template) 11914 return false; 11915 11916 if (!StdInitializerList) { 11917 // Haven't recognized std::initializer_list yet, maybe this is it. 11918 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 11919 if (TemplateClass->getIdentifier() != 11920 &PP.getIdentifierTable().get("initializer_list") || 11921 !getStdNamespace()->InEnclosingNamespaceSetOf( 11922 TemplateClass->getDeclContext())) 11923 return false; 11924 // This is a template called std::initializer_list, but is it the right 11925 // template? 11926 TemplateParameterList *Params = Template->getTemplateParameters(); 11927 if (Params->getMinRequiredArguments() != 1) 11928 return false; 11929 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 11930 return false; 11931 11932 // It's the right template. 11933 StdInitializerList = Template; 11934 } 11935 11936 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 11937 return false; 11938 11939 // This is an instance of std::initializer_list. Find the argument type. 11940 if (Element) 11941 *Element = Arguments[0].getAsType(); 11942 return true; 11943 } 11944 11945 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 11946 NamespaceDecl *Std = S.getStdNamespace(); 11947 if (!Std) { 11948 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11949 return nullptr; 11950 } 11951 11952 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 11953 Loc, Sema::LookupOrdinaryName); 11954 if (!S.LookupQualifiedName(Result, Std)) { 11955 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11956 return nullptr; 11957 } 11958 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 11959 if (!Template) { 11960 Result.suppressDiagnostics(); 11961 // We found something weird. Complain about the first thing we found. 11962 NamedDecl *Found = *Result.begin(); 11963 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 11964 return nullptr; 11965 } 11966 11967 // We found some template called std::initializer_list. Now verify that it's 11968 // correct. 11969 TemplateParameterList *Params = Template->getTemplateParameters(); 11970 if (Params->getMinRequiredArguments() != 1 || 11971 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 11972 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 11973 return nullptr; 11974 } 11975 11976 return Template; 11977 } 11978 11979 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 11980 if (!StdInitializerList) { 11981 StdInitializerList = LookupStdInitializerList(*this, Loc); 11982 if (!StdInitializerList) 11983 return QualType(); 11984 } 11985 11986 TemplateArgumentListInfo Args(Loc, Loc); 11987 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 11988 Context.getTrivialTypeSourceInfo(Element, 11989 Loc))); 11990 return Context.getElaboratedType( 11991 ElaboratedTypeKeyword::None, 11992 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()), 11993 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 11994 } 11995 11996 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 11997 // C++ [dcl.init.list]p2: 11998 // A constructor is an initializer-list constructor if its first parameter 11999 // is of type std::initializer_list<E> or reference to possibly cv-qualified 12000 // std::initializer_list<E> for some type E, and either there are no other 12001 // parameters or else all other parameters have default arguments. 12002 if (!Ctor->hasOneParamOrDefaultArgs()) 12003 return false; 12004 12005 QualType ArgType = Ctor->getParamDecl(0)->getType(); 12006 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 12007 ArgType = RT->getPointeeType().getUnqualifiedType(); 12008 12009 return isStdInitializerList(ArgType, nullptr); 12010 } 12011 12012 /// Determine whether a using statement is in a context where it will be 12013 /// apply in all contexts. 12014 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 12015 switch (CurContext->getDeclKind()) { 12016 case Decl::TranslationUnit: 12017 return true; 12018 case Decl::LinkageSpec: 12019 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 12020 default: 12021 return false; 12022 } 12023 } 12024 12025 namespace { 12026 12027 // Callback to only accept typo corrections that are namespaces. 12028 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 12029 public: 12030 bool ValidateCandidate(const TypoCorrection &candidate) override { 12031 if (NamedDecl *ND = candidate.getCorrectionDecl()) 12032 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 12033 return false; 12034 } 12035 12036 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12037 return std::make_unique<NamespaceValidatorCCC>(*this); 12038 } 12039 }; 12040 12041 } 12042 12043 static void DiagnoseInvisibleNamespace(const TypoCorrection &Corrected, 12044 Sema &S) { 12045 auto *ND = cast<NamespaceDecl>(Corrected.getFoundDecl()); 12046 Module *M = ND->getOwningModule(); 12047 assert(M && "hidden namespace definition not in a module?"); 12048 12049 if (M->isExplicitGlobalModule()) 12050 S.Diag(Corrected.getCorrectionRange().getBegin(), 12051 diag::err_module_unimported_use_header) 12052 << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() 12053 << /*Header Name*/ false; 12054 else 12055 S.Diag(Corrected.getCorrectionRange().getBegin(), 12056 diag::err_module_unimported_use) 12057 << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() 12058 << M->getTopLevelModuleName(); 12059 } 12060 12061 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 12062 CXXScopeSpec &SS, 12063 SourceLocation IdentLoc, 12064 IdentifierInfo *Ident) { 12065 R.clear(); 12066 NamespaceValidatorCCC CCC{}; 12067 if (TypoCorrection Corrected = 12068 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 12069 Sema::CTK_ErrorRecovery)) { 12070 // Generally we find it is confusing more than helpful to diagnose the 12071 // invisible namespace. 12072 // See https://github.com/llvm/llvm-project/issues/73893. 12073 // 12074 // However, we should diagnose when the users are trying to using an 12075 // invisible namespace. So we handle the case specially here. 12076 if (isa_and_nonnull<NamespaceDecl>(Corrected.getFoundDecl()) && 12077 Corrected.requiresImport()) { 12078 DiagnoseInvisibleNamespace(Corrected, S); 12079 } else if (DeclContext *DC = S.computeDeclContext(SS, false)) { 12080 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 12081 bool DroppedSpecifier = 12082 Corrected.WillReplaceSpecifier() && Ident->getName() == CorrectedStr; 12083 S.diagnoseTypo(Corrected, 12084 S.PDiag(diag::err_using_directive_member_suggest) 12085 << Ident << DC << DroppedSpecifier << SS.getRange(), 12086 S.PDiag(diag::note_namespace_defined_here)); 12087 } else { 12088 S.diagnoseTypo(Corrected, 12089 S.PDiag(diag::err_using_directive_suggest) << Ident, 12090 S.PDiag(diag::note_namespace_defined_here)); 12091 } 12092 R.addDecl(Corrected.getFoundDecl()); 12093 return true; 12094 } 12095 return false; 12096 } 12097 12098 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 12099 SourceLocation NamespcLoc, CXXScopeSpec &SS, 12100 SourceLocation IdentLoc, 12101 IdentifierInfo *NamespcName, 12102 const ParsedAttributesView &AttrList) { 12103 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 12104 assert(NamespcName && "Invalid NamespcName."); 12105 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 12106 12107 // Get the innermost enclosing declaration scope. 12108 S = S->getDeclParent(); 12109 12110 UsingDirectiveDecl *UDir = nullptr; 12111 NestedNameSpecifier *Qualifier = nullptr; 12112 if (SS.isSet()) 12113 Qualifier = SS.getScopeRep(); 12114 12115 // Lookup namespace name. 12116 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 12117 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); 12118 if (R.isAmbiguous()) 12119 return nullptr; 12120 12121 if (R.empty()) { 12122 R.clear(); 12123 // Allow "using namespace std;" or "using namespace ::std;" even if 12124 // "std" hasn't been defined yet, for GCC compatibility. 12125 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 12126 NamespcName->isStr("std")) { 12127 Diag(IdentLoc, diag::ext_using_undefined_std); 12128 R.addDecl(getOrCreateStdNamespace()); 12129 R.resolveKind(); 12130 } 12131 // Otherwise, attempt typo correction. 12132 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 12133 } 12134 12135 if (!R.empty()) { 12136 NamedDecl *Named = R.getRepresentativeDecl(); 12137 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 12138 assert(NS && "expected namespace decl"); 12139 12140 // The use of a nested name specifier may trigger deprecation warnings. 12141 DiagnoseUseOfDecl(Named, IdentLoc); 12142 12143 // C++ [namespace.udir]p1: 12144 // A using-directive specifies that the names in the nominated 12145 // namespace can be used in the scope in which the 12146 // using-directive appears after the using-directive. During 12147 // unqualified name lookup (3.4.1), the names appear as if they 12148 // were declared in the nearest enclosing namespace which 12149 // contains both the using-directive and the nominated 12150 // namespace. [Note: in this context, "contains" means "contains 12151 // directly or indirectly". ] 12152 12153 // Find enclosing context containing both using-directive and 12154 // nominated namespace. 12155 DeclContext *CommonAncestor = NS; 12156 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 12157 CommonAncestor = CommonAncestor->getParent(); 12158 12159 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 12160 SS.getWithLocInContext(Context), 12161 IdentLoc, Named, CommonAncestor); 12162 12163 if (IsUsingDirectiveInToplevelContext(CurContext) && 12164 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 12165 Diag(IdentLoc, diag::warn_using_directive_in_header); 12166 } 12167 12168 PushUsingDirective(S, UDir); 12169 } else { 12170 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 12171 } 12172 12173 if (UDir) { 12174 ProcessDeclAttributeList(S, UDir, AttrList); 12175 ProcessAPINotes(UDir); 12176 } 12177 12178 return UDir; 12179 } 12180 12181 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 12182 // If the scope has an associated entity and the using directive is at 12183 // namespace or translation unit scope, add the UsingDirectiveDecl into 12184 // its lookup structure so qualified name lookup can find it. 12185 DeclContext *Ctx = S->getEntity(); 12186 if (Ctx && !Ctx->isFunctionOrMethod()) 12187 Ctx->addDecl(UDir); 12188 else 12189 // Otherwise, it is at block scope. The using-directives will affect lookup 12190 // only to the end of the scope. 12191 S->PushUsingDirective(UDir); 12192 } 12193 12194 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 12195 SourceLocation UsingLoc, 12196 SourceLocation TypenameLoc, CXXScopeSpec &SS, 12197 UnqualifiedId &Name, 12198 SourceLocation EllipsisLoc, 12199 const ParsedAttributesView &AttrList) { 12200 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 12201 12202 if (SS.isEmpty()) { 12203 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 12204 return nullptr; 12205 } 12206 12207 switch (Name.getKind()) { 12208 case UnqualifiedIdKind::IK_ImplicitSelfParam: 12209 case UnqualifiedIdKind::IK_Identifier: 12210 case UnqualifiedIdKind::IK_OperatorFunctionId: 12211 case UnqualifiedIdKind::IK_LiteralOperatorId: 12212 case UnqualifiedIdKind::IK_ConversionFunctionId: 12213 break; 12214 12215 case UnqualifiedIdKind::IK_ConstructorName: 12216 case UnqualifiedIdKind::IK_ConstructorTemplateId: 12217 // C++11 inheriting constructors. 12218 Diag(Name.getBeginLoc(), 12219 getLangOpts().CPlusPlus11 12220 ? diag::warn_cxx98_compat_using_decl_constructor 12221 : diag::err_using_decl_constructor) 12222 << SS.getRange(); 12223 12224 if (getLangOpts().CPlusPlus11) break; 12225 12226 return nullptr; 12227 12228 case UnqualifiedIdKind::IK_DestructorName: 12229 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 12230 return nullptr; 12231 12232 case UnqualifiedIdKind::IK_TemplateId: 12233 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 12234 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 12235 return nullptr; 12236 12237 case UnqualifiedIdKind::IK_DeductionGuideName: 12238 llvm_unreachable("cannot parse qualified deduction guide name"); 12239 } 12240 12241 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 12242 DeclarationName TargetName = TargetNameInfo.getName(); 12243 if (!TargetName) 12244 return nullptr; 12245 12246 // Warn about access declarations. 12247 if (UsingLoc.isInvalid()) { 12248 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 12249 ? diag::err_access_decl 12250 : diag::warn_access_decl_deprecated) 12251 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 12252 } 12253 12254 if (EllipsisLoc.isInvalid()) { 12255 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 12256 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 12257 return nullptr; 12258 } else { 12259 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 12260 !TargetNameInfo.containsUnexpandedParameterPack()) { 12261 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 12262 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 12263 EllipsisLoc = SourceLocation(); 12264 } 12265 } 12266 12267 NamedDecl *UD = 12268 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 12269 SS, TargetNameInfo, EllipsisLoc, AttrList, 12270 /*IsInstantiation*/ false, 12271 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); 12272 if (UD) 12273 PushOnScopeChains(UD, S, /*AddToContext*/ false); 12274 12275 return UD; 12276 } 12277 12278 Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12279 SourceLocation UsingLoc, 12280 SourceLocation EnumLoc, SourceRange TyLoc, 12281 const IdentifierInfo &II, ParsedType Ty, 12282 CXXScopeSpec *SS) { 12283 assert(!SS->isInvalid() && "ScopeSpec is invalid"); 12284 TypeSourceInfo *TSI = nullptr; 12285 SourceLocation IdentLoc = TyLoc.getBegin(); 12286 QualType EnumTy = GetTypeFromParser(Ty, &TSI); 12287 if (EnumTy.isNull()) { 12288 Diag(IdentLoc, SS && isDependentScopeSpecifier(*SS) 12289 ? diag::err_using_enum_is_dependent 12290 : diag::err_unknown_typename) 12291 << II.getName() 12292 << SourceRange(SS ? SS->getBeginLoc() : IdentLoc, TyLoc.getEnd()); 12293 return nullptr; 12294 } 12295 12296 if (EnumTy->isDependentType()) { 12297 Diag(IdentLoc, diag::err_using_enum_is_dependent); 12298 return nullptr; 12299 } 12300 12301 auto *Enum = dyn_cast_if_present<EnumDecl>(EnumTy->getAsTagDecl()); 12302 if (!Enum) { 12303 Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy; 12304 return nullptr; 12305 } 12306 12307 if (auto *Def = Enum->getDefinition()) 12308 Enum = Def; 12309 12310 if (TSI == nullptr) 12311 TSI = Context.getTrivialTypeSourceInfo(EnumTy, IdentLoc); 12312 12313 auto *UD = 12314 BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, IdentLoc, TSI, Enum); 12315 12316 if (UD) 12317 PushOnScopeChains(UD, S, /*AddToContext*/ false); 12318 12319 return UD; 12320 } 12321 12322 /// Determine whether a using declaration considers the given 12323 /// declarations as "equivalent", e.g., if they are redeclarations of 12324 /// the same entity or are both typedefs of the same type. 12325 static bool 12326 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 12327 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 12328 return true; 12329 12330 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 12331 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 12332 return Context.hasSameType(TD1->getUnderlyingType(), 12333 TD2->getUnderlyingType()); 12334 12335 // Two using_if_exists using-declarations are equivalent if both are 12336 // unresolved. 12337 if (isa<UnresolvedUsingIfExistsDecl>(D1) && 12338 isa<UnresolvedUsingIfExistsDecl>(D2)) 12339 return true; 12340 12341 return false; 12342 } 12343 12344 bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, 12345 const LookupResult &Previous, 12346 UsingShadowDecl *&PrevShadow) { 12347 // Diagnose finding a decl which is not from a base class of the 12348 // current class. We do this now because there are cases where this 12349 // function will silently decide not to build a shadow decl, which 12350 // will pre-empt further diagnostics. 12351 // 12352 // We don't need to do this in C++11 because we do the check once on 12353 // the qualifier. 12354 // 12355 // FIXME: diagnose the following if we care enough: 12356 // struct A { int foo; }; 12357 // struct B : A { using A::foo; }; 12358 // template <class T> struct C : A {}; 12359 // template <class T> struct D : C<T> { using B::foo; } // <--- 12360 // This is invalid (during instantiation) in C++03 because B::foo 12361 // resolves to the using decl in B, which is not a base class of D<T>. 12362 // We can't diagnose it immediately because C<T> is an unknown 12363 // specialization. The UsingShadowDecl in D<T> then points directly 12364 // to A::foo, which will look well-formed when we instantiate. 12365 // The right solution is to not collapse the shadow-decl chain. 12366 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) 12367 if (auto *Using = dyn_cast<UsingDecl>(BUD)) { 12368 DeclContext *OrigDC = Orig->getDeclContext(); 12369 12370 // Handle enums and anonymous structs. 12371 if (isa<EnumDecl>(OrigDC)) 12372 OrigDC = OrigDC->getParent(); 12373 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 12374 while (OrigRec->isAnonymousStructOrUnion()) 12375 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 12376 12377 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 12378 if (OrigDC == CurContext) { 12379 Diag(Using->getLocation(), 12380 diag::err_using_decl_nested_name_specifier_is_current_class) 12381 << Using->getQualifierLoc().getSourceRange(); 12382 Diag(Orig->getLocation(), diag::note_using_decl_target); 12383 Using->setInvalidDecl(); 12384 return true; 12385 } 12386 12387 Diag(Using->getQualifierLoc().getBeginLoc(), 12388 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12389 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) 12390 << Using->getQualifierLoc().getSourceRange(); 12391 Diag(Orig->getLocation(), diag::note_using_decl_target); 12392 Using->setInvalidDecl(); 12393 return true; 12394 } 12395 } 12396 12397 if (Previous.empty()) return false; 12398 12399 NamedDecl *Target = Orig; 12400 if (isa<UsingShadowDecl>(Target)) 12401 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12402 12403 // If the target happens to be one of the previous declarations, we 12404 // don't have a conflict. 12405 // 12406 // FIXME: but we might be increasing its access, in which case we 12407 // should redeclare it. 12408 NamedDecl *NonTag = nullptr, *Tag = nullptr; 12409 bool FoundEquivalentDecl = false; 12410 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 12411 I != E; ++I) { 12412 NamedDecl *D = (*I)->getUnderlyingDecl(); 12413 // We can have UsingDecls in our Previous results because we use the same 12414 // LookupResult for checking whether the UsingDecl itself is a valid 12415 // redeclaration. 12416 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) 12417 continue; 12418 12419 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 12420 // C++ [class.mem]p19: 12421 // If T is the name of a class, then [every named member other than 12422 // a non-static data member] shall have a name different from T 12423 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 12424 !isa<IndirectFieldDecl>(Target) && 12425 !isa<UnresolvedUsingValueDecl>(Target) && 12426 DiagnoseClassNameShadow( 12427 CurContext, 12428 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) 12429 return true; 12430 } 12431 12432 if (IsEquivalentForUsingDecl(Context, D, Target)) { 12433 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 12434 PrevShadow = Shadow; 12435 FoundEquivalentDecl = true; 12436 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 12437 // We don't conflict with an existing using shadow decl of an equivalent 12438 // declaration, but we're not a redeclaration of it. 12439 FoundEquivalentDecl = true; 12440 } 12441 12442 if (isVisible(D)) 12443 (isa<TagDecl>(D) ? Tag : NonTag) = D; 12444 } 12445 12446 if (FoundEquivalentDecl) 12447 return false; 12448 12449 // Always emit a diagnostic for a mismatch between an unresolved 12450 // using_if_exists and a resolved using declaration in either direction. 12451 if (isa<UnresolvedUsingIfExistsDecl>(Target) != 12452 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { 12453 if (!NonTag && !Tag) 12454 return false; 12455 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12456 Diag(Target->getLocation(), diag::note_using_decl_target); 12457 Diag((NonTag ? NonTag : Tag)->getLocation(), 12458 diag::note_using_decl_conflict); 12459 BUD->setInvalidDecl(); 12460 return true; 12461 } 12462 12463 if (FunctionDecl *FD = Target->getAsFunction()) { 12464 NamedDecl *OldDecl = nullptr; 12465 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 12466 /*IsForUsingDecl*/ true)) { 12467 case Ovl_Overload: 12468 return false; 12469 12470 case Ovl_NonFunction: 12471 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12472 break; 12473 12474 // We found a decl with the exact signature. 12475 case Ovl_Match: 12476 // If we're in a record, we want to hide the target, so we 12477 // return true (without a diagnostic) to tell the caller not to 12478 // build a shadow decl. 12479 if (CurContext->isRecord()) 12480 return true; 12481 12482 // If we're not in a record, this is an error. 12483 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12484 break; 12485 } 12486 12487 Diag(Target->getLocation(), diag::note_using_decl_target); 12488 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 12489 BUD->setInvalidDecl(); 12490 return true; 12491 } 12492 12493 // Target is not a function. 12494 12495 if (isa<TagDecl>(Target)) { 12496 // No conflict between a tag and a non-tag. 12497 if (!Tag) return false; 12498 12499 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12500 Diag(Target->getLocation(), diag::note_using_decl_target); 12501 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 12502 BUD->setInvalidDecl(); 12503 return true; 12504 } 12505 12506 // No conflict between a tag and a non-tag. 12507 if (!NonTag) return false; 12508 12509 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12510 Diag(Target->getLocation(), diag::note_using_decl_target); 12511 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 12512 BUD->setInvalidDecl(); 12513 return true; 12514 } 12515 12516 /// Determine whether a direct base class is a virtual base class. 12517 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 12518 if (!Derived->getNumVBases()) 12519 return false; 12520 for (auto &B : Derived->bases()) 12521 if (B.getType()->getAsCXXRecordDecl() == Base) 12522 return B.isVirtual(); 12523 llvm_unreachable("not a direct base class"); 12524 } 12525 12526 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, 12527 NamedDecl *Orig, 12528 UsingShadowDecl *PrevDecl) { 12529 // If we resolved to another shadow declaration, just coalesce them. 12530 NamedDecl *Target = Orig; 12531 if (isa<UsingShadowDecl>(Target)) { 12532 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12533 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 12534 } 12535 12536 NamedDecl *NonTemplateTarget = Target; 12537 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 12538 NonTemplateTarget = TargetTD->getTemplatedDecl(); 12539 12540 UsingShadowDecl *Shadow; 12541 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 12542 UsingDecl *Using = cast<UsingDecl>(BUD); 12543 bool IsVirtualBase = 12544 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 12545 Using->getQualifier()->getAsRecordDecl()); 12546 Shadow = ConstructorUsingShadowDecl::Create( 12547 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); 12548 } else { 12549 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), 12550 Target->getDeclName(), BUD, Target); 12551 } 12552 BUD->addShadowDecl(Shadow); 12553 12554 Shadow->setAccess(BUD->getAccess()); 12555 if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) 12556 Shadow->setInvalidDecl(); 12557 12558 Shadow->setPreviousDecl(PrevDecl); 12559 12560 if (S) 12561 PushOnScopeChains(Shadow, S); 12562 else 12563 CurContext->addDecl(Shadow); 12564 12565 12566 return Shadow; 12567 } 12568 12569 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 12570 if (Shadow->getDeclName().getNameKind() == 12571 DeclarationName::CXXConversionFunctionName) 12572 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 12573 12574 // Remove it from the DeclContext... 12575 Shadow->getDeclContext()->removeDecl(Shadow); 12576 12577 // ...and the scope, if applicable... 12578 if (S) { 12579 S->RemoveDecl(Shadow); 12580 IdResolver.RemoveDecl(Shadow); 12581 } 12582 12583 // ...and the using decl. 12584 Shadow->getIntroducer()->removeShadowDecl(Shadow); 12585 12586 // TODO: complain somehow if Shadow was used. It shouldn't 12587 // be possible for this to happen, because...? 12588 } 12589 12590 /// Find the base specifier for a base class with the given type. 12591 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 12592 QualType DesiredBase, 12593 bool &AnyDependentBases) { 12594 // Check whether the named type is a direct base class. 12595 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 12596 .getUnqualifiedType(); 12597 for (auto &Base : Derived->bases()) { 12598 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 12599 if (CanonicalDesiredBase == BaseType) 12600 return &Base; 12601 if (BaseType->isDependentType()) 12602 AnyDependentBases = true; 12603 } 12604 return nullptr; 12605 } 12606 12607 namespace { 12608 class UsingValidatorCCC final : public CorrectionCandidateCallback { 12609 public: 12610 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 12611 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 12612 : HasTypenameKeyword(HasTypenameKeyword), 12613 IsInstantiation(IsInstantiation), OldNNS(NNS), 12614 RequireMemberOf(RequireMemberOf) {} 12615 12616 bool ValidateCandidate(const TypoCorrection &Candidate) override { 12617 NamedDecl *ND = Candidate.getCorrectionDecl(); 12618 12619 // Keywords are not valid here. 12620 if (!ND || isa<NamespaceDecl>(ND)) 12621 return false; 12622 12623 // Completely unqualified names are invalid for a 'using' declaration. 12624 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 12625 return false; 12626 12627 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 12628 // reject. 12629 12630 if (RequireMemberOf) { 12631 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12632 if (FoundRecord && FoundRecord->isInjectedClassName()) { 12633 // No-one ever wants a using-declaration to name an injected-class-name 12634 // of a base class, unless they're declaring an inheriting constructor. 12635 ASTContext &Ctx = ND->getASTContext(); 12636 if (!Ctx.getLangOpts().CPlusPlus11) 12637 return false; 12638 QualType FoundType = Ctx.getRecordType(FoundRecord); 12639 12640 // Check that the injected-class-name is named as a member of its own 12641 // type; we don't want to suggest 'using Derived::Base;', since that 12642 // means something else. 12643 NestedNameSpecifier *Specifier = 12644 Candidate.WillReplaceSpecifier() 12645 ? Candidate.getCorrectionSpecifier() 12646 : OldNNS; 12647 if (!Specifier->getAsType() || 12648 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 12649 return false; 12650 12651 // Check that this inheriting constructor declaration actually names a 12652 // direct base class of the current class. 12653 bool AnyDependentBases = false; 12654 if (!findDirectBaseWithType(RequireMemberOf, 12655 Ctx.getRecordType(FoundRecord), 12656 AnyDependentBases) && 12657 !AnyDependentBases) 12658 return false; 12659 } else { 12660 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 12661 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 12662 return false; 12663 12664 // FIXME: Check that the base class member is accessible? 12665 } 12666 } else { 12667 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12668 if (FoundRecord && FoundRecord->isInjectedClassName()) 12669 return false; 12670 } 12671 12672 if (isa<TypeDecl>(ND)) 12673 return HasTypenameKeyword || !IsInstantiation; 12674 12675 return !HasTypenameKeyword; 12676 } 12677 12678 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12679 return std::make_unique<UsingValidatorCCC>(*this); 12680 } 12681 12682 private: 12683 bool HasTypenameKeyword; 12684 bool IsInstantiation; 12685 NestedNameSpecifier *OldNNS; 12686 CXXRecordDecl *RequireMemberOf; 12687 }; 12688 } // end anonymous namespace 12689 12690 void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { 12691 // It is really dumb that we have to do this. 12692 LookupResult::Filter F = Previous.makeFilter(); 12693 while (F.hasNext()) { 12694 NamedDecl *D = F.next(); 12695 if (!isDeclInScope(D, CurContext, S)) 12696 F.erase(); 12697 // If we found a local extern declaration that's not ordinarily visible, 12698 // and this declaration is being added to a non-block scope, ignore it. 12699 // We're only checking for scope conflicts here, not also for violations 12700 // of the linkage rules. 12701 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 12702 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 12703 F.erase(); 12704 } 12705 F.done(); 12706 } 12707 12708 NamedDecl *Sema::BuildUsingDeclaration( 12709 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 12710 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 12711 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 12712 const ParsedAttributesView &AttrList, bool IsInstantiation, 12713 bool IsUsingIfExists) { 12714 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 12715 SourceLocation IdentLoc = NameInfo.getLoc(); 12716 assert(IdentLoc.isValid() && "Invalid TargetName location."); 12717 12718 // FIXME: We ignore attributes for now. 12719 12720 // For an inheriting constructor declaration, the name of the using 12721 // declaration is the name of a constructor in this class, not in the 12722 // base class. 12723 DeclarationNameInfo UsingName = NameInfo; 12724 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 12725 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 12726 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12727 Context.getCanonicalType(Context.getRecordType(RD)))); 12728 12729 // Do the redeclaration lookup in the current scope. 12730 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 12731 RedeclarationKind::ForVisibleRedeclaration); 12732 Previous.setHideTags(false); 12733 if (S) { 12734 LookupName(Previous, S); 12735 12736 FilterUsingLookup(S, Previous); 12737 } else { 12738 assert(IsInstantiation && "no scope in non-instantiation"); 12739 if (CurContext->isRecord()) 12740 LookupQualifiedName(Previous, CurContext); 12741 else { 12742 // No redeclaration check is needed here; in non-member contexts we 12743 // diagnosed all possible conflicts with other using-declarations when 12744 // building the template: 12745 // 12746 // For a dependent non-type using declaration, the only valid case is 12747 // if we instantiate to a single enumerator. We check for conflicts 12748 // between shadow declarations we introduce, and we check in the template 12749 // definition for conflicts between a non-type using declaration and any 12750 // other declaration, which together covers all cases. 12751 // 12752 // A dependent typename using declaration will never successfully 12753 // instantiate, since it will always name a class member, so we reject 12754 // that in the template definition. 12755 } 12756 } 12757 12758 // Check for invalid redeclarations. 12759 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 12760 SS, IdentLoc, Previous)) 12761 return nullptr; 12762 12763 // 'using_if_exists' doesn't make sense on an inherited constructor. 12764 if (IsUsingIfExists && UsingName.getName().getNameKind() == 12765 DeclarationName::CXXConstructorName) { 12766 Diag(UsingLoc, diag::err_using_if_exists_on_ctor); 12767 return nullptr; 12768 } 12769 12770 DeclContext *LookupContext = computeDeclContext(SS); 12771 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12772 if (!LookupContext || EllipsisLoc.isValid()) { 12773 NamedDecl *D; 12774 // Dependent scope, or an unexpanded pack 12775 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, 12776 SS, NameInfo, IdentLoc)) 12777 return nullptr; 12778 12779 if (HasTypenameKeyword) { 12780 // FIXME: not all declaration name kinds are legal here 12781 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 12782 UsingLoc, TypenameLoc, 12783 QualifierLoc, 12784 IdentLoc, NameInfo.getName(), 12785 EllipsisLoc); 12786 } else { 12787 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 12788 QualifierLoc, NameInfo, EllipsisLoc); 12789 } 12790 D->setAccess(AS); 12791 CurContext->addDecl(D); 12792 ProcessDeclAttributeList(S, D, AttrList); 12793 return D; 12794 } 12795 12796 auto Build = [&](bool Invalid) { 12797 UsingDecl *UD = 12798 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 12799 UsingName, HasTypenameKeyword); 12800 UD->setAccess(AS); 12801 CurContext->addDecl(UD); 12802 ProcessDeclAttributeList(S, UD, AttrList); 12803 UD->setInvalidDecl(Invalid); 12804 return UD; 12805 }; 12806 auto BuildInvalid = [&]{ return Build(true); }; 12807 auto BuildValid = [&]{ return Build(false); }; 12808 12809 if (RequireCompleteDeclContext(SS, LookupContext)) 12810 return BuildInvalid(); 12811 12812 // Look up the target name. 12813 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12814 12815 // Unlike most lookups, we don't always want to hide tag 12816 // declarations: tag names are visible through the using declaration 12817 // even if hidden by ordinary names, *except* in a dependent context 12818 // where they may be used by two-phase lookup. 12819 if (!IsInstantiation) 12820 R.setHideTags(false); 12821 12822 // For the purposes of this lookup, we have a base object type 12823 // equal to that of the current context. 12824 if (CurContext->isRecord()) { 12825 R.setBaseObjectType( 12826 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12827 } 12828 12829 LookupQualifiedName(R, LookupContext); 12830 12831 // Validate the context, now we have a lookup 12832 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 12833 IdentLoc, &R)) 12834 return nullptr; 12835 12836 if (R.empty() && IsUsingIfExists) 12837 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, 12838 UsingName.getName()), 12839 AS_public); 12840 12841 // Try to correct typos if possible. If constructor name lookup finds no 12842 // results, that means the named class has no explicit constructors, and we 12843 // suppressed declaring implicit ones (probably because it's dependent or 12844 // invalid). 12845 if (R.empty() && 12846 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12847 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of 12848 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where 12849 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. 12850 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12851 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12852 CurContext->isStdNamespace() && 12853 isa<TranslationUnitDecl>(LookupContext) && 12854 getSourceManager().isInSystemHeader(UsingLoc)) 12855 return nullptr; 12856 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12857 dyn_cast<CXXRecordDecl>(CurContext)); 12858 if (TypoCorrection Corrected = 12859 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12860 CTK_ErrorRecovery)) { 12861 // We reject candidates where DroppedSpecifier == true, hence the 12862 // literal '0' below. 12863 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12864 << NameInfo.getName() << LookupContext << 0 12865 << SS.getRange()); 12866 12867 // If we picked a correction with no attached Decl we can't do anything 12868 // useful with it, bail out. 12869 NamedDecl *ND = Corrected.getCorrectionDecl(); 12870 if (!ND) 12871 return BuildInvalid(); 12872 12873 // If we corrected to an inheriting constructor, handle it as one. 12874 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12875 if (RD && RD->isInjectedClassName()) { 12876 // The parent of the injected class name is the class itself. 12877 RD = cast<CXXRecordDecl>(RD->getParent()); 12878 12879 // Fix up the information we'll use to build the using declaration. 12880 if (Corrected.WillReplaceSpecifier()) { 12881 NestedNameSpecifierLocBuilder Builder; 12882 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12883 QualifierLoc.getSourceRange()); 12884 QualifierLoc = Builder.getWithLocInContext(Context); 12885 } 12886 12887 // In this case, the name we introduce is the name of a derived class 12888 // constructor. 12889 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12890 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12891 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12892 UsingName.setNamedTypeInfo(nullptr); 12893 for (auto *Ctor : LookupConstructors(RD)) 12894 R.addDecl(Ctor); 12895 R.resolveKind(); 12896 } else { 12897 // FIXME: Pick up all the declarations if we found an overloaded 12898 // function. 12899 UsingName.setName(ND->getDeclName()); 12900 R.addDecl(ND); 12901 } 12902 } else { 12903 Diag(IdentLoc, diag::err_no_member) 12904 << NameInfo.getName() << LookupContext << SS.getRange(); 12905 return BuildInvalid(); 12906 } 12907 } 12908 12909 if (R.isAmbiguous()) 12910 return BuildInvalid(); 12911 12912 if (HasTypenameKeyword) { 12913 // If we asked for a typename and got a non-type decl, error out. 12914 if (!R.getAsSingle<TypeDecl>() && 12915 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { 12916 Diag(IdentLoc, diag::err_using_typename_non_type); 12917 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12918 Diag((*I)->getUnderlyingDecl()->getLocation(), 12919 diag::note_using_decl_target); 12920 return BuildInvalid(); 12921 } 12922 } else { 12923 // If we asked for a non-typename and we got a type, error out, 12924 // but only if this is an instantiation of an unresolved using 12925 // decl. Otherwise just silently find the type name. 12926 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 12927 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 12928 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 12929 return BuildInvalid(); 12930 } 12931 } 12932 12933 // C++14 [namespace.udecl]p6: 12934 // A using-declaration shall not name a namespace. 12935 if (R.getAsSingle<NamespaceDecl>()) { 12936 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 12937 << SS.getRange(); 12938 // Suggest using 'using namespace ...' instead. 12939 Diag(SS.getBeginLoc(), diag::note_namespace_using_decl) 12940 << FixItHint::CreateInsertion(SS.getBeginLoc(), "namespace "); 12941 return BuildInvalid(); 12942 } 12943 12944 UsingDecl *UD = BuildValid(); 12945 12946 // Some additional rules apply to inheriting constructors. 12947 if (UsingName.getName().getNameKind() == 12948 DeclarationName::CXXConstructorName) { 12949 // Suppress access diagnostics; the access check is instead performed at the 12950 // point of use for an inheriting constructor. 12951 R.suppressDiagnostics(); 12952 if (CheckInheritingConstructorUsingDecl(UD)) 12953 return UD; 12954 } 12955 12956 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 12957 UsingShadowDecl *PrevDecl = nullptr; 12958 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 12959 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 12960 } 12961 12962 return UD; 12963 } 12964 12965 NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12966 SourceLocation UsingLoc, 12967 SourceLocation EnumLoc, 12968 SourceLocation NameLoc, 12969 TypeSourceInfo *EnumType, 12970 EnumDecl *ED) { 12971 bool Invalid = false; 12972 12973 if (CurContext->getRedeclContext()->isRecord()) { 12974 /// In class scope, check if this is a duplicate, for better a diagnostic. 12975 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); 12976 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, 12977 RedeclarationKind::ForVisibleRedeclaration); 12978 12979 LookupName(Previous, S); 12980 12981 for (NamedDecl *D : Previous) 12982 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) 12983 if (UED->getEnumDecl() == ED) { 12984 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) 12985 << SourceRange(EnumLoc, NameLoc); 12986 Diag(D->getLocation(), diag::note_using_enum_decl) << 1; 12987 Invalid = true; 12988 break; 12989 } 12990 } 12991 12992 if (RequireCompleteEnumDecl(ED, NameLoc)) 12993 Invalid = true; 12994 12995 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, 12996 EnumLoc, NameLoc, EnumType); 12997 UD->setAccess(AS); 12998 CurContext->addDecl(UD); 12999 13000 if (Invalid) { 13001 UD->setInvalidDecl(); 13002 return UD; 13003 } 13004 13005 // Create the shadow decls for each enumerator 13006 for (EnumConstantDecl *EC : ED->enumerators()) { 13007 UsingShadowDecl *PrevDecl = nullptr; 13008 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); 13009 LookupResult Previous(*this, DNI, LookupOrdinaryName, 13010 RedeclarationKind::ForVisibleRedeclaration); 13011 LookupName(Previous, S); 13012 FilterUsingLookup(S, Previous); 13013 13014 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) 13015 BuildUsingShadowDecl(S, UD, EC, PrevDecl); 13016 } 13017 13018 return UD; 13019 } 13020 13021 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 13022 ArrayRef<NamedDecl *> Expansions) { 13023 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 13024 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 13025 isa<UsingPackDecl>(InstantiatedFrom)); 13026 13027 auto *UPD = 13028 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 13029 UPD->setAccess(InstantiatedFrom->getAccess()); 13030 CurContext->addDecl(UPD); 13031 return UPD; 13032 } 13033 13034 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 13035 assert(!UD->hasTypename() && "expecting a constructor name"); 13036 13037 const Type *SourceType = UD->getQualifier()->getAsType(); 13038 assert(SourceType && 13039 "Using decl naming constructor doesn't have type in scope spec."); 13040 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 13041 13042 // Check whether the named type is a direct base class. 13043 bool AnyDependentBases = false; 13044 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 13045 AnyDependentBases); 13046 if (!Base && !AnyDependentBases) { 13047 Diag(UD->getUsingLoc(), 13048 diag::err_using_decl_constructor_not_in_direct_base) 13049 << UD->getNameInfo().getSourceRange() 13050 << QualType(SourceType, 0) << TargetClass; 13051 UD->setInvalidDecl(); 13052 return true; 13053 } 13054 13055 if (Base) 13056 Base->setInheritConstructors(); 13057 13058 return false; 13059 } 13060 13061 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 13062 bool HasTypenameKeyword, 13063 const CXXScopeSpec &SS, 13064 SourceLocation NameLoc, 13065 const LookupResult &Prev) { 13066 NestedNameSpecifier *Qual = SS.getScopeRep(); 13067 13068 // C++03 [namespace.udecl]p8: 13069 // C++0x [namespace.udecl]p10: 13070 // A using-declaration is a declaration and can therefore be used 13071 // repeatedly where (and only where) multiple declarations are 13072 // allowed. 13073 // 13074 // That's in non-member contexts. 13075 if (!CurContext->getRedeclContext()->isRecord()) { 13076 // A dependent qualifier outside a class can only ever resolve to an 13077 // enumeration type. Therefore it conflicts with any other non-type 13078 // declaration in the same scope. 13079 // FIXME: How should we check for dependent type-type conflicts at block 13080 // scope? 13081 if (Qual->isDependent() && !HasTypenameKeyword) { 13082 for (auto *D : Prev) { 13083 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 13084 bool OldCouldBeEnumerator = 13085 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 13086 Diag(NameLoc, 13087 OldCouldBeEnumerator ? diag::err_redefinition 13088 : diag::err_redefinition_different_kind) 13089 << Prev.getLookupName(); 13090 Diag(D->getLocation(), diag::note_previous_definition); 13091 return true; 13092 } 13093 } 13094 } 13095 return false; 13096 } 13097 13098 const NestedNameSpecifier *CNNS = 13099 Context.getCanonicalNestedNameSpecifier(Qual); 13100 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 13101 NamedDecl *D = *I; 13102 13103 bool DTypename; 13104 NestedNameSpecifier *DQual; 13105 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 13106 DTypename = UD->hasTypename(); 13107 DQual = UD->getQualifier(); 13108 } else if (UnresolvedUsingValueDecl *UD 13109 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 13110 DTypename = false; 13111 DQual = UD->getQualifier(); 13112 } else if (UnresolvedUsingTypenameDecl *UD 13113 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 13114 DTypename = true; 13115 DQual = UD->getQualifier(); 13116 } else continue; 13117 13118 // using decls differ if one says 'typename' and the other doesn't. 13119 // FIXME: non-dependent using decls? 13120 if (HasTypenameKeyword != DTypename) continue; 13121 13122 // using decls differ if they name different scopes (but note that 13123 // template instantiation can cause this check to trigger when it 13124 // didn't before instantiation). 13125 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) 13126 continue; 13127 13128 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 13129 Diag(D->getLocation(), diag::note_using_decl) << 1; 13130 return true; 13131 } 13132 13133 return false; 13134 } 13135 13136 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, 13137 const CXXScopeSpec &SS, 13138 const DeclarationNameInfo &NameInfo, 13139 SourceLocation NameLoc, 13140 const LookupResult *R, const UsingDecl *UD) { 13141 DeclContext *NamedContext = computeDeclContext(SS); 13142 assert(bool(NamedContext) == (R || UD) && !(R && UD) && 13143 "resolvable context must have exactly one set of decls"); 13144 13145 // C++ 20 permits using an enumerator that does not have a class-hierarchy 13146 // relationship. 13147 bool Cxx20Enumerator = false; 13148 if (NamedContext) { 13149 EnumConstantDecl *EC = nullptr; 13150 if (R) 13151 EC = R->getAsSingle<EnumConstantDecl>(); 13152 else if (UD && UD->shadow_size() == 1) 13153 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); 13154 if (EC) 13155 Cxx20Enumerator = getLangOpts().CPlusPlus20; 13156 13157 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { 13158 // C++14 [namespace.udecl]p7: 13159 // A using-declaration shall not name a scoped enumerator. 13160 // C++20 p1099 permits enumerators. 13161 if (EC && R && ED->isScoped()) 13162 Diag(SS.getBeginLoc(), 13163 getLangOpts().CPlusPlus20 13164 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator 13165 : diag::ext_using_decl_scoped_enumerator) 13166 << SS.getRange(); 13167 13168 // We want to consider the scope of the enumerator 13169 NamedContext = ED->getDeclContext(); 13170 } 13171 } 13172 13173 if (!CurContext->isRecord()) { 13174 // C++03 [namespace.udecl]p3: 13175 // C++0x [namespace.udecl]p8: 13176 // A using-declaration for a class member shall be a member-declaration. 13177 // C++20 [namespace.udecl]p7 13178 // ... other than an enumerator ... 13179 13180 // If we weren't able to compute a valid scope, it might validly be a 13181 // dependent class or enumeration scope. If we have a 'typename' keyword, 13182 // the scope must resolve to a class type. 13183 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() 13184 : !HasTypename) 13185 return false; // OK 13186 13187 Diag(NameLoc, 13188 Cxx20Enumerator 13189 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator 13190 : diag::err_using_decl_can_not_refer_to_class_member) 13191 << SS.getRange(); 13192 13193 if (Cxx20Enumerator) 13194 return false; // OK 13195 13196 auto *RD = NamedContext 13197 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 13198 : nullptr; 13199 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { 13200 // See if there's a helpful fixit 13201 13202 if (!R) { 13203 // We will have already diagnosed the problem on the template 13204 // definition, Maybe we should do so again? 13205 } else if (R->getAsSingle<TypeDecl>()) { 13206 if (getLangOpts().CPlusPlus11) { 13207 // Convert 'using X::Y;' to 'using Y = X::Y;'. 13208 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 13209 << 0 // alias declaration 13210 << FixItHint::CreateInsertion(SS.getBeginLoc(), 13211 NameInfo.getName().getAsString() + 13212 " = "); 13213 } else { 13214 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 13215 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 13216 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 13217 << 1 // typedef declaration 13218 << FixItHint::CreateReplacement(UsingLoc, "typedef") 13219 << FixItHint::CreateInsertion( 13220 InsertLoc, " " + NameInfo.getName().getAsString()); 13221 } 13222 } else if (R->getAsSingle<VarDecl>()) { 13223 // Don't provide a fixit outside C++11 mode; we don't want to suggest 13224 // repeating the type of the static data member here. 13225 FixItHint FixIt; 13226 if (getLangOpts().CPlusPlus11) { 13227 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 13228 FixIt = FixItHint::CreateReplacement( 13229 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 13230 } 13231 13232 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 13233 << 2 // reference declaration 13234 << FixIt; 13235 } else if (R->getAsSingle<EnumConstantDecl>()) { 13236 // Don't provide a fixit outside C++11 mode; we don't want to suggest 13237 // repeating the type of the enumeration here, and we can't do so if 13238 // the type is anonymous. 13239 FixItHint FixIt; 13240 if (getLangOpts().CPlusPlus11) { 13241 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 13242 FixIt = FixItHint::CreateReplacement( 13243 UsingLoc, 13244 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 13245 } 13246 13247 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 13248 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 13249 << FixIt; 13250 } 13251 } 13252 13253 return true; // Fail 13254 } 13255 13256 // If the named context is dependent, we can't decide much. 13257 if (!NamedContext) { 13258 // FIXME: in C++0x, we can diagnose if we can prove that the 13259 // nested-name-specifier does not refer to a base class, which is 13260 // still possible in some cases. 13261 13262 // Otherwise we have to conservatively report that things might be 13263 // okay. 13264 return false; 13265 } 13266 13267 // The current scope is a record. 13268 if (!NamedContext->isRecord()) { 13269 // Ideally this would point at the last name in the specifier, 13270 // but we don't have that level of source info. 13271 Diag(SS.getBeginLoc(), 13272 Cxx20Enumerator 13273 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator 13274 : diag::err_using_decl_nested_name_specifier_is_not_class) 13275 << SS.getScopeRep() << SS.getRange(); 13276 13277 if (Cxx20Enumerator) 13278 return false; // OK 13279 13280 return true; 13281 } 13282 13283 if (!NamedContext->isDependentContext() && 13284 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 13285 return true; 13286 13287 if (getLangOpts().CPlusPlus11) { 13288 // C++11 [namespace.udecl]p3: 13289 // In a using-declaration used as a member-declaration, the 13290 // nested-name-specifier shall name a base class of the class 13291 // being defined. 13292 13293 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 13294 cast<CXXRecordDecl>(NamedContext))) { 13295 13296 if (Cxx20Enumerator) { 13297 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) 13298 << SS.getRange(); 13299 return false; 13300 } 13301 13302 if (CurContext == NamedContext) { 13303 Diag(SS.getBeginLoc(), 13304 diag::err_using_decl_nested_name_specifier_is_current_class) 13305 << SS.getRange(); 13306 return !getLangOpts().CPlusPlus20; 13307 } 13308 13309 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 13310 Diag(SS.getBeginLoc(), 13311 diag::err_using_decl_nested_name_specifier_is_not_base_class) 13312 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) 13313 << SS.getRange(); 13314 } 13315 return true; 13316 } 13317 13318 return false; 13319 } 13320 13321 // C++03 [namespace.udecl]p4: 13322 // A using-declaration used as a member-declaration shall refer 13323 // to a member of a base class of the class being defined [etc.]. 13324 13325 // Salient point: SS doesn't have to name a base class as long as 13326 // lookup only finds members from base classes. Therefore we can 13327 // diagnose here only if we can prove that can't happen, 13328 // i.e. if the class hierarchies provably don't intersect. 13329 13330 // TODO: it would be nice if "definitely valid" results were cached 13331 // in the UsingDecl and UsingShadowDecl so that these checks didn't 13332 // need to be repeated. 13333 13334 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 13335 auto Collect = [&Bases](const CXXRecordDecl *Base) { 13336 Bases.insert(Base); 13337 return true; 13338 }; 13339 13340 // Collect all bases. Return false if we find a dependent base. 13341 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 13342 return false; 13343 13344 // Returns true if the base is dependent or is one of the accumulated base 13345 // classes. 13346 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 13347 return !Bases.count(Base); 13348 }; 13349 13350 // Return false if the class has a dependent base or if it or one 13351 // of its bases is present in the base set of the current context. 13352 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 13353 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 13354 return false; 13355 13356 Diag(SS.getRange().getBegin(), 13357 diag::err_using_decl_nested_name_specifier_is_not_base_class) 13358 << SS.getScopeRep() 13359 << cast<CXXRecordDecl>(CurContext) 13360 << SS.getRange(); 13361 13362 return true; 13363 } 13364 13365 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 13366 MultiTemplateParamsArg TemplateParamLists, 13367 SourceLocation UsingLoc, UnqualifiedId &Name, 13368 const ParsedAttributesView &AttrList, 13369 TypeResult Type, Decl *DeclFromDeclSpec) { 13370 // Get the innermost enclosing declaration scope. 13371 S = S->getDeclParent(); 13372 13373 if (Type.isInvalid()) 13374 return nullptr; 13375 13376 bool Invalid = false; 13377 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 13378 TypeSourceInfo *TInfo = nullptr; 13379 GetTypeFromParser(Type.get(), &TInfo); 13380 13381 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 13382 return nullptr; 13383 13384 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 13385 UPPC_DeclarationType)) { 13386 Invalid = true; 13387 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 13388 TInfo->getTypeLoc().getBeginLoc()); 13389 } 13390 13391 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 13392 TemplateParamLists.size() 13393 ? forRedeclarationInCurContext() 13394 : RedeclarationKind::ForVisibleRedeclaration); 13395 LookupName(Previous, S); 13396 13397 // Warn about shadowing the name of a template parameter. 13398 if (Previous.isSingleResult() && 13399 Previous.getFoundDecl()->isTemplateParameter()) { 13400 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 13401 Previous.clear(); 13402 } 13403 13404 assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier && 13405 "name in alias declaration must be an identifier"); 13406 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 13407 Name.StartLocation, 13408 Name.Identifier, TInfo); 13409 13410 NewTD->setAccess(AS); 13411 13412 if (Invalid) 13413 NewTD->setInvalidDecl(); 13414 13415 ProcessDeclAttributeList(S, NewTD, AttrList); 13416 AddPragmaAttributes(S, NewTD); 13417 ProcessAPINotes(NewTD); 13418 13419 CheckTypedefForVariablyModifiedType(S, NewTD); 13420 Invalid |= NewTD->isInvalidDecl(); 13421 13422 bool Redeclaration = false; 13423 13424 NamedDecl *NewND; 13425 if (TemplateParamLists.size()) { 13426 TypeAliasTemplateDecl *OldDecl = nullptr; 13427 TemplateParameterList *OldTemplateParams = nullptr; 13428 13429 if (TemplateParamLists.size() != 1) { 13430 Diag(UsingLoc, diag::err_alias_template_extra_headers) 13431 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 13432 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 13433 Invalid = true; 13434 } 13435 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 13436 13437 // Check that we can declare a template here. 13438 if (CheckTemplateDeclScope(S, TemplateParams)) 13439 return nullptr; 13440 13441 // Only consider previous declarations in the same scope. 13442 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 13443 /*ExplicitInstantiationOrSpecialization*/false); 13444 if (!Previous.empty()) { 13445 Redeclaration = true; 13446 13447 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 13448 if (!OldDecl && !Invalid) { 13449 Diag(UsingLoc, diag::err_redefinition_different_kind) 13450 << Name.Identifier; 13451 13452 NamedDecl *OldD = Previous.getRepresentativeDecl(); 13453 if (OldD->getLocation().isValid()) 13454 Diag(OldD->getLocation(), diag::note_previous_definition); 13455 13456 Invalid = true; 13457 } 13458 13459 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 13460 if (TemplateParameterListsAreEqual(TemplateParams, 13461 OldDecl->getTemplateParameters(), 13462 /*Complain=*/true, 13463 TPL_TemplateMatch)) 13464 OldTemplateParams = 13465 OldDecl->getMostRecentDecl()->getTemplateParameters(); 13466 else 13467 Invalid = true; 13468 13469 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 13470 if (!Invalid && 13471 !Context.hasSameType(OldTD->getUnderlyingType(), 13472 NewTD->getUnderlyingType())) { 13473 // FIXME: The C++0x standard does not clearly say this is ill-formed, 13474 // but we can't reasonably accept it. 13475 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 13476 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 13477 if (OldTD->getLocation().isValid()) 13478 Diag(OldTD->getLocation(), diag::note_previous_definition); 13479 Invalid = true; 13480 } 13481 } 13482 } 13483 13484 // Merge any previous default template arguments into our parameters, 13485 // and check the parameter list. 13486 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 13487 TPC_TypeAliasTemplate)) 13488 return nullptr; 13489 13490 TypeAliasTemplateDecl *NewDecl = 13491 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 13492 Name.Identifier, TemplateParams, 13493 NewTD); 13494 NewTD->setDescribedAliasTemplate(NewDecl); 13495 13496 NewDecl->setAccess(AS); 13497 13498 if (Invalid) 13499 NewDecl->setInvalidDecl(); 13500 else if (OldDecl) { 13501 NewDecl->setPreviousDecl(OldDecl); 13502 CheckRedeclarationInModule(NewDecl, OldDecl); 13503 } 13504 13505 NewND = NewDecl; 13506 } else { 13507 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 13508 setTagNameForLinkagePurposes(TD, NewTD); 13509 handleTagNumbering(TD, S); 13510 } 13511 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 13512 NewND = NewTD; 13513 } 13514 13515 PushOnScopeChains(NewND, S); 13516 ActOnDocumentableDecl(NewND); 13517 return NewND; 13518 } 13519 13520 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 13521 SourceLocation AliasLoc, 13522 IdentifierInfo *Alias, CXXScopeSpec &SS, 13523 SourceLocation IdentLoc, 13524 IdentifierInfo *Ident) { 13525 13526 // Lookup the namespace name. 13527 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 13528 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); 13529 13530 if (R.isAmbiguous()) 13531 return nullptr; 13532 13533 if (R.empty()) { 13534 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 13535 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 13536 return nullptr; 13537 } 13538 } 13539 assert(!R.isAmbiguous() && !R.empty()); 13540 NamedDecl *ND = R.getRepresentativeDecl(); 13541 13542 // Check if we have a previous declaration with the same name. 13543 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 13544 RedeclarationKind::ForVisibleRedeclaration); 13545 LookupName(PrevR, S); 13546 13547 // Check we're not shadowing a template parameter. 13548 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 13549 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 13550 PrevR.clear(); 13551 } 13552 13553 // Filter out any other lookup result from an enclosing scope. 13554 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 13555 /*AllowInlineNamespace*/false); 13556 13557 // Find the previous declaration and check that we can redeclare it. 13558 NamespaceAliasDecl *Prev = nullptr; 13559 if (PrevR.isSingleResult()) { 13560 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 13561 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 13562 // We already have an alias with the same name that points to the same 13563 // namespace; check that it matches. 13564 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 13565 Prev = AD; 13566 } else if (isVisible(PrevDecl)) { 13567 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 13568 << Alias; 13569 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 13570 << AD->getNamespace(); 13571 return nullptr; 13572 } 13573 } else if (isVisible(PrevDecl)) { 13574 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 13575 ? diag::err_redefinition 13576 : diag::err_redefinition_different_kind; 13577 Diag(AliasLoc, DiagID) << Alias; 13578 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 13579 return nullptr; 13580 } 13581 } 13582 13583 // The use of a nested name specifier may trigger deprecation warnings. 13584 DiagnoseUseOfDecl(ND, IdentLoc); 13585 13586 NamespaceAliasDecl *AliasDecl = 13587 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 13588 Alias, SS.getWithLocInContext(Context), 13589 IdentLoc, ND); 13590 if (Prev) 13591 AliasDecl->setPreviousDecl(Prev); 13592 13593 PushOnScopeChains(AliasDecl, S); 13594 return AliasDecl; 13595 } 13596 13597 namespace { 13598 struct SpecialMemberExceptionSpecInfo 13599 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 13600 SourceLocation Loc; 13601 Sema::ImplicitExceptionSpecification ExceptSpec; 13602 13603 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 13604 CXXSpecialMemberKind CSM, 13605 Sema::InheritedConstructorInfo *ICI, 13606 SourceLocation Loc) 13607 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 13608 13609 bool visitBase(CXXBaseSpecifier *Base); 13610 bool visitField(FieldDecl *FD); 13611 13612 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 13613 unsigned Quals); 13614 13615 void visitSubobjectCall(Subobject Subobj, 13616 Sema::SpecialMemberOverloadResult SMOR); 13617 }; 13618 } 13619 13620 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 13621 auto *RT = Base->getType()->getAs<RecordType>(); 13622 if (!RT) 13623 return false; 13624 13625 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 13626 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 13627 if (auto *BaseCtor = SMOR.getMethod()) { 13628 visitSubobjectCall(Base, BaseCtor); 13629 return false; 13630 } 13631 13632 visitClassSubobject(BaseClass, Base, 0); 13633 return false; 13634 } 13635 13636 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 13637 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 13638 FD->hasInClassInitializer()) { 13639 Expr *E = FD->getInClassInitializer(); 13640 if (!E) 13641 // FIXME: It's a little wasteful to build and throw away a 13642 // CXXDefaultInitExpr here. 13643 // FIXME: We should have a single context note pointing at Loc, and 13644 // this location should be MD->getLocation() instead, since that's 13645 // the location where we actually use the default init expression. 13646 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 13647 if (E) 13648 ExceptSpec.CalledExpr(E); 13649 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 13650 ->getAs<RecordType>()) { 13651 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 13652 FD->getType().getCVRQualifiers()); 13653 } 13654 return false; 13655 } 13656 13657 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 13658 Subobject Subobj, 13659 unsigned Quals) { 13660 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 13661 bool IsMutable = Field && Field->isMutable(); 13662 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 13663 } 13664 13665 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 13666 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 13667 // Note, if lookup fails, it doesn't matter what exception specification we 13668 // choose because the special member will be deleted. 13669 if (CXXMethodDecl *MD = SMOR.getMethod()) 13670 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 13671 } 13672 13673 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 13674 llvm::APSInt Result; 13675 ExprResult Converted = CheckConvertedConstantExpression( 13676 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 13677 ExplicitSpec.setExpr(Converted.get()); 13678 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 13679 ExplicitSpec.setKind(Result.getBoolValue() 13680 ? ExplicitSpecKind::ResolvedTrue 13681 : ExplicitSpecKind::ResolvedFalse); 13682 return true; 13683 } 13684 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 13685 return false; 13686 } 13687 13688 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 13689 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 13690 if (!ExplicitExpr->isTypeDependent()) 13691 tryResolveExplicitSpecifier(ES); 13692 return ES; 13693 } 13694 13695 static Sema::ImplicitExceptionSpecification 13696 ComputeDefaultedSpecialMemberExceptionSpec( 13697 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, 13698 Sema::InheritedConstructorInfo *ICI) { 13699 ComputingExceptionSpec CES(S, MD, Loc); 13700 13701 CXXRecordDecl *ClassDecl = MD->getParent(); 13702 13703 // C++ [except.spec]p14: 13704 // An implicitly declared special member function (Clause 12) shall have an 13705 // exception-specification. [...] 13706 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 13707 if (ClassDecl->isInvalidDecl()) 13708 return Info.ExceptSpec; 13709 13710 // FIXME: If this diagnostic fires, we're probably missing a check for 13711 // attempting to resolve an exception specification before it's known 13712 // at a higher level. 13713 if (S.RequireCompleteType(MD->getLocation(), 13714 S.Context.getRecordType(ClassDecl), 13715 diag::err_exception_spec_incomplete_type)) 13716 return Info.ExceptSpec; 13717 13718 // C++1z [except.spec]p7: 13719 // [Look for exceptions thrown by] a constructor selected [...] to 13720 // initialize a potentially constructed subobject, 13721 // C++1z [except.spec]p8: 13722 // The exception specification for an implicitly-declared destructor, or a 13723 // destructor without a noexcept-specifier, is potentially-throwing if and 13724 // only if any of the destructors for any of its potentially constructed 13725 // subojects is potentially throwing. 13726 // FIXME: We respect the first rule but ignore the "potentially constructed" 13727 // in the second rule to resolve a core issue (no number yet) that would have 13728 // us reject: 13729 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 13730 // struct B : A {}; 13731 // struct C : B { void f(); }; 13732 // ... due to giving B::~B() a non-throwing exception specification. 13733 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 13734 : Info.VisitAllBases); 13735 13736 return Info.ExceptSpec; 13737 } 13738 13739 namespace { 13740 /// RAII object to register a special member as being currently declared. 13741 struct DeclaringSpecialMember { 13742 Sema &S; 13743 Sema::SpecialMemberDecl D; 13744 Sema::ContextRAII SavedContext; 13745 bool WasAlreadyBeingDeclared; 13746 13747 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, CXXSpecialMemberKind CSM) 13748 : S(S), D(RD, CSM), SavedContext(S, RD) { 13749 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 13750 if (WasAlreadyBeingDeclared) 13751 // This almost never happens, but if it does, ensure that our cache 13752 // doesn't contain a stale result. 13753 S.SpecialMemberCache.clear(); 13754 else { 13755 // Register a note to be produced if we encounter an error while 13756 // declaring the special member. 13757 Sema::CodeSynthesisContext Ctx; 13758 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 13759 // FIXME: We don't have a location to use here. Using the class's 13760 // location maintains the fiction that we declare all special members 13761 // with the class, but (1) it's not clear that lying about that helps our 13762 // users understand what's going on, and (2) there may be outer contexts 13763 // on the stack (some of which are relevant) and printing them exposes 13764 // our lies. 13765 Ctx.PointOfInstantiation = RD->getLocation(); 13766 Ctx.Entity = RD; 13767 Ctx.SpecialMember = CSM; 13768 S.pushCodeSynthesisContext(Ctx); 13769 } 13770 } 13771 ~DeclaringSpecialMember() { 13772 if (!WasAlreadyBeingDeclared) { 13773 S.SpecialMembersBeingDeclared.erase(D); 13774 S.popCodeSynthesisContext(); 13775 } 13776 } 13777 13778 /// Are we already trying to declare this special member? 13779 bool isAlreadyBeingDeclared() const { 13780 return WasAlreadyBeingDeclared; 13781 } 13782 }; 13783 } 13784 13785 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 13786 // Look up any existing declarations, but don't trigger declaration of all 13787 // implicit special members with this name. 13788 DeclarationName Name = FD->getDeclName(); 13789 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 13790 RedeclarationKind::ForExternalRedeclaration); 13791 for (auto *D : FD->getParent()->lookup(Name)) 13792 if (auto *Acceptable = R.getAcceptableDecl(D)) 13793 R.addDecl(Acceptable); 13794 R.resolveKind(); 13795 R.suppressDiagnostics(); 13796 13797 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false, 13798 FD->isThisDeclarationADefinition()); 13799 } 13800 13801 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 13802 QualType ResultTy, 13803 ArrayRef<QualType> Args) { 13804 // Build an exception specification pointing back at this constructor. 13805 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 13806 13807 LangAS AS = getDefaultCXXMethodAddrSpace(); 13808 if (AS != LangAS::Default) { 13809 EPI.TypeQuals.addAddressSpace(AS); 13810 } 13811 13812 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 13813 SpecialMem->setType(QT); 13814 13815 // During template instantiation of implicit special member functions we need 13816 // a reliable TypeSourceInfo for the function prototype in order to allow 13817 // functions to be substituted. 13818 if (inTemplateInstantiation() && 13819 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) { 13820 TypeSourceInfo *TSI = 13821 Context.getTrivialTypeSourceInfo(SpecialMem->getType()); 13822 SpecialMem->setTypeSourceInfo(TSI); 13823 } 13824 } 13825 13826 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 13827 CXXRecordDecl *ClassDecl) { 13828 // C++ [class.ctor]p5: 13829 // A default constructor for a class X is a constructor of class X 13830 // that can be called without an argument. If there is no 13831 // user-declared constructor for class X, a default constructor is 13832 // implicitly declared. An implicitly-declared default constructor 13833 // is an inline public member of its class. 13834 assert(ClassDecl->needsImplicitDefaultConstructor() && 13835 "Should not build implicit default constructor!"); 13836 13837 DeclaringSpecialMember DSM(*this, ClassDecl, 13838 CXXSpecialMemberKind::DefaultConstructor); 13839 if (DSM.isAlreadyBeingDeclared()) 13840 return nullptr; 13841 13842 bool Constexpr = defaultedSpecialMemberIsConstexpr( 13843 *this, ClassDecl, CXXSpecialMemberKind::DefaultConstructor, false); 13844 13845 // Create the actual constructor declaration. 13846 CanQualType ClassType 13847 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13848 SourceLocation ClassLoc = ClassDecl->getLocation(); 13849 DeclarationName Name 13850 = Context.DeclarationNames.getCXXConstructorName(ClassType); 13851 DeclarationNameInfo NameInfo(Name, ClassLoc); 13852 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 13853 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 13854 /*TInfo=*/nullptr, ExplicitSpecifier(), 13855 getCurFPFeatures().isFPConstrained(), 13856 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 13857 Constexpr ? ConstexprSpecKind::Constexpr 13858 : ConstexprSpecKind::Unspecified); 13859 DefaultCon->setAccess(AS_public); 13860 DefaultCon->setDefaulted(); 13861 13862 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, std::nullopt); 13863 13864 if (getLangOpts().CUDA) 13865 CUDA().inferTargetForImplicitSpecialMember( 13866 ClassDecl, CXXSpecialMemberKind::DefaultConstructor, DefaultCon, 13867 /* ConstRHS */ false, 13868 /* Diagnose */ false); 13869 13870 // We don't need to use SpecialMemberIsTrivial here; triviality for default 13871 // constructors is easy to compute. 13872 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 13873 13874 // Note that we have declared this constructor. 13875 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 13876 13877 Scope *S = getScopeForContext(ClassDecl); 13878 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 13879 13880 if (ShouldDeleteSpecialMember(DefaultCon, 13881 CXXSpecialMemberKind::DefaultConstructor)) 13882 SetDeclDeleted(DefaultCon, ClassLoc); 13883 13884 if (S) 13885 PushOnScopeChains(DefaultCon, S, false); 13886 ClassDecl->addDecl(DefaultCon); 13887 13888 return DefaultCon; 13889 } 13890 13891 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 13892 CXXConstructorDecl *Constructor) { 13893 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 13894 !Constructor->doesThisDeclarationHaveABody() && 13895 !Constructor->isDeleted()) && 13896 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 13897 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13898 return; 13899 13900 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13901 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 13902 if (ClassDecl->isInvalidDecl()) { 13903 return; 13904 } 13905 13906 SynthesizedFunctionScope Scope(*this, Constructor); 13907 13908 // The exception specification is needed because we are defining the 13909 // function. 13910 ResolveExceptionSpec(CurrentLocation, 13911 Constructor->getType()->castAs<FunctionProtoType>()); 13912 MarkVTableUsed(CurrentLocation, ClassDecl); 13913 13914 // Add a context note for diagnostics produced after this point. 13915 Scope.addContextNote(CurrentLocation); 13916 13917 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 13918 Constructor->setInvalidDecl(); 13919 return; 13920 } 13921 13922 SourceLocation Loc = Constructor->getEndLoc().isValid() 13923 ? Constructor->getEndLoc() 13924 : Constructor->getLocation(); 13925 Constructor->setBody(new (Context) CompoundStmt(Loc)); 13926 Constructor->markUsed(Context); 13927 13928 if (ASTMutationListener *L = getASTMutationListener()) { 13929 L->CompletedImplicitDefinition(Constructor); 13930 } 13931 13932 DiagnoseUninitializedFields(*this, Constructor); 13933 } 13934 13935 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 13936 // Perform any delayed checks on exception specifications. 13937 CheckDelayedMemberExceptionSpecs(); 13938 } 13939 13940 /// Find or create the fake constructor we synthesize to model constructing an 13941 /// object of a derived class via a constructor of a base class. 13942 CXXConstructorDecl * 13943 Sema::findInheritingConstructor(SourceLocation Loc, 13944 CXXConstructorDecl *BaseCtor, 13945 ConstructorUsingShadowDecl *Shadow) { 13946 CXXRecordDecl *Derived = Shadow->getParent(); 13947 SourceLocation UsingLoc = Shadow->getLocation(); 13948 13949 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 13950 // For now we use the name of the base class constructor as a member of the 13951 // derived class to indicate a (fake) inherited constructor name. 13952 DeclarationName Name = BaseCtor->getDeclName(); 13953 13954 // Check to see if we already have a fake constructor for this inherited 13955 // constructor call. 13956 for (NamedDecl *Ctor : Derived->lookup(Name)) 13957 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 13958 ->getInheritedConstructor() 13959 .getConstructor(), 13960 BaseCtor)) 13961 return cast<CXXConstructorDecl>(Ctor); 13962 13963 DeclarationNameInfo NameInfo(Name, UsingLoc); 13964 TypeSourceInfo *TInfo = 13965 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 13966 FunctionProtoTypeLoc ProtoLoc = 13967 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 13968 13969 // Check the inherited constructor is valid and find the list of base classes 13970 // from which it was inherited. 13971 InheritedConstructorInfo ICI(*this, Loc, Shadow); 13972 13973 bool Constexpr = BaseCtor->isConstexpr() && 13974 defaultedSpecialMemberIsConstexpr( 13975 *this, Derived, CXXSpecialMemberKind::DefaultConstructor, 13976 false, BaseCtor, &ICI); 13977 13978 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 13979 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 13980 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 13981 /*isInline=*/true, 13982 /*isImplicitlyDeclared=*/true, 13983 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, 13984 InheritedConstructor(Shadow, BaseCtor), 13985 BaseCtor->getTrailingRequiresClause()); 13986 if (Shadow->isInvalidDecl()) 13987 DerivedCtor->setInvalidDecl(); 13988 13989 // Build an unevaluated exception specification for this fake constructor. 13990 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 13991 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 13992 EPI.ExceptionSpec.Type = EST_Unevaluated; 13993 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 13994 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 13995 FPT->getParamTypes(), EPI)); 13996 13997 // Build the parameter declarations. 13998 SmallVector<ParmVarDecl *, 16> ParamDecls; 13999 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 14000 TypeSourceInfo *TInfo = 14001 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 14002 ParmVarDecl *PD = ParmVarDecl::Create( 14003 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 14004 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 14005 PD->setScopeInfo(0, I); 14006 PD->setImplicit(); 14007 // Ensure attributes are propagated onto parameters (this matters for 14008 // format, pass_object_size, ...). 14009 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 14010 ParamDecls.push_back(PD); 14011 ProtoLoc.setParam(I, PD); 14012 } 14013 14014 // Set up the new constructor. 14015 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 14016 DerivedCtor->setAccess(BaseCtor->getAccess()); 14017 DerivedCtor->setParams(ParamDecls); 14018 Derived->addDecl(DerivedCtor); 14019 14020 if (ShouldDeleteSpecialMember(DerivedCtor, 14021 CXXSpecialMemberKind::DefaultConstructor, &ICI)) 14022 SetDeclDeleted(DerivedCtor, UsingLoc); 14023 14024 return DerivedCtor; 14025 } 14026 14027 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 14028 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 14029 Ctor->getInheritedConstructor().getShadowDecl()); 14030 ShouldDeleteSpecialMember(Ctor, CXXSpecialMemberKind::DefaultConstructor, 14031 &ICI, 14032 /*Diagnose*/ true); 14033 } 14034 14035 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 14036 CXXConstructorDecl *Constructor) { 14037 CXXRecordDecl *ClassDecl = Constructor->getParent(); 14038 assert(Constructor->getInheritedConstructor() && 14039 !Constructor->doesThisDeclarationHaveABody() && 14040 !Constructor->isDeleted()); 14041 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 14042 return; 14043 14044 // Initializations are performed "as if by a defaulted default constructor", 14045 // so enter the appropriate scope. 14046 SynthesizedFunctionScope Scope(*this, Constructor); 14047 14048 // The exception specification is needed because we are defining the 14049 // function. 14050 ResolveExceptionSpec(CurrentLocation, 14051 Constructor->getType()->castAs<FunctionProtoType>()); 14052 MarkVTableUsed(CurrentLocation, ClassDecl); 14053 14054 // Add a context note for diagnostics produced after this point. 14055 Scope.addContextNote(CurrentLocation); 14056 14057 ConstructorUsingShadowDecl *Shadow = 14058 Constructor->getInheritedConstructor().getShadowDecl(); 14059 CXXConstructorDecl *InheritedCtor = 14060 Constructor->getInheritedConstructor().getConstructor(); 14061 14062 // [class.inhctor.init]p1: 14063 // initialization proceeds as if a defaulted default constructor is used to 14064 // initialize the D object and each base class subobject from which the 14065 // constructor was inherited 14066 14067 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 14068 CXXRecordDecl *RD = Shadow->getParent(); 14069 SourceLocation InitLoc = Shadow->getLocation(); 14070 14071 // Build explicit initializers for all base classes from which the 14072 // constructor was inherited. 14073 SmallVector<CXXCtorInitializer*, 8> Inits; 14074 for (bool VBase : {false, true}) { 14075 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 14076 if (B.isVirtual() != VBase) 14077 continue; 14078 14079 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 14080 if (!BaseRD) 14081 continue; 14082 14083 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 14084 if (!BaseCtor.first) 14085 continue; 14086 14087 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 14088 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 14089 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 14090 14091 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 14092 Inits.push_back(new (Context) CXXCtorInitializer( 14093 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 14094 SourceLocation())); 14095 } 14096 } 14097 14098 // We now proceed as if for a defaulted default constructor, with the relevant 14099 // initializers replaced. 14100 14101 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 14102 Constructor->setInvalidDecl(); 14103 return; 14104 } 14105 14106 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 14107 Constructor->markUsed(Context); 14108 14109 if (ASTMutationListener *L = getASTMutationListener()) { 14110 L->CompletedImplicitDefinition(Constructor); 14111 } 14112 14113 DiagnoseUninitializedFields(*this, Constructor); 14114 } 14115 14116 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 14117 // C++ [class.dtor]p2: 14118 // If a class has no user-declared destructor, a destructor is 14119 // declared implicitly. An implicitly-declared destructor is an 14120 // inline public member of its class. 14121 assert(ClassDecl->needsImplicitDestructor()); 14122 14123 DeclaringSpecialMember DSM(*this, ClassDecl, 14124 CXXSpecialMemberKind::Destructor); 14125 if (DSM.isAlreadyBeingDeclared()) 14126 return nullptr; 14127 14128 bool Constexpr = defaultedSpecialMemberIsConstexpr( 14129 *this, ClassDecl, CXXSpecialMemberKind::Destructor, false); 14130 14131 // Create the actual destructor declaration. 14132 CanQualType ClassType 14133 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 14134 SourceLocation ClassLoc = ClassDecl->getLocation(); 14135 DeclarationName Name 14136 = Context.DeclarationNames.getCXXDestructorName(ClassType); 14137 DeclarationNameInfo NameInfo(Name, ClassLoc); 14138 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( 14139 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr, 14140 getCurFPFeatures().isFPConstrained(), 14141 /*isInline=*/true, 14142 /*isImplicitlyDeclared=*/true, 14143 Constexpr ? ConstexprSpecKind::Constexpr 14144 : ConstexprSpecKind::Unspecified); 14145 Destructor->setAccess(AS_public); 14146 Destructor->setDefaulted(); 14147 14148 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, std::nullopt); 14149 14150 if (getLangOpts().CUDA) 14151 CUDA().inferTargetForImplicitSpecialMember( 14152 ClassDecl, CXXSpecialMemberKind::Destructor, Destructor, 14153 /* ConstRHS */ false, 14154 /* Diagnose */ false); 14155 14156 // We don't need to use SpecialMemberIsTrivial here; triviality for 14157 // destructors is easy to compute. 14158 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 14159 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 14160 ClassDecl->hasTrivialDestructorForCall()); 14161 14162 // Note that we have declared this destructor. 14163 ++getASTContext().NumImplicitDestructorsDeclared; 14164 14165 Scope *S = getScopeForContext(ClassDecl); 14166 CheckImplicitSpecialMemberDeclaration(S, Destructor); 14167 14168 // We can't check whether an implicit destructor is deleted before we complete 14169 // the definition of the class, because its validity depends on the alignment 14170 // of the class. We'll check this from ActOnFields once the class is complete. 14171 if (ClassDecl->isCompleteDefinition() && 14172 ShouldDeleteSpecialMember(Destructor, CXXSpecialMemberKind::Destructor)) 14173 SetDeclDeleted(Destructor, ClassLoc); 14174 14175 // Introduce this destructor into its scope. 14176 if (S) 14177 PushOnScopeChains(Destructor, S, false); 14178 ClassDecl->addDecl(Destructor); 14179 14180 return Destructor; 14181 } 14182 14183 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 14184 CXXDestructorDecl *Destructor) { 14185 assert((Destructor->isDefaulted() && 14186 !Destructor->doesThisDeclarationHaveABody() && 14187 !Destructor->isDeleted()) && 14188 "DefineImplicitDestructor - call it for implicit default dtor"); 14189 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 14190 return; 14191 14192 CXXRecordDecl *ClassDecl = Destructor->getParent(); 14193 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 14194 14195 SynthesizedFunctionScope Scope(*this, Destructor); 14196 14197 // The exception specification is needed because we are defining the 14198 // function. 14199 ResolveExceptionSpec(CurrentLocation, 14200 Destructor->getType()->castAs<FunctionProtoType>()); 14201 MarkVTableUsed(CurrentLocation, ClassDecl); 14202 14203 // Add a context note for diagnostics produced after this point. 14204 Scope.addContextNote(CurrentLocation); 14205 14206 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 14207 Destructor->getParent()); 14208 14209 if (CheckDestructor(Destructor)) { 14210 Destructor->setInvalidDecl(); 14211 return; 14212 } 14213 14214 SourceLocation Loc = Destructor->getEndLoc().isValid() 14215 ? Destructor->getEndLoc() 14216 : Destructor->getLocation(); 14217 Destructor->setBody(new (Context) CompoundStmt(Loc)); 14218 Destructor->markUsed(Context); 14219 14220 if (ASTMutationListener *L = getASTMutationListener()) { 14221 L->CompletedImplicitDefinition(Destructor); 14222 } 14223 } 14224 14225 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 14226 CXXDestructorDecl *Destructor) { 14227 if (Destructor->isInvalidDecl()) 14228 return; 14229 14230 CXXRecordDecl *ClassDecl = Destructor->getParent(); 14231 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 14232 "implicit complete dtors unneeded outside MS ABI"); 14233 assert(ClassDecl->getNumVBases() > 0 && 14234 "complete dtor only exists for classes with vbases"); 14235 14236 SynthesizedFunctionScope Scope(*this, Destructor); 14237 14238 // Add a context note for diagnostics produced after this point. 14239 Scope.addContextNote(CurrentLocation); 14240 14241 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 14242 } 14243 14244 void Sema::ActOnFinishCXXMemberDecls() { 14245 // If the context is an invalid C++ class, just suppress these checks. 14246 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 14247 if (Record->isInvalidDecl()) { 14248 DelayedOverridingExceptionSpecChecks.clear(); 14249 DelayedEquivalentExceptionSpecChecks.clear(); 14250 return; 14251 } 14252 checkForMultipleExportedDefaultConstructors(*this, Record); 14253 } 14254 } 14255 14256 void Sema::ActOnFinishCXXNonNestedClass() { 14257 referenceDLLExportedClassMethods(); 14258 14259 if (!DelayedDllExportMemberFunctions.empty()) { 14260 SmallVector<CXXMethodDecl*, 4> WorkList; 14261 std::swap(DelayedDllExportMemberFunctions, WorkList); 14262 for (CXXMethodDecl *M : WorkList) { 14263 DefineDefaultedFunction(*this, M, M->getLocation()); 14264 14265 // Pass the method to the consumer to get emitted. This is not necessary 14266 // for explicit instantiation definitions, as they will get emitted 14267 // anyway. 14268 if (M->getParent()->getTemplateSpecializationKind() != 14269 TSK_ExplicitInstantiationDefinition) 14270 ActOnFinishInlineFunctionDef(M); 14271 } 14272 } 14273 } 14274 14275 void Sema::referenceDLLExportedClassMethods() { 14276 if (!DelayedDllExportClasses.empty()) { 14277 // Calling ReferenceDllExportedMembers might cause the current function to 14278 // be called again, so use a local copy of DelayedDllExportClasses. 14279 SmallVector<CXXRecordDecl *, 4> WorkList; 14280 std::swap(DelayedDllExportClasses, WorkList); 14281 for (CXXRecordDecl *Class : WorkList) 14282 ReferenceDllExportedMembers(*this, Class); 14283 } 14284 } 14285 14286 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 14287 assert(getLangOpts().CPlusPlus11 && 14288 "adjusting dtor exception specs was introduced in c++11"); 14289 14290 if (Destructor->isDependentContext()) 14291 return; 14292 14293 // C++11 [class.dtor]p3: 14294 // A declaration of a destructor that does not have an exception- 14295 // specification is implicitly considered to have the same exception- 14296 // specification as an implicit declaration. 14297 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 14298 if (DtorType->hasExceptionSpec()) 14299 return; 14300 14301 // Replace the destructor's type, building off the existing one. Fortunately, 14302 // the only thing of interest in the destructor type is its extended info. 14303 // The return and arguments are fixed. 14304 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 14305 EPI.ExceptionSpec.Type = EST_Unevaluated; 14306 EPI.ExceptionSpec.SourceDecl = Destructor; 14307 Destructor->setType( 14308 Context.getFunctionType(Context.VoidTy, std::nullopt, EPI)); 14309 14310 // FIXME: If the destructor has a body that could throw, and the newly created 14311 // spec doesn't allow exceptions, we should emit a warning, because this 14312 // change in behavior can break conforming C++03 programs at runtime. 14313 // However, we don't have a body or an exception specification yet, so it 14314 // needs to be done somewhere else. 14315 } 14316 14317 namespace { 14318 /// An abstract base class for all helper classes used in building the 14319 // copy/move operators. These classes serve as factory functions and help us 14320 // avoid using the same Expr* in the AST twice. 14321 class ExprBuilder { 14322 ExprBuilder(const ExprBuilder&) = delete; 14323 ExprBuilder &operator=(const ExprBuilder&) = delete; 14324 14325 protected: 14326 static Expr *assertNotNull(Expr *E) { 14327 assert(E && "Expression construction must not fail."); 14328 return E; 14329 } 14330 14331 public: 14332 ExprBuilder() {} 14333 virtual ~ExprBuilder() {} 14334 14335 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 14336 }; 14337 14338 class RefBuilder: public ExprBuilder { 14339 VarDecl *Var; 14340 QualType VarType; 14341 14342 public: 14343 Expr *build(Sema &S, SourceLocation Loc) const override { 14344 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 14345 } 14346 14347 RefBuilder(VarDecl *Var, QualType VarType) 14348 : Var(Var), VarType(VarType) {} 14349 }; 14350 14351 class ThisBuilder: public ExprBuilder { 14352 public: 14353 Expr *build(Sema &S, SourceLocation Loc) const override { 14354 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 14355 } 14356 }; 14357 14358 class CastBuilder: public ExprBuilder { 14359 const ExprBuilder &Builder; 14360 QualType Type; 14361 ExprValueKind Kind; 14362 const CXXCastPath &Path; 14363 14364 public: 14365 Expr *build(Sema &S, SourceLocation Loc) const override { 14366 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 14367 CK_UncheckedDerivedToBase, Kind, 14368 &Path).get()); 14369 } 14370 14371 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 14372 const CXXCastPath &Path) 14373 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 14374 }; 14375 14376 class DerefBuilder: public ExprBuilder { 14377 const ExprBuilder &Builder; 14378 14379 public: 14380 Expr *build(Sema &S, SourceLocation Loc) const override { 14381 return assertNotNull( 14382 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 14383 } 14384 14385 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14386 }; 14387 14388 class MemberBuilder: public ExprBuilder { 14389 const ExprBuilder &Builder; 14390 QualType Type; 14391 CXXScopeSpec SS; 14392 bool IsArrow; 14393 LookupResult &MemberLookup; 14394 14395 public: 14396 Expr *build(Sema &S, SourceLocation Loc) const override { 14397 return assertNotNull(S.BuildMemberReferenceExpr( 14398 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 14399 nullptr, MemberLookup, nullptr, nullptr).get()); 14400 } 14401 14402 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 14403 LookupResult &MemberLookup) 14404 : Builder(Builder), Type(Type), IsArrow(IsArrow), 14405 MemberLookup(MemberLookup) {} 14406 }; 14407 14408 class MoveCastBuilder: public ExprBuilder { 14409 const ExprBuilder &Builder; 14410 14411 public: 14412 Expr *build(Sema &S, SourceLocation Loc) const override { 14413 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 14414 } 14415 14416 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14417 }; 14418 14419 class LvalueConvBuilder: public ExprBuilder { 14420 const ExprBuilder &Builder; 14421 14422 public: 14423 Expr *build(Sema &S, SourceLocation Loc) const override { 14424 return assertNotNull( 14425 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 14426 } 14427 14428 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14429 }; 14430 14431 class SubscriptBuilder: public ExprBuilder { 14432 const ExprBuilder &Base; 14433 const ExprBuilder &Index; 14434 14435 public: 14436 Expr *build(Sema &S, SourceLocation Loc) const override { 14437 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 14438 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 14439 } 14440 14441 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 14442 : Base(Base), Index(Index) {} 14443 }; 14444 14445 } // end anonymous namespace 14446 14447 /// When generating a defaulted copy or move assignment operator, if a field 14448 /// should be copied with __builtin_memcpy rather than via explicit assignments, 14449 /// do so. This optimization only applies for arrays of scalars, and for arrays 14450 /// of class type where the selected copy/move-assignment operator is trivial. 14451 static StmtResult 14452 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 14453 const ExprBuilder &ToB, const ExprBuilder &FromB) { 14454 // Compute the size of the memory buffer to be copied. 14455 QualType SizeType = S.Context.getSizeType(); 14456 llvm::APInt Size(S.Context.getTypeSize(SizeType), 14457 S.Context.getTypeSizeInChars(T).getQuantity()); 14458 14459 // Take the address of the field references for "from" and "to". We 14460 // directly construct UnaryOperators here because semantic analysis 14461 // does not permit us to take the address of an xvalue. 14462 Expr *From = FromB.build(S, Loc); 14463 From = UnaryOperator::Create( 14464 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 14465 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14466 Expr *To = ToB.build(S, Loc); 14467 To = UnaryOperator::Create( 14468 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 14469 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14470 14471 const Type *E = T->getBaseElementTypeUnsafe(); 14472 bool NeedsCollectableMemCpy = 14473 E->isRecordType() && 14474 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 14475 14476 // Create a reference to the __builtin_objc_memmove_collectable function 14477 StringRef MemCpyName = NeedsCollectableMemCpy ? 14478 "__builtin_objc_memmove_collectable" : 14479 "__builtin_memcpy"; 14480 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 14481 Sema::LookupOrdinaryName); 14482 S.LookupName(R, S.TUScope, true); 14483 14484 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 14485 if (!MemCpy) 14486 // Something went horribly wrong earlier, and we will have complained 14487 // about it. 14488 return StmtError(); 14489 14490 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 14491 VK_PRValue, Loc, nullptr); 14492 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 14493 14494 Expr *CallArgs[] = { 14495 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 14496 }; 14497 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 14498 Loc, CallArgs, Loc); 14499 14500 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 14501 return Call.getAs<Stmt>(); 14502 } 14503 14504 /// Builds a statement that copies/moves the given entity from \p From to 14505 /// \c To. 14506 /// 14507 /// This routine is used to copy/move the members of a class with an 14508 /// implicitly-declared copy/move assignment operator. When the entities being 14509 /// copied are arrays, this routine builds for loops to copy them. 14510 /// 14511 /// \param S The Sema object used for type-checking. 14512 /// 14513 /// \param Loc The location where the implicit copy/move is being generated. 14514 /// 14515 /// \param T The type of the expressions being copied/moved. Both expressions 14516 /// must have this type. 14517 /// 14518 /// \param To The expression we are copying/moving to. 14519 /// 14520 /// \param From The expression we are copying/moving from. 14521 /// 14522 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 14523 /// Otherwise, it's a non-static member subobject. 14524 /// 14525 /// \param Copying Whether we're copying or moving. 14526 /// 14527 /// \param Depth Internal parameter recording the depth of the recursion. 14528 /// 14529 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 14530 /// if a memcpy should be used instead. 14531 static StmtResult 14532 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 14533 const ExprBuilder &To, const ExprBuilder &From, 14534 bool CopyingBaseSubobject, bool Copying, 14535 unsigned Depth = 0) { 14536 // C++11 [class.copy]p28: 14537 // Each subobject is assigned in the manner appropriate to its type: 14538 // 14539 // - if the subobject is of class type, as if by a call to operator= with 14540 // the subobject as the object expression and the corresponding 14541 // subobject of x as a single function argument (as if by explicit 14542 // qualification; that is, ignoring any possible virtual overriding 14543 // functions in more derived classes); 14544 // 14545 // C++03 [class.copy]p13: 14546 // - if the subobject is of class type, the copy assignment operator for 14547 // the class is used (as if by explicit qualification; that is, 14548 // ignoring any possible virtual overriding functions in more derived 14549 // classes); 14550 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 14551 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 14552 14553 // Look for operator=. 14554 DeclarationName Name 14555 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14556 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 14557 S.LookupQualifiedName(OpLookup, ClassDecl, false); 14558 14559 // Prior to C++11, filter out any result that isn't a copy/move-assignment 14560 // operator. 14561 if (!S.getLangOpts().CPlusPlus11) { 14562 LookupResult::Filter F = OpLookup.makeFilter(); 14563 while (F.hasNext()) { 14564 NamedDecl *D = F.next(); 14565 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 14566 if (Method->isCopyAssignmentOperator() || 14567 (!Copying && Method->isMoveAssignmentOperator())) 14568 continue; 14569 14570 F.erase(); 14571 } 14572 F.done(); 14573 } 14574 14575 // Suppress the protected check (C++ [class.protected]) for each of the 14576 // assignment operators we found. This strange dance is required when 14577 // we're assigning via a base classes's copy-assignment operator. To 14578 // ensure that we're getting the right base class subobject (without 14579 // ambiguities), we need to cast "this" to that subobject type; to 14580 // ensure that we don't go through the virtual call mechanism, we need 14581 // to qualify the operator= name with the base class (see below). However, 14582 // this means that if the base class has a protected copy assignment 14583 // operator, the protected member access check will fail. So, we 14584 // rewrite "protected" access to "public" access in this case, since we 14585 // know by construction that we're calling from a derived class. 14586 if (CopyingBaseSubobject) { 14587 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 14588 L != LEnd; ++L) { 14589 if (L.getAccess() == AS_protected) 14590 L.setAccess(AS_public); 14591 } 14592 } 14593 14594 // Create the nested-name-specifier that will be used to qualify the 14595 // reference to operator=; this is required to suppress the virtual 14596 // call mechanism. 14597 CXXScopeSpec SS; 14598 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 14599 SS.MakeTrivial(S.Context, 14600 NestedNameSpecifier::Create(S.Context, nullptr, false, 14601 CanonicalT), 14602 Loc); 14603 14604 // Create the reference to operator=. 14605 ExprResult OpEqualRef 14606 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 14607 SS, /*TemplateKWLoc=*/SourceLocation(), 14608 /*FirstQualifierInScope=*/nullptr, 14609 OpLookup, 14610 /*TemplateArgs=*/nullptr, /*S*/nullptr, 14611 /*SuppressQualifierCheck=*/true); 14612 if (OpEqualRef.isInvalid()) 14613 return StmtError(); 14614 14615 // Build the call to the assignment operator. 14616 14617 Expr *FromInst = From.build(S, Loc); 14618 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 14619 OpEqualRef.getAs<Expr>(), 14620 Loc, FromInst, Loc); 14621 if (Call.isInvalid()) 14622 return StmtError(); 14623 14624 // If we built a call to a trivial 'operator=' while copying an array, 14625 // bail out. We'll replace the whole shebang with a memcpy. 14626 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 14627 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 14628 return StmtResult((Stmt*)nullptr); 14629 14630 // Convert to an expression-statement, and clean up any produced 14631 // temporaries. 14632 return S.ActOnExprStmt(Call); 14633 } 14634 14635 // - if the subobject is of scalar type, the built-in assignment 14636 // operator is used. 14637 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 14638 if (!ArrayTy) { 14639 ExprResult Assignment = S.CreateBuiltinBinOp( 14640 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 14641 if (Assignment.isInvalid()) 14642 return StmtError(); 14643 return S.ActOnExprStmt(Assignment); 14644 } 14645 14646 // - if the subobject is an array, each element is assigned, in the 14647 // manner appropriate to the element type; 14648 14649 // Construct a loop over the array bounds, e.g., 14650 // 14651 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 14652 // 14653 // that will copy each of the array elements. 14654 QualType SizeType = S.Context.getSizeType(); 14655 14656 // Create the iteration variable. 14657 IdentifierInfo *IterationVarName = nullptr; 14658 { 14659 SmallString<8> Str; 14660 llvm::raw_svector_ostream OS(Str); 14661 OS << "__i" << Depth; 14662 IterationVarName = &S.Context.Idents.get(OS.str()); 14663 } 14664 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 14665 IterationVarName, SizeType, 14666 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 14667 SC_None); 14668 14669 // Initialize the iteration variable to zero. 14670 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 14671 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 14672 14673 // Creates a reference to the iteration variable. 14674 RefBuilder IterationVarRef(IterationVar, SizeType); 14675 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 14676 14677 // Create the DeclStmt that holds the iteration variable. 14678 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 14679 14680 // Subscript the "from" and "to" expressions with the iteration variable. 14681 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 14682 MoveCastBuilder FromIndexMove(FromIndexCopy); 14683 const ExprBuilder *FromIndex; 14684 if (Copying) 14685 FromIndex = &FromIndexCopy; 14686 else 14687 FromIndex = &FromIndexMove; 14688 14689 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 14690 14691 // Build the copy/move for an individual element of the array. 14692 StmtResult Copy = 14693 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 14694 ToIndex, *FromIndex, CopyingBaseSubobject, 14695 Copying, Depth + 1); 14696 // Bail out if copying fails or if we determined that we should use memcpy. 14697 if (Copy.isInvalid() || !Copy.get()) 14698 return Copy; 14699 14700 // Create the comparison against the array bound. 14701 llvm::APInt Upper 14702 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 14703 Expr *Comparison = BinaryOperator::Create( 14704 S.Context, IterationVarRefRVal.build(S, Loc), 14705 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 14706 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, 14707 S.CurFPFeatureOverrides()); 14708 14709 // Create the pre-increment of the iteration variable. We can determine 14710 // whether the increment will overflow based on the value of the array 14711 // bound. 14712 Expr *Increment = UnaryOperator::Create( 14713 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 14714 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 14715 14716 // Construct the loop that copies all elements of this array. 14717 return S.ActOnForStmt( 14718 Loc, Loc, InitStmt, 14719 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 14720 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 14721 } 14722 14723 static StmtResult 14724 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 14725 const ExprBuilder &To, const ExprBuilder &From, 14726 bool CopyingBaseSubobject, bool Copying) { 14727 // Maybe we should use a memcpy? 14728 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 14729 T.isTriviallyCopyableType(S.Context)) 14730 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14731 14732 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 14733 CopyingBaseSubobject, 14734 Copying, 0)); 14735 14736 // If we ended up picking a trivial assignment operator for an array of a 14737 // non-trivially-copyable class type, just emit a memcpy. 14738 if (!Result.isInvalid() && !Result.get()) 14739 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14740 14741 return Result; 14742 } 14743 14744 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 14745 // Note: The following rules are largely analoguous to the copy 14746 // constructor rules. Note that virtual bases are not taken into account 14747 // for determining the argument type of the operator. Note also that 14748 // operators taking an object instead of a reference are allowed. 14749 assert(ClassDecl->needsImplicitCopyAssignment()); 14750 14751 DeclaringSpecialMember DSM(*this, ClassDecl, 14752 CXXSpecialMemberKind::CopyAssignment); 14753 if (DSM.isAlreadyBeingDeclared()) 14754 return nullptr; 14755 14756 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14757 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 14758 ArgType, nullptr); 14759 LangAS AS = getDefaultCXXMethodAddrSpace(); 14760 if (AS != LangAS::Default) 14761 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14762 QualType RetType = Context.getLValueReferenceType(ArgType); 14763 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 14764 if (Const) 14765 ArgType = ArgType.withConst(); 14766 14767 ArgType = Context.getLValueReferenceType(ArgType); 14768 14769 bool Constexpr = defaultedSpecialMemberIsConstexpr( 14770 *this, ClassDecl, CXXSpecialMemberKind::CopyAssignment, Const); 14771 14772 // An implicitly-declared copy assignment operator is an inline public 14773 // member of its class. 14774 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14775 SourceLocation ClassLoc = ClassDecl->getLocation(); 14776 DeclarationNameInfo NameInfo(Name, ClassLoc); 14777 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 14778 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14779 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14780 getCurFPFeatures().isFPConstrained(), 14781 /*isInline=*/true, 14782 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14783 SourceLocation()); 14784 CopyAssignment->setAccess(AS_public); 14785 CopyAssignment->setDefaulted(); 14786 CopyAssignment->setImplicit(); 14787 14788 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 14789 14790 if (getLangOpts().CUDA) 14791 CUDA().inferTargetForImplicitSpecialMember( 14792 ClassDecl, CXXSpecialMemberKind::CopyAssignment, CopyAssignment, 14793 /* ConstRHS */ Const, 14794 /* Diagnose */ false); 14795 14796 // Add the parameter to the operator. 14797 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 14798 ClassLoc, ClassLoc, 14799 /*Id=*/nullptr, ArgType, 14800 /*TInfo=*/nullptr, SC_None, 14801 nullptr); 14802 CopyAssignment->setParams(FromParam); 14803 14804 CopyAssignment->setTrivial( 14805 ClassDecl->needsOverloadResolutionForCopyAssignment() 14806 ? SpecialMemberIsTrivial(CopyAssignment, 14807 CXXSpecialMemberKind::CopyAssignment) 14808 : ClassDecl->hasTrivialCopyAssignment()); 14809 14810 // Note that we have added this copy-assignment operator. 14811 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 14812 14813 Scope *S = getScopeForContext(ClassDecl); 14814 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 14815 14816 if (ShouldDeleteSpecialMember(CopyAssignment, 14817 CXXSpecialMemberKind::CopyAssignment)) { 14818 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 14819 SetDeclDeleted(CopyAssignment, ClassLoc); 14820 } 14821 14822 if (S) 14823 PushOnScopeChains(CopyAssignment, S, false); 14824 ClassDecl->addDecl(CopyAssignment); 14825 14826 return CopyAssignment; 14827 } 14828 14829 /// Diagnose an implicit copy operation for a class which is odr-used, but 14830 /// which is deprecated because the class has a user-declared copy constructor, 14831 /// copy assignment operator, or destructor. 14832 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 14833 assert(CopyOp->isImplicit()); 14834 14835 CXXRecordDecl *RD = CopyOp->getParent(); 14836 CXXMethodDecl *UserDeclaredOperation = nullptr; 14837 14838 if (RD->hasUserDeclaredDestructor()) { 14839 UserDeclaredOperation = RD->getDestructor(); 14840 } else if (!isa<CXXConstructorDecl>(CopyOp) && 14841 RD->hasUserDeclaredCopyConstructor()) { 14842 // Find any user-declared copy constructor. 14843 for (auto *I : RD->ctors()) { 14844 if (I->isCopyConstructor()) { 14845 UserDeclaredOperation = I; 14846 break; 14847 } 14848 } 14849 assert(UserDeclaredOperation); 14850 } else if (isa<CXXConstructorDecl>(CopyOp) && 14851 RD->hasUserDeclaredCopyAssignment()) { 14852 // Find any user-declared move assignment operator. 14853 for (auto *I : RD->methods()) { 14854 if (I->isCopyAssignmentOperator()) { 14855 UserDeclaredOperation = I; 14856 break; 14857 } 14858 } 14859 assert(UserDeclaredOperation); 14860 } 14861 14862 if (UserDeclaredOperation) { 14863 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); 14864 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); 14865 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); 14866 unsigned DiagID = 14867 (UDOIsUserProvided && UDOIsDestructor) 14868 ? diag::warn_deprecated_copy_with_user_provided_dtor 14869 : (UDOIsUserProvided && !UDOIsDestructor) 14870 ? diag::warn_deprecated_copy_with_user_provided_copy 14871 : (!UDOIsUserProvided && UDOIsDestructor) 14872 ? diag::warn_deprecated_copy_with_dtor 14873 : diag::warn_deprecated_copy; 14874 S.Diag(UserDeclaredOperation->getLocation(), DiagID) 14875 << RD << IsCopyAssignment; 14876 } 14877 } 14878 14879 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 14880 CXXMethodDecl *CopyAssignOperator) { 14881 assert((CopyAssignOperator->isDefaulted() && 14882 CopyAssignOperator->isOverloadedOperator() && 14883 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 14884 !CopyAssignOperator->doesThisDeclarationHaveABody() && 14885 !CopyAssignOperator->isDeleted()) && 14886 "DefineImplicitCopyAssignment called for wrong function"); 14887 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 14888 return; 14889 14890 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 14891 if (ClassDecl->isInvalidDecl()) { 14892 CopyAssignOperator->setInvalidDecl(); 14893 return; 14894 } 14895 14896 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 14897 14898 // The exception specification is needed because we are defining the 14899 // function. 14900 ResolveExceptionSpec(CurrentLocation, 14901 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 14902 14903 // Add a context note for diagnostics produced after this point. 14904 Scope.addContextNote(CurrentLocation); 14905 14906 // C++11 [class.copy]p18: 14907 // The [definition of an implicitly declared copy assignment operator] is 14908 // deprecated if the class has a user-declared copy constructor or a 14909 // user-declared destructor. 14910 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 14911 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 14912 14913 // C++0x [class.copy]p30: 14914 // The implicitly-defined or explicitly-defaulted copy assignment operator 14915 // for a non-union class X performs memberwise copy assignment of its 14916 // subobjects. The direct base classes of X are assigned first, in the 14917 // order of their declaration in the base-specifier-list, and then the 14918 // immediate non-static data members of X are assigned, in the order in 14919 // which they were declared in the class definition. 14920 14921 // The statements that form the synthesized function body. 14922 SmallVector<Stmt*, 8> Statements; 14923 14924 // The parameter for the "other" object, which we are copying from. 14925 ParmVarDecl *Other = CopyAssignOperator->getNonObjectParameter(0); 14926 Qualifiers OtherQuals = Other->getType().getQualifiers(); 14927 QualType OtherRefType = Other->getType(); 14928 if (OtherRefType->isLValueReferenceType()) { 14929 OtherRefType = OtherRefType->getPointeeType(); 14930 OtherQuals = OtherRefType.getQualifiers(); 14931 } 14932 14933 // Our location for everything implicitly-generated. 14934 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 14935 ? CopyAssignOperator->getEndLoc() 14936 : CopyAssignOperator->getLocation(); 14937 14938 // Builds a DeclRefExpr for the "other" object. 14939 RefBuilder OtherRef(Other, OtherRefType); 14940 14941 // Builds the function object parameter. 14942 std::optional<ThisBuilder> This; 14943 std::optional<DerefBuilder> DerefThis; 14944 std::optional<RefBuilder> ExplicitObject; 14945 bool IsArrow = false; 14946 QualType ObjectType; 14947 if (CopyAssignOperator->isExplicitObjectMemberFunction()) { 14948 ObjectType = CopyAssignOperator->getParamDecl(0)->getType(); 14949 if (ObjectType->isReferenceType()) 14950 ObjectType = ObjectType->getPointeeType(); 14951 ExplicitObject.emplace(CopyAssignOperator->getParamDecl(0), ObjectType); 14952 } else { 14953 ObjectType = getCurrentThisType(); 14954 This.emplace(); 14955 DerefThis.emplace(*This); 14956 IsArrow = !LangOpts.HLSL; 14957 } 14958 ExprBuilder &ObjectParameter = 14959 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 14960 : static_cast<ExprBuilder &>(*This); 14961 14962 // Assign base classes. 14963 bool Invalid = false; 14964 for (auto &Base : ClassDecl->bases()) { 14965 // Form the assignment: 14966 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 14967 QualType BaseType = Base.getType().getUnqualifiedType(); 14968 if (!BaseType->isRecordType()) { 14969 Invalid = true; 14970 continue; 14971 } 14972 14973 CXXCastPath BasePath; 14974 BasePath.push_back(&Base); 14975 14976 // Construct the "from" expression, which is an implicit cast to the 14977 // appropriately-qualified base type. 14978 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 14979 VK_LValue, BasePath); 14980 14981 // Dereference "this". 14982 CastBuilder To( 14983 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 14984 : static_cast<ExprBuilder &>(*DerefThis), 14985 Context.getQualifiedType(BaseType, ObjectType.getQualifiers()), 14986 VK_LValue, BasePath); 14987 14988 // Build the copy. 14989 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 14990 To, From, 14991 /*CopyingBaseSubobject=*/true, 14992 /*Copying=*/true); 14993 if (Copy.isInvalid()) { 14994 CopyAssignOperator->setInvalidDecl(); 14995 return; 14996 } 14997 14998 // Success! Record the copy. 14999 Statements.push_back(Copy.getAs<Expr>()); 15000 } 15001 15002 // Assign non-static members. 15003 for (auto *Field : ClassDecl->fields()) { 15004 // FIXME: We should form some kind of AST representation for the implied 15005 // memcpy in a union copy operation. 15006 if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) 15007 continue; 15008 15009 if (Field->isInvalidDecl()) { 15010 Invalid = true; 15011 continue; 15012 } 15013 15014 // Check for members of reference type; we can't copy those. 15015 if (Field->getType()->isReferenceType()) { 15016 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15017 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 15018 Diag(Field->getLocation(), diag::note_declared_at); 15019 Invalid = true; 15020 continue; 15021 } 15022 15023 // Check for members of const-qualified, non-class type. 15024 QualType BaseType = Context.getBaseElementType(Field->getType()); 15025 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 15026 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15027 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 15028 Diag(Field->getLocation(), diag::note_declared_at); 15029 Invalid = true; 15030 continue; 15031 } 15032 15033 // Suppress assigning zero-width bitfields. 15034 if (Field->isZeroLengthBitField(Context)) 15035 continue; 15036 15037 QualType FieldType = Field->getType().getNonReferenceType(); 15038 if (FieldType->isIncompleteArrayType()) { 15039 assert(ClassDecl->hasFlexibleArrayMember() && 15040 "Incomplete array type is not valid"); 15041 continue; 15042 } 15043 15044 // Build references to the field in the object we're copying from and to. 15045 CXXScopeSpec SS; // Intentionally empty 15046 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 15047 LookupMemberName); 15048 MemberLookup.addDecl(Field); 15049 MemberLookup.resolveKind(); 15050 15051 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 15052 MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup); 15053 // Build the copy of this field. 15054 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 15055 To, From, 15056 /*CopyingBaseSubobject=*/false, 15057 /*Copying=*/true); 15058 if (Copy.isInvalid()) { 15059 CopyAssignOperator->setInvalidDecl(); 15060 return; 15061 } 15062 15063 // Success! Record the copy. 15064 Statements.push_back(Copy.getAs<Stmt>()); 15065 } 15066 15067 if (!Invalid) { 15068 // Add a "return *this;" 15069 Expr *ThisExpr = 15070 (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 15071 : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This) 15072 : static_cast<ExprBuilder &>(*DerefThis)) 15073 .build(*this, Loc); 15074 StmtResult Return = BuildReturnStmt(Loc, ThisExpr); 15075 if (Return.isInvalid()) 15076 Invalid = true; 15077 else 15078 Statements.push_back(Return.getAs<Stmt>()); 15079 } 15080 15081 if (Invalid) { 15082 CopyAssignOperator->setInvalidDecl(); 15083 return; 15084 } 15085 15086 StmtResult Body; 15087 { 15088 CompoundScopeRAII CompoundScope(*this); 15089 Body = ActOnCompoundStmt(Loc, Loc, Statements, 15090 /*isStmtExpr=*/false); 15091 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 15092 } 15093 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 15094 CopyAssignOperator->markUsed(Context); 15095 15096 if (ASTMutationListener *L = getASTMutationListener()) { 15097 L->CompletedImplicitDefinition(CopyAssignOperator); 15098 } 15099 } 15100 15101 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 15102 assert(ClassDecl->needsImplicitMoveAssignment()); 15103 15104 DeclaringSpecialMember DSM(*this, ClassDecl, 15105 CXXSpecialMemberKind::MoveAssignment); 15106 if (DSM.isAlreadyBeingDeclared()) 15107 return nullptr; 15108 15109 // Note: The following rules are largely analoguous to the move 15110 // constructor rules. 15111 15112 QualType ArgType = Context.getTypeDeclType(ClassDecl); 15113 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 15114 ArgType, nullptr); 15115 LangAS AS = getDefaultCXXMethodAddrSpace(); 15116 if (AS != LangAS::Default) 15117 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 15118 QualType RetType = Context.getLValueReferenceType(ArgType); 15119 ArgType = Context.getRValueReferenceType(ArgType); 15120 15121 bool Constexpr = defaultedSpecialMemberIsConstexpr( 15122 *this, ClassDecl, CXXSpecialMemberKind::MoveAssignment, false); 15123 15124 // An implicitly-declared move assignment operator is an inline public 15125 // member of its class. 15126 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 15127 SourceLocation ClassLoc = ClassDecl->getLocation(); 15128 DeclarationNameInfo NameInfo(Name, ClassLoc); 15129 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 15130 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 15131 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 15132 getCurFPFeatures().isFPConstrained(), 15133 /*isInline=*/true, 15134 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 15135 SourceLocation()); 15136 MoveAssignment->setAccess(AS_public); 15137 MoveAssignment->setDefaulted(); 15138 MoveAssignment->setImplicit(); 15139 15140 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); 15141 15142 if (getLangOpts().CUDA) 15143 CUDA().inferTargetForImplicitSpecialMember( 15144 ClassDecl, CXXSpecialMemberKind::MoveAssignment, MoveAssignment, 15145 /* ConstRHS */ false, 15146 /* Diagnose */ false); 15147 15148 // Add the parameter to the operator. 15149 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 15150 ClassLoc, ClassLoc, 15151 /*Id=*/nullptr, ArgType, 15152 /*TInfo=*/nullptr, SC_None, 15153 nullptr); 15154 MoveAssignment->setParams(FromParam); 15155 15156 MoveAssignment->setTrivial( 15157 ClassDecl->needsOverloadResolutionForMoveAssignment() 15158 ? SpecialMemberIsTrivial(MoveAssignment, 15159 CXXSpecialMemberKind::MoveAssignment) 15160 : ClassDecl->hasTrivialMoveAssignment()); 15161 15162 // Note that we have added this copy-assignment operator. 15163 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 15164 15165 Scope *S = getScopeForContext(ClassDecl); 15166 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 15167 15168 if (ShouldDeleteSpecialMember(MoveAssignment, 15169 CXXSpecialMemberKind::MoveAssignment)) { 15170 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 15171 SetDeclDeleted(MoveAssignment, ClassLoc); 15172 } 15173 15174 if (S) 15175 PushOnScopeChains(MoveAssignment, S, false); 15176 ClassDecl->addDecl(MoveAssignment); 15177 15178 return MoveAssignment; 15179 } 15180 15181 /// Check if we're implicitly defining a move assignment operator for a class 15182 /// with virtual bases. Such a move assignment might move-assign the virtual 15183 /// base multiple times. 15184 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 15185 SourceLocation CurrentLocation) { 15186 assert(!Class->isDependentContext() && "should not define dependent move"); 15187 15188 // Only a virtual base could get implicitly move-assigned multiple times. 15189 // Only a non-trivial move assignment can observe this. We only want to 15190 // diagnose if we implicitly define an assignment operator that assigns 15191 // two base classes, both of which move-assign the same virtual base. 15192 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 15193 Class->getNumBases() < 2) 15194 return; 15195 15196 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 15197 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 15198 VBaseMap VBases; 15199 15200 for (auto &BI : Class->bases()) { 15201 Worklist.push_back(&BI); 15202 while (!Worklist.empty()) { 15203 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 15204 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 15205 15206 // If the base has no non-trivial move assignment operators, 15207 // we don't care about moves from it. 15208 if (!Base->hasNonTrivialMoveAssignment()) 15209 continue; 15210 15211 // If there's nothing virtual here, skip it. 15212 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 15213 continue; 15214 15215 // If we're not actually going to call a move assignment for this base, 15216 // or the selected move assignment is trivial, skip it. 15217 Sema::SpecialMemberOverloadResult SMOR = 15218 S.LookupSpecialMember(Base, CXXSpecialMemberKind::MoveAssignment, 15219 /*ConstArg*/ false, /*VolatileArg*/ false, 15220 /*RValueThis*/ true, /*ConstThis*/ false, 15221 /*VolatileThis*/ false); 15222 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 15223 !SMOR.getMethod()->isMoveAssignmentOperator()) 15224 continue; 15225 15226 if (BaseSpec->isVirtual()) { 15227 // We're going to move-assign this virtual base, and its move 15228 // assignment operator is not trivial. If this can happen for 15229 // multiple distinct direct bases of Class, diagnose it. (If it 15230 // only happens in one base, we'll diagnose it when synthesizing 15231 // that base class's move assignment operator.) 15232 CXXBaseSpecifier *&Existing = 15233 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 15234 .first->second; 15235 if (Existing && Existing != &BI) { 15236 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 15237 << Class << Base; 15238 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 15239 << (Base->getCanonicalDecl() == 15240 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 15241 << Base << Existing->getType() << Existing->getSourceRange(); 15242 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 15243 << (Base->getCanonicalDecl() == 15244 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 15245 << Base << BI.getType() << BaseSpec->getSourceRange(); 15246 15247 // Only diagnose each vbase once. 15248 Existing = nullptr; 15249 } 15250 } else { 15251 // Only walk over bases that have defaulted move assignment operators. 15252 // We assume that any user-provided move assignment operator handles 15253 // the multiple-moves-of-vbase case itself somehow. 15254 if (!SMOR.getMethod()->isDefaulted()) 15255 continue; 15256 15257 // We're going to move the base classes of Base. Add them to the list. 15258 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases())); 15259 } 15260 } 15261 } 15262 } 15263 15264 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 15265 CXXMethodDecl *MoveAssignOperator) { 15266 assert((MoveAssignOperator->isDefaulted() && 15267 MoveAssignOperator->isOverloadedOperator() && 15268 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 15269 !MoveAssignOperator->doesThisDeclarationHaveABody() && 15270 !MoveAssignOperator->isDeleted()) && 15271 "DefineImplicitMoveAssignment called for wrong function"); 15272 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 15273 return; 15274 15275 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 15276 if (ClassDecl->isInvalidDecl()) { 15277 MoveAssignOperator->setInvalidDecl(); 15278 return; 15279 } 15280 15281 // C++0x [class.copy]p28: 15282 // The implicitly-defined or move assignment operator for a non-union class 15283 // X performs memberwise move assignment of its subobjects. The direct base 15284 // classes of X are assigned first, in the order of their declaration in the 15285 // base-specifier-list, and then the immediate non-static data members of X 15286 // are assigned, in the order in which they were declared in the class 15287 // definition. 15288 15289 // Issue a warning if our implicit move assignment operator will move 15290 // from a virtual base more than once. 15291 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 15292 15293 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 15294 15295 // The exception specification is needed because we are defining the 15296 // function. 15297 ResolveExceptionSpec(CurrentLocation, 15298 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 15299 15300 // Add a context note for diagnostics produced after this point. 15301 Scope.addContextNote(CurrentLocation); 15302 15303 // The statements that form the synthesized function body. 15304 SmallVector<Stmt*, 8> Statements; 15305 15306 // The parameter for the "other" object, which we are move from. 15307 ParmVarDecl *Other = MoveAssignOperator->getNonObjectParameter(0); 15308 QualType OtherRefType = 15309 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 15310 15311 // Our location for everything implicitly-generated. 15312 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 15313 ? MoveAssignOperator->getEndLoc() 15314 : MoveAssignOperator->getLocation(); 15315 15316 // Builds a reference to the "other" object. 15317 RefBuilder OtherRef(Other, OtherRefType); 15318 // Cast to rvalue. 15319 MoveCastBuilder MoveOther(OtherRef); 15320 15321 // Builds the function object parameter. 15322 std::optional<ThisBuilder> This; 15323 std::optional<DerefBuilder> DerefThis; 15324 std::optional<RefBuilder> ExplicitObject; 15325 QualType ObjectType; 15326 if (MoveAssignOperator->isExplicitObjectMemberFunction()) { 15327 ObjectType = MoveAssignOperator->getParamDecl(0)->getType(); 15328 if (ObjectType->isReferenceType()) 15329 ObjectType = ObjectType->getPointeeType(); 15330 ExplicitObject.emplace(MoveAssignOperator->getParamDecl(0), ObjectType); 15331 } else { 15332 ObjectType = getCurrentThisType(); 15333 This.emplace(); 15334 DerefThis.emplace(*This); 15335 } 15336 ExprBuilder &ObjectParameter = 15337 ExplicitObject ? *ExplicitObject : static_cast<ExprBuilder &>(*This); 15338 15339 // Assign base classes. 15340 bool Invalid = false; 15341 for (auto &Base : ClassDecl->bases()) { 15342 // C++11 [class.copy]p28: 15343 // It is unspecified whether subobjects representing virtual base classes 15344 // are assigned more than once by the implicitly-defined copy assignment 15345 // operator. 15346 // FIXME: Do not assign to a vbase that will be assigned by some other base 15347 // class. For a move-assignment, this can result in the vbase being moved 15348 // multiple times. 15349 15350 // Form the assignment: 15351 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 15352 QualType BaseType = Base.getType().getUnqualifiedType(); 15353 if (!BaseType->isRecordType()) { 15354 Invalid = true; 15355 continue; 15356 } 15357 15358 CXXCastPath BasePath; 15359 BasePath.push_back(&Base); 15360 15361 // Construct the "from" expression, which is an implicit cast to the 15362 // appropriately-qualified base type. 15363 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 15364 15365 // Implicitly cast "this" to the appropriately-qualified base type. 15366 // Dereference "this". 15367 CastBuilder To( 15368 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 15369 : static_cast<ExprBuilder &>(*DerefThis), 15370 Context.getQualifiedType(BaseType, ObjectType.getQualifiers()), 15371 VK_LValue, BasePath); 15372 15373 // Build the move. 15374 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 15375 To, From, 15376 /*CopyingBaseSubobject=*/true, 15377 /*Copying=*/false); 15378 if (Move.isInvalid()) { 15379 MoveAssignOperator->setInvalidDecl(); 15380 return; 15381 } 15382 15383 // Success! Record the move. 15384 Statements.push_back(Move.getAs<Expr>()); 15385 } 15386 15387 // Assign non-static members. 15388 for (auto *Field : ClassDecl->fields()) { 15389 // FIXME: We should form some kind of AST representation for the implied 15390 // memcpy in a union copy operation. 15391 if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) 15392 continue; 15393 15394 if (Field->isInvalidDecl()) { 15395 Invalid = true; 15396 continue; 15397 } 15398 15399 // Check for members of reference type; we can't move those. 15400 if (Field->getType()->isReferenceType()) { 15401 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15402 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 15403 Diag(Field->getLocation(), diag::note_declared_at); 15404 Invalid = true; 15405 continue; 15406 } 15407 15408 // Check for members of const-qualified, non-class type. 15409 QualType BaseType = Context.getBaseElementType(Field->getType()); 15410 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 15411 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15412 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 15413 Diag(Field->getLocation(), diag::note_declared_at); 15414 Invalid = true; 15415 continue; 15416 } 15417 15418 // Suppress assigning zero-width bitfields. 15419 if (Field->isZeroLengthBitField(Context)) 15420 continue; 15421 15422 QualType FieldType = Field->getType().getNonReferenceType(); 15423 if (FieldType->isIncompleteArrayType()) { 15424 assert(ClassDecl->hasFlexibleArrayMember() && 15425 "Incomplete array type is not valid"); 15426 continue; 15427 } 15428 15429 // Build references to the field in the object we're copying from and to. 15430 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 15431 LookupMemberName); 15432 MemberLookup.addDecl(Field); 15433 MemberLookup.resolveKind(); 15434 MemberBuilder From(MoveOther, OtherRefType, 15435 /*IsArrow=*/false, MemberLookup); 15436 MemberBuilder To(ObjectParameter, ObjectType, /*IsArrow=*/!ExplicitObject, 15437 MemberLookup); 15438 15439 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 15440 "Member reference with rvalue base must be rvalue except for reference " 15441 "members, which aren't allowed for move assignment."); 15442 15443 // Build the move of this field. 15444 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 15445 To, From, 15446 /*CopyingBaseSubobject=*/false, 15447 /*Copying=*/false); 15448 if (Move.isInvalid()) { 15449 MoveAssignOperator->setInvalidDecl(); 15450 return; 15451 } 15452 15453 // Success! Record the copy. 15454 Statements.push_back(Move.getAs<Stmt>()); 15455 } 15456 15457 if (!Invalid) { 15458 // Add a "return *this;" 15459 Expr *ThisExpr = 15460 (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 15461 : static_cast<ExprBuilder &>(*DerefThis)) 15462 .build(*this, Loc); 15463 15464 StmtResult Return = BuildReturnStmt(Loc, ThisExpr); 15465 if (Return.isInvalid()) 15466 Invalid = true; 15467 else 15468 Statements.push_back(Return.getAs<Stmt>()); 15469 } 15470 15471 if (Invalid) { 15472 MoveAssignOperator->setInvalidDecl(); 15473 return; 15474 } 15475 15476 StmtResult Body; 15477 { 15478 CompoundScopeRAII CompoundScope(*this); 15479 Body = ActOnCompoundStmt(Loc, Loc, Statements, 15480 /*isStmtExpr=*/false); 15481 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 15482 } 15483 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 15484 MoveAssignOperator->markUsed(Context); 15485 15486 if (ASTMutationListener *L = getASTMutationListener()) { 15487 L->CompletedImplicitDefinition(MoveAssignOperator); 15488 } 15489 } 15490 15491 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 15492 CXXRecordDecl *ClassDecl) { 15493 // C++ [class.copy]p4: 15494 // If the class definition does not explicitly declare a copy 15495 // constructor, one is declared implicitly. 15496 assert(ClassDecl->needsImplicitCopyConstructor()); 15497 15498 DeclaringSpecialMember DSM(*this, ClassDecl, 15499 CXXSpecialMemberKind::CopyConstructor); 15500 if (DSM.isAlreadyBeingDeclared()) 15501 return nullptr; 15502 15503 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15504 QualType ArgType = ClassType; 15505 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 15506 ArgType, nullptr); 15507 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 15508 if (Const) 15509 ArgType = ArgType.withConst(); 15510 15511 LangAS AS = getDefaultCXXMethodAddrSpace(); 15512 if (AS != LangAS::Default) 15513 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 15514 15515 ArgType = Context.getLValueReferenceType(ArgType); 15516 15517 bool Constexpr = defaultedSpecialMemberIsConstexpr( 15518 *this, ClassDecl, CXXSpecialMemberKind::CopyConstructor, Const); 15519 15520 DeclarationName Name 15521 = Context.DeclarationNames.getCXXConstructorName( 15522 Context.getCanonicalType(ClassType)); 15523 SourceLocation ClassLoc = ClassDecl->getLocation(); 15524 DeclarationNameInfo NameInfo(Name, ClassLoc); 15525 15526 // An implicitly-declared copy constructor is an inline public 15527 // member of its class. 15528 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 15529 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15530 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15531 /*isInline=*/true, 15532 /*isImplicitlyDeclared=*/true, 15533 Constexpr ? ConstexprSpecKind::Constexpr 15534 : ConstexprSpecKind::Unspecified); 15535 CopyConstructor->setAccess(AS_public); 15536 CopyConstructor->setDefaulted(); 15537 15538 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 15539 15540 if (getLangOpts().CUDA) 15541 CUDA().inferTargetForImplicitSpecialMember( 15542 ClassDecl, CXXSpecialMemberKind::CopyConstructor, CopyConstructor, 15543 /* ConstRHS */ Const, 15544 /* Diagnose */ false); 15545 15546 // During template instantiation of special member functions we need a 15547 // reliable TypeSourceInfo for the parameter types in order to allow functions 15548 // to be substituted. 15549 TypeSourceInfo *TSI = nullptr; 15550 if (inTemplateInstantiation() && ClassDecl->isLambda()) 15551 TSI = Context.getTrivialTypeSourceInfo(ArgType); 15552 15553 // Add the parameter to the constructor. 15554 ParmVarDecl *FromParam = 15555 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, 15556 /*IdentifierInfo=*/nullptr, ArgType, 15557 /*TInfo=*/TSI, SC_None, nullptr); 15558 CopyConstructor->setParams(FromParam); 15559 15560 CopyConstructor->setTrivial( 15561 ClassDecl->needsOverloadResolutionForCopyConstructor() 15562 ? SpecialMemberIsTrivial(CopyConstructor, 15563 CXXSpecialMemberKind::CopyConstructor) 15564 : ClassDecl->hasTrivialCopyConstructor()); 15565 15566 CopyConstructor->setTrivialForCall( 15567 ClassDecl->hasAttr<TrivialABIAttr>() || 15568 (ClassDecl->needsOverloadResolutionForCopyConstructor() 15569 ? SpecialMemberIsTrivial(CopyConstructor, 15570 CXXSpecialMemberKind::CopyConstructor, 15571 TAH_ConsiderTrivialABI) 15572 : ClassDecl->hasTrivialCopyConstructorForCall())); 15573 15574 // Note that we have declared this constructor. 15575 ++getASTContext().NumImplicitCopyConstructorsDeclared; 15576 15577 Scope *S = getScopeForContext(ClassDecl); 15578 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 15579 15580 if (ShouldDeleteSpecialMember(CopyConstructor, 15581 CXXSpecialMemberKind::CopyConstructor)) { 15582 ClassDecl->setImplicitCopyConstructorIsDeleted(); 15583 SetDeclDeleted(CopyConstructor, ClassLoc); 15584 } 15585 15586 if (S) 15587 PushOnScopeChains(CopyConstructor, S, false); 15588 ClassDecl->addDecl(CopyConstructor); 15589 15590 return CopyConstructor; 15591 } 15592 15593 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 15594 CXXConstructorDecl *CopyConstructor) { 15595 assert((CopyConstructor->isDefaulted() && 15596 CopyConstructor->isCopyConstructor() && 15597 !CopyConstructor->doesThisDeclarationHaveABody() && 15598 !CopyConstructor->isDeleted()) && 15599 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 15600 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 15601 return; 15602 15603 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 15604 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 15605 15606 SynthesizedFunctionScope Scope(*this, CopyConstructor); 15607 15608 // The exception specification is needed because we are defining the 15609 // function. 15610 ResolveExceptionSpec(CurrentLocation, 15611 CopyConstructor->getType()->castAs<FunctionProtoType>()); 15612 MarkVTableUsed(CurrentLocation, ClassDecl); 15613 15614 // Add a context note for diagnostics produced after this point. 15615 Scope.addContextNote(CurrentLocation); 15616 15617 // C++11 [class.copy]p7: 15618 // The [definition of an implicitly declared copy constructor] is 15619 // deprecated if the class has a user-declared copy assignment operator 15620 // or a user-declared destructor. 15621 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 15622 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 15623 15624 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 15625 CopyConstructor->setInvalidDecl(); 15626 } else { 15627 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 15628 ? CopyConstructor->getEndLoc() 15629 : CopyConstructor->getLocation(); 15630 Sema::CompoundScopeRAII CompoundScope(*this); 15631 CopyConstructor->setBody( 15632 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false) 15633 .getAs<Stmt>()); 15634 CopyConstructor->markUsed(Context); 15635 } 15636 15637 if (ASTMutationListener *L = getASTMutationListener()) { 15638 L->CompletedImplicitDefinition(CopyConstructor); 15639 } 15640 } 15641 15642 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 15643 CXXRecordDecl *ClassDecl) { 15644 assert(ClassDecl->needsImplicitMoveConstructor()); 15645 15646 DeclaringSpecialMember DSM(*this, ClassDecl, 15647 CXXSpecialMemberKind::MoveConstructor); 15648 if (DSM.isAlreadyBeingDeclared()) 15649 return nullptr; 15650 15651 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15652 15653 QualType ArgType = ClassType; 15654 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 15655 ArgType, nullptr); 15656 LangAS AS = getDefaultCXXMethodAddrSpace(); 15657 if (AS != LangAS::Default) 15658 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 15659 ArgType = Context.getRValueReferenceType(ArgType); 15660 15661 bool Constexpr = defaultedSpecialMemberIsConstexpr( 15662 *this, ClassDecl, CXXSpecialMemberKind::MoveConstructor, false); 15663 15664 DeclarationName Name 15665 = Context.DeclarationNames.getCXXConstructorName( 15666 Context.getCanonicalType(ClassType)); 15667 SourceLocation ClassLoc = ClassDecl->getLocation(); 15668 DeclarationNameInfo NameInfo(Name, ClassLoc); 15669 15670 // C++11 [class.copy]p11: 15671 // An implicitly-declared copy/move constructor is an inline public 15672 // member of its class. 15673 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 15674 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15675 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15676 /*isInline=*/true, 15677 /*isImplicitlyDeclared=*/true, 15678 Constexpr ? ConstexprSpecKind::Constexpr 15679 : ConstexprSpecKind::Unspecified); 15680 MoveConstructor->setAccess(AS_public); 15681 MoveConstructor->setDefaulted(); 15682 15683 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 15684 15685 if (getLangOpts().CUDA) 15686 CUDA().inferTargetForImplicitSpecialMember( 15687 ClassDecl, CXXSpecialMemberKind::MoveConstructor, MoveConstructor, 15688 /* ConstRHS */ false, 15689 /* Diagnose */ false); 15690 15691 // Add the parameter to the constructor. 15692 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 15693 ClassLoc, ClassLoc, 15694 /*IdentifierInfo=*/nullptr, 15695 ArgType, /*TInfo=*/nullptr, 15696 SC_None, nullptr); 15697 MoveConstructor->setParams(FromParam); 15698 15699 MoveConstructor->setTrivial( 15700 ClassDecl->needsOverloadResolutionForMoveConstructor() 15701 ? SpecialMemberIsTrivial(MoveConstructor, 15702 CXXSpecialMemberKind::MoveConstructor) 15703 : ClassDecl->hasTrivialMoveConstructor()); 15704 15705 MoveConstructor->setTrivialForCall( 15706 ClassDecl->hasAttr<TrivialABIAttr>() || 15707 (ClassDecl->needsOverloadResolutionForMoveConstructor() 15708 ? SpecialMemberIsTrivial(MoveConstructor, 15709 CXXSpecialMemberKind::MoveConstructor, 15710 TAH_ConsiderTrivialABI) 15711 : ClassDecl->hasTrivialMoveConstructorForCall())); 15712 15713 // Note that we have declared this constructor. 15714 ++getASTContext().NumImplicitMoveConstructorsDeclared; 15715 15716 Scope *S = getScopeForContext(ClassDecl); 15717 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 15718 15719 if (ShouldDeleteSpecialMember(MoveConstructor, 15720 CXXSpecialMemberKind::MoveConstructor)) { 15721 ClassDecl->setImplicitMoveConstructorIsDeleted(); 15722 SetDeclDeleted(MoveConstructor, ClassLoc); 15723 } 15724 15725 if (S) 15726 PushOnScopeChains(MoveConstructor, S, false); 15727 ClassDecl->addDecl(MoveConstructor); 15728 15729 return MoveConstructor; 15730 } 15731 15732 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 15733 CXXConstructorDecl *MoveConstructor) { 15734 assert((MoveConstructor->isDefaulted() && 15735 MoveConstructor->isMoveConstructor() && 15736 !MoveConstructor->doesThisDeclarationHaveABody() && 15737 !MoveConstructor->isDeleted()) && 15738 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 15739 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 15740 return; 15741 15742 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 15743 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 15744 15745 SynthesizedFunctionScope Scope(*this, MoveConstructor); 15746 15747 // The exception specification is needed because we are defining the 15748 // function. 15749 ResolveExceptionSpec(CurrentLocation, 15750 MoveConstructor->getType()->castAs<FunctionProtoType>()); 15751 MarkVTableUsed(CurrentLocation, ClassDecl); 15752 15753 // Add a context note for diagnostics produced after this point. 15754 Scope.addContextNote(CurrentLocation); 15755 15756 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 15757 MoveConstructor->setInvalidDecl(); 15758 } else { 15759 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 15760 ? MoveConstructor->getEndLoc() 15761 : MoveConstructor->getLocation(); 15762 Sema::CompoundScopeRAII CompoundScope(*this); 15763 MoveConstructor->setBody( 15764 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false) 15765 .getAs<Stmt>()); 15766 MoveConstructor->markUsed(Context); 15767 } 15768 15769 if (ASTMutationListener *L = getASTMutationListener()) { 15770 L->CompletedImplicitDefinition(MoveConstructor); 15771 } 15772 } 15773 15774 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 15775 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 15776 } 15777 15778 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 15779 SourceLocation CurrentLocation, 15780 CXXConversionDecl *Conv) { 15781 SynthesizedFunctionScope Scope(*this, Conv); 15782 assert(!Conv->getReturnType()->isUndeducedType()); 15783 15784 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); 15785 CallingConv CC = 15786 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); 15787 15788 CXXRecordDecl *Lambda = Conv->getParent(); 15789 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 15790 FunctionDecl *Invoker = 15791 CallOp->hasCXXExplicitFunctionObjectParameter() || CallOp->isStatic() 15792 ? CallOp 15793 : Lambda->getLambdaStaticInvoker(CC); 15794 15795 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 15796 CallOp = InstantiateFunctionDeclaration( 15797 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15798 if (!CallOp) 15799 return; 15800 15801 if (CallOp != Invoker) { 15802 Invoker = InstantiateFunctionDeclaration( 15803 Invoker->getDescribedFunctionTemplate(), TemplateArgs, 15804 CurrentLocation); 15805 if (!Invoker) 15806 return; 15807 } 15808 } 15809 15810 if (CallOp->isInvalidDecl()) 15811 return; 15812 15813 // Mark the call operator referenced (and add to pending instantiations 15814 // if necessary). 15815 // For both the conversion and static-invoker template specializations 15816 // we construct their body's in this function, so no need to add them 15817 // to the PendingInstantiations. 15818 MarkFunctionReferenced(CurrentLocation, CallOp); 15819 15820 if (Invoker != CallOp) { 15821 // Fill in the __invoke function with a dummy implementation. IR generation 15822 // will fill in the actual details. Update its type in case it contained 15823 // an 'auto'. 15824 Invoker->markUsed(Context); 15825 Invoker->setReferenced(); 15826 Invoker->setType(Conv->getReturnType()->getPointeeType()); 15827 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 15828 } 15829 15830 // Construct the body of the conversion function { return __invoke; }. 15831 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue, 15832 Conv->getLocation()); 15833 assert(FunctionRef && "Can't refer to __invoke function?"); 15834 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 15835 Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(), 15836 Conv->getLocation(), Conv->getLocation())); 15837 Conv->markUsed(Context); 15838 Conv->setReferenced(); 15839 15840 if (ASTMutationListener *L = getASTMutationListener()) { 15841 L->CompletedImplicitDefinition(Conv); 15842 if (Invoker != CallOp) 15843 L->CompletedImplicitDefinition(Invoker); 15844 } 15845 } 15846 15847 void Sema::DefineImplicitLambdaToBlockPointerConversion( 15848 SourceLocation CurrentLocation, CXXConversionDecl *Conv) { 15849 assert(!Conv->getParent()->isGenericLambda()); 15850 15851 SynthesizedFunctionScope Scope(*this, Conv); 15852 15853 // Copy-initialize the lambda object as needed to capture it. 15854 Expr *This = ActOnCXXThis(CurrentLocation).get(); 15855 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 15856 15857 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 15858 Conv->getLocation(), 15859 Conv, DerefThis); 15860 15861 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 15862 // behavior. Note that only the general conversion function does this 15863 // (since it's unusable otherwise); in the case where we inline the 15864 // block literal, it has block literal lifetime semantics. 15865 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 15866 BuildBlock = ImplicitCastExpr::Create( 15867 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, 15868 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); 15869 15870 if (BuildBlock.isInvalid()) { 15871 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15872 Conv->setInvalidDecl(); 15873 return; 15874 } 15875 15876 // Create the return statement that returns the block from the conversion 15877 // function. 15878 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 15879 if (Return.isInvalid()) { 15880 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15881 Conv->setInvalidDecl(); 15882 return; 15883 } 15884 15885 // Set the body of the conversion function. 15886 Stmt *ReturnS = Return.get(); 15887 Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(), 15888 Conv->getLocation(), Conv->getLocation())); 15889 Conv->markUsed(Context); 15890 15891 // We're done; notify the mutation listener, if any. 15892 if (ASTMutationListener *L = getASTMutationListener()) { 15893 L->CompletedImplicitDefinition(Conv); 15894 } 15895 } 15896 15897 /// Determine whether the given list arguments contains exactly one 15898 /// "real" (non-default) argument. 15899 static bool hasOneRealArgument(MultiExprArg Args) { 15900 switch (Args.size()) { 15901 case 0: 15902 return false; 15903 15904 default: 15905 if (!Args[1]->isDefaultArgument()) 15906 return false; 15907 15908 [[fallthrough]]; 15909 case 1: 15910 return !Args[0]->isDefaultArgument(); 15911 } 15912 15913 return false; 15914 } 15915 15916 ExprResult Sema::BuildCXXConstructExpr( 15917 SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, 15918 CXXConstructorDecl *Constructor, MultiExprArg ExprArgs, 15919 bool HadMultipleCandidates, bool IsListInitialization, 15920 bool IsStdInitListInitialization, bool RequiresZeroInit, 15921 CXXConstructionKind ConstructKind, SourceRange ParenRange) { 15922 bool Elidable = false; 15923 15924 // C++0x [class.copy]p34: 15925 // When certain criteria are met, an implementation is allowed to 15926 // omit the copy/move construction of a class object, even if the 15927 // copy/move constructor and/or destructor for the object have 15928 // side effects. [...] 15929 // - when a temporary class object that has not been bound to a 15930 // reference (12.2) would be copied/moved to a class object 15931 // with the same cv-unqualified type, the copy/move operation 15932 // can be omitted by constructing the temporary object 15933 // directly into the target of the omitted copy/move 15934 if (ConstructKind == CXXConstructionKind::Complete && Constructor && 15935 // FIXME: Converting constructors should also be accepted. 15936 // But to fix this, the logic that digs down into a CXXConstructExpr 15937 // to find the source object needs to handle it. 15938 // Right now it assumes the source object is passed directly as the 15939 // first argument. 15940 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 15941 Expr *SubExpr = ExprArgs[0]; 15942 // FIXME: Per above, this is also incorrect if we want to accept 15943 // converting constructors, as isTemporaryObject will 15944 // reject temporaries with different type from the 15945 // CXXRecord itself. 15946 Elidable = SubExpr->isTemporaryObject( 15947 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 15948 } 15949 15950 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 15951 FoundDecl, Constructor, 15952 Elidable, ExprArgs, HadMultipleCandidates, 15953 IsListInitialization, 15954 IsStdInitListInitialization, RequiresZeroInit, 15955 ConstructKind, ParenRange); 15956 } 15957 15958 ExprResult Sema::BuildCXXConstructExpr( 15959 SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, 15960 CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, 15961 bool HadMultipleCandidates, bool IsListInitialization, 15962 bool IsStdInitListInitialization, bool RequiresZeroInit, 15963 CXXConstructionKind ConstructKind, SourceRange ParenRange) { 15964 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 15965 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 15966 // The only way to get here is if we did overload resolution to find the 15967 // shadow decl, so we don't need to worry about re-checking the trailing 15968 // requires clause. 15969 if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc)) 15970 return ExprError(); 15971 } 15972 15973 return BuildCXXConstructExpr( 15974 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 15975 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 15976 RequiresZeroInit, ConstructKind, ParenRange); 15977 } 15978 15979 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 15980 /// including handling of its default argument expressions. 15981 ExprResult Sema::BuildCXXConstructExpr( 15982 SourceLocation ConstructLoc, QualType DeclInitType, 15983 CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, 15984 bool HadMultipleCandidates, bool IsListInitialization, 15985 bool IsStdInitListInitialization, bool RequiresZeroInit, 15986 CXXConstructionKind ConstructKind, SourceRange ParenRange) { 15987 assert(declaresSameEntity( 15988 Constructor->getParent(), 15989 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 15990 "given constructor for wrong type"); 15991 MarkFunctionReferenced(ConstructLoc, Constructor); 15992 if (getLangOpts().CUDA && !CUDA().CheckCall(ConstructLoc, Constructor)) 15993 return ExprError(); 15994 15995 return CheckForImmediateInvocation( 15996 CXXConstructExpr::Create( 15997 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 15998 HadMultipleCandidates, IsListInitialization, 15999 IsStdInitListInitialization, RequiresZeroInit, 16000 static_cast<CXXConstructionKind>(ConstructKind), ParenRange), 16001 Constructor); 16002 } 16003 16004 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 16005 if (VD->isInvalidDecl()) return; 16006 // If initializing the variable failed, don't also diagnose problems with 16007 // the destructor, they're likely related. 16008 if (VD->getInit() && VD->getInit()->containsErrors()) 16009 return; 16010 16011 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 16012 if (ClassDecl->isInvalidDecl()) return; 16013 if (ClassDecl->hasIrrelevantDestructor()) return; 16014 if (ClassDecl->isDependentContext()) return; 16015 16016 if (VD->isNoDestroy(getASTContext())) 16017 return; 16018 16019 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 16020 // The result of `LookupDestructor` might be nullptr if the destructor is 16021 // invalid, in which case it is marked as `IneligibleOrNotSelected` and 16022 // will not be selected by `CXXRecordDecl::getDestructor()`. 16023 if (!Destructor) 16024 return; 16025 // If this is an array, we'll require the destructor during initialization, so 16026 // we can skip over this. We still want to emit exit-time destructor warnings 16027 // though. 16028 if (!VD->getType()->isArrayType()) { 16029 MarkFunctionReferenced(VD->getLocation(), Destructor); 16030 CheckDestructorAccess(VD->getLocation(), Destructor, 16031 PDiag(diag::err_access_dtor_var) 16032 << VD->getDeclName() << VD->getType()); 16033 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 16034 } 16035 16036 if (Destructor->isTrivial()) return; 16037 16038 // If the destructor is constexpr, check whether the variable has constant 16039 // destruction now. 16040 if (Destructor->isConstexpr()) { 16041 bool HasConstantInit = false; 16042 if (VD->getInit() && !VD->getInit()->isValueDependent()) 16043 HasConstantInit = VD->evaluateValue(); 16044 SmallVector<PartialDiagnosticAt, 8> Notes; 16045 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 16046 HasConstantInit) { 16047 Diag(VD->getLocation(), 16048 diag::err_constexpr_var_requires_const_destruction) << VD; 16049 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 16050 Diag(Notes[I].first, Notes[I].second); 16051 } 16052 } 16053 16054 if (!VD->hasGlobalStorage() || !VD->needsDestruction(Context)) 16055 return; 16056 16057 // Emit warning for non-trivial dtor in global scope (a real global, 16058 // class-static, function-static). 16059 if (!VD->hasAttr<AlwaysDestroyAttr>()) 16060 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 16061 16062 // TODO: this should be re-enabled for static locals by !CXAAtExit 16063 if (!VD->isStaticLocal()) 16064 Diag(VD->getLocation(), diag::warn_global_destructor); 16065 } 16066 16067 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 16068 QualType DeclInitType, MultiExprArg ArgsPtr, 16069 SourceLocation Loc, 16070 SmallVectorImpl<Expr *> &ConvertedArgs, 16071 bool AllowExplicit, 16072 bool IsListInitialization) { 16073 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 16074 unsigned NumArgs = ArgsPtr.size(); 16075 Expr **Args = ArgsPtr.data(); 16076 16077 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 16078 unsigned NumParams = Proto->getNumParams(); 16079 16080 // If too few arguments are available, we'll fill in the rest with defaults. 16081 if (NumArgs < NumParams) 16082 ConvertedArgs.reserve(NumParams); 16083 else 16084 ConvertedArgs.reserve(NumArgs); 16085 16086 VariadicCallType CallType = 16087 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 16088 SmallVector<Expr *, 8> AllArgs; 16089 bool Invalid = GatherArgumentsForCall( 16090 Loc, Constructor, Proto, 0, llvm::ArrayRef(Args, NumArgs), AllArgs, 16091 CallType, AllowExplicit, IsListInitialization); 16092 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 16093 16094 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 16095 16096 CheckConstructorCall(Constructor, DeclInitType, 16097 llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto, 16098 Loc); 16099 16100 return Invalid; 16101 } 16102 16103 static inline bool 16104 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 16105 const FunctionDecl *FnDecl) { 16106 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 16107 if (isa<NamespaceDecl>(DC)) { 16108 return SemaRef.Diag(FnDecl->getLocation(), 16109 diag::err_operator_new_delete_declared_in_namespace) 16110 << FnDecl->getDeclName(); 16111 } 16112 16113 if (isa<TranslationUnitDecl>(DC) && 16114 FnDecl->getStorageClass() == SC_Static) { 16115 return SemaRef.Diag(FnDecl->getLocation(), 16116 diag::err_operator_new_delete_declared_static) 16117 << FnDecl->getDeclName(); 16118 } 16119 16120 return false; 16121 } 16122 16123 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, 16124 const PointerType *PtrTy) { 16125 auto &Ctx = SemaRef.Context; 16126 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); 16127 PtrQuals.removeAddressSpace(); 16128 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( 16129 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); 16130 } 16131 16132 static inline bool 16133 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 16134 CanQualType ExpectedResultType, 16135 CanQualType ExpectedFirstParamType, 16136 unsigned DependentParamTypeDiag, 16137 unsigned InvalidParamTypeDiag) { 16138 QualType ResultType = 16139 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 16140 16141 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 16142 // The operator is valid on any address space for OpenCL. 16143 // Drop address space from actual and expected result types. 16144 if (const auto *PtrTy = ResultType->getAs<PointerType>()) 16145 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 16146 16147 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) 16148 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 16149 } 16150 16151 // Check that the result type is what we expect. 16152 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 16153 // Reject even if the type is dependent; an operator delete function is 16154 // required to have a non-dependent result type. 16155 return SemaRef.Diag( 16156 FnDecl->getLocation(), 16157 ResultType->isDependentType() 16158 ? diag::err_operator_new_delete_dependent_result_type 16159 : diag::err_operator_new_delete_invalid_result_type) 16160 << FnDecl->getDeclName() << ExpectedResultType; 16161 } 16162 16163 // A function template must have at least 2 parameters. 16164 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 16165 return SemaRef.Diag(FnDecl->getLocation(), 16166 diag::err_operator_new_delete_template_too_few_parameters) 16167 << FnDecl->getDeclName(); 16168 16169 // The function decl must have at least 1 parameter. 16170 if (FnDecl->getNumParams() == 0) 16171 return SemaRef.Diag(FnDecl->getLocation(), 16172 diag::err_operator_new_delete_too_few_parameters) 16173 << FnDecl->getDeclName(); 16174 16175 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 16176 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 16177 // The operator is valid on any address space for OpenCL. 16178 // Drop address space from actual and expected first parameter types. 16179 if (const auto *PtrTy = 16180 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) 16181 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 16182 16183 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) 16184 ExpectedFirstParamType = 16185 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 16186 } 16187 16188 // Check that the first parameter type is what we expect. 16189 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 16190 ExpectedFirstParamType) { 16191 // The first parameter type is not allowed to be dependent. As a tentative 16192 // DR resolution, we allow a dependent parameter type if it is the right 16193 // type anyway, to allow destroying operator delete in class templates. 16194 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 16195 ? DependentParamTypeDiag 16196 : InvalidParamTypeDiag) 16197 << FnDecl->getDeclName() << ExpectedFirstParamType; 16198 } 16199 16200 return false; 16201 } 16202 16203 static bool 16204 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 16205 // C++ [basic.stc.dynamic.allocation]p1: 16206 // A program is ill-formed if an allocation function is declared in a 16207 // namespace scope other than global scope or declared static in global 16208 // scope. 16209 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 16210 return true; 16211 16212 CanQualType SizeTy = 16213 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 16214 16215 // C++ [basic.stc.dynamic.allocation]p1: 16216 // The return type shall be void*. The first parameter shall have type 16217 // std::size_t. 16218 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 16219 SizeTy, 16220 diag::err_operator_new_dependent_param_type, 16221 diag::err_operator_new_param_type)) 16222 return true; 16223 16224 // C++ [basic.stc.dynamic.allocation]p1: 16225 // The first parameter shall not have an associated default argument. 16226 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 16227 return SemaRef.Diag(FnDecl->getLocation(), 16228 diag::err_operator_new_default_arg) 16229 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 16230 16231 return false; 16232 } 16233 16234 static bool 16235 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 16236 // C++ [basic.stc.dynamic.deallocation]p1: 16237 // A program is ill-formed if deallocation functions are declared in a 16238 // namespace scope other than global scope or declared static in global 16239 // scope. 16240 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 16241 return true; 16242 16243 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 16244 16245 // C++ P0722: 16246 // Within a class C, the first parameter of a destroying operator delete 16247 // shall be of type C *. The first parameter of any other deallocation 16248 // function shall be of type void *. 16249 CanQualType ExpectedFirstParamType = 16250 MD && MD->isDestroyingOperatorDelete() 16251 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 16252 SemaRef.Context.getRecordType(MD->getParent()))) 16253 : SemaRef.Context.VoidPtrTy; 16254 16255 // C++ [basic.stc.dynamic.deallocation]p2: 16256 // Each deallocation function shall return void 16257 if (CheckOperatorNewDeleteTypes( 16258 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 16259 diag::err_operator_delete_dependent_param_type, 16260 diag::err_operator_delete_param_type)) 16261 return true; 16262 16263 // C++ P0722: 16264 // A destroying operator delete shall be a usual deallocation function. 16265 if (MD && !MD->getParent()->isDependentContext() && 16266 MD->isDestroyingOperatorDelete() && 16267 !SemaRef.isUsualDeallocationFunction(MD)) { 16268 SemaRef.Diag(MD->getLocation(), 16269 diag::err_destroying_operator_delete_not_usual); 16270 return true; 16271 } 16272 16273 return false; 16274 } 16275 16276 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 16277 assert(FnDecl && FnDecl->isOverloadedOperator() && 16278 "Expected an overloaded operator declaration"); 16279 16280 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 16281 16282 // C++ [over.oper]p5: 16283 // The allocation and deallocation functions, operator new, 16284 // operator new[], operator delete and operator delete[], are 16285 // described completely in 3.7.3. The attributes and restrictions 16286 // found in the rest of this subclause do not apply to them unless 16287 // explicitly stated in 3.7.3. 16288 if (Op == OO_Delete || Op == OO_Array_Delete) 16289 return CheckOperatorDeleteDeclaration(*this, FnDecl); 16290 16291 if (Op == OO_New || Op == OO_Array_New) 16292 return CheckOperatorNewDeclaration(*this, FnDecl); 16293 16294 // C++ [over.oper]p7: 16295 // An operator function shall either be a member function or 16296 // be a non-member function and have at least one parameter 16297 // whose type is a class, a reference to a class, an enumeration, 16298 // or a reference to an enumeration. 16299 // Note: Before C++23, a member function could not be static. The only member 16300 // function allowed to be static is the call operator function. 16301 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 16302 if (MethodDecl->isStatic()) { 16303 if (Op == OO_Call || Op == OO_Subscript) 16304 Diag(FnDecl->getLocation(), 16305 (LangOpts.CPlusPlus23 16306 ? diag::warn_cxx20_compat_operator_overload_static 16307 : diag::ext_operator_overload_static)) 16308 << FnDecl; 16309 else 16310 return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) 16311 << FnDecl; 16312 } 16313 } else { 16314 bool ClassOrEnumParam = false; 16315 for (auto *Param : FnDecl->parameters()) { 16316 QualType ParamType = Param->getType().getNonReferenceType(); 16317 if (ParamType->isDependentType() || ParamType->isRecordType() || 16318 ParamType->isEnumeralType()) { 16319 ClassOrEnumParam = true; 16320 break; 16321 } 16322 } 16323 16324 if (!ClassOrEnumParam) 16325 return Diag(FnDecl->getLocation(), 16326 diag::err_operator_overload_needs_class_or_enum) 16327 << FnDecl->getDeclName(); 16328 } 16329 16330 // C++ [over.oper]p8: 16331 // An operator function cannot have default arguments (8.3.6), 16332 // except where explicitly stated below. 16333 // 16334 // Only the function-call operator (C++ [over.call]p1) and the subscript 16335 // operator (CWG2507) allow default arguments. 16336 if (Op != OO_Call) { 16337 ParmVarDecl *FirstDefaultedParam = nullptr; 16338 for (auto *Param : FnDecl->parameters()) { 16339 if (Param->hasDefaultArg()) { 16340 FirstDefaultedParam = Param; 16341 break; 16342 } 16343 } 16344 if (FirstDefaultedParam) { 16345 if (Op == OO_Subscript) { 16346 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 16347 ? diag::ext_subscript_overload 16348 : diag::error_subscript_overload) 16349 << FnDecl->getDeclName() << 1 16350 << FirstDefaultedParam->getDefaultArgRange(); 16351 } else { 16352 return Diag(FirstDefaultedParam->getLocation(), 16353 diag::err_operator_overload_default_arg) 16354 << FnDecl->getDeclName() 16355 << FirstDefaultedParam->getDefaultArgRange(); 16356 } 16357 } 16358 } 16359 16360 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 16361 { false, false, false } 16362 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 16363 , { Unary, Binary, MemberOnly } 16364 #include "clang/Basic/OperatorKinds.def" 16365 }; 16366 16367 bool CanBeUnaryOperator = OperatorUses[Op][0]; 16368 bool CanBeBinaryOperator = OperatorUses[Op][1]; 16369 bool MustBeMemberOperator = OperatorUses[Op][2]; 16370 16371 // C++ [over.oper]p8: 16372 // [...] Operator functions cannot have more or fewer parameters 16373 // than the number required for the corresponding operator, as 16374 // described in the rest of this subclause. 16375 unsigned NumParams = FnDecl->getNumParams() + 16376 (isa<CXXMethodDecl>(FnDecl) && 16377 !FnDecl->hasCXXExplicitFunctionObjectParameter() 16378 ? 1 16379 : 0); 16380 if (Op != OO_Call && Op != OO_Subscript && 16381 ((NumParams == 1 && !CanBeUnaryOperator) || 16382 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || 16383 (NumParams > 2))) { 16384 // We have the wrong number of parameters. 16385 unsigned ErrorKind; 16386 if (CanBeUnaryOperator && CanBeBinaryOperator) { 16387 ErrorKind = 2; // 2 -> unary or binary. 16388 } else if (CanBeUnaryOperator) { 16389 ErrorKind = 0; // 0 -> unary 16390 } else { 16391 assert(CanBeBinaryOperator && 16392 "All non-call overloaded operators are unary or binary!"); 16393 ErrorKind = 1; // 1 -> binary 16394 } 16395 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 16396 << FnDecl->getDeclName() << NumParams << ErrorKind; 16397 } 16398 16399 if (Op == OO_Subscript && NumParams != 2) { 16400 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 16401 ? diag::ext_subscript_overload 16402 : diag::error_subscript_overload) 16403 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2); 16404 } 16405 16406 // Overloaded operators other than operator() and operator[] cannot be 16407 // variadic. 16408 if (Op != OO_Call && 16409 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 16410 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 16411 << FnDecl->getDeclName(); 16412 } 16413 16414 // Some operators must be member functions. 16415 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 16416 return Diag(FnDecl->getLocation(), 16417 diag::err_operator_overload_must_be_member) 16418 << FnDecl->getDeclName(); 16419 } 16420 16421 // C++ [over.inc]p1: 16422 // The user-defined function called operator++ implements the 16423 // prefix and postfix ++ operator. If this function is a member 16424 // function with no parameters, or a non-member function with one 16425 // parameter of class or enumeration type, it defines the prefix 16426 // increment operator ++ for objects of that type. If the function 16427 // is a member function with one parameter (which shall be of type 16428 // int) or a non-member function with two parameters (the second 16429 // of which shall be of type int), it defines the postfix 16430 // increment operator ++ for objects of that type. 16431 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 16432 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 16433 QualType ParamType = LastParam->getType(); 16434 16435 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 16436 !ParamType->isDependentType()) 16437 return Diag(LastParam->getLocation(), 16438 diag::err_operator_overload_post_incdec_must_be_int) 16439 << LastParam->getType() << (Op == OO_MinusMinus); 16440 } 16441 16442 return false; 16443 } 16444 16445 static bool 16446 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 16447 FunctionTemplateDecl *TpDecl) { 16448 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 16449 16450 // Must have one or two template parameters. 16451 if (TemplateParams->size() == 1) { 16452 NonTypeTemplateParmDecl *PmDecl = 16453 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 16454 16455 // The template parameter must be a char parameter pack. 16456 if (PmDecl && PmDecl->isTemplateParameterPack() && 16457 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 16458 return false; 16459 16460 // C++20 [over.literal]p5: 16461 // A string literal operator template is a literal operator template 16462 // whose template-parameter-list comprises a single non-type 16463 // template-parameter of class type. 16464 // 16465 // As a DR resolution, we also allow placeholders for deduced class 16466 // template specializations. 16467 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl && 16468 !PmDecl->isTemplateParameterPack() && 16469 (PmDecl->getType()->isRecordType() || 16470 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) 16471 return false; 16472 } else if (TemplateParams->size() == 2) { 16473 TemplateTypeParmDecl *PmType = 16474 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 16475 NonTypeTemplateParmDecl *PmArgs = 16476 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 16477 16478 // The second template parameter must be a parameter pack with the 16479 // first template parameter as its type. 16480 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 16481 PmArgs->isTemplateParameterPack()) { 16482 const TemplateTypeParmType *TArgs = 16483 PmArgs->getType()->getAs<TemplateTypeParmType>(); 16484 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 16485 TArgs->getIndex() == PmType->getIndex()) { 16486 if (!SemaRef.inTemplateInstantiation()) 16487 SemaRef.Diag(TpDecl->getLocation(), 16488 diag::ext_string_literal_operator_template); 16489 return false; 16490 } 16491 } 16492 } 16493 16494 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 16495 diag::err_literal_operator_template) 16496 << TpDecl->getTemplateParameters()->getSourceRange(); 16497 return true; 16498 } 16499 16500 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 16501 if (isa<CXXMethodDecl>(FnDecl)) { 16502 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 16503 << FnDecl->getDeclName(); 16504 return true; 16505 } 16506 16507 if (FnDecl->isExternC()) { 16508 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 16509 if (const LinkageSpecDecl *LSD = 16510 FnDecl->getDeclContext()->getExternCContext()) 16511 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 16512 return true; 16513 } 16514 16515 // This might be the definition of a literal operator template. 16516 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 16517 16518 // This might be a specialization of a literal operator template. 16519 if (!TpDecl) 16520 TpDecl = FnDecl->getPrimaryTemplate(); 16521 16522 // template <char...> type operator "" name() and 16523 // template <class T, T...> type operator "" name() are the only valid 16524 // template signatures, and the only valid signatures with no parameters. 16525 // 16526 // C++20 also allows template <SomeClass T> type operator "" name(). 16527 if (TpDecl) { 16528 if (FnDecl->param_size() != 0) { 16529 Diag(FnDecl->getLocation(), 16530 diag::err_literal_operator_template_with_params); 16531 return true; 16532 } 16533 16534 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 16535 return true; 16536 16537 } else if (FnDecl->param_size() == 1) { 16538 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 16539 16540 QualType ParamType = Param->getType().getUnqualifiedType(); 16541 16542 // Only unsigned long long int, long double, any character type, and const 16543 // char * are allowed as the only parameters. 16544 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 16545 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 16546 Context.hasSameType(ParamType, Context.CharTy) || 16547 Context.hasSameType(ParamType, Context.WideCharTy) || 16548 Context.hasSameType(ParamType, Context.Char8Ty) || 16549 Context.hasSameType(ParamType, Context.Char16Ty) || 16550 Context.hasSameType(ParamType, Context.Char32Ty)) { 16551 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 16552 QualType InnerType = Ptr->getPointeeType(); 16553 16554 // Pointer parameter must be a const char *. 16555 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 16556 Context.CharTy) && 16557 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 16558 Diag(Param->getSourceRange().getBegin(), 16559 diag::err_literal_operator_param) 16560 << ParamType << "'const char *'" << Param->getSourceRange(); 16561 return true; 16562 } 16563 16564 } else if (ParamType->isRealFloatingType()) { 16565 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16566 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 16567 return true; 16568 16569 } else if (ParamType->isIntegerType()) { 16570 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16571 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 16572 return true; 16573 16574 } else { 16575 Diag(Param->getSourceRange().getBegin(), 16576 diag::err_literal_operator_invalid_param) 16577 << ParamType << Param->getSourceRange(); 16578 return true; 16579 } 16580 16581 } else if (FnDecl->param_size() == 2) { 16582 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 16583 16584 // First, verify that the first parameter is correct. 16585 16586 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 16587 16588 // Two parameter function must have a pointer to const as a 16589 // first parameter; let's strip those qualifiers. 16590 const PointerType *PT = FirstParamType->getAs<PointerType>(); 16591 16592 if (!PT) { 16593 Diag((*Param)->getSourceRange().getBegin(), 16594 diag::err_literal_operator_param) 16595 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16596 return true; 16597 } 16598 16599 QualType PointeeType = PT->getPointeeType(); 16600 // First parameter must be const 16601 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 16602 Diag((*Param)->getSourceRange().getBegin(), 16603 diag::err_literal_operator_param) 16604 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16605 return true; 16606 } 16607 16608 QualType InnerType = PointeeType.getUnqualifiedType(); 16609 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 16610 // const char32_t* are allowed as the first parameter to a two-parameter 16611 // function 16612 if (!(Context.hasSameType(InnerType, Context.CharTy) || 16613 Context.hasSameType(InnerType, Context.WideCharTy) || 16614 Context.hasSameType(InnerType, Context.Char8Ty) || 16615 Context.hasSameType(InnerType, Context.Char16Ty) || 16616 Context.hasSameType(InnerType, Context.Char32Ty))) { 16617 Diag((*Param)->getSourceRange().getBegin(), 16618 diag::err_literal_operator_param) 16619 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16620 return true; 16621 } 16622 16623 // Move on to the second and final parameter. 16624 ++Param; 16625 16626 // The second parameter must be a std::size_t. 16627 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 16628 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 16629 Diag((*Param)->getSourceRange().getBegin(), 16630 diag::err_literal_operator_param) 16631 << SecondParamType << Context.getSizeType() 16632 << (*Param)->getSourceRange(); 16633 return true; 16634 } 16635 } else { 16636 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 16637 return true; 16638 } 16639 16640 // Parameters are good. 16641 16642 // A parameter-declaration-clause containing a default argument is not 16643 // equivalent to any of the permitted forms. 16644 for (auto *Param : FnDecl->parameters()) { 16645 if (Param->hasDefaultArg()) { 16646 Diag(Param->getDefaultArgRange().getBegin(), 16647 diag::err_literal_operator_default_argument) 16648 << Param->getDefaultArgRange(); 16649 break; 16650 } 16651 } 16652 16653 const IdentifierInfo *II = FnDecl->getDeclName().getCXXLiteralIdentifier(); 16654 ReservedLiteralSuffixIdStatus Status = II->isReservedLiteralSuffixId(); 16655 if (Status != ReservedLiteralSuffixIdStatus::NotReserved && 16656 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 16657 // C++23 [usrlit.suffix]p1: 16658 // Literal suffix identifiers that do not start with an underscore are 16659 // reserved for future standardization. Literal suffix identifiers that 16660 // contain a double underscore __ are reserved for use by C++ 16661 // implementations. 16662 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 16663 << static_cast<int>(Status) 16664 << StringLiteralParser::isValidUDSuffix(getLangOpts(), II->getName()); 16665 } 16666 16667 return false; 16668 } 16669 16670 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 16671 Expr *LangStr, 16672 SourceLocation LBraceLoc) { 16673 StringLiteral *Lit = cast<StringLiteral>(LangStr); 16674 assert(Lit->isUnevaluated() && "Unexpected string literal kind"); 16675 16676 StringRef Lang = Lit->getString(); 16677 LinkageSpecLanguageIDs Language; 16678 if (Lang == "C") 16679 Language = LinkageSpecLanguageIDs::C; 16680 else if (Lang == "C++") 16681 Language = LinkageSpecLanguageIDs::CXX; 16682 else { 16683 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 16684 << LangStr->getSourceRange(); 16685 return nullptr; 16686 } 16687 16688 // FIXME: Add all the various semantics of linkage specifications 16689 16690 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 16691 LangStr->getExprLoc(), Language, 16692 LBraceLoc.isValid()); 16693 16694 /// C++ [module.unit]p7.2.3 16695 /// - Otherwise, if the declaration 16696 /// - ... 16697 /// - ... 16698 /// - appears within a linkage-specification, 16699 /// it is attached to the global module. 16700 /// 16701 /// If the declaration is already in global module fragment, we don't 16702 /// need to attach it again. 16703 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) { 16704 Module *GlobalModule = PushImplicitGlobalModuleFragment(ExternLoc); 16705 D->setLocalOwningModule(GlobalModule); 16706 } 16707 16708 CurContext->addDecl(D); 16709 PushDeclContext(S, D); 16710 return D; 16711 } 16712 16713 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 16714 Decl *LinkageSpec, 16715 SourceLocation RBraceLoc) { 16716 if (RBraceLoc.isValid()) { 16717 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 16718 LSDecl->setRBraceLoc(RBraceLoc); 16719 } 16720 16721 // If the current module doesn't has Parent, it implies that the 16722 // LinkageSpec isn't in the module created by itself. So we don't 16723 // need to pop it. 16724 if (getLangOpts().CPlusPlusModules && getCurrentModule() && 16725 getCurrentModule()->isImplicitGlobalModule() && 16726 getCurrentModule()->Parent) 16727 PopImplicitGlobalModuleFragment(); 16728 16729 PopDeclContext(); 16730 return LinkageSpec; 16731 } 16732 16733 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 16734 const ParsedAttributesView &AttrList, 16735 SourceLocation SemiLoc) { 16736 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 16737 // Attribute declarations appertain to empty declaration so we handle 16738 // them here. 16739 ProcessDeclAttributeList(S, ED, AttrList); 16740 16741 CurContext->addDecl(ED); 16742 return ED; 16743 } 16744 16745 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, 16746 SourceLocation StartLoc, 16747 SourceLocation Loc, 16748 const IdentifierInfo *Name) { 16749 bool Invalid = false; 16750 QualType ExDeclType = TInfo->getType(); 16751 16752 // Arrays and functions decay. 16753 if (ExDeclType->isArrayType()) 16754 ExDeclType = Context.getArrayDecayedType(ExDeclType); 16755 else if (ExDeclType->isFunctionType()) 16756 ExDeclType = Context.getPointerType(ExDeclType); 16757 16758 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 16759 // The exception-declaration shall not denote a pointer or reference to an 16760 // incomplete type, other than [cv] void*. 16761 // N2844 forbids rvalue references. 16762 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 16763 Diag(Loc, diag::err_catch_rvalue_ref); 16764 Invalid = true; 16765 } 16766 16767 if (ExDeclType->isVariablyModifiedType()) { 16768 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 16769 Invalid = true; 16770 } 16771 16772 QualType BaseType = ExDeclType; 16773 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 16774 unsigned DK = diag::err_catch_incomplete; 16775 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 16776 BaseType = Ptr->getPointeeType(); 16777 Mode = 1; 16778 DK = diag::err_catch_incomplete_ptr; 16779 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 16780 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 16781 BaseType = Ref->getPointeeType(); 16782 Mode = 2; 16783 DK = diag::err_catch_incomplete_ref; 16784 } 16785 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 16786 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 16787 Invalid = true; 16788 16789 if (!Invalid && BaseType.isWebAssemblyReferenceType()) { 16790 Diag(Loc, diag::err_wasm_reftype_tc) << 1; 16791 Invalid = true; 16792 } 16793 16794 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 16795 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 16796 Invalid = true; 16797 } 16798 16799 if (!Invalid && !ExDeclType->isDependentType() && 16800 RequireNonAbstractType(Loc, ExDeclType, 16801 diag::err_abstract_type_in_decl, 16802 AbstractVariableType)) 16803 Invalid = true; 16804 16805 // Only the non-fragile NeXT runtime currently supports C++ catches 16806 // of ObjC types, and no runtime supports catching ObjC types by value. 16807 if (!Invalid && getLangOpts().ObjC) { 16808 QualType T = ExDeclType; 16809 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 16810 T = RT->getPointeeType(); 16811 16812 if (T->isObjCObjectType()) { 16813 Diag(Loc, diag::err_objc_object_catch); 16814 Invalid = true; 16815 } else if (T->isObjCObjectPointerType()) { 16816 // FIXME: should this be a test for macosx-fragile specifically? 16817 if (getLangOpts().ObjCRuntime.isFragile()) 16818 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 16819 } 16820 } 16821 16822 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 16823 ExDeclType, TInfo, SC_None); 16824 ExDecl->setExceptionVariable(true); 16825 16826 // In ARC, infer 'retaining' for variables of retainable type. 16827 if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(ExDecl)) 16828 Invalid = true; 16829 16830 if (!Invalid && !ExDeclType->isDependentType()) { 16831 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 16832 // Insulate this from anything else we might currently be parsing. 16833 EnterExpressionEvaluationContext scope( 16834 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 16835 16836 // C++ [except.handle]p16: 16837 // The object declared in an exception-declaration or, if the 16838 // exception-declaration does not specify a name, a temporary (12.2) is 16839 // copy-initialized (8.5) from the exception object. [...] 16840 // The object is destroyed when the handler exits, after the destruction 16841 // of any automatic objects initialized within the handler. 16842 // 16843 // We just pretend to initialize the object with itself, then make sure 16844 // it can be destroyed later. 16845 QualType initType = Context.getExceptionObjectType(ExDeclType); 16846 16847 InitializedEntity entity = 16848 InitializedEntity::InitializeVariable(ExDecl); 16849 InitializationKind initKind = 16850 InitializationKind::CreateCopy(Loc, SourceLocation()); 16851 16852 Expr *opaqueValue = 16853 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 16854 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 16855 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 16856 if (result.isInvalid()) 16857 Invalid = true; 16858 else { 16859 // If the constructor used was non-trivial, set this as the 16860 // "initializer". 16861 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 16862 if (!construct->getConstructor()->isTrivial()) { 16863 Expr *init = MaybeCreateExprWithCleanups(construct); 16864 ExDecl->setInit(init); 16865 } 16866 16867 // And make sure it's destructable. 16868 FinalizeVarWithDestructor(ExDecl, recordType); 16869 } 16870 } 16871 } 16872 16873 if (Invalid) 16874 ExDecl->setInvalidDecl(); 16875 16876 return ExDecl; 16877 } 16878 16879 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 16880 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 16881 bool Invalid = D.isInvalidType(); 16882 16883 // Check for unexpanded parameter packs. 16884 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16885 UPPC_ExceptionType)) { 16886 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 16887 D.getIdentifierLoc()); 16888 Invalid = true; 16889 } 16890 16891 const IdentifierInfo *II = D.getIdentifier(); 16892 if (NamedDecl *PrevDecl = 16893 LookupSingleName(S, II, D.getIdentifierLoc(), LookupOrdinaryName, 16894 RedeclarationKind::ForVisibleRedeclaration)) { 16895 // The scope should be freshly made just for us. There is just no way 16896 // it contains any previous declaration, except for function parameters in 16897 // a function-try-block's catch statement. 16898 assert(!S->isDeclScope(PrevDecl)); 16899 if (isDeclInScope(PrevDecl, CurContext, S)) { 16900 Diag(D.getIdentifierLoc(), diag::err_redefinition) 16901 << D.getIdentifier(); 16902 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 16903 Invalid = true; 16904 } else if (PrevDecl->isTemplateParameter()) 16905 // Maybe we will complain about the shadowed template parameter. 16906 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16907 } 16908 16909 if (D.getCXXScopeSpec().isSet() && !Invalid) { 16910 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 16911 << D.getCXXScopeSpec().getRange(); 16912 Invalid = true; 16913 } 16914 16915 VarDecl *ExDecl = BuildExceptionDeclaration( 16916 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 16917 if (Invalid) 16918 ExDecl->setInvalidDecl(); 16919 16920 // Add the exception declaration into this scope. 16921 if (II) 16922 PushOnScopeChains(ExDecl, S); 16923 else 16924 CurContext->addDecl(ExDecl); 16925 16926 ProcessDeclAttributes(S, ExDecl, D); 16927 return ExDecl; 16928 } 16929 16930 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16931 Expr *AssertExpr, 16932 Expr *AssertMessageExpr, 16933 SourceLocation RParenLoc) { 16934 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 16935 return nullptr; 16936 16937 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 16938 AssertMessageExpr, RParenLoc, false); 16939 } 16940 16941 static void WriteCharTypePrefix(BuiltinType::Kind BTK, llvm::raw_ostream &OS) { 16942 switch (BTK) { 16943 case BuiltinType::Char_S: 16944 case BuiltinType::Char_U: 16945 break; 16946 case BuiltinType::Char8: 16947 OS << "u8"; 16948 break; 16949 case BuiltinType::Char16: 16950 OS << 'u'; 16951 break; 16952 case BuiltinType::Char32: 16953 OS << 'U'; 16954 break; 16955 case BuiltinType::WChar_S: 16956 case BuiltinType::WChar_U: 16957 OS << 'L'; 16958 break; 16959 default: 16960 llvm_unreachable("Non-character type"); 16961 } 16962 } 16963 16964 /// Convert character's value, interpreted as a code unit, to a string. 16965 /// The value needs to be zero-extended to 32-bits. 16966 /// FIXME: This assumes Unicode literal encodings 16967 static void WriteCharValueForDiagnostic(uint32_t Value, const BuiltinType *BTy, 16968 unsigned TyWidth, 16969 SmallVectorImpl<char> &Str) { 16970 char Arr[UNI_MAX_UTF8_BYTES_PER_CODE_POINT]; 16971 char *Ptr = Arr; 16972 BuiltinType::Kind K = BTy->getKind(); 16973 llvm::raw_svector_ostream OS(Str); 16974 16975 // This should catch Char_S, Char_U, Char8, and use of escaped characters in 16976 // other types. 16977 if (K == BuiltinType::Char_S || K == BuiltinType::Char_U || 16978 K == BuiltinType::Char8 || Value <= 0x7F) { 16979 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Value); 16980 if (!Escaped.empty()) 16981 EscapeStringForDiagnostic(Escaped, Str); 16982 else 16983 OS << static_cast<char>(Value); 16984 return; 16985 } 16986 16987 switch (K) { 16988 case BuiltinType::Char16: 16989 case BuiltinType::Char32: 16990 case BuiltinType::WChar_S: 16991 case BuiltinType::WChar_U: { 16992 if (llvm::ConvertCodePointToUTF8(Value, Ptr)) 16993 EscapeStringForDiagnostic(StringRef(Arr, Ptr - Arr), Str); 16994 else 16995 OS << "\\x" 16996 << llvm::format_hex_no_prefix(Value, TyWidth / 4, /*Upper=*/true); 16997 break; 16998 } 16999 default: 17000 llvm_unreachable("Non-character type is passed"); 17001 } 17002 } 17003 17004 /// Convert \V to a string we can present to the user in a diagnostic 17005 /// \T is the type of the expression that has been evaluated into \V 17006 static bool ConvertAPValueToString(const APValue &V, QualType T, 17007 SmallVectorImpl<char> &Str, 17008 ASTContext &Context) { 17009 if (!V.hasValue()) 17010 return false; 17011 17012 switch (V.getKind()) { 17013 case APValue::ValueKind::Int: 17014 if (T->isBooleanType()) { 17015 // Bools are reduced to ints during evaluation, but for 17016 // diagnostic purposes we want to print them as 17017 // true or false. 17018 int64_t BoolValue = V.getInt().getExtValue(); 17019 assert((BoolValue == 0 || BoolValue == 1) && 17020 "Bool type, but value is not 0 or 1"); 17021 llvm::raw_svector_ostream OS(Str); 17022 OS << (BoolValue ? "true" : "false"); 17023 } else { 17024 llvm::raw_svector_ostream OS(Str); 17025 // Same is true for chars. 17026 // We want to print the character representation for textual types 17027 const auto *BTy = T->getAs<BuiltinType>(); 17028 if (BTy) { 17029 switch (BTy->getKind()) { 17030 case BuiltinType::Char_S: 17031 case BuiltinType::Char_U: 17032 case BuiltinType::Char8: 17033 case BuiltinType::Char16: 17034 case BuiltinType::Char32: 17035 case BuiltinType::WChar_S: 17036 case BuiltinType::WChar_U: { 17037 unsigned TyWidth = Context.getIntWidth(T); 17038 assert(8 <= TyWidth && TyWidth <= 32 && "Unexpected integer width"); 17039 uint32_t CodeUnit = static_cast<uint32_t>(V.getInt().getZExtValue()); 17040 WriteCharTypePrefix(BTy->getKind(), OS); 17041 OS << '\''; 17042 WriteCharValueForDiagnostic(CodeUnit, BTy, TyWidth, Str); 17043 OS << "' (0x" 17044 << llvm::format_hex_no_prefix(CodeUnit, /*Width=*/2, 17045 /*Upper=*/true) 17046 << ", " << V.getInt() << ')'; 17047 return true; 17048 } 17049 default: 17050 break; 17051 } 17052 } 17053 V.getInt().toString(Str); 17054 } 17055 17056 break; 17057 17058 case APValue::ValueKind::Float: 17059 V.getFloat().toString(Str); 17060 break; 17061 17062 case APValue::ValueKind::LValue: 17063 if (V.isNullPointer()) { 17064 llvm::raw_svector_ostream OS(Str); 17065 OS << "nullptr"; 17066 } else 17067 return false; 17068 break; 17069 17070 case APValue::ValueKind::ComplexFloat: { 17071 llvm::raw_svector_ostream OS(Str); 17072 OS << '('; 17073 V.getComplexFloatReal().toString(Str); 17074 OS << " + "; 17075 V.getComplexFloatImag().toString(Str); 17076 OS << "i)"; 17077 } break; 17078 17079 case APValue::ValueKind::ComplexInt: { 17080 llvm::raw_svector_ostream OS(Str); 17081 OS << '('; 17082 V.getComplexIntReal().toString(Str); 17083 OS << " + "; 17084 V.getComplexIntImag().toString(Str); 17085 OS << "i)"; 17086 } break; 17087 17088 default: 17089 return false; 17090 } 17091 17092 return true; 17093 } 17094 17095 /// Some Expression types are not useful to print notes about, 17096 /// e.g. literals and values that have already been expanded 17097 /// before such as int-valued template parameters. 17098 static bool UsefulToPrintExpr(const Expr *E) { 17099 E = E->IgnoreParenImpCasts(); 17100 // Literals are pretty easy for humans to understand. 17101 if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr, 17102 CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(E)) 17103 return false; 17104 17105 // These have been substituted from template parameters 17106 // and appear as literals in the static assert error. 17107 if (isa<SubstNonTypeTemplateParmExpr>(E)) 17108 return false; 17109 17110 // -5 is also simple to understand. 17111 if (const auto *UnaryOp = dyn_cast<UnaryOperator>(E)) 17112 return UsefulToPrintExpr(UnaryOp->getSubExpr()); 17113 17114 // Only print nested arithmetic operators. 17115 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 17116 return (BO->isShiftOp() || BO->isAdditiveOp() || BO->isMultiplicativeOp() || 17117 BO->isBitwiseOp()); 17118 17119 return true; 17120 } 17121 17122 void Sema::DiagnoseStaticAssertDetails(const Expr *E) { 17123 if (const auto *Op = dyn_cast<BinaryOperator>(E); 17124 Op && Op->getOpcode() != BO_LOr) { 17125 const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts(); 17126 const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts(); 17127 17128 // Ignore comparisons of boolean expressions with a boolean literal. 17129 if ((isa<CXXBoolLiteralExpr>(LHS) && RHS->getType()->isBooleanType()) || 17130 (isa<CXXBoolLiteralExpr>(RHS) && LHS->getType()->isBooleanType())) 17131 return; 17132 17133 // Don't print obvious expressions. 17134 if (!UsefulToPrintExpr(LHS) && !UsefulToPrintExpr(RHS)) 17135 return; 17136 17137 struct { 17138 const clang::Expr *Cond; 17139 Expr::EvalResult Result; 17140 SmallString<12> ValueString; 17141 bool Print; 17142 } DiagSide[2] = {{LHS, Expr::EvalResult(), {}, false}, 17143 {RHS, Expr::EvalResult(), {}, false}}; 17144 for (unsigned I = 0; I < 2; I++) { 17145 const Expr *Side = DiagSide[I].Cond; 17146 17147 Side->EvaluateAsRValue(DiagSide[I].Result, Context, true); 17148 17149 DiagSide[I].Print = 17150 ConvertAPValueToString(DiagSide[I].Result.Val, Side->getType(), 17151 DiagSide[I].ValueString, Context); 17152 } 17153 if (DiagSide[0].Print && DiagSide[1].Print) { 17154 Diag(Op->getExprLoc(), diag::note_expr_evaluates_to) 17155 << DiagSide[0].ValueString << Op->getOpcodeStr() 17156 << DiagSide[1].ValueString << Op->getSourceRange(); 17157 } 17158 } 17159 } 17160 17161 bool Sema::EvaluateStaticAssertMessageAsString(Expr *Message, 17162 std::string &Result, 17163 ASTContext &Ctx, 17164 bool ErrorOnInvalidMessage) { 17165 assert(Message); 17166 assert(!Message->isTypeDependent() && !Message->isValueDependent() && 17167 "can't evaluate a dependant static assert message"); 17168 17169 if (const auto *SL = dyn_cast<StringLiteral>(Message)) { 17170 assert(SL->isUnevaluated() && "expected an unevaluated string"); 17171 Result.assign(SL->getString().begin(), SL->getString().end()); 17172 return true; 17173 } 17174 17175 SourceLocation Loc = Message->getBeginLoc(); 17176 QualType T = Message->getType().getNonReferenceType(); 17177 auto *RD = T->getAsCXXRecordDecl(); 17178 if (!RD) { 17179 Diag(Loc, diag::err_static_assert_invalid_message); 17180 return false; 17181 } 17182 17183 auto FindMember = [&](StringRef Member, bool &Empty, 17184 bool Diag = false) -> std::optional<LookupResult> { 17185 DeclarationName DN = PP.getIdentifierInfo(Member); 17186 LookupResult MemberLookup(*this, DN, Loc, Sema::LookupMemberName); 17187 LookupQualifiedName(MemberLookup, RD); 17188 Empty = MemberLookup.empty(); 17189 OverloadCandidateSet Candidates(MemberLookup.getNameLoc(), 17190 OverloadCandidateSet::CSK_Normal); 17191 if (MemberLookup.empty()) 17192 return std::nullopt; 17193 return std::move(MemberLookup); 17194 }; 17195 17196 bool SizeNotFound, DataNotFound; 17197 std::optional<LookupResult> SizeMember = FindMember("size", SizeNotFound); 17198 std::optional<LookupResult> DataMember = FindMember("data", DataNotFound); 17199 if (SizeNotFound || DataNotFound) { 17200 Diag(Loc, diag::err_static_assert_missing_member_function) 17201 << ((SizeNotFound && DataNotFound) ? 2 17202 : SizeNotFound ? 0 17203 : 1); 17204 return false; 17205 } 17206 17207 if (!SizeMember || !DataMember) { 17208 if (!SizeMember) 17209 FindMember("size", SizeNotFound, /*Diag=*/true); 17210 if (!DataMember) 17211 FindMember("data", DataNotFound, /*Diag=*/true); 17212 return false; 17213 } 17214 17215 auto BuildExpr = [&](LookupResult &LR) { 17216 ExprResult Res = BuildMemberReferenceExpr( 17217 Message, Message->getType(), Message->getBeginLoc(), false, 17218 CXXScopeSpec(), SourceLocation(), nullptr, LR, nullptr, nullptr); 17219 if (Res.isInvalid()) 17220 return ExprError(); 17221 Res = BuildCallExpr(nullptr, Res.get(), Loc, std::nullopt, Loc, nullptr, 17222 false, true); 17223 if (Res.isInvalid()) 17224 return ExprError(); 17225 if (Res.get()->isTypeDependent() || Res.get()->isValueDependent()) 17226 return ExprError(); 17227 return TemporaryMaterializationConversion(Res.get()); 17228 }; 17229 17230 ExprResult SizeE = BuildExpr(*SizeMember); 17231 ExprResult DataE = BuildExpr(*DataMember); 17232 17233 QualType SizeT = Context.getSizeType(); 17234 QualType ConstCharPtr = 17235 Context.getPointerType(Context.getConstType(Context.CharTy)); 17236 17237 ExprResult EvaluatedSize = 17238 SizeE.isInvalid() ? ExprError() 17239 : BuildConvertedConstantExpression( 17240 SizeE.get(), SizeT, CCEK_StaticAssertMessageSize); 17241 if (EvaluatedSize.isInvalid()) { 17242 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*size*/ 0; 17243 return false; 17244 } 17245 17246 ExprResult EvaluatedData = 17247 DataE.isInvalid() 17248 ? ExprError() 17249 : BuildConvertedConstantExpression(DataE.get(), ConstCharPtr, 17250 CCEK_StaticAssertMessageData); 17251 if (EvaluatedData.isInvalid()) { 17252 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*data*/ 1; 17253 return false; 17254 } 17255 17256 if (!ErrorOnInvalidMessage && 17257 Diags.isIgnored(diag::warn_static_assert_message_constexpr, Loc)) 17258 return true; 17259 17260 Expr::EvalResult Status; 17261 SmallVector<PartialDiagnosticAt, 8> Notes; 17262 Status.Diag = &Notes; 17263 if (!Message->EvaluateCharRangeAsString(Result, EvaluatedSize.get(), 17264 EvaluatedData.get(), Ctx, Status) || 17265 !Notes.empty()) { 17266 Diag(Message->getBeginLoc(), 17267 ErrorOnInvalidMessage ? diag::err_static_assert_message_constexpr 17268 : diag::warn_static_assert_message_constexpr); 17269 for (const auto &Note : Notes) 17270 Diag(Note.first, Note.second); 17271 return !ErrorOnInvalidMessage; 17272 } 17273 return true; 17274 } 17275 17276 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 17277 Expr *AssertExpr, Expr *AssertMessage, 17278 SourceLocation RParenLoc, 17279 bool Failed) { 17280 assert(AssertExpr != nullptr && "Expected non-null condition"); 17281 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 17282 (!AssertMessage || (!AssertMessage->isTypeDependent() && 17283 !AssertMessage->isValueDependent())) && 17284 !Failed) { 17285 // In a static_assert-declaration, the constant-expression shall be a 17286 // constant expression that can be contextually converted to bool. 17287 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 17288 if (Converted.isInvalid()) 17289 Failed = true; 17290 17291 ExprResult FullAssertExpr = 17292 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 17293 /*DiscardedValue*/ false, 17294 /*IsConstexpr*/ true); 17295 if (FullAssertExpr.isInvalid()) 17296 Failed = true; 17297 else 17298 AssertExpr = FullAssertExpr.get(); 17299 17300 llvm::APSInt Cond; 17301 Expr *BaseExpr = AssertExpr; 17302 AllowFoldKind FoldKind = NoFold; 17303 17304 if (!getLangOpts().CPlusPlus) { 17305 // In C mode, allow folding as an extension for better compatibility with 17306 // C++ in terms of expressions like static_assert("test") or 17307 // static_assert(nullptr). 17308 FoldKind = AllowFold; 17309 } 17310 17311 if (!Failed && VerifyIntegerConstantExpression( 17312 BaseExpr, &Cond, 17313 diag::err_static_assert_expression_is_not_constant, 17314 FoldKind).isInvalid()) 17315 Failed = true; 17316 17317 // If the static_assert passes, only verify that 17318 // the message is grammatically valid without evaluating it. 17319 if (!Failed && AssertMessage && Cond.getBoolValue()) { 17320 std::string Str; 17321 EvaluateStaticAssertMessageAsString(AssertMessage, Str, Context, 17322 /*ErrorOnInvalidMessage=*/false); 17323 } 17324 17325 // CWG2518 17326 // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a 17327 // template definition, the declaration has no effect. 17328 bool InTemplateDefinition = 17329 getLangOpts().CPlusPlus && CurContext->isDependentContext(); 17330 17331 if (!Failed && !Cond && !InTemplateDefinition) { 17332 SmallString<256> MsgBuffer; 17333 llvm::raw_svector_ostream Msg(MsgBuffer); 17334 bool HasMessage = AssertMessage; 17335 if (AssertMessage) { 17336 std::string Str; 17337 HasMessage = 17338 EvaluateStaticAssertMessageAsString( 17339 AssertMessage, Str, Context, /*ErrorOnInvalidMessage=*/true) || 17340 !Str.empty(); 17341 Msg << Str; 17342 } 17343 Expr *InnerCond = nullptr; 17344 std::string InnerCondDescription; 17345 std::tie(InnerCond, InnerCondDescription) = 17346 findFailedBooleanCondition(Converted.get()); 17347 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 17348 // Drill down into concept specialization expressions to see why they 17349 // weren't satisfied. 17350 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) 17351 << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); 17352 ConstraintSatisfaction Satisfaction; 17353 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 17354 DiagnoseUnsatisfiedConstraint(Satisfaction); 17355 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 17356 && !isa<IntegerLiteral>(InnerCond)) { 17357 Diag(InnerCond->getBeginLoc(), 17358 diag::err_static_assert_requirement_failed) 17359 << InnerCondDescription << !HasMessage << Msg.str() 17360 << InnerCond->getSourceRange(); 17361 DiagnoseStaticAssertDetails(InnerCond); 17362 } else { 17363 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) 17364 << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); 17365 PrintContextStack(); 17366 } 17367 Failed = true; 17368 } 17369 } else { 17370 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 17371 /*DiscardedValue*/false, 17372 /*IsConstexpr*/true); 17373 if (FullAssertExpr.isInvalid()) 17374 Failed = true; 17375 else 17376 AssertExpr = FullAssertExpr.get(); 17377 } 17378 17379 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 17380 AssertExpr, AssertMessage, RParenLoc, 17381 Failed); 17382 17383 CurContext->addDecl(Decl); 17384 return Decl; 17385 } 17386 17387 DeclResult Sema::ActOnTemplatedFriendTag( 17388 Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, 17389 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 17390 const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists) { 17391 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 17392 17393 bool IsMemberSpecialization = false; 17394 bool Invalid = false; 17395 17396 if (TemplateParameterList *TemplateParams = 17397 MatchTemplateParametersToScopeSpecifier( 17398 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 17399 IsMemberSpecialization, Invalid)) { 17400 if (TemplateParams->size() > 0) { 17401 // This is a declaration of a class template. 17402 if (Invalid) 17403 return true; 17404 17405 return CheckClassTemplate(S, TagSpec, TagUseKind::Friend, TagLoc, SS, 17406 Name, NameLoc, Attr, TemplateParams, AS_public, 17407 /*ModulePrivateLoc=*/SourceLocation(), 17408 FriendLoc, TempParamLists.size() - 1, 17409 TempParamLists.data()) 17410 .get(); 17411 } else { 17412 // The "template<>" header is extraneous. 17413 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 17414 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 17415 IsMemberSpecialization = true; 17416 } 17417 } 17418 17419 if (Invalid) return true; 17420 17421 bool isAllExplicitSpecializations = true; 17422 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 17423 if (TempParamLists[I]->size()) { 17424 isAllExplicitSpecializations = false; 17425 break; 17426 } 17427 } 17428 17429 // FIXME: don't ignore attributes. 17430 17431 // If it's explicit specializations all the way down, just forget 17432 // about the template header and build an appropriate non-templated 17433 // friend. TODO: for source fidelity, remember the headers. 17434 if (isAllExplicitSpecializations) { 17435 if (SS.isEmpty()) { 17436 bool Owned = false; 17437 bool IsDependent = false; 17438 return ActOnTag(S, TagSpec, TagUseKind::Friend, TagLoc, SS, Name, NameLoc, 17439 Attr, AS_public, 17440 /*ModulePrivateLoc=*/SourceLocation(), 17441 MultiTemplateParamsArg(), Owned, IsDependent, 17442 /*ScopedEnumKWLoc=*/SourceLocation(), 17443 /*ScopedEnumUsesClassTag=*/false, 17444 /*UnderlyingType=*/TypeResult(), 17445 /*IsTypeSpecifier=*/false, 17446 /*IsTemplateParamOrArg=*/false, /*OOK=*/OOK_Outside); 17447 } 17448 17449 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 17450 ElaboratedTypeKeyword Keyword 17451 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 17452 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 17453 *Name, NameLoc); 17454 if (T.isNull()) 17455 return true; 17456 17457 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 17458 if (isa<DependentNameType>(T)) { 17459 DependentNameTypeLoc TL = 17460 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 17461 TL.setElaboratedKeywordLoc(TagLoc); 17462 TL.setQualifierLoc(QualifierLoc); 17463 TL.setNameLoc(NameLoc); 17464 } else { 17465 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 17466 TL.setElaboratedKeywordLoc(TagLoc); 17467 TL.setQualifierLoc(QualifierLoc); 17468 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 17469 } 17470 17471 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 17472 TSI, FriendLoc, TempParamLists); 17473 Friend->setAccess(AS_public); 17474 CurContext->addDecl(Friend); 17475 return Friend; 17476 } 17477 17478 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 17479 17480 17481 17482 // Handle the case of a templated-scope friend class. e.g. 17483 // template <class T> class A<T>::B; 17484 // FIXME: we don't support these right now. 17485 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 17486 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 17487 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 17488 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 17489 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 17490 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 17491 TL.setElaboratedKeywordLoc(TagLoc); 17492 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 17493 TL.setNameLoc(NameLoc); 17494 17495 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 17496 TSI, FriendLoc, TempParamLists); 17497 Friend->setAccess(AS_public); 17498 Friend->setUnsupportedFriend(true); 17499 CurContext->addDecl(Friend); 17500 return Friend; 17501 } 17502 17503 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 17504 MultiTemplateParamsArg TempParams) { 17505 SourceLocation Loc = DS.getBeginLoc(); 17506 SourceLocation FriendLoc = DS.getFriendSpecLoc(); 17507 17508 assert(DS.isFriendSpecified()); 17509 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 17510 17511 // C++ [class.friend]p3: 17512 // A friend declaration that does not declare a function shall have one of 17513 // the following forms: 17514 // friend elaborated-type-specifier ; 17515 // friend simple-type-specifier ; 17516 // friend typename-specifier ; 17517 // 17518 // If the friend keyword isn't first, or if the declarations has any type 17519 // qualifiers, then the declaration doesn't have that form. 17520 if (getLangOpts().CPlusPlus11 && !DS.isFriendSpecifiedFirst()) 17521 Diag(FriendLoc, diag::err_friend_not_first_in_declaration); 17522 if (DS.getTypeQualifiers()) { 17523 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 17524 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 17525 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 17526 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 17527 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 17528 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 17529 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 17530 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 17531 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 17532 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 17533 } 17534 17535 // Try to convert the decl specifier to a type. This works for 17536 // friend templates because ActOnTag never produces a ClassTemplateDecl 17537 // for a TagUseKind::Friend. 17538 Declarator TheDeclarator(DS, ParsedAttributesView::none(), 17539 DeclaratorContext::Member); 17540 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator); 17541 QualType T = TSI->getType(); 17542 if (TheDeclarator.isInvalidType()) 17543 return nullptr; 17544 17545 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 17546 return nullptr; 17547 17548 if (!T->isElaboratedTypeSpecifier()) { 17549 if (TempParams.size()) { 17550 // C++23 [dcl.pre]p5: 17551 // In a simple-declaration, the optional init-declarator-list can be 17552 // omitted only when declaring a class or enumeration, that is, when 17553 // the decl-specifier-seq contains either a class-specifier, an 17554 // elaborated-type-specifier with a class-key, or an enum-specifier. 17555 // 17556 // The declaration of a template-declaration or explicit-specialization 17557 // is never a member-declaration, so this must be a simple-declaration 17558 // with no init-declarator-list. Therefore, this is ill-formed. 17559 Diag(Loc, diag::err_tagless_friend_type_template) << DS.getSourceRange(); 17560 return nullptr; 17561 } else if (const RecordDecl *RD = T->getAsRecordDecl()) { 17562 SmallString<16> InsertionText(" "); 17563 InsertionText += RD->getKindName(); 17564 17565 Diag(Loc, getLangOpts().CPlusPlus11 17566 ? diag::warn_cxx98_compat_unelaborated_friend_type 17567 : diag::ext_unelaborated_friend_type) 17568 << (unsigned)RD->getTagKind() << T 17569 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 17570 InsertionText); 17571 } else { 17572 Diag(FriendLoc, getLangOpts().CPlusPlus11 17573 ? diag::warn_cxx98_compat_nonclass_type_friend 17574 : diag::ext_nonclass_type_friend) 17575 << T << DS.getSourceRange(); 17576 } 17577 } 17578 17579 // C++98 [class.friend]p1: A friend of a class is a function 17580 // or class that is not a member of the class . . . 17581 // This is fixed in DR77, which just barely didn't make the C++03 17582 // deadline. It's also a very silly restriction that seriously 17583 // affects inner classes and which nobody else seems to implement; 17584 // thus we never diagnose it, not even in -pedantic. 17585 // 17586 // But note that we could warn about it: it's always useless to 17587 // friend one of your own members (it's not, however, worthless to 17588 // friend a member of an arbitrary specialization of your template). 17589 17590 Decl *D; 17591 if (!TempParams.empty()) 17592 D = FriendTemplateDecl::Create(Context, CurContext, Loc, TempParams, TSI, 17593 FriendLoc); 17594 else 17595 D = FriendDecl::Create(Context, CurContext, TSI->getTypeLoc().getBeginLoc(), 17596 TSI, FriendLoc); 17597 17598 if (!D) 17599 return nullptr; 17600 17601 D->setAccess(AS_public); 17602 CurContext->addDecl(D); 17603 17604 return D; 17605 } 17606 17607 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 17608 MultiTemplateParamsArg TemplateParams) { 17609 const DeclSpec &DS = D.getDeclSpec(); 17610 17611 assert(DS.isFriendSpecified()); 17612 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 17613 17614 SourceLocation Loc = D.getIdentifierLoc(); 17615 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 17616 17617 // C++ [class.friend]p1 17618 // A friend of a class is a function or class.... 17619 // Note that this sees through typedefs, which is intended. 17620 // It *doesn't* see through dependent types, which is correct 17621 // according to [temp.arg.type]p3: 17622 // If a declaration acquires a function type through a 17623 // type dependent on a template-parameter and this causes 17624 // a declaration that does not use the syntactic form of a 17625 // function declarator to have a function type, the program 17626 // is ill-formed. 17627 if (!TInfo->getType()->isFunctionType()) { 17628 Diag(Loc, diag::err_unexpected_friend); 17629 17630 // It might be worthwhile to try to recover by creating an 17631 // appropriate declaration. 17632 return nullptr; 17633 } 17634 17635 // C++ [namespace.memdef]p3 17636 // - If a friend declaration in a non-local class first declares a 17637 // class or function, the friend class or function is a member 17638 // of the innermost enclosing namespace. 17639 // - The name of the friend is not found by simple name lookup 17640 // until a matching declaration is provided in that namespace 17641 // scope (either before or after the class declaration granting 17642 // friendship). 17643 // - If a friend function is called, its name may be found by the 17644 // name lookup that considers functions from namespaces and 17645 // classes associated with the types of the function arguments. 17646 // - When looking for a prior declaration of a class or a function 17647 // declared as a friend, scopes outside the innermost enclosing 17648 // namespace scope are not considered. 17649 17650 CXXScopeSpec &SS = D.getCXXScopeSpec(); 17651 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 17652 assert(NameInfo.getName()); 17653 17654 // Check for unexpanded parameter packs. 17655 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 17656 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 17657 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 17658 return nullptr; 17659 17660 // The context we found the declaration in, or in which we should 17661 // create the declaration. 17662 DeclContext *DC; 17663 Scope *DCScope = S; 17664 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 17665 RedeclarationKind::ForExternalRedeclaration); 17666 17667 bool isTemplateId = D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 17668 17669 // There are five cases here. 17670 // - There's no scope specifier and we're in a local class. Only look 17671 // for functions declared in the immediately-enclosing block scope. 17672 // We recover from invalid scope qualifiers as if they just weren't there. 17673 FunctionDecl *FunctionContainingLocalClass = nullptr; 17674 if ((SS.isInvalid() || !SS.isSet()) && 17675 (FunctionContainingLocalClass = 17676 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 17677 // C++11 [class.friend]p11: 17678 // If a friend declaration appears in a local class and the name 17679 // specified is an unqualified name, a prior declaration is 17680 // looked up without considering scopes that are outside the 17681 // innermost enclosing non-class scope. For a friend function 17682 // declaration, if there is no prior declaration, the program is 17683 // ill-formed. 17684 17685 // Find the innermost enclosing non-class scope. This is the block 17686 // scope containing the local class definition (or for a nested class, 17687 // the outer local class). 17688 DCScope = S->getFnParent(); 17689 17690 // Look up the function name in the scope. 17691 Previous.clear(LookupLocalFriendName); 17692 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 17693 17694 if (!Previous.empty()) { 17695 // All possible previous declarations must have the same context: 17696 // either they were declared at block scope or they are members of 17697 // one of the enclosing local classes. 17698 DC = Previous.getRepresentativeDecl()->getDeclContext(); 17699 } else { 17700 // This is ill-formed, but provide the context that we would have 17701 // declared the function in, if we were permitted to, for error recovery. 17702 DC = FunctionContainingLocalClass; 17703 } 17704 adjustContextForLocalExternDecl(DC); 17705 17706 // - There's no scope specifier, in which case we just go to the 17707 // appropriate scope and look for a function or function template 17708 // there as appropriate. 17709 } else if (SS.isInvalid() || !SS.isSet()) { 17710 // C++11 [namespace.memdef]p3: 17711 // If the name in a friend declaration is neither qualified nor 17712 // a template-id and the declaration is a function or an 17713 // elaborated-type-specifier, the lookup to determine whether 17714 // the entity has been previously declared shall not consider 17715 // any scopes outside the innermost enclosing namespace. 17716 17717 // Find the appropriate context according to the above. 17718 DC = CurContext; 17719 17720 // Skip class contexts. If someone can cite chapter and verse 17721 // for this behavior, that would be nice --- it's what GCC and 17722 // EDG do, and it seems like a reasonable intent, but the spec 17723 // really only says that checks for unqualified existing 17724 // declarations should stop at the nearest enclosing namespace, 17725 // not that they should only consider the nearest enclosing 17726 // namespace. 17727 while (DC->isRecord()) 17728 DC = DC->getParent(); 17729 17730 DeclContext *LookupDC = DC->getNonTransparentContext(); 17731 while (true) { 17732 LookupQualifiedName(Previous, LookupDC); 17733 17734 if (!Previous.empty()) { 17735 DC = LookupDC; 17736 break; 17737 } 17738 17739 if (isTemplateId) { 17740 if (isa<TranslationUnitDecl>(LookupDC)) break; 17741 } else { 17742 if (LookupDC->isFileContext()) break; 17743 } 17744 LookupDC = LookupDC->getParent(); 17745 } 17746 17747 DCScope = getScopeForDeclContext(S, DC); 17748 17749 // - There's a non-dependent scope specifier, in which case we 17750 // compute it and do a previous lookup there for a function 17751 // or function template. 17752 } else if (!SS.getScopeRep()->isDependent()) { 17753 DC = computeDeclContext(SS); 17754 if (!DC) return nullptr; 17755 17756 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 17757 17758 LookupQualifiedName(Previous, DC); 17759 17760 // C++ [class.friend]p1: A friend of a class is a function or 17761 // class that is not a member of the class . . . 17762 if (DC->Equals(CurContext)) 17763 Diag(DS.getFriendSpecLoc(), 17764 getLangOpts().CPlusPlus11 ? 17765 diag::warn_cxx98_compat_friend_is_member : 17766 diag::err_friend_is_member); 17767 17768 // - There's a scope specifier that does not match any template 17769 // parameter lists, in which case we use some arbitrary context, 17770 // create a method or method template, and wait for instantiation. 17771 // - There's a scope specifier that does match some template 17772 // parameter lists, which we don't handle right now. 17773 } else { 17774 DC = CurContext; 17775 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 17776 } 17777 17778 if (!DC->isRecord()) { 17779 int DiagArg = -1; 17780 switch (D.getName().getKind()) { 17781 case UnqualifiedIdKind::IK_ConstructorTemplateId: 17782 case UnqualifiedIdKind::IK_ConstructorName: 17783 DiagArg = 0; 17784 break; 17785 case UnqualifiedIdKind::IK_DestructorName: 17786 DiagArg = 1; 17787 break; 17788 case UnqualifiedIdKind::IK_ConversionFunctionId: 17789 DiagArg = 2; 17790 break; 17791 case UnqualifiedIdKind::IK_DeductionGuideName: 17792 DiagArg = 3; 17793 break; 17794 case UnqualifiedIdKind::IK_Identifier: 17795 case UnqualifiedIdKind::IK_ImplicitSelfParam: 17796 case UnqualifiedIdKind::IK_LiteralOperatorId: 17797 case UnqualifiedIdKind::IK_OperatorFunctionId: 17798 case UnqualifiedIdKind::IK_TemplateId: 17799 break; 17800 } 17801 // This implies that it has to be an operator or function. 17802 if (DiagArg >= 0) { 17803 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 17804 return nullptr; 17805 } 17806 } 17807 17808 // FIXME: This is an egregious hack to cope with cases where the scope stack 17809 // does not contain the declaration context, i.e., in an out-of-line 17810 // definition of a class. 17811 Scope FakeDCScope(S, Scope::DeclScope, Diags); 17812 if (!DCScope) { 17813 FakeDCScope.setEntity(DC); 17814 DCScope = &FakeDCScope; 17815 } 17816 17817 bool AddToScope = true; 17818 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 17819 TemplateParams, AddToScope); 17820 if (!ND) return nullptr; 17821 17822 assert(ND->getLexicalDeclContext() == CurContext); 17823 17824 // If we performed typo correction, we might have added a scope specifier 17825 // and changed the decl context. 17826 DC = ND->getDeclContext(); 17827 17828 // Add the function declaration to the appropriate lookup tables, 17829 // adjusting the redeclarations list as necessary. We don't 17830 // want to do this yet if the friending class is dependent. 17831 // 17832 // Also update the scope-based lookup if the target context's 17833 // lookup context is in lexical scope. 17834 if (!CurContext->isDependentContext()) { 17835 DC = DC->getRedeclContext(); 17836 DC->makeDeclVisibleInContext(ND); 17837 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 17838 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 17839 } 17840 17841 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 17842 D.getIdentifierLoc(), ND, 17843 DS.getFriendSpecLoc()); 17844 FrD->setAccess(AS_public); 17845 CurContext->addDecl(FrD); 17846 17847 if (ND->isInvalidDecl()) { 17848 FrD->setInvalidDecl(); 17849 } else { 17850 if (DC->isRecord()) CheckFriendAccess(ND); 17851 17852 FunctionDecl *FD; 17853 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 17854 FD = FTD->getTemplatedDecl(); 17855 else 17856 FD = cast<FunctionDecl>(ND); 17857 17858 // C++ [class.friend]p6: 17859 // A function may be defined in a friend declaration of a class if and 17860 // only if the class is a non-local class, and the function name is 17861 // unqualified. 17862 if (D.isFunctionDefinition()) { 17863 // Qualified friend function definition. 17864 if (SS.isNotEmpty()) { 17865 // FIXME: We should only do this if the scope specifier names the 17866 // innermost enclosing namespace; otherwise the fixit changes the 17867 // meaning of the code. 17868 SemaDiagnosticBuilder DB = 17869 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 17870 17871 DB << SS.getScopeRep(); 17872 if (DC->isFileContext()) 17873 DB << FixItHint::CreateRemoval(SS.getRange()); 17874 17875 // Friend function defined in a local class. 17876 } else if (FunctionContainingLocalClass) { 17877 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 17878 17879 // Per [basic.pre]p4, a template-id is not a name. Therefore, if we have 17880 // a template-id, the function name is not unqualified because these is 17881 // no name. While the wording requires some reading in-between the 17882 // lines, GCC, MSVC, and EDG all consider a friend function 17883 // specialization definitions // to be de facto explicit specialization 17884 // and diagnose them as such. 17885 } else if (isTemplateId) { 17886 Diag(NameInfo.getBeginLoc(), diag::err_friend_specialization_def); 17887 } 17888 } 17889 17890 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 17891 // default argument expression, that declaration shall be a definition 17892 // and shall be the only declaration of the function or function 17893 // template in the translation unit. 17894 if (functionDeclHasDefaultArgument(FD)) { 17895 // We can't look at FD->getPreviousDecl() because it may not have been set 17896 // if we're in a dependent context. If the function is known to be a 17897 // redeclaration, we will have narrowed Previous down to the right decl. 17898 if (D.isRedeclaration()) { 17899 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 17900 Diag(Previous.getRepresentativeDecl()->getLocation(), 17901 diag::note_previous_declaration); 17902 } else if (!D.isFunctionDefinition()) 17903 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 17904 } 17905 17906 // Mark templated-scope function declarations as unsupported. 17907 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 17908 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 17909 << SS.getScopeRep() << SS.getRange() 17910 << cast<CXXRecordDecl>(CurContext); 17911 FrD->setUnsupportedFriend(true); 17912 } 17913 } 17914 17915 warnOnReservedIdentifier(ND); 17916 17917 return ND; 17918 } 17919 17920 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc, 17921 StringLiteral *Message) { 17922 AdjustDeclIfTemplate(Dcl); 17923 17924 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 17925 if (!Fn) { 17926 Diag(DelLoc, diag::err_deleted_non_function); 17927 return; 17928 } 17929 17930 // Deleted function does not have a body. 17931 Fn->setWillHaveBody(false); 17932 17933 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 17934 // Don't consider the implicit declaration we generate for explicit 17935 // specializations. FIXME: Do not generate these implicit declarations. 17936 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 17937 Prev->getPreviousDecl()) && 17938 !Prev->isDefined()) { 17939 Diag(DelLoc, diag::err_deleted_decl_not_first); 17940 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 17941 Prev->isImplicit() ? diag::note_previous_implicit_declaration 17942 : diag::note_previous_declaration); 17943 // We can't recover from this; the declaration might have already 17944 // been used. 17945 Fn->setInvalidDecl(); 17946 return; 17947 } 17948 17949 // To maintain the invariant that functions are only deleted on their first 17950 // declaration, mark the implicitly-instantiated declaration of the 17951 // explicitly-specialized function as deleted instead of marking the 17952 // instantiated redeclaration. 17953 Fn = Fn->getCanonicalDecl(); 17954 } 17955 17956 // dllimport/dllexport cannot be deleted. 17957 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 17958 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 17959 Fn->setInvalidDecl(); 17960 } 17961 17962 // C++11 [basic.start.main]p3: 17963 // A program that defines main as deleted [...] is ill-formed. 17964 if (Fn->isMain()) 17965 Diag(DelLoc, diag::err_deleted_main); 17966 17967 // C++11 [dcl.fct.def.delete]p4: 17968 // A deleted function is implicitly inline. 17969 Fn->setImplicitlyInline(); 17970 Fn->setDeletedAsWritten(true, Message); 17971 } 17972 17973 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 17974 if (!Dcl || Dcl->isInvalidDecl()) 17975 return; 17976 17977 auto *FD = dyn_cast<FunctionDecl>(Dcl); 17978 if (!FD) { 17979 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 17980 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 17981 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 17982 return; 17983 } 17984 } 17985 17986 Diag(DefaultLoc, diag::err_default_special_members) 17987 << getLangOpts().CPlusPlus20; 17988 return; 17989 } 17990 17991 // Reject if this can't possibly be a defaultable function. 17992 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 17993 if (!DefKind && 17994 // A dependent function that doesn't locally look defaultable can 17995 // still instantiate to a defaultable function if it's a constructor 17996 // or assignment operator. 17997 (!FD->isDependentContext() || 17998 (!isa<CXXConstructorDecl>(FD) && 17999 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 18000 Diag(DefaultLoc, diag::err_default_special_members) 18001 << getLangOpts().CPlusPlus20; 18002 return; 18003 } 18004 18005 // Issue compatibility warning. We already warned if the operator is 18006 // 'operator<=>' when parsing the '<=>' token. 18007 if (DefKind.isComparison() && 18008 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 18009 Diag(DefaultLoc, getLangOpts().CPlusPlus20 18010 ? diag::warn_cxx17_compat_defaulted_comparison 18011 : diag::ext_defaulted_comparison); 18012 } 18013 18014 FD->setDefaulted(); 18015 FD->setExplicitlyDefaulted(); 18016 FD->setDefaultLoc(DefaultLoc); 18017 18018 // Defer checking functions that are defaulted in a dependent context. 18019 if (FD->isDependentContext()) 18020 return; 18021 18022 // Unset that we will have a body for this function. We might not, 18023 // if it turns out to be trivial, and we don't need this marking now 18024 // that we've marked it as defaulted. 18025 FD->setWillHaveBody(false); 18026 18027 if (DefKind.isComparison()) { 18028 // If this comparison's defaulting occurs within the definition of its 18029 // lexical class context, we have to do the checking when complete. 18030 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext())) 18031 if (!RD->isCompleteDefinition()) 18032 return; 18033 } 18034 18035 // If this member fn was defaulted on its first declaration, we will have 18036 // already performed the checking in CheckCompletedCXXClass. Such a 18037 // declaration doesn't trigger an implicit definition. 18038 if (isa<CXXMethodDecl>(FD)) { 18039 const FunctionDecl *Primary = FD; 18040 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 18041 // Ask the template instantiation pattern that actually had the 18042 // '= default' on it. 18043 Primary = Pattern; 18044 if (Primary->getCanonicalDecl()->isDefaulted()) 18045 return; 18046 } 18047 18048 if (DefKind.isComparison()) { 18049 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison())) 18050 FD->setInvalidDecl(); 18051 else 18052 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison()); 18053 } else { 18054 auto *MD = cast<CXXMethodDecl>(FD); 18055 18056 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember(), 18057 DefaultLoc)) 18058 MD->setInvalidDecl(); 18059 else 18060 DefineDefaultedFunction(*this, MD, DefaultLoc); 18061 } 18062 } 18063 18064 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 18065 for (Stmt *SubStmt : S->children()) { 18066 if (!SubStmt) 18067 continue; 18068 if (isa<ReturnStmt>(SubStmt)) 18069 Self.Diag(SubStmt->getBeginLoc(), 18070 diag::err_return_in_constructor_handler); 18071 if (!isa<Expr>(SubStmt)) 18072 SearchForReturnInStmt(Self, SubStmt); 18073 } 18074 } 18075 18076 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 18077 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 18078 CXXCatchStmt *Handler = TryBlock->getHandler(I); 18079 SearchForReturnInStmt(*this, Handler); 18080 } 18081 } 18082 18083 void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind, 18084 StringLiteral *DeletedMessage) { 18085 switch (BodyKind) { 18086 case FnBodyKind::Delete: 18087 SetDeclDeleted(D, Loc, DeletedMessage); 18088 break; 18089 case FnBodyKind::Default: 18090 SetDeclDefaulted(D, Loc); 18091 break; 18092 case FnBodyKind::Other: 18093 llvm_unreachable( 18094 "Parsed function body should be '= delete;' or '= default;'"); 18095 } 18096 } 18097 18098 bool Sema::CheckOverridingFunctionAttributes(CXXMethodDecl *New, 18099 const CXXMethodDecl *Old) { 18100 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 18101 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 18102 18103 if (OldFT->hasExtParameterInfos()) { 18104 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 18105 // A parameter of the overriding method should be annotated with noescape 18106 // if the corresponding parameter of the overridden method is annotated. 18107 if (OldFT->getExtParameterInfo(I).isNoEscape() && 18108 !NewFT->getExtParameterInfo(I).isNoEscape()) { 18109 Diag(New->getParamDecl(I)->getLocation(), 18110 diag::warn_overriding_method_missing_noescape); 18111 Diag(Old->getParamDecl(I)->getLocation(), 18112 diag::note_overridden_marked_noescape); 18113 } 18114 } 18115 18116 // SME attributes must match when overriding a function declaration. 18117 if (IsInvalidSMECallConversion(Old->getType(), New->getType())) { 18118 Diag(New->getLocation(), diag::err_conflicting_overriding_attributes) 18119 << New << New->getType() << Old->getType(); 18120 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 18121 return true; 18122 } 18123 18124 // Virtual overrides must have the same code_seg. 18125 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 18126 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 18127 if ((NewCSA || OldCSA) && 18128 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 18129 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 18130 Diag(Old->getLocation(), diag::note_previous_declaration); 18131 return true; 18132 } 18133 18134 // Virtual overrides: check for matching effects. 18135 if (Context.hasAnyFunctionEffects()) { 18136 const auto OldFX = Old->getFunctionEffects(); 18137 const auto NewFXOrig = New->getFunctionEffects(); 18138 18139 if (OldFX != NewFXOrig) { 18140 FunctionEffectSet NewFX(NewFXOrig); 18141 const auto Diffs = FunctionEffectDifferences(OldFX, NewFX); 18142 FunctionEffectSet::Conflicts Errs; 18143 for (const auto &Diff : Diffs) { 18144 switch (Diff.shouldDiagnoseMethodOverride(*Old, OldFX, *New, NewFX)) { 18145 case FunctionEffectDiff::OverrideResult::NoAction: 18146 break; 18147 case FunctionEffectDiff::OverrideResult::Warn: 18148 Diag(New->getLocation(), diag::warn_mismatched_func_effect_override) 18149 << Diff.effectName(); 18150 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18151 << Old->getReturnTypeSourceRange(); 18152 break; 18153 case FunctionEffectDiff::OverrideResult::Merge: { 18154 NewFX.insert(Diff.Old, Errs); 18155 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 18156 FunctionProtoType::ExtProtoInfo EPI = NewFT->getExtProtoInfo(); 18157 EPI.FunctionEffects = FunctionEffectsRef(NewFX); 18158 QualType ModQT = Context.getFunctionType(NewFT->getReturnType(), 18159 NewFT->getParamTypes(), EPI); 18160 New->setType(ModQT); 18161 break; 18162 } 18163 } 18164 } 18165 if (!Errs.empty()) 18166 diagnoseFunctionEffectMergeConflicts(Errs, New->getLocation(), 18167 Old->getLocation()); 18168 } 18169 } 18170 18171 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 18172 18173 // If the calling conventions match, everything is fine 18174 if (NewCC == OldCC) 18175 return false; 18176 18177 // If the calling conventions mismatch because the new function is static, 18178 // suppress the calling convention mismatch error; the error about static 18179 // function override (err_static_overrides_virtual from 18180 // Sema::CheckFunctionDeclaration) is more clear. 18181 if (New->getStorageClass() == SC_Static) 18182 return false; 18183 18184 Diag(New->getLocation(), 18185 diag::err_conflicting_overriding_cc_attributes) 18186 << New->getDeclName() << New->getType() << Old->getType(); 18187 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 18188 return true; 18189 } 18190 18191 bool Sema::CheckExplicitObjectOverride(CXXMethodDecl *New, 18192 const CXXMethodDecl *Old) { 18193 // CWG2553 18194 // A virtual function shall not be an explicit object member function. 18195 if (!New->isExplicitObjectMemberFunction()) 18196 return true; 18197 Diag(New->getParamDecl(0)->getBeginLoc(), 18198 diag::err_explicit_object_parameter_nonmember) 18199 << New->getSourceRange() << /*virtual*/ 1 << /*IsLambda*/ false; 18200 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 18201 New->setInvalidDecl(); 18202 return false; 18203 } 18204 18205 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 18206 const CXXMethodDecl *Old) { 18207 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 18208 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 18209 18210 if (Context.hasSameType(NewTy, OldTy) || 18211 NewTy->isDependentType() || OldTy->isDependentType()) 18212 return false; 18213 18214 // Check if the return types are covariant 18215 QualType NewClassTy, OldClassTy; 18216 18217 /// Both types must be pointers or references to classes. 18218 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 18219 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 18220 NewClassTy = NewPT->getPointeeType(); 18221 OldClassTy = OldPT->getPointeeType(); 18222 } 18223 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 18224 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 18225 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 18226 NewClassTy = NewRT->getPointeeType(); 18227 OldClassTy = OldRT->getPointeeType(); 18228 } 18229 } 18230 } 18231 18232 // The return types aren't either both pointers or references to a class type. 18233 if (NewClassTy.isNull()) { 18234 Diag(New->getLocation(), 18235 diag::err_different_return_type_for_overriding_virtual_function) 18236 << New->getDeclName() << NewTy << OldTy 18237 << New->getReturnTypeSourceRange(); 18238 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18239 << Old->getReturnTypeSourceRange(); 18240 18241 return true; 18242 } 18243 18244 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 18245 // C++14 [class.virtual]p8: 18246 // If the class type in the covariant return type of D::f differs from 18247 // that of B::f, the class type in the return type of D::f shall be 18248 // complete at the point of declaration of D::f or shall be the class 18249 // type D. 18250 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 18251 if (!RT->isBeingDefined() && 18252 RequireCompleteType(New->getLocation(), NewClassTy, 18253 diag::err_covariant_return_incomplete, 18254 New->getDeclName())) 18255 return true; 18256 } 18257 18258 // Check if the new class derives from the old class. 18259 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 18260 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 18261 << New->getDeclName() << NewTy << OldTy 18262 << New->getReturnTypeSourceRange(); 18263 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18264 << Old->getReturnTypeSourceRange(); 18265 return true; 18266 } 18267 18268 // Check if we the conversion from derived to base is valid. 18269 if (CheckDerivedToBaseConversion( 18270 NewClassTy, OldClassTy, 18271 diag::err_covariant_return_inaccessible_base, 18272 diag::err_covariant_return_ambiguous_derived_to_base_conv, 18273 New->getLocation(), New->getReturnTypeSourceRange(), 18274 New->getDeclName(), nullptr)) { 18275 // FIXME: this note won't trigger for delayed access control 18276 // diagnostics, and it's impossible to get an undelayed error 18277 // here from access control during the original parse because 18278 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 18279 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18280 << Old->getReturnTypeSourceRange(); 18281 return true; 18282 } 18283 } 18284 18285 // The qualifiers of the return types must be the same. 18286 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 18287 Diag(New->getLocation(), 18288 diag::err_covariant_return_type_different_qualifications) 18289 << New->getDeclName() << NewTy << OldTy 18290 << New->getReturnTypeSourceRange(); 18291 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18292 << Old->getReturnTypeSourceRange(); 18293 return true; 18294 } 18295 18296 18297 // The new class type must have the same or less qualifiers as the old type. 18298 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 18299 Diag(New->getLocation(), 18300 diag::err_covariant_return_type_class_type_more_qualified) 18301 << New->getDeclName() << NewTy << OldTy 18302 << New->getReturnTypeSourceRange(); 18303 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18304 << Old->getReturnTypeSourceRange(); 18305 return true; 18306 } 18307 18308 return false; 18309 } 18310 18311 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 18312 SourceLocation EndLoc = InitRange.getEnd(); 18313 if (EndLoc.isValid()) 18314 Method->setRangeEnd(EndLoc); 18315 18316 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 18317 Method->setIsPureVirtual(); 18318 return false; 18319 } 18320 18321 if (!Method->isInvalidDecl()) 18322 Diag(Method->getLocation(), diag::err_non_virtual_pure) 18323 << Method->getDeclName() << InitRange; 18324 return true; 18325 } 18326 18327 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 18328 if (D->getFriendObjectKind()) 18329 Diag(D->getLocation(), diag::err_pure_friend); 18330 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 18331 CheckPureMethod(M, ZeroLoc); 18332 else 18333 Diag(D->getLocation(), diag::err_illegal_initializer); 18334 } 18335 18336 /// Invoked when we are about to parse an initializer for the declaration 18337 /// 'Dcl'. 18338 /// 18339 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 18340 /// static data member of class X, names should be looked up in the scope of 18341 /// class X. If the declaration had a scope specifier, a scope will have 18342 /// been created and passed in for this purpose. Otherwise, S will be null. 18343 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 18344 assert(D && !D->isInvalidDecl()); 18345 18346 // We will always have a nested name specifier here, but this declaration 18347 // might not be out of line if the specifier names the current namespace: 18348 // extern int n; 18349 // int ::n = 0; 18350 if (S && D->isOutOfLine()) 18351 EnterDeclaratorContext(S, D->getDeclContext()); 18352 18353 PushExpressionEvaluationContext( 18354 ExpressionEvaluationContext::PotentiallyEvaluated, D); 18355 } 18356 18357 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 18358 assert(D); 18359 18360 if (S && D->isOutOfLine()) 18361 ExitDeclaratorContext(S); 18362 18363 if (getLangOpts().CPlusPlus23) { 18364 // An expression or conversion is 'manifestly constant-evaluated' if it is: 18365 // [...] 18366 // - the initializer of a variable that is usable in constant expressions or 18367 // has constant initialization. 18368 if (auto *VD = dyn_cast<VarDecl>(D); 18369 VD && (VD->isUsableInConstantExpressions(Context) || 18370 VD->hasConstantInitialization())) { 18371 // An expression or conversion is in an 'immediate function context' if it 18372 // is potentially evaluated and either: 18373 // [...] 18374 // - it is a subexpression of a manifestly constant-evaluated expression 18375 // or conversion. 18376 ExprEvalContexts.back().InImmediateFunctionContext = true; 18377 } 18378 } 18379 18380 // Unless the initializer is in an immediate function context (as determined 18381 // above), this will evaluate all contained immediate function calls as 18382 // constant expressions. If the initializer IS an immediate function context, 18383 // the initializer has been determined to be a constant expression, and all 18384 // such evaluations will be elided (i.e., as if we "knew the whole time" that 18385 // it was a constant expression). 18386 PopExpressionEvaluationContext(); 18387 } 18388 18389 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 18390 // C++ 6.4p2: 18391 // The declarator shall not specify a function or an array. 18392 // The type-specifier-seq shall not contain typedef and shall not declare a 18393 // new class or enumeration. 18394 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 18395 "Parser allowed 'typedef' as storage class of condition decl."); 18396 18397 Decl *Dcl = ActOnDeclarator(S, D); 18398 if (!Dcl) 18399 return true; 18400 18401 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 18402 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 18403 << D.getSourceRange(); 18404 return true; 18405 } 18406 18407 if (auto *VD = dyn_cast<VarDecl>(Dcl)) 18408 VD->setCXXCondDecl(); 18409 18410 return Dcl; 18411 } 18412 18413 void Sema::LoadExternalVTableUses() { 18414 if (!ExternalSource) 18415 return; 18416 18417 SmallVector<ExternalVTableUse, 4> VTables; 18418 ExternalSource->ReadUsedVTables(VTables); 18419 SmallVector<VTableUse, 4> NewUses; 18420 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 18421 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 18422 = VTablesUsed.find(VTables[I].Record); 18423 // Even if a definition wasn't required before, it may be required now. 18424 if (Pos != VTablesUsed.end()) { 18425 if (!Pos->second && VTables[I].DefinitionRequired) 18426 Pos->second = true; 18427 continue; 18428 } 18429 18430 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 18431 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 18432 } 18433 18434 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 18435 } 18436 18437 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 18438 bool DefinitionRequired) { 18439 // Ignore any vtable uses in unevaluated operands or for classes that do 18440 // not have a vtable. 18441 if (!Class->isDynamicClass() || Class->isDependentContext() || 18442 CurContext->isDependentContext() || isUnevaluatedContext()) 18443 return; 18444 // Do not mark as used if compiling for the device outside of the target 18445 // region. 18446 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice && 18447 !OpenMP().isInOpenMPDeclareTargetContext() && 18448 !OpenMP().isInOpenMPTargetExecutionDirective()) { 18449 if (!DefinitionRequired) 18450 MarkVirtualMembersReferenced(Loc, Class); 18451 return; 18452 } 18453 18454 // Try to insert this class into the map. 18455 LoadExternalVTableUses(); 18456 Class = Class->getCanonicalDecl(); 18457 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 18458 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 18459 if (!Pos.second) { 18460 // If we already had an entry, check to see if we are promoting this vtable 18461 // to require a definition. If so, we need to reappend to the VTableUses 18462 // list, since we may have already processed the first entry. 18463 if (DefinitionRequired && !Pos.first->second) { 18464 Pos.first->second = true; 18465 } else { 18466 // Otherwise, we can early exit. 18467 return; 18468 } 18469 } else { 18470 // The Microsoft ABI requires that we perform the destructor body 18471 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 18472 // the deleting destructor is emitted with the vtable, not with the 18473 // destructor definition as in the Itanium ABI. 18474 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 18475 CXXDestructorDecl *DD = Class->getDestructor(); 18476 if (DD && DD->isVirtual() && !DD->isDeleted()) { 18477 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 18478 // If this is an out-of-line declaration, marking it referenced will 18479 // not do anything. Manually call CheckDestructor to look up operator 18480 // delete(). 18481 ContextRAII SavedContext(*this, DD); 18482 CheckDestructor(DD); 18483 } else { 18484 MarkFunctionReferenced(Loc, Class->getDestructor()); 18485 } 18486 } 18487 } 18488 } 18489 18490 // Local classes need to have their virtual members marked 18491 // immediately. For all other classes, we mark their virtual members 18492 // at the end of the translation unit. 18493 if (Class->isLocalClass()) 18494 MarkVirtualMembersReferenced(Loc, Class->getDefinition()); 18495 else 18496 VTableUses.push_back(std::make_pair(Class, Loc)); 18497 } 18498 18499 bool Sema::DefineUsedVTables() { 18500 LoadExternalVTableUses(); 18501 if (VTableUses.empty()) 18502 return false; 18503 18504 // Note: The VTableUses vector could grow as a result of marking 18505 // the members of a class as "used", so we check the size each 18506 // time through the loop and prefer indices (which are stable) to 18507 // iterators (which are not). 18508 bool DefinedAnything = false; 18509 for (unsigned I = 0; I != VTableUses.size(); ++I) { 18510 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 18511 if (!Class) 18512 continue; 18513 TemplateSpecializationKind ClassTSK = 18514 Class->getTemplateSpecializationKind(); 18515 18516 SourceLocation Loc = VTableUses[I].second; 18517 18518 bool DefineVTable = true; 18519 18520 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 18521 // V-tables for non-template classes with an owning module are always 18522 // uniquely emitted in that module. 18523 if (Class->isInCurrentModuleUnit()) { 18524 DefineVTable = true; 18525 } else if (KeyFunction && !KeyFunction->hasBody()) { 18526 // If this class has a key function, but that key function is 18527 // defined in another translation unit, we don't need to emit the 18528 // vtable even though we're using it. 18529 // The key function is in another translation unit. 18530 DefineVTable = false; 18531 TemplateSpecializationKind TSK = 18532 KeyFunction->getTemplateSpecializationKind(); 18533 assert(TSK != TSK_ExplicitInstantiationDefinition && 18534 TSK != TSK_ImplicitInstantiation && 18535 "Instantiations don't have key functions"); 18536 (void)TSK; 18537 } else if (!KeyFunction) { 18538 // If we have a class with no key function that is the subject 18539 // of an explicit instantiation declaration, suppress the 18540 // vtable; it will live with the explicit instantiation 18541 // definition. 18542 bool IsExplicitInstantiationDeclaration = 18543 ClassTSK == TSK_ExplicitInstantiationDeclaration; 18544 for (auto *R : Class->redecls()) { 18545 TemplateSpecializationKind TSK 18546 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 18547 if (TSK == TSK_ExplicitInstantiationDeclaration) 18548 IsExplicitInstantiationDeclaration = true; 18549 else if (TSK == TSK_ExplicitInstantiationDefinition) { 18550 IsExplicitInstantiationDeclaration = false; 18551 break; 18552 } 18553 } 18554 18555 if (IsExplicitInstantiationDeclaration) 18556 DefineVTable = false; 18557 } 18558 18559 // The exception specifications for all virtual members may be needed even 18560 // if we are not providing an authoritative form of the vtable in this TU. 18561 // We may choose to emit it available_externally anyway. 18562 if (!DefineVTable) { 18563 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 18564 continue; 18565 } 18566 18567 // Mark all of the virtual members of this class as referenced, so 18568 // that we can build a vtable. Then, tell the AST consumer that a 18569 // vtable for this class is required. 18570 DefinedAnything = true; 18571 MarkVirtualMembersReferenced(Loc, Class); 18572 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 18573 if (VTablesUsed[Canonical] && !Class->shouldEmitInExternalSource()) 18574 Consumer.HandleVTable(Class); 18575 18576 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 18577 // no key function or the key function is inlined. Don't warn in C++ ABIs 18578 // that lack key functions, since the user won't be able to make one. 18579 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 18580 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation && 18581 ClassTSK != TSK_ExplicitInstantiationDefinition) { 18582 const FunctionDecl *KeyFunctionDef = nullptr; 18583 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 18584 KeyFunctionDef->isInlined())) 18585 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; 18586 } 18587 } 18588 VTableUses.clear(); 18589 18590 return DefinedAnything; 18591 } 18592 18593 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 18594 const CXXRecordDecl *RD) { 18595 for (const auto *I : RD->methods()) 18596 if (I->isVirtual() && !I->isPureVirtual()) 18597 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 18598 } 18599 18600 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 18601 const CXXRecordDecl *RD, 18602 bool ConstexprOnly) { 18603 // Mark all functions which will appear in RD's vtable as used. 18604 CXXFinalOverriderMap FinalOverriders; 18605 RD->getFinalOverriders(FinalOverriders); 18606 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 18607 E = FinalOverriders.end(); 18608 I != E; ++I) { 18609 for (OverridingMethods::const_iterator OI = I->second.begin(), 18610 OE = I->second.end(); 18611 OI != OE; ++OI) { 18612 assert(OI->second.size() > 0 && "no final overrider"); 18613 CXXMethodDecl *Overrider = OI->second.front().Method; 18614 18615 // C++ [basic.def.odr]p2: 18616 // [...] A virtual member function is used if it is not pure. [...] 18617 if (!Overrider->isPureVirtual() && 18618 (!ConstexprOnly || Overrider->isConstexpr())) 18619 MarkFunctionReferenced(Loc, Overrider); 18620 } 18621 } 18622 18623 // Only classes that have virtual bases need a VTT. 18624 if (RD->getNumVBases() == 0) 18625 return; 18626 18627 for (const auto &I : RD->bases()) { 18628 const auto *Base = 18629 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 18630 if (Base->getNumVBases() == 0) 18631 continue; 18632 MarkVirtualMembersReferenced(Loc, Base); 18633 } 18634 } 18635 18636 static 18637 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 18638 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 18639 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 18640 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 18641 Sema &S) { 18642 if (Ctor->isInvalidDecl()) 18643 return; 18644 18645 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 18646 18647 // Target may not be determinable yet, for instance if this is a dependent 18648 // call in an uninstantiated template. 18649 if (Target) { 18650 const FunctionDecl *FNTarget = nullptr; 18651 (void)Target->hasBody(FNTarget); 18652 Target = const_cast<CXXConstructorDecl*>( 18653 cast_or_null<CXXConstructorDecl>(FNTarget)); 18654 } 18655 18656 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 18657 // Avoid dereferencing a null pointer here. 18658 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 18659 18660 if (!Current.insert(Canonical).second) 18661 return; 18662 18663 // We know that beyond here, we aren't chaining into a cycle. 18664 if (!Target || !Target->isDelegatingConstructor() || 18665 Target->isInvalidDecl() || Valid.count(TCanonical)) { 18666 Valid.insert(Current.begin(), Current.end()); 18667 Current.clear(); 18668 // We've hit a cycle. 18669 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 18670 Current.count(TCanonical)) { 18671 // If we haven't diagnosed this cycle yet, do so now. 18672 if (!Invalid.count(TCanonical)) { 18673 S.Diag((*Ctor->init_begin())->getSourceLocation(), 18674 diag::warn_delegating_ctor_cycle) 18675 << Ctor; 18676 18677 // Don't add a note for a function delegating directly to itself. 18678 if (TCanonical != Canonical) 18679 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 18680 18681 CXXConstructorDecl *C = Target; 18682 while (C->getCanonicalDecl() != Canonical) { 18683 const FunctionDecl *FNTarget = nullptr; 18684 (void)C->getTargetConstructor()->hasBody(FNTarget); 18685 assert(FNTarget && "Ctor cycle through bodiless function"); 18686 18687 C = const_cast<CXXConstructorDecl*>( 18688 cast<CXXConstructorDecl>(FNTarget)); 18689 S.Diag(C->getLocation(), diag::note_which_delegates_to); 18690 } 18691 } 18692 18693 Invalid.insert(Current.begin(), Current.end()); 18694 Current.clear(); 18695 } else { 18696 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 18697 } 18698 } 18699 18700 18701 void Sema::CheckDelegatingCtorCycles() { 18702 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 18703 18704 for (DelegatingCtorDeclsType::iterator 18705 I = DelegatingCtorDecls.begin(ExternalSource.get()), 18706 E = DelegatingCtorDecls.end(); 18707 I != E; ++I) 18708 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 18709 18710 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 18711 (*CI)->setInvalidDecl(); 18712 } 18713 18714 namespace { 18715 /// AST visitor that finds references to the 'this' expression. 18716 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 18717 Sema &S; 18718 18719 public: 18720 explicit FindCXXThisExpr(Sema &S) : S(S) { } 18721 18722 bool VisitCXXThisExpr(CXXThisExpr *E) { 18723 S.Diag(E->getLocation(), diag::err_this_static_member_func) 18724 << E->isImplicit(); 18725 return false; 18726 } 18727 }; 18728 } 18729 18730 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 18731 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18732 if (!TSInfo) 18733 return false; 18734 18735 TypeLoc TL = TSInfo->getTypeLoc(); 18736 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18737 if (!ProtoTL) 18738 return false; 18739 18740 // C++11 [expr.prim.general]p3: 18741 // [The expression this] shall not appear before the optional 18742 // cv-qualifier-seq and it shall not appear within the declaration of a 18743 // static member function (although its type and value category are defined 18744 // within a static member function as they are within a non-static member 18745 // function). [ Note: this is because declaration matching does not occur 18746 // until the complete declarator is known. - end note ] 18747 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18748 FindCXXThisExpr Finder(*this); 18749 18750 // If the return type came after the cv-qualifier-seq, check it now. 18751 if (Proto->hasTrailingReturn() && 18752 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 18753 return true; 18754 18755 // Check the exception specification. 18756 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 18757 return true; 18758 18759 // Check the trailing requires clause 18760 if (Expr *E = Method->getTrailingRequiresClause()) 18761 if (!Finder.TraverseStmt(E)) 18762 return true; 18763 18764 return checkThisInStaticMemberFunctionAttributes(Method); 18765 } 18766 18767 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 18768 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18769 if (!TSInfo) 18770 return false; 18771 18772 TypeLoc TL = TSInfo->getTypeLoc(); 18773 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18774 if (!ProtoTL) 18775 return false; 18776 18777 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18778 FindCXXThisExpr Finder(*this); 18779 18780 switch (Proto->getExceptionSpecType()) { 18781 case EST_Unparsed: 18782 case EST_Uninstantiated: 18783 case EST_Unevaluated: 18784 case EST_BasicNoexcept: 18785 case EST_NoThrow: 18786 case EST_DynamicNone: 18787 case EST_MSAny: 18788 case EST_None: 18789 break; 18790 18791 case EST_DependentNoexcept: 18792 case EST_NoexceptFalse: 18793 case EST_NoexceptTrue: 18794 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 18795 return true; 18796 [[fallthrough]]; 18797 18798 case EST_Dynamic: 18799 for (const auto &E : Proto->exceptions()) { 18800 if (!Finder.TraverseType(E)) 18801 return true; 18802 } 18803 break; 18804 } 18805 18806 return false; 18807 } 18808 18809 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 18810 FindCXXThisExpr Finder(*this); 18811 18812 // Check attributes. 18813 for (const auto *A : Method->attrs()) { 18814 // FIXME: This should be emitted by tblgen. 18815 Expr *Arg = nullptr; 18816 ArrayRef<Expr *> Args; 18817 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 18818 Arg = G->getArg(); 18819 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 18820 Arg = G->getArg(); 18821 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 18822 Args = llvm::ArrayRef(AA->args_begin(), AA->args_size()); 18823 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 18824 Args = llvm::ArrayRef(AB->args_begin(), AB->args_size()); 18825 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 18826 Arg = ETLF->getSuccessValue(); 18827 Args = llvm::ArrayRef(ETLF->args_begin(), ETLF->args_size()); 18828 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 18829 Arg = STLF->getSuccessValue(); 18830 Args = llvm::ArrayRef(STLF->args_begin(), STLF->args_size()); 18831 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 18832 Arg = LR->getArg(); 18833 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 18834 Args = llvm::ArrayRef(LE->args_begin(), LE->args_size()); 18835 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 18836 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); 18837 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 18838 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); 18839 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 18840 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); 18841 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 18842 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); 18843 18844 if (Arg && !Finder.TraverseStmt(Arg)) 18845 return true; 18846 18847 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 18848 if (!Finder.TraverseStmt(Args[I])) 18849 return true; 18850 } 18851 } 18852 18853 return false; 18854 } 18855 18856 void Sema::checkExceptionSpecification( 18857 bool IsTopLevel, ExceptionSpecificationType EST, 18858 ArrayRef<ParsedType> DynamicExceptions, 18859 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 18860 SmallVectorImpl<QualType> &Exceptions, 18861 FunctionProtoType::ExceptionSpecInfo &ESI) { 18862 Exceptions.clear(); 18863 ESI.Type = EST; 18864 if (EST == EST_Dynamic) { 18865 Exceptions.reserve(DynamicExceptions.size()); 18866 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 18867 // FIXME: Preserve type source info. 18868 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 18869 18870 if (IsTopLevel) { 18871 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 18872 collectUnexpandedParameterPacks(ET, Unexpanded); 18873 if (!Unexpanded.empty()) { 18874 DiagnoseUnexpandedParameterPacks( 18875 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 18876 Unexpanded); 18877 continue; 18878 } 18879 } 18880 18881 // Check that the type is valid for an exception spec, and 18882 // drop it if not. 18883 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 18884 Exceptions.push_back(ET); 18885 } 18886 ESI.Exceptions = Exceptions; 18887 return; 18888 } 18889 18890 if (isComputedNoexcept(EST)) { 18891 assert((NoexceptExpr->isTypeDependent() || 18892 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 18893 Context.BoolTy) && 18894 "Parser should have made sure that the expression is boolean"); 18895 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 18896 ESI.Type = EST_BasicNoexcept; 18897 return; 18898 } 18899 18900 ESI.NoexceptExpr = NoexceptExpr; 18901 return; 18902 } 18903 } 18904 18905 void Sema::actOnDelayedExceptionSpecification( 18906 Decl *D, ExceptionSpecificationType EST, SourceRange SpecificationRange, 18907 ArrayRef<ParsedType> DynamicExceptions, 18908 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr) { 18909 if (!D) 18910 return; 18911 18912 // Dig out the function we're referring to. 18913 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 18914 D = FTD->getTemplatedDecl(); 18915 18916 FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 18917 if (!FD) 18918 return; 18919 18920 // Check the exception specification. 18921 llvm::SmallVector<QualType, 4> Exceptions; 18922 FunctionProtoType::ExceptionSpecInfo ESI; 18923 checkExceptionSpecification(/*IsTopLevel=*/true, EST, DynamicExceptions, 18924 DynamicExceptionRanges, NoexceptExpr, Exceptions, 18925 ESI); 18926 18927 // Update the exception specification on the function type. 18928 Context.adjustExceptionSpec(FD, ESI, /*AsWritten=*/true); 18929 18930 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 18931 if (MD->isStatic()) 18932 checkThisInStaticMemberFunctionExceptionSpec(MD); 18933 18934 if (MD->isVirtual()) { 18935 // Check overrides, which we previously had to delay. 18936 for (const CXXMethodDecl *O : MD->overridden_methods()) 18937 CheckOverridingFunctionExceptionSpec(MD, O); 18938 } 18939 } 18940 } 18941 18942 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 18943 /// 18944 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 18945 SourceLocation DeclStart, Declarator &D, 18946 Expr *BitWidth, 18947 InClassInitStyle InitStyle, 18948 AccessSpecifier AS, 18949 const ParsedAttr &MSPropertyAttr) { 18950 const IdentifierInfo *II = D.getIdentifier(); 18951 if (!II) { 18952 Diag(DeclStart, diag::err_anonymous_property); 18953 return nullptr; 18954 } 18955 SourceLocation Loc = D.getIdentifierLoc(); 18956 18957 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 18958 QualType T = TInfo->getType(); 18959 if (getLangOpts().CPlusPlus) { 18960 CheckExtraCXXDefaultArguments(D); 18961 18962 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 18963 UPPC_DataMemberType)) { 18964 D.setInvalidType(); 18965 T = Context.IntTy; 18966 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 18967 } 18968 } 18969 18970 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 18971 18972 if (D.getDeclSpec().isInlineSpecified()) 18973 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 18974 << getLangOpts().CPlusPlus17; 18975 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 18976 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 18977 diag::err_invalid_thread) 18978 << DeclSpec::getSpecifierName(TSCS); 18979 18980 // Check to see if this name was declared as a member previously 18981 NamedDecl *PrevDecl = nullptr; 18982 LookupResult Previous(*this, II, Loc, LookupMemberName, 18983 RedeclarationKind::ForVisibleRedeclaration); 18984 LookupName(Previous, S); 18985 switch (Previous.getResultKind()) { 18986 case LookupResult::Found: 18987 case LookupResult::FoundUnresolvedValue: 18988 PrevDecl = Previous.getAsSingle<NamedDecl>(); 18989 break; 18990 18991 case LookupResult::FoundOverloaded: 18992 PrevDecl = Previous.getRepresentativeDecl(); 18993 break; 18994 18995 case LookupResult::NotFound: 18996 case LookupResult::NotFoundInCurrentInstantiation: 18997 case LookupResult::Ambiguous: 18998 break; 18999 } 19000 19001 if (PrevDecl && PrevDecl->isTemplateParameter()) { 19002 // Maybe we will complain about the shadowed template parameter. 19003 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 19004 // Just pretend that we didn't see the previous declaration. 19005 PrevDecl = nullptr; 19006 } 19007 19008 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 19009 PrevDecl = nullptr; 19010 19011 SourceLocation TSSL = D.getBeginLoc(); 19012 MSPropertyDecl *NewPD = 19013 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 19014 MSPropertyAttr.getPropertyDataGetter(), 19015 MSPropertyAttr.getPropertyDataSetter()); 19016 ProcessDeclAttributes(TUScope, NewPD, D); 19017 NewPD->setAccess(AS); 19018 19019 if (NewPD->isInvalidDecl()) 19020 Record->setInvalidDecl(); 19021 19022 if (D.getDeclSpec().isModulePrivateSpecified()) 19023 NewPD->setModulePrivate(); 19024 19025 if (NewPD->isInvalidDecl() && PrevDecl) { 19026 // Don't introduce NewFD into scope; there's already something 19027 // with the same name in the same scope. 19028 } else if (II) { 19029 PushOnScopeChains(NewPD, S); 19030 } else 19031 Record->addDecl(NewPD); 19032 19033 return NewPD; 19034 } 19035 19036 void Sema::ActOnStartFunctionDeclarationDeclarator( 19037 Declarator &Declarator, unsigned TemplateParameterDepth) { 19038 auto &Info = InventedParameterInfos.emplace_back(); 19039 TemplateParameterList *ExplicitParams = nullptr; 19040 ArrayRef<TemplateParameterList *> ExplicitLists = 19041 Declarator.getTemplateParameterLists(); 19042 if (!ExplicitLists.empty()) { 19043 bool IsMemberSpecialization, IsInvalid; 19044 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 19045 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 19046 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 19047 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 19048 /*SuppressDiagnostic=*/true); 19049 } 19050 // C++23 [dcl.fct]p23: 19051 // An abbreviated function template can have a template-head. The invented 19052 // template-parameters are appended to the template-parameter-list after 19053 // the explicitly declared template-parameters. 19054 // 19055 // A template-head must have one or more template-parameters (read: 19056 // 'template<>' is *not* a template-head). Only append the invented 19057 // template parameters if we matched the nested-name-specifier to a non-empty 19058 // TemplateParameterList. 19059 if (ExplicitParams && !ExplicitParams->empty()) { 19060 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 19061 llvm::append_range(Info.TemplateParams, *ExplicitParams); 19062 Info.NumExplicitTemplateParams = ExplicitParams->size(); 19063 } else { 19064 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 19065 Info.NumExplicitTemplateParams = 0; 19066 } 19067 } 19068 19069 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 19070 auto &FSI = InventedParameterInfos.back(); 19071 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 19072 if (FSI.NumExplicitTemplateParams != 0) { 19073 TemplateParameterList *ExplicitParams = 19074 Declarator.getTemplateParameterLists().back(); 19075 Declarator.setInventedTemplateParameterList( 19076 TemplateParameterList::Create( 19077 Context, ExplicitParams->getTemplateLoc(), 19078 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 19079 ExplicitParams->getRAngleLoc(), 19080 ExplicitParams->getRequiresClause())); 19081 } else { 19082 Declarator.setInventedTemplateParameterList( 19083 TemplateParameterList::Create( 19084 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 19085 SourceLocation(), /*RequiresClause=*/nullptr)); 19086 } 19087 } 19088 InventedParameterInfos.pop_back(); 19089 } 19090