xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaCUDA.cpp (revision 577b62c2bacc7dfa228591ca3da361e1bc398301)
1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for CUDA constructs.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Sema.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallVector.h"
27 using namespace clang;
28 
29 template <typename AttrT> static bool hasExplicitAttr(const VarDecl *D) {
30   if (!D)
31     return false;
32   if (auto *A = D->getAttr<AttrT>())
33     return !A->isImplicit();
34   return false;
35 }
36 
37 void Sema::PushForceCUDAHostDevice() {
38   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
39   ForceCUDAHostDeviceDepth++;
40 }
41 
42 bool Sema::PopForceCUDAHostDevice() {
43   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
44   if (ForceCUDAHostDeviceDepth == 0)
45     return false;
46   ForceCUDAHostDeviceDepth--;
47   return true;
48 }
49 
50 ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
51                                          MultiExprArg ExecConfig,
52                                          SourceLocation GGGLoc) {
53   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
54   if (!ConfigDecl)
55     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
56                      << getCudaConfigureFuncName());
57   QualType ConfigQTy = ConfigDecl->getType();
58 
59   DeclRefExpr *ConfigDR = new (Context)
60       DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
61   MarkFunctionReferenced(LLLLoc, ConfigDecl);
62 
63   return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
64                        /*IsExecConfig=*/true);
65 }
66 
67 Sema::CUDAFunctionTarget
68 Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
69   bool HasHostAttr = false;
70   bool HasDeviceAttr = false;
71   bool HasGlobalAttr = false;
72   bool HasInvalidTargetAttr = false;
73   for (const ParsedAttr &AL : Attrs) {
74     switch (AL.getKind()) {
75     case ParsedAttr::AT_CUDAGlobal:
76       HasGlobalAttr = true;
77       break;
78     case ParsedAttr::AT_CUDAHost:
79       HasHostAttr = true;
80       break;
81     case ParsedAttr::AT_CUDADevice:
82       HasDeviceAttr = true;
83       break;
84     case ParsedAttr::AT_CUDAInvalidTarget:
85       HasInvalidTargetAttr = true;
86       break;
87     default:
88       break;
89     }
90   }
91 
92   if (HasInvalidTargetAttr)
93     return CFT_InvalidTarget;
94 
95   if (HasGlobalAttr)
96     return CFT_Global;
97 
98   if (HasHostAttr && HasDeviceAttr)
99     return CFT_HostDevice;
100 
101   if (HasDeviceAttr)
102     return CFT_Device;
103 
104   return CFT_Host;
105 }
106 
107 template <typename A>
108 static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109   return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110            return isa<A>(Attribute) &&
111                   !(IgnoreImplicitAttr && Attribute->isImplicit());
112          });
113 }
114 
115 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
116 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
117                                                   bool IgnoreImplicitHDAttr) {
118   // Code that lives outside a function is run on the host.
119   if (D == nullptr)
120     return CFT_Host;
121 
122   if (D->hasAttr<CUDAInvalidTargetAttr>())
123     return CFT_InvalidTarget;
124 
125   if (D->hasAttr<CUDAGlobalAttr>())
126     return CFT_Global;
127 
128   if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
129     if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
130       return CFT_HostDevice;
131     return CFT_Device;
132   } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
133     return CFT_Host;
134   } else if ((D->isImplicit() || !D->isUserProvided()) &&
135              !IgnoreImplicitHDAttr) {
136     // Some implicit declarations (like intrinsic functions) are not marked.
137     // Set the most lenient target on them for maximal flexibility.
138     return CFT_HostDevice;
139   }
140 
141   return CFT_Host;
142 }
143 
144 /// IdentifyTarget - Determine the CUDA compilation target for this variable.
145 Sema::CUDAVariableTarget Sema::IdentifyCUDATarget(const VarDecl *Var) {
146   if (Var->hasAttr<HIPManagedAttr>())
147     return CVT_Unified;
148   // Only constexpr and const variabless with implicit constant attribute
149   // are emitted on both sides. Such variables are promoted to device side
150   // only if they have static constant intializers on device side.
151   if ((Var->isConstexpr() || Var->getType().isConstQualified()) &&
152       Var->hasAttr<CUDAConstantAttr>() &&
153       !hasExplicitAttr<CUDAConstantAttr>(Var))
154     return CVT_Both;
155   if (Var->hasAttr<CUDADeviceAttr>() || Var->hasAttr<CUDAConstantAttr>() ||
156       Var->hasAttr<CUDASharedAttr>() ||
157       Var->getType()->isCUDADeviceBuiltinSurfaceType() ||
158       Var->getType()->isCUDADeviceBuiltinTextureType())
159     return CVT_Device;
160   // Function-scope static variable without explicit device or constant
161   // attribute are emitted
162   //  - on both sides in host device functions
163   //  - on device side in device or global functions
164   if (auto *FD = dyn_cast<FunctionDecl>(Var->getDeclContext())) {
165     switch (IdentifyCUDATarget(FD)) {
166     case CFT_HostDevice:
167       return CVT_Both;
168     case CFT_Device:
169     case CFT_Global:
170       return CVT_Device;
171     default:
172       return CVT_Host;
173     }
174   }
175   return CVT_Host;
176 }
177 
178 // * CUDA Call preference table
179 //
180 // F - from,
181 // T - to
182 // Ph - preference in host mode
183 // Pd - preference in device mode
184 // H  - handled in (x)
185 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
186 //
187 // | F  | T  | Ph  | Pd  |  H  |
188 // |----+----+-----+-----+-----+
189 // | d  | d  | N   | N   | (c) |
190 // | d  | g  | --  | --  | (a) |
191 // | d  | h  | --  | --  | (e) |
192 // | d  | hd | HD  | HD  | (b) |
193 // | g  | d  | N   | N   | (c) |
194 // | g  | g  | --  | --  | (a) |
195 // | g  | h  | --  | --  | (e) |
196 // | g  | hd | HD  | HD  | (b) |
197 // | h  | d  | --  | --  | (e) |
198 // | h  | g  | N   | N   | (c) |
199 // | h  | h  | N   | N   | (c) |
200 // | h  | hd | HD  | HD  | (b) |
201 // | hd | d  | WS  | SS  | (d) |
202 // | hd | g  | SS  | --  |(d/a)|
203 // | hd | h  | SS  | WS  | (d) |
204 // | hd | hd | HD  | HD  | (b) |
205 
206 Sema::CUDAFunctionPreference
207 Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
208                              const FunctionDecl *Callee) {
209   assert(Callee && "Callee must be valid.");
210   CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
211   CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
212 
213   // If one of the targets is invalid, the check always fails, no matter what
214   // the other target is.
215   if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
216     return CFP_Never;
217 
218   // (a) Can't call global from some contexts until we support CUDA's
219   // dynamic parallelism.
220   if (CalleeTarget == CFT_Global &&
221       (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
222     return CFP_Never;
223 
224   // (b) Calling HostDevice is OK for everyone.
225   if (CalleeTarget == CFT_HostDevice)
226     return CFP_HostDevice;
227 
228   // (c) Best case scenarios
229   if (CalleeTarget == CallerTarget ||
230       (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
231       (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
232     return CFP_Native;
233 
234   // (d) HostDevice behavior depends on compilation mode.
235   if (CallerTarget == CFT_HostDevice) {
236     // It's OK to call a compilation-mode matching function from an HD one.
237     if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
238         (!getLangOpts().CUDAIsDevice &&
239          (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
240       return CFP_SameSide;
241 
242     // Calls from HD to non-mode-matching functions (i.e., to host functions
243     // when compiling in device mode or to device functions when compiling in
244     // host mode) are allowed at the sema level, but eventually rejected if
245     // they're ever codegened.  TODO: Reject said calls earlier.
246     return CFP_WrongSide;
247   }
248 
249   // (e) Calling across device/host boundary is not something you should do.
250   if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
251       (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
252       (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
253     return CFP_Never;
254 
255   llvm_unreachable("All cases should've been handled by now.");
256 }
257 
258 template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
259   if (!D)
260     return false;
261   if (auto *A = D->getAttr<AttrT>())
262     return A->isImplicit();
263   return D->isImplicit();
264 }
265 
266 bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) {
267   bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
268   bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
269   return IsImplicitDevAttr && IsImplicitHostAttr;
270 }
271 
272 void Sema::EraseUnwantedCUDAMatches(
273     const FunctionDecl *Caller,
274     SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
275   if (Matches.size() <= 1)
276     return;
277 
278   using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
279 
280   // Gets the CUDA function preference for a call from Caller to Match.
281   auto GetCFP = [&](const Pair &Match) {
282     return IdentifyCUDAPreference(Caller, Match.second);
283   };
284 
285   // Find the best call preference among the functions in Matches.
286   CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
287       Matches.begin(), Matches.end(),
288       [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
289 
290   // Erase all functions with lower priority.
291   llvm::erase_if(Matches,
292                  [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
293 }
294 
295 /// When an implicitly-declared special member has to invoke more than one
296 /// base/field special member, conflicts may occur in the targets of these
297 /// members. For example, if one base's member __host__ and another's is
298 /// __device__, it's a conflict.
299 /// This function figures out if the given targets \param Target1 and
300 /// \param Target2 conflict, and if they do not it fills in
301 /// \param ResolvedTarget with a target that resolves for both calls.
302 /// \return true if there's a conflict, false otherwise.
303 static bool
304 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
305                                 Sema::CUDAFunctionTarget Target2,
306                                 Sema::CUDAFunctionTarget *ResolvedTarget) {
307   // Only free functions and static member functions may be global.
308   assert(Target1 != Sema::CFT_Global);
309   assert(Target2 != Sema::CFT_Global);
310 
311   if (Target1 == Sema::CFT_HostDevice) {
312     *ResolvedTarget = Target2;
313   } else if (Target2 == Sema::CFT_HostDevice) {
314     *ResolvedTarget = Target1;
315   } else if (Target1 != Target2) {
316     return true;
317   } else {
318     *ResolvedTarget = Target1;
319   }
320 
321   return false;
322 }
323 
324 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
325                                                    CXXSpecialMember CSM,
326                                                    CXXMethodDecl *MemberDecl,
327                                                    bool ConstRHS,
328                                                    bool Diagnose) {
329   // If the defaulted special member is defined lexically outside of its
330   // owning class, or the special member already has explicit device or host
331   // attributes, do not infer.
332   bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
333   bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
334   bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
335   bool HasExplicitAttr =
336       (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
337       (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
338   if (!InClass || HasExplicitAttr)
339     return false;
340 
341   llvm::Optional<CUDAFunctionTarget> InferredTarget;
342 
343   // We're going to invoke special member lookup; mark that these special
344   // members are called from this one, and not from its caller.
345   ContextRAII MethodContext(*this, MemberDecl);
346 
347   // Look for special members in base classes that should be invoked from here.
348   // Infer the target of this member base on the ones it should call.
349   // Skip direct and indirect virtual bases for abstract classes.
350   llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
351   for (const auto &B : ClassDecl->bases()) {
352     if (!B.isVirtual()) {
353       Bases.push_back(&B);
354     }
355   }
356 
357   if (!ClassDecl->isAbstract()) {
358     llvm::append_range(Bases, llvm::make_pointer_range(ClassDecl->vbases()));
359   }
360 
361   for (const auto *B : Bases) {
362     const RecordType *BaseType = B->getType()->getAs<RecordType>();
363     if (!BaseType) {
364       continue;
365     }
366 
367     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
368     Sema::SpecialMemberOverloadResult SMOR =
369         LookupSpecialMember(BaseClassDecl, CSM,
370                             /* ConstArg */ ConstRHS,
371                             /* VolatileArg */ false,
372                             /* RValueThis */ false,
373                             /* ConstThis */ false,
374                             /* VolatileThis */ false);
375 
376     if (!SMOR.getMethod())
377       continue;
378 
379     CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
380     if (!InferredTarget) {
381       InferredTarget = BaseMethodTarget;
382     } else {
383       bool ResolutionError = resolveCalleeCUDATargetConflict(
384           InferredTarget.value(), BaseMethodTarget,
385           InferredTarget.getPointer());
386       if (ResolutionError) {
387         if (Diagnose) {
388           Diag(ClassDecl->getLocation(),
389                diag::note_implicit_member_target_infer_collision)
390               << (unsigned)CSM << InferredTarget.value() << BaseMethodTarget;
391         }
392         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
393         return true;
394       }
395     }
396   }
397 
398   // Same as for bases, but now for special members of fields.
399   for (const auto *F : ClassDecl->fields()) {
400     if (F->isInvalidDecl()) {
401       continue;
402     }
403 
404     const RecordType *FieldType =
405         Context.getBaseElementType(F->getType())->getAs<RecordType>();
406     if (!FieldType) {
407       continue;
408     }
409 
410     CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
411     Sema::SpecialMemberOverloadResult SMOR =
412         LookupSpecialMember(FieldRecDecl, CSM,
413                             /* ConstArg */ ConstRHS && !F->isMutable(),
414                             /* VolatileArg */ false,
415                             /* RValueThis */ false,
416                             /* ConstThis */ false,
417                             /* VolatileThis */ false);
418 
419     if (!SMOR.getMethod())
420       continue;
421 
422     CUDAFunctionTarget FieldMethodTarget =
423         IdentifyCUDATarget(SMOR.getMethod());
424     if (!InferredTarget) {
425       InferredTarget = FieldMethodTarget;
426     } else {
427       bool ResolutionError = resolveCalleeCUDATargetConflict(
428           InferredTarget.value(), FieldMethodTarget,
429           InferredTarget.getPointer());
430       if (ResolutionError) {
431         if (Diagnose) {
432           Diag(ClassDecl->getLocation(),
433                diag::note_implicit_member_target_infer_collision)
434               << (unsigned)CSM << InferredTarget.value() << FieldMethodTarget;
435         }
436         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
437         return true;
438       }
439     }
440   }
441 
442 
443   // If no target was inferred, mark this member as __host__ __device__;
444   // it's the least restrictive option that can be invoked from any target.
445   bool NeedsH = true, NeedsD = true;
446   if (InferredTarget) {
447     if (InferredTarget.value() == CFT_Device)
448       NeedsH = false;
449     else if (InferredTarget.value() == CFT_Host)
450       NeedsD = false;
451   }
452 
453   // We either setting attributes first time, or the inferred ones must match
454   // previously set ones.
455   if (NeedsD && !HasD)
456     MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
457   if (NeedsH && !HasH)
458     MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
459 
460   return false;
461 }
462 
463 bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
464   if (!CD->isDefined() && CD->isTemplateInstantiation())
465     InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
466 
467   // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
468   // empty at a point in the translation unit, if it is either a
469   // trivial constructor
470   if (CD->isTrivial())
471     return true;
472 
473   // ... or it satisfies all of the following conditions:
474   // The constructor function has been defined.
475   // The constructor function has no parameters,
476   // and the function body is an empty compound statement.
477   if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
478     return false;
479 
480   // Its class has no virtual functions and no virtual base classes.
481   if (CD->getParent()->isDynamicClass())
482     return false;
483 
484   // Union ctor does not call ctors of its data members.
485   if (CD->getParent()->isUnion())
486     return true;
487 
488   // The only form of initializer allowed is an empty constructor.
489   // This will recursively check all base classes and member initializers
490   if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
491         if (const CXXConstructExpr *CE =
492                 dyn_cast<CXXConstructExpr>(CI->getInit()))
493           return isEmptyCudaConstructor(Loc, CE->getConstructor());
494         return false;
495       }))
496     return false;
497 
498   return true;
499 }
500 
501 bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
502   // No destructor -> no problem.
503   if (!DD)
504     return true;
505 
506   if (!DD->isDefined() && DD->isTemplateInstantiation())
507     InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
508 
509   // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
510   // empty at a point in the translation unit, if it is either a
511   // trivial constructor
512   if (DD->isTrivial())
513     return true;
514 
515   // ... or it satisfies all of the following conditions:
516   // The destructor function has been defined.
517   // and the function body is an empty compound statement.
518   if (!DD->hasTrivialBody())
519     return false;
520 
521   const CXXRecordDecl *ClassDecl = DD->getParent();
522 
523   // Its class has no virtual functions and no virtual base classes.
524   if (ClassDecl->isDynamicClass())
525     return false;
526 
527   // Union does not have base class and union dtor does not call dtors of its
528   // data members.
529   if (DD->getParent()->isUnion())
530     return true;
531 
532   // Only empty destructors are allowed. This will recursively check
533   // destructors for all base classes...
534   if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
535         if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
536           return isEmptyCudaDestructor(Loc, RD->getDestructor());
537         return true;
538       }))
539     return false;
540 
541   // ... and member fields.
542   if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
543         if (CXXRecordDecl *RD = Field->getType()
544                                     ->getBaseElementTypeUnsafe()
545                                     ->getAsCXXRecordDecl())
546           return isEmptyCudaDestructor(Loc, RD->getDestructor());
547         return true;
548       }))
549     return false;
550 
551   return true;
552 }
553 
554 namespace {
555 enum CUDAInitializerCheckKind {
556   CICK_DeviceOrConstant, // Check initializer for device/constant variable
557   CICK_Shared,           // Check initializer for shared variable
558 };
559 
560 bool IsDependentVar(VarDecl *VD) {
561   if (VD->getType()->isDependentType())
562     return true;
563   if (const auto *Init = VD->getInit())
564     return Init->isValueDependent();
565   return false;
566 }
567 
568 // Check whether a variable has an allowed initializer for a CUDA device side
569 // variable with global storage. \p VD may be a host variable to be checked for
570 // potential promotion to device side variable.
571 //
572 // CUDA/HIP allows only empty constructors as initializers for global
573 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
574 // __shared__ variables whether they are local or not (they all are implicitly
575 // static in CUDA). One exception is that CUDA allows constant initializers
576 // for __constant__ and __device__ variables.
577 bool HasAllowedCUDADeviceStaticInitializer(Sema &S, VarDecl *VD,
578                                            CUDAInitializerCheckKind CheckKind) {
579   assert(!VD->isInvalidDecl() && VD->hasGlobalStorage());
580   assert(!IsDependentVar(VD) && "do not check dependent var");
581   const Expr *Init = VD->getInit();
582   auto IsEmptyInit = [&](const Expr *Init) {
583     if (!Init)
584       return true;
585     if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) {
586       return S.isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
587     }
588     return false;
589   };
590   auto IsConstantInit = [&](const Expr *Init) {
591     assert(Init);
592     ASTContext::CUDAConstantEvalContextRAII EvalCtx(S.Context,
593                                                     /*NoWronSidedVars=*/true);
594     return Init->isConstantInitializer(S.Context,
595                                        VD->getType()->isReferenceType());
596   };
597   auto HasEmptyDtor = [&](VarDecl *VD) {
598     if (const auto *RD = VD->getType()->getAsCXXRecordDecl())
599       return S.isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
600     return true;
601   };
602   if (CheckKind == CICK_Shared)
603     return IsEmptyInit(Init) && HasEmptyDtor(VD);
604   return S.LangOpts.GPUAllowDeviceInit ||
605          ((IsEmptyInit(Init) || IsConstantInit(Init)) && HasEmptyDtor(VD));
606 }
607 } // namespace
608 
609 void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
610   // Do not check dependent variables since the ctor/dtor/initializer are not
611   // determined. Do it after instantiation.
612   if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage() ||
613       IsDependentVar(VD))
614     return;
615   const Expr *Init = VD->getInit();
616   bool IsSharedVar = VD->hasAttr<CUDASharedAttr>();
617   bool IsDeviceOrConstantVar =
618       !IsSharedVar &&
619       (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>());
620   if (IsDeviceOrConstantVar || IsSharedVar) {
621     if (HasAllowedCUDADeviceStaticInitializer(
622             *this, VD, IsSharedVar ? CICK_Shared : CICK_DeviceOrConstant))
623       return;
624     Diag(VD->getLocation(),
625          IsSharedVar ? diag::err_shared_var_init : diag::err_dynamic_var_init)
626         << Init->getSourceRange();
627     VD->setInvalidDecl();
628   } else {
629     // This is a host-side global variable.  Check that the initializer is
630     // callable from the host side.
631     const FunctionDecl *InitFn = nullptr;
632     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
633       InitFn = CE->getConstructor();
634     } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
635       InitFn = CE->getDirectCallee();
636     }
637     if (InitFn) {
638       CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
639       if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
640         Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
641             << InitFnTarget << InitFn;
642         Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
643         VD->setInvalidDecl();
644       }
645     }
646   }
647 }
648 
649 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
650 // treated as implicitly __host__ __device__, unless:
651 //  * it is a variadic function (device-side variadic functions are not
652 //    allowed), or
653 //  * a __device__ function with this signature was already declared, in which
654 //    case in which case we output an error, unless the __device__ decl is in a
655 //    system header, in which case we leave the constexpr function unattributed.
656 //
657 // In addition, all function decls are treated as __host__ __device__ when
658 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
659 //   #pragma clang force_cuda_host_device_begin/end
660 // pair).
661 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
662                                        const LookupResult &Previous) {
663   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
664 
665   if (ForceCUDAHostDeviceDepth > 0) {
666     if (!NewD->hasAttr<CUDAHostAttr>())
667       NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
668     if (!NewD->hasAttr<CUDADeviceAttr>())
669       NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
670     return;
671   }
672 
673   if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
674       NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
675       NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
676     return;
677 
678   // Is D a __device__ function with the same signature as NewD, ignoring CUDA
679   // attributes?
680   auto IsMatchingDeviceFn = [&](NamedDecl *D) {
681     if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
682       D = Using->getTargetDecl();
683     FunctionDecl *OldD = D->getAsFunction();
684     return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
685            !OldD->hasAttr<CUDAHostAttr>() &&
686            !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
687                        /* ConsiderCudaAttrs = */ false);
688   };
689   auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
690   if (It != Previous.end()) {
691     // We found a __device__ function with the same name and signature as NewD
692     // (ignoring CUDA attrs).  This is an error unless that function is defined
693     // in a system header, in which case we simply return without making NewD
694     // host+device.
695     NamedDecl *Match = *It;
696     if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
697       Diag(NewD->getLocation(),
698            diag::err_cuda_unattributed_constexpr_cannot_overload_device)
699           << NewD;
700       Diag(Match->getLocation(),
701            diag::note_cuda_conflicting_device_function_declared_here);
702     }
703     return;
704   }
705 
706   NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
707   NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
708 }
709 
710 // TODO: `__constant__` memory may be a limited resource for certain targets.
711 // A safeguard may be needed at the end of compilation pipeline if
712 // `__constant__` memory usage goes beyond limit.
713 void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) {
714   // Do not promote dependent variables since the cotr/dtor/initializer are
715   // not determined. Do it after instantiation.
716   if (getLangOpts().CUDAIsDevice && !VD->hasAttr<CUDAConstantAttr>() &&
717       !VD->hasAttr<CUDASharedAttr>() &&
718       (VD->isFileVarDecl() || VD->isStaticDataMember()) &&
719       !IsDependentVar(VD) &&
720       ((VD->isConstexpr() || VD->getType().isConstQualified()) &&
721        HasAllowedCUDADeviceStaticInitializer(*this, VD,
722                                              CICK_DeviceOrConstant))) {
723     VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
724   }
725 }
726 
727 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
728                                                        unsigned DiagID) {
729   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
730   FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
731   SemaDiagnosticBuilder::Kind DiagKind = [&] {
732     if (!CurFunContext)
733       return SemaDiagnosticBuilder::K_Nop;
734     switch (CurrentCUDATarget()) {
735     case CFT_Global:
736     case CFT_Device:
737       return SemaDiagnosticBuilder::K_Immediate;
738     case CFT_HostDevice:
739       // An HD function counts as host code if we're compiling for host, and
740       // device code if we're compiling for device.  Defer any errors in device
741       // mode until the function is known-emitted.
742       if (!getLangOpts().CUDAIsDevice)
743         return SemaDiagnosticBuilder::K_Nop;
744       if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
745         return SemaDiagnosticBuilder::K_Immediate;
746       return (getEmissionStatus(CurFunContext) ==
747               FunctionEmissionStatus::Emitted)
748                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
749                  : SemaDiagnosticBuilder::K_Deferred;
750     default:
751       return SemaDiagnosticBuilder::K_Nop;
752     }
753   }();
754   return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
755 }
756 
757 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
758                                                      unsigned DiagID) {
759   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
760   FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
761   SemaDiagnosticBuilder::Kind DiagKind = [&] {
762     if (!CurFunContext)
763       return SemaDiagnosticBuilder::K_Nop;
764     switch (CurrentCUDATarget()) {
765     case CFT_Host:
766       return SemaDiagnosticBuilder::K_Immediate;
767     case CFT_HostDevice:
768       // An HD function counts as host code if we're compiling for host, and
769       // device code if we're compiling for device.  Defer any errors in device
770       // mode until the function is known-emitted.
771       if (getLangOpts().CUDAIsDevice)
772         return SemaDiagnosticBuilder::K_Nop;
773       if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
774         return SemaDiagnosticBuilder::K_Immediate;
775       return (getEmissionStatus(CurFunContext) ==
776               FunctionEmissionStatus::Emitted)
777                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
778                  : SemaDiagnosticBuilder::K_Deferred;
779     default:
780       return SemaDiagnosticBuilder::K_Nop;
781     }
782   }();
783   return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
784 }
785 
786 bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
787   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
788   assert(Callee && "Callee may not be null.");
789 
790   auto &ExprEvalCtx = ExprEvalContexts.back();
791   if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
792     return true;
793 
794   // FIXME: Is bailing out early correct here?  Should we instead assume that
795   // the caller is a global initializer?
796   FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
797   if (!Caller)
798     return true;
799 
800   // If the caller is known-emitted, mark the callee as known-emitted.
801   // Otherwise, mark the call in our call graph so we can traverse it later.
802   bool CallerKnownEmitted =
803       getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
804   SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
805                                           CallerKnownEmitted] {
806     switch (IdentifyCUDAPreference(Caller, Callee)) {
807     case CFP_Never:
808     case CFP_WrongSide:
809       assert(Caller && "Never/wrongSide calls require a non-null caller");
810       // If we know the caller will be emitted, we know this wrong-side call
811       // will be emitted, so it's an immediate error.  Otherwise, defer the
812       // error until we know the caller is emitted.
813       return CallerKnownEmitted
814                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
815                  : SemaDiagnosticBuilder::K_Deferred;
816     default:
817       return SemaDiagnosticBuilder::K_Nop;
818     }
819   }();
820 
821   if (DiagKind == SemaDiagnosticBuilder::K_Nop) {
822     // For -fgpu-rdc, keep track of external kernels used by host functions.
823     if (LangOpts.CUDAIsDevice && LangOpts.GPURelocatableDeviceCode &&
824         Callee->hasAttr<CUDAGlobalAttr>() && !Callee->isDefined())
825       getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Callee);
826     return true;
827   }
828 
829   // Avoid emitting this error twice for the same location.  Using a hashtable
830   // like this is unfortunate, but because we must continue parsing as normal
831   // after encountering a deferred error, it's otherwise very tricky for us to
832   // ensure that we only emit this deferred error once.
833   if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
834     return true;
835 
836   SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
837       << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee
838       << IdentifyCUDATarget(Caller);
839   if (!Callee->getBuiltinID())
840     SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
841                           diag::note_previous_decl, Caller, *this)
842         << Callee;
843   return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
844          DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
845 }
846 
847 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
848 // A lambda function may capture a stack variable by reference when it is
849 // defined and uses the capture by reference when the lambda is called. When
850 // the capture and use happen on different sides, the capture is invalid and
851 // should be diagnosed.
852 void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee,
853                                   const sema::Capture &Capture) {
854   // In host compilation we only need to check lambda functions emitted on host
855   // side. In such lambda functions, a reference capture is invalid only
856   // if the lambda structure is populated by a device function or kernel then
857   // is passed to and called by a host function. However that is impossible,
858   // since a device function or kernel can only call a device function, also a
859   // kernel cannot pass a lambda back to a host function since we cannot
860   // define a kernel argument type which can hold the lambda before the lambda
861   // itself is defined.
862   if (!LangOpts.CUDAIsDevice)
863     return;
864 
865   // File-scope lambda can only do init captures for global variables, which
866   // results in passing by value for these global variables.
867   FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
868   if (!Caller)
869     return;
870 
871   // In device compilation, we only need to check lambda functions which are
872   // emitted on device side. For such lambdas, a reference capture is invalid
873   // only if the lambda structure is populated by a host function then passed
874   // to and called in a device function or kernel.
875   bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
876   bool CallerIsHost =
877       !Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
878   bool ShouldCheck = CalleeIsDevice && CallerIsHost;
879   if (!ShouldCheck || !Capture.isReferenceCapture())
880     return;
881   auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
882   if (Capture.isVariableCapture()) {
883     SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
884                           diag::err_capture_bad_target, Callee, *this)
885         << Capture.getVariable();
886   } else if (Capture.isThisCapture()) {
887     // Capture of this pointer is allowed since this pointer may be pointing to
888     // managed memory which is accessible on both device and host sides. It only
889     // results in invalid memory access if this pointer points to memory not
890     // accessible on device side.
891     SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
892                           diag::warn_maybe_capture_bad_target_this_ptr, Callee,
893                           *this);
894   }
895 }
896 
897 void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
898   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
899   if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
900     return;
901   Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
902   Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
903 }
904 
905 void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
906                                    const LookupResult &Previous) {
907   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
908   CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
909   for (NamedDecl *OldND : Previous) {
910     FunctionDecl *OldFD = OldND->getAsFunction();
911     if (!OldFD)
912       continue;
913 
914     CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
915     // Don't allow HD and global functions to overload other functions with the
916     // same signature.  We allow overloading based on CUDA attributes so that
917     // functions can have different implementations on the host and device, but
918     // HD/global functions "exist" in some sense on both the host and device, so
919     // should have the same implementation on both sides.
920     if (NewTarget != OldTarget &&
921         ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
922          (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
923         !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
924                     /* ConsiderCudaAttrs = */ false)) {
925       Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
926           << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
927       Diag(OldFD->getLocation(), diag::note_previous_declaration);
928       NewFD->setInvalidDecl();
929       break;
930     }
931   }
932 }
933 
934 template <typename AttrTy>
935 static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
936                               const FunctionDecl &TemplateFD) {
937   if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
938     AttrTy *Clone = Attribute->clone(S.Context);
939     Clone->setInherited(true);
940     FD->addAttr(Clone);
941   }
942 }
943 
944 void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
945                                   const FunctionTemplateDecl &TD) {
946   const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
947   copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
948   copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
949   copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
950 }
951 
952 std::string Sema::getCudaConfigureFuncName() const {
953   if (getLangOpts().HIP)
954     return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
955                                             : "hipConfigureCall";
956 
957   // New CUDA kernel launch sequence.
958   if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
959                          CudaFeature::CUDA_USES_NEW_LAUNCH))
960     return "__cudaPushCallConfiguration";
961 
962   // Legacy CUDA kernel configuration call
963   return "cudaConfigureCall";
964 }
965